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ARCTIC-3D: automatic retrieval and clustering of
interfaces in complexes from 3D structural
information
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The formation of a stable complex between proteins lies at the core of a wide variety of

biological processes and has been the focus of countless experiments. The huge amount of

information contained in the protein structural interactome in the Protein Data Bank can now

be used to characterise and classify the existing biological interfaces. We here introduce

ARCTIC-3D, a fast and user-friendly data mining and clustering software to retrieve data and

rationalise the interface information associated with the protein input data. We demonstrate

its use by various examples ranging from showing the increased interaction complexity of

eukaryotic proteins, 20% of which on average have more than 3 different interfaces com-

pared to only 10% for prokaryotes, to associating different functions to different interfaces. In

the context of modelling biomolecular assemblies, we introduce the concept of “recognition

entropy”, related to the number of possible interfaces of the components of a protein-protein

complex, which we demonstrate to correlate with the modelling difficulty in classical docking

approaches. The identified interface clusters can also be used to generate various combi-

nations of interface-specific restraints for integrative modelling. The ARCTIC-3D software is

freely available at github.com/haddocking/arctic3d and can be accessed as a web-service at

wenmr.science.uu.nl/arctic3d.
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Protein-protein interactions are of crucial importance in
biology, as they are involved in the majority of cellular
processes, ranging from signal transduction to cell trans-

port. A key element of a protein-protein complex is the interface
between each component of the complex, defined as the set of
amino acids of each protein that have at least one heavy atom
located within a cutoff distance to the partner (typically 5Å).
Biologically speaking, interfaces are typically composed by a
subset of amino acids that are crucial for the interaction with the
binding partner, while the other residues play a less relevant
role1,2.

Information about interfaces can be extracted from the PDB,
but is not always immediate to access and retrieve. The recently
released PDBe-graph database3–7 provides a resource to facilitate
the retrieval of such information. In this database, each UNI-
PROT ID is treated as a node of a network, where the interactions
formed with its partners are represented as edges. Notably, the
graph-API5 allows for a fast and programmatic retrieval of such
relational data, providing the user with immediate access to the
set of interfaces formed by a protein with its partners. This set can
consist of multiple interfaces, especially when the protein under
study is an interaction hub8. Many algorithms attempt at finding
similarities between protein-protein interfaces9–12 and protein-
ligand binding sites13,14 or at analysing and predicting protein
interactions15–17, but none of these focusses on protein-specific
interfaces, that is, the sets of residues that are used by a given
protein to interact with different partners. We here present an
easy-to-use tool to data mine the existing experimental, structural
data on protein interfaces.

We introduce ARCTIC-3D (Automatic Retrieval and Clus-
Tering of Interfaces in Complexes from 3D structural informa-
tion), a software for data mining and clustering the set of available
interfaces formed by a reference protein. With the aim of quan-
titatively distinguishing between different interfaces on a protein
structure, we exploit the formal equivalence between interfaces
(groups of residues) and coarse-grained mappings18,19, namely
reduced descriptions of proteins in which only a subset of the
original atoms (or residues) is retained. Using the mathematical
tools developed to quantify the similarities between coarse-
grained representations20, it is possible to assess the similarities
between different interfaces.

There are several, potential scientific applications of ARCTIC-3D
in structural bioinformatics and, in particular, in the information-
driven modelling of molecular systems21. We here demonstrate the
application of the software with a few examples, ranging from
proteome-wide analysis of interfaces to its use for generating
interface-specific sets of restraints to guide protein-protein docking.

Results
Benchmarking ARCTIC-3D on the Docking Benchmark 5
dataset. As a first test case for ARCTIC-3D we analyse a subset of
the Docking Benchmark 5 (BM5) dataset22, a reference dataset
for protein-protein docking. Among the 257 complexes of the
dataset, we remove those involving ligands, antibodies and those
composed of more than two interacting partners. Note that
focusing on two interacting partners is not a limitation of
ARCTIC-3D as it is agnostic of the number of interacting part-
ners within a complex when querying the PDBe-KB database.
This was done here to simplify the analysis. For each of the 86
remaining complexes, we extract the UNIPROT ID of the two
interacting proteins and run ARCTIC-3D on both of them.

