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Chapter 1

Childhood cancer survival in high-income countries has risen from less than 10% 
to more than 80% in the last six decades due to constant improvements of treatment 
protocols1–4. In the 19th century, cancer was only treated by surgery. The first 
significant improvements in survival were accomplished in adult patients by the 
addition of radiotherapy (RT) in the early 1900s, followed by the addition of the first 
chemotherapeutic drugs in the 1940s and 1950s5. As the number of pediatric cancer 
patients is much lower than the number of adult patients, pediatric oncologists formed 
large consortia that arranged clinical trials to test chemotherapies in children across 
hospitals and countries4. These consortia still exist today, and it is now standard of 
care in high-income countries to be enrolled in a clinical pediatric cancer trial6. In 
the first few decades, improvement of survival rates in pediatric patients was mainly 
achieved by adding more chemotherapeutic drugs to the treatment regimens and 
by intensifying the dose, especially in patients with high-risk subtypes4. As young 
children can tolerate cytotoxic compounds better than (young) adults7, pediatric 
cancer patients who suffer from, among others, acute lymphoblastic leukemia (ALL), 
currently receive higher cumulative doses compared to adults with the same cancer 
type8. This, among other factors, results in a higher overall survival rate in pediatric 
compared to (young) adult cancer patients. In 2010-2014 in the Netherlands, the 
5-year overall survival was 87% for ALL patients younger than 15 years old, 76% 
for patients 15-19 years old, and 73% for patients 20-24 years old9. In the United 
States, this was 87%, 76%, and 69% respectively9. However, the life-saving treatment 
of pediatric cancer patients comes at a cost.

Severe late effects due to cancer treatment
Chemotherapeutic compounds have various modes of action. Whereas alkylating 
agents directly damage the DNA, antimetabolites interfere with the replication and 
transcription of the DNA, and alkaloids interfere with microtubule polymerization, 
which is necessary for mitosis10. Cancer cells are generally more vulnerable to 
chemotherapies than most healthy cells. This vulnerability is likely caused in 
many cancers by their high division rate and/or their genomic instability and high 
mutation load11. The latter is specifically the case in adult cancers. This makes them 
susceptible to cell death induced by a further, chemotherapy-induced increase of 
DNA alterations via a genetic phenomenon called synthetic lethality12. 

However, healthy cells are also impacted by cancer treatment. Healthy cells can be 
damaged, inhibited in their proliferation, become dysfunctional, or be killed by 
chemotherapeutic exposure13. As a consequence, most cancer patients suffer from 
acute toxicity during treatment, such as vomiting, anemia, pain, and fatigue14–16. 
In addition, the chemotherapy-induced damage to healthy cells can lead to tissue 
dysfunctions that only manifest months to decades after the treatment has ended, 
which are collectively called late effects. These late effects include cardiovascular 
diseases, immunological conditions, neurological disorders, infertility, osteoporosis, 
and second cancers17–19. The latter are cancers that are genetically unrelated to the 
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1primary cancer, and which are diagnosed during or after the treatment of the primary 
cancer. The biological changes in normal cells that contribute to late effects are not 
only caused by cancer treatment but can also be caused by a primary cancer itself. 
The high percentage of blasts in the blood and bone marrow of leukemia patients, 
for example, influences the functioning of the normal blood cells20. However, how a 
primary cancer can contribute to late effects is outside the scope of this thesis, and 
here the focus is on cancer treatment-induced late effects.

Across different continents, ongoing large-scale long-term follow-up cohort studies 
are quantifying the quality of life and the total burden of late effects of childhood 
cancer survivors2,17,21. These studies revealed that childhood cancer survivors on 
average develop seventeen chronic health conditions (CHCs) at the age of 50, five 
of which are severe, compared to nine CHCs in age-matched controls, two of which 
are severe17. Patients who receive chemo- and radiotherapy have the highest burden 
of CHC, while patients only treated with surgery have the lowest19. The class of 
chemotherapeutic drugs that survivors have received also influences their quality 
of life. For example, patients who have been treated with antimetabolites have the 
highest CHC burden, followed by platinum-based and alkaloid treatments, while the 
burden is the lowest after receiving anti-cancer antibiotics22. The cumulative dose of 
some treatments is also correlated with the incidence of specific late effects. A higher 
radiation dose for example is associated with a higher rate of second cancers22,23, 
a higher cumulative anthracycline dose leads to high rates of cardiotoxicity24, and 
a higher cumulative antimetabolite dose is associated with more late effects in the 
kidney compared to the treatment with any other chemotherapy19.

The first effort to reduce late effects: decreasing the cumulative treatment dosage
The focus of clinical pediatric oncology research has undergone a gradual change 
over time. Initially, the only objective was to improve survival rates. However, as 
survival rates improved and the connection between cancer treatment and late 
effects became evident, clinicians also started to prioritize the long-term quality of 
life of survivors. The first efforts were directed toward reducing the total treatment 
exposure of patients with low-risk cancer subtypes. Specifically, the use of RT sharply 
declined at the end of the previous century, among others for the treatment of non-
Hodgkin lymphoma and ALL25. For some cancers (e.g., Hodgkin Lymphoma) RT 
is still an indispensable part of treatment. However, for these cancers, the target 
volume that is radiated and thus the RT dose that normal tissues receive has been 
substantially reduced26. These radiation dose reductions had a clear effect. As the 
total number of pediatric cancer patients that received RT decreased and the median 
radiation dose became lower (77% with 30 Grays in the 1970s to 33% with 26 Grays 
in the 1990s), the incidence of late effects also decreased (from a 2.1% 15-year 
cumulative incidence of second cancers in the 1970s to 1.3% in the 1990s)27. Besides 
the dose of RT, the dose of chemotherapy was also reduced in subgroups of patients. 
The second National Wilms’ Tumor Study, published in 1981, was one of the earlier 
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studies to show a similar efficacy of shorter chemotherapy treatment in low-risk 
patients, in this case six compared to fifteen months of vincristine and actinomycin 
D for the treatment of Wilms tumors28. Since then, efforts to reduce therapeutic 
dosages have been ongoing. Consequently, the median dose of anthracyclines, when 
administered, has declined over time due to its clear association with cardiotoxicity27. 
Nevertheless, when assessing all childhood cancer patients as a whole, the use of most 
chemotherapeutic drugs has not decreased. For example, the percentage of patients 
that receive anthracyclines has only increased27. In addition, both the frequency of 
administration and the dose of platinum-based drugs has strongly increased27. For a 
variety of cancer types, increasing the chemotherapy dose was essential to be able to 
reduce the use of RT while maintaining the same overall survival29.

Why late effects arise: cancer treatment, aging, and DNA damage
Currently, numerous studies aim to reduce the use of chemotherapies and replace 
them with targeted therapies. To make these trials as effective as possible, one of 
the crucial steps is to expand our knowledge of the causal relationships between 
single chemotherapies and particular late effects. Whereas cohort study can only 
find the correlation between the administration of a drug and the occurrence of 
a late effect, molecular studies can aid in understanding the mechanism by which 
chemotherapies affect healthy cells. More specifically, they investigate how treatment 
damages or alters lipids, proteins, RNA, and DNA in healthy cells. This damage is 
the underlying source of all chemotherapy-induced late effects. DNA is the only 
one of these four damaged molecules that is not fully replaced over time. A copy 
of the genome, including somatically acquired DNA mutations, is passed on from 
each cell to its progeny. Therefore, DNA mutations accumulate in cells over time and 
are thus a likely source of late effects. In normal aging, mutations accumulate due 
to cell-intrinsic and extrinsic factors, such as replication errors, UV light, reactive 
oxygen species, and aldehydes30. In cells of cancer patients, additional DNA damage 
is accumulated in cells due to the genotoxic cancer treatments.

A similarity between late effects and aging does not only exist on a molecular level. 
Late effects also clinically resemble aging. Both aging and late effects can lead to a state 
that is described as frailty, i.e., diminished physiological functioning, or weakness31. 
In addition, similar diseases are associated with aging and late effects31. The main 
difference is that these conditions occur more often and at an earlier age in childhood 
cancer survivors32. As a consequence, mortality rates, caused by all leading causes of 
death due to aging, are higher in this group even 40 years after their diagnosis33. The 
discovery of these similarities has led to the idea that pediatric cancer survivors are 
subject to accelerated aging34. The mechanisms that drive late effects might therefore 
be similar to those underlying aging. The hallmarks of aging that are thought to be 
involved in late effects include epigenetic alterations, telomere shortening, cellular 
senescence, stem cell exhaustion, and genomic instability or damage30. There is 
strong evidence for the involvement of some of these mechanisms in the induction 
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1of late effects, while only indirect evidence exists for other mechanims35–37. Stem 
cell exhaustion, for example, can lead to aging and might be induced by exposure 
to chemo- and radiotherapy. Direct evidence is only obtained from hematopoietic 
stem cell transplantation (HSCT), which has similarities to stem cell exhaustion, as 
a limited number of stem cells replenish the entire blood system. HSCT is associated 
with an increased risk of clonal hematopoiesis, (second) cancers, and cardiovascular 
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Figure 1. A schematic overview of whole genome sequencing applications
A) Conventional whole genome sequencing (WGS). The DNA of a bulk sample with a clonal population 
is sequenced and mutational profiles and the somatic mutation load from the major clonal population 
in the sample can be determined. B)  Single stem cells can be clonally expanded in vitro. The DNA of 
the resulting clonal population can be used for conventional WGS. Using the variant allele frequency 
(VAF), clonal mutations from the original cell can be separated from in vitro acquired artifacts, resulting 
in per-cell mutational profiles and mutation loads. In addition, these data can be used to reconstruct a 
phylogenetic tree, which reveals the shared ancestry between the individual stem cells. C) Nano-seq can 
be used to detect mutations of single cells in a polyclonal population, due to the ultra-low error rate of 
the technique as both strands are sequenced separately. This can be used to determine the mutational 
processes active in any type of bulk population and to estimate the mutation load per cell. D) primary 
templated-directed amplification (PTA) uses phi29, a highly accurate DNA polymerase, in combination 
with exonuclease-resistant terminators to directly amplify the DNA of a single cell with high genome 
coverage and low artifact rates. This technique can be used to analyze the mutational processes and 
loads of almost any cell type and construct phylogenetic trees from these cells.
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diseases, all of which are also associated with aging38–40. In addition, chemotherapies 
induce cellular senescence, at least in cancer cells41. Senescent cells excrete pro-
inflammatory cytokines that are linked to aging-associated conditions42. Likely, this 
senescent state is also induced in some of the healthy cells in patients, but only in 
vitro and mouse experiments support this hypothesis43–45.

Other studies, however, have directly assessed the biological aging of healthy cells in 
cancer survivors. For example, epigenetic age estimation is a method that estimates 
the biological age from a set of CpG sites of which the methylation state changes 
in a consistent manner over the lifetime of an individual. The epigenetic age of 
normal blood cells was measured in a subgroup of head and neck cancer survivors 
and was significantly increased 6 to 12 months after treatment46. In addition, in 
ALL survivors the level of aging-associated inflammatory cytokines is increased 5 
years after the end of treatment37. In these patients, and in solid tumor survivors, 
the telomere length of lymphocytes was also significantly shorter compared to 
controls36,37. This is in line with the observation that telomerase has a decreased 
activity in breast cancer survivors47. Finally, a clear link exists between chemotherapy 
and accelerated genomic aging, i.e., the accumulation of additional DNA mutations. 
Initial assumptions that chemotherapies cause DNA aberrations in healthy cells were 
made based on molecular assays, such as karyograms, applied to second cancers. For 
example, topoisomerase inhibitors (TOPi) have long been known to induce double-
strand breaks via replication stress and to be associated with 11q23 aberrations in 
therapy-related myeloid neoplasms (t-MN), a second cancer of the blood48. However, 
until recently, no method existed to analyze such chemotherapy-induced DNA 
aberrations in more detail.

How to study treatment-induced DNA mutations in cancers
Next-generation sequencing, and whole genome sequencing (WGS) in specific, have 
greatly enhanced the sensitivity and detail by which DNA alterations can be studied 
(Fig. 1A). For example, by sequencing and mapping the 11q23 breakpoints in t-MN, a 
10bp breakpoint hotspot was found to be positioned in the KMT2A gene. The hotspot 
was flanked by a TOPi-induced TOP2 binding and cleavage site, strongly suggesting 
that the TOPi treatment directly induced these driver rearrangements49. Besides 
the more accurate assessment of structural variants, WGS also makes it possible to 
unbiasedly determine all small mutations, both cancer-driving and passenger. These 
include single base substitutions (SBS) and small insertions and deletions (indels). 
The genome-wide assessment of SBS and indels led to the discovery of mutational 
signatures, which reflect the activity of mutagenic processes (Fig. 2A). By taking the 
pyrimidine nucleotides as a reference, SBS can be grouped into six types (C>T, C>A, 
C>G, T>A, T>C, T>G). When also taking the preceding and following base into 
account, SBS can be split into 96 trinucleotide mutation types. A mutational signature 
is a specific pattern in the proportions of the 96 mutation types. These are recurrently 
detected in the genomes of multiple cancers or other samples. Using metadata such 
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1as tissue type, the age of the patient, and behavioral and geographic data, mutational 
signatures can be linked to specific mutagenic processes, like aging, UV light, and 
smoking50. The same approach can be used to identify and link mutational signatures 
to chemotherapy drugs. This can be used in the study of late effects. For instance, 
in the genome of many cancer metastases and relapses that arose after exposure to 
platinum compounds, a recurrent SBS signature, termed “SBS31”, was found (Fig. 
2B)51,52. Cell line and mouse treatment experiments followed by WGS are used to 
validate causal relationships between mutagenic processes/agents and signatures53,54. 
A limitation of conventional WGS is that mutations can only be detected when they 
are shared between most cells in a sample. The clonal mutations, originally present 
in the initial single cell that gave rise to the clonal population, are detected in multiple 
reads and can be easily distinguished from artifacts and subclonal mutations and, 
which are both present in only one or a few reads55,56. WGS of tumors is effective 
as cancer is a clonal outgrowth by definition, with the main limitation being the 
percentage of normal cells infiltrating a tumor. In mouse studies, a clonal population 
can be obtained by inducing cancers using a carcinogen54. In in vitro studies, a clonal 
expansion step must be performed after treatment exposure to acquire a population 
that harbors clonal treatment-induced mutations. Clonal expansion is also necessary 
to obtain sufficient DNA from the original single cell to perform WGS (Fig. 1B).
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Figure 2. Construction and examples of mutational signatures
A) A schematic overview of mutational signature detection. First, the somatic mutations are identified by 
comparing the genome of a clonal sample or cell to a reference germline sample of the same individual 
and filtering out the somatic mutations from artifacts. Next, the substitution type and the preceding 
and following base are determined. The number of each of the 96 mutation types is counted and put 
in a table called a mutation matrix. The proportion of the mutation types in one sample is called the 
mutational profile and can be visualized in a bar plot. Finally, NMF is used to extract recurring patterns 
in the mutation profiles, which are called mutational signatures. B) The mutational signatures that are 
mentioned here. The proven or suspected cause of the signature is mentioned below the signature’s 
name.
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Studying how DNA damage in normal cells contributes to late effects
Application of WGS to tumor samples has yielded thorough descriptions of the 
number and type of mutations that are caused by chemotherapeutic agents in cancer 
cells and cell lines. For the study of late effects, it is important to investigate whether 
the same compounds are also mutagenic to normal cells in vivo and if so, if they 
result in the same type of damage, e.g., the same mutational signature. Studying the 
somatic mutations in normal tissues is, however, complicated by the absence of clonal 
expansions. As described above, a clonal population is needed to detect mutations 
by WGS. To circumvent this issue, stem cells from healthy tissue can be clonally 
expanded in vitro, similar to cell lines (Fig. 1B). This technique has been applied 
to stem cells of different healthy tissues such as blood, liver, and intestine, showing 
that the same few signatures explain all the mutations in healthy cells and that they 
accumulate at a constant rate over time55–58. Although the accumulation rate of these 
“clock-like” mutations is constant throughout life in all tested tissues, the exact rate 
of accumulation can vary between tissues. SBS1 is one of these clock-like signatures 
and has been linked to the spontaneous deamination of methylated cytosines at 
CpG dinucleotides (Fig. 2B)59. This results in T-G mismatches and C>T mutations 
when the mismatch remains unrepaired throughout DNA replication. This process 
is likely more mutagenic when a cell rapidly divides, as such a cell has less time to 
repair the T-G mismatch59. SBS5 is also a clock-like signature, which is detected in 
all tissues (Fig. 2B). A recent study suggested that the presence of SBS5 might be 
linked to the activity of the mutagenic translesion polymerase REV160. Finally, SBS18 
linearly accumulates in healthy stem cells of multiple tissues (Fig. 2B). It has been 
linked to reactive oxygen species, which can lead to the formation of 8-oxoguanines, 
which in turn can result in G>T mutations61,62. The constant accumulation of somatic 
mutations in healthy cells is referred to as mutational aging63. Mutational aging can 
contribute to age-related (pre-)malignant diseases, such as adult cancer and clonal 
hematopoiesis, and potentially also to general biological aging, for example by 
increasing gene-expression heterogeneity64, although the link with biological aging 
is disputed63.

A recent study clonally expanded stem cells of normal colon and liver obtained after 
treatment with platinum and 5-FU65. This revealed that, after exposure to these 
drugs in vivo, normal cells accumulate the same type of mutations as cancer cells. 
Even though WGS of single normal stem cells has been well established, this has 
only recently become possible for single differentiated cells. These cells mostly have 
no, or very limited, potential to expand in vitro, and thus not enough clonal DNA 
can be obtained for the minimal input required for conventional WGS. Specified 
culturing protocols in combination with ultra-low input WGS have recently been 
applied to study the mutation accumulation of healthy lymphocytes66. However, such 
an approach is more difficult to apply to highly differentiated cells like neurons and 
probably to cells after chemotherapy exposure, as their cycling potential is likely 
much decreased.



15

Introduction: molecular mechanisms of chemotherapy-induced late effects

1An alterative approach is using duplex sequencing, such as the NanoSeq methodology 
(Fig. 1C)67. In duplex sequencing, both strands of a DNA molecule are uniquely 
tagged and sequenced multiple times. In NanoSeq, this results in an error rate 
lower than 5×10−9 errors/bp and allows for the detection of very low-frequency 
mutations in polyclonal bulk samples67. NanoSeq can be used to detect the type of 
mutations that are present in a cell population and to estimate the average number 
of mutations in each cell. However, only 29% of the genome is covered by NanoSeq 
and the technique cannot determine which mutations co-occur in a cell. In 2021 
Gonzalez-Pena et al. developed an alternative approach, primary template-directed 
amplification (PTA), in which the genome of a single cell is amplified (Fig. 1D)68. It 
is an adaptation of the multiple displacement amplification (MDA) protocol which 
uses the highly accurate phi29 DNA polymerase69. By adding exonuclease-resistant 
terminators, PTA primarily amplifies the original input DNA, which decreases 
amplification biases and increases the genome coverage to >90% while reducing the 
number of artifacts to a few hundred.

Using PTA, it is possible to analyze the genomes of single cells of virtually any cell type 
of a single sample and identify which mutations are shared between cells. As each cell 
passes its somatic mutations on to its daughter cells, shared mutations can be used to 
infer which cells have a common ancestor. The more mutations that two cells share, 
the later in life their ancestry probably separated. Inferring all clonal relationships 
between single cells results in an evolutionary tree and is called a phylogeny. In the 
context of late effects, this method can also be used to time when in the history of, for 
example, a t-MN, mutagenic chemotherapies were active. This can be used to gain 
insights into which chemotherapeutic drugs contribute to late effects and are thus 
prime candidates for dose reduction.

Targeted therapies to reduce late effects
In some patient groups, particularly high-risk cancer patients, reducing the treatment 
dose is not a viable option as it would lead to significantly poorer outcomes. In such 
cases, an alternative strategy to mitigate late effects is to develop compounds that 
possess greater selectivity in targeting cancer cells than conventional chemotherapy. 
Clinical trials that use targeted therapies can be more successful when strong evidence 
for potential targets has been gathered by molecular studies, for example, those that 
characterize primary cancers. Potential targets can be identified on a genotypic or 
phenotypic level. Genotypic targets are discovered by analyzing the DNA of primary 
cancers and identifying recurrently mutated genes or pathways. Phenotypic targets 
can be discovered by analyzing protein expression, DNA methylation, histone 
modifications, or gene expression in cancer. In this thesis, the focus is on therapy 
target identification by analyzing the transcriptome. For this, RNA sequencing 
(RNA-seq) is a powerful tool as it captures all mRNA transcripts in a tissue. RNA-seq 
data of cancer tissues can be compared to healthy tissues to find genes or pathways 
that have an altered expression in the cancers and that can be targeted by therapy70.
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When a target has been identified, different approaches can be taken for drug 
development. For example, small molecules have been developed that inhibit 
pathways that are overactive in cancer. These molecules differ in specificity. General 
kinase inhibitors, such as imatinib, are broadly applicable as they target a range of 
kinases that are essential for the survival of a variety of cancers (Fig. 3A)71. More 
specific drugs target one particular protein, which poses a vulnerability in a subset of 
cancers. PARP inhibitors like talazoparib, for example, can be used to treat cancers 
with a deficiency in the homologous recombination (HR) DNA repair pathway, via 
a phenomenon called synthetic lethality (Fig. 3B)72. PARP1 and PARP2 are proteins 
involved in the detection and repair of single-strand DNA breaks. Inhibition of PARP 
will lead to double strand breaks that are repaired by HR. In HR-deficient cancers 
this DNA damage cannot be repaired, and cancer cells die72.
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1Figure 3. Working mechanisms of targeted therapies
The working mechanism of a drug of each class of targeted therapy. A) Imatinib, a general kinase 
inhibitor, inhibits the function of a group of kinases by binding their kinase domain so that they cannot 
phosphorylate their substrate. B) Talazoparib, inhibits a single protein, PARP. Normally PARP binds 
single-strand DNA breaks (SSB) and initiates the base excision repair (BER) pathway by which the SSB 
is repaired. When Talazoparib binds PARP, the BER pathway is not activated and the SSB is transformed 
into a double-strand DNA break (DSB). In normal cells, the DSB is repaired via the homologous repair 
(HR) pathway. In cancer cells that are HR deficient, e.g., due to a BRCA1/2 mutation, the DSB cannot 
be repaired, and the cell goes into apoptosis. C) Rituximab is an unconjugated antibody that binds to its 
target (CD20) on the surface of the cancer cell after which immune cells like NK cells and macrophages 
can bind the constant chain of rituximab and kill the cancer cell. D) Brentuximab vedotin is an 
antibody-drug conjugate that binds to CD30 on the surface of the cancer cell and after internalization 
by endocytosis ends up in lysosomes, where proteases cleave the antimitotic MMAE drug from the 
antibody. MMAE then blocks the polymerization of tubulin, thereby inhibiting mitosis. E) Nivolumab 
is an immune checkpoint-blocking antibody. By binding to PD1 on T cells, it inhibits the binding of 
PD1 to PD-L1 on the cancer cell. Normally the PD1/PD-L1 interaction inhibits activation of the T cell, 
but upon binding of nivolumab, the T cell can be activated, initiating an immune response against the 
cancer cell.

Alternatively, RNA-seq can be used to identify membrane proteins that are 
specifically (over-) expressed on cancer cells. These proteins can be targeted by 
antibodies. Rituximab, for example, binds to CD20, which is expressed on the 
surface of, among others, Burkitt Lymphoma (BL, Fig. 3C). By binding CD20 on the 
cancer cells, it enhances apoptosis and the killing of the cancer cells by the patient’s 
immune system73. As CD20 is also expressed on healthy B-cells, this treatment can 
result in side effects. Antibodies targeting cancer-specific cell surface proteins can 
also be coupled to cytotoxic drugs, increasing the concentration of the drug in the 
tumor, and thereby decreasing the exposure of the rest of the body. Brentuximab 
vedotin (BRV), which binds CD30, a receptor that is expressed on, among others, 
Hodgkin Lymphoma (HL), was the second FDA-approved antibody-drug conjugate 
(Fig. 3D)74. Although CD30 is also expressed on a subset of healthy B cells, neural 
cells, and cells of the reproductive system, the addition of BRV to treatment protocols 
results in long-term complete remission in a subgroup of refractory or relapsed HL 
and better survival in a first-line regimen, while not increasing side effects75–78.

Finally, transcriptome analysis can be used to identify immune-inhibitory ligands 
that are expressed by cancer cells and that bind to receptors on T cells or myeloid 
cells, suppressing their activity and thereby preventing the immune system from 
killing the cancer cells. Therapeutic antibodies have been developed that interfere 
with the binding of such ligand-receptor pairs, thereby increasing the immune 
activation against the cancer cells. Nivolumab for example interferes with PD-L1 
that is expressed on some cancer cells (Fig. 3E)79. PD-L1 binds to PD-1 on T cells, 
suppressing T cell activity. Conventional RNA-seq is, however, limited to the analysis 
of a bulk population, which in most cancers consists of a mixture of malignant and 
normal cells. This makes it impossible when analyzing a bulk sample to confirm 
that both the receptor (e.g., PD-1) and the corresponding ligand (e.g., PD-L1) are 
expressed on the immune cells and malignant cells, respectively.
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Single-cell RNA sequencing (scRNA-seq) overcomes this problem. It captures and 
analyzes the transcriptome of each individual cell. This way, the cancer cells and 
the microenvironment can be analyzed simultaneously. This allows for the accurate 
detection of cancer cell-immune cell interactions, together with any other category of 
potential treatment target80. Another advantage of scRNA-seq is that it allows for the 
detection of rare populations of cells. This can be beneficial when analyzing cancers 
with low fractions of malignant cells, like HL. In this cancer, most of the tumor consists 
of immune cells and only 0.1-5% consists of malignant cells81. Using conventional 
RNA-seq, this rare population cannot be accurately studied when processing the 
bulk tumor sample. However, using scRNA-seq it is possible to capture this minor 
fraction of malignant cells concurrently with the immune cells.

Thesis scope and outline
As described in this chapter, current treatment regimens for childhood cancer result 
in a high burden of late effects. The work described in this thesis aims to expand 
the molecular knowledge needed for the design of clinical research on late effects 
reduction. Two approaches are taken. First, the mutagenicity of chemotherapeutic 
compounds was investigated in healthy cells and second cancers. Drugs that are 
highly mutagenic to healthy cells would be prime candidates for dose reduction 
or replacement. Second, candidate genes for targeted therapy development were 
identified in primary cancers. These could potentially be used to develop novel 
treatments that induce fewer late effects. Both topics have been the focus of extensive 
research for the past few decades. The recently developed single-cell genomic and 
transcriptomic methods used in this work have opened up new avenues to investigate 
these topics in unprecedented detail.

In most treatment protocols, chemo- and radiotherapy are the first line of therapy. 
These lead to late effects like secondary cancers, among which are therapy-related 
myeloid neoplasms (t-MN). In chapter 2 we applied whole genome sequencing 
(WGS) to t-MN and normal, clonally expanded hematopoietic stem and progenitor 
cells (HSPCs). We found that chemotherapies increase the number of mutations in 
t-MN and normal HSPCs. Only a few chemotherapies directly induced mutations in 
healthy cells, while most drugs indirectly caused an increase in the number of clock-
like mutations. Phylogenetic lineage tracing indicated that most t-MN originated 
after the start of treatment and became dominant during or after treatment. In 
chapter 3 we applied PTA to sequence both healthy HSPCs and single t-MN blasts 
to study the selective pressures that treatments induce on (pre-)leukemic clones. This 
revealed that platinum-induced inhibition of cell division is the rate-limiting step 
of t-MN expansion in platinum-treated patients. In addition, we showed that this 
inhibition is likely TP53 dependent and that fully TP53-deficient t-MN can divide 
more efficiently under platinum treatment, shortening their latency.
Hematopoietic stem cell transplantation (HSCT) can be applied as the second line of 
treatment for blood cancers and is associated with clonal hematopoiesis, t-MN, and 
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1cardiovascular late effects38–40. In chapter 4, we confirmed the general genomic safety 
of HSCT by sequencing normal HSPCs before and after the procedure and finding 
a similar mutational load in all donor HSPCs and most recipient HSPCs. However, 
we found that the treatment of HSCT-related viral infections with the antiviral 
nucleoside analog ganciclovir can lead to the accumulation of additional mutations 
in HSPCs. These mutations were also found in cancers where they led to cancer-
driving events. In chapter 5, we applied an in vitro treatment method followed by 
WGS to screen the mutagenicity of a compendium of nucleoside analogs in healthy, 
uninfected human cells. While most nucleoside analogs were not mutagenic, five 
did induce mutations, although none as many as ganciclovir. In conclusion, we have 
gained evidence that specific chemotherapies and antiviral drugs contribute to the 
development of second cancers. These drugs could therefore be potential candidates 
for drug replacement or decreased usage.

When dose reduction is not an option, the substitution of current chemotherapies 
by targeted treatment can be used to reduce late effects. Such an approach was 
successfully applied to patients with HL, which is associated with some of the most 
severe late effects of any cancer17. However, these targeted therapies are still combined 
with high-dose chemotherapy77–79,82. Here, we characterized pediatric HL by single-
cell RNA-sequencing and identified potential therapeutic targets to further improve 
the (combined) efficacy of targeted therapies. One challenge in the analysis of single-
cell RNA sequencing is the classification of cell types based on the transcriptional 
profiles of individual cells. In chapter 6, we present CHETAH, a robust, automated 
cell-type classification algorithm for scRNA-seq data that is able to distinguish cancer 
cells from normal cells in the tumor microenvironment (TME). In chapter 7, we 
applied scRNA-seq on pediatric HL and used CHETAH to identify the cell types in 
the data. We found that NK cells and subtypes of T cells are likely suppressed by HRS 
cells via different inhibitory receptors, but that the interaction strengths vary per 
patient. We used RNAscope to validate these interactions and show that there is high 
inter- and intra-patient variability in the strength of these interactions.

In chapter 8, the insights that can be extracted from the combined work described 
in this thesis are discussed. In addition, the potential long-term clinical impact of 
the findings from this thesis is discussed and the steps needed to reach that goal. 
Finally, the effectiveness of the research is reviewed and future research directions 
are presented.

Together, the work described in this thesis contributes to our understanding of the 
origin of late effects and adds to the fundamental knowledge that is needed todevelop 
treatment regimens that are less toxic to normal tissues and therefore lead to fewer 
late effects.
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Abstract
Childhood cancer survivors are confronted with various chronic health 
conditions like therapy-related malignancies. However, it is unclear how exposure 
to chemotherapy contributes to the mutation burden and clonal composition 
of healthy tissues early in life. Here, we studied mutation accumulation in 
hematopoietic stem and progenitor cells (HSPCs) before and after cancer treatment 
of 24 children. Of these, 19 developed therapy-related myeloid neoplasms (t-MNs). 
Posttreatment HSPCs had an average mutation burden increase comparable to 
what treatment-naive cells accumulate during 16 years of life, with excesses up 
to 80 years. In most children, these additional mutations were induced by clock-
like processes, which are also active during healthy aging. Other patients harbored 
mutations that could be directly attributed to treatments like platinum-based 
drugs and thiopurines. Using phylogenetic inference, we demonstrate that most 
t-MN in children originate after the start of treatment and that leukemic clones 
become dominant during or directly after chemotherapy exposure.

Introduction
Chemotherapy is the major treatment modality for cancer and has led to curative 
treatment of an increasingly large number of patients1. Most chemotherapeutic drugs 
act by fatally damaging or blocking DNA replication in malignant cells2. However, 
chemotherapy can also be highly mutagenic to malignant cells that survive the 
cytotoxic effects3. Indeed, whole-genome sequencing (WGS) analyses of more than 
3,500 cancer metastases revealed several mutational signatures, which are a direct 
consequence of exposure to specific chemotherapeutic drugs, such as platinum-
based compounds and 5-fluorouracil (5-FU)4,5. In addition, experimental strategies 
have defined and confirmed mutational signatures induced by chemotherapy in 
vitro, such as temozolomide, platinum-based compounds, cyclophosphamide, 5-FU 
and 6-mercaptopurine (6-MP)6-8.

During chemotherapeutic treatment, the toxic effects on normal tissues are often 
dose limiting, the hematopoietic system being especially vulnerable9. Besides these 
acute toxic effects, cancer survivors are confronted with a variety of chronic health 
conditions later in life as a result of chemotherapy, such as cardiac problems, infertility, 
and secondary malignancies10-12. Especially childhood cancer survivors suffer from 
these long-term adverse effects, which collectively resemble accelerated aging12. 
Indeed, while the long-term survival rate of children treated for cancer approaches 
80%, their bodies are still in development during treatment and survivors can develop 
adverse effects even decades after their initial diagnosis12. Chemotherapy-induced 
mutagenesis and clonal expansions in healthy tissues may be responsible for inducing 
some of these long-term adverse effects, in particular secondary malignancies. Thus 
far, the impact of chemotherapy exposure in normal blood has been inferred from 
mutational landscapes of therapy-related myeloid neoplasms (t-MN)5,13 as well as of 
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cases of clonal hematopoiesis (CH) in exposed patients14. t-MN comprises two disease 
types, namely therapy-related acute myeloid leukemia (t-AML) and therapy-related 
myelodysplastic syndrome (t-MDS)15,16. In t-MN genomes, high numbers of clonal 
platinum- and thiopurine-induced mutations could be observed, which indicated 
that in these cases clonal expansion of the hematopoietic cell founding the leukemia 
started after the initiation of exposure5. Indeed, cancer therapy preferentially selects 
for cells that harbor mutations in DNA damage response genes, such as TP53, CHEK2 
and PPM1D, ultimately resulting in CH and t-MN5. In adults, preleukemic CH can 
often already be observed at the time of the primary cancer diagnosis and before 
exposure to treatment5,17. However, a recent report on three pediatric neuroblastoma 
patients showed that most mutations present in the CH clone in these children 
could be linked to platinum-associated signatures16. These previous studies focused 
on studying mutational landscapes of preleukemic clonal expansions and/or t-MN. 
However, the mutational consequences of chemotherapy exposure in normal HSPCs 
and how this relates to mutations observed in t-MN is unknown. In addition, the 
origin of t-MN with respect to the timing of chemotherapy exposure in children 
seems different from adults yet remains understudied.

Here, we characterized the mutational consequences of chemotherapy in normal 
HSPCs of pediatric cancer patients before and after receiving treatment. We included 
patients who developed t-MN to determine how mutagenesis and clonal evolution in 
healthy blood contribute to the development of secondary malignancies. We found 
that the mutation burden of normal HSPCs was increased after chemotherapy. 
Remarkably, chemotherapy-associated mutagenesis in most patients was caused by 
processes resembling those active during healthy aging. Only few compounds, such 
as platinum-based drugs and thiopurines, had a direct mutagenic impact. In contrast 
to the effect of thiopurines, our data suggest that the effect of platinum-based drugs 
is independent of cell division. By combining mutational signature analysis and 
phylogenetic inference, we demonstrate that both induction of driving events and 
subsequent selection occur during chemotherapeutic exposure, which can ultimately 
lead to t-MN.

Results
Cataloguing somatic mutations in chemotherapy-exposed HSPCs of children
To assess the mutational consequences of chemotherapy exposure in normal tissues, 
we determined the somatic mutations present in HSPCs of children before and 
after receiving cancer treatment. We focused on the hematopoietic system, since 
it is highly sensitive to chemotherapy exposure9 and because the lifelong mutation 
accumulation in healthy HSPCs has been determined18-20. In total, we assessed 24 
patients, who underwent treatment for different pediatric cancer types (Fig. 1A). Of 
these, 19 patients developed t-MN (Fig. 1B), of which 18 were t-AML and one was 
t-MDS (UPN012). A detailed list of diagnosis, age, and treatment information for all 
patients is provided in Table S1. The latency between the start of chemotherapy and 
t-MN onset among patients ranged from 1.1 to 10 years (Fig. 1B).
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Depending on the available patient material, we performed WGS on individual 
HSPCs at the time of the primary diagnosis (DX1), after complete remission of this 
first cancer (FU; posttreatment), and at the time of t-MN diagnosis (DX2) (Fig. 1B,C). 
In addition, we sequenced the t-MN genomes. Of note, the t-MN of patient UPN021 
was excluded because of poor sequencing quality (Methods). (Fig. 1A, Table S2). We 
sorted single HSPCs using flow cytometry (Methods), clonally expanded these cells 
in vitro to obtain sufficient DNA for WGS (Fig. 1C, Fig. S1) and catalogued all clonal 
somatic mutations per HSPC (Methods, Fig. S2A). 
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A) A table depicting the different treatment categories that patients from each tumor type received. Rows 
per patient match with timelines in B. ALL, acute lymphoblastic leukemia; βT, beta-thalassemia; LGG, 
low grade glioma; NB, neuroblastoma; NGB, neuroganglioblastoma; OS, osteosarcoma; SCT, stem cell 
transplantation; T-LBL, T-cell lymphoblastic lymphoma; TOPi, topoisomerase inhibitor. B) The per-
patient timelines of sample collection and the type of material that was sequenced. C) A schematic 
overview of the experimental setup of this study. In short, biopsies at time of the primary cancer, follow-
up (after remission) and t-MN were collected. Blasts were enriched by FACS, mesenchymal stromal 
cells were expanded in vitro and both were sequenced in bulk. FACS was also used to sort single HSPCs 
into 96-well plates, which were then clonally expanded to obtain sufficient DNA for WGS, after which 
the mutation catalogues of the original HSPCs could be obtained. D) The clonal driver events were 
identified in the t-MN samples. The bar plots on top indicate the number of driver events identified 
in each sample. E) The mutation load of single base substitutions (SBS) per time point per HSPC, 
normalized to the HSPC baseline consisting of healthy bone marrow (BM) HSPCS. The HSPCs were 
averaged per patient per timepoint. Two-sided Wilcox-test, FDR-corrected. Here, and in all other 
figures, the boxplots depict the median (center line), 25th and 75th percentiles (box), and the largest 
values no more than 1.5* the interquartile range (whiskers). F) similar to E but for indels in HSPCs. G)
The mutation load of single base substitutions of primary and therapy-related AML blasts and the mean 
value of matched HSPCs from the same timepoint per patient. Connecting lines represented matched 
AML and HSPCs. Two-sided paired t test, FDR-corrected. H) Similar to E but for t-AML blasts. I) 
Similar to F but for t-AML blasts.

In total, we assessed 135 HSPC clones (28 before and 107 after treatment) and 
identified 46,831 single base substitutions, 2,658 small insertions and deletions 
(indels) and 346 double base substitutions. Most of the t-MN cases were driven by 
gene fusions (16 out of 18 cases; Fig. 1D). Of these, 11 patients (69%) harbored a 
MLL fusion (KMT2A rearrangement), two patients (13%) a RUNX1 fusion and two 
patients (13%) a MECOM fusion (Fig. 1D, Fig. S2B). Five MLL breakpoints were 
present in the 11bp topoisomerase II inhibitor (TOP2i)-related hotspot positioned 
within the MLL breakpoint cluster region, and all of these patients received 
TOP2i21,22 (Fig. S2C). In four patients the MLL fusion was the sole t-MN driver. 
The frequency of MLL fusions in these pediatric t-MN patients is considerably 
higher than previously reported in primary pediatric and infant AML (13% and 
38%; respectively)23 and in adult t-AML (23%)24. Nonetheless, we did identify 
genetic similarities between primary pediatric AML (pAML) and t-AML, such as 
a higher prevalence of RAS mutations in MLL-rearranged (MLLr) AML (Fig. 1D). 
Finally, despite the use of alkylating agents in many of our patients and its previously 
described association with monosomy 5(q) and 7(q)13,24, only three t-MNs (17%) 
presented with this aberration. The lack of t-MN cases with these monosomies in our 
cohort is explainable, since we predominantly assessed t-AML (17 out of 18 cases). 
Indeed, it is known that monosomy 5 or 7 is more often associated with a disease that 
is preceded by t-MDS15,25. 
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Figure 2. Thiopurines and platinum-based compounds have direct mutagenic effects in 
posttreatment HSPCs.
A) The contribution of each SBS signature to each sample, as obtained after refitting of signatures that were 
extracted by non-negative matrix factorization. The first row of bars below the plot indicates the timing 
of each sample. The second row indicates which treatment signature had more than 20% contribution 
in each sample, these HSPCs were termed t-HSPC. HSPCs without more 20% contribution of any of 
these signatures were termed n-HSPC. ALL, acute lymphoblastic leukemia; βT, betathalassemia; Ew., 
Ewing; LGG, low-grade glioma; NB, neuroblastoma; NGB, neuroganglioblastoma; (N)HL, (non-)
Hodgkin lymphoma; OS, osteosarcoma; SBS, single base substitutions; T-LBL, T-cell lymphoblastic 
lymphoma. B) The contribution of SBS31 to samples treated or not treated by platinum-based drugs 
(two-sided Wilcox test). C) The contribution of SBS87 to samples treated or not treated by thiopurines 
(two-sided Wilcox test). D) The 96-trinucleotide single base substitution profiles of SBSB and SBSC. E)
The probability that different driver mutations were caused by treatment-related or clock-like signatures. 
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Chemotherapy exposure increases the mutation burden in vivo
During healthy life, HSPCs accumulate mutations in a linear fashion with a rate of 
14 to 15 single base substitutions and about one indel per year18,19. We compared the 
mutation burden of the pre- and posttreatment HSPCs to this baseline to correct 
for age-related mutation accumulation (Fig. 1E,F, Fig. S2D). The pretreatment 
HSPCs showed a mutation burden that was similar to this baseline. In contrast, 
the posttreatment HSPCs showed an increased number of single base substitutions 
and indels, corresponding to mutational ages 26 up to 94 years for single base 
substitutions [mean increase of 16; 95% confidence interval (CI), 13-19] and 90 
years for indels [mean increase of 16; 95% CI, 12-19] (Fig. 1E, F). Furthermore, the 
t-MN blasts showed an increased mutation load compared with the baseline, but 
also compared to matched posttreatment HSPCs (Fig. 1G). This latter observation 
indicates that at the time of t-MN initiation, the leukemic cell of origin suffered more 
from mutagenesis than the average exposed HSPC. Nonetheless, similar to previous 
reports, the mutation load in t-AML blasts was only slightly higher than de novo 
pediatric AML and this difference was not significant in our analysis (P = 0.053, Fig. 
1H,I)13,16,19. Together, our data suggest that for pediatric AML to arise, albeit related 
to treatment or naïve, a minimal mutation burden seems to be required, which is 
higher than the average number of somatic mutations observed within the healthy 
HSPC population. 

Mutational signatures induced by chemotherapy exposure
To identify the processes that underlie the increased mutation burden in posttreatment 
HSPCs and t-MN blasts, we analyzed mutation spectra and signature contributions27. 
As expected, the mutation spectra of pretreatment HSPCs were similar to treatment-
naïve cells and could be predominantly explained by the HSPC signature18,20,28 and to a 
lesser extent Catalogue Of Somatic Mutations in Cancer (COSMIC) signatures SBS1 
and SBS529 (Fig. 2A). Indeed, the contribution of these three clock-like signatures 
increases with age in healthy HSPCs18,19. In the posttreatment HSPCs and t-MNs, 
we additionally identified SBS31 and SBS87, which are caused by platinum-based 
drugs and thiopurines, respectively7,30. SBS31 and DBS5, also caused by platinum-
based drugs30, were present in all cells of platinum-exposed patients (N=3; Fig. 2A,B, 
Fig. S3A,B). In t-MN patients that received thiopurine therapy (N=9), all but one 
t-MN genome harbored SBS87 mutations (Fig. 2A,C). In contrast to platinum-
based exposure, only some posttreatment HSPCs displayed SBS87, indicating that 
thiopurine exposure is not always mutagenic to all cells. Furthermore, we identified 
three novel signatures that likely represent distinct mutational processes, as they 
could not be accurately decomposed by three or fewer existing signatures (Fig. 2A,D, 
Fig. S3C-S3F)31. Of these, SBSA was recently shown to be caused by the antiviral 
nucleoside analogue ganciclovir32, and was present in the previously reported t-MN 
of patient UPN003 after exposure (Fig. S4A,B). The other two signatures (SBSB 
and SBSC) were observed in all posttreatment samples of single patients (UPN015 
and UPN013, respectively). SBSB was associated with single thymidine deletions 
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at short T-repeats, while SBSC samples harbored large deletions at locations with 
microhomology (Fig. S5A). The T>N and C>T changes that contributed to SBSC 
displayed a wide sequence context preference for guanine at the -2 position of the 
mutated base (Fig. S5B). Although for patient UPN015 no treatment data was 
available, patient UPN013 received the alkylating drugs thiotepa and treosulfan 
as part of a conditioning treatment for hematopoietic stem cell transplantation. 
This patient was treated with multiple hematopoietic stem cell transplantations 
- which partly failed - to treat beta-thalassemia (Table S1). Posttreatment HSPCs 
of this patient displayed an increasing contribution of SBSC mutations after each 
consecutive round of transplantation (Fig. 2A). This suggests a causative role for 
the conditioning treatments in inducing SBSC mutations. Indeed, a pretreatment 
HSPC of this patient did not harbor SBSC mutations. We treated cord blood-derived 
HSPCs with thiotepa and treosulfan in vitro, after which we performed WGS on 
exposed cells, as described previously33. The resulting profiles showed similarities to 
SBSC but could not fully explain the signature (Fig. S5C,D).
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Although the mutation burden of most assessed t-MN cases was higher than the 
healthy baseline (Fig. 1H), only half of these cases displayed evidence of direct 
mutagenesis by chemotherapeutic compounds. To study the likelihood that leukemic 
driver mutations were directly caused by such compounds, we used a previously 
established method to calculate the probability that a certain mutation can be 
attributed to a signature34,35. This analysis showed that only seven of 17 identified 
driving single base substitutions had high probability (>70%) to be attributed to a 
treatment-related signature, whereas nine drivers were best explained by clock-like 
signatures (Fig. 2E). Therefore, in contrast to the identified fusion genes, which were 
likely the result of TOP2i, additional driver mutations in t-MN could only partly be 
explained by direct mutagenic consequences of chemotherapy treatment.
 
Direct and indirect induction of mutations after chemotherapy
Although we identified chemotherapy-associated signatures in a subset of 
posttreatment HSPCs and t-MN samples, most samples showed mutation spectra 
similar to pretreatment HSPCs, which could be fully explained by clock-like 
signatures (cosine similarity 0.97; Fig. S6A,B). Given this difference, we defined two 
categories: t-HSCPs, which have a spectrum that is >20% explained by contribution 
of a treatment-related signature, and n-HSPCs, which have a normal spectrum that 
is similar to healthy cells. Surprisingly, the mutation burden not only in t-HSPCs, 
but also in n-HSPCs was elevated compared with age-matched treatment-naïve 
HSPCs (Fig. 3A,B). The mutation load increase of n-HSPCs at FU and DX2 was 
1.47-fold (95% CI, 1.25-1.69) and 1.91-fold (1.34, 2.47) compared with the baseline, 
respectively. Only the posttreatment HSPCs of patients UPN017 and UPN020 did 
not display elevated mutation burdens compared with the healthy baseline (Fig. 
2A, Fig. S6C). The absence of an increased mutation burden in the HSPCs of these 
patients was not explained by a lack of exposure to chemotherapy, as UPN017 was 
treated for pAML and UPN020 for acute lymphoblastic leukemia (ALL). Indeed, the 
t-MN blasts of UPN020 harbored SBS87 mutations as well as an increased number 
of indels (Fig. 2A, Fig. S3A). Interestingly, both patients showed a longer latency 
time to t-MN development compared with the rest of the cohort. The posttreatment 
HSPCs of UPN017 were isolated with the longest latency after end of treatment (9.3 
years vs 0.2-4.7 years in the rest of the cohort). The end of treatment for UPN020 
was unknown, but the latency time between primary cancer and t-MN was 5.8 years 
(Table S1). These observations may suggest that years after treatment, HSPCs with a 
lower mutation load may preferentially contribute to hematopoiesis, similar to what 
has been reported in bronchial cells of ex-smokers36. Indeed, the risk for developing 
t-MN after treatment of a solid tumor peaks at 2 years after treatment and has been 
reported to return to a baseline population risk in 10-15 years37. 
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Figure 4. MLLr HSPCs in MLLr t-MN patients
A) Phylogenetic tree of DX2 HSPCs and bulk t-MN blasts of patient UPN008. Branches without a 
label represent DX2 HSPCs. Colored dots indicate the similarity of the 96-trinucleotide profile 
of each branch with more than 10 mutations with SBS31. The numbers indicate the number 
of single base substitutions (SBS) and indels in that branch. Sample marked with an asterisk 
is the only one that harbored blast markers. Top right, schematic overview of the disease, 
treatment, and sample collection time line for this patient. The legend continues on the next page. 
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In this patient, the t-MN blasts had no unique mutations. platin, cisplatin. B) The signature contribution 
of the mutations in the corresponding lineage trees on the left. C) Similar to A but for patient UPN024; 
similarity to SBS87 is depicted in the colored dots. Sample marked with an asterisk is the only one that 
harbored blast markers. D) Similar to B but for patient UPN024. E) Similar to A but for patient UPN013; 
similarity to SBSC is depicted in the colored dots. F) Similar to B but for UPN013. G) Similar to A but 
for patient UPN014 and similarity to SBS87 is depicted in the colored dots. Samples marked with an 
asterisk are the only one that harbored blast markers. All other samples were sorted on HSPC markers. 
H), Similar to B but for UPN014. α, the MLL rearrangement-containing branch; β, the aggregate of the 
unique mutations in the MLLr samples; γ, the shared mutations of the MLLr samples after the MLL-
containing branch; δ, MLL-normal DX2 HSPC, ε, MLL-normal pre-SCT HSPCs; ζ, MLL-normal FU1 
and DX2 HSPCs; η, the primary ALL.

As SBS1 and SBS5 are mainly active during fetal hematopoietic development and 
the HSPC signature postnatally, the mutation spectrum of healthy HSPCs changes 
during the first years of life18,19,29,38,39. To estimate if similar mutations accumulated 
during treatment as during aging, we determined the similarity between the mean 
SBS profile of the n-HSPCs to the mutation accumulation baseline in healthy HSPCs 
(Fig. 3C,D). Compared to the profile of DX1 HSPCs, the n-HSPC profile at time of 
FU1 and DX2 was more similar to the profile of older, healthy HSPCs. This observation 
was even more apparent for the profile of additional mutations in posttreatment 
HSPCs, showing that not only the mutation burden, but also the mutation spectra 
of these HSPCs are similar to those of healthy individuals of an older age. These 
analyses suggest that chemotherapy exposure can lead to an increased mutational age 
of normal HSPCs in vivo. Importantly, this indirect mutagenic effect of chemotherapy 
exposure may contribute to the accumulation of t-MN driver mutations (Fig. 2E).

Phylogenetic history of t-MN
To time the mutagenic effect of chemotherapy during t-MN development, we 
delineated the phylogenetic history using somatic mutations that were shared 
between cells of the same patient18,20,40. Although most posttreatment HSPCs did 
not harbor cancer driver mutations, we identified some HSPCs with structural 
rearrangements. Three HSPCs in two patients harbored genetic fusion genes that 
were not shared by the t-MN (Fig. S6D) and importantly, in four t-MN cases we 
identified phenotypically HSPC-like cells, which shared the MLL rearrangement 
with the t-MN blasts (Fig. 4). For patient UPN008, all 12 posttreatment HSPC 
clones and the t-MN blasts predominantly harbored SBS31 mutations (Fig. 4A,B). 
Indeed, this patient was initially treated for osteosarcoma, which included platinum-
based drugs (Table S1). We identified six MLLr HSPCs that also shared all the 
clonal somatic mutations present in the t-MN and additionally harbored 71 to 
101 unique mutations each (β branches), of which some were sub-clonally present 
in the bulk t-MN sample (Fig. 4A). These unique mutations were predominantly 
attributed to SBS5 and SBS1, with low similarity to SBS31 (Fig. 4B). This indicated 
that they were acquired after cisplatin exposure and thus that the t-MN expanded 
after cisplatin treatment. Based on the mutation data, these MLLr “HSPCs” were 
part of the leukemic blast population despite their HSPC-like phenotype and lack 
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of CD33 expression, which was the blast-defining marker that was used to sort the 
blast population. This phenomenon resembles a previous report of MLLr infant 
ALL, where a HSPC-like blast population was reported that lacked expression of 
the characteristic B-cell marker CD1941. We observed this phenomenon in patient 
UPN024, treated for T-cell lymphoblastic lymphoma (T-LBL), where one HSPC-
like cell shared all mutations with the t-MN, thus genetically characterizing as a 
leukemic cell. Interestingly, similar to UPN008, we found an MLL rearrangement 
as sole genetic driver of the t-MN of UPN024. This rearrangement was shared by an 
additional four HSPC-like cells that did not harbor all other t-MN mutations in their 
genomes (Fig. 4C,D). This observation suggests that additional nongenetic hits are 
required for full malignant transformation. 

In patients UPN013 and UPN014 (Fig. 4E-H), the t-MN had additional driver 
mutations that were not shared with the MLLr HSPCs (RUNX1/CBL and KRASG12A, 
respectively), indicating these were preleukemic cells that separated from the t-MN 
lineage before the leukemic cell of origin started expanding. In patient UPN013, treated 
for beta-thalassemia (see above), the mutations shared between MLLr HSPCs and 
t-MN blasts were all attributed to SBSC [Fig. 4E (α branch)]. In contrast, the clone-
specific mutations (β branches) were mostly attributed to SBS1 and SBS5, indicating 
the MLLr HSPCs separated from the t-MN lineage at the end of mutagen exposure, 
similar to UPN008 (Fig. 4F). In patient UPN014, who developed t-MN after a first 
diagnosis of ALL, the 13 MLLr HSPCs shared 186 single base substitutions/indels 
with the t-MN [Fig. 4G (α branch)]. The MLLr branch had an estimated length of 
8.0 years (Methods), while the patient was 7.1 years old at t-MN diagnosis. In this 
branch, 37 mutations could be attributed to SBS87 (Fig. 4H). These observations 
suggest that the first detectable division of the MLLr cell occurred during thiopurine-
exposure. As the timing of MLL rearrangement within this branch cannot be further 
determined, it is unclear if this initial t-MN driver event in this patient was acquired 
before or after initiation of treatment. The unique mutations in the t-MN and MLLr 
HSPCs (β branches) were predominantly attributed to SBS87 and SBS1, whereas 
three posttreatment non-MLLr HSPCs only showed the HSPC signature (δ branches), 
similar to what was observed in patient UPN024 (Fig. 4D,H). The lack of SBS87 
mutations in these latter cells is likely explained by the quiescent state of normal 
HSPCs42 and the dependency of thiopurine-induced mutagenesis on replication43. 
In contrast, the t-MN and MLLr HSPCs of UPN014 and UPN024 did harbor SBS87 
mutations (Fig. 2A; Fig. S6E), suggesting that their predecessors were replicating 
during thiopurine treatment. This idea is further supported by the presence of 
SBS1 mutations in these cells, which is a signature that has been associated with cell 
division29 (Fig. 4D,H). The data together suggest that cell division, which may have 
been propagated by MLL rearrangement44, during thiopurine therapy results in the 
accumulation of passenger and driver mutations (Fig. 2E).
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Discussion
Previous studies have reported the mutational effects of chemotherapy exposure 
in cell culture systems, metastasized cancers, or colonic crypts3,6,20. Here, we report 
the first systematic analysis of chemotherapy-associated mutation accumulation in 
normal blood cells of pediatric cancer patients. Our t-MN patient cohort includes 
a large variety in clinical characteristics, such as age at first cancer diagnosis, type 
of first cancer and treatment regimen. Due to the relative rarity of the disease, 
and thus limited availability of samples in individual centers and even countries, 
international collaboration is essential to build larger cohorts and learning more 
about the specific mechanisms behind pediatric t-MN development. Despite these 
limitations, we could systematically confirm hypotheses that chemotherapy mutates 
normal HSPCs5. Furthermore, t-MN blasts showed an even higher mutation load 
compared with DX2 HSPCs, resulting in similar mutation numbers to pAML. 
Phylogenetic analyses allowed us to time t-MN, which elucidated different timing of 
t-MN expansion between treatments. Lastly, patients who had the longest latency to 
t-MN development showed a lower mutation load, which could mean that in those 
patients HSPCs with fewer mutations took over the blood system. 

To elaborate, we found that posttreatment HSPCs of childhood cancer patients 
harbored a mutation burden comparable with HSPCs of adults. Collectively, these 
HSPCs showed a mean increase of 16 years of mutational age with excesses up to 80 
years. In some patients, this increment in mutation load could be attributed to direct 
mutagenesis by thiopurines or platinum-based drugs, as reflected by mutational 
signatures (SBS87 and SBS31, respectively). Where in previous literature of pediatric 
t-MN both SBS31 and SBS35 have been linked to platinum therapy13,16, we here mainly 
identified SBS31. Although the originally extracted non-negative matrix factorization 
(NMF) signatures did show characteristics of SBS35, subsequent refitting revealed a 
larger cosine similarity with SBS31 (0.98). In contrast to these clear therapy-related 
signatures in some cells, we show that in most HSPCs the increase in mutation burden 
upon chemotherapy exposure could not be explained by direct chemotherapeutic 
drug-induced mutagenesis. Their mutational profiles were more similar to those of 
older, healthy individuals, indicating that treatment predominantly causes indirect 
mutagenesis in exposed HSPCs. This indirect mutagenesis could be attributed to 
SBS5 and HSPC signatures, but not to SBS1, which is also observed in treatment 
naïve HSPCs during healthy aging18,20 and in line with the predominant quiescent 
state of these cells after birth42. Moreover, hematopoietic stem cell transplantation 
in leukemia patients does not result in increased HSPC mutation loads32, making 
bone marrow repopulation after therapy an unlikely cause for the observed increase 
in mutation load. The lack of direct chemotherapy-associated signatures in exposed 
HSPCs corresponds to recent data on environmental carcinogens in various mouse 
tumors31, suggesting similar mechanisms may be active in other tissues. Thus, the 
origin for this indirect mutagenesis may be replicative stress45 or stress-induced 
mutagenesis46. 
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We found that direct mutagenesis by chemotherapeutic drugs may have varying 
dependencies. Whereas thiopurine-induced mutagenesis critically depended on 
cell division, platinum-based drugs were mutagenic to all assessed cells of exposed 
patients. The cisplatin-induced mutations in normal HSPCs support an earlier 
hypothesis that nonmalignant cells are first damaged by chemotherapy before 
developing into t-MN5. Our observations that most HSPCs do not harbor SBS87 
mutations after thiopurine treatment are in line with previous literature reporting 
on the lack of 5-FU-related mutations in exposed t-MN cases, which was believed 
to be caused by quiescence of normal cells at time of treatment5. Therefore, our data 
suggest that for the mutagenic action of cisplatin, cell proliferation is not required. 
Indeed, cisplatin covalently binds to base residues in double-stranded DNA and 
was previously reported in WGS data to induce mutations in all exposed t-MNs5,13. 
In addition, our findings imply that MLLr cells associated with DNA cross-linking 
treatment can only divide after the end of exposure, whereas MLLr cells can start 
dividing during treatment with the thiopurine base analogues.

In four cases, we observed that HSPCs acquired an MLL fusion (either before or 
during treatment) and gave rise to a pool of (pre-)leukemic, HSPC-like cells that 
started dividing during or directly after chemotherapy exposure. The additional 
driver mutations in two t-MN genomes indicate that the leukemic cell of origin 
started expanding and became dominant after the additional hit, which, according to 
our data, might be non-genetic events. We also identified two cases in which MLLr 
HSPCs were genetically indistinguishable from the t-MN, similar to reports of earlier 
described leukemic stem cells47,48. Unfortunately, for our patients, we did not have 
multiple longitudinal samples available from the period between first diagnosis and 
t-MN to further assess the clonal dynamics preceding t-MN. Deep sequencing of 
such retrospective samples could, in the future, shed more light on the timing and 
evolution of t-MN development16. Interestingly, the shared mutations of all MLLr 
cells in UPN008 do not harbor a driver mutation and were completely explained by 
SBS31 (platinum induced). This finding is in line with a previous report on three 
pediatric neuroblastoma patients, in whom CH, mainly consisting of platinum-
induced mutations and no drivers, preceded the development of t-MN that arose 
after the acquisition of drivers16. This is in stark contrast to CH in adult cancer 
patients, in whom no platinum-induced mutations were found after treatment5,49. In 
conclusion, we showed that chemotherapy can be mutagenic in at least three ways: 
directly to all exposed cells by DNA cross-linking, directly to dividing cells by base 
analogue incorporation and indirectly by mimicking clock-like processes. All these 
mechanisms ultimately result in increased mutagenesis, which can contribute to 
t-MN development through induction of cancer driver mutations. 
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Methods 
Patient samples
All bone marrow and peripheral blood samples were obtained via the biobank of 
the Princess Máxima Center for Pediatric Oncology with ethical approval under 
proposals OC2018-07, PMCLAB2018.026 and PMCLAB2020.151 in accordance 
with the Declaration of Helsinki. The mutational spectra from UPN003 were 
previously reported32. Patients’ written informed consents were obtained by the 
University Medical Center Utrecht and the Princess Máxima Center. This study 
was approved by the Biobank Research Ethics committee of the University Medical 
Center Utrecht and the Biobank & Data Access Committee of the Princess Máxima 
Center. Five patients were first diagnosed with primary ALL and were in remission at 
the time that the follow-up (FU) sample was taken. These were UPN002, UPN004, 
UPN005, UPN006, UPN007. The other patients had diverse primary diagnoses and 
developed a t-MN (t-AML, N = 18, t-MDS, N = 1) later in life. One t-MN blasts 
sample (UPN021 DX2AML) was excluded as no clonal mutations were found in 
this sample, indicating that the sorted populations were not purely blasts. UPN009 
received radiotherapy, but not chemotherapy as a treatment for the primary cancer 
and the DX2 samples of this patient were therefore excluded from mutation load 
analyses and posttreatment signature analyses.

FACS and HSPC culture
Bone marrow mononuclear cells were stained for fluorescence-activated cell sorting 
(FACS) after thawing. HSPCs were identified using the following surface markers: 
Lin-CD11c-CD16-CD34+, CD38-/CD45RA- (Fig. S1). We defined (t-)MN blasts from 
both first and second diagnosis based on diagnostic immunophenotyping data if 
available. In most cases these blasts were CD33, CD38 and/or CD34 positive. ALL 
blasts from first diagnosis were defined based on diagnostic immunophenotyping 
data if available (mostly these were CD10, CD19 or CD7 positive).

Blasts and HSPCs were purified on a SH800S Cell Sorter (Sony, RRID:SCR_018066). 
First blasts were sorted in bulk for DNA isolation after which HSPCs were index 
sorted in a flat-bottom 384-well plate prepared with 75 uL HSPC culture medium 
per well. HSPC culture medium consisted of StemSpan SFEM medium (Stemcell 
technologies) supplemented with SCF (100 ng/mL), Flt3-ligand (100 ng/mL), IL-6 
(20 ng/mL), IL-3 (10 ng/mL), TPO (50 ng/mL), UM729 (500 nM) and Stemregenin 
(750 nM).
 
For five samples (UPN001DX2 and UPN023DX1, UPN002DX1, UPN005DX1, 
UPN004DX1), the obtained sample was depleted for monocytic, pro T-cell or pro 
B-cell blasts (marked by anti-CD14, CD7 and CD10 respectively) using the EasySep 
anti-APC kit, following manufacturer’s instructions. After blast deletion, we plated 
MSCs and sorted HSPCs following the same procedure as with all other samples.
HSPCs were cultured for 4 to 7 weeks at 37°C, 5% CO2 before collection. 
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Mesenchymal stromal cells (MSCs) were cultured from a fraction of bone marrow 
cells by plating bulk cells in 12-well culture dishes with DMEM-F12 medium 
(GIBCO), supplemented with 10% FBS. Medium was refreshed every other day 
to remove non-adherent cells and MSCs could be harvested when confluent, after 
approximately 2 to 3 weeks.

FACS antibodies
All antibodies were obtained from Biolegend, except for CD13 (Biosciences). 
Antibodies used for (t-)MN blast and HSPC populations: CD34-BV421 (clone 561, 
1:20, RRID:AB_11147951), lineage (CD3/CD14/CD19/CD20/CD56)-FITC (clones 
UCHT1, HCD14, HIB19, 2H7, HCD56, 1:20, RRID:AB_10644012), CD38-PE (clone 
HIT2, 1:50, RRID:AB_314357), CD90-APC (clone 5E10, 1:200, RRID:AB_893440), 
CD45RA-PerCP/Cy5.5 (clone HI100, 1:20, RRID:AB_893358), CD33-PE/
Cy7 (clone WM53, 1:100, RRID:AB_2734264), CD49f-PE/Cy7 (clone GoH3, 
1:100, RRID:AB_2561704), CD16-FITC (clone 3G8, 1:100, RRID:AB_314205), 
CD11c-FITC (clone 3.9, 1:20, RRID:AB_314173), CD123-Pe/Cy7 (clone 6H6, 
1:100, RRID:AB_493577), CD13-PerCP/Cy5.5 (Biosciences, clone WM15, 1:20, 
RRID:AB_10645787), CD14-APC (HCD14, RRID:AB_830680). Additional 
antibodies used for depleting ALL blast populations: CD10-APC (clone HI10a, 
1:100, RRID:AB_314920), CD7-APC (clone CD7-6B7, 1:100, RRID:AB_1877156).

Cord blood chemotherapy exposure
We used a previously established protocol33 to treat cord blood-derived HSPCs with 
approximately IC50 concentrations of treosulfan and thiotepa (4uM and 12,5uM, 
respectively). Thiotepa treatment was combined with liver enzymes to support 
conversion to the active metabolites6. Used concentrations for these additional 
compounds were: 0,25% S9 fraction (Aroclor-1254-induced male Sprague Dawley 
rat liver), 3mM NADP (Sigma) and 15mM DL-isocitric acid trisodium salt hydrate 
(Sigma). 

DNA isolation and WGS
DNA was isolated from cell pellets of blasts, MSCs and clonally expanded HSPCs 
using the DNeasy DNA Micro Kit (Qiagen), according to the instructions provided 
by the manufacturer. We modified this protocol slightly by adding 2µL RNase A 
(Qiagen) during the lysis step and eluting DNA in 50µL low EDTA TE buffer (10mM 
Tris, 0.1mM EDTA, G Biosciences).

For each sample, DNA libraries for Illumina sequencing were generated from at 
least 35 ng genomic DNA using standard protocols. The libraries were sequenced on 
Novaseq 6000 sequencers (RRID:SCR_016387; 2x150bp) at a depth of 15-30x. Two 
t-MN blast samples (UPN018 and UPN023) were sequenced to 90x coverage, as only 
a DNA pellet was available, and blast purity was 15% and 22% respectively. Reads 
were mapped to the human reference genome GRCh38 using the Burrows-Wheeler 
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Aligner v0.7.17 mapping tool with settings ‘bwa mem –M –c100’ 50. Sambamba 
v0.6.851 was used to mark duplicate sequencing reads and GATK v.4.1.3.052 was used 
to perform base recalibration. See https://github.com/UMCUGenetics/NF-IAP for 
a full description and all code of the pipeline.

Mutation calling and filtering
Mutation calling and filtering was performed on multi-sample VCF files generated using 
HaplotypeCaller from GATK v.4.1.3.0. GATK’s VariantFiltration was used for variant 
quality evaluation with options: “--filter-expression ‘QD<2.0’ --filter-expression 
‘MQ<40.0’ --filter-expression ‘FS>60.0’ --filter-expression ‘HaplotypeScore>13.0’ 
--filter-expression ‘MQRankSum< -12.5’ --filter-expression ‘ReadPosRankSum< -8.0’ 
--filter-expression ‘MQ0>=4 && ((MQ0/(1.0*DP))>0.1)’ --filter-expression ‘DP<5’ 
--filter-expression ‘QUAL<30’ --filter-expression ‘QUAL>=30.0 && QUAL<50.0’ 
--filter-expression ‘SOR>4.0’ --filter-name ‘SNP_LowQualityDepth’ --filter-name 
‘SNP_MappingQuality’ --filter-name ‘SNP_StrandBias’ --filter-name ‘SNP_
HaplotypeScoreHigh’ --filter-name ‘SNP_MQRankSumLow’ --filter-name ‘SNP_
ReadPosRankSumLow’ --filter-name ‘SNP_HardToValidate’ --filter-name ‘SNP_
LowCoverage’ --filter-name ‘SNP_VeryLowQual’ --filter-name ‘SNP_LowQual’ 
--filter-name ‘SNP_SOR’ -cluster 3 -window 10”. 
For two impure t-MN blast samples that were sequenced to 90x, the ‘SNP_
LowQualityDepth’ filter was lowered to “QD<1”.
Subsequently, SNPEffFilter53, SNPSiftDbnsfp (database dbNSFP3.2a54, GATK 
VariantAnnotator (database COSMIC v.89), and SNPSiftAnnotate (database GoNL 
release 5) were used for variant annotation.
Finally, to obtain catalogues of high-quality somatic mutation calls, we applied post-
processing filtering steps, per patient, as described below (all scripts are available at: 
https://github.com/ToolsVanBox/SMuRF).
Briefly, only variants were considered that (i) were present on autosomal 
chromosomes; (ii) passed VariantFiltration with a GATK phred-scaled quality score 
≥ 100; (iii) had a base coverage of at least 10X (30X samples) or 5X (15X samples) 
in the clonal and paired control sample; (iv) had a mapping quality (MQ) score 
of 60; (v) did no overlap with single nucleotide polymorphisms (SNPs) in the 
Single Nucleotide Polymorphism Database v146 and a panel of unmatched normal 
human MSC and fetal genomes (BED-file available upon request); (vi) had a GATK 
genotype score (GQ) of 99 (indel/sbs in clonal sample, or indel in paired control) or 
higher than 10 (sbs in paired control); (vii) had a variant allele frequency of >=0.3 
(sbs/indel in 30x coverage sample, or indel in 15x sample) or >=0.15 (sbs in 15x 
coverage sample) or 0.07 (sbs/indels in the two 90x t-MN samples, see above) to 
exclude in vitro accumulated mutations; and (viii) did not have any evidence from a 
paired control sample (MSCs isolated from the same bone marrow) if available. For 
patients for which no matched MSC control was available, or when the control was 
contaminated with blast cells (UPN008/UPN014), instead of step (viii) a mutation 
was filtered out when it (a) was clonally present in all samples that passed QC for 
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that mutation, (b) was subclonally present in any sample or (c) was not confidently 
absent in at least one sample. 
One HSPC clone (UPN013DX2 HSPC 1B23) was excluded as it did not match the 
fingerprint of the other samples of UPN013 and was likely a surviving donor cell from 
one of the two unsuccessful stem cell transplantations that were administered prior 
to sample collection. For UPN008 and UPN014, bulk MSC samples were excluded as 
they showed clear contamination with t-MN blasts as evidenced by reads supporting 
the t-MN driving fusion and subclonal presence of t-MN single-nucleotide variant/
indel mutations.

Driver events
Single base substitutions or indels were considered driver events when they (i) had a 
MQ of 60, and a GQ of 10 or higher in both the (t-)MN and the paired control sample 
(if available) and minimal base coverage of 10x in both the (t-)MN and the paired 
control sample (if available); (ii) had a variant allele frequency higher than 0.3; (iii) 
were present in driver genes (either COSMIC Cancer Gene Consensus (version of 
9/5/2019) or one of the frequently mutated genes in primary pediatric (t-)MN23; 
were (iv) a missense, frameshift, stop-gain, insertion or deletion; (v) had either a 
high or moderate expected effect as annotated by SnpEff; (vi) were not present in the 
Single Nucleotide Polymorphism Database v146 and a panel of unmatched normal 
human MSC and fetal genomes (BED-file available upon request); and (vii) had no 
evidence in the paired control samples (if available)55.
Structural variant and chromosomal copy-number alteration calling was performed 
using the GRIDSS-purple-linx pipeline developed at the Hartwig Medical 
Foundation56. All structural variants were validated by hand using IGV57 and false 
positive results were excluded. All whole chromosome duplications and deletions 
were considered driver events, as well as partial chromosomal (arm) gains and losses 
(reported as one category). Finally, translocation events resulting in fusion genes 
that involved at least one known AML driver gene (in this dataset KMT2A (MLL), 
RUNX1, MECOM or MLLT10 were considered drivers.

Comparison with the baseline
When comparing mutation load, single base substitution and indel counts were 
normalized to GATK CallableLoci’s CALLABLE length. The baseline data from 
previous publications was used18,19. As described before, a linear mixed-effects model 
was used to calculate the slope and intercept of the baseline while taking donor 
dependency into account using lme4 package in R58. Mutational ages were calculated 
based on the expected rate of mutation accumulation over time in HSPCs of healthy 
individuals, previously defined as baseline18, as mutational_age = (number_of_
mutations – baseline_intercept)/baseline_slope.



43

2

Elevated mutational age in blood of children treated for cancer

Mutational signature extraction and refitting
For the analysis of mutational patterns and signatures, the in-house developed R 
package MutationalPatterns v3.0.159 was used. For single base substitution analysis, 
first the 96-trinucleotide profiles per sample were extracted. Then, NMF was applied 
on this data combined with previously published mutational patterns of healthy 
tissues 18 to extract nine signatures (“extract_signatures” with options “rank = 9, 
nrun = 100”). These signatures were compared with the COSMIC mutational 
signature database v3.155 and a previously established clock-like signature in HSPCs 
(HSPC signature)60. Signatures with a cosine similarity of > 0.8 to one of the known 
signatures were replaced by that signature (1, 5, 18, 31, 87, HSPC). Of note, the 
signature replaced by SBS31 was very similar to this signature (cosine similarity of 
0.98), but also had some characteristics of SBS35 (cosine similarity of 0.73). The 
other signatures were named SBSB and SBSC. 
Only from one sample with more than 100 mutations, the cosine similarity between 
the reconstructed profile derived from these signatures and the original profile had 
a cosine similarity below 0.8 (UPN003 t-MN, 1,078 mutations, Fig. S4A). We have 
previously reported this sample, and showed that it had contribution of SBSA, a 
signature caused by ganciclovir. Therefore, we have added SBSA to the mutational 
signature repertoire, which resulted in a cosine similarity of UPN003 t-MN to 0.98 
(Fig. S4B).

Fitting the signatures to the mutational profiles of samples
The resulting set of signatures was used to perform bootstrapped fitting using “fit_
to_signatures_bootstrapped” with options “n_boots = 100, max_delta = 0.05”. The 
bootstrap results were averaged per sample to get the contribution of each signature to 
the profile of each sample. Finally, per sample the number of sbs in the reconstructed 
96-trinucleotide profile were subtracted from the original number of sbs and added 
as “unexplained” mutations.
The same steps were taken when refitting was performed when refitting on the per-
branch profiles of phylogenetic trees (Fig. 4). The aggregate profiles (Fig. 3C) were 
acquired by first making an average profile of HSPCs per timepoint and then taking 
the mean from the resulting profiles per time point. 

Determining signature categories
Cells with a contribution of more than 20% from signature SBSA, SBSB, SBSC, 
SBS31 or SBS87 were assigned as t-HSPC, and grouped to the corresponding 
signature category. Cells with more than 20% contribution of more than one of these 
signatures were grouped to the signature with the highest contribution. Finally, all 
remaining cells were assigned to the category n-HSPC, as most of their mutations 
could be attributed to SBS1, SBS5 and the HSPC signature. SBS18 was not a category, 
as in none of the HSPCs or t-MN samples did SBS18 have a contribution of 20% or 
more.
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Genomic age estimation
The healthy 96-trinucleotide mutation data was obtained from previously sequenced 
HSPC clonal cultures18,32. For each trinucleotide category, a linear mixed effects model 
was applied to determine the age-related increase. Predictions for the 96-trinucleotide 
profiles of healthy aging were made for each timepoint at a resolution of 0.1 year. 
For each timepoint of our data set (DX1, FU, and DX2) the n-HSPC profiles were 
merged. Each resulting profile was compared to all baseline profiles using cosine 
similarity. The mutational age of each of the three n-HSPC profiles was set to age of 
the baseline profile with the highest cosine similarity.

Constructing phylogenetic trees
To construct phylogenetic trees, all samples from one patient were compared among 
one another. To obtain only high-confident mutations and to include mutations 
that arose during early development, filtering was slightly adjusted compared with 
previous analyses. If a control MSC sample was available, mutations that were 
subclonally (VAF<0.3) present in the control were considered. Mutations that 
were sub-clonally present in any other sample were filtered out. To still account 
for germline mutations, mutations that were clonally present in all samples were 
filtered out. In addition, all samples needed to have passed QC filters as described 
above (among others, sufficient coverage and mapping quality), not only the sample 
in which the mutation was found. Finally, for patient UPN013, 35 mutations were 
removed that were detected in all samples but the primary ALL, and that were 
present in locations with loss-of-heterozygosity in the ALL. All shared mutations 
were manually inspected in IGV, and false positive results were filtered out. A binary 
mutation table was constructed from the mutations that passed these criteria, and a 
tree was constructed using the ape v5.5 R package61. 
As filtering to obtain the tree is very strict, mutations that were filtered out due to 
failed QC in one or more samples were reconsidered. These mutations were added to 
a branch only if the VAF of that mutation was 0.15 for all samples in that branch and 
if the VAF was 0 for all samples not in the branch. In addition, mutations only found 
in 1 sample were only considered if that sample passed QC.

The mutations per branch were extracted using the binary mutation table and a cosine 
similarity to one of the NMF-extracted or COSMIC signatures was calculated. Then, 
the per-branch mutations were merged into categories, and refitting was performed 
on the resulting mutation catalogues as described above.

Potential impact of mutational signatures
Calculating the probability of a mutation being caused by the signatures that 
contributed to that sample was done similarly to that done by Morganella and 
colleagues35. In short, the contributions of each signature to the sample were 
multiplied by the chance of each signature to induce a mutation of the mutation type 
and trinucleotide context of the driver mutation. These values were summed. The 
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fraction that each signature contributed to the summed value was multiplied by 100 
to get a probability in percentages.

Extended context
To determine the extended context of the mutations of post-treatment samples from 
patient UPN013, we extracted the -4/+4 context of each unique mutation in all 
samples. Next, we pulled all mutations for each of the six mutation types and plotted 
the sequence logos with the R package ggseqlogo v.0.1  62.

Statistical analysis
Due to limited primary material availability, no sample-size calculation was performed. 
No randomization was performed. Regarding the included t-MN patients, all patients 
of which material at time of t-MN was available in the biobank were included in 
our study. For most samples at least three (with up to 16) HSPCs were sequenced. 
As specifically the t-MN material is scarce, we collected and processed all available 
samples to obtain this unique dataset. For the comparisons of mutation burden and 
signature contribution between groups, a two-sided Wilcox test was used.