Using ARCTIC-3D with default settings, we retrieve an average
of 50.9 interfaces and 2.9 interacting surfaces (interface clusters)
over the 157 unique UNIPROT IDs in our dataset. For almost all
of the 172 proteins constituting the 86 complexes, we find the true

interface with the partner protein among the existing interfaces.
The few times (6 cases) in which this does not occur are due to
the PDB preprocessing steps, which select a PDB file that does not
include coordinates for the amino acids of the aforementioned
interface. The only case for which ARCTIC-3D does not retrieve
any interface data concerns UNIPROT ID O09130, for which no
interface information is available in the PDBe’s RESTful API.

For each of these proteins, we looked at how often interfaces
formed with the partner UNIPROT ID have been clustered with
other interfaces. This analysis is useful to estimate whether an
ARCTIC-3D run performed in absence of any knowledge about
this protein-protein interaction would still allow to retrieve a
reasonable interacting surface. We find that this is the case for 98
entries, namely 57% of the total number of individual proteins.

The presences of multiple binding surfaces (high recognition
entropy) can explain the docking difficulty. In Ref. 22 three ab-
initio docking methods (SwarmDock23, PyDock24, and
ZDOCK25) were applied to the 55 new entries of the BM5 dataset.
A few quantities, such as interface RMSD (i-RMSD), buried
interface area (ΔASA), and experimental binding free energy
(ΔG), were analyzed in order to explain the different docking
performances for different complexes. Weak correlations were
found between the docking difficulty and the Root Mean Squared
Difference of the protein interfaces (i-RMSD) and a combination
of buried surface area and binding affinity, but in both cases these
were only mildly predictive of the docking success. Another
hypothesis could be that the presence of multiple binding surfaces
on a protein misleads the docking causing poor performance.
This is something that we can easily investigate with ARCTIC-
3D.

The intersection between the subset of complexes considered
here and described in Ref. 22 amounts to 12 entries. Among those,
we excluded from our analysis 3A4S as it involves UNIPROT ID
O09130, for which there is no available interface information.

For each complex, we express the docking quality combining the
results of the three ab-initio docking software taken from Fig. 1 of
Ref. 22 as follows:

Qdocking ¼ ∑
m2M

∑
t

Qm;t

t
ð1Þ

whereM is the set of ab-initio docking methods and t refers to the
index of each element in the top [1, 5, 10, 50, 100] array, meaning
t= 1 when considering the top 1 structure, t= 2 for the top 5 and
so on. Qm,t is the quality of the best structure produced by method
m at the t-th element of the top array (1, 2, 3 for acceptable,
medium, and high quality models, respectively).

As a measure of the complexity of binding surfaces retrieved by
ARCTIC-3D for the two partner proteins we define the following
Boltzmann-like entropy, here named “recognition entropy”:

Srecognition ¼ ln Nclust
rec ´Nclust

lig

� �
ð2Þ

which is the natural logarithm of the number of possible
combinations of binding surfaces, as given by the product
between the number of clusters on the receptor (Nclust

rec ) and on the
ligand (Nclust

lig ). Fig. 1 shows the scatter plot of Srecognition versus
Qdocking, which shows a clear anti-correlation between the two
variables (r=− 0.76): ab-initio docking software tend to perform
consistently well for targets that do not possess many combina-
tions of interface clusters, such as 3CP8 and 3VLB. Instead, the
accuracy drops when dealing with complexes whose constituents
have multiple binding interfaces, translating into high recognition
entropies. In this context, a paradigmatic example is 4M76, a
complex for which no ab-initio docking method can find a good
solution in the top 100 models (Qdocking= 0), even though the two
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partners do not show any substantial conformational rearrange-
ments upon binding (rigid-body docking category, i-RMSD=
0.43). In this particular complex, the receptor possesses 13
binding surfaces and the ligand 4, and accordingly a high
recognition entropy (Srecognition ¼ lnð52Þ ¼ 3:95). This high
number of combinations could be the leading cause for the poor
performances of all three ab-initio docking software.