Data and code availability
The datasets generated during this study are available at EGA (https://www.ebi.
ac.uk/ega/), accession number EGA:EGAS00001005141. Most of the scripts used 
during this study are available at https://github.com/ToolsVanBox/ and in the 
MutationalPatterns R package (https://bioconductor.org/packages/release/bioc/
html/MutationalPatterns.html). Other scripts are available upon request.
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Supplementary Figure 3. Indels, double base substitutions and extended context.
A) The number of small insertions and deletions (indels) and double base substitutions (DBS) of all 
samples in our data set. The sample type is depicted under the plot similarity to Figure 2A.  B) The 
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mean DBS profile of samples within the SBS31 signature category (>20% contribution of SBS31 to their 
96-trinucleotide profile). This dbs profile is similar to COSMIC profile DBS5. C) Cosine similarity 
of SBSB and SBSC to COSMIC signatures.  D) The cosine similarity of the reconstructed vs original 
profile of SBSB and SBSC when refitting a different number of the optimal COSMIC signatures to 
reconstruct the original profile. Both could not be reconstructed with three or less signatures to a cosine 
similarity higher than 0.9 E) The original 96-trinucleotide profile of SBSB, the reconstructed profile 
using the best max-delta cut-off (0.03, two signatures), and the difference of the two profiles. F) Similar 
to (E), but for SBSC with at max-delta=0.03 is reconstructed by five signatures.
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Supplementary Figure 4. Cosine similarity of original versus reconstructed profiles 
before and after adding SBSA.
SBSB, SBSC and signatures with high similarity to SBS1, 5, 18, 31, 87 and the HSPC signature were 
extracted by NMF. Using these extracted signatures and their contribution to sample profiles, we 
reconstructed the sample profiles. 
A) The cosine similarity of the reconstructed profiles and original profiles (y-axis) versus the number 
of mutations in each sample (x-axis). B) Similar to A, but the reconstructed profiles were created after 
adding SBSA to the signatures.
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Supplementary Figure 5. SBSB and SBSC are distinct signatures.
A) The mean indel profile of the samples in each SBS signature category. B) The extended context 
of the six mutation types of post-treatment samples of patient UPN013. T>A, T>C, C>A and C>G 
mutations are enriched for guanines at position -2. SBSC and in vitro treatment of healthy cord blood 
cells with treosulfan or thiotepa. Cord blood cells from a healthy donor were treated in vitro with 
approximately IC50 concentrations for 72 hours, then were sorted as single cells and clonally expanded 
to harvest sufficient DNA for WGS. Thiotepa was converted into its active metabolite by adding S9 liver 
extract.  C) From top to bottom, the 96-trinucleotide profiles of SBSC mutations, treosulfan mutations 
and thiotepa mutations. The in vitro profiles were corrected with mutations detected in untreated and 
S9-only treated cells respectively. 
The -2, -1 and 0 (the mutated base) context preference of the 6 mutation types of the mutations in (C).
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Supplementary Figure 6. HSPC profiles, mutation loads, structural variants and 
thiopurine mutations.
A) The cosine similarity of the posttreatment HSPCs of different signature categories (with >20% 
contribution of that signature) to the profile of the healthy baseline or the DX1 HSPCs.
B) The contributions of signatures to the mean baseline-corrected profile of posttreatment HSPCs of 
different signature categories.
C) The ratio of observed versus expected (based on the age of patient in combination with the baseline) 
mutations in post-treatment HSPCs of different patients. The arrows indicate patients that received 
chemotherapy but had no increased mutation load in their HSPCs. Patient UPN009 did not receive 
chemotherapy.
D) The structural variations found in HSPCs after treatment. None were found before treatment.
E) The relative contribution of SBS87, which is thiopurine-associated, to the mutation load of post-
thiopurine-treatment t-AML samples, HSPCs without an MLL rearrangement and HSPCs with an 
MLL rearrangement. All samples without an MLL rearrangement are represented by a dot, all samples 
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Patient ID F
/
M

Primary cancer / 
treatment protocol

Age 
Dx1 
(y)

Chemotherapy agents (from databases or 
extracted from protocol)

SCT RT Age 
Dx2/
FU 
(y)

UPN001 F Burkitt | LMB 2001 11.5 Cyclophosphamide, ARA-C, MTX, 
Doxorubicin, Vincristine, Etoposide

No No 13.2

UPN002 F B-ALL 3.9 Vincristine, Daunorubicin, MTX, ARA-C, 
Asparaginase

No No 5.0

UPN003 M ALL | ALL10, ALL-R3, 
ALL 11 HR + ADHOC

5.7 At time of FU: MTX, Vincristine, ARA-C, 
PEG-asparaginase, Daunorubicin, 
Cyclophosphamide, 6-MP, Doxorubicin, 
Mitoxantrone, 6-TG | After FU new: ATG, 
BuFluClo, Teniposide, allogenic MUD-SCT

Yes, 2x NA 15.7

UPN004 M B-ALL 15.5 Vincristine, Daunorubicin, MTX, ARA-C, 
Asparaginase, Cyclophosphamide, 6-MP, 
Doxorubicin

No No 16.7

UPN005 M B-ALL 4.3 Vincristine, Daunorubicin, MTX, ARA-C, 
Asparaginase, Cyclophosphamide, 6-MP, 
Doxorubicin

No No 5.1

UPN006 F B-ALL 3.4 Vincristine, Daunorubicin, MTX, ARA-C, 
Asparaginase, Cyclophosphamide, 6-MP

No No 3.6

UPN007 F B-ALL 8.3 Vincristine, Daunorubicin, MTX, ARA-C, 
Asparaginase, Cyclophosphamide, 6-MP, 
Doxorubicin

No No 9.4

UPN008 F Osteosarcoma | 
Euramos1

13.5 Doxorubicin, Cisplatin, MTX | If randomized/
poor response: + Ifosfamide, Etoposide

NA NA 14.9

UPN009 M Non low-grade 
astriocytoma SIOP 
LGG2004

14.1 None No Yes 15.4

UPN010 M Ewing Ewing2008R3 3.9 Ifosfamide, Doxorubicin, Actinomycin D, 
Vincristine, Cyclophosphamide, Etoposide

No Yes 5.7

UPN011 F Neuroganglioblastoma 
NBL2009MRG

3.3 Cisplatin, Etoposide, Vindesine, Vincristine, 
Dacarbazine, Ifosfamide, Doxorubicin, low dose 
Cyclophosphamide, Retinoic acid

No Yes 5.9

UPN012 M Neuroblastoma 4.6 Cisplatin or carboplatin, etoposide, Vindesine, 
Dacarbazine, Doxorubicin, Ifosfamide, 
Vincristine, Busulfan, Melfalan.

No Yes 7.4

UPN013 M b-thalassemia NA Treosulfan, Fludarabine, Thiotepa, ATG, 
Alemtuzumab

Yes, 2x NA 5.3

UPN014 M ALL | ALL11-MRG 6.0 Vincristine, Daunorubicin, Asparaginase, 
Cyclophosphamide, ARA-C, 6-MP, MTX, 
Doxorubicin

No No 7.1

UPN015 F Lymphoma NA NA NA NA 15.6

UPN016 F NHL | ALL VII NA Daunorubicin, 6-TG, Vindesine, 6-MP, 
Asparaginase, Cyclophosphamide, Vincristine, 
Doxorubicin, Teniposide, MTX, ARA-C, 
Ifosfamide

No No 11.2

UPN017 M AML | ANLL92 5.2 Doxorubicin, Cyclophosphamide, Idarubicin, 
ARA-C, Vincristine, Mitoxantrone, Etoposide, 
6-TG

No No 15.1

UPN018 M pre-B ALL | ALL8-
MRG

4.6 Vincristine, Daunorubicin, Asparaginase, 
ARA-C, MTX, 6-MP, Doxorubicin, 
Cyclophosphamide, 6-TG

No No 7.8

UPN019 M AML | ANLL94 7.1 ARA-C, Idarubicin, Etoposide, Mitoxantrone, 
6-TG, Vincristine, Doxorubicin, 
Cyclophosphamide | Conditioning: + Busulfan

Yes TBI 10.9

UPN020 M ALL 8.2 NA NA NA 14.0

Supplementary Table 1. Patient and treatment information. 
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Patient ID F
/
M

Primary cancer / 
treatment protocol

Age 
Dx1 
(y)

Chemotherapy agents (from databases or 
extracted from protocol)

SCT RT Age 
Dx2/
FU 
(y)

UPN021 ALL | ALL9-HR 3.9 Vincristine, Daunorubicin, Asparaginase, MTX, 
6-MP, Cyclophosphamide, ARA-C

No NA 5.1

UPN022 F Ewing sarcoma NA NA NA NA 9.1

UPN0023 F T-ALL | ALL10-MRG 9.6 Vincristine, Daunorubicin, Asparaginase, 
Cyclophosphamide, 6-MP, ARA-C, Leukovorin, 
MTX, Doxorubicin

No No 12.2

UPN0024 M T-LBL | Euro-LB02 
III/IV

8.4 Vincristine, Daunorubicin, MTX, Asparaginase, 
6-MP, ARA-C, Cyclophosphamide, Doxorubicin, 
6-TG, 

No No 10.0

6-TG = thioguanine; ALL = acute lymphoblastic leukaemia; AML = acute myeloid leukaemia; BuFluClo = Busulfan, 
Fludarabin, Clofarabin; Dx1 = diagnosis 1; Dx2 = diagnosis 2; FU = follow-up; HR = high risk; MUD = matched-
unrelated-donor; MRG = medium risk group; MTX = methotrexate; NA = not available; NHL = non-Hodgkin 
lymphoma; RT = radiotherapy; SCT = stem cell transplantation; TBI = total body irradiation; y = years.

Supplementary Table 1. continued
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Supplementary Table 2. Per-sample overview of all whole-genome sequenced samples.
Available online (QR code below)
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Abstract
Therapy-related myeloid neoplasms (t-MN) arise as a complication of chemo- 
and/or radiotherapy. Although t-MN can occur both in adult and childhood 
cancer survivors, the mechanisms driving therapy-related leukemogenesis likely 
vary across different ages. Chemotherapy is thought to induce driver mutations 
in children, whereas in adults pre-existing mutant clones are selected by the 
exposure. However, selective pressures induced by chemotherapy early in life are 
less well studied.  Here, we used single-cell whole genome sequencing (WGS) and 
phylogenetic inference to show that the founding cell of t-MN in children starts 
expanding after cessation of platinum exposure. In patients with Li-Fraumeni 
syndrome, characterized by a germline TP53 mutation, we found that the t-MN 
already expands during treatment, suggesting that platinum-induced growth 
inhibition is TP53 dependent. Our results demonstrate that germline aberrations 
can interact with treatment exposures in inducing t-MN, which is important for the 
development of more targeted, patient-specific treatment regimens and follow-up.

Introduction
Most chemotherapies act by fatally damaging or inhibiting the synthesis of DNA of 
cancer cells1. However, normal cells are also exposed during treatment, which can 
promote new carcinogenesis. Therapy-related myeloid neoplasms (t-MN), which 
include myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), are 
hematological disorders that typically occur within 10 years after treatment with 
cytotoxic therapy for a primary cancer or autoimmune disease2–4. Patients with t-MN 
have a poor prognosis compared to treatment-naïve AML or MDS5,6, urging the need 
to develop preventive strategies. T-MN can occur at all ages but remains understudied 
in children. Nevertheless, it is one of the most prevalent subsequent neoplasms after 
childhood cancer treatment, besides radiotherapy-induced breast cancers, mostly 
occurring in females4. Previous research that investigated the effects of cytostatic 
treatment in the hematopoietic system of cancer patients focused on therapy-related 
clonal hematopoiesis (t-CH) and t-MN in adults7–11. Together, these studies propose 
a model in which chemotherapy exposure mainly induces leukemogenesis by 
selecting mutated clones that in most cases predated the treatment exposure7,10,12, and 
only partly by induction of mutations12. Indeed, t-MN driver mutations can already 
be observed in bone marrow or peripheral blood of adult patients isolated before 
exposure to cytotoxic therapy7. Also, in retrospective studies, specific genes were 
found to drive t-CH depending on the preceding treatment exposures and which 
also varied between distinct exposures10,13. For example, mutations in DNA damage 
response (DDR) genes, such as TP53 and CHEK2, were significantly enriched in 
clones of adults specifically after exposure to cytotoxic therapies, such as platinum 
drugs and topoisomerase II inhibitors (TOP2i)10. 
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Besides selective pressure, DNA damage induced by chemotherapy in healthy 
cells can increase the genetic diversity in normal tissues during exposure. This can 
contribute to the development of t-MN by increasing the chance that healthy cells 
acquire a cancer driving event9,14,15. In contrast to adult t-MN, studies suggest that this 
mechanism occurs often in pediatric t-MN patients, as t-MN driver mutations could 
not be detected by ultra-deep sequencing methods in samples predating the start 
of treatment15,16. In addition, mutational signature analysis in pediatric t-MN has 
shown that some driver mutations are directly induced by cytotoxic treatments, such 
as platinum drugs and thiopurines14,15,17. Furthermore, exposure to topoisomerase 
II inhibitors (TOP2i) is associated with KMT2A rearrangements with breakpoints 
in TOP2-binding regions18,19. This association indicates that these rearrangements, 
that are often found in pediatric t-MN, are likely directly induced by TOP2i. Yet, the 
evolutionary pressures induced by exposure to these agents and subsequent selection 
of malignant clones in the blood of children remain unclear. 

Here, we aimed to find a model explaining pediatric t-MN development and to 
subsequently compare this model to the etiology of t-MN in adults. Therefore, we 
analyzed the genomes of t-MN in 43 children. Using single-cell whole genome 
sequencing (WGS), we show that although chemotherapy exposure induces the 
genetic aberrations that drive leukemogenesis, the expansion of the t-MN clone 
is inhibited by platinum drugs. Subsequently, after finalization of treatment with 
platinum drugs, the leukemic cell of origin rapidly expands. In Li-Fraumeni Syndrome 
(LFS) patients, TP53-deficient leukemic clones can expand during platinum drugs 
exposure, suggesting that platinum-induced growth inhibition is TP53 dependent. 
Indeed, in LFS patients the t-MN shows a developmental trajectory that is more like 
that observed in adults.

Results
Pediatric t-MN patient cohort 
We included 18 Dutch14 and 25 German t-MN patient samples that were obtained via 
a collaboration with the International Berlin-Frankfurt-Münster AML Study Group 
(I-BFM AML SG). The patients had a variety of first diagnoses and were exposed 
to different treatment regimens (Fig. 1a, Table S1). Most of these children had a 
primary cancer diagnosis, but four patients received treatment for other underlying 
diseases (Table S1). Except for two patients, all children received chemotherapy 
(Fig. 1a). Although patients UPN009 and IBFM29 were included in this cohort 
based on clinical diagnosis, their t-MN cannot be specified as chemotherapy-
induced, as they received only local radiation or immunosuppressants. Due to the 
inclusion criteria of our study, 42 patients presented with t-AML and only one with 
t-MDS. The mean age at t-MN diagnosis was 10.7 years (range 2.4 – 18.4 years). The 
latency time between first diagnosis and t-MN varied from 0.6 to 11 years (mean 
3.4 [95% CI 2.5-4.4], Fig. 1b, c). Patients with a hematological malignancy as a first 
diagnosis had a longer latency time compared to patients with any other primary 
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Figure 1. Pediatric t-MN (n=43) is mainly driven by KMT2A fusions.
a) A table depicting the different first diagnoses of t-MN patients and the treatment categories that 
each patient received. ALL: acute lymphoblastic leukemia; AML: acute myeloid leukemia; bT: beta-
thalassemia; FA: Fanconi anemia; MDS: myelodysplastic syndrome; NB: neuroblastoma; NGB: 
neuroganglioblastoma; OS: osteosarcoma; SCT: allogenic stem cell transplantation; TLBL: T-cell 
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Distribution of latency times in years. d) Circos plot of the structural variants (n=70) in t-MN patients 
that involved at least one cancer gene. The legend continues on the next page.
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e) Oncoprint depicting the clonal driver events that were present in t-MN samples. The bar plots on 
top represent the number of driving events present in each sample. Small drivers are only included if 
they occurred in more than one patient. CN-LOH: copy neutral loss of heterozygosity. f ) Circos plot 
depicting the copy number profiles of all t-MN samples. 

diagnosis (p = 0.022, Fig. S1a). Unfortunately, due to the variety of 
treatment regimens included in our cohort, this difference in latency time could not 
be linked to a specific chemotherapeutic compound. We performed WGS on bulk 
t-MN blasts and used mesenchymal stromal cells (MSCs) or bulk-sorted B-cells of 
the same patient as a germline control (Methods, Fig. S2). 

In general, the driver events observed in our cohort were in line with previous 
studies14,15 (Fig. 1d, e, Fig. S1b). Most recurrent genetic aberrations in the pediatric 
t-MN samples were structural variants (SVs). Fusions were found in KMT2A (58%), 
RUNX1 (7%), MLLT10 (5%) and MECOM (2%) (Fig. 1d, Table S2).  Breakpoints 
of 9 out of 25 KMT2A fusions (36%) overlapped with the 11-bp topoisomerase-
associated breakpoint hotspot (Fig. S1c)17,19. The t-MN with oncogenic fusions 
usually had fewer chromosomal aberrations than t-MN without fusions (0.6 vs 4.1, 
p = 3.3*10-5) except for RUNX1 alterations which co-occurred with chromosome 
21 gains in four patients. This co-occurrence has also been described in treatment-
naïve AML20. Recurrent losses were observed in chromosome 6, 7 and 11 (in 9%, 9% 
and 7% of the patients respectively, Fig. 1f). Compared to adult t-MN, our cohort 
had a paucity of TP53 aberrations. A somatic TP53 mutation was only found in one 
t-MN (2%), compared to 33% of adult t-MN7. Also in de novo pediatric AML, TP53 
aberrations are rare21. 

In the German I-BFM patients, we could investigate germline predisposition variants 
for which we used a previously published set of childhood cancer-associated genes22. 
Likely pathogenic germline mutations were found in 6/25 t-MN patients (24%), 
which is higher than previously published in pediatric cancer and pediatric t-MN15,23, 
but comparable to adult t-MN24. We found a germline aberration in five patients 
in the genes encoding BLM, WRN, and WT1 in one patient each, and FANCA in 
two patients. Patient IBFM22 had a germline aberration in both TP53 and NF1, 
indicating that this patient had two tumor-predisposition syndromes: LFS and 
neurofibromatosis type 1 (NF1). In the t-MN blasts, the wild-type allele of TP53 
was lost and the NF1 mutation was duplicated. In the Dutch cohort we were not 
able to search for predisposition genes due to ethical constrains, yet the only known 
germline aberration, based on diagnostic data, was a mutation in CHEK2.

Mutational processes underlying t-MN development
A previously established baseline of mutation accumulation during healthy life showed 
that hematopoietic stem and progenitor cells (HSPCs) normally acquire mutations 
at a constant rate of 14 to 16 single base substitutions and approximately one indel 
per year25,26. We compared the mutation load of the t-MN blasts to this baseline and 
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Figure 2. Mutational processes underlying the increased mutation load in pediatric 
t-MN (n=43)
a) The contribution of each single base substitution signature to t-MN blasts of each patient, obtained 
after bootstrapped (n=100) refitting of signatures that were extracted by non-negative matrix 
factorization. The first bar below the plot represents the first diagnosis (abbreviations conform Figure 
1a), the second bar notes if a pathogenic germline mutation was found, the third bar represents the 
treatment category (>150 mutations of that treatment type, or otherwise “clock-like”). b) Mutation 
accumulation of t-MN (colored dots) compared to the baseline of healthy blood cells (black dots). The 
color is similar to the grouping in (a). c) The ratio of the number of observed versus expected single base 
substitutions in all t-MN samples within a specific signature-category (as in b). d) The 96-trinucleotide 
single base substitution profiles of SBSD-G and the profile of the previously defined signature sbs25 
(Pich et al.31). e) The probability that different driver mutations (n=42) were caused by treatment-
related or clock-like signatures.
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found a significant increase (1005 additional mutations, p<1011; Fig. S3A), similarly 
to what was previously reported14.
To elucidate the mutational processes underlying the additional mutations after 
treatment exposure, we extracted and refitted mutational signatures (Fig. 2a, 
Methods). In 13 out of 43 t-MN cases (30%), all mutations could be exclusively 
explained by clock-like signatures SBS5 and HSPC, while in the other patients at 
least 150 mutations could be attributed to an additional signature (Fig. 2a-c). We 
identified the platinum-associated signature SBS31 in platinum-exposed patients27, 
and the thiopurine-associated signature SBS87 in thiopurine-exposed patients28. In 
addition, we identified SBS17a/b in the t-MN of one patient (IBFM9) in our cohort, 
who developed the t-MN after a primary acute lymphoblastic leukemia (ALL). 
SBS17a/b mutations have previously been attributed to exposure to the drug 5-FU 
as well as mis-incorporation of oxidized guanines opposite a thymine in the DNA 
template during replication29. Since 5-FU is not used in ALL treatment protocols, the 
latter process seems more likely.

Furthermore, we identified a signature, here named SBSD, which resembles a 
carboplatin-associated signature previously described by Pich et al. in metastases 
of adult solid tumors30 (sbs25, cosine similarity 0.87, Fig. 2d). The 96-trinucleotide 
profile has similarities to SBS31 and SBS35, which are both platinum-induced 
signatures. SBS31 and SBSD both co-occur with a platinum-induced double base 
substitution signature DBS5 in our dataset (Fig. S3b-d). SBSD was mainly present 
in four patients (IBFM22, IBFM38, IBFM14 and IBFM28). Interestingly, IBFM22, 
who was treated with carboplatin for NF1-related opticus glioma, also harbored a 
germline TP53 mutation, characteristic of LFS. TP53 is essential in the G1/S cell 
cycle checkpoint and is activated upon a variety of cellular stresses, including 
DNA damage31. TP53 is the most commonly mutated gene in human cancer32 and 
mutations have been associated with platinum-resistance33, potentially explaining 
the distinct signature. Interestingly, the t-MN of IBFM14 had a heterozygous loss 
of chromosome 17p that harbors the TP53 gene and IBFM38 had a germline WT1 
mutation, which has been described to impact downstream factors of TP5334, and 
thus likely increases resistance to DNA damaging agents. Like IBFM22, IBFM38 
(Wilms tumor) and IBFM28 (atypical rhabdoid tumor) were highly likely treated 
with carboplatin, according to the applicable treatment protocols at the time the 
patient was treated, whereas this was unclear for IBFM14 (Ewing sarcoma). Notably, 
also patient IBFM21 (TP53+/+) received carboplatin therapy, and this patient did not 
show SBSD-related mutations. These findings suggest that the type of carboplatin-
induced mutations might be influenced by TP53 function.

To further validate this, we compared TP53+/+, TP53+/- and TP53-/- metastases of 
cancers that had been treated with carboplatin or cisplatin from a cohort of 4,853 
metastases from 4,711 patients previously described by Priestley et al.35. We checked 
the contribution of the SBS31, SBS35 and the carboplatin-associated sbs25 that was 
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found by Pich et al. and is similar to SBSD in this cohort. After carboplatin exposure, 
fewer TP53-/- and TP53-/+ tumors contained SBS35 mutations compared to TP53+/+ 

tumors (22%, 44% and 55% respectively, not significant). In contrast, more TP53-/- 

and TP53-/+ tumors had sbs25 (SBSD) mutations than TP53+/+ tumors (55%, 38% 
and 28%, respectively). After cisplatin exposure SBS31 was the dominant signature, 
independent of TP53 status (Fig. S4). Although not confirmative, these results are in 
line with the idea that TP53 status influences the type of mutations that accumulate 
during carboplatin exposure.

Finally, we identified three novel signatures with unique 96-trinucleotide profiles, 
which we here named SBSE, SBSF and SBSG (Fig. 2d). Interestingly, SBSG was 
identified in three t-MN that developed after Ewing sarcoma, suggesting a potential 
association with the treatment regimen. As SBSE and SBSF only occurred in the 
t-MN of one patient each (IBFM28 and IBFM21, respectively), it remains challenging 
to elucidate the underlying process. While the profile of SBSE shows mainly C>G 
changes, in SBSF mainly T>C changes are seen, which is in line with exposure to 
alkylating agents36. 

We used a previously established method to calculate the probability that the t-MN 
driving mutations were caused by each detected signature37,38. This analysis revealed 
that clock-like signatures could explain 29% of the single nucleotide variant drivers. 
On the other hand, 45% of the driver mutations could be attributed to a non-clock-
like signature with >70% likelihood (Fig. 2e), showing that also in our cohort 
treatments did induce small drivers. 

Clonal evolution of t-MN under platinum exposure
To study the selective pressure of platinum compounds in the blood of t-MN patients, 
we performed retrospective lineage tracing in multiple patients. WGS on bulk, single 
t-MN blasts, and single HSPCs was performed on DNA that was extracted from 
clonally expanded cells or directly amplified from single cells by primary template-
directed amplification (PTA)39. By comparing shared and individual mutations in 
all sequenced cells from the same patient, we could construct phylogenetic trees in 
which each split of a branch represents a cell division (Fig. 3). These trees can be 
used to study the evolution of the t-MN over time, by timing the moment of the 
t-MN expansion and by determining the mutational processes that were active 
before, during and after this expansion. Clonal mutations were those shared between 
all the t-MN blasts. These accumulated before expansion of the initial leukemic 
cell. Subclonal mutations were those shared between a subset of single t-MN 
blasts and accumulated during expansion of the leukemic clone. Finally, private 
mutations were unique to single blasts and accumulated most recently during t-MN 
expansion. Of note, in four patients some of the immunophenotypically HSPC-
like cells shared all the t-MN drivers and other clonal mutations with the bulk 
t-MN blasts and were  thus in the phylogenetic analysis considered t-MN blasts. 
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Figure 3. Clonal evolution of t-MN under platinum treatment in patients without 
germline TP53 aberrations.
a) Phylogenetic tree of clonally expanded HSPCs and bulk t-MN blasts of patient UPN008 (TP53 wild-
type). Pie charts indicate the contribution of SBS31 after strict refitting (max_delta < 0.01). The colors 
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the lineage tree on the left. The private HSPC mutations were subsampled to 2000 mutations for visual 
purposes. Top: schematic overview of the timeline of the different diagnoses and treatment, including 
the timing of t-MN development. c) simar to (a), but for patient IBFM42 (TP53 wild-type). Also single 
cell sequenced HSPCs (black squares) and t-MN blasts (black triangles) are included. Dotted lines 
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d) Similar to (b), but for patient IBFM42. e) similar to (a), but for patient IBFM32. The black diamond 
indicates the clonal mutations in the t-MN bulk blasts that were not found in any of the sequenced single 
blasts. The AML blast population of this patient showed two distinct immunophenotypes (CD34+ and 
CD34-). The single AML blasts that were sequenced were all CD34+. The KRAS mutation was not 
present in any of these blasts, but its presence could be confirmed in DNA of CD34- blasts with PCR 
and Sanger sequencing. f ) Similar to (b), but for patient IBFM32. 

We ran Cellphy40 on previously published data of UPN00814, a patient who developed 
a t-MN after platinum-treatment (n=12 HSPCs). The bulk t-MN blasts of this patient 
harbored many clonal platinum-related mutations, only 11 subclonal mutations, and 
no platinum-related private mutations (Fig. 3a, b). This observation suggested that 
the t-MN clone started expanding after the end of platinum treatment. Based on the 
length of the individual branches and the minimum latency of 1.1 years between the 
end of platinum treatment and t-MN diagnosis, the mutation rate in the blasts was 
at least 297 sbs/year. The 11 subclonal mutations would suggests that the detected 
cell divisions happened within 14 days. Of note, it is unknown if the mutation rate 
in t-MN blasts is constant, it is likely that the division happened within a relatively 
short period of time. The phylogenies of patients IBFM32 (n=3 HSPCs, n=3 blasts) 
and IBFM42 (n=3 HSPCs, n=4 blasts), both treated with cisplatin, showed a similar 
pattern. For these patients, besides HSPCs, we also included single blasts in our 
analysis. Apart from a single division detected in the middle of the t-MN evolution of 
IBFM32, both patients had long clonal branches and short subclonal branches (Fig. 
3c-f). Similar as in patient UPN008, all clonal, but only few subclonal and private 
mutations were platinum-related, suggesting that the expansion of the t-MN clones 
in both patients happened after the end of platinum treatment. These results support 
the idea that platinum exposure inhibits the expansion of the initial leukemic clone, 
and that this expansion thus starts when the exposure to platinum ends.

The role of TP53 in clonal evolution under the selective pressure of platinum exposure 
As discussed above, we found that TP53-deficient cells that were exposed to 
carboplatin accumulated a different mutational signature (SBSD) compared to TP53-
proficient cells (SBS31). In addition, previous literature indicates a clonal advantage 
of TP53-mutated cells under platinum treatment33. Therefore, we investigated 
the clonal evolution of t-MN in the carboplatin-treated LFS patient IBFM22 and 
compared this to TP53 wild-type platinum-treated t-MN patients. 

In the phylogeny of patient IBFM22 (n=5 HSPCs, n=5 blasts), fewer clonal mutations 
were present. In the clonal branch, also chromosomal copy number changes were 
present, among which a 17p deletion that resulted in the loss of the TP53 wild-type 
allele. In addition, only few of these trunk mutations could be attributed to platinum 
treatment, indicating that the t-MN clone started expanding very early during 
treatment (Fig 4a, b). In contrast to the TP53+/+ t-MN cases, two subclonal branches 
contained hundreds of mutations, all of which were platinum-related. Furthermore, 
we could observe multiple branching points that occurred during platinum exposure,
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as 60% of private mutations harbored platinum-related mutations, indicating that 
the expansion of the t-MN in this case occurred during treatment. This model 
was further strengthened by the short latency of 0.7 years between first diagnosis 
and t-MN development in patient IBFM22, which was still within the carboplatin 
treatment window. This latency time was longer for patients UPN008 (1.4 years) and 
IBFM32 (3 years), and unknown for patient IBFM42. In conclusion, in TP53-/- t-MN 
the timing and speed of the clonal expansion appeared to be different compared to 
TP53+/+ t-MN.

To confirm the proposed interaction between TP53 deficiency and the evolutionary 
pressures that are induced by platinum treatment, we studied the post-treatment 
bone marrow sample of another LFS patient (UPN034, n=9 HSPCs), who had been 
previously treated for osteosarcoma (DX1) with, among other treatments, cisplatin. 
Less than three months later, during the treatment for osteosarcoma, this patient 
was diagnosed simultaneously with Burkitt lymphoma and t-MDS with less than 5% 
leukemic blasts in the bone marrow (DX2). We sequenced nine clonally expanded 
HSPCs, six from the time of Burkitt, and three from follow-up (FU) two months later. 
Interestingly, five HSPC clones, including all three FU clones, shared the same event 
that resulted in the loss of the wild-type TP53 allele (Fig. S5a). This is suggestive for the 
presence of CH at time of DX2 in which one HSPC expanded at a disproportionately 
higher rate than other HSPCs41. Comparable to IBFM22, the subclonal branches 
were hundreds of mutations long and were platinum related (SBS31), suggesting that 
also this clone expanded during treatment (Fig. 4c, d). Interestingly, all cells at time 
of FU arose from the same clone and the private mutations in these cells occurred 
after the end of platinum treatment. 

Since we were not able to perform WGS on the bulk t-MN blasts of UPN034 in our 
study, we requested single nucleotide polymorphism (SNP) and karyotype assays 
data from our diagnostics department. This way, we could determine how the HSPCs 
were related to the t-MN. One sequenced HSPC shared a RUNX1 aberration and 
7q loss with the t-MN, but not the additional 20q loss. These findings imply that 
this HSPC is a pre-leukemic cell. Notably, the TP53 wild-type allele was lost in the 
HSPCs by four independent 17p loss events which all had unique breakpoints. This 
convergent evolution of multiple clones that independently lost the wild-type allele 
of TP53 indicates a strong selective pressure to lose TP53 function in this patient42 

(Fig. S5a). To investigate whether this selective pressure was due to the treatment 
or already existed before, we investigated WGS data of bulk peripheral blood at the 
time of primary osteosarcoma diagnosis. Copy number variant (CNV) analysis of 
these data revealed that a variety of 17p copy-number neutral loss of heterozygosity 
(CN-LOH) events were already present in the blood before the start of any treatment 
(at time of DX1). This resulted in the loss of a copy of TP53 in 38% of the blood 
cells, indicating that TP53 wild-type allele loss events were already present before 
treatment (Fig. S5b).
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Figure 5. TP53 deficiency enables increased proliferation under platinum treatment.
a) Dose-response curves of MV4-11bulk (circles, each the mean of 3 technical replicates) and MV4-
11R248W (triangles, each the mean of 3 technical replicates), based on the DAPI-negative fraction of 
single cells, n = 3 biological replicates per cell line. The complete dose-response model was tested 
against the null model, lacking cell line information (ANOVA). b) The IC50 values of carboplatin 
treatment per line, extracted from the dose-response models depicted in (a). The comparison of the 
IC50 values is based on a z-test and error-bars represent the standard error. c) CellTrace signal per 
treatment condition, normalized to unit area, for MV4-11bulk cells (top) and MV4-11R428W cells (bottom). 
d) Proliferation Score per treatment condition for MV4-11bulk and MV4-11R248W. The scores of each cell 
line were compared within treatment conditions using a holm’s corrected one-sided T-test. Error bars 
represent standard deviation of the mean of three independent experiments. **** p<0.0001, * p<0.05.

Subsequently, we investigated if a clone could also escape platinum-induced 
inhibition when losing only one allele of TP53. Therefore, we performed WGS 
on single HSPCs (n=4) and t-MN blasts (n=3) of patient IBFM14, whose t-MN 
had a heterozygous loss of chromosome 17p, involving TP53, and no additional 
TP53 mutation. Although the patient history is unclear about platinum treatment, 
mutational signature analysis of the t-MN revealed contribution of both SBS31 and 
SBSD, indicative of carboplatin exposure. Notably, the private mutations of the single 
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t-MN blasts had contribution of SBS2, indicative of APOBEC activity, which is an 
uncommon signature in pediatric cancer, including AML43,44. Other than that, the 
t-MN in this patient followed the same pattern as the three TP53+/+ t-MN, with many 
platinum-related clonal mutations, few subclonal mutation, and no platinum-related 
private mutations, indicative of expansion after the end of platinum treatment (Fig. 
4e, f). This confirms that only t-MN clones that have no TP53 wild-type allele can 
escape platinum-induced inhibition.

Finally, we validated the effect of TP53 deficiency on cell proliferation under 
platinum treatment using MV4-11bulk, a pediatric acute monocytic leukemia cell 
line with a subclonal TP53 R248W mutation (36% of the total alleles), and MV4-
11R248W in which the R248W variant was homozygous in all cells45,46. In line with 
our in vivo findings, MV4-11R248W was more resistant to carboplatin treatment than 
MV4-11bulk (IC50 10.7μM vs. 6.7μM, p<10-10, Fig. 5a, b, Fig. S6). Next, we used a 
single pulse of CellTrace dye, which is equally distributed over daughter cells during 
cell divisions, to track proliferation during in vitro treatment. From the fluorescent 
intensity after four days of treatment, we calculated a Proliferation Score (Methods). 
MV4-11R248W showed a dose-dependent increase in proliferation compared to MV4-
11bulk, confirming that TP53-deficiency leads to platinum resistance by enhancing 
proliferation during treatment (Fig. 5c, d).
  
Discussion 
Previous studies have described differences in the evolution of t-MN in children 
and adults7,14,15. Whereas in adults the founding cell is often already present before 
treatment, and subsequently selected during chemotherapy, in children the driving 
event of the t-MN is likely induced during therapy, and the t-MN blasts probably 
expand afterwards7,14. Here, we show that platinum-based treatment inhibits the 
clonal expansion of the t-MN blasts. The evolution of TP53+/+ shows expansion of 
a single clone likely in a short period of time, after overcoming a selective pressure, 
in this case by cessation of platinum-based treatment. On the other hand, pediatric 
TP53-/- t-MN are able to expand during platinum exposure and therefore have an 
evolutionary trajectory that is more similar to those described in adult t-MN7 and 
different from pediatric TP53+/+ t-MN. As platinum drugs are usually administered 
in short intervals during the treatment protocol, it is unclear whether TP53-/- cells 
expand in vivo during exposure itself, similar to the MV4-11 cells in vitro, or whether 
they recover faster and expand during treatment intervals. Overall, more TP53-\- t-MN 
cells are able to survive during treatment. The observations that a complete loss of 
TP53 is needed for this selective advantage would indicate that also in adult TP53-
aberrant t-MN the wild-type TP53 copy is already lost before treatment, opposite 
to a previous model by Wong et al.7. This hypothesis is supported by the events that 
caused loss of wild-type TP53 in UPN034 before treatment.   
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Following our findings, a model arises in which comparable selective pressures are 
present during platinum-based treatment in adults and children. However, due 
to a higher number of mutations that accumulated due to aging and potentially 
environmental mutagenic exposures, adults would have a higher chance to already 
have TP53-mutated cells in their blood before the start of treatment25,47,48. The 
chance would thus be relatively high in adults that one of these cells loses the TP53 
wild-type allele before treatment, and therefore gains a competitive advantage and 
develops into t-MN. In contrast, in children TP53 aberrations are hardly present 
in blood. Thus, only cells in which both TP53 wild-type alleles are lost prior to or 
in the beginning of treatment, can then expand during treatment. As this chance is 
much lower in children, a smaller part of pediatric compared to adult t-MN harbor 
TP53 aberrations. On the other hand, in children with germline TP53 aberrations 
this chance is higher, thus the clonal evolution of the t-MN can mimic that of adults. 
Hence, in these children possibly even more t-MN are driven by TP53 deficiency and 
the loss of the TP53 wild-type allele, as in theory every HSPC in their blood could lose 
the wild-type TP53 allele. Finally, for cells with other, non-TP53, aberrations, such as 
KMT2A fusions, expansion mostly occurs after the end of platinum-based treatment. 
When they do so, the expansion seems to happen rather quickly, conceivably because 
the niche is very sparsely populated.

In addition to a different clonal trajectory, TP53-/- tumors accumulate distinct 
mutational profiles under carboplatin treatment. This signature (SBSD/sbs25) 
was previously identified in the metastases of treated cancer patients and linked to 
carboplatin exposure35. Here, we confirm this relationship and show enrichment 
of SBSD in both t-MN and metastases with TP53 aberrations. It is very likely that 
more interactions between germline aberrations and treatment exposure are present. 
Due to the relative rarity of germline aberrations, and the large variety of different 
treatments that are used, large datasets are needed for the identification of these 
interactions. Interactions between germline mutations and treatments, such as the 
TP53 – carboplatin interaction that we reveal here, could have clinical implications, 
not only for future choices of treatment regimens, but also for follow-up of these 
patients after treatment.

Methods
Patient samples
Patient samples were collected via the biobank of the Princess Máxima Center for 
Pediatric oncology, with ethical approval under proposal PMCLAB2020.151 and via 
a collaboration with the I-BFM AML SG from the German AML-BFM study group 
in accordance with the Declaration of Helsinki. Informed consents were obtained 
from all participants. 

Sample work-up
Bone marrow mononuclear cells were stained for fluorescence-activated cell 
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sorting (FACS) after thawing. Hematopoietic stem and progenitor cells (HSPCs) 
were identified using the following surface markers: Lin-CD11c-CD16-CD34+, 
CD38-/CD45RA (“HSPC mix”). t-MN blasts were defined based on diagnostic 
immunophenotype data if available. If immunophenotype data were unavailable, 
cells were stained with the same antibody panel including CD33, CD34 and CD38. 
B-and T-cells were identified using the following surface markers: CD3, CD4, CD20, 
CD33, CD34 (‘mature mix’).

Blasts and HSPCs were purified on a SH800S Cell Sorter (Sony). First, blasts were 
sorted in bulk for DNA isolation after which single HSPCs and t-MN blasts were 
index sorted in a 96-well plate prepared with PTA-buffer. Additionally, single 
HSPCs were sorted in a 384-well plate prepared with 75 µL HSPC culture medium 
per well. HSPC culture medium consisted of StemSpan SFEM medium (Stemcell 
technologies) supplemented with SCF (100 ng/mL), Flt3-ligand (100 ng/mL), IL-6 
(20 ng/mL), IL-3 (10 ng/mL), TPO (50 ng/mL), UM729 (0.5µM) and Stemregenin 
(750nM). 

HSPCs sorted in HSPC culture medium were cultured for 4-7 weeks at 37°C, 5% 
CO2 before harvesting. Mesenchymal stromal cells (MSCs) were cultured from a 
bone marrow fraction of 500,000 cells/well in 12-well culture dishes with DMEM-
F12 medium (GIBCO), supplemented with 10% FCS. Medium was refreshed every 
other day to remove non-adherent cells and MSCs were harvested when confluent, 
after approximately 2-3 weeks.

FACS antibodies
All antibodies were obtained from Biolegend, except for CD13 (Biosciences). 
Antibodies used for t-MN blast and HSPC populations: CD34-BV421 (clone 561, 
1:20), lineage (CD3/CD14/CD19/CD20/CD56)-FITC (clones UCHT1, HCD14, 
HIB19, 2H7, HCD56, 1:20), CD38-PE (clone HIT2, 1:50), CD90-APC (clone 5E10, 
1:200), CD45RA-PerCP/Cy5.5 (clone HI100, 1:20), CD33-PE/Cy7 (clone WM53, 
1:100), CD49f-PE/Cy7 (clone GoH3, 1:100), CD16-FITC (clone 3G8, 1:100), 
CD11c-FITC (clone 3.9, 1:20), CD123-Pe/Cy7 (clone 6H6, 1:100), CD13-PerCP/
Cy5.5 (Biosciences, clone WM15, 1:20), CD14-APC (clone HCD14).  

For the B- and T-cell sort the following antibodies, obtained from Biolegend, were 
used: CD3-PE/Cy7 (clone SK7), CD4-PerCP/Cy5.5 (clone OKT), CD20-BV421 
(clone 2H7), CD33-APC (clone WM53), CD34-APC (clone 561). 

DNA isolation and WGS
DNA was isolated from cell pellets of blasts, MSCs and clonally expanded HSPCs 
(“HSPC clones”) using the DNeasy DNA Micro Kit (Quagen), following the 
manufacturer’s instructions. The standard protocol was slightly adjusted by adding 
2µL RNase A (Qiagen) during the lysis step and eluting DNA in 50µL low EDTA TE 
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buffer (10mM Tris, 0.1mM EDTA, G Biosciences).

DNA from single HSPCs and blasts was amplified using the ResolveDNA™ 
WholeGenome Amplification Kit (BioSkryb) according to the manufacturer’s 
instructions.

For each sample, DNA libraries for Illumina sequencing were generated from at least 
45 ng genomic DNA using standard protocols. For PTA-amplified DNA at least 500ng 
genomic DNA was used. The libraries were sequenced on Novaseq 6000 sequencers 
(2x150bp) at a depth of 15x (clones/single cells) or 30x (bulk t-MN and control 
samples). Two t-MN bulk blast DNA pallets (15 and 22% purity) were sequenced at 
a depth of 90x.

Sample combinations during processing
For the characterization of the genomic landscape of the t-MN, for all patients the 
subsequent steps were performed on the bulk t-MN together with the matched 
normal sample for each patient. For patients for which single cells were sequenced 
the mutation calling was performed again on the single cells, HSPC clones, bulk 
t-MN, and matched normal bulk per patient.

Read mapping
Sequencing reads were first mapped to genome GRCh38 using Burrows-Wheeler 
Aligner (bwa) v0.7.17 using “bwa mem –M –c100”, then duplicates were marked 
using Sambamba v0.6.8 and base recalibration was performed using GATK’s 
BaseRecalibrationTable and BaseRecalibration. All GATK tools were from version 
4.1.3.0.

Mutation calling, filtering, and annotation
Mutation calling was performed with GATK’s HapoTypeCaller on each set of 
samples. Mutation filtering was performed using GATK’s SelectVariant with options 
“--select-type SNP --select-type NO_VARIATION --select-type INDEL --select-type 
MIXED’” on the resulting multi-sample VCFs. Next, VariantFiltration was run with 
the following options: –filter-expression “MQ < 40.0” –filter-expression “FS > 60.0” 
–filter-expression “HaplotypeScore > 13.0” –filter-expression “MQRankSum <-12.5” 
–filter-expression “ReadPosRankSum <-8.0” –filter-expression “MQ0 > = 4 && 
((MQ0/(1.0 * DP)) > 0.1)” –filter-expression “DP < 5” –filter-expression “QUAL < 
30” –filter-expression “QUAL > = 30.0 && QUAL < 50.0” –filter-expression “SOR > 
4.0” -cluster 3 -window 10.” And finally –filter-expression “QD < 2.0”. For 90x samples 
the last expression was replaced by –filter-expression “QD < 1.0”, to prevent somatic 
mutations with a high coverage to be filtered out. The mutations with a QD between 
1 and 2 had a similar mutational pattern compared to the mutations with a QD value 
higher than 2, and were manually inspected, confirming that they were not artifacts.
Annotation of variants was done with SNPEffFilter, SNPSiftDbnsfp (dbNSFP3.2a), 
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GATK VariantAnnotator (COSMIC v.89) and SNPSiftAnnotate (GoNL release 5). A 
full pipeline description is available at www.github.com/UMCUGenetics/NF-IAP.

Somatic mutation filtering
SMuRF v3.0.0 was used for obtaining high-confidence clonal somatic mutation 
calls (www.github.com/ToolsVanBox/SmuRF). These were mutations that (A) are 
positioned on autosomal chromosomes, (B) have a GATK phred-scaled quality score 
R 100, (C) have a mapping quality of 60 (30x coverage) or 55 or higher (15x), (D) 
had a base coverage of at least 10 (30x) or 5 (15x), (E) had a GATK genotype quality 
of 99 (heterozygous) or 10 (homozygous) in both the sample and paired control (if 
available), (F) were clonal, and thus had a variant allele frequency (VAF) of > 0.3 
(30x), 0.15 (15x) or 0.07 (90x), (G) had no evidence in the paired control sample if 
available.

Mutation filtering for PTA single-cell WGS data
For single cells, our in-house developed pipeline PTATO was applied, which uses 
SMuRF v3.0.0 as well as germline mutations combined with a random forest and 
walker to separate real somatic mutations from amplification-induced artifacts. For 
a full description, see our recent publication49. The final set of PTATO mutations 
was only used to filter the single-sample end branches of the phylogenetic trees (see 
below, section “Phylogenetic tree construction”).

Mutation filtering for bulk t-MN without a paired normal
For bulk t-MN samples without a paired normal (n = 2), or with evidence of blast 
contamination in the normal (n = 2), all HSPC clones were used for filtering as 
described previously14. In these cases, a mutation identified by SMuRF to be in 
the bulk t-MN was excluded if it (a) was clonally present in all samples that passed 
QC for that mutation, (b) was subclonally present in any sample, or (c) was not 
confidently absent in at least one sample.

Baseline and t-MN mutation load normalization
Somatic mutations were re-called using SMuRF v3.0.0 in healthy HSPC samples from 
a previously published baseline. The number of autosomal mutations in the baseline 
and t-MN samples were corrected based on GATK’s CallableLoci’s CALLABLE 
length. A linear mixed-effects model was fit on the baseline samples and the slope 
and intercept of this line were used to calculate the expected mutation load for each 
t-MN sample.

Mutational signature extraction and refitting
MutationalPatterns package v3.6.0 was used for mutational signature extraction 
and refitting. As signature extraction becomes more robust when more samples are 
included, we combined the SBS of all t-MN bulk samples with previously published 
data of 34 healthy HSPCs of healthy individuals of different ages, which were also used 
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for the baseline (see above)25. Extraction was done by applying the extract_signatures 
function with options “rank = 12, nrun = 100”. Then, the signatures that correlated to 
signatures from the COSMIC database v3.2 and previously identified signatures in the 
Dutch part of this cohort14, with a cosine similarity of 0.8 or higher were substituted 
by the highest correlating signature. Signatures that could be reconstructed by three 
or fewer COSMIC signatures (cosine >= 0.85) were substituted by those known 
signatures. One of the signatures was separated in SBS87, SBS17a and SBS17b.

Refitting was done with the extracted signatures using fit_to_signatures_bootstrapped 
with options “n_boots = 100, max_delta = 0.05”. The contributions from the 100 refits 
were averaged and the difference between the total numbers of mutations in each 
sample and the sum of refitted mutations was categorized as “unexplained”.

Small driver events
Single base substitution and indel driver events were extracted from the output of 
SMuRF v3.0.0. Only exonic mutations with MODERATE or HIGH impact according 
to the SnpEff annotation were considered. In addition, mutations in genes from the 
COSMIC cancer gene consensus v97 and pediatric AML drivers genes were included. 
Finally, missense, nonsense, frameshift, insertions and deletions were considered as 
driver events. Driver events (including SVs and CNVs) were visualized using the R 
package ComplexHeatmap v.2.12.050.

Structural variation calling
The Hartwig Medical Foundation’s gridss-purple-linx pipeline v1.3.2 was applied 
on the bulk t-MN blast samples and their paired normal to call somatic structural 
variants (SVs) and determine copy number alterations (CAN) with options ‘—
amber_tumour_only “true” –cobalt _tumour_only “true” –purple_tumour_only 
“true”’. All structural variants were checked in IGV and false positives were filtered 
out. The sub-packages “amber” and “cobalt” that are part of this pipeline were also 
applied on the bulk blood WGS from time of primary diagnosis of patient UPN034, 
which was obtained from the diagnostics department.

Germline SVs were extracted from unfiltered GRIDSS VCFs using bcftools filter 
v1.1451 in multiple steps using the following filters. 1) -i ‘FILTER==”PASS” && BMQ 
> 40 && FORMAT/RP > 10 && MQ>55 && INFO/ASQ > 0’, 2) -i ‘INFO/ASSR 
> 20 | INFO/ASRP > 20’ $QUAL > $QUAL2. These variants passing these filters 
were then overlapped with driver genes from a pediatric cancer WGS dataset from 
Grobner et al.22 using “bedtools52 intersect -header -wa”. Finally, the final set of SVs 
was manually investigated in IGV and only SVs with supporting reads in the matched 
control and t-MN sample and those overlapping with at least one exon of a cancer 
gene were reported. Structural variants were visualized using the R package “circlize” 
v0.4.15. Breakpoints were visualized using the R package “Gviz” 1.40.153.
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Phylogenetic tree construction
Phylogenetic reconstruction was performed using CellPhy v0.9.240, which utilizes 
RXML-NG54, a maximum likelihood framework for phylogenetic inference. CellPhy 
estimates the allelic dropout rate and false positive rate per sample and constructs 
the most likely tree based on the phenotype likelihoods (PL) and these estimates. 
Before running CellPhy, the bulk t-MN samples were removed from the VCF. The 
bulk t-MN data was only used to validate the tree (see below). CellPhy was run on the 
PL with standard settings, including the “GT16+FO+E” model from CellPhy. Next, 
100 bootstrap iterations were run. CellPhy was also used to map mutations to the tree 
(using the “mutmap” function) with the “--opt-branches off ” setting. 

Mutations of end branches were filtered out if one or more reads supporting the 
alternative allele was present in more than one cell. These could be mutations that 
were true in one cell, and were technical artifacts in other cells, but to make the final 
set more robust, these were filtered out. In addition, the end branches containing a 
single cell for which PTA WGA was used were filtered on the mutations that were 
part of the PTATO output. This was done to ensure no PTA-artifacts were included 
in the tree. Finally, the trees were rooted with treeio’s “root” function, using the MSC 
cells as the outgroup, or an HSPC which shared no mutations with the other samples, 
when MSCs were unavailable (UPN008).

Fitting mutational signatures to the mutations of single branches of the tree was 
done with MutationalPattern’s function “fit_to_signatures_strict” with option “max_
delta=0.05”. Trees were visualized using the R package “ggtree” v3.4.155 which uses 
“ape” v.5.6-256.

Analysis of a WGS cohort of metastases
A cohort of solid tumor metastases previously described by Priestley et al.35 was used 
to verify signatures that were not described in the COSMIC database.  Somatic and 
germline mutation calls as well as copy number status were obtained from the Hartwig 
Medical Foundation (HMF) that created this dataset. SBSG was refitted to the dataset 
together with COSMIC signatures v3.2 using the function “fit_to_signatures_strict” 
from the MutationalPatterns package with option “max_delta=0.01”. Previously, Pich 
et al.30 have extracted signatures from this cohort, including signature “sbs25”, that 
was similar to the signature SBSD that we extracted from our cohort. We therefore 
refitted these signatures, including a signature similar to COSMIC SBS31, together 
with COSMIC SBS35 to this dataset in the same manner. In this case, only patients 
that were treated with cisplatin or carboplatin were selected based on the meta data 
of the data set.
TP53 mutation status was extracted from three different sources. First, a TP53 
allele was considered to be lost if the BAF of the region including (a part of ) TP53 
was higher than 0.95, as determined by the above mentioned gridss-purple-linx 
pipeline from HMF. Somatic and germline calls were also obtained from HMF 
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and exonic TP53 mutations that were annotated in ClinVar as “Pathogenic” or 
“Likely Pathogenic” were considered driver mutations, as well as all other nonsense 
and frameshift mutations. For the somatic mutations, also all missense, structural 
interaction variants, splice site variants, and protein-protein interaction variants 
were considered driver mutations.

Cell culture and genotyping
The MV4-11bulk and MV4-11R248W cells were kindly provided by the Frank van 
Leeuwen and Willem Cox (Princess Máxima Center for pediatric oncology, Utrecht, 
The Netherlands). The frequency of the TP53 R248W variant was determined 
by Sanger Sequencing using the Indigo tool (Gear-Genomics)57. MV4-11 cells 
were cultured at 37oC, 5%CO2 and replated biweekly at 4*105 cells/mL in IMDM 
(Gibco™), supplemented with 10% FCS (Sigma-Aldrich) and 1% Penicillin-
Streptomycin (Gibco™). The subclonal and clonal, homozygous presence of the TP53 
R248W variant in MV4-11bulk and MV4-11R248W respectively were confirmed by 
Sanger sequencing (Macrogen) following cell lysis (DirectPCR, Viagen Biotech) and 
amplification (GoTaq™ Hot Start Master Mix, Promega) using the following primers: 
Fw – CCTGCTTGCCACAGGTCTC; Rev – GGGGATGTGATGAGAGGTGG 
(IDT). Visualization of genotyping was performed through alignment to 
ENST00000269305.9 in Benchling (2023).

Carboplatin resistance assay
Following staining by CellTrace™ Far Red (Invitrogen™), MV4-11 cells were seeded 
at 25.000 cells per mL for a carboplatin (Fresenius Kabi) treatment range and an 
untreated condition. After four days, cell viability and proliferation were assessed 
by DAPI staining (Sigma-Aldrich) and subsequent flow cytometry (CytoFLEX S, 
Beckman Coulter). For cell viability, we determined the DAPI-negative fraction of 
single cells in FlowJo™ (v10.8.1) and extracted IC50 (ED50) values from the summary 
of the dose-response model using the R package DRC (v.3.0-1)58. Representative gating 
images are available in Fig. S6. The proliferation score was calculated as follows. Per 
condition, the median fluorescent CellTrace™ intensity (MFI) of DAPI-negative cells 
was determined. Next, per condition, the MFI was normalized to the MFI at the 
start of treatment, and then to the untreated condition at day four. Subsequently, the 
normalized CellTrace™ intensities were rescaled to a range of 0-1 and transformed 
(ProliferationScore=1-MFIscaled). Treatment conditions above 10μM carboplatin 
were not taken along as the number of viable cells was insufficient (<1.000 cells) for 
CellTrace™ measurements. Each experiment consisted of the average of three technical 
replicates per condition and was performed independently three times. Visualization 
was performed using the R packages DRC (v.3.0-1)58 and ggpubr (v.0.6.0)59.
The fitted dose-response curves were tested by ANOVA against the null model, which 
lacked the genotype factor of MV4-11 bulk and R248W (R package stats v4.2.2). The 
IC50 values were compared by z-test (default settings DRC::compParm v.3.0-1)58. 
The Proliferation Scores were compared using a one-sided t-test and holm’s multiple 
testing correction (rstatix v.0.7.2)60.
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Data visualization
All data visualization that was not performed with the packages mentioned above 
was performed using the R package “ggplot2” v.3.3.6, which is part of the “tidyverse” 
suite of packages61.

Data availability
The whole genome sequencing data generated for this study are available at the 
European Genome-phenome Archive (EGA, www.ebi.ac.uk/ega/) under accession 
number EGAS00001005141. The filtered VCF files are available at Mendeley Data 
(https://data.mendeley.com/datasets/72cvzs5dg7/draft?a=739eb6f0-c243-427a-
8b59-7fb394614d35).
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Supplementary Figure 1. Additional cohort details
a) Boxplot depicting the latency time in years between the first diagnosis and t-MN development. 
Colors represent first diagnosis. ALL: acute lymphoblastic leukemia; AML: acute myeloid leukemia; bT: 
beta-thalassemia; FA: Fanconi anemia; MDS: myelodysplastic syndrome; NB: neuroblastoma; NGB: 
neuroganglioblastoma; OS: osteosarcoma; SCT: allogenic stem cell transplantation; TLBL: T-cell 
lymphoblastic lymphoma. Two-sided Wilcox-test. b) Oncoprint with all identified driver mutations 
in all t-MN. In contrast to main Fig. 1e also mutations found in single t-MN were included. The bar 
plots on top represent the number of driving events present in each sample. The bar plots on the right 
represent the number of patients with the driver. CN-LOH: copy neutral loss of heterozygosity. c) 
KMT2A (MLL) breakpoints from t-MN patients in our cohort. Indicated on top are the general KMT2A 
breakpoint cluster region (BCR) and the hot spot associated with topoisomerase II inhibitors (TOP2i).
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Supplementary Figure 2. Experimental setup
A schematic overview of the experimental setup of this study. In short, bone marrow biopsies at time of 
t-MN were collected. Blasts and HSPCs were purified by FACS. Blasts were sorted in bulk and single cell 
in a 96-wells plate for primary template-directed amplification (PTA). Single HSPCs were sorted in a 
384-wells plate for clonal expansion and in a 96-wells plate for PTA. Mesenchymal stromal cells (MSCs) 
were plated and expanded in vitro.
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Supplementary Figure 3. Mutation burden of patient with platinum-related mutations
a) Mutation accumulation of t-MN (colored dots) compared to the baseline of healthy hematopoietic 
stem and progenitor cells (HSPCs; black dots). A linear mixed-effects model was run on both the 
baseline and t-MN data, taking into account the donor, the age and the mutation load. The effects for 
age (per year), the intercept of the baseline with the y-axis (number of mutations at birth), and the 
additional effect for t-MN are stated, together with p-values. t-MN on average had 1005 additional 
mutations compared to the healthy baseline with a p-value of 3.3*10-12. Conditional R2=0.998. b) The 
signature contribution of t-MN that harbored a contribution of the platinum-related signatures SBS31 
and/or SBSD. c) A linear model of the single base and double base substitutions in the t-MN patients 
depicted in (b) where n_snv = 461 + 46 * n_dbs, adjusted R2=0.74. d) The number and type of double 
base substitutions of the same t-MN depicted in (b). These are similar to DBS5, the COSMIC double 
base substitutions signature linked to platinum-based compound exposure.
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Supplementary Figure 4: Platinum-related signatures in metastases by TP53 status. 
Carboplatin and cisplatin exposed metastases from a previously described cohort by Priestley et al.36 

that displayed any cisplatin-related signatures (SBSD/sbs25, SBS31/sbs21, SBS35) after bootstrapped 
refitting (n=100) were included. The bars represent the percentage of samples that had contribution 
of each signature. The samples were split by TP53 status: wild-type (WT), single hit, double hit (most 
often a somatic mutation and a loss of the wild-type allele).
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Supplementary Figure 5. WGS data of patient UPN034 at first diagnosis and t-MN. 
a)  Copy number plot and B allele frequency plot of whole genome sequencing (WGS) data of peripheral 
blood of patient UPN034 at the time of osteosarcoma (DX1). Data from the diagnostics department of 
our institute. b) Similar to (a) but for a bone marrow HSPC at time of DX2.
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Patient 
ID

F/M Primary cancer / treat-
ment protocol

Age 
Dx1 
(y)

Chemotherapy agents (from databases or extracted 
from protocol)

SCT RT Age 
t-MN 
(y)

IBFM01 M ALL | ALL-BFM-2000 2.3 Vincristine, Daunorubicin, Asparaginase, MTX, Cy-
clophosphamide, 6-MP, ARA-C, Doxorubicin, 6-TG. 
If HR: + Ifosfamide, Vindesine

NA NA 8.6

IBFM02 M ALL | ALL-BFM-2000 3.7 Vincristine, Daunorubicin, Asparaginase, MTX, Cy-
clophosphamide, 6-MP, ARA-C, Doxorubicin, 6-TG. 
If HR: + Ifosfamide, Vindesine

No No 5.7

IBFM03 F Osteosarcoma | NA NA NA NA NA 13.6
IBFM07 F ALL | ALL-BFM-92 5.2 Yes NA 16.2
IBFM09 F ALL | NA 3.5 NA NA NA 4.6
IBFM10 M Ewing Sarcoma | 

Euro-Ewing 99
14.5 Vincristine, Ifosfamide, Doxorubicin, Etoposide, 

Actinomycin D. If R1: potentially + Cyclophospha-
mide. If R2: potentially + Busulfan, Melphalan. If R3: 
potentially + Melphalan or Treosulfan/Melphalan or 
Busulphan/Melphalan

NA NA 16.1

IBFM11 M MDS | NA 12.4 NA No NA 16.3
IBFM14 M Ewing Sarcoma | 

Euro-Ewing 99
12.9 Vincristine, Ifosfamide, Doxorubicin, Etoposide, 

Actinomycin D. If R1: potentially + Cyclophospha-
mide. If R2: potentially + Busulfan, Melphalan. If R3: 
potentially + Melphalan or Treosulfan/Melphalan or 
Busulphan/Melphalan

NA NA 18.4

IBFM15 F Neuroblastoma (St. 
IV) Studytherapy NB 
2004 (HR) + 2x N8

3.7 Cisplatin, Etoposide, Vindesin, Vincristine, Dacrab-
axine, Ifosfamide, Doxorubicin

Yes NA 5.2

IBFM16 F Neuroblastoma (St. 
III) NB2004

2.8 Cisplatin, Etoposide, Vindesin, Vincristine, Dacarba-
zine, Ifosfamide, Doxorubicin, 13-cis-retinoic acid. If 
MR: + Cyclophosphamide

No1 Yes1 4.4

IBFM21 M Paraganglioma GPOH 
MET 97

Vincristine, Ifosfamide, Doxorubicin, Carboplatin, 
Etoposide

No1 No 10.4

IBFM22 F Opticus glioma SI-
OP-LGG-2004 (NF1)

7.5 Vincristine, Carboplatin (if allergic Cisplatin and 
Cyclophosphamide)

No1 NA 8.2

IBFM25 M Nephroblastoma 
SIOP-2001

5.4 Actinomycin D, Vincristine. Potentially: + Doxorubi-
cin, Etoposide, Carboplatin, Cyclophosphamide, 

No1 NA 8.2

IBFM26 M Fanconi anemia | NA NA NA NA NA 14.8
IBFM27 M Hodgkin lymphoma| 

NA
5.3 NA NA NA 8.4

IBFM28 M Atypical rhabdoid 
tumor | NA

NA NA NA NA 2.5

IBFM29 F Idiopathic arthritis | 
Immunosuppressives

0.9 NA NA NA 4.3

IBFM31 M c-ALL | AIEOP BFM-
ALL 2009 HR

13.3 Vincristine, Daunorubicin, MTX, Aparaginase, 
Cyclophosphamide, ARA-C, 6-MP, Vindesine, Ifos-
famide, Etoposide, Doxorubicin, 6-TG. Potentially: + 
Fludarabine, Daunoxome

No No 16.4

IBFM32 M (Osteosarcoma &) 
Pre-B-ALL | AIEOP 
BFM-ALL 2009 HR

15.1 (Osteosarcoma treatment: NA). Vincristine, Dauno-
rubicin, MTX, Aparaginase, Cyclophosphamide, 
ARA-C, 6-MP, Vindesine, Ifosfamide, Etoposide, 
Doxorubicin, 6-TG. Potentially: + Fludarabin, 
Daunoxome

No No 15.6

IBFM33 M Intrathoracic Ewing 
sarcoma |Ewing 2008

13.5 Vincristine, Ifosfamide, Doxorubicin, Etoposide, 
Actinomycin D. If R1: potentially + Cyclophospha-
mide. If R2: potentially + Busulfan, Melphalan. If 
R3: + Cyclophosphamide, potentially + Treosulfan/
Melphalan 

No Yes 16.1

IBFM35 M Fanconi Anemia |NA NA NA Yes NA 17.3

Supplementary Table 1. Clinical patient and treatment information.
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Patient 
ID

F/M Primary cancer / treat-
ment protocol

Age 
Dx1 
(y)

Chemotherapy agents (from databases or extracted 
from protocol)

SCT RT Age 
t-MN 
(y)

IBFM36 F Pre-B-ALL |AIEOP 
BFM-ALL 2009

NA Vincristine, Daunorubicin, MTX, Asparaginase, 
Cyclophosphamide, ARA-C, 6-MP, Leukovorin, 
Doxorubicin, 6-TG If HR: + Vindesine, Ifosfamide, 
Etoposide, Doxorubicin, potentially + Fludarabine/
Daunoxome

No NA 2.4

IBFM37 F Neuroblastoma | NA 0.5 NA NA NA 3.2
IBFM38 M Nephrobastoma | 

SIOP-2001
0.7 Actinomycin D, Vincristine. Potentially: + Doxorubi-

cin, Etoposide, Carboplatin, Cyclophosphamide
No No 10.2

IBFM42 M Osteosarcoma | NA NA NA NA NA 15.6
IBFM43 M ALL | AIEOP BFM-

ALL 2009
4.2 Vincristine, Daunorubicin, MTX, Asparaginase, 

Cyclophosphamide, ARA-C, 6-MP, Leukovorin, 
Doxorubicin, 6-TG. If HR: + Vindesine, Ifosfamide, 
Etoposide, Doxorubicin, potentially.+ Fludarabine/
Daunoxome

No No 5.9

UPN001 F Burkitt |LMB 2001 11.5 Cyclophosphamide, ARA-C, MTX, Doxorubicin, 
Vincristine, Etoposide

No No 13.2

UPN002 F B-ALL 3.9 Vincristine, Daunorubicin, MTX, ARA-C, Aspara-
ginase

No No 5.0

UPN003 M ALL | ALL10, ALL-R3, 
ALL 11 HR + AD-
HOC

5.7 At time of FU: MTX, Vincristine, ARA-C, PEG-as-
paraginase, Daunorubicin, Cyclophosphamide, 6-MP, 
Doxorubicin, Mitoxantrone, 6-TG. After FU new: 
ATG, BuFluClo, Teniposide, allogenic MUD-SCT

Yes, 
2x

NA 15.7

UPN004 M B-ALL 15.5 Vincristine, Daunorubicin, MTX, ARA-C, Asparagi-
nase, Cyclophosphamide, 6-MP, Doxorubicin

No No 16.7

UPN005 M B-ALL 4.3 Vincristine, Daunorubicin, MTX, ARA-C, Asparagi-
nase, Cyclophosphamide, 6-MP, Doxorubicin

No No 5.1

UPN006 F B-ALL 3.4 Vincristine, Daunorubicin, MTX, ARA-C, Asparagi-
nase, Cyclophosphamide, 6-MP

No No 3.6

UPN007 F B-ALL 8.3 Vincristine, Daunorubicin, MTX, ARA-C, Asparagi-
nase, Cyclophosphamide, 6-MP, Doxorubicin

No No 9.4

UPN008 F Osteosarcoma | 
Euramos1

13.5 Doxorubicin, Cisplatin, MTX. If randomized/poor 
response: + Ifosfamide, Etoposide

NA NA 14.9

UPN009 M Non low-grade 
astriocytoma |SIOP 
LGG2004

14.1 None No Yes 15.4

UPN010 M Ewing | Ewing2008R3 3.9 Ifosfamide, Doxorubicin, Actinomycin D, Vincristine, 
Cyclophosphamide, Etoposide

No Yes 5.7

UPN011 F Neuro-ganglioblasto-
ma | NBL2009MRG

3.3 Cisplatin, Etoposide, Vindesine, Vincristine, 
Dacarbazine, Ifosfamide, Doxorubicin, low dose 
Cyclophosphamide, Retinoic acid

No Yes 5.9

UPN012 M Neuroblastoma 4.6 Cisplatin or carboplatin, etoposide, Vindesine, 
Dacarbazine, Doxorubicin, Ifosfamide, Vincristine, 
Busulfan, Melfalan.

No Yes 7.4

UPN013 M b-thalassemia | NA NA Treosulfan, Fludarabine, Thiotepa, ATG, Alemtu-
zumab

Yes, 
2x

NA 5.3

UPN014 M ALL | ALL11-MRG 6.0 Vincristine, Daunorubicin, Asparaginase, Cyclophos-
phamide, ARA-C, 6-MP, MTX, Doxorubicin

No No 7.1

UPN015 F Lymphoma | NA NA NA NA NA 15.6
UPN016 F NHL | ALL VII NA Daunorubicin, 6-TG, Vindesine, 6-MP, Asparagi-

nase, Cyclophosphamide, Vincristine, Doxorubicin, 
Teniposide, MTX, ARA-C, Ifosfamide

No No 11.2

UPN017 M AML | ANLL92 5.2 Doxorubicin, Cyclophosphamide, Idarubicin, 
ARA-C, Vincristine, Mitoxantrone, Etoposide, 6-TG

No No 15.1

UPN018 M pre-B ALL | ALL8-
MRG

4.6 Vincristine, Daunorubicin, Asparaginase, ARA-C, 
MTX, 6-MP, Doxorubicin, Cyclophosphamide, 6-TG

No No 7.8

Supplementary Table 1. continued
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Patient 
ID

F/M Primary cancer / treat-
ment protocol

Age 
Dx1 
(y)

Chemotherapy agents (from databases or extracted 
from protocol)

SCT RT Age 
t-MN 
(y)

UPN019 M AML | ANLL94 7.1 ARA-C, Idarubicin, Etoposide, Mitoxantrone, 6-TG, 
Vincristine, Doxorubicin, Cyclophosphamide. Condi-
tioning: + Busulfan

Yes TBI 10.9

UPN020 M ALL | NA 8.2 NA NA NA 14.0
UPN022 F Ewing sarcoma | NA NA NA NA NA 9.1
UPN023 F T-ALL | ALL10-MRG 9.6 Vincristine, Daunorubicin, Asparaginase, Cyclo-

phosphamide, 6-MP, ARA-C, Leukovorin, MTX, 
Doxorubicin

No No 12.2

UPN024 M T-LBL | Euro-LB02 
III/IV

8.4 Vincristine, Daunorubicin, MTX, Asparaginase, 
6-MP, ARA-C, Cyclophosphamide, Doxorubicin, 
6-TG

No No 10.0

UPN034 M Osteosarcoma | 
Euramos1

15.7 Doxorubicin, Cisplatin, MTX No No 15.9

All chemotherapy has been retrieved from clinical data or extracted to our best knowledge from stated protocols, this 
can vary per individual patient. 1According to treatment protocol. 6-MP = Mercaptopurine; 6-TG = thioguanine; 
ALL = acute lymphoblastic leukaemia; alloSCT = allogenic stem cell transplantation; AML = acute myeloid 
leukaemia; ARA-C = cytarabin; BuFluClo = Busulfan, Fludarabin, Clofarabin; Dx1 = first diagnosis; F = female; HR 
= high risk; M = male; MRG = medium risk group; MTX = methotrexate; MUD = matched-unrelated-donor; NA 
= not available; NF1 = neurofibromatosis type 1; NHL = non-Hodgkin lymphoma; RT = radiotherapy; SCT = stem 
cell transplantation; St = stage; TBI = total body irradiation; t-MN = therapy-related myeloid neoplasm; y = years.

Supplementary Table 1. continued
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patient 
ID small drivers fusions SBS indels DBS

SBSE

SBSA

H
SPC

SBSB

SBSD

SBSF

SBS31

SBS87

SBS1

SBSC

SBSG

SBS17a

SBS17b

SBS5

IBFM10 STIL | BRAF MLLT3-
KMT2A

1596 55 3 0 0 638 0 0 0 0 0 0 0 632 0 0 38

IBFM14 NRAS | DHX15 
ARID2  | PPM1D

2030 68 10 0 0 565 0 310 0 781 0 0 0 0 0 0 5

IBFM22 CIC 921 53 14 0 0 0 0 468 0 250 0 94 0 0 0 0 0

IBFM42 EED THAP12-
KMT2A

2636 173 46 0 0 0 0 0 0 1929 0 0 0 0 0 0 0

IBFM35 RUNX1 713 47 4 0 0 22 0 0 0 0 0 198 0 0 0 0 388

IBFM11 FGFR1 | ASXL1 
RUNX1

649 53 2 0 0 241 0 0 0 0 0 163 0 0 0 0 121

IBFM36 NRAS AFF1-
KMT2A

861 79 3 0 0 0 3 0 0 0 4 182 0 9 0 0 473

IBFM37 AFDN-
KMT2A

1376 38 29 0 0 0 0 0 0 1045 0 0 0 0 0 0 0

IBFM1 CSF3R | NDRG1 
PTPN11 | RUNX1

1109 46 3 0 0 171 0 0 0 0 454 259 0 9 0 0 28

IBFM2 RAD21
KRAS

ERBB4-
KMT2A

1078 32 1 0 0 0 0 0 0 0 823 157 0 0 0 0 3

IBFM3 MLLT10 MLLT3-
KMT2A

1018 59 9 1 0 8 0 0 0 650 0 27 0 36 0 0 0

IBFM7 CSF3R
COL3A1

MIR99
AHG-
RUNX1

1076 39 4 0 0 183 0 0 0 0 195 390 0 0 0 0 10

IBFM16 NRAS | POLQ 
PDGFRA

MLLT3-
KMT2A

3273 77 53 0 0 0 0 0 0 2335 0 0 0 0 0 0 0

IBFM26 RUNX1 | CBL 
STAG2 | PHF6

480 62 1 0 0 22 0 0 0 0 16 139 0 14 0 0 186

IBFM9 TP63
PTPN11

MLLT10-
PICALM

2219 48 5 0 0 0 0 0 0 0 645 0 0 0 59 536 819

IBFM15 EPHA3 DCP1A-
KMT2A

794 16 11 0 0 0 0 0 0 771 0 0 0 0 0 0 0

IBFM28 BRAF
KRAS

MLLT3-
KMT2A

1325 29 11 878 0 3 0 124 20 4 0 0 0 0 0 0 0

IBFM29 NBN KMT2A-
MLLT1

177 21 0 0 0 12 0 0 0 1 8 40 0 19 0 0 51

IBFM25 MLLT3-
KMT2A

396 30 1 0 0 57 0 0 0 0 2 114 1 6 0 0 139

IBFM27 CCND3
FLT3
CTCF

KMT2A-
ELL

612 31 3 40 0 61 0 2 6 0 0 117 0 7 0 0 301

IBFM31 INSRR
RUNX1
FLT3

1537 52 11 0 0 0 0 0 0 0 1534 0 0 0 0 0 0

IBFM33 RABEP1
PP1R15A 
MECOM

1248 45 2 0 0 4 9 0 31 14 0 20 17 785 0 0 67

IBFM21 SETD2 | SPI1
FLT3

MLLT3-
KMT2A

1308 72 16 0 0 25 0 0 350 674 0 0 0 0 0 0 6

IBFM32 TRPS1 | KRAS 
ZCCHC8
CDKN2A

AFF1-
KMT2A

1292 48 20 0 0 0 0 0 0 1174 0 0 0 0 0 0 0

IBFM38 KDR | MUC16 3356 111 49 0 0 0 0 1444 0 1214 0 0 0 0 0 0 0

KMT2A

UPN001 MLLT10 AFDN-
KMT2A

626 42 1 4 0 394 1 0 0 0 0 37 5 23 0 0 57

UPN003 TNFAIP3 MLLT3-
KMT2A

1399 48 5 6 329 229 0 0 0 0 328 62 0 7 0 0 286

UPN008 CHD2 MLLT3-
KMT2A

1084 37 19 0 0 0 0 0 0 992 0 0 0 0 0 0 0

Supplementary Table 2. Cancer drivers and mutational signature contributions per 
patient.
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patient 
ID small drivers fusions SBS indels DBS

SBSE

SBSA

H
SPC

SBSB

SBSD

SBSF

SBS31

SBS87

SBS1

SBSC

SBSG

SBS17a

SBS17b

SBS5

UPN009 KMT2A-
MLLT6

325 15 0 0 0 241 0 0 0 11 11 10 0 4 0 0 15

UPN010 KRAS | KRAS KMT2A-
MLLT1

946 41 4 1 0 299 0 0 5 7 0 31 0 361 0 0 75

UPN011 MLLT10-
DDX3X

570 54 7 4 0 117 0 0 0 61 4 0 2 83 0 0 134

UPN024 MLLT3-
KMT2A

690 28 1 1 0 450 0 0 0 0 162 4 0 8 0 0 0

UPN012 IKZF1 | TNC 
KRAS | RUNX1

1546 39 20 0 0 0 0 0 0 1199 0 0 0 0 0 0 0

UPN013 CBL | RUNX1 
RUNX1

KMT2A-
SEPTIN9

1049 68 1 0 0 14 85 0 0 3 0 97 673 0 0 0 60

UPN014 KRAS MLLT3-
KMT2A

456 22 1 0 0 70 0 0 0 0 177 73 0 0 0 0 118

UPN015 AFDN-
KMT2A

1925 130 4 0 0 5 1391 0 0 0 0 0 0 0 0 0 113

UPN016 SPI1 CBFA2T3-
RUNX1

601 28 1 0 0 64 0 0 0 0 219 58 0 40 0 0 137

UPN017 SATB1-
MECOM

488 25 0 0 0 133 0 0 0 0 38 105 0 7 0 0 177

UPN018 KMT2A
KMT2A

EPS15-
KMT2A

1498 172 6 0 0 0 0 0 0 0 1357 0 0 0 0 0 0

UPN019 GATA2 | IKZF1 
MECOM

636 79 1 0 0 10 0 0 0 0 4 165 0 0 0 0 331

UPN020 PCLO | CSMD3 RUNX1-
HSF2BP

1696 204 11 0 0 0 0 0 0 0 361 432 0 0 0 0 549

UPN022 MLLT3-
KMT2A

413 38 1 1 0 209 0 0 3 3 0 16 1 21 0 0 61

UPN023 TP53 419 44 2 0 0 4 0 0 0 0 278 4 0 1 0 0 5

Supplementary Table 2. continued
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Abstract 
Genetic instability is a major concern for the successful application of stem cells in 
regenerative medicine. However, the mutational consequences of the most applied 
stem cell therapy in humans, hematopoietic stem cell transplantation (HSCT), 
remain unknown. Here, we characterized the mutation burden of hematopoietic 
stem and progenitor cells (HSPCs) of human HSCT recipients and their donors 
using whole genome sequencing. We demonstrate that the majority of transplanted 
HSPCs did not display altered mutation accumulation. However, in some HSCT 
recipients, we identified multiple HSPCs with an increased mutation burden after 
transplantation. This increase could be attributed to a unique mutational signature 
caused by the antiviral drug ganciclovir. Using a machine-learning approach, we 
detected this signature in cancer genomes of patients who received HSCT or a 
solid organ transplantation earlier in life. Antiviral treatment with nucleoside 
analogues can cause enhanced mutagenicity in transplant recipients, which may 
ultimately contribute to therapy-related carcinogenesis. 

Introduction
The life-long production of all mature blood cells is orchestrated by self-renewing, 
multipotent hematopoietic stem cells (HSCs). Aside from their critical role in 
homeostatic hematopoiesis, HSCs are the only stem cells that are routinely used 
for therapeutic purposes. HSC transplantation (HSCT) is performed in >40,000 
patients worldwide annually, as a curative treatment for bone marrow failure, severe 
immune deficiency, hemoglobinopathy, inborn errors of metabolism and leukemia1,2. 
Furthermore, genetically modified HSCs are used increasingly in patients undergoing 
gene therapy for monogenic diseases, such as severe combined immunodeficiency, 
β-thalassemia and sickle cell anemia, as well as for cancer and HIV/AIDS3–7. Due to 
increased use of HSCT as a treatment strategy, as well as improved transplantation 
protocols, the number of HSCT survivors and their life-expectancy continue to 
increase8. Currently, it is estimated that there are >500,000 HSCT survivors across 
the globe, and this number is expected to increase 5-fold by 20308–10. Accordingly, 
the long-term safety of HSCT, and of stem cell therapy in general, are becoming 
increasingly important.

A major concern for any clinical therapy using live cells, is the presence and acquisition 
of DNA mutations11–13. Unwanted mutations may negatively influence the longevity 
of the administered cell product, alter essential cell functions, or even predispose to 
malignant transformation. This concern has been particularly related to therapies 
in which genetically engineered cells or human pluripotent stem cells (hPSCs) are 
used12–16. For instance, in a clinical trial using autologous induced hPSC-derived 
retinal cells to treat patients with macular degeneration, administration of the cell 
product was abandoned because the cells carried a novel mutation of unknown 
significance17. Furthermore, the occurrence of vector-mediated mutagenesis of 
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gene therapy-corrected stem cells has led to international guidelines to maintain 
the biosafety of this type of therapy and to monitor its recipients18–20. However, the 
genomic safety and mutational consequences of the oldest and most frequently 
applied stem cell therapy, HSCT, remain unknown.