UNIPROT-wide analysis. In a second benchmarking experiment,
we apply ARCTIC-3D to the analysis of a large protein data set,
namely the full set of 569213 (as of 9/3/2023) curated proteins
present in the UNIPROT Swiss-Prot26 database. Running
ARCTIC-3D with default parameters on this huge amount of
UNIPROT IDs required 11.08 CPU hours on a 50 AMD EPYC

7451 processor. The speed performance is highly dependent on
the protein of interest, as a UNIPROT ID with no interface
information (95.9% of the proteins, 87.0% of the overall execution
time) simply amounts to a call to the PDBe graph API5, while an
interaction hub with a long sequence results in longer execution
time, the majority of it being due to the download of the PDB files
associated to each UNIPROT ID. For example, the ARCTIC-3D
run for SARS-CoV-2 spike glycoprotein (UNIPROT ID P0DTC2)
took more than half an hour to complete. A comprehensive
analysis of the speed performance of different stages of ARCTIC-
3D is available in the Supplementary Material section 1 (Sup-
plementary Material Figs. 1–2 and Supplementary Material
Table 1).

ARCTIC-3D could retrieve information for 23446 UNIPROT
IDs (4.12% of the total number of entries analyzed). 59.73% of the
considered proteins have a single interacting surface, while
14.75% of them display more than three. Fig. 2 shows the
histogram of the number of binding surfaces for Homo sapiens
and the four main taxonomic superkingdoms, namely Eukaryotes,
Bacteria, Archaea, and Viruses. From the plot we can observe how
the histograms for Eukaryotes and Homo sapiens display a slower
decrease while going from left to right, that is, moving towards
proteins with a considerable number of interacting surfaces. The
value displayed on each histogram represents the fraction of
proteins that possess more than 3 interface clusters. This
behaviour may have multiple possible explanations: first, human
and eukaryotic proteins tend to be longer than non-eukaryotic
proteins27, therefore simply having more space for accommodat-
ing multiple binding surfaces. Second, eukaryotic proteins have
been investigated more in detail than their counterparts28, and
the number of annotated protein-protein interfaces may be
higher for them.

Data-driven docking. It is possible to generate docking restraints
from two ARCTIC-3D runs by means of the arctic3d-
restraints command line interface (see Methods section). In
this section, as an example, we apply this idea to a real docking
scenario, using 1AVX29 from the BM5 dataset22. The free form of
the components of the complex map to two PDB files: 1QQU30,
chain A (crystal structure of porcine beta trypsin) and 1BA729,
chain B (crystal structure of Kunitz-type soybean trypsin inhi-
bitor). This is supposedly a relatively easy docking, as the inter-
face Cα atoms show a sub-angstrom RMSD (0.47 Å) between the

Fig. 1 Scatter plot of Qdocking (x-axis, Eq. (1)) against Srecognition (y-axis,
Eq. (2)) for 11 entries of the updated bm5 dataset. The ab-initio docking
performances seem to depend on the complexity of the protein
interactome.

Fig. 2 Histogram of the number of interface clusters for Homo sapiens and the four taxonomic superkingdoms. The number reported in each plot next
to the vertical red line represents the fraction of proteins of each category with more than 3 interacting surfaces. The ninth bin of each histogram refers to
proteins with 9 or more clusters.
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bound and the unbound structure. The complex falls within the
rigid-body category of the BM5 dataset.

ARCTIC-3D was run on the two UNIPROT IDs corresponding
to 1QQU and 1BA7, namely P00761 (Sus scrufa Trypsin) and
P01070 (Soybean Trypsin inhibitor A), excluding from the
analysis the structure of the complex, 1AVX, and also all
interfaces formed by P00761 (resp. P01070) with P01070 (resp.
P00761), as in a real-case scenario this kind of information would
typically be unavailable. When running ARCTIC-3D for P01070
we impose the reference PDB file to be 1BA7. Only one interface
is retrieved, namely the one formed in 6O1F31 with Homo sapiens
Tryptase alpha/beta-1 (UNIPROT ID Q15661). The retrieved list
of residues shows a substantial similarity with the real P00761-
P01070 interface present in 1AVX.

For P00761 and choosing 1QQU as reference PDB, ARCTIC-3D
returns 43 interfaces, which cluster into 5 binding surfaces. The
recognition entropy of this ARCTIC-3D run is then equal to
Srecognition ¼ lnð1´ 5Þ ¼ 1:61. Among the retrieved surfaces, three
correspond to homodimeric (P00761-P00761) interfaces, while the
other two concern different categories of heterodimers: one is a
secondary binding surface formed by the trypsin with a hetero-
chiral peptide (PDB id 1V6D32), while the other (a cluster of 25
different interfaces) covers the standard trypsin binding surface.