Here, we aimed to systematically assess the mutational consequences of HSCT in 
human recipients, using whole genome sequencing of individual HSPCs before 
and after transplantation. For this, we compared the mutation burden in these 
cells to HSPCs obtained from healthy donors with ages ranging across the entire 
human lifespan. We demonstrate that the majority of HSCT recipients do not 
display enhanced mutagenesis. However, multiple HSPCs isolated from two HSCT 
recipients after transplantation showed an increased mutation burden, which could be 
attributed to one specific mutational signature. This unique signature is characterized 
by C>A transversions at CpA dinucleotides with a strong replication strand bias. 
The same mutational signature was present in six hematologic malignancies, which 
occurred after HSCT, and in two solid tumors of patients who underwent renal 
transplantation earlier in life. These patients had been treated for viral reactivations 
after transplantation. By in vitro exposure of human umbilical cord blood HSPCs, we 
prove that this signature is caused by the antiviral nucleoside analogue ganciclovir, 
which is administered to immune deficient patients as a first-line treatment of 
viral reactivation. Our study demonstrates that antiviral treatment with nucleoside 
analogues post-transplantation can be associated with increased mutagenicity, which 
may ultimately drive the development of therapy-related malignancies.  

Results
Cataloguing somatic mutations in individual HSPCs of human transplantation 
recipients
We performed whole genome sequencing (WGS) of clonal HSPC cultures of human 
HSCT recipients and their donors, to catalogue all the mutations that were present 
in the parental HSPCs (Fig. 1A)21,22. We included nine pediatric HSCT recipients, 
who were transplanted with either bone marrow cells of an HLA-identical sibling 
donor (n=3, SIB1-3), a haploidentical parent donor (n=2, HAP1-2), or with an 
anonymous umbilical cord blood (UCB) donor (n=4, CB1-4). All recipients had been 
transplanted for hematologic malignancies, after chemotherapy-based myeloablative 
conditioning. Clinical details are provided in Table S1. We analyzed HSPC clones 
from residual donor graft cells collected at the time of HSCT and from peripheral 
blood of the recipient, which was collected 1-295 months after transplantation. At 
each time point, we analyzed per patient 2-14 HSPC clones by WGS, at a depth of 
15-30x base coverage. To filter out germline variants, we performed WGS on DNA 
isolated from donor bone marrow mesenchymal stromal cells (MSCs), bulk T-cells or 
bulk granulocytes. If a control was unavailable, we used the various clones of the same 
individual for filtering (see Methods and Table S2). The variant allele frequencies 
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(VAF) of the somatic mutations in all HSPC cultures clustered around 0.5, confirming 
their clonal origin (Fig. S1A). Mutations that accumulated after the first cell division 
upon plating the single HSPCs will not be shared by all cells in the resulting clonal 
cultures and were filtered based on their lower VAF21–23. In total, we identified 15691 
clonal single base substitutions (SBS) and 927 indels in 51 assessed HSPCs (Table 
S2-3). We reconstructed phylogenetic trees for all patients and validated that most 
mutations in the assessed HSPC clones were acquired independently (Fig. S3A). 
Furthermore, to exclude the possibility that these mutations had been caused by 
artefacts during library preparation or sequencing, we generated new libraries and 
re-sequenced the genomes of five clones of two patients. In total, we could validate 
1049 out of 1070 assessed mutations (overall confirmation rate 98.0%; range 96.5-
99.3% per clone; n = 5, Fig. S3B). We detected 365 mutations (2.2% of total) in 
coding regions of the genome. None of these were nonsynonymous or truncating 
mutations in genes that are recurrently mutated in hematological neoplasms. To 
determine the extent of positive or negative selection that had acted on these clones, 
we calculated the ratio of non-synonymous to synonymous mutations (dN/dS). The 
maximum-likelihood estimates of this ratio always included 1, indicating that the 
HSPCs had undergone neutral selection, not only during the in vitro culture period, 
but also during life (Fig. S1B). We did not observe any acquired structural variations 
in pre- and post-HSCT clones.

Sample Primary 
diagnosis

Trans-
planta-
tion

(second) 
cancer

Viral 
reacti-
vations

Antiviral 
therapy

(Second) 
cancer 
driver 
mutations  
C>ApA

Ref.

11396 – Dx2 AML ALL HSCT AML CMV GCV, FC N/A
633734 – relapse AML HSCT AML-re-

lapse
CMV GCV NRAS 

p.Q61K
53

103342 – relapse AML HSCT AML-re-
lapse

CMV GCV, val-
GCV

53

814916 – relapse AML HSCT AML-re-
lapse

CMV GCV 53

AML_015 AML HSCT AML-re-
lapse

Un-
known

Unknown 52

Gondek1 – DCL AML HSCT Donor cell 
leukemia

Un-
known

Unknown SETBP1  
p.T873K

44

CPCT02090030T Renal in-
sufficiency

Kidney 
Tx

Vulvar 
carcinoma 
metastasis

Un-
known

Unknown HRAS, 
p.Q61K

50

CPCT02110076T Renal in-
sufficiency

Kidney 
Tx

Breast 
carcinoma 
metastasis

CMV Val-GCV 50

CPCT02340067T Melanoma None Melano-
ma-relapse 
metastasis

None None 50

Table 1. Clinical information of SBSA-positive cancers.
Abbreviations: ALL: acute lymphoblastic leukemia; AML: Acute myeloid leukemia; HSCT: 
Hematopoietic stem cell transplantation; Tx: transplantation; CMV: cytomegalovirus
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Figure 1. Mutation accumulation associated with HSCT in humans
A) Schematic representation of the experimental setup to determine somatic mutations in blood pro-
genitor cells of hematopoietic stem cell transplantation (HSCT) donors and recipients. B) Correlation 
between the age and the number of base substitutions per genome in 32 single HSPC clones of 3 HSCT 
donors and 6 HSCT recipients. Each dot represents a single HSPC clone. A linear mixed effects model of 
34 bone marrow clones from 11 healthy individuals (including the HSCT donors) was used to construct 
the baseline. The 95% confidence interval of the baseline is depicted in gray. HSCT clones are colored 
similar to C, non-HSCT clones of the baseline are black. C) The number of base substitutions in donor 
and recipient HSPC clones shown in B, normalized to the baseline (expected number of mutations at 
that age). Each dot is a single HSPC clone. In light gray, the range of the normalized number of base 
substitutions of donor HSPC clones is depicted. Abbreviations; CB: Cord blood; SIB: Sibling. D: HSCT 
donor; R: HSCT recipient. See also Figure S1 and Table S1, S2 and S3.

Transplantation-associated mutation accumulation in human HSPCs
We previously established a baseline for mutation accumulation in normal HSPCs 
across the human lifespan and determined that human HSPCs accumulate about 
15 mutations per life year22. To assess the mutational impact of transplantation, 
we compared the somatic mutation load in HSPCs collected from human HSCT 
recipients after transplantation to that of their donor’s pre-HSCT clones and to this 
healthy baseline (Fig. 1B-C, S1C). As expected, all pre-HSCT clones fell on the 
healthy baseline. To compare the post-HSCT clones, we defined the age of these cells 
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as the age of the donor + the interval after HSCT. In the majority of these post-
HSCT clones, the number of base substitutions was within the predicted range of 
normal hematologic aging (ratio observed/expected 0.6-1.3, Fig. 1C). This finding 
was unexpected, as these donor HSPCs have regenerated an entire new blood system 
in the recipient, which likely requires enhanced proliferation. Nevertheless, these 
cells did not accumulate additional mutations, apart from those expected to occur 
because of normal aging. In contrast, in two recipients, we identified ten independent 
post-HSCT clones with up to twelve-fold more mutations than predicted based on 
their age (mean observed/expected 5.15, range 1.33-12.5, 95% CI 2.8-7.5; Fig. 1B-C), 
which was higher than in any of the pre-HSCT clones. Both HSCT recipients were 
transplanted with a graft obtained from an UCB donor (Table 1). Consistent with the 
pediatric age of the subjects in our study, the number of indels was limited and more 
variable (Fig. S1D-F). However, the number of indels in single HSPCs was generally 
within the expected range and did not differ consistently between HSCT donors and 
their recipients, including the post-HSCT clones with a significantly higher base 
substitution load (Fig. S1D-F). Collectively, these data show that, while HSCT is 
not associated with enhanced mutagenesis in most subjects, there are several HSCT 
recipients in whom (a subset of ) the donor HSPCs accumulate substantial amounts 
of additional DNA mutations. 

Transplantation-associated mutation accumulation can be attributed to a 
unique mutational signature
Next, we aimed to identify the processes underlying HSCT-associated mutagenesis 
by deciphering mutational signatures from the somatic mutation catalogues of the 
post-HSCT clones (Fig. 2). Such signatures reflect specific mutational processes 
that have been active during the life of the assessed HSPCs24–26. In the HSPC clones 
with a normal mutation burden, the spectrum was dominated by C>T transitions, 
which could be attributed to a previously defined HSPC signature (Fig. 2A-C)22,27,28. 
This signature reflects clock-like activity of the predominant mutational process in 
postnatal HSPCs during healthy life29, of which the underlying mechanism is still 
unknown. In contrast, in the HSPC clones with an increased number of mutations 
as compared to the normal baseline, C>A transversions were the most abundant 
mutation type, accounting for 40-87% of the total number of base substitutions (Fig. 
2A-D). The number of C>A transversions in these cells was significantly increased 
as compared to the HSPCs with a normal mutation burden (Wilcoxon test, p<10-e5, 
Fig. 2E). In fact, the higher the increase in mutation load in these post-HSCT clones, 
the more their spectra deviate from the mutation spectrum normally observed in 
healthy HSPCs (Fig. 2B), indicative of an underlying mutational process that is not 
normally active. When considering their trinucleotide context, we noted that the C>A 
transversions occurred preferentially at CpA dinucleotides (Fig. 2D, S2), suggesting 
a single causative process. Indeed, mutational signature analysis revealed that the 
increase in mutation load in these recipient HSPCs could be exclusively attributed 
to a previously unidentified single base substitution (SBS) signature, which we called 
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Figure 2: Transplantation-associated mutagenesis can be attributed to a unique 
mutational signature SBSA
A) Single base substitution (SBS) mutational spectra from HSCT donor and recipient HSPCs. “ǂ” 
symbols indicate the recipient HSPCs with an increased mutational burden. For the 96-trinucleotide 
mutational profiles of the individual cells, see Figure S2. B) Age-adjusted number of mutations in each 
single HSPC clone (dot/triangle), compared to its similarity to the healthy baseline. Similarity was 
calculated as the cosine similarity of the 96-trinucleotide profiles. The colors of the symbols indicate 
the contribution of SBSA to the mutational profile of the HSPCs in the refitting analysis depicted in 
C. C) The contribution of the five signatures found by NMF to the mutational profile of each HSPC. 
D) SBS 96-trinucleotide mutational signature of SBSA, as inferred by NMF of the HSCT donor and 
recipient HSPCs. See also Table S4. E) The ratio of observed versus expected mutations of HSCT HSPC 
clones with SBSA mutations that have an increased mutation load and of HSCT HSPC clones that 
lie on the ageline (above, Wicoxon test). The percentage of mutations that are C>A transversion of 
the same groups of clones (below, Wilcoxon). F) The cosine similarity between the SBSA signature 
and SBS mutational signatures from the Cosmic v3.0 database and in vitro established signatures of 
environmental agents30.

“SBSA” (Fig. 2C-D, Table S4). SBSA is characterized by C>A transversions in an 
NpC>ApA trinucleotide context (86% of all mutations in SBSA), of which >90% 
are CpC>ApA changes (Fig. 2D). SBSA mutations occurred in two out of the nine 
(22%) assessed patients in this study (CB2, CB3). Of these, 6 out of 6 CB2 clones 
(100%) and 6 out of 14 CB3 clones (43%) harbored SBSA mutations. To establish 
if the SBSA mutations in these clones were also propagated to mature blood cell 
progeny, we sequenced the genomes of bulk-sorted B cells and monocytes of patient 
CB3. Subsequently, we assessed for each mutation present in the CB3 HSPCs the 
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Figure 3. Detection of HSPC mutations in bulk mature populations.
A) The phylogenetic tree of the HSPCs of patient CB3 is shown. At each branch, a bar graph is plotted. 
The number above each bar graph indicates the total number of mutations in that branch. Each bar 
represents the VAF of a mutation in that branch of the tree in WGS data of the bulk sorted B cells 
or monocytes of CB3. Each bar represents a single mutation that is found in that mature population. 
Mutations that are not found in the mature populations are not shown. B) The 96 trinucleotide profile 
of all HSPC mutations that are found in each of the mature populations. For the phylogenetic trees of 
all the patients, see Figure S3. 
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VAF in these mature populations. We could detect early mutations (i.e., mutations 
shared between multiple HSPCs indicative of an ancestral progenitor) with relatively 
high VAFs in these bulk populations (Fig. 3A). Notably, some of the mutations that 
were unique to the individual clones could also be detected albeit at lower VAFs. 
Interestingly, many of these unique mutations were C>ApA mutations, indicating 
that SBSA mutations occurred later during life and are propagated to mature progeny 
(Fig. 3B). To confirm that SBSA is distinct from previously defined mutational 
signatures, we calculated its similarity to the signatures from the COSMIC database 
(v3.0) as well as to in vitro established signatures of environmental agents30,31. A cosine 
similarity of ≥0.95 was used to indicate that two patterns are similar32. We found 
that SBSA did not match any of the previously defined mutation signatures (Fig. 
2F). SBSA showed highest cosine similarity with, but was still distinct from, SBS38, 
SBS18 and a potassium bromate (KBrO3)-induced signature (cosine similarity of 
0.83, 0.57 and 0.81, respectively; Fig. 2F, 4A and S4C).

Molecular characterization of SBSA
SBS38, SBS18 and the KBrO3 signature have been attributed to oxidative stress-
induced mutagenesis, which is thought to be driven by 8-oxo-guanine lesions in 
the DNA and subsequent mispairing of this damaged base with adenine during 
replication24,30,33. To determine whether SBSA also reflects oxidative stress-induced 
mutagenesis, we compared several genomic characteristics of these mutational 
signatures. First, as some known mutational processes preferentially target a DNA 
context broader than 3 bases34, we assessed the 10 bases up- and downstream of the 
C>ApA mutations of SBSA. We compared this context to oxidative stress-induced 
C>A transversions caused by KBrO330 and a knockout of OGG1 (OGG1KO), 
which has a central role in 8-oxo-guanine base excision repair35 (Fig. 4A, S4). C>ApA 
mutations in the HSPCs with SBSA were consistently associated with an increased 
incidence of cytosines at position -1, and -6, of guanines at position -2 and of thymines 
at position -3 (Fig. 4B, S4A). In contrast, this context did not occur in the KBrO3 and 
OGG1KO C>ApA mutations, suggesting a different mutagenic cause of SBSA. 
In the post-HSCT clones with high mutation load and contribution of SBSA, the C>A 
transversions demonstrated a highly significant Watson-versus-Crick-strand lesion 
segregation (fdr < 10e-12), which was absent in cells treated with KBrO3, deficient 
for OGG1, and in HSPCs with a normal baseline mutation load (fdr=0.17, 0.29, 0.48 
respectively, Fig. 4C-D, S4E). It was previously shown that such lesion segregation 
reflects accumulation of mutagenic DNA lesions within a single cell cycle, which 
causes strand-specific segregation of these lesions into daughter cells36. As a result, 
one daughter cell and its progeny only carry mutations on either the Watson or the 
Crick strand, while the other daughter cell and its progeny carry mutations in the 
other strand. These data suggest that the causative process of SBSA operates during a 
short period of time, possibly even a single cell division. 
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Figure 4. SBSA is characterized by lesion segregation and a strong replication direction 
bias.
A) SBS 96-trinucleotide mutational profiles of SBSA and oxidative stress-associated signatures of 
exposure to KBrO3 or knock-out of OGG1. B) The -10:+10 nucleotide context of C>ApA mutations of 
five SBSA positive HSPC clones, knock-out of OGG1 and two KBrO3-treated clones. Each line represents 
the mutation context in a single clone. C) The chromosomal strand and position of the cytosine of C>A 
mutations of two clones positive for SBSA. D) FDR-corrected p-values of Wald-Wolfowitz runs tests 
on summed numbers of mutations and runs in each group. E) Enrichment/depletion of SBSA positive 
HSPC clones, knock-out of OGG1 and exposure to KBrO3 in early, intermediate and late replicating 
regions. * = FDR < 0.05. F) Replication strand bias of the same data as depicted in E. ** = FDR < 10-7.
See also Figure S4.
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Next, we assessed whether SBSA mutations are associated with DNA transcription 
or replication. SBSA mutations showed a small bias towards the transcribed strand 
(fdr=0.016), but they did not show enrichment in exons or gene bodies (fdr=0.11), 
suggesting that transcription-coupled repair can resolve the DNA lesions causing 
SBSA but is likely not the main repair mechanism (Fig. S4B,F)37,38. SBSA mutations 
were slightly depleted in late replicating regions of the DNA (fdr < 10e-4, Fig. 4E), 
suggesting that the mutagenic cause or involved repair process is not strongly linked 
to replication timing. We noted that SBSA C>A transversions showed a significant 
replication strand bias towards the leading strand (fdr < 10e-23, Fig. 4F, S4D), which 
indicates that the mutagenic process underlying SBSA is directly coupled to DNA 
replication37,38. Altogether, these data suggest that, unlike oxidative-stress induced 
mutations, SBSA mutations in post-HSCT clones are caused by erroneous DNA 
replication upon a short-term exposure of a mutagenic source.

SBSA is caused by the antiviral nucleoside analogue ganciclovir
To identify the mutagenic source of SBSA, we analyzed the clinical data of our 
transplant recipients (Table S1). Both HSCT-recipients that harbored SBSA-positive 
HSPCs (CB2 and CB3) had developed early viral reactivations after transplantation, 
which required treatment with the antiviral drugs foscarnet (FC) and (val)ganciclovir 
(GCV) (Table S1). Interestingly, GCV is a synthetic analog of 2’-deoxy-guanine and 
a competitive inhibitor of dGTP incorporation into DNA39. FC is a pyrophosphate 
analogue, which is thought to directly inhibit viral polymerase activity40. As these 
compounds affect DNA replication, they are likely candidates for causing SBSA 
mutations. To test this, we exposed human CD34+ umbilical cord blood HSPCs to 
GCV and/or FC in vitro (Fig. 5A). While GCV caused dose-dependent cell death at 
micromolar concentrations, which are also observed in human plasma (IC50 4,64 
µM)41, FC did not induce cell death at any of the tested concentrations (Fig. 5B). 
We then treated these cells for 24 hours with 5µM GCV and/or, similar to previous 
publications, a 40 times higher concentration of FC (200µM)42. Both GCV and the 
combination treatment caused substantial DNA damage, visualized by γ-H2AX 
staining, while FC exposure alone did not cause considerable cell death (Fig. 5C,D, 
S5C). To assess the mutational consequences caused by these antiviral drugs, we 
subsequently performed a clonal expansion step and performed WGS on 2-3 clones 
for each condition. HSPCs exposed to GCV or to the combination therapy showed 
increased numbers of single base substitutions as compared to HSPCs exposed to 
FC alone or untreated clones, with a bias towards C>A transversions (Fig. 5E). The 
number of indels was similar between GCV, FC and control-treated organoids, no 
copy number variations or structural rearrangements were found (Fig. S5A,B). 
Importantly, the 96-trinucleotide profile induced by in vitro exposure to GCV was 
essentially identical to SBSA found in human patients (cosine similarity 0.999, Fig. 
5F). Similar to SBSA, the C>A mutations induced by in vitro GCV exposure (and 
by GCV+FC) were strongly biased towards the leading replication strand as well 
as the transcribed strand, were depleted in late-replicating regions, showed strong 
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lesion strand segregation, and had a similar extended base context as SBSA (Fig. 
S5D-H). Altogether, these data clearly demonstrate that GCV is the cause of the 
SBSA mutations. 

SBSA mutations in cancer 
Accumulation of somatic mutations is a key mechanism promoting carcinogenesis. 
To assess whether SBSA mutations can contribute to cancer development, we 
determined its presence in the genomes of allogeneic and autologous HSCT donors 
and recipients43–48 (Fig. 6). To enable detection of SBSA in these datasets, we 
developed a random forest (RF) classifier. This machine learning technique employs 
the previously defined features of SBSA to predict whether a single base substitution 
originates from SBSA, or not (Fig. S6A, B, G). We trained the RF on the pre- and post-
HSCT HSPCs and on the healthy baseline HSPCs depicted in Fig. 1. Importantly, the 
RF classifier assigned the highest importance to the nucleotides which were present 
on the +1, -1, and -2 positions surrounding the C>A mutated cytosine, underlining 
the importance of the broader sequence context of SBSA mutations. To prevent 
false-positive calls, we applied the RF to 1000 sets of randomly generated base 
substitutions. The highest percentage of SBSA-positive mutations in these random 
datasets was used to select the cutoff for “true” SBSA positivity, which was 2.3% (Fig. 
S6G). To validate the resulting RF and the applied cutoff, we tested its performance 
on a control WGS dataset of HSPCs of a 60-year old healthy individual27 and on a 
dataset of clonal hematopoiesis of indeterminate potential (CHIP) mutations in bulk 
WGS of 97,691 healthy individuals (Fig. 6C)49. As expected, the RF identified <1% 
SBSA-positive mutations in both datasets, confirming the specificity of this classifier.

Next, we applied this RF classifier to sequencing datasets of human metastatic 
cancers (n=3668)50 and of hematologic disorders after allogeneic and autologous 
HSCT, such as clonal hematopoiesis (n=290)43,45,47,48,therapy-related neoplasms 
(n=9)44,51, and relapsed acute myeloid leukemia (AML) after allogeneic HSCT or 
chemotherapy(n=44)52,53. In total, the RF classified nine cancers of nine individual 
patients as SBSA-positive (Fig. 6, Table 1). The first was a therapy-related AML (tAML, 
PMC11396), in which SBSA had an estimated contribution of 28% (Fig. 6A-B). This 
patient had received an allogeneic HSCT for relapsed acute lymphoblastic leukemia 
(ALL) with successful engraftment yet developed a tAML of patient-origin three 
years later (Table 1). Using the RF classifier on WGS data of this patient’s tAML, the 
primary ALL, as well as three normal HSPCs collected three months prior to HSCT, 
we found that only the tAML was classified as SBSA positive (Fig. 6A). This finding 
was confirmed using mutational signature analysis (Fig. 6B), the +/-10 nucleotide 
context (Fig. S6C) and replication strand bias (Fig. S6H). The C>A mutations did, 
however, not display a Watson-versus-Crick bias (Fig. S6K). Notably, although five 
mutations were shared between the tAML and one of the healthy HSPCs collected 
prior to transplantation (Fig. S6F), none of these were C>ApA mutations. In line 
with our in vitro findings, the patient was treated with FC and GCV for a CMV 
reactivation after HSCT.
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Figure 5. Ganciclovir induces SBSA mutations in vitro
A) Experimental setup of in vitro treatment of CD34+ human umbilical cord blood cells with antiviral 
agents Foscarnet, Ganciclovir and a combination of both. After 24 hours of treatment, single clones are 
sorted into 96 well plates, expanded and whole genome sequenced. B) Survival curve and ganciclovir 
treatment. For foscarnet, no curve could be fitted due to the low percentage of cell death. 200uM 
foscarnet is not shown and caused 86% survival. C) Representative histogram of γ-H2AX intensity of 
isotype, untreated and ganciclovir treated cord blood cells. D) The γ-H2AX mean fluorescence intensity 
(MFI) of three cord blood samples, each treated with each condition twice (Wicoxon test). See Figure 
S6C for values per sample, and a positive radiation control. E) The number of single base substitutions 
of each of the treatment conditions (5µM ganciclovir and/or 200µM foscarnet). F) 96 tri-nucleotide 
profiles of each treatment condition. The mutations of the untreated condition are subtracted from each 
profile to normalize for in vitro acquired mutations. See also Figure S5.

The second SBSA-positive tumor was a donor-cell leukemia (DCL), reported in 
a study by Gondek et al. on clonal hematopoiesis after HSCT and its progression 
towards malignancy44(Fig. 6C-D). This patient (called from hereon Gondek1) was 
transplanted for AML and developed a DCL 3.5 years post-HSCT. The mutation 
profile of this DCL scored high in the RF (Fig. 6C) and had a clear SBSA signature 
(Fig. 6D), while the graft material of this patient, collected before HSCT, did not 
have these mutations.
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Moreover, 4 out of 44 assessed AML relapses were SBSA positive, and all patients had 
been transplanted (Fig. 5C,D)53. Again, we confirmed this with mutational signature 
analysis, replication direction bias and the extended context (Fig. S6E,J). Also, in 
this case, the C>A mutations did not have a Watson-versus-Crick asymmetry (Fig. 
S6K). From 3 out of 4 patients, the medical history could be obtained (Table 1). All 
three patients developed an early CMV reactivation post-SCT and received GCV 
as antiviral treatment, consistent with an approximate prevalence of SBSA in 14% 
(4 out of 29 relapses after HSCT, 95% CI 4-29%) of AML relapses after allogeneic 
HSCT.
Finally, the RF classified three tumors from a Dutch collection of 3,668 solid cancer 
metastases as SBSA positive(Fig. 6E)50. All three were liver metastases of solid tumors 
(melanoma, breast carcinoma and vulva carcinoma). Intriguingly, although none of 
these patients had received an HSCT, two out of three patients had received a kidney 
transplantation earlier in life. For one of these patients, we could retrieve treatment 
history, which revealed that the patient received GCV to treat a viral reactivation after 
the transplantation. Further analyses confirmed the SBSA +/-10 nucleotide context 
and replication strand bias in the metastases of these two transplanted patients, but 
showed no Watson-versus-Crick asymmetry (Fig. 6F, S6D,I,K,L). In contrast, the 
tumor of the non-transplanted melanoma patient did not show this context nor bias 
(Fig. S6D,I) and is therefore considered a false-positive result of the RF.

Three of the driver mutations in the SBSA-positive tumors (SETBP1 T873K in 
Gondek1, HRAS Q61K in CPCT02090030T and NRAS Q61K in 633734) were C>ApA 
transversions, suggesting a direct contribution of SBSA to cancer development in 
these patients. We estimated the probability of SBSA having caused these mutations 
using a previously published method54. The three mutations had a probability of 
84% (SETBP1), 90% (HRAS) and 97% (NRAS) to be caused by SBSA. To test the 
overall damaging potential of SBSA, we calculated the enrichment of stop-gain, 
missense and synonymous mutations that SBSA can potentially cause in 38 blood 
cancer driver genes in the human genome to a background of random mutations, 
and compared this with SBS18, KBrO3 and clock-like mutational signatures (Fig. 
6G). These calculations showed an increased potential of SBSA to cause stop-gain 
mutations (ratio of 1.6 for stop-gain compared to background) (Fig. 6G). However, 
this analysis does not take into account DNA accessibility, DNA folding and other 
extrinsic factors. To address this issue, we calculated what percentage of hematologic 
cancer driver mutations in the COSMIC dataset could arise due to SBSA55. Of these 
hematologic cancer-drivers, 7.8% of stop-gain mutations were caused by C>ApA 
mutations, while only 2.8% of non-synonymous mutations occurred in the SBS-
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Figure 6. SBSA is present in transplant-related cancers and can cause cancer driver 
mutations.
The percentage of random forest-predicted SBSA mutations compared to the total number of mutations 
in samples of (A) patient PMC11396, (C) targeted and WGS mutation datasets of autologous and 
allogeneic SCT grafts and recipients, normal aging, age-associated CHIP, post-HSCT AML relapses and 
post-HSCT tMN cases, (E) a Dutch WGS cohort of 3668 solid tumor metastases50. In C, only samples 
with more than 1 positive mutation are labeled. B) The SBS 96-trinucleotide mutational profiles of 
the primary ALL, pre-SCT HSPC clones (pulled) and therapy-related AML of patient PMC11396. D) 
Similar to B, but of the SBSA positive samples from Cl44. DCL = donor cell leukemia. F) Similar to 
B, but of metastases that are SBSA positive predicted by the random forest in a Dutch cohort of 3668 
solid tumor metastases50. G) Probability estimation of each signature in a tumor causing C>ApA driver 
mutations. H) The potential mutational impact of six SBS mutational signatures, including SBSA, in 
blood cancer driver genes, normalized to a “flat” background signatures with equal contribution of all 
SBS 96-trinucleotide mutation types. I) The percentage of COSMIC cancer driver SBS mutations in 
blood cancer driver genes that are C>A mutations or C>ApA mutations. See also Figure S6.



110

Chapter 4

context, confirming our previous results (Fig. 6H). Taken together, these results 
identify the presence of the GCV-induced mutational signature in several types of 
cancer of human transplantation recipients, and demonstrate its potential to cause 
cancer driver mutations, in particular stop-gain mutations.

In summary, in this study we provide insight into the impact of HSCT on the 
acquisition and causative processes of somatic mutations in the transplanted stem 
cells, and into their impact on malignant transformation. During normal human 
ageing, HSCs are estimated to acquire 14-15 SNVs per year27,29. As HSCs divide 
approximately every 40 weeks56, this would mean that if all mutations occur due to 
stochastic replication errors, each HSC acquires 11 mutations per division. If 1000-
5000 transplanted HSCs would repopulate the new blood system and regenerate 
the estimated average pool of 200.000 HSCs, this would mean they each need to 
divide 5-8 times27. This would result in ~60-80 more mutations per cell. However, 
the majority of transplanted HSPCs in our study did not display an enhanced 
mutation burden. There may be several reasons for this finding. Post-transplantation 
hematopoietic reconstitution is likely mediated by distinct HSPC subsets, perhaps 
reducing the proliferative demand on the most primitive HSPCs57,58. Furthermore, 
current estimates on the human HSPC pool are based on steady-state hematopoiesis, 
whereas the number of HSPCs that contribute to blood formation (and the number 
of cell divisions needed to regenerate the system) may differ between homeostatic 
hematopoiesis and hematopoietic regeneration59–61. Finally, as suggested in recent 
studies, the number of mutations that accumulate in HSPCs as a result from errors 
during cell division may be quite low and time is likely to be the most important 
determinant of mutation load22,27,62.

Importantly, although we did not observe a general mutational increase in all 
HSCT recipients, we do show that treatment of post-transplant viral reactivations 
with GCV causes a substantial increase in the mutational burden and a unique SBS 
signature in the transplanted HSPCs. We also identified SBSA in six hematologic 
malignancies that developed after HSCT, as well as in two solid tumor metastases 
of patients who had received a kidney transplant previously, supporting the 
concept that GCV-associated mutagenesis may contribute to the development of 
malignancies after transplantation (hematological or solid). Indeed, we identified 
3 driver mutations in these malignancies, which could be attributed to SBSA with 
a high likelihood. In general, mutations attributed to SBSA have a similar chance 
of being missense mutations as compared to age-related signatures (i.e., SBS1, 
SBS5 and the HSPC signature), but a 1.6 times higher chance of being a nonsense 
mutation. In contrast, we observed neutral drift for nonsense mutations in SBSA-
positive HSPCs. Therefore, the enhanced rate of nonsense mutations by ganciclovir-
induced mutagenesis was at a rate below our detection limit and did not lead to strong 
positive selection.  GCV is a 2’-deoxy-guanine analog that competes with dGTP for 
DNA incorporation, after which it is thought to inhibit DNA replication63. However, 
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antiviral nucleoside analogues have also been reported to mediate their effect by 
inducing lethal mutagenesis of the viral genome64. Importantly, our data show that 
GCV is also highly mutagenic to the human host DNA and provide insight into how 
GCV induces mutations in human cells. GCV predominantly causes C>A changes 
at CpA dinucleotides. The transcriptional strand bias of GCV-induced mutations 
would be in line with a guanine adduct blocking transcription. As GCV is a guanine 
analogue, one of the potential explanations would be that SBSA mutations are caused 
by incorporation of the antiviral compound into the DNA during replication. This 
would pose a possible explanation as to why only part of the HSPCs of CB3 harbor 
SBSA mutations. Following this hypothesis, if some HSPCs were cycling during 
GCV exposure, and others were not, only the former would accumulate more 
SBSA mutations. As the SBSA mutations in the transplanted HSPCs displayed a 
Watson-versus-Crick bias, the underlying lesions are not always resolved within one 
replication cycle in line with the idea that GCV is incorporated in the DNA. We did 
not observe the Watson-versus-Crick strand asymmetry in the SBSA-positive tumor 
samples, which generally had a higher number of mutations attributed to other 
signatures than SBSA. This highlights the usefulness of studying pediatric patients, 
in whom the number of background mutations is low and any SBS signature thus 
more pronounced. Finally, the replication strand asymmetry indicates that if GCV 
would be incorporated, this would occur more efficiently during lagging DNA strand 
synthesis38. However, our data is not definitive proof for this mechanism underlying 
GCV-induced mutagenesis and the repair of GCV-induced lesions. 

GCV is used for the prevention and first-line treatment of CMV disease in 
transplantation recipients, as well as in patients with congenital CMV infection 
and CMV reactivation in patients with severe immune deficiency or with HIV/
AIDS65. Therefore, its mutational consequences are likely to have a more widespread 
healthcare impact than only in transplantation recipients. The mutagenic effect of 
GCV and its long-term clinical consequences should be assessed in large patient 
cohorts. Furthermore, we demonstrate that GCV -induced mutations are not only 
observed in human HSPCs and leukemia, but also in solid tumors of different 
tissue origins, indicating that GCV can be mutagenic for multiple cell types in the 
human body. Consequently, GCV-induced mutagenesis in other tissues needs to 
be investigated to fully characterize the contribution of this antiviral nucleoside 
analogue to carcinogenesis.

In conclusion, our study demonstrates that treatment of human transplantation 
recipients with the antiviral compound GCV can lead to increased mutation 
accumulation, which may ultimately contribute to carcinogenesis. In contrast, FC 
that is often used interchangeably with GCV, is not mutagenic, potentially providing 
a safer alternative. Our study emphasizes the clinical relevance of stem-cell therapy 
associated mutagenesis in humans, and urges for careful surveillance of HSCT 
recipients to detect and prevent long-term morbidity. 
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Limitations of the study
First, although the use of in vitro clonal expansion allows to catalogue genome-wide 
mutations in single HSPCs, it may preferentially select for HSPCs with enhanced 
proliferative capacity. We show that the assessed clones had undergone neutral 
selection for missense and nonsense mutations. In addition, we show that HSPCs 
with GCV-induced DNA damage still grow out in vitro, allowing their detection in 
our assay.  However, we cannot exclude the possibility that other kinds of damage 
might alter clonal outgrowth efficiency and therefore influence which clones are 
sequenced. 
Second, given a healthy individual has about 200.000 HSPCs27, the number of HSPCs 
sequenced for each subject is limited. Although the vast majority of HSPCs in non-
GCV-treated HSCT recipients had a normal mutation load, it cannot be excluded 
that 1 or a few non-assessed HSPCs did acquire additional HSCT-related mutations.
Finally, we show that GCV, a drug that is frequently administered after HSCT, can 
be mutagenic. Additional research is required to pinpoint the precise mechanism 
underlying GCV mutagenesis and the repair of GCV-induced lesions. Also, the 
mutagenic effect of GCV and its long-term clinical consequences should be assessed 
in large patient cohorts. Similarly, induced mutagenesis in other tissues needs to 
be investigated to fully characterize the contribution of this antiviral nucleoside 
analogue to carcinogenesis. As HSCT is a heterogeneous procedure with many 
genotoxic exposures, we cannot exclude the possibility that other transplantation-
related events that are not covered in our patient cohort may induce mutations in a 
subgroup of HSCT recipients. 
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RESOURCE AVAILABILITY
Lead contact
Further information and requests for resources and reagents should be directed 
to and will be fulfilled by the Lead Contact, Ruben van Boxtel (r.van.boxtel@
prinsesmaximacentrum.nl).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The datasets generated during this study are available at EGA, accession number 
EGAS00001004926. Most of the scripts used during this study are available at https://
github.com/ToolsVanBox/ and in the MutationalPatterns R package (see above). 
Other scripts are available upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS
HSCT donor/recipient bone marrow and blood
Bone marrow cells of the HSCT donor were collected through the HSCT Biobank 
of the University Medical Center Utrecht. Peripheral blood and bone marrow of the 
HSCT recipients was obtained from the HSCT Biobank of the UMC Utrecht (SIB1 
and SIB3), the Biobank of the Princess Máxima Center (CB1, CB2), or collected 
fresh by venipuncture into vacutainer tubes containing sodium heparin (SIB2, CB3, 
CB4, HAP1 donor and recipient, HAP2 donor and recipient). Details on samples 
and participants are depicted in Table S1 and S2. Informed consent was obtained 
from all participants and their caregivers. This study was approved by the Biobank 
Committee of the University Medical Center Utrecht (protocol number 18-231) and 
by the Medical Ethical Committee Utrecht (protocol number 19-243). 
 
METHOD DETAILS
Cell isolation and flow cytometry
Mononuclear cells were isolated from whole blood and bone marrow using 
Lymphoprep density gradient separation (StemCell Technologies, Catalog# 07851). 
Single hematopoietic progenitor cells were sorted on a SH800S cell sorter (Sony), 
according to previously published methods21. The following combinations of cell 
surface markers were used to define cell populations47: HSC: Lineage-CD34+CD38-

CD45RA-CD90+CD11c-CD16- or Lineage-CD34+CD38-CD45RA-CD49f+CD11c-

CD16-; MPP: Lineage-CD34+CD38-CD45RA-CD90-CD49f-CD11c-CD16-. Flow 
cytometry data were analyzed using the Sony SH800S Software (Sony). Polyclonal 
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mesenchymal stromal cells (MSCs) were isolated from donor bone marrow samples 
by plating 0.5-1x106 donor cells in tissue-culture treated dishes in DMEM-F12 
medium (Gibco), supplemented with 10% fetal calf serum (FCS) and 1x Glutamax 
(Gibco). Medium was replaced every 2-3 days to remove non-adherent cells. After 
4-6 weeks, the adherent MSC fraction was isolated and used as a germline control. 

FACS antibodies
The following antibodies were obtained from Biolegend and were used for HSPC 
isolation: CD34-BV421 (clone 561, 1:20; RRID AB_2561358 ); CD38-PE (clone 
HIT2, 1:50; RRID AB_314357), CD90-APC (clone 5E10, 1:200; RRID AB_893440), 
CD45RA-PerCP/Cy5.5 (clone HI100, 1:20; RRID AB_893358); CD49f-PE/Cy7 
(clone GoH3, 1:100; RRID AB_2561705); CD16-FITC (clone 3G8, 1:100; RRID 
AB_314205); CD11c-FITC (clone 3.9, 1:20; RRID AB_314173), Lineage (CD3/
CD14/CD19/CD20/CD56)-FITC (clones UCHT1, HCD14, HIB19, HCD56, 1:20; 
RRID AB_10644012). The following antibodies were obtained from Merk and were 
used for γ-H2AX expression staining: anti-phospho-histone H2A.X (Ser139) FITC 
conjugate (clone JBW301, 1:200; RRID AB_568825), mouse IgG FITC isotype 
control (1:200; RRID AB_436046). 

Establishment of clonal HSPC cultures
HSPCs were index-sorted as single cells into round-bottom 384-well plates. Cells 
were cultured in StemSpan SFEM medium supplemented with SCF (100 ng/mL); 
FLT3-L (100 ng/mL); TPO (50 ng/mL); IL-6 (20 ng/mL) and IL-3 (10 ng/mL); 
UM729 (500 nM) and StemRegenin-1 (750 nM). After 3-6 weeks of culture at 37˚°C 
and 5% CO2, confluent colonies were collected for DNA isolation and sequencing. 

Antiviral treatment of primary CD34+ cells in vitro
CD34+ cells were isolated from human umbilical cord blood by lymphoprep 
gradient separation and subsequent positive selection using the CD34+- UltraPure 
kit (Miltenyi Biotec) according to manufacturer’s instructions. After an overnight 
incubation at 37°C, 5% O2 and 5% CO2, cells were treated with increasing 
concentrations of the following antiviral compounds: ganciclovir (Sigma Aldrich), 
foscarnet sodium (Sigma Aldrich), a combination of the two compounds or DMSO 
as vehicle control. Cells were incubated for 24 hours, after which DNA damage as 
assessed by γ-H2AX-staining and by WGS of clonally expanded cells. 
For γ-H2AX-staining, 100,000-200,000 CD34+ cells were resuspended in 
permeabilization buffer containing 0.5% saponin, 0.5% BSA, 10mM HEPES, 
140mM NaCl, 2.5mM CaCl2 in water, pH 7.4, sterile filtered. Anti-yH2A.X (Ser139) 
FITC (Merk) or Mouse IgG isotype antibody were added to samples and cells were 
incubated for 20 min on ice. After staining, cells were washed with 0.1% saponin in 
PBS and resuspended in FACS buffer (1x PBS, 2-5% FBS, 2mM EDTA, 2mM NaN3) 
prior to flow cytometric analysis. For analysis of single-cell mutagenesis caused by 
antiviral treatment, CD34+ cells were sorted as single cells into flat-bottom 384-
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well plates (Greiner), using the same antibody mix and sorting strategy as for bone 
marrow and peripheral blood HSPCs. Cells were clonally expanded for 4-6 weeks, 
after which DNA was isolated (QIAamp DNA micro kit, Qiagen) and sent for whole 
genome sequencing. 

Analysis of γ-H2AX expression by flow cytometry. 
After drugs incubation, cells were harvested and washed with PBS. 100.000-200.000 
CD34+ cells were resuspended in ice-cold fixative solution (2.5% formaldehyde and 
0.93% methanol in sterile filtered PBS), incubated for 20 min at 4°C and transferred 
to a 96 well plate. Fixed samples were washed twice with PBS. Next, cells were 
resuspended in permeabilization buffer containing 0.5% saponin, 0.5% BSA, 10mM 
HEPES, 140mM NaCl, 2.5mM CaCl2 in water, pH 7.4, sterile filtered. Anti-yH2A.X 
(Ser139) FITC (Merk) or Mouse IgG isotype antibody were added to samples and 
cells were incubated for 20 min on ice. After staining, cells were washed with 0.1% 
saponin in PBS and resuspended in FACS buffer (1x PBS, 2-5% FBS, 2mM EDTA, 
2mM NaN3) prior to flow cytometric analysis on a Beckman Coulter CytoFLEX S. 

Whole genome sequencing
DNA was isolated from the clonally expanded HSPCs using the DNeasy DNA Micro 
Kit (Qiagen), according to the manufacturer’s instructions. Libraries for Illumina 
sequencing were generated from 20-50 ng of genomic DNA using standard protocols 
(Illumina). Samples were sequenced to 15-30x base coverage (2 x 150 bp) on an 
Illumina NovaSeq 6000 system. Sequence reads were mapped against the human 
reference genome (GRCh38) using the Burrows-Wheeler Aligner v0.7.5a mapping 
tool with settings ‘bwa mem –c 100 –M’ 66. Sequence reads were marked for duplicates 
using Sambamba v0.6.8. Realignment was performed using the Genome Analysis 
Toolkit (GATK) version 3.8-1-0 67. A description of the complete data analysis 
pipeline is available at: https://gihub.com/UMCUGenetics/IAP.

Structural variants
Structural variant calling was done with the GRIDSS-purple-linx pipeline of the 
Hartwig Medical Foundation68. All resulting structural variants were checked by hand 
in the IGV69 and false positive results were excluded. SVs could only be inspected of 
patients for which an MSC normal control was available.

Mutation calling and filtering
Raw variants were multisample-called by using the GATK HaplotypeCaller 
and GATK-Queue with default settings and additional option ‘EMIT_ALL_
CONFIDENT_SITES’. The quality of variant and reference positions was 
evaluated by using GATK VariantFiltration with options -snpFilterName 
SNP_LowQualityDepth -snpFilterExpression “QD < 2.0” -snpFilterName SNP_
MappingQuality -snpFilterExpression “MQ < 40.0” -snpFilterName SNP_StrandBias 
-snpFilterExpression “FS > 60.0” -snpFilterName SNP_HaplotypeScoreHigh 
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-snpFilterExpression “HaplotypeScore > 13.0” -snpFilterName SNP_
MQRankSumLow -snpFilterExpression “MQRankSum < -12.5” -snpFilterName 
SNP_ReadPosRankSumLow -snpFilterExpression “ReadPosRankSum < -8.0” 
-snpFilterName SNP_HardToValidate -snpFilterExpression “MQ0 >= 4 && ((MQ0 
/ (1.0 * DP)) > 0.1)” -snpFilterName SNP_LowCoverage -snpFilterExpression 
“DP < 5” -snpFilterName SNP_VeryLowQual -snpFilterExpression “QUAL < 
30” -snpFilterName SNP_LowQual -snpFilterExpression “QUAL >= 30.0 && 
QUAL < 50.0 “ -snpFilterName SNP_SOR -snpFilterExpression “SOR > 4.0” 
-cluster 3 -window 10 -indelType INDEL -indelType MIXED -indelFilterName 
INDEL_LowQualityDepth -indelFilterExpression “QD < 2.0” -indelFilterName 
INDEL_StrandBias -indelFilterExpression “FS > 200.0” -indelFilterName 
INDEL_ReadPosRankSumLow -indelFilterExpression “ReadPosRankSum < 
-20.0” -indelFilterName INDEL_HardToValidate -indelFilterExpression “MQ0 
>= 4 && ((MQ0 / (1.0 * DP)) > 0.1)” -indelFilterName INDEL_LowCoverage 
-indelFilterExpression “DP < 5” -indelFilterName INDEL_VeryLowQual 
-indelFilterExpression “QUAL < 30.0” -indelFilterName INDEL_LowQual 
-indelFilterExpression “QUAL >= 30.0 && QUAL < 50.0” -indelFilterName 
INDEL_SOR -indelFilterExpression “SOR > 10.0”. To obtain high-quality somatic 
mutation catalogs, we applied post-processing filters as described (scripts available 
at: https://github.com/ToolsVanBox/SMuRF)20. Briefly, we considered variants at 
autosomal or X chromosomes without any evidence from a paired control sample if 
available (MSCs isolated from the same bone marrow); passed by VariantFiltration 
with a GATK phred-scaled quality score ≥ 100; a base coverage of at least 10X (30X 
samples) or 7X (15X samples) in the clonal and paired control sample; a mapping 
quality (MQ) score of 60; no overlap with single nucleotide polymorphisms (SNPs) 
in the Single Nucleotide Polymorphism Database v146; and absence of the variant 
in a panel of unmatched normal human genomes (BED-file available upon request). 
We additionally filtered base substitutions with a GATK genotype score (GQ) lower 
than 99 or 10 in clonal or paired control sample, respectively. For indels, we filtered 
variants with a GQ score lower than 99 in both clonal and paired control sample. 
In addition, for both SNVs and INDELs, we only considered variants with a variant 
allele frequency of 0.3 or higher for 30x coverage, and 0.15 or higher for 15x coverage 
in the clones to exclude in vitro accumulated mutations21,70. For patients for which no 
matched MSC, T cell or granulocyte control was available and clones were sequenced 
to 30x, we excluded mutations that were clonally present in all clones of the patient, 
or that were subclonally present in any clone of the patient. For patient CB3 no 
MSC control was available, and all clones were sequenced to 15x. For patient CB2 
no control was available and three out of six cells were sequenced to 30x. For this 
sample, we applied the same filtering and in addition, we also filtered mutations that 
were not confidently absent in at least one sample. Lastly, we filtered out mutations 
that were clonal and/or failed QC in all, or all but one HSPC clones in that patient, 
as this suggests germline mutations that are missed in one or multiple cells due to 
low quality mapping or low coverage. Cells of these patients were re-sequenced to 
validate this approach.
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Validation by re-sequencing
From leftover DNA of five HSPC clones included in this study, DNA libraries were 
constructed, sequenced to 15x and, processed as described above. 2 samples of 
patient CB2 that were previously sequenced to 30x and 3 samples of CB2 that were 
previously sequenced to 15x were included. Four out of these 5 harbored a high 
number of SBSA mutations. Mutations were deemed validated if the same mutations 
was found at a VAF of 0.15 or higher in the re-sequenced 15X sample.

HSPC mutation detection in bulk mature populations
For patient CB3, bulk B cells and bulk monocytes were sequenced to 30x and 
processed as described above, and the VAF of all mutations present in one or multiple 
HSPCs in this sample were assessed in these samples. All variants found in at least 
one reference allele were included in the analysis of Fig. S4.

Baseline
For the baseline of age-related mutation accumulation in normal HSPCs, only 
autosomal chromosomes were considered. HSCT donor cells were used as part of 
the baseline. The number of SNVs or INDELs reported are normalized for the length 
of CALLABLE loci reported by GATK CallableLoci. For the slope estimation, the 
linear mixed-effects model was used to take donor dependency into account and the 
p values are indicated in the figures using lme4 package in R71. The 0.95 confidence 
interval was calculated using the ggeffects package in R 72. For comparison with the 
base line, we defined age of recipient HSPCs as the interval since birth, i.e. age of the 
donor added to the interval after HSCT.

Assessment of C>A mutations in HSPC clones with increased mutation load
To statistically investigate the ratio of observed and expected mutations and the 
percentage of C>A mutations in the HSPC clones with an increased mutation load, 
a t-test was applied from both data types to the HSCT donor and recipient clones 
that had an expected mutation load and the clones with an increased mutation load.

Mutational profile and signature analysis
We used an in-house developed R package (MutationalPatterns)32 to analyze 
mutational patterns. First, we extracted the 96-mutation profiles per sample. Then, we 
performed de novo mutational signature extraction on our data from HSCT donors 
and recipients, combined with healthy adult and pediatric tissue22,32. The five extracted 
mutational patterns were compared to the COSMIC v3 signatures31 together with our 
previously identified HSPC signature22 and based on their cosine similarities (> 0.9), 
three signatures were substituted by SBS signature 1, 5 and ‘HSPC’, resulting in SBS1, 
SBS5, HSPC, SBS18-like and SBSA. These signatures were subsequently refitted to 
the HSCT data, resulting in absolute contribution values. SBSA was compared to 
existing signatures (COSMIC v331 and signatures from Kucab et al30) using cosine 
similarity of the 96-mutation profiles. 
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A modified version of the “calculate_lesion_segregation” function of 
MutationalPatterns was used to perform the Wald–Wolfowitz runs test for lesion 
segregation analysis, as described by Aitken et al36, where the number of mutations 
and number of runs was pulled over samples in a group, before running the test. 
The baseline samples of individuals 40 years or older were used to ensure a sufficient 
number of mutations per sample. P-values were corrected for multiple testing using 
Benjamini & Hochberg (FDR) correction73.

Broader context of C>ApA mutations
To assess the broader context of C>ApA mutations of the SBSA signature, all C>ApA 
mutations were extracted from HSCT HSPCs with more than 70% contribution of 
SBSA and for the 875 and 260 μm potassium bromate signatures from Kucab et al30. 
Next, for each sample the bases 10bp upstream (position -10) to 10 bp downstream 
(+10) of the mutated C (position 0) of these C>ApA mutations were extracted from 
the reference genome, and for each position the relative frequency of each of the 4 
bases was calculated. The river plots were subsequently created for position -4 untill 
+4 by the R riverplot package v0.674.

Strand, genomic enrichment and replication bias analysis
We used the ““mut_matrix_stranded” (with option “mode= ‘replication’ for 
replication direction), “strand_occurrences” and “strand_bias_test” functions of 
the in-house developed R package (MutationalPatterns) to determine transcription 
and replication strand bias45. We used the “genomic_distribution” and “enrichment_
depletion_test” functions from the same package to analyze enrichment in genomic 
regions and early, mid and late replication regions. Gencode v33 was used to 
determine genomic regions75. Protein coding genes with the “appris_principal” tag 
were selected and the 100 bp around the 5’ end of genes was used as the transcription 
start site (TSS).

Processing of in vitro treated human umbilical cord blood cells
From cord blood sample CB22 (frozen), 1 ganciclovir treated clone, three foscarnet 
treated clonesand three clones with both treated with both foscarnet and ganciclovir 
were sequenced. From cord blood sample CB25 (fresh) three untreated clones and 
three ganciclovir treated clones were sequenced. Library preparation, sequencing 
to 15X and data processing was performed as described above. In addition, only 
mutations observed in individual clones of a sample were considered to filter out in 
vitro acquired mutations.

Potential impact of mutational signatures
Calculating the probability of a mutation being caused by the signatures that 
contributed to that sample was done similar to Morganella et al, 2016 Nat Commun. 
In short, the contributions of each signature to the sample were multiplied by the 
chance of each signature to induce a mutation of the mutation type and trinucleotide 
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context of the driver mutation. These values were summed. The fraction that each 
signature contributed to the summed value was multiplied by 100 to get a probability 
in percentages.
The potential impact analysis from the new version of the MutationalPatterns 
package was used. In short, all the potential mutations in the coding sequence of 38 
blood cancer driver genes were determined for each of the 96 mutation types. For 
each gene, the transcript with the longest combined coding sequence was used. For 
each mutation type the number of synonymous, missense and stop-gain mutations 
were then counted. A weighted sum over the 96 mutation types was then performed 
to determine the number of synonymous, missense and stop-gain mutations per 
signature, using the signature contributions as weights.

Random Forest
The “randomForest” function (option na.action=na.roughfix) of the randomForest 
R package v4.6-14 76 was used to train the random forest. The input data for each 
single base substitution was as follows. (1) the -10:+10 nucleotide context, each 
position as a separate factor. (2) The distance to the nearest TSS and gene body 
(see above) and simple repeat calculated by “bedtools closest -d”77. (3) The average 
Repliseq score from B lymphocytes obtained from ENCODE calculated by “bedtools 
intersect -wa -loj” (Wavelet-smoothed Signal bigWig , samples: Gm06990, Gm12801, 
Gm12812, Gm12813, Gm12878)78. (4) The transcriptional strand bias calculated by 
comparing the DNA strand of the overlapping gene (“bedtools intersect -wa -loj”) 
with the strand of the mutated pyrimidine. (5) Gene expression of the overlapping 
gene (“bedtools intersect -wa -loj”). RNA-seq expression levels obtained from HSCs 
of the Blueprint DCC Portal (TPM value of “Transcription quantification (Genes)” 
files, samples: C002UUB1, C07002T1, C12001RP1)79. (6) Reference and alternative 
allele. Results of bedtools intersect/closest was merged using “bedtools merge”. 
Mutations prediction was done by the “predict” function of the randomForest 
package. Mutation coordinates of reference genome hg38 were transferred to hg19 
using UCSC’s liftOver80.

Mutation datasets
The data of a knock-out of OGG1 in the human neuroblastoma cell line CHP134 was 
courteously provided by Jan Molenaar (van den Boogaard et al., under submission). 
Access to the WGS data of the 3668 Dutch metastases cohort from the Hartwig 
Medical Foundation can be requested at https://www.hartwigmedicalfoundation.
nl/en/applying-for-data/. The CHIP and SCT databases were extracted from the 
supplemental information of the publications listed in Table 1 of Burns & Kapur81. 
The normal aging dataset used as control for the RF was extracted from the 
supplementary table of Lee-Six et al.27. The AML relapse data were obtained from 
Christopher et al.53 and Stratmann et al.52. Data on the post-HSCT neoplasms were 
obtained from Berger et al.51 and Gondek et al44. The authors of Stratmann et al. 
provided us with all (unverified) genomic calls of the AML-relapses in their dataset 
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that arose after HSCT. Upon suggestion of the authors, these were tested for COSMIC 
sequencing artefacts signatures. Each sample for which these artefacts contributed 
more than 20% were excluded from further analyses. Mutations were transferred to 
hg19 using UCSC’s liftOver80. The aging CHIP dataset was obtained from Bick et al49. 

Construction of the phylogenetic lineage tree
To reconstruct the hematopoietic lineage tree of patient PMC11396 and HSCT 
recipients (Figure S4H), we compared the somatic base substitutions between whole-
genome sequenced HSPC clones, and PMC11396’s primary ALL and tAML, using 
previously published data analysis pipelines21. To obtain base substitutions filtering 
was slightly altered compared to all other analyses to include mutations that were 
acquired during early embryonic development. When a control sample was available 
we included mutations with sub-clonal (VAF < 0.3) evidence in the paired control 
sample that were either clonally present or completely absent in all the clones. To still 
filter out germline mutations, only mutations that were confidently absent in at least 
one sample of a patient were included, only mutations for which all samples passed 
QC were considered, and mutations that were clonally present in all samples or 
subclonal in any samples were removed. All shared base substitutions were manually 
inspected. To summarize shared base substitutions, we created a binary mutation 
table. To construct the lineage trees, lineage distances were calculated using binary 
method, clones were hierarchically clustered using average method and plotted using 
the ggplot2 package in R82. 

QUANTIFICATION AND STATISTICAL ANALYSIS
Sample and mutation numbers are indicated in the figures. For estimation of the 
slope of age-related mutagenesis in normal HSPCs, a linear mixed-effects model 
was used, taking donor dependency into account. To assess statistical significance 
of lesion segregation the Wald- Wolfowitz runs test was performed. The statistical 
significance of transcription and replication strand bias was assessed by the Exact 
Poisson test (stats::poisson.test, R) and the statistical significance of genomic 
enrichment and depletion in regions of different replication timing was done by 
binomial testing (MutationalPatterns::binomial_test, R). The increase in percentage 
of C>A mutations in cells with an increased mutation burden was assessed with the 
Wilcoxon test. A Wilcoxon test was also used to compare γ-H2AX levels in in vitro 
treated cord blood cells. P values were Benjamini & Hochberg (FDR) corrected for 
multiple testing (R stats::p.adjust, option ‘method = “fdr”’).

ADDITIONAL RESOURCES
This study is registered in the Dutch Trial Register under study no. NL7585 (www.
trialregister.nl). 
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Figure S1. The number of indels in HSCT donor and recipient HSPCs is variable but not 
consistently altered after transplantation, related to Figure 1. For the legend, see page 130.
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Figure S2. Verification of WGS results by phylogenetic analyses and re-sequencing, 
related to Figure 2. For the legend, see page 130.
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Figure S3. HSCT recipient clones with increased mutational burden have higher 
contribution of NpC>ApA mutations, related to Figure 3.
(A) SBS 96-trinucleotide profiles of HSPC clones, summed per patient and donor and recipient origin. 
(B) SBS 96-trinucleotide profiles of all 51 individual HSCT HSPC clones in this study. Names of clones 
with increased mutation burden are indicated by a “*”.
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Figure S4. SBSA has a distinct nucleotide context and other characteristics that are 
distinct from previously reported signatures, related to Figure 4. For the legend, see page 
130.
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Figure S5. Mutations induced in vitro by ganciclovir have similar molec-
ular characteristics as SBSA, related to Figure 5. For the legend, see page 130. 
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Figure S6. A random forest-based approach identifies tumors with contribution of SBSA 
to their mutational profile, related to Figure 6. For the legend, see page 131.
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Figure S1. The number of indels in HSCT donor and recipient HSPCs is variable but 
not consistently altered after transplantation, related to Figure 1.
(A) A representative VAF plot of a HSPC clone. Above, a histogram of the variant allele frequency 
(VAF). Below, the probability distribution of these VAFs is shown, with the peaks of the subclonal 
(0.07) and clonal mutations (0.44) highlighted. (B) dn/ds analysis of nonsynonymous (either missense 
or nonsense) versus synonymous mutations. “mle” is the maximum likelihood estimate of the ratio 
between the nonsynonymous and synonymous mutations. (C) Similar to Figure 1B, but zoomed into 
the HSPC clones of pediatric donors and recipients. The corresponding P value of the linear mixed-
effects model of the baseline is depicted above the baseline. (D) Similar to Figure 1B, but the number of 
indels are shown instead of the number of base substitutions for all samples and the baseline. (E) The 
number of indels per clone normalized to the indel baseline, similar to Figure 1C. (F) Indel context 
profiles from the baseline and the HSCT clones.

Figure S2. Verification of WGS results by phylogenetic analyses and re-sequencing, 
related to Figure 2.
(A) Phylogenetic analysis of the clones per patient. The trees indicate which mutations are shared 
between clones, and which mutations are only present in individual mutations. Most mutations are 
acquired in single clones. (B) Re-sequencing of DNA of five HSPC clones from two patients, CB2 (n=2) 
and CB3 (n=3). Above each bar, the number of mutations identified in the original sequencing of the 
clone and the number of these mutations that are found at a VAF of 0.15 or higher in the re-sequenced 
sample are shown.

Figure S4. SBSA has a distinct nucleotide context and other characteristics that are 
distinct from previously reported signatures, related to Figure 4. 
(A) Riverplots indicating the order of the -4:+4 nucleotide context of C>ApA mutations of SBSA positive 
HSPCs, a knock-out of OGG1 and exposure to potassium bromate (KBrO3). The mutated C is present 
on position 0. SBSA C>A mutations have increased G-2 preceding G-1 (*1), C-2 following C-3 (*2) and 
decreased A-3 preceding C-2 (*3). (B) The 96-trinucleotide context separated by the transcribed and 
untranscribed strand op protein-coding genes. Samples are the same as those depicted in A. (C) The 
96-trinucleotide context of COSMIC and environmental agent mutational signatures with the highest 
correlation to SBSA as shown in Figure 2E. (D) The 96-trinucleotide context separated by the leading 
and lagging strand of replication for the same samples as those depicted in A. (E) The chromosomal 
strand of C>A mutations of HSCT recipient HSPC clones with increased mutational burden not shown 
in Figure 3C, and of two baseline HSPC clones. (F) The distribution of C>A mutations over functional 
genomic regions of HSCT recipient clones with increased mutation burden, a knock-out of OGG1 and 
KBrO3 treated cells.

Figure S5. Mutations induced in vitro by ganciclovir have similar molecular 
characteristics as SBSA, related to Figure 5.
Molecular characterization of in vitro treatment of umbilical human cord blood cells with 5 µM 
Ganciclovir, 200µM Foscarnet, or a combination of both. * = FDR <0.05, ** = FDR < 10-7. (A) The 
indel context profiles of the clones of each treatment condition. (B) The number of indels per treatment 
condition. Each dot represents a single clone. (C) The mean fluorescence intensity, similar to figure 
4C, but grouped per cord blood sample, and including CB29, for which radiation treatment was 
available, but not the combined treatment of foscarnet and ganciclovir. (D) The -10:+10 nucleotide 
context of ganciclovir and a combination of ganciclovir and foscarnet. (E) Enrichment/depletion of 
the clones from each treatment condition divided in early, intermediate and late replicating regions. 
Data from clones of one condition were pulled. (F) Replication strand bias and transcription strand 
bias of the same data as depicted in E. (G) FDR-corrected p-values of Wald-Wolfowitz runs test on 
summed numbers of mutations and runs in each treatment condition. (H) The chromosomal strand 
and position of the cytosine of C>A mutations for all clones of all treatment conditions. Abbreviations: 
FC = foscarnet, GCV = ganciclovir, UNT = untreated, RAD = radiation.
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Figure S6. A random forest-based approach identifies tumors with contribution of SBSA 
to their mutational profile, related to Figure 6. 
(A) The importance given by the random forest to the mutation characteristics sorted from low to high. 
For each mutation the +10:-10 nucleotide context was used, the Repliseq score, distance to the closest 
TSS, gene body, and simple repeat, reference (REF) and alternative (ALT) allele and transcriptional 
strand bias (TSB2). (B) Similar to A, but only the importance of the nucleotide context is shown, sorted 
by position. (C) The -10:+10 nucleotide context of the C>ApA mutations of the primary (DX1) ALL, 
pre-HSCT HSPC clones (pulled) and therapy-related (DX2) AML of patient PMC11396. (D) Similar 
to C, but for the three samples classified SBSA positive by the random forest of the Dutch solid tumor 
metastases dataset. (E) Similar to C, but for AML015-R3, an AML relapse after allogeneic-HSCT, and 
the merged data of four SBSA+ classified WES samples. (F) The developmental lineage tree of the 
samples of patient PMC11396, based on shared mutations. The nucleotide context of mutations shared 
between the secondary (DX2) AML and HSPC3 is shown. (G) The number of SBS and percentage of 
random forest SBSA-positively classified SBS of 1000 sets of randomly sampled mutations. The highest 
percentage (2.3%) was used as a cut-off for expected false-positive rates for input samples. (H), (I), (J) 
The replication strand bias of the samples in C,D and E respectively. * = FDR <0.05, ** = FDR < 10-7. 
(K) FDR-corrected p-values for Wald-Wolfowitz runs test for the same samples as C, D and E, similar 
to Figure 3D. (L) The chromosomal strand of the cytosines of C>A mutations for CPCT02090030T.
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Abstract
Nucleoside analogs (NAs) are widely used in the treatment of cancer, fungal 
infections, and viral infections. NAs can not only be incorporated in the DNA of 
infected cells, but also in the DNA of uninfected cells, although at a lower rate. 
However, the exact mutational consequences of NA exposure in uninfected cells 
remain unclear. Recently, we showed that the antiviral NA ganciclovir induces 
a high number of mutations in healthy hematopoietic stem and progenitor cells 
(HSPCs). To test if this mutagenesis is characteristic for all NAs, we systematically 
assessed the mutations induced by fourteen antiviral NAs using whole genome 
sequencing of in vitro exposed human HSPCs. The majority of NAs did not 
induce mutations. However, treatment with five clinically approved antiviral 
NAs resulted in significantly more base substitutions compared to untreated 
conditions. The NA structures and mutational profiles suggested that most NAs 
are incorporated into the genome, but that some NAs are mutagenic without 
being incorporated into the DNA. Finally, molnupiravir-induced mutations that 
we identified were markedly different from those found in SARS-CoV-2 genomes, 
indicating differences in genomic incorporation and repair in human and viral 
cells. Studying NA mutagenicity is therefore important to assess their clinical 
safety and for understanding the replication and DNA damage repair machinery.

Introduction
The importance of vaccinations in preventing symptomatic viral infections has been 
underlined by the recent SARS-CoV-2 pandemic. However, other treatments are 
needed for infections in immunocompromised individuals, for viruses without an 
available vaccine, and for infections in unvaccinated patients1–3. Nucleoside analogs 
(NAs) are a category of drugs that are effective in the treatment of among others 
HIV4, herpes5,6, and corona viruses7–9. They are also used to treat fungal infections 
and cancer10,11. NAs are created by synthetically modifying a naturally occurring 
nucleoside or nucleotide (i.e., a phosphorylated nucleoside). The nucleobase, the 
sugar moiety, and the glycosidic bond between them all have been altered to create 
NAs12. Antiviral NAs operate via three main pathways. First, they can act as chain 
terminators, making DNA/RNA chain elongation impossible upon incorporation13. 
Second, they can directly inhibit the polymerase functioning without genomic 
incorporation, for example by preventing replication initiation14. Third, NAs 
can render viruses nonfunctional by being incorporated in the viral genome and 
subsequently inducing a high number of mutations, a phenomenon called lethal 
mutagenesis15.

Presumably, NAs that cause a high number of mutations can only be safely used if they 
are specific for virally infected cells. Nucleosides and NAs can only be incorporated 
into DNA/RNA in their triphosphate form. Some NAs are specifically mutagenic in 
infected cells, as the first phosphorylation step is much more efficiency performed 
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by viral kinases compared to human kinases16,17. Other NAs are not selectively 
phosphorylated but are more efficiently incorporated by viral polymerases than 
human polymerases18. Still, most NAs are phosphorylated in uninfected human cells 
and incorporated into the genome, just at a much lower rate than in virally infected 
cells16,17. Therefore, it is important to assess the consequences of NA treatment in 
uninfected cells to ensure clinical safety.

Current pre-clinical safety testing is done by among others bacterial reverse mutation 
tests (AMES test), mutagenicity tests based on single human genes (HPRT, XPRT, 
TK kinase), micronuclei tests, chromosomal analyses, and metabolomic toxicology 
screening19,20. Finally, in vivo toxicity is assessed in mice, for example by embryo-fetal 
development studies21. None of these are able to comprehensively assess genome-
wide mutation numbers induced by the drug. Recent work from our group and others 
using in vitro treatment coupled to whole-genome sequencing (WGS) has shown that 
ganciclovir (GCV) treatment is mutagenic to non-infected human cells22,23. Here, we 
use the same highly sensitive, standardized method to systematically screen fourteen 
antiviral NAs in human HSPCs using WGS24. Our screen indicates that, besides 
ganciclovir, five out of fourteen NAs induce a significant number of mutations, and 
that the other nine are not mutagenic.

Results
Most antiviral NAs are not mutagenic in human CB-HSPCs. 
The mutagenicity of antiviral NAs was tested by a previously published in vitro 
method22,24 (Fig. 1A). Briefly, HSPCs derived from human umbilical cord blood 
(UCB) were exposed to different concentrations of the compound for 4 days. Cells 
treated with the IC40-IC60 concentration were clonally expanded to obtain sufficient 
DNA for WGS. Mutations present in the initial colony-forming cell were separated 
from artifacts and mutations acquired in vitro based on the mutations’ variant allele 
frequency (VAF)24. Using this method, the mutagenicity of 14 FDA-approved NAs 
was tested. These included treatments for endemic viruses like herpes viruses and 
SARS-CoV-2, and drugs used to treat hepatitis and HIV (Table 1, Table S1). For 
each NA, 3 clones of the same donor were sequenced, except for EMT (two cells) 
and ACV (four cells from two donors, see Methods). As a control, we applied WGS 
on 20 untreated HSPC clones from 7 independent UCB donors. Finally, we included 
previously published WGS data of the highly mutagenic NA ganciclovir22.

No SVs or CNVs were detected in any of the treated clones and no significant 
increase in the number of small insertion/deletions (indels) was detected after 
treatment with any NA (Fig. 1B). Furthermore, only the treatment with zidovudine 
(AZT), zalcitabine (DDC), and lamivudine (3TC) resulted in a minor increase in 
the number of double base substitutions (DBS) compared to the untreated clones 
(Fig. 1C). Therefore, we focused on single base substitutions (SBS, Fig. 1D). In 
untreated clones, an average of 38 SBS (CI 95%: 34-43) were present. This low 
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Figure 1. A subset of antiviral nucleoside analogues induces single and double base 
substitutions
A) Experimental setup of the screening method. B) The number of small insertions and deletions 
(indels) observed in HSPC clones after 4 days of exposure to a variety of nucleoside analogues (NAs), 
or after no exposure (control). Each dot represents the number of indels found in a single clone. C) 
The same clones as in B, but the number of double base substitutions (DBS) are shown. “*” indicate 
treatments for which the number of DBS was significantly different from controls (p<0.05). P-values 
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The same clones as in C, but the number of single base substitutions (SBS) are shown. P-values were 
calculated by the Wilcoxon test and fdr-corrected. E) For the three most mutagenic NAs tested here, 
the treatment was repeated in cells of a second UBC donor. The number of indels are shown for the 
two biological duplicates. P-values are calculated using the Wilcoxon test. F) The same as in E, but the 
number of double base substitutions (DBS) are shown. G) the same as in E, but the number of SBS are 
shown.
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background mutation load in UCB-HSPCs allows the identification of even lowly 
mutagenic drugs. Clones exposed to five out of the fourteen tested NAs harbored 
a significantly increased number of SBS compared to untreated cells (Fig. 1D, p = 
0.225, fdr-corrected Wilcoxon test). These were brivudine, penciclovir, zidovudine, 
zalcitabine, and molnupiravir. No compound was as mutagenic as ganciclovir, which 
induced an average of 991 mutations per cell. The next most mutagenic compound 
(brivudine) induced less than one tenth of that (86 mutations). To confirm these 
results, the treatment of zidovudine, brivudine and zalcitabine was repeated with 
cells of a different UCB donor. The number of mutations were similar between the 
two repeats for each of these treatments, confirming the robustness of our assay (Fig. 
1E-G, S1B,C).
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Ganciclovir GCV Y purine G Y - - - - - - CMV

Acyclovir ACV N purine G - - - - - - - Herpes viruses

Penciclovir PCV Y purine G Y - - - Y - - Herpes virusses

Brivudine BVD Y pyrimidine T Y - Y Y - - - HZ

Ribavirin RIBA N purine G Y Y Y Y - - - RSV/HCV

Remdesivir RDV N purine A Y Y Y Y Y - - SARS-CoV-2/HCV

Zidovudine AZT Y pyrimidine T - - - Y Y - - HIV

Abacavir ABC N purine G - - Y Y Y - - HIV

Mizoribine MZB N purine G Y Y Y Y - - - Renal Tx

Zalcitabine DDC Y pyrimidine C - - - Y - - - HIV

Tenofovir TFV N purine G - - - - - Y Y HIV/HBV

Molnupiravir 
(NHC)

MOV Y pyrimidine C Y Y Y Y - - - SARS-CoV-2

Entecavir ETV N purine G Y - - Y Y - - HBV

Lamivudine 3TC N pyrimidine C - - - Y Y - - HIV/HBV

Emtricitabine EMT N pyrimidine C - - Y Y Y - - HIV

Table 1. Information on the nucleoside analogues tested in this manuscript. 
Y = yes, N = no.

When inspecting the structure of the NAs, including ganciclovir, no common 
features could be identified that separated the mutagenic compounds from the non-
mutagenic compounds (Fig. S2). Molnupiravir was the only mutagenic NA with a 
2’ hydroxyl group on the sugar moiety, which is normally present on the ribose of 
RNA molecules, but not the deoxyribose of DNA (Table 1). In addition, zalcitabine 
and zidovudine were the only mutagenic NAs without a 3’ hydroxyl group, which is 
needed to form the phosphodiester bond with the following nucleotide during DNA 
elongation. Similarly, two out of six compounds had changes to the nucleobase, and 
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Figure 2. Each NA induces mutations in unique contexts
A) The fraction of the six single base substitution (SBS) types, as seen from the mutated pyrimidine 
nucleotide, induced by each NA. Only NAs are shown that caused a significant number of SBS (Fig. 
1B). The counts were corrected for the background mutagenesis by subtracting the profile of the average 
control clone from each treatment profiles before counting the mutation types. P-values were calculated 
by the fisher test and fdr-corrected. * = p < 0.05. ** = p < 0.0001. B) The reference bases of the double 
base substitutions (DBS) found in clones exposed to the four compounds that induced DBS. The 
average number per clone is depicted. C) The 96 SBS mutation profiles of the treatments shown in A. 
The profiles of all clones from each donor treated with one NA were averaged. Then, the profiles were 
corrected for the background mutagenesis in vitro by subtracting the average profile of the control 
clones. D) Cosine similarities of all the NA-induced mutational profiles shown in C and the control 
profile of untreated clones. E) Top, the mutational profile of mutations found in the genome of SARS-
CoV-2 viruses in humans after they were treated with molnupiravir. Bottom, the mutational profile 
induced by molnupiravir found in this manuscript in human HSPCs treated in vitro. 3TC = lamivudine, 
AZT = zidovudine, BVD = brivudine, DDC = zalcitabine, GCV = ganciclovir, MOV = molnupiravir 
(NHC), PCV = penciclovir.
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two six had non-cyclic sugar-like moieties. None of the mutagenic NAs harbored a 
phosphate group or had a change in the glycosidic bond, but these characteristics 
were only present in one NA in our test.

Each antiviral NA induces different mutation types
In order to gain further insight into the mechanism of NA mutagenicity, we analyzed 
the type of base substitutions that were induced by the six mutagenic NAs (Fig. 
2A). We found that for ganciclovir, penciclovir, and brivudine the mutation spectra, 
after background correction (see Methods), were significantly different from the 
primarily C>T mutations that were found in untreated control clones. For these 
drugs, the type of mutations matched their corresponding nucleotide, i.e., G:C > 
T:A mutations for guanine analogues ganciclovir and penciclovir and T:A > C:G 
mutations for thymidine analogue brivudine. Molnupiravir induces both C:G > 
T:A and T:A > C:G mutations. Zidovudine and zalcitabine induce all six types of 
mutations to approximately the same extend. We also investigated the type of DBS. 
Except for 3TC, the majority of DBS were TN>NN DBS (Fig. 2B).
 
When also considering the base preceding and following the mutated base of SBS, a 
spectrum of 96 trinucleotide changes arises. Except for ganciclovir and penciclovir, 
all spectra were unique for each NA compound (Fig. 2C, D). Zalcitabine and 
zidovudine did not induce mutations in specific contexts. In contrast, ganciclovir and 
penciclovir almost exclusively induced CpA>ApA mutations. Exposure to brivudine 
and molnupiravir also resulted in mutations in specific contexts, although with more 
sequence variation than ganciclovir/penciclovir. A molnupiravir mutational signature 
was recently reported in SARS-CoV-2 genomes treated with this drug. It consisted of 
the same two mutation types but had fewer T>C compared to C>T mutations and 
the mutations occurred in different contexts (cosine similarity 0.32, Fig. 2E).

Genomic distribution of NA-induced mutations only differs for ganciclovir
We have previously reported that ganciclovir-induced mutations display strand 
asymmetries as well as genomic distribution biases22. The mutated guanine of the C:G 
reference base pairs are enriched on the lagging strand of the DNA, the untranscribed 
strand of genes, in early replicating regions, and in promoters and exons22. In addition, 
ganciclovir-induced mutations display a specific extended sequence context with 
among others a depletion of adenines at the -2 position. Penciclovir, which is very 
similar in structure to ganciclovir, showed similar replication and transcription stand 
biases of the C>A mutations of ganciclovir, but these were not significant, possibly 
due to the lower number of mutations that penciclovir pound induced (Fig. 3A-C). 
In addition, penciclovir shares none of the extended context with ganciclovir (Fig. 
3D). ACV is also structurally similar to ganciclovir, but treatment with ACV does 
not result in more mutations than background, and these mutations show no such 
biases. Interestingly, most NA-induced mutations are significantly depleted in early 
replicating regions and enriched in late replication regions, while for ganciclovir the 
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opposite is observed (Fig. 3E). Similarly, all mutagenic NA induced mutations that 
were depleted in promoters and exons, except for ganciclovir (Fig. 3F).
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Figure 3. Ganciclovir is the only NA that has strong replication, transcription, and 
genomic location biases
A) The structures of guanosine and the guanosine analogues ganciclovir, penciclovir and acyclovir. 
B) The replication strand (leading or lagging) per mutations type. GCV was the only NA with a fdr-
corrected significant bias. In addition, the related penciclovir and acyclovir are shown. C) Similar to 
B, but for the transcribed and untranscribed strand of genes. Again, only GCV had an fdr-corrected 
significant bias and PCV and ACV are also shown for comparison. D) The enrichment or depletion of 
mutations in regions of early, intermediate, and late replication timing of NAs that induced significant 
SBS. E) The enrichment or depletion of mutations in promoter, exon, or intron regions. F) The extended 
context of mutated bases. GCV and PCV were the only ones with a significant enrichment (fdr-corrected 
fisher test) of at least one base. ACV is shown for comparison. For this analysis, mutations were split by 
C>N and T>N mutations per NA. Only the C>N are depicted here.
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Discussion
We screened fourteen NAs for mutagenicity in human UCB-derived HSPCs and found 
evidence for mutagenicity for five out of fourteen tested compounds. Two of these, 
zalcitabine and zidovudine, miss the 3’ hydroxyl group needed for DNA elongation. 
It seems therefore unlikely that their mutagenicity is induced by incorporation into 
the DNA and subsequent mismatching. Interestingly, the mutations that these two 
molecules induced were of all six mutation types and were not enriched in a specific 
context. Possibly, these drugs induce mutations via other, less direct mechanisms. 
For example, they might be interfering with polymerases or DNA damage repair 
proteins that therefore have an altered function. Alternatively, they lead to stress 
and subsequent stress-induced mutagenesis. A similar general mutagenesis without 
specific contexts was recently reported in normal human cells after chemotherapy 
exposure25.