Assuming complete ignorance about the location of the true
binding surface, restraints were generated with arctic3d-
restraints with the default probability threshold Pthr= 0.3
for all combinations of the P00761 binding surfaces with the
single binding surface identified for P01070.

This set of five interaction ambiguous restraints was input in
HADDOCK3, the new modular version of HADDOCK33, with a
fast, low-sampling docking workflow, composed by the following
steps:

1. rigid-body energy minimisation, in which only 100 solu-
tions are sampled, namely only 20 for each set of input
restraints;

2. flexible refinement of all 100 models;
3. final energy minimisation;
4. Fraction of Common Contacts clustering;12 using a

0.6 similarity cutoff and requiring a minimum of 4 models
per cluster;

5. Cluster-based scoring with the default scoring function of
HADDOCK34 which consist of a linear combination of
intermolecular van der Waals and electrostatic energies
using the OPLS35 force field, an empirical desolvation
energy term36 and the restraint energy.

The underlying assumption behind this reduced computational
protocol is that the presence of good information in part the
input data (one of the five interaction restraints) should allow one
to retrieve acceptable docking solutions even when limiting the
sampling. In this case this proved to be correct, as HADDOCK
identifies 5 medium quality docking poses out of the 100 sampled.
Fig. 3 shows the correlation between the quality of the docking
models, expressed with the DOCKQ metric37 and the HAD-
DOCK score. The first medium quality model (DOCKQ= 0.743)
ranks at position 1 (Fig. 3a). Cluster-based analysis clearly
identifies the near-native cluster as top-ranking one (Fig. 3b).
This HADDOCK3 run took 13 minutes and 12 seconds on 20
AMD EPYC 7451 CPU cores. The limited sampling at the rigid
body energy minimisation allows for a faster execution of the
workflow with respect to the standard HADDOCK recipe.

In this case, HADDOCK produces a complex whose accuracy
is comparable to that obtained using Alphafold2-multimer38,39,
whose top-ranked model has a DOCKQ score equal to 0.831. This
complex was however present in the training set of Alphafold2.

Fig. 3 Accuracy of HADDOCK3 generated models (DOCKQ score) plotted against the HADDOCK score. The colour-coding indicates the interface
restraint combination used to drive the docking: GOOD-INT corresponds to the identified interface overlapping with the true interface for this complex, PEP
to the identified interface with the heterochiral peptide, HOMO-1, HOMO-2, and HOMO-3 to the three homodimeric binding surfaces found for P00761.
a Single model statistics for the 100 generated models after final energy minimisation. b Cluster-based statistics showing the model part of the three
identified clusters. The best-scoring model (receptor in green, ligand in silver) is shown superimposed onto the target complex (receptor in blue, ligand in
orange) (i-RMSD= 1.175Å, DOCKQ= 0.743). Cluster scores and standard deviations are reported in the legend. Those are calculated on the top 4 models
of each cluster.
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Discussion
In this work we have presented ARCTIC-3D, a novel tool for the
retrieval and classification of protein interfaces from the PDB
database. Once provided with protein input data, ARCTIC-3D
queries the PDBe-graph database6 through its graph-API5,
extracting the available information about the protein of interest.
Subsequently, the formal equivalence between a protein interface
and a coarse-grained reduced representation (mapping) is
exploited to derive a notion of similarity between different
interfaces. This is then used to identify the different binding
surfaces of the structure under investigation.

Applications of ARCTIC-3D to a subset of the Docking
Benchmark 5 dataset22 and to the Uniprot Swiss-Prot26 database
prove the tool to be a reliable and unsupervised source of
information when it comes to the analysis of annotated protein
interfaces. We have also shown, that, for protein-protein com-
plexes, next to the amount of conformational changes taking
place upon binding, the number of potential binding surfaces can
explain the modelling difficulty. For this we have introduced the
concept of recognition entropy. The interface-specific restraints
generated by ARCTIC-3D, whose use was demonstrated with
HADDOCK, should be useful to any modelling software that can
make use of such information for model generation and/or
scoring.

Another useful application of ARCTIC-3D concerns the ana-
lysis of binding surfaces according to the proteins that interact
with them to search for subcellular location, biological process,
and molecular function of these partners. It provides an unbiased,
and computationally inexpensive method to assess whether one
of these factors is related to the considered binding surface.