None of the tested compounds was as mutagenic as the previously reported ganciclovir 
(GCV)22, even though we included the structurally very similar penciclovir (PCV) 
and acyclovir (ACV). ACV was not mutagenic in our screen. Possibly the much lower 
intracellular half-life of ACV compared to GCV and PCV might play a role in this26–

28. More importantly, ACV is the only of the three compounds that does not have 
the 3’ hydroxyl group on what normally is the deoxyribose ring of the nucleoside. 
Therefore, once incorporated, ACV cannot form a bond with another nucleotide 
and always induces chain termination16,28. It can therefore not be mutagenic through 
incorporation. PCV and GCV have this hydroxyl group and viral polymerases 
are known to be able to elongate DNA after PCV and GCV incorporation27,29. In 
addition, GCV can also be incorporation into the DNA of a human cancer cell line23. 
Our results suggest that human polymerases can also incorporate PCV without 
chain termination. But what explains the difference in mutagenicity between PCV 
and GCV? PCV is phosphorylated by non-infected cells to similar levels as GCV, not 
explaining the difference17. The structural difference between PCV and GCV is only 
the lack of an oxygen in the acyclic sugar-like moiety, but their biological properties 
and effectiveness against viruses like varicella zoster virus and cytomegalovirus are 
very different27,30. It is thus likely that this structural difference also explains the 
difference in the mutagenicity in human uninfected cells. As GCV has a structure 
that is more similar to guanosine than PCV, it might be incorporated by more human 
DNA polymerases or might be more efficiently incorporated by a specific DNA 
polymerase. Future studies should compare the rates of incorporation and chain 
termination of GCV and PCV by a variety of human DNA polymerases in 
non-infected cells to confirm our results. Possibly, such a study could also elucidate 
the reason for the high mutagenicity of GCV, even though it is phosphorylated to a 
much lower extend (>10x less) in uninfected cells compared to CMV infected cells17. 
Finally, the enrichment of GCV-induced mutations in early replicating regions, and 
protomers might be explained by such a functional study.
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Another NA that was mutagenic in our screen was molnupiravir, which is used to 
treat severe SARS-CoV-2 infections. Molnupiravir treatment results in an increase 
of mutations in the SARS-CoV-2 genome in patients31,32. It was previously shown 
to compete strongly with cytosines, but to a lesser extend also with uracils33. Once 
incorporated, either a guanine or an adenine can be incorporated on the opposite 
strand during replication33,34. Indeed, specifically C>T/G>A and to a lesser extend 
T>C/A>G mutations were found in MOV-treated viral RNA genomes34. Interestingly, 
the mutational profile identified in the genome of SARS-CoV-2 was different to 
the profile that we report here. Possibly, the limited number of sites that can be 
mutated in the ~30Kb size of the SARS-CoV-2 genome might result in a different 
signature than mutations in the ~3Gb human genome, although the authors tried 
to account for this in the SARS-CoV-2 signature34. In addition, the viral mutations 
were identified in vivo, which means the mutations are under selective pressure and 
some mutations might be negatively or positively selected, resulting in a different 
mutational signature. Finally, the functional difference between the SARS-CoV-2 
RNA polymerase and the human DNA polymerases might explain this difference. 
Molnupiravir has the ribose backbone found in RNA nucleosides and is therefore 
likely more efficiently incorporated into the viral RNA genome than human DNA. In 
addition, ribonucleotides can be incorporated in the human DNA, but this happens 
at a low rate, and possibly more often by specific DNA polymerases, e.g., translesion 
polymerases35,36. Further experiment, for example with DNA polymerase knock-out 
cells, might teach us what human DNA polymerases are involved in the incorporation 
of molnupiravir.

Our data also show that antiviral NAs do not induce SVs, even though the treatment 
with GCV can induce yH2AX foci in vitro22. In addition an increased level of 
aneuploidy was previously reported in UCB-derived T cells of HIV-infected pregnant 
women treated with zidovudine37. Possibly, cells which such damage are not able to 
clonally expand and are therefore missed in our study. In vitro treatment followed 
by direct DNA amplification from a single cell might prevent this bias. For example, 
primary template-directed amplification (PTA) could be used for this38,39.

Our work emphasizes the importance of thorough genotoxicity testing of human 
drugs. Five out of fourteen tested NAs were mutagenic. Not in all cases does the 
structure of a nucleoside analogue predict whether it is mutagenic in human cells. For 
example, NAs without a 3’ hydroxyl group or with a 2’ hydroxyl group can both be 
mutagenic, while both characteristics are not found in normal deoxyribonucleosides. 
Finally, although the number of mutations induced by one dose of some of the drugs 
is not high, long-term exposure to the treatment may have important repercussions 
for the exposed healthy cells. General genotoxicity testing using a method based on 
WGS analysis, such as the one used here, is therefore important to comprehensively 
assess drug safety with respect to mutagenicity.



143

5

The genomic safety of antiviral nucleoside analogs in hematopoietic stem cells

Methods
Collection of cord blood samples
Umbilical cord blood samples were collected through the WKZ maternity ward 
in Utrecht in accordance with the Declaration of Helsinki. All samples provided 
were freshly collected and stored in liquid nitrogen. This study was approved by 
the Medical Ethical Committee of the Utrecht University Medical Center (protocol 
number 19-737). 

Cell isolation and antiviral nucleoside analog treatment 
The mononuclear cell fraction was isolated from the cord blood sample using 
LeucosepTM tubes (Greiner Bio-One) and snap-frozen in DMSO. On the day of 
the experiment, mononuclear cells were thawed in pre-warmed IMDM media 
supplied with 10% FBS. Cells were washed two times with IMDM+10% FBS at 350g 
x 10 min at 20°C–25°C and counted by using an automated cell counter (Biorad). 
Afterwards, CD34+ cells enrichment was performed by using magnetic-activated cell 
sorting (MACS) with anti-CD34 magnetic beads (Miltenyi Biotec) according to the 
manufacturer’s instructions. After, CD34+ cells were washed in StemSpan™ SFEM 
(STEMCELL Technologies) medium supplemented with SCF (100 ng/mL); FLT3-L 
(100 ng/mL); TPO (50 ng/mL); IL-6 (20 ng/mL) and IL-3 (10 ng/mL); UM729 (500 
nM) and StemRegenin-1 (750 nM) and seeded. Cells were seeded at a density of 0.5 
× 105 to 1 × 105 cells/mL in a 12-well plate filled with 2 mL medium, respectively. 
After 24h of recovery, cells were exposed to the nucleoside analog compound of 
choice at different concentrations and incubated for 72h. For the control condition, 
the same volume of the dissolvent (PBS/DMSO) was added. After 72h, cells were 
harvested and spun down at 350g for 5 min at 20°C-25°C to obtain a pellet. Cell 
pellets were resuspended in 1 mL FACS buffer, and an aliquot was counted with 
0.4% trypan blue on a hemacytometer. The resulting cell counts from the unexposed 
control were used to count relative survival for all exposure concentrations. The 
microtube corresponding to the IC40-IC60 concentration was sorted as single cells 
using fluorescent activated cell sorting (FACS) at the SONY Sorter SH800s (SONY). 

FACS antibodies and markers
The following antibodies were used in the experimental setting to sort HSPCs: Lineage 
(CD3/CD14/CD19/CD20/CD56)-FITC (clones UCHT1, HCD14, HIB19, HCD56, 
1:20; RRID AB_10644012); CD34-BV421 (clone 561, 1:20; RRID AB_2561358); 
CD38-PE (clone HIT2, 1:50; RRID AB_314357), CD90-APC (clone 5E10, 1:200; 
RRID AB_893440), CD45RA-PerCP/Cy5.5 (clone HI100, 1:20; RRID AB_893358); 
CD49f-PE/Cy7 (clone GoH3, 1:100; RRID AB_2561705); CD16-FITC (clone 3G8, 
1:100; RRID AB_314205); CD11c-FITC (clone 3.9, 1:20; RRID AB_314173). The 
markers used for the cell sorting of HSPCs were: Lineage-CD34+CD38-CD45RA-
CD90+CD11c-CD16- or Lineage-CD34+CD38-CD45RA-CD49f+CD11c-CD16-. 
Flow cytometry data were analyzed using the SH800S Software (Sony) and FlowJo 
(BD Biosciences). HSPCs were index-sorted as single cells into flat-bottom 384-well 
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culture plates. Cells were cultured in StemSpan™ SFEM (STEMCELL Technologies) 
supplied with cytokines (described above). After 3-6 weeks of culture at 37°C and 5% 
CO2 5% O2, confluent wells were collected for DNA isolation and WGS. 

Whole-Genome Sequencing, read alignment, mutation calling, and filtering
HSPC clones were sequenced with a median genome target coverage of 15x on a 
Novaseq 6000 (2x150bp). Using Burrows-Wheeler Aligner (bwa) v0.7.17, the 
sequencing reads were mapped to the GRCh38 reference genome (bwa mem -M 
-c100). Sambamba v0.6.8 was used for marking duplicates. Mutations calling was 
performed using GATK. All steps that use GATK were performed with v.4.1.3.0. 
Variant filtering was done with GATK VariantFiltration using the following filters: 
–filter-expression “–filter-expression “QD < 2.0 –filter-expression MQ < 40.0” 
–filter-expression “FS > 60.0” –filter-expression “HaplotypeScore > 13.0” –filter-
expression “MQRankSum <-12.5” –filter-expression “ReadPosRankSum <-8.0” 
–filter-expression “MQ0 > = 4 && ((MQ0/(1.0 * DP)) > 0.1)” –filter-expression 
“DP < 5” –filter-expression “QUAL < 30” –filter-expression “QUAL > = 30.0 && 
QUAL < 50.0” –filter-expression “SOR > 4.0” –filter-name “SNP_LowQualityDepth” 
–filter-name “SNP_MappingQuality” –filter-name “SNP_StrandBias” –filter-name 
“SNP_HaplotypeScoreHigh” –filter-name “SNP_MQRankSumLow” –filter-name 
“SNP_ReadPosRankSumLow” –filter-name “SNP_HardToValidate” –filter-name 
“SNP_LowCoverage” –filter-name “SNP_VeryLowQual” –filter-name “SNP_
LowQual” –filter-name “SNP_SOR” -cluster 3 -window 10
Variant annotation was performed with GATK VariantAnnotator, SNPSiftDbnsfp 
and SNPEffFilter using the COSMIC v.89, dbNSFP3.2a, and GoNL release 5 
databases respectively. 
One clone (treated with EMT) was excluded as the median genome coverage was 
5x even after two rounds of sequencing. Two clones from two batches treated with 
ACV were excluded as their SNP fingerprint did not match to that of the other two 
(indicating a different donor).

High quality somatic variants were filtered using the in-house produced pipeline 
SMuRF v2.1.2 (www.github.com/ToolsVanBox/SMuRF). These were mutations that 
(A) were positioned on autosomal chromosomes, (B) had a GATK phred-scaled 
quality score of 100, (C) had a mapping quality of 60, (D) had a base coverage of at 
least 5, (E) had a GATK genotype quality of 99 (heterozygous) or 10 (homozygous), 
(F) had a variant allele frequency (VAF) of > 0.3 (indels) or >0.15 (SBS), (G) were 
unique to that clone compared to the other clones within that batch (same cord blood 
donor and treatment), (H) were not subclonal in any of the clones in that batch. 
Where possible, clones were filtered in sets of three to keep the number of background 
mutations similar in each clone (as including more clones results in a stricter filtering). 
This was not possible for EMT, where one of the three cells failed QC (average read 
length, coverage, duplicate reads). In addition, from two different donors, three cells 
that were treated with ACV were sequenced. From both donors, one of the cells was 
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excluded due to QC, the remaining four were used for analyses. Although processing 
the clones treated with EMT and ACV in pairs instead of three clones, the mutation 
load was not significantly higher than control clones, indicating that this difference 
did not impact the outcome of the study.

Structural variant and copy number variant calling
Somatic structural variants (SVs) and copy number variants (CNVs) were called 
using the gridss-purple-linx pipeline v1.3.2 (https://github.com/hartwigmedical/
hmftools) with options ‘—amber_tumour_only “true” –cobalt _tumour_only “true” 
–purple_tumour_only “true”’, using another clones of the same patient as a reference.

Mutational profile and signature analysis
The type of mutations (SBS and DBS), the mutational profiles and cosine similarity 
between mutational profiles were determined using the R package MutationalPatterns 
v3.6.0. SBS had an average variant allele-frequency (VAF) of 0.5 (Fig. S1A). SBS with 
a VAF of 0.15 or lower were filtered out as these could be mutations acquired during 
the clonal expansion step. Many indels were observed with a VAF between 0.15 
and 0.3 in all cases, which also indicates these are not related to the treatment (Fig. 
S1B). Indels with a VAF of 0.3 or lower were therefore filtered out. All other data 
visualization was done in R using the ggplot2 package40.
The MutationalPatterns package was also used for determining cosine similarities 
between mutational profiles, to calculate replication and transcription strand biases, 
and genomic and replication timing enrichment/depletion.
The molnupiravir-induced signature in SARS-CoV-2 genome derived from data of 
Alteri et al.31 were downloaded from Sanderson et al.34.
For mutation types (N>N) and mutational profiles (96-trinucleotide profiles 
N[N>N]N), background correction was done by subtracting the average number 
of each mutation type/context in the control clones from the average number of 
the same mutation types/contexts in the treated clones. The was repeated for each 
treatment separately.

Mitochondrial DNA coverage
The coverage depth of the mitochondrial genome was performed using a previously 
published pipeline41, which was a modification of GATK’s Mitochondria pipeline 
(https://doi.org/10.1016/j.isci.2022.105610). As described, samples with less than 
1000x coverage were removed as this indicated potential technical artifacts (n=1).

Statistics
All p-values were FDR-corrected. The significance of the increase in the number of 
indels and SBS found in NA-treated HSCP clones compared to control, untreated 
HSPC clones was done by the Wilcoxon-test. For the number of DBS, the Fisher’s 
exact test was used on the counts of clones with or without any DBS (>0). These 
values were then FDR corrected. To determine the difference in the mutation types 
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(N>N), the mean number of C>N and T>N mutations were compared between NA-
treated and control clones by fisher’s exact test.

The enrichment/depletion of extended contexts was done by fisher’s exact test on 
the number of each of the four nucleotides found at a relative certain position (e.g. 2 
base pairs downstream of the mutated base) in the NA-treated and the control clones. 
This was repeated for each treatment, for T>N and C>N mutations separately, and 
for the -10 to +10 position relative to the mutated base.
The significance of transcription strand bias and replication strand bias were 
calculated by MutationalPatterns’ “strand_bias_test” and for replication timing 
enrichment and genomic enrichment MutationalPatterns’ “enrichment_depletion_
test” was used.
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Supplementary Material 
Supplementary Table 1. Technical specification of the tested NAs.

Nucleoside 
analogs

Manufacturer Cat. number UBC 
donors

HSPC clones 
sequenced

Ganciclovir Sigma-Aldrich SML2346 CB22 3
Acyclovir Sigma-Aldrich A0220000 CB35, CB44 4
Penciclovir Sigma-Aldrich P0035-100MG CB33 6
Brivudine Fisher scientific 50-194-8398 CB30, CB66 6
Ribavirin Sigma-Aldrich R9644 CB32 3
Remdesivir Bio-Techne 7226 CB30 3
Zidovudine Selleckchem S2579 CB32, CB60 6
Abacavir Selleckchem S5215 CB14 3
Mizoribine Selleckchem S1384 CB47 3
Zalcitabine Selleckchem S1719 CB30, CB74 6
Tenofovir Selleckchem S1401 CB31 3
Molnupiravir Selleckchem S8969 CB44 3
Entecavir Selleckchem S5246 CB45 3
Lamivudine Selleckchem S1706 CB45 3
Emtricitabine Selleckchem S1704 CB39 2
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Supplementary Figure 1. Variant allele frequencies cut-offs and profiles of biological 
duplicates. 
A) The variant allele frequency distributions of indels in untreated and NA-treated HSPC clones. Each 
line represents the distribution in a single clone. In light blue the cut-off that was used for indels (0.3) 
is indicated. B) similar to A, but for single base substitutions. The VAF cut-off of 0.15 is indicated. C) 
The 96 SBS mutation profiles of zidovudine (AZT), brivudine (BVD) and zalcitabine (DDC) in two 
independent UCB donors. The profiles of all three clones from each donor treated with one NA were 
averaged. D) The cosine similarity between the profiles showed in C.
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Abstract
Cell type identification is essential for single-cell RNA sequencing (scRNA-seq) 
studies, currently transforming the life sciences. CHETAH (CHaracterization 
of cEll Types Aided by Hierarchical classification) is an accurate cell type 
identification algorithm that is rapid and selective, including the possibility of 
intermediate or unassigned categories. Evidence for assignment is based on a 
classification tree of previously available scRNA-seq reference data and includes 
a confidence score based on the variance in gene expression per cell type. For 
cell types represented in the reference data, CHETAH’s accuracy is as good as 
existing methods. Its specificity is superior when cells of an unknown type are 
encountered, such as malignant cells in tumor samples which it pinpoints as 
intermediate or unassigned. Although designed for tumor samples in particular, 
the use of unassigned and intermediate types is also valuable in other exploratory 
studies. This is exemplified in pancreas datasets where CHETAH highlights cell 
populations not well represented in the reference dataset, including cells with 
profiles that lie on a continuum between that of acinar and ductal cell types. Having 
the possibility of unassigned and intermediate cell types is pivotal for preventing 
misclassification and can yield important biological information for previously 
unexplored tissues.

Introduction
Single-cell RNA-sequencing (scRNA-seq) is transforming our ability to study 
heterogeneous cell populations1–6. While tools to help interpret scRNA-seq data 
are developing rapidly7–15, challenges in data analysis remain16, with cell type 
identification a prominent example. Accurate cell type identification is a prerequisite 
for any study of heterogeneous cell populations, both when the focus is on subsets 
of a particular cell type of interest or when investigating the population structure 
as a whole17–21. The introduction of single cell RNA sequencing has paved the way 
for rapidly discovering previously uncharacterized cell types22–24 and this application 
too would greatly benefit from efficient identification of known cell types prior to 
focusing on new types.
Research into tumor composition presents an even more challenging setting, as the 
RNA expression profile of malignant cells is often different from any known cell 
type, as well as unique to the patient or even to the biopsy25,26.  Malignant cells can 
sometimes be identified in scRNA-seq data27 but this is not always feasible or even 
possible, for instance with tumors that do not harbour easily identified copy number 
variations. In both cases, a first sign of the malignancy of cells in the sample is their 
imperviousness to classification, simply because their expression profiles do not 
resemble that of any known, healthy cell type.
Cell type identification in scRNA-seq studies is currently often done manually, starting 
by identifying transcriptionally similar cells using clustering. This is frequently 
followed by differential expression analysis of the resulting cell clusters combined 
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with visual marker gene inspection4,25,26,28–30. Such manual cell type identification is 
time-consuming and often subjective due to the choice of clustering method and 
parameters for example, or to the lack of consensus regarding which marker gene 
to use for each cell type. Such analyses are becoming more complex given the fast-
expanding catalogue of defined cell types16. Canonical cell surface markers are also 
not always suitable in scRNA-seq studies because the transcripts of these genes 
may not be measurable in the corresponding cell type owing to low expression or 
to degradation of the mRNA. This is aggravated by technical difficulties (drop-out) 
and, more generally, by the poor correlation between protein expression and mRNA  
abundances23.
Recently, a number of cell type identification algorithms have emerged to address 
these problems. Automated methods such as scmap31 and SingleR32 base their cell 
type call on comparisons with annotated reference data using automatically chosen 
genes that optimally discriminate between cell types. A good cell type identification 
method should be both sensitive and selective. That is, it should correctly identify as 
many cells as possible, while not classifying cells when based on insufficient evidence. 
If the cell being identified is of a type that is not represented in the reference, such 
misclassification can easily occur. This is a concern when studying malignant 
cells which are often too heterogeneous to include in the reference data. To avoid 
overclassification, methods such as scmap31 therefore leave cells unclassified if they 
are too dissimilar to any reference data. 
Both the complete lack of classification as well as overclassification is unsatisfactory. 
For example, if the evidence for a very specific cell type assignment such as effector 
CD8 T-cell is not strong enough, a more general, less specific assignment such as 
T-cell may still legitimately be made and might still be useful. The reason for such 
an intermediate cell type assignment could be that the correct T-cell subtype is not 
part of the reference dataset, or even that there is insufficient read-depth for the 
more specific call to be made. An even more interesting case is that of cells that are 
biologically of an intermediate type such as differentiating cells or cells undergoing 
transdifferentiation. 
Here we present CHETAH (CHaracterization of cEll Types Aided by Hierarchical 
classification), an algorithm that explicitly allows the assignment of cells to an 
intermediate or unassigned type. The unassigned and intermediate types are 
inferred using a tree that is constructed from the reference data and which guides the 
classification. CHETAH’s classification is a stepwise process that traverses the tree 
and, depending on the available evidence, ends at one of the reference cell types or 
halts at the unassigned or one of the intermediate types. CHETAH is able to correctly 
classify published datasets and, in comparison to other methods, performs equally 
or better when considering cells whose type is represented in the reference data. For 
cells of an unknown type, CHETAH is more selective, yielding a classification that is 
as fine-grained as is justified by the available data. The benefit of calling unassigned 
and intermediate types is highlighted in several tumor datasets, showing CHETAH 
is consistently selective. This makes CHETAH a powerful tool for identifying cells 
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that are not in the reference, such as malignant tumor cells, novel or intermediate 
cell types. The latter is shown in an analysis of published pancreas datasets, where a 
manifest expression gradient of cells with types varying between acinar and duct cell 
is described. CHETAH is implemented in R33, is available at github.com/jdekanter/
CHETAH, and has been incorporated in Bioconductor34 release 3.9. It comes with 
an extensive Shiny35 application that makes exploration of the cell type identification 
process and the gene expression differences that support the classification very 
intuitive. CHETAH has been created bearing tumor analyses in mind, but as is 
demonstrated, it also complements existing methods for exploring previously 
uncharacterized non-cancerous tissues and cell types.

Methods
An outline of the CHETAH algorithm is depicted in Fig. 1. The method requires 
a reference scRNA-seq dataset, annotated for cell type. Throughout this study, the 
reference dataset is completely independent from the dataset that is being classified. 
First a hierarchical classification tree is constructed from the reference scRNA-seq 
data (Fig. 1A). Each input cell is classified individually by traversing the tree (Fig. 
1B). At each step of the process the cell to be classified is correlated to the expression 
profiles of the reference data cell types. This is done by first selecting the set of genes 
that best discriminates each reference cell type from all the cell types, collectively, in 
the opposite branch of the tree (Fig. 1C). The input cell correlation to a reference 
cell type is compared to the distribution of correlations of the reference cells to assess 
whether there is enough evidence to allow this cell to take the next step (Fig. 1D-E). 
If the confidence threshold is not passed, further classification of the cell stops 
and it is marked as unassigned if the evidence runs out at the top of the tree, or as 
intermediate if this happens within the classification tree. Classification also stops 
when a cell reaches one of the leaves of the tree, yielding assignment to a specific cell 
type.

Reference data
In order to classify input cells CHETAH requires scRNA-seq reference data along 
with cell type labels for each reference cell. Here, the reference dataset is always a 
completely independently generated dataset, from a different study and in several 
cases using a different scRNA-seq platform. The reference data needs to be normalised 
to an identical total number of transcripts per cell and should be expressed in log-
scale. Malignant cells are best left out of the reference because they are too ill-defined 
and too patient-specific36. In all the reference datasets used here, such cells cluster 
by patient whereas non-malignant cells largely cluster by cell type. The reference 
must contain at least 10 cells per cell type to adequately represent its transcriptional 
program as well as its variance (Fig. 3C). More than 10 cells per reference cell type 
improves performance. More than 200 cells per cell type is superfluous. Since this 
also increases the computational burden it is useful to restrict the number of cells 
per reference cell type to a maximum of 500. This does not restrict the number 
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Reference profiles (RPs) are created for each cell type by averaging 
their expression profiles of all reference cells (RCs) per type. 

A classification tree is computed from these RPs using Spearman 
correlation and average linkage.  

The input cells are classified in a top-to-bottom, stepwise process 
traversing the tree. In each node, each input cell j goes through the 
steps in panel C-E, finally being assigned to either the node itself, or to 
the left or right branch. In the latter case, these steps repeat in the 
next-highest node of the selected branch.

Cell j ’s assignment is determined by a confidence score that is calculat-
ed from the profiles scores.

Cell j is assigned to the branch containing the RP with the maximal 
profile score (here: branch “RP1+2”), provided the confidence score is 
large enough. The confidence score is calculated as the difference of 
the highest profile score in the branch about to be choosen (here: 0.6), 
and the average of profile scores in the other branch (here: 
0.2 + 0.5 / 2 = 0.35). If the difference (here: 0.6 - 0.35 = 0.25) is greater 
than the threshold (default: 0.1), the branch is chosen. Otherwise, the 
cell’s type is unassigned (if it is the top node of the tree) or one of the 
intermediate types (if it is further down).

If the chosen branch contains only one cell type (i.e. if it is a leaf node), 
the cell type assignment is final. If there are two or more cell types in the 
chosen branch, steps C-E are repeated in the chosen branch.

For each input cell j, a profile score expressing cell j ’s similarity to each 
candidate RP is calculated (shown for RP1). 

The selected genes for the RP are used to correlate individual cells RC1 
to RP1. This results in a distribution of expected correlations of cells of 
the candidate cell type. 

The distribution of correlations of the cells of all cell types under the 
other branch (here RC3 and RC4) to RP1 is calculated similarly. 

The profile score of input cell j is calculated from input cell j 's correlation 
corj within these two distributions. From corj 's cumulative density of 
candidate reference cell correlations (here: green area, 0.7), corj 's 
complementary cumulative density in the distribution of other-branch 
correlations (here: red area, 0.1) is subtracted to obtain the profile score 
(here: 0.7 - 0.1 = 0.6)

For each candidate RP in the node, the features that best discriminate it 
from the RPs of the other branch are selected

To this end, the fold-changes in expression of all genes between the  RP 
(here: RP1) and the average of all the RPs in the other branch 
(here RP3 and RP4) are calculated. 

The 200 genes with the highest absolute fold-change are selected.
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C
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0.25
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Figure 1. The CHETAH algorithm. 

of cells that can be analysed in the query dataset. The selection of genes from the 
reference dataset for classification at each step (Fig. 1B) is aimed at finding those 
with the highest discriminatory power. When using a reference dataset with a high 
drop-out rate, i.e. low transcript coverage per cell, it is advocated to remove highly 
expressed genes such as ribosomal protein genes from reference datasets beforehand, 
since their drop-out can reduce classification accuracy. For the sake of uniformity, 
ribosomal protein genes were removed here from all reference datasets although this 
only increased classification accuracy in one case (Fig. 3C). 
Unless stated otherwise, the reference dataset used here, called ‘Tumor ref.’, consists 
of a combination of datasets of Colorectal37, Breast38, Melanoma25 and Head-Neck 
tumors26. The data for all these studies was generated using the Smart-seq2 platform. 
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The cell types of the reference dataset were based on published manual classification 
of cell clusters using marker gene expression. The Melanoma and Head-Neck studies 
discuss the T-cells in terms of their CD4+, CD8+ and T-reg subtypes but not all of 
these labels are available for all the cells in the online material of these publications. 
These reference cells were therefore classified manually using the same marker genes 
as used in the publications. Cells of a dataset being classified are of course excluded 
from the reference. In other words, all results reported are by classification using 
reference datasets completely independent from the query dataset. When comparing 
CHETAH and SingleR32 results, the latter was run with averaged single-cell data 
because SingleR uses bulk, rather than single-cell expression profiles as its reference. 
Further details of the datasets used in this work, including pre-processing, are given 
in Table 1.

Table 1. Datasets used in this study. 

name 
(publication) protocol

nr. of 
healthy 
cells

nr. of 
tumor 
cells

nr. of 
cell 
types

pre-processing after 
download biopsies

nr. of 
donors

Melanoma 
(25)

Smart-seq2 3262 1251 9 discarded cells without 
annotation

melanoma 19

Head-Neck 
(26)

Smart-seq2 3345 2215 12 discarded cells without 
annotation

primary head 
and neck 
squamous cell 
carcinoma

18

Colorectal 
(37)

Smart-seq2 272 92 7 no colorectal 
cancer

11

Breast (38) Smart-seq2 198 317 3 no breast cancer 11

Tumor ref. 
(25,26,37,38)

Smart-seq2 6122 none 12 combined Melanoma, 
Head-Neck , Breast and 
Colorectal datasets, 
discarding malignant 
cells.

Detailed above 19
18
11
11

Ovarian (19) InDrops 2814 300 9 no ovarian cancer 
ascites

4

PBMC (28) 10X Ge-
nomics

68579 none 16 no healthy PBMC 
cells

1

CBMC (41) Drop-seq 7830 none 13 as described (41) cord blood 
CBMCs

un-
known

Pancreas1 
(17)

inDrops 8569 none 14 no healthy pan-
creas

4

Pancreas2 
(43)

CEL-seq2 2292 none 9 no healthy pan-
creas

4

The PBMC and CBMC datasets were labelled identically to ensure comparability of annotated cell types

Classification tree
The first step is to create a reference profile (RP) for each cell type in the set of 
reference cells by averaging, for each cell type, the logged gene expression over all 
cells of that type (Fig. 1A). The RPs are subsequently clustered hierarchically using 
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Spearman correlation and average linkage to obtain the classification tree.

Hierarchical classification
The classification of input cells proceeds in a stepwise fashion, from the root to the 
leaves of the classification tree. At each step, the branch is selected that contains the 
reference cell type most likely to be the correct one, but the classification stops if 
the confidence in this decision becomes too low (see confidence score below). As 
described under profile score, the choice of the most likely cell type and therefore 
which branch to choose, is based on the cell’s similarities to each of the individual 
RPs under each branch. The similarity of a cell to a RP under consideration (called 
the candidate RP), in the branch under consideration (called the candidate branch), 
is always in relation to all the RPs under the (so-called) other branch. During the 
classification process, only the leaf node data (i.e. from all cells of a particular 
reference cell type) are used. Any details of the tree topology under either branch 
are ignored, i.e. no hypothetical expression profiles are inferred for the intermediate 
tree nodes. After calculating the cell’s similarities to all RPs under both branches, the 
cell is assigned to the branch that contains the cell type to which it is most similar, 
provided the evidence is strong enough based on the confidence score. 

Feature selection
The similarity of a cell to a reference profile is based on their Spearman correlation. 
This choice is based on its identical performance to other correlation methods (Fig. 
S1A) and on the fact that there is no assumption about the underlying distribution. 
The correlation is calculated using the subset of genes that best discriminates 
between the candidate RP in the candidate branch, and the average expression profile 
of the other branch as a whole. (The latter is calculated as the mean of all RPs under 
that branch). The selection of the best subset of genes, a process known as feature 
selection, is not critical and good results are achieved when simply using the 200 
genes that have the largest absolute fold-change between the candidate RP and the 
average expression profile of the other branch. This choice is based on a variety of 
parameter sweeps and shown in Fig. S1. It is important to note that the feature set, 
i.e. the subset of genes used to calculate similarities, is different for each RP and for 
each node of the classification tree. Many different feature selection methods work 
well (Fig. S1). The use of different discriminatory gene sets at each decision node 
and for each RP is an important, novel aspect of the method.

Similarities
The similarity of a cell to a RP in the candidate branch is of course reflected in their 
correlation, but the values of these correlations to the various RPs cannot be directly 
used for comparisons. The reason is that the subset of genes used for each correlation 
is generally different for each RP and for each node. The similarity of an input cell j to 
candidate RP x is therefore cast in relative terms by using the cumulative probabilities 
of this correlation within two different distributions of correlations. The first one is 
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the distribution of self-correlations, that is, the distribution of the correlations of the 
individual cells constituting the candidate RP to that candidate RP itself. These self-
correlations represent the typical correlation values for a cell that is really of that type. 
The second distribution is that of the non-self correlations. They are the correlations, 
again to the candidate RP, of all the individual reference cells under the other branch. 
They represent the correlation values that can be expected for cells that are not of any 
type under the candidate branch. By contrasting the two cumulative probabilities a 
profile score is obtained that robustly points the way through the classification tree.

Profile scores
The two cumulative probabilities just defined are used to define the profile score 
Px ( j), representing cell j’s similarity to candidate RP x, as follows:
 
 Px( j) = Fc (rs( j,x) ) - [ 1 - Fo (rs( j,x) ) ]    [1]

with 
 rs( j,x)     the Spearman correlation of input cell j’s expression with 
   candidate reference profile x

 Fc (rs( j,x))  the cumulative probability of j’s correlation within the 
   distribution of self-correlations  rs(k,x), that is, of all 
   reference cells k of type x with their ‘own’ candidate reference 
   profile x

 Fo (rs( j,x) ) the cumulative probability of j’s correlation within the 
   distribution of correlations rs(l,x) of all reference cells l 
   under the other branch, again with reference profile x

The profile score Px( j) has a value between 1 and -1 and is, in a particular node, a 
measure for the likelihood that cell j is of type x. A value of 1 means that cell j is much 
more likely to be of type x (and therefore belong to its branch) rather than any of the 
types in the other branch and, conversely, -1 represents the lowest likelihood of this 
being so, and therefore cell j is much more likely to belong in the other branch. In 
each node, one set of genes is selected for each RP under that node. This gene set is 
used for all the correlations (of both input and reference cells) needed to calculate 
the profile scores. Note that due to the different gene subsets used in each step of 
the tree traversal, the most similar RP for a cell may change during the steps of the 
classification process. E.g., during the first few steps a cell that in reality is of type 
CD4 T-cell could initially, and incorrectly, appear more similar to a CD8 T-cell than 
to the expected CD4 T-cell type. This would however still lead to the correct branch 
choice, namely that of all T-cells. In later steps the similarity to the actual CD4 T-cell 
type would become strongest, guiding the cell to a correct final CD4 T-cell label.



159

6

CHETAH: a cell type identification method for single-cell RNA sequencing  

Confidence score
Each input cell is assigned to the branch containing the candidate reference cell 
type for which it has the highest profile score. This assignment represents the choice 
between the left and right branch, but a key design goal of the algorithm is its ability 
to stop classification at an intermediate node. The choice for each cell j, between 
stopping classification or continuing to the next round, is based on its confidence 
score C( j) defined as

C( j)= Pmax( j) - mean(Po( j))               [2]

with Pmax(j) the highest profile score for cell j in the branch about to be chosen and  
mean(Po( j)) the mean of the profile scores in the other branch, i.e. the branch not 
containing the reference profile having the highest profile score (Fig. 1C). Expression 
[2] is always positive because branches leading to a negative score are by definition 
never chosen by the algorithm.  The confidence score is a measure for the evidence 
to assign a cell to a branch, with 2 representing maximal evidence, and 0 representing 
no evidence. The confidence score has an easy explanation. If it is close to 0, the best 
candidate cell type in the branch about to be chosen is as good as the average of the 
cell types in the other branch. This implies that there is no basis to justify the choice 
between either branch, so none should be taken and classification of the cell should 
therefore stop in the current node. In contrast, a large score represents good support 
to continue the classification because there is a cell type in the candidate branch that 
has a much better profile score than the average profile score of the other branch. By 
default, cells are assigned to the branch if the confidence score is higher than 0.1, but 
different values can also be specified in the algorithm’s parameters. Cells that remain 
in a non-leaf node of the tree are called unassigned or of intermediate type whereas 
cells assigned to a leaf-node are of a final type. The labels for the intermediate types 
are generated automatically (Node1, Node2, etc.) but biologically meaningful names 
such as T cell can often readily be given. By choosing a cut-off greater than 0.1, only 
the more confident calls will be made, hence more cells will be labelled as being 
unassigned or of intermediate type. Conversely, by lowering the confidence cut-off, 
the algorithm will classify more cells to a final type, however such calls are supported 
by less evidence. A cut-off of 0.0 forces the method to classify all cells to a final type, 
as is exemplified later. The above stepwise calculations of the profile scores and 
confidence scores yield an elegant and, importantly, transparent algorithm.

Parameters
CHETAH comes with an extensive Shiny35 application, is implemented in R33, 
is available at github.com/jdekanter/CHETAH and has been incorporated in 
Bioconductor34 release 3.9. Easily selectable parameters include the choice of 
correlation measure (default: Spearman), the discriminatory gene set selection 
method (default: the 200 genes with largest absolute expression difference between 
reference cell type under consideration and all reference cell types in the opposite 
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branch), the hierarchical clustering method (default: Spearman, average linkage) and 
the confidence score threshold (default: 0.1). These default settings are uniformly 
applied throughout this study.

Results
The CHETAH algorithm is summarized in the first paragraph of the Methods 
section and in Fig. 1. The method makes use of a reference dataset with cell type 
annotations. Throughout this study the reference dataset is always a completely 
independently generated dataset, from a different study and in several cases using a 
different scRNA-seq platform. Reference cell types are hierarchically clustered into 
a classification tree which guides the cell type identification process (Fig. 1A). The 
classification tree aids cell type identification but is not intended as a recapitulation 
of cell taxonomy. The cells to be classified are shunted from the root of this tree to 
its leaves (Fig. 1B), but only to the most specific tree node that is still supported by 
the available evidence, as quantified by a robust measure of confidence (Fig. 1D-E). 
Confidence is based on passing a threshold. This is determined by the degree to 
which the input cell’s correlation to a reference cell type fits with the distribution 
of correlations of reference cells of the same type and contrasted with the degree to 
which it fits with that of other reference cells to this type (Fig. 1D-E). The genes on 
which the classification is based are selected to be those that are most discriminatory 
for each step in the classification (Fig. 1C). This too is an important aspect of the 
method. Many parameters such as correlation measure, number of discriminatory 
genes, number of cells per reference type, etc., are selectable by the user (Methods) 
and the choice for the single set of default parameters used throughout this study 
is explained in the Methods. Cells for which classification confidence runs out are 
typically of a type that is not present in the reference dataset, and are said to be 
either unassigned or of an intermediate type. Intermediate entails that classification 
has halted at a node due to lack of confidence to proceed. Unassigned entails that 
this already occurred at the first step in the classification tree. Note that there are 
several intermediate types, each corresponding to one of the internal nodes of the 
classification tree. 
CHETAH’s accuracy is investigated by comparing its classifications with published 
cell type labels. The aim is to reproduce these using only the reference data. The 
reference datasets used here are always from a source that is completely independent 
of the query dataset, ensuring that the reported accuracies do not reflect bias from 
over-fitting. Since the accuracy might be lower if the scRNA-seq technology of 
the input data and the reference differs, cross-platform results are also examined. 
CHETAH is subsequently compared to other cell type identification methods and 
the effectiveness of the intermediate cell type assignments is also demonstrated in an 
analysis of previously published pancreas datasets. For an overview of the datasets 
see Table 1.
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Accuracy
The performance of CHETAH is first evaluated by applying it to Melanoma25 and 
Head-Neck26 cancer datasets. The classifications of the these datasets is shown in 
Fig. 2 and S2, summarized in Table 2. Throughout this study all classification results 
are obtained by applying CHETAH on a new query dataset, with a completely 
different, independent dataset as reference. The reported results are therefore 
without bias towards the query dataset, as could be the case if reference and query 
datasets are the same. Since the reference datasets do not contain malignant tumor 
cells, such cells should not be classified to any final type, but as unassigned or any of 
the intermediate types instead. CHETAH correctly classifies practically all (mean > 
99%) malignant cells as unassigned or intermediate types. Note that in the published 
data the classifications were manual while the identification of tumor cells was based 
on estimated copy number variations. In contrast, CHETAH’s type assignments are 
fully automatic and the aberrant nature of the malignant cells is indicated by their 
classification as unassigned or intermediate. This selectivity is an important quality 
of the method, essential for preventing the type of misclassification that readily 
occurs when methods forcefully assign every cell to a type regardless of the evidence. 
Selectivity is especially relevant when dealing with tumor samples, as well as with 
samples containing cell types not present in the reference dataset.  

Table 2. Percentages of cell type labels as inferred by CHETAH, compared with the published cell types. 
Reference 
dataset

 input 
dataset

% correct-
ly unas-
signed

% identical 
final type

% inter-
mediate 
type, same 
lineage

% interme-
diate type,  
different 
lineage

% Incor-
rectly  un-
assigned

% different  
final type

Tumor ref. 
without 
Melanoma 

Melanoma 
(25)

99.5 86.9 4.1 0.8 0.5 7.7

Tumor ref. 
without 
Head-Neck

Head-Neck 
(26)

89.2 71.2 14.6 1.1 1.9 11.2

Tumor ref. Ovarian  
(19)

99.3 79.9 9.0 0.7 6.8 3.6

The reference and input datasets are shown. For an overview of the datasets see Table 1. When classifying 
the Melanoma and Head-Neck datasets, these datasets are left out of the ‘Tumor ref.’ reference, as 
indicated. The column correctly unassigned shows the percentage of cells of a type that was absent from 
the reference that were classified as unassigned or any of the intermediate types. The other columns 
refer to sample cells of a type represented in the reference that should therefore be assigned and contain 
percentages of cells of final or intermediate type, summing to 100%. The term lineage refers to the 
classification tree determined by CHETAH. 