In conclusion, ARCTIC-3D, available both as a standalone
code and user-friendly web service, offers an intuitive and simple
protocol to fetch and rationalise protein interface information,

with the aim of facilitating the understanding and visualisation of
the available binding surfaces.

Methods
This section details the functioning of the program, from inter-
face mining to clustering, and provides some usage examples. A
schematic representation of the full ARCTIC-3D workflow is
provided in Fig. 4.

Data mining of interfaces. The software can accept three cate-
gories of input, namely a sequence, a UNIPROT ID (recom-
mended), or a PDB file.

When a sequence or a PDB file are provided, we determine the
associated UNIPROT ID by means of a BLASTP search.
ARCTIC-3D then performs a HTTP request to the PDBe’s
RESTful API5 to gather all the available interaction information.
This data is parsed, according to different parameters. When the
input is a PDB file, the user has the freedom to skip this step by
submitting an interface-file with a list of curated interfaces,
which might be the results of experiments, computational
modelling, or previous ARCTIC-3D runs.

In the following step ARCTIC-3D exploits again the PDBe’s
RESTful API5 to get the PDB file to be used for the subsequent
geometric calculations (if it was not provided in input). The API
provides a list of structures ranked by sequence coverage and
resolution (undefined for NMR structures). ARCTIC-3D down-
loads the corresponding mmcif files40 and converts those to PDB
format, renumbering the amino acids according to the UNIPROT
numbering scheme so as to ensure consistency between interfaces
and structures. These PDB files are then processed and cleaned
using pdb-tools 2.5.041. As not all interface residues might be
present in all PDB files, for the clustering analysis we select the

Fig. 4 Schematic representation of a typical ARCTIC-3D workflow. In the first stage of the execution (left panels), interfaces are either retrieved from the
PDBe’s RESTful API5 or read from a user-provided input file. Those interfaces are then projected over a cleaned PDB 3D structure, making it possible to
calculate a similarity matrix between them (centre-left panel) and, finally, to cluster them in separate binding surfaces (centre-right panel). In the latest
stage of the execution (right panel), the results are provided to the user by means of PDB files in which the binding surface information is encoded into the
β factor field and interactive plots.
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PDB file that retains the highest number of interfaces. The user
can speed-up this operation by forcing the algorithm to use a
specific chain of a specific PDB file (using the pdb-to-use and
chain-to-use parameters). By default, an interface is retained
if at least 70% of its residues are present in the PDB structure
under analysis. This threshold can be modified by the user
through the int-cov-cutoff parameter.

Interface similarity and clustering. Having pre-processed the
PDB file and the set of filtered interfaces we can proceed to
determine their mutual similarity and, ultimately, cluster them
in binding surfaces. It is possible (see Ref. 20) to associate a
subset of protein atoms to a vector ϕ in an abstract space,
namely the Hilbert space of square-integrable real functions
L2ðR3Þ.

An interface I can be considered a subset of atoms of a protein
and projected onto L2ðR3Þ. It is then useful to measure the
properties that characterise the interface itself, such as its norm
EðIÞ, and its similarity with other interfaces by calculating the
scalar product 〈ϕI, ϕJ〉. These quantities are calculated as Ref. 20:

E ðIÞ ¼ ∑
n

i;j¼1
Jij χI; i χI;j ð3Þ

hϕI ; ϕJi ¼ ∑
n

i;j¼1
J ij χI; i χJ;j ð4Þ

χI;i ¼
1 if atom i 2 interface I,

0 if atom i =2 interface I.

�
ð5Þ

where the sums run over all the considered atoms of a proteins
(here only the Cα atoms for simplicity) and Jij is a gaussian

coupling between atoms i and j, which depends on their pairwise
distance rij:

J ij ðrijÞ ¼ e�r2ij=4σ
2

; ð6Þ
The gaussian width σ is here set to half the distance between

two consecutive Cα atoms (1.9 Å), as in Ref. 20.
Following these definitions, the distance between two interfaces

I and J can be calculated as:

D ðI; JÞ ¼ EðIÞ þ EðJÞ � 2hϕI ; ϕJi
� �1

2

¼ ∑
n

i;j¼1
JijχI; iχI; j þ ∑

n

i;j¼1
JijχJ; iχJ; j þ�2 ∑

n

i;j¼1
JijχI; iχJ; j

� �1
2

:
ð7Þ

In this case I corresponds to the set of Cα atoms belonging to
the amino acids of the protein that constitute the interface.

When dealing with real interfaces, though, using the distance
metric defined in Eq. (7) might not be the wisest choice as it
heavily depends on the number of residues present in interfaces I
and J. Even when these two interfaces span the same region on
the protein surface, their distance might be non-negligible when
they differ in the number of residues forming each interface.

As a measure of similarity between two interfaces, we therefore
propose to consider instead the angle between two interfaces,
which can be easily calculated20 as:

cos θI;J ¼
hϕI ; ϕJi
EðIÞ EðJÞð Þ12

; ð8Þ

and, in particular, the sine of such angle:

sin θI;J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2θI;J

q
ð9Þ

The sine of the angle is a robust quantity to observe, as a very
high value corresponds to complete orthogonality between
interfaces, i.e., the interfaces occupy two completely different
regions of the protein surface. On the other hand, sin θI;J � 0
corresponds to the situation of absolute parallelism between
interfaces, which is obtained when I and J span the same region
on the protein surface. We provide an example of the behaviour
of the distance (Eq. (7)) and the sine of the angle (Eq. (9)) for
various interfaces in Supplementary Material section 2 (see also
Supplementary Material Fig. 3).

Once the similarity matrix between all interface is computed
based on Eq. (9), we use agglomerative hierarchical clustering42 to
retrieve the interface clusters. This clustering method was selected
because of its mathematical rigour and its ability to handle
directly distance matrices. The resulting clusters can be thought
of as binding surfaces, obtained by combining together slightly
different sets of interacting amino acids. By default, the average
linkage prescription43 is used to generate the hierarchy of clusters
(dendrogram, see an example in Fig. 4 and in Supplementary
Material Fig. 4). The default threshold used to stop the
hierarchical grouping procedure (i.e. for clustering) is 0.866,
corresponding to an angle of 60 degrees (see Supplementary
Material section 3 and Supplementary Material Fig. 5). Both
linkage and threshold are input parameters of ARCTIC-
3D and can be changed by the user.

Output example and interpretation. We provide here a brief
description of the output produced by the software using UNI-
PROT ID P00760, namely Bos Taurus Serine Protease 1, as an
example.

The data mining stage of the algorithm retrieves 228 interfaces
formed by this protein, which are saved and can be re-used (for
example as an interface file). The PDB validation process selects
PDB ID 4XOJ, chain A, as the valid entity containing 3D
coordinates for residues covering the highest number of interfaces

Fig. 5 Example of ARCTIC-3D output structure for cluster 1 of UNIPROT
ID P00760. Residues in red are those with a high probability (1.0 or very
close) to be in the binding surface. Residues in white show intermediate-to-
low values of probability (see Eq. (10)), while amino acids in blue are never
observed to be in this interface cluster. Image produced with Molstar49.
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(all of them in this case). These interfaces are compared and the
similarity matrix between them is computed and saved. Then,
clustering is performed, producing a total of 7 distinct binding
surfaces using default parameters. The corresponding dendro-
gram is plotted (see Supplementary Material Fig. 4).

For each cluster/binding surface K, ARCTIC-3D outputs the
following items:

● the set of interfaces belonging to K, each one characterised
by a name and a set of residues;

● the probability of each residue i to belong to the K binding
surface, Pi,K, calculated as the fraction of times the residue
is observed within the cluster;

● a PDB file with the aforementioned probabilities embedded
in the β factor column, according to the following formula:

β ¼ 50:0 ð1þ Pi;K Þ if residue i 2 cluster K,

0:0 otherwise

�

ð10Þ
This β factor scale is introduced to make the interacting
residues more evident in common molecular visualisation
software.

Fig. 5 shows a graphical rendering of such PDB for cluster 1.
An interactive plotly44 plot shows the different cluster

Fig. 6 Results of the application of arctic3d-localise to two binding surfaces of P63165 (SUMO-1), namely cluster 4 and cluster 5. a, b The two
different binding sites corresponding to cluster 4 and 5, respectively, following the same colour scale reported in Fig. 5. c, d The output of arctic3d-
localise for those two clusters: for cluster 4, there is no preferred biological function among the partners, while the second interacting region shows a
clear preference for DNA-binding proteins.
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probabilities over the canonical protein sequence. Examples are
available at wenmr.science.uu.nl/arctic3d/example and in the
Supplementary Material section 4, where we show the ability of
ARCTIC-3D to discriminate between alternative interfaces
belonging to the same protein (see Supplementary Material
Fig. 6).

ARCTIC-3D-resclust, ARCTIC-3D-localise, and ARCTIC-3D-
restraints. In addition to the main command line interface (CLI),
we introduce three other commands that can be useful when
manipulating ARCTIC-3D results, and more generally, interface
information.

arctic3d-resclust. In a variety of common situations one might
have a set of possibly interacting residues, obtained either from
experiments and/or bioinformatic predictions. In these cases, this
list of residues may effectively correspond to more than one
interface. arctic3d-resclust clusters a residue list over an
input PDB structure. Since in this case we are considering single
residues and not interfaces (collections of residues), we use the
Cα− Cα Euclidean distance to compute the distance matrix.

Default values for linkage strategy, cutoff distance and
clustering criterion parameters are “average”, 15 Å, and
“distance”, respectively. All these parameters can be easily
adjusted by users. An example scenario for arctic3d-
resclust is presented in the Supplementary Material section 5
(Supplementary Material Table 2 and Supplementary Material
Fig. 7).

arctic3d-localise with meaningful data. A well-established idea in
the field of protein-protein interactions is that similar structural
interfaces may allow a protein to bind to similar partners9. Such
partners may not only share similarities in structure, but also in
biological function or subcellular location.

It is therefore interesting to investigate the results of ARCTIC-3D
runs from this perspective to search for similarities among the
partner proteins binding at each interacting surface. The
arctic3d-localise command is devoted to such task: given
the result of a standard ARCTIC-3D run, it loops over the
interacting partners retrieving information about their subcellular
location, their function, or the biological process they are involved
in. This is made possible by calls to the UNIPROT26 and
QUICKGO45 databases. Once such information has been retrieved,
the existing clustering performed by ARCTIC-3D is used to divide
the partners and their function over the various binding surfaces.

As an example application of arctic3d-localise we
analysed the Homo sapiens Small ubiquitin-related modifier 1
(SUMO-1, UNIPROT ID P63165). ARCTIC-3D retrieves 94
interfaces from the PDB, divided into six binding surfaces. Four
of them are quite small and not highly populated, while the
remaining two (cluster 4 and cluster 5, see Fig. 6) contain 41 and
46 interfaces, respectively.

Using arctic3d-localise we can discriminate these
binding surfaces according to the biological function of the
interacting partners. Fig. 6d shows how 5 of the 9 (curated)
partners of cluster 5 contain the DNA binding label. In short, the
binding surface characterised by cluster 5 is typically used in
interactions with proteins that are able to bind DNA, while the
other interacting surface (cluster 4) is never found in contact with
DNA binding domains. This is consistent with literature data
showing how residues belonging to the interacting surface 5 of
SUMO-1 (such as K37, K39, H43, and K46, see Fig. 6c) are key
for the interaction with SUMO interaction motifs on DNA-
binding proteins46. arctic3d-localise can thus be used to
quickly elucidate if any correlation exists between binding

surfaces and protein function, subcellular localisation, and
biological processes.

arctic3d-restraints. Interface information retrieved by means of
ARCTIC-3D can be used to drive the modelling of the complex.
The various binding surfaces found from the interacting partners
(as defined by ARCTIC-3D) can be used for scoring generated
models, imposing a penalty whenever these are not present at the
interface, or more directly to drive the modelling process by
defining restraints between the interfaces as done in HADDOCK
or in AlphaFold238,39-based methods such as AlphaLink47 or
ColabDock48. For use in HADDOCK the interface information is
translated into ambiguous interactions restraints. Instead of
combining all interfaces into one set of restraints, arctic3d-
restraints allows to generate different sets of restraints for
each combination of binding surfaces. In doing that, ARCTIC-3D
does not select by default all the residues of a binding region, but
only those amino acids that are consistently present in the region,
namely those that are observed to be there more often than a
certain, pre-defined frequency. This number, called Pthr is set by
default to 0.3 and can be modified by the user.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The data generated in this study are available at zenodo.org/record/8131701.

Code availability
The ARCTIC-3D code, together with various usage scenario examples, is freely available
at github.com/haddocking/arctic3d.
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