CHETAH classifies the majority (mean 79%) of non-malignant cells the same as 
in the original publication. Of the cells classified differently, the majority (mean 
61%) are classified as an intermediate type. In the inferred classification tree these 
intermediate assignments are overwhelmingly in the correct classification lineage 
(85%, 91% and 95% for Melanoma, Head-Neck and Ovarian respectively). Only a 
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small number of cells are labelled differently by CHETAH. For many of them there is 
in fact strong evidence from established marker gene expression that the assignment 
from CHETAH is correct (Fig. S4, S5). Taken together, these results show that the 
selective approach works well. Cells of an established type that are present in the 
reference dataset are classified correctly. Samples cells of a new or aberrant type, not 
represented in the reference dataset are either not assigned to a type or are classified 
as an intermediate type, an outcome that should indeed be regarded as a pointer for 
a more detailed inspection.
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Figure 2. CHETAH’s classification of two tumor sample datasets is nearly identical to the published 
manual classification. The t-SNE plots depict each cell as a dot, with the colours representing the 
inferred cell type shown in the legend. Gray colours indicate intermediate cell types which are labelled 
automatically as Node1, Node2, etc. For the corresponding classification trees see Figure S2. Rows of 
panels: datasets classified (Melanoma: Tirosh et al.25; Ovarian: Schelker et al.19); columns: classification 
method. For an overview of the datasets see Table 1.

Cross-platform classification
The data from the Melanoma and Head-Neck studies were obtained using Smart-
seq239 and were also classified using reference data originating from the same 
platform. To evaluate CHETAH’s performance across platforms, an Ovarian dataset19 
produced on the inDrops platform40 was analysed with CHETAH using the ‘Tumor 
ref.’ reference (Smart-seq2-based) and conversely, the Melanoma dataset (Smart-seq2-
based) was classified using the Ovarian dataset as a reference. The results, presented 
in Fig. 2D-F and Fig. 3A respectively, show a performance similar to that obtained 
within one platform. Taking the first of the two cross-platform classifications as an 
example (Fig. 2F) it is clear that the majority of cells (79.9%) that are not Tumor 
or Unknown retain the published labels. Of all the cells getting a different cell type 
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label most become Unassigned or Intermediate (87.3%) and this is especially true 
for the Unknown (80.0%) and Tumor cells (99.3%), in line with expectation. The 
robustness of the cross-platform classification is probably due to the use of rank-
based similarities, implying that other combinations of scRNA-seq technologies will 
likely yield similar good results. This is further exemplified by accurate classification 
of a Drop-seq dataset41 using a Chromium 10x Genomics dataset28 (Fig. 3C).
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Figure 3. CHETAH compared with other methods (bottom labels), across six combinations of input 
and reference datasets (top labels, including the corresponding scRNA-seq platform: ss2: Smart-seq2; 
iD: inDrops; cs2: CEL-seq2. Microfluidics methods in blue, well-plate methods in orange). For scmap, 
both the ‘cell’ mode (scmap_cell) and ‘cluster’ mode (scmap_cl.) where evaluated. CHETAH was run 
with default settings, but also with a zero confidence score threshold (CHETAH_0), thus forcing it to 
classify all cells to a final type. A) Percentages of cells per classification result category as shown in B. B) 
Classification result categories used in A. C) The influence of the number of cells per reference cell type 
on CHETAH’s classification performance was investigated as follows. The 7,830 cells of the (Drop-seq 
protocol) CITE-seq study41, were classified with reference cells from the PBMC dataset28, generated 
with the 10x Genomics platform. This dataset contained a total of 68,579 cells. The numbers on the 
y-axis are the number of (randomly sampled) cells per reference cell type taken to classify the input 
dataset. Classification results were divided into the six categories depicted in B. Besides investigating 
the influence of the number of cells in a reference type, this analysis also serves as an example of cross-
platform performance, as well as an example using datasets with large numbers of cells. More details 
of the datasets used can be found in Table 1. Note that in the other analyses reported throughout, no 
limitation is placed on the number of cells per reference type.
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Comparison with existing methods
The important challenge of cell type identification has recently also started to be 
addressed through the development of other automated approaches. CHETAH was 
therefore next compared to the state-of-the-art methods CaSTLe42, scmap31 (both 
versions, i.e. scmap_cell and scmap_cluster) and SingleR32 by running these programs 
with standard settings on the Ovarian, Melanoma and Head-Neck datasets (Fig. 
3A). To evaluate the performance also on non-tumor tissues, two pancreas datasets, 
Pancreas117 and Pancreas243 were included and mutually classified using the other as 
the reference. The ground truth for the classifications are the cell type labels from the 
original publications, but without the malignant cells from the tumor datasets. They 
are not part of the reference data and should therefore be considered an unknown 
cell type and should remain unassigned or intermediate.
To compare methods, two classes of input cells can be distinguished, namely [1] the 
cells that are of a type that is present in the reference and [2] cells for which no reference 
is available (Fig. 3B). For the first class it is meaningful to assess the correctness of 
the classification, because an optimal method should correctly identify all such cells. 
Those cell type inferences can therefore be correct or incorrect, corresponding to the 
true and false positives respectively (Fig. 3B). In addition, the categories intermediate 
or unassigned are allowed, to accommodate methods such as scmap and CHETAH 
that produce intermediate and unassigned calls. The second class of input cells, those 
of a type absent from the reference, should not be classified by an optimal cell type 
identification. These are therefore divided into correctly unassigned cells which 
can be considered true negatives, and their false positive counterparts, here called 
erroneously assigned, i.e. cells that were, but should not have been, classified. 

In the cancer datasets, CHETAH generally outperforms other methods (Fig. 3A) 
in terms of combined true positives (correct assignments) and true negatives (cells 
correctly left unclassified). This is particularly important for studies of cancer 
since malignant cells are typically very patient specific and would almost always be 
misclassified by greedy methods. SingleR, having no classification cut-off, always 
classifies all cells to a final type, leading to a large number of erroneously assigned 
cells in cancer samples with many malignant cells (Fig. 3). For example, both the 
cancer-associated fibroblasts (CAFs) and malignant cells are all classified as CAFs 
by SingleR. In datasets containing many unknown cells such as the malignant cells 
in the cancer samples, such approaches would therefore require very careful post 
hoc inspection of the classification on a per cell or per cluster basis, an approach 
that automated methods are meant to obviate. The selective nature of CHETAH 
makes the analysis much more efficient. As anticipated, forcing CHETAH to become 
greedy and classify all cells by applying a confidence score threshold of 0, yields a 
performance almost identical to SingleR’s (Fig. 3). 
In contrast to the cancer datasets, the pancreas data are less complex, containing cell 
types with strong differential gene expression and few unknown cells. Note that a 
perfect classifier should leave none of the cells in the Pancreas2 dataset unidentified, 
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because all its cell types are represented in the Pancreas1 reference. The converse 
is not true because for some of the cell types no distinction is made in Pancreas1. 
This is one reason that all the methods perform better on Pancreas2 (Fig. 3A). An 
additional reason is the low expression of standard Pancreas markers in one of the 
donor samples included in the Pancreas1 dataset (Fig. S8). In the comparison on 
non-cancer datasets, CHETAH’s forte of rarely classifying cells without sufficient 
resemblance to the reference cell types is diminished. This results in a performance 
similar to that of the other methods (Fig. 3). However, as is exemplified below, the 
inclusion of an intermediate assignment can have benefits for such datasets too.
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Intermediate types
In data from tumor samples the classification to an intermediate type suggests, by 
exclusion, that a cell is aberrant and therefore potentially malignant. The position 
in the classification tree, of the node of an intermediate type may shed further 
light on the biology of these cells. For example, in the Melanoma and Head-Neck 
datasets, 54% and 74% respectively of the malignant cells, classify to the node 
directly above endothelial. This suggests that the expression pattern of these cells 
shares characteristics with endothelial and fibroblast types (see Fig. S3A,B for the 
classification trees). Conversely, these cells display no affinity with the hematopoietic 
lineage, which is consistent with these tumors not being of hematopoietic origin. 
Classification to an intermediate type in combination with the position in the 
classification tree is therefore useful for analysis of cancer datasets.
Assignment to an intermediate cell type can also be useful in non-cancer datasets. 
This is demonstrated by two examples. In the Pancreas1 dataset, two kinds of stellate 
cells were originally identified, both of which are of mesenchymal origin44. PDGFRA 
and RGS5 were applied as marker genes for activated and quiescent stellate cells 
respectively. Pancreas2 only contains the more general label mesenchymal, and the 
corresponding cells only exhibit expression of PDGFRA but not RGS5 (Fig. S6), 
implying that these reference cells more closely resemble activated rather than 
quiescent stellate cells. When CHETAH classifies the Pancreas1 dataset using the 
more limited Pancreas2 reference data, it correctly identifies the Pancreas1 activated 
stellate cells as mesenchymal while leaving the quiescent stellate cells unassigned, or 
assigning them to the node directly above the endothelial and mesenchymal types 
(Fig. S8B), correctly determining that these cells are of a mesenchymal type not 
represented in the reference.

Acinar - duct cell gradient in pancreas data
Another useful consequence of allowing an intermediate type is exemplified in Fig. 
4. Some cells in a cluster identified as acinar in the Pancreas2 publication are labelled 
ductal by CHETAH (Fig. 4A), while conversely the cluster called ductal in the 
Pancreas1 study is partly classified as acinar (Fig. S8A). The presence of these mixed 
acinar-ductal groups in both datasets suggests a shared underlying phenomenon. 
Acinar and ductal cells arise from the same progenitors and are closely related45. 
They are separated by only one node in CHETAH’s classification tree (Fig. 4B and 
S8B), which is the intermediate type to which CHETAH assigns the remaining cells 
of these clusters. When visualising the profile score for duct cell in this intermediate 
node (arrows in Fig. 4B and S8B), a smooth gradient is clear in both clusters (Fig. 
4C and S8C). 
A heatmap of the expression of the genes most strongly (anti)correlating with this 
profile score shows the well-known cell type markers for these cell types (Fig. 4D and 
S8D). These cell type-specific markers again exhibit a gradient of decreasing ductal 
and increasing acinar expression. Among the negatively correlating genes are acinar 
markers like CPA1, PRSS1 and CTRC46, 47 and among the positively correlating genes 
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are pancreas duct cell markers like KRT7 and KRT1948. A similar gradient in the 
expressions of genes having unusually large loadings in the first principal component 
of their ductal cell population has been reported previously17. This is a different 
manifestation of the fact that, for these cells, there is no dichotomy between acinar 
and ductal. Instead, the type of these cells is best described as lying on a continuum 
between acinar and ductal. The intermediate type assignment and profile score 
provide a direct and intuitive visualisation highlighting such cases and the utility of 
the approach taken by CHETAH.

Discussion
Classification of cell types in scRNA-seq data is an essential step that was by necessity 
initially performed manually27,25,26,19. Owing to the subjective and time-consuming 
nature of manual approaches, automated approaches have recently been developed31, 

32,42. CHETAH has several features which work in its favour. Importantly, it compares 
input cell data with real, rather than imputed reference cell profiles. Moreover, besides 
using correlations, the classification decision is also based on a confidence score 
determined by the degree to which an input cell matches the expression variance 
embodied by the cumulative distribution function of the correlations to the reference 
cells. This facilitates the highly selective nature of CHETAH, underlying the ability 
to classify cells as specifically as the input and reference data allows, but without 
greedy over-classification, as controlled through the confidence score threshold. One 
consequence is the assignment to intermediate or unassigned cell types for input cells 
not present in the reference data. The assignment to an intermediate or unassigned 
type is essential to prevent overclassification and acts as an automated flag to more 
closely inspect such cells. The importance of this is evident both from the tumor 
datasets for which the method was initially devised, but also for non-cancer datasets 
as is also exemplified. In the tumor datasets analysed here practically all malignant 
cells were classified to intermediate types. Although genetic lesions such as copy 
number variations can be used to identify malignant cells25, this does represent an 
additional step. Moreover, such aberrations are not necessarily present (as in many 
pediatric tumors49, 50) and/or may not be readily detectable. Automated highlighting 
of malignant tumor cells by CHETAH through classification as an intermediate or 
unassigned cell type is a significant improvement compared to blind misclassification. 
CHETAH’s confidence threshold can be adjusted to the needs of the dataset at hand, 
making it a flexible tool for research. The method is made available as the R33 package 
CHETAH in Bioconductor34 release 3.9, useful for application in conjunction with 
tools such as SCENIC9, Scater10, Census11, Monocle12, Seurat13, MERLoT14 and 
CellBIC15. The CHETAH package additionally includes a Shiny35 app for intuitive 
visualisation of the type labels, profile and confidence scores in a t-SNE51 plot, as well 
as the inferred classification tree and expression heatmaps of discriminatory genes. 
In the pancreas datasets, CHETAH uncovers a group of cells exhibiting a gradient 
of profiles between acinar and ductal, previously suggested to be centroacinar cells17. 
An alternative explanation is that these are acinar cells undergoing acinar-to-ductal 
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transdifferentiation or metaplasia (ADM)47. This is commonly seen in acinar cells 
that, like those in both pancreas studies discussed here, are cultured for several 
days52 or subjected to stresses or injury53.  Subtle phenomena such as the acinar-
ductal gradient are easily overlooked by greedy methods and especially by (manual) 
methods that assign the same cell type to all cells of one apparent cluster. The accuracy 
of CHETAH is dependent on the availability of well-annotated reference datasets. It 
is firmly established that hierarchical trees derived from clustering gene expression 
data reflect many aspects of the underlying biology54. Here such trees are applied 
as a guide for classification only, without surmising accurate cellular taxonomies. 
Detailed hierarchical trees that reflect all aspects of cell types and cell states will 
obviously perform better for classification. Although the concordance between 
cell type identification based on cell surface markers and gene expression appears 
to be good41, it is important to point out that gene expression is only one way of 
characterizing cells. The definition of cell types and the difference with cellular state 
are receiving renewed interest and scrutiny with the advent of quantitative single-cell 
techniques such as scRNA-seq (see e.g. ref 55).  For the method presented here, the 
definition of cell type is pragmatic and can best be described as any group of cells 
annotated within a reference set as belonging together, and having sufficiently similar 
gene expression amongst themselves and sufficiently different gene expression with 
other types defined in the reference, so as to allow identification with high confidence. 
Classification of cells from diverse tissues, diseases and states will become easier with 
the increasing availability of well-annotated scRNA-seq datasets. Efforts like the 
Human Cell Atlas (HCA)24 are aimed at generating scRNA-seq datasets for almost 
each (healthy) tissue and cell type. CHETAH’s accurate handling of unknown cell 
types should prove useful in discovering novel cell types in such data. Conversely, the 
annotated HCA data would be very suitable as a reference for CHETAH. 
Approaches for analysis of scRNA-seq data are being developed at a rapid pace. A 
recent addition is SuperCT56 which incorporates supervised classification into a 
framework for cell-type classification. Although complementary in application 
scope (the reference dataset is fixed), we nevertheless compared accuracies, with 
CHETAH performing at a similar level of 92% concordance as analysed by the cross-
validation method in the SuperCT study, albeit by necessity as tested on different 
datasets. CHETAH is not limited to the use of scRNA-seq and can likely be used with 
other quantitative single cell data such as those obtained using DNA accessibility57, 

58, chromatin state59, methylome60, epitope41 or RNA velocity61 sequencing methods, 
provided sufficiently rich reference data is available.  Although the full range of single 
cell genome-wide approaches can be expected to increase further in the near future, 
the need for methods such as CHETAH that improve the ease and precision of the 
analysis of the resulting data is evident. 

Software Availability
CHETAH is available at github.com/jdekanter/CHETAH and through Bioconduc-
tor34. All scripts that are needed to perform the analyses mentioned in this paper 
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and to create the t-SNE plots using Seurat13 are deposited at github.com/jdekanter/
CHETAH_paper_figures.
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Figure S4. When CHETAH classification differs from the one assigned in the Melanoma study (Figure 
2A), marker gene expression suggests CHETAH’s classification is more plausible. t-SNE plots of (A) the 
Melanoma dataset and (B) a zoom-in of this dataset. Details are as in main Figure 2. The arrows point 
to the discrepantly classified populations with letters C-F indicating the panel in which the marker 
gene expression of this population is plotted. (C-F): For each cluster shown in panel B: boxplots of 
marker gene expression (number of tran–scripts) of the marker genes (shown on top) for cells of the 
conflicting cell types (CHETAH classification shown at the bottom). Colours are the same as in panels 
A,B. C) Most of the cells previously classified as B cells in the Melanoma dataset are probably naive 
B cells, but some (encircled C in panel B) are more likely plasma cells. Most of these cells express B 
cell marker CD79A. Most plasma cells express activation marker MZB1 but lack expression of CD20/
MS4A1 which goes down upon activation. The naive B cells express these two genes in opposite manner. 
D) Two previously unclassified cells are probably mast cells. These are the only cells that highly express 
mast markers TPSAB1 and TPSB2. E) Previously unclassified cells in the cancer-associated fibroblasts 
(CAFs) cluster are probably myofibroblasts. These cells express none of the CAF markers (DCN, LUM, 
FAP), while they express higher levels of actin and myosin genes compared to the CAFs. F) Previously 
unclassified cells are probably dendritic cells. Few of these cells express macrophage markers (CD14, 
TLR2), while they are enriched for dendritic markers (CCR7, FLT3).
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Figure S5. When CHETAH classification differs from the one assigned in the Head-Neck study (Figure 
1B, S1), marker gene expression suggests CHETAH’s classification is more plausible. Details as in Figure 
S3. A) t-SNE plots of the Head-Neck dataset coloured by CHETAH classification. B) Cells previously 
classified as CD8 T-cells (they cluster together strongly) are probably NK cells. These cells are enriched 
for NK marker genes KLRF1 and NCAM1. C) Cells previously identified as B-cells are probably active 
plasma cells. Most cells express B-cell marker CD79A as well as activation marker MZB1 while lacking 
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these cells express T-cell marker CD3D, while most express B cell marker CD79A. These cells show no 
expression of plasma cell marker MZB1, but do express CD20
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Figure S8. CHETAH identifies opposing gradients of duct and acinar cell marker genes in the 
Pancreas1 dataset (Baron et al., 2016; reference 10 in main text). A) t-SNE plot of the Pancreas1 dataset 
as classified by CHETAH, with colours representing the inferred cell types. The arrowhead indicates a 
population that was labeled as duct cells in the publication, but is classified to a mixture of acinar cells 
and intermediate type 6 by CHETAH. B) The classification tree used for A, based on the Pancreas2 
dataset. The arrow indicates the acinar/ductal intermediate node (Node 5) for which the profile score 
of duct cells is shown in C. C) As B, but with cells coloured by the profile score for ductal cell in Node 
5. The cells in the cluster of interest show a gradient of the profile score. D) Heatmap showing the 
normalized expression of genes used by CHETAH to calculate this profile score. Only the genes that 
correlate, or anti-correlate more than 0.5 with this profile score in these populations are shown. Rows 
are genes, columns are cells. The columns are sorted by the duct cell profile score which is shown above 
the heatmap. For the heatmap with all genes annotated see Figure S7. Note: both CHETAH and scmap 
have difficulty classifying the alpha cells of one of the donors (as identified in the original publication, 
here indicated by ‘α’ in panel A as they have an unusually low expression of the relevant markers.
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Abstract
Pediatric classic Hodgkin lymphoma (cHL) patients have a high survival rate but 
suffer from severe long-term side effects induced by chemo- and radiotherapy. 
cHL tumors are characterized by the low fraction (0.1-10%) of malignant Hodgkin 
Reed-Sternberg (HRS) cells in the tumor. The HRS cells depend on the surrounding 
immune cells for survival and growth. This dependence is leveraged by current 
treatments that target the PD-1/PD-L1 axis in cHL tumors. The development 
of more targeted therapies that are specific for the tumor and are therefore less 
toxic for healthy tissue compared to conventional chemotherapy could improve 
the quality of life of pediatric cHL survivors. Here, we applied single-cell RNA-
sequencing (scRNA-seq) on isolated HRS cells and the immune cells from 
the same cHL tumors. This allowed us to identify genes of cell surface proteins 
that are consistently overexpressed in HRS cells and can potentially be used as 
targets for antibody-drug conjugates or CAR T cells. Finally, we identify potential 
interactions by which HRS cells inhibit T cells, among which the Galectin-1/
CD69 and HLA-DRA/LAG3 interactions. However, high levels of inter-patient 
heterogeneity of the interaction strength were observed. RNAscope was used to 
validate the enrichment of CD69 and LAG3 expression on T cells near HRS cells 
but indicated large variability of the interaction strength with the corresponding 
ligands between patients and between tumor tissue regions. In conclusion, this 
study identifies new potential therapeutic targets for cHL and highlights the 
importance of studying heterogeneity when identifying therapy targets.

Introduction
Classical Hodgkin lymphoma (cHL) accounts for 10-15% of all lymphoma cases 
and represents the most commonly diagnosed lymphoma subtype in adolescents 
and young adults (AYAs)1. Combined-modality treatment regimens composed of 
multiagent chemotherapy and involved-site radiation therapy have greatly improved 
cHL survival, with current cure rates exceeding 90%1. However, 10–30% of adult 
cHL patients and 10% of pediatric cHL patients have refractory or recurrent disease2–

4. Despite the administration of high-dose chemotherapy supported by autologous 
hematopoietic stem cell transplantation (ASCT), adult refractory/relapsed (R/R) 
patients have a poor prognosis5. For pediatric R/R patients, the prognosis is better6, 
but long-term toxicity of the treatment is a significant problem. A recent study has 
shown that pediatric HL survivors had 100 excess deaths per 10,000 person-years 
25 years post-diagnosis and nearly 400 excess deaths ≥40 years from diagnosis, 
making HL the cancer with the second-highest long-term excess mortality after 
medulloblastoma7. These excess deaths are primarily attributed to treatment-related 
secondary malignant neoplasms and symptomatic cardiac/pulmonary toxicities7. 
Hence, there is high demand for novel and innovative treatment approaches that 
target the tumor more specifically and have reduced side effects while preserving or 
improving clinical efficacy.
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The cellular ecosystem of cHL is unique as it consists of rare malignant Hodgkin 
Reed–Sternberg (HRS) cells which typically represent 0.1–10% of all cells in the 
tumor tissue and are surrounded by a dense immune microenvironment consisting 
of mostly lymphocytes, myeloid cells, and fibroblasts8. The CD30-positive HRS 
cells are believed to be derived from pro-apoptotic germinal center B cells as they 
have rearranged (non-functional) immunoglobulin genes, gone through somatic 
hypermutation, and lost the expression of B cell lineage markers such as CD19, 
CD79a, and immunoglobulin gene transcripts9–11. The following lines of evidence 
suggest that the rich immune infiltrate in cHL creates an immunosuppressive tumor 
microenvironment (TME) that is essential for supporting HRS cell survival and 
growth. First, HRS cells are tightly adhered to surrounding T cells, a phenomenon 
termed rosetting, which likely is essential for HRS cell survival12. Additionally, HRS 
cells do not survive in immunodeficient mice nor grow as solitary cells in vitro, and 
establishing HRS-derived cell lines has been proven difficult13,14. Given that HRS cells 
depend on complex interactions with different immune cells, breaking or interfering 
with these interactions represents a promising treatment strategy. 

Currently, two immune checkpoint inhibitors have been FDA-approved for R/R 
cHL patients, namely nivolumab and pembrolizumab, both of which target the 
PD-1/PD-L1 signaling axis15,16. Of note, pembrolizumab is the only immunotherapy 
currently approved for pediatric cHL patients. Although the use of these PD-1 
inhibitors in combination with standard chemotherapy regimens has led to a 
significant improvement in clinical outcome, a large portion of patients still relapses, 
highlighting the dire need for the development of alternative therapies, for example, 
those that interfere with interactions between HRS and immune cells that are 
essential for HRS cell survival17.

Single-cell RNA sequencing (scRNA-seq) provides an opportunity to describe 
the TME in detail through precise molecular profiling of individual cells while 
simultaneously predicting tumor-immune cell interactions18. Previous studies 
applying scRNA-seq to cHL samples have already yielded novel insights into the cHL 
TME. For example, Aoki et al. identified a LAG3+ regulatory T cell-like subpopulation 
that contributes to the immunosuppressive phenotype of cHL19. The same group 
later characterized a unique CD4+PD-1+CXCL13+ T follicular helper cell-like subset 
in lymphocyte-rich cHL that surrounds HRS cells. The presence of this T cell 
population is associated with poor clinical outcome20. Furthermore, the transcription 
factors TOX and TOX2 were identified as key regulators of exhaustion in previously 
reported rosette-forming CD4+CD26− T-cell populations21. Finally, dendritic cells, 
monocytes, and macrophages were found to be enriched in the close vicinity of 
HRS cells, all expressing immunoregulatory checkpoints including PD-L1, TIM-3, 
and the tryptophan-catabolizing protein IDO22. These discoveries have significantly 
improved our understanding of the pathogenic mechanisms that are active in the 
cHL microenvironment. However, there are several important limitations in the 
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published scRNA-seq studies, including the lack of HRS cells detected in the samples, 
as well as the under-representation of pediatric patients included in the cohorts. 

Here, we performed flow cytometry-based cell enrichment combined with plate-
based scRNA-seq to specifically capture HRS cells and simultaneously the TME cells 
of pediatric cHL samples. We used these data to show that the presence and strength of 
HRS-immune cell interactions are highly variable between patients. The interaction 
between HRS cells with LAG3+ CD8 T cells and CD69+ T cells was predicted based 
on scRNA-seq data and validated by RNAscope. In addition, we identified HRS cell 
genes of surface proteins, other than CD30, that were expressed by the majority of 
HRS cells but few healthy tissues and thus pose potential new therapy targets. 

Results
Cell sorting and data processing
Two pediatric cHL lymph nodes were dissociated into single cells, sorted into 384-
well plates, and processed using the SORT-seq protocol23. Events with high levels of 
side scatter (SSC+) were sorted into two columns of each plate to enrich for HRS 
cells. HRS cells could only be identified in the scRNA-seq data of one of the two 
samples, which had a higher-than-average (~5%) HRS content in the tumor based on 
diagnostic CD30 immunohistochemistry staining. Therefore, the sorting strategy was 
adjusted to enrich for HRS cells using five antibodies based on previous literature24,25 
(SSC+CD20-CD95+CD15+CD30+CD40+, Fig. S1). In addition, SSC+CD20- cells 
were sorted to capture any other potential subset of the HRS cells. Seven additional 
pediatric cHL lymph nodes were processed with this panel. For six out of these seven 
samples, the HRS cell gate captured 0.01-0.04% of all the live singlets in each sample, 
while for the last sample (PB16107), this was more than 10 times higher (0.5%). 
For the last patient, more cells that expressed all HRS markers could therefore be 
sorted. Finally, 3 non-malignant reactive lymph nodes (RLN) were included in this 
study as controls. The majority of cells in RLN were CD3+ and therefore SSC+ (non-
lymphocytes) and CD20+ (B cells) cells were enriched in these samples. In total, 9594 
wells were sorted and sequenced. 5710 wells passed QC and were included in the 
final data set. See Table S1 for the number and sorting strategy of events per patient. 
The nine cHL patients were between 9 and 17 years old at the time of diagnosis, 
tumors were of stage II or III and had a supraclavicular or cervical localization, and 
one patient (PB09287) had EBV-positive HRS cells (Table 1).

Plate based scRNA-seq captures HRS cells
Classification of the cell types was guided by automated cell type identifiers 
CHETAH26 and SingleR27 (Fig. S2A,B). B and T lymphocytes and myeloid cells were 
identified (Fig. 1A,B). Each of these cell types was processed and clustered separately, 
and subtypes were identified based on canonical subtype markers (Fig. S2C-E). 
Exhausted and cycling CD8 T cells were identified, as well as exhausted, cycling, 
and naive CD4 T cells and T follicular helper cells (TFH, Fig. 1A). Germinal center 
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B cells (GC-B), and naive and plasma B cells were detected, as were monocytes and 
macrophages, together with different subsets of dendritic cells (DC). Of note, some 
cell types, like cycling CD8 and CD4 T cells, were highly enriched in the cells sorted 
on specific flow cytometry characteristics and were only present in small numbers in 
the unbiased live cells.

patient diag-
nosis

sub 
type

stage EBV loca-
tion

age sex scRNA-
seq

HRS 
gate 
(%)

RNA-
scope

PB24752 cHL ns NA neg NA 15 male yes - no

PB19568 cHL ns II A neg cervical 16 female yes 0.01 no

PB09287 cHL mc II A pos cervical 10 male yes 0.01 no

PB31727 cHL nos III B neg cervical 12 male yes 0.04 no

PB26217 cHL ns III A neg cervical 17 male yes - yes

PB16107 cHL ns II AE neg supra-
clavic-
ular

16 female yes 0.48 no

PB11473 cHL ns II A neg supra-
clavic-
ular

9 female yes 0.01 yes

PB05088 cHL ns II BE neg cervical 14 male yes 0.03 no

PB09908 cHL ns III AE neg cervical 15 male yes 0.01 no

PB06422 cHL nos III B NA NA 15 male no - yes

PB27302 cHL ns VI BE NA NA 16 male no - yes

PB25394 RLN - - - armpit 8 male yes - no

PB32331 RLN - - - cervical 13 male Yes - no

PB32684 RLN - - - NA 15 male yes - no

Table 1. Sample information and clinical information of the patients included in this 
study. 
RLN = reactive lymph node, cHL = classic Hodgkin Lymphoma. ns = nodular sclerosis, mc = mixed 
cellularity, nos = not otherwise specified.

In addition, a few clusters were detected in the scRNA-seq data that separated from 
the other cell types. These clusters only contained data from cHL samples (n = 8), and 
the cells of most individual patients clustered separately. As opposed to the immune 
cells in the data set, 75% of these cells were classified by CHETAH as an intermediate 
cell type, indicating they were not of any cell type in the CHETAH cancer TME 
reference dataset (Fig. S2A). These cells followed expression patterns found on HRS 
cells by immunohistochemistry (Fig. S3A,B). Indeed, 93% of these were sorted by 
the HRS cell gate, indicating that the HRS markers were expressed both on RNA and 
protein levels in these cells (Fig. 1C). Furthermore, when inferring chromosomal 
copy numbers using inferCNV28, large chromosomal gains and losses were detected, 
which are characteristic of HRS cells (Fig. 1D). We observed recurrent amplifications 
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A) UMAP plot of all cells from cHL and reactive lymph nodes (RLN) labeled by cell type. B) UMAP 
plot colored by patient. C) FACS intensities of the cells sorted with CD30 and CD40 antibodies labeled 
according to the scRNA-seq cell types. D) Copy number variation (CNV) plot of the HRS cells shown 
in (A). Each row is a cell, each column is a gene. E) Normalized copy number plots of patient PB16107 
based on HRS cell WGS data (top) and HRS cell scRNA-seq (bottom). F) The number of reads in each 
cell of patient PB16107 that supported a mutation found in the WGS data of HRS cells from the same 
patient.

of chromosomes 2p, 5, and 9p (n = 4), and recurrent deletions of chromosomes 13 
(n = 3), which is in line with previous studies10,29. To validate that these cells were 
indeed HRS cells, whole genome sequencing (WGS) was applied to DNA extracted 
from 3,500 sorted HRS cells of patient PB16107 using low-input whole genome 
amplification. The CNV pattern that was inferred from the scRNA-seq HRS cluster 
of this patient was highly similar to WGS-based CNVs (Fig. 1E). To further validate 
that these cells were HRS cells, 22 WGS-based single-base substitutions (SBS) were 
identified that had sufficient coverage in the scRNA-seq data. 99.5% of the 980 
unique reads that supported HRS cell SBS were from cells in the HRS cluster (Fig. 
1F). Together, these results validate the HRS cell identity.

As HRS cells have rosetting T cells that can remain attached throughout the cell 
sorting procedure, we investigated the expression of T cell genes in the HRS clusters. 
Although some events in the HRS clusters did express a few T cell markers, only CD4 
was expressed to similar levels as CD4 T cells, indicating that if present, the T cells 
contributed relatively few transcripts compared to the HRS cells (Fig. S3C,D).

Defining a core set of HRS marker genes
As described above, genes that are expressed by most HRS cells in most patients 
could pose novel targets for cHL treatment. In addition, highly specific HRS markers 
can potentially simplify the identification of HRS cells, e.g., by decreasing the number 
of antibodies needed for flow cytometry purification. To overcome the potential 
biases of the single dataset from our center and to identify targets that are relevant 
for pediatric and adult cHL, we performed differential expression analysis (DEA) 
between HRS cells and healthy B cells in both the scRNA-seq and two microarray 
datasets of micro-dissected HRS cells13,30. 837 genes were consistently overexpressed 
in HRS cells in the 3 datasets and were together termed the “HRS-core” set (Fig. 2A, 
B). As expected, the HRS-core set was depleted for genes located on the recurrently 
deleted chromosome 13 (p=0.03) and seemed enriched for genes located on the 
recurrently amplified chromosome 2, albeit not significantly (p=0.08). We validated 
the HRS-core set using bulk RNA-seq of cHL lymph nodes and RLN obtained from 
the diagnostics department. The expression of most HRS-core genes correlated 
well with the expression of HRS marker TNFRSF8 (CD30) in cHL bulk RNA-seq, 
underlining their specificity for HRS cells (Fig. S4A, B). Of the HRS-core set, 122 
genes were also differentially expressed between cHL and RLN samples. Of these, 74 
were also uniquely overexpressed in bulk cHL compared to other B cell lymphomas. 
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Figure 2. HRS core-genes identification
A) A Venn diagram of HRS markers as identified in four datasets, HRS cell microarray data from Steidl 
et al.30 and Tiacci et al.13, the scRNA-seq data presented here, and bulk RNA-seq data of cHL and 
reactive lymph nodes. The genes that overlapped between the two microarray datasets and the scRNA-
seq dataset were termed “HRS-core” genes. B) The differential expression of HRS markers in HRS cells 
compared to normal B cells in the scRNA-seq data compared to the Tiacci et al. microarray data. Each 
point is a gene. Points are colored according to fold change in expression in the Steidl et al. microarray 
data of HRS cells compared to healthy B cells. C) KEGG-pathway enrichment of the HRS-core genes. 
D) An aggregate score of the expression of differentially expressed HRS-core genes in HRS cells of 
patient PB16107.

The HRS-core genes were enriched for gene ontology (GO) terms involved in pathways 
that were previously reported to be active in HRS cells such as extrinsic apoptotic 
signaling, positive regulation of leukocyte cell-cell adhesion, positive regulation of T 
cell activation, and mononuclear cell migration (Fig. S4C). In addition, the HRS cells 
were enriched for KEGG pathways JAK-STAT (JAK3, STAT1/5A/5B, SOCS1/2/3), 
TNF (TNF, TNFAIP3), EBV infection (CD44, E2F1), and PD-L1 checkpoint (CD274, 
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BATF, BATF3), all of which have previously been identified to be active in HRS 
cells (Fig. 3C)13,30,31. We also identified genes encoding for well-described signaling 
molecules that play central roles in cHL pathology, such as IL6, IL13, IL15, CCL17 
(TARC), CCL22 (MDC), and LTA (TNF-β)32–35. Corresponding receptor genes 
IL13RA1 and IL15RA were also part of the HRS-core set, suggesting that IL-13 
and IL-15 might be the interleukins that are most commonly involved in autocrine 
HRS cell signaling. These interleukins might thus play a central role in HRS cell 
survival and therefore pose potential targets for therapy. Genes encoding other well-
described interleukins such as IL4, IL5, IL8, and IL10, and their receptor31,36,37, were 
not consistently overexpressed in HRS cells in all three datasets. Furthermore, genes 
that are normally only expressed in other tissues were identified, for example, the 
TENM2/3, ADCY1, BRINP2 (nervous system), and DHRS2 (bladder). These genes 
are likely expressed due to the chromosomal rearrangements within the HRS cells38. 

To identify potentially therapeutically targetable HRS genes, genes were selected with a 
high predicted likelihood of being present on the plasma membrane, being expressed 
in only a few healthy tissues, and being present on the HRS cells of all (but one) cHL 
patients in the scRNA-seq. This resulted in 10 genes including the canonical HRS 
marker TNFRSF8 (CD30) which is targeted by the clinically applied brentuximab 
vedotin (anti-CD30)16,39,40. In addition, interleukin gene IL6 was identified, as well 
as TNF, testis-specific lipoprotein-receptor LRP8, lipoprotein APOL1, keratinocyte-
specific PERP, and the well-described Epstein-Barr Virus Induced 3 (EBI3), which 
heterodimerizes with p28 to form IL27. IL6, TNF, and IL27 can be membrane-
bound, but they would more likely be useful targets for unconjugated antibodies 
that block their binding to target cells. This approach is most likely to be successful 
if these genes are proven to be essential in the cHL TME, and risk severe side effects 
as such antibodies could potentially affect the entire immune system. Based on their 
function, most of the other genes encode for proteins that are unlikely to play key roles 
in HRS signalling pathways. However, they could potentially be used as therapeutic 
targets for antibody-drug conjugates or CAR T cells, or in flow cytometry to identify 
HRS cells.
 
HRS cell heterogeneity
Investigating the intra-patient heterogeneity of HRS cells was not possible for most 
samples, as the number of HRS cells was too low (9-53 cells). For PB16107, 497 HRS 
cells were captured, which were therefore processed separately. Interestingly, these 
HRS cells formed a continuum, with 35% of differentially expressed genes between 
the two ends of this continuum overlapping with the HRS-core set (CLL17, CCL22, 
TNF, LTA, NFKBIA, IL6, IL13). This was independent of total UMI counts or cell 
cycle phase (Fig. 2D). This finding suggests that the general HRS-core expression 
“program” can have varying levels of activity within the HRS cells of a single patient.
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To further analyze diversity, we investigated the inferred CNV profiles of PB16107 
and found only 1 minor subclone, which had a loss of chromosome 15 (Fig. 1C). No 
subcluster of cells could be found by PCA or t-SNE that had a lower expression of 
genes positioned on chromosome 15, suggesting that chromosomal instability did 
not drive the highest levels of gene expression heterogeneity in the HRS cells.
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Figure 3. The immune cell composition of the cHL microenvironment differs from 
reactive lymph nodes
A) UMAP plots of cells of cHL lymph nodes and reactive lymph nodes (RLN) labeled by cell type. 
B) A quantification of the percentage of cell types shown in (A) per sample. Each dot represents a 
sample. Here and in all other figures, the box plots depict the median (center line), 25th and 75th 
percentiles (box), and the largest values no more than 1.5* the interquartile range (whiskers). P-values 
were calculated using the differential composition analysis of DCATS41 and fdr-corrected. C) The 
estimated frequency of cell types in bulk RNA-seq data of cHL lymph nodes and RLN as estimated by 
CIBERSORT. P-values were calculated by the Wilcoxon-test and fdr-corrected.

HRS cells inhibit T cells by a variety of interactions
To study cell-cell interactions in cHL, it is important to first identify which cell types 
are enriched and depleted in the cHL TME compared to normal lymph nodes. For 
this analysis, only unbiased live cells were used that were not enriched for any marker 
in flow cytometry. Exhausted CD4 T cells were overrepresented in cHL compared to 
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RLN (relative ratio 16.6, p=0.01, Fig. 3A, B). In contrast, GC-B cells, the B cell type 
that are abundant in normal germinal centers, was present at lower frequencies in 
cHL lymph nodes, as were NK cells (relative ratio, 0.11 and 0.12, p=0.01). Plasma cells 
and TFH were also depleted, although not significantly, due to their low numbers in 
both cHL and controls.

To validate these results in a larger number of samples, CIBERSORTx42 was used for 
deconvolution of bulk RNA-seq of 59 cHL and 14 RLN obtained from the diagnostics 
department, using the scRNA-seq data as a reference (Fig. 3C). This analysis validated 
that the exhausted CD4 T cell was the most enriched cell type in cHL compared to 
reactive lymph nodes (ratio 3.0, p=0.0005), and that GC-B cells were most depleted 
in cHL samples (ratio 9.4, p=0.0003). In addition, cycling CD8 T cells were depleted 
(p=0.0046) and cycling CD4 T cells were enriched (p=0.047) in bulk RNA-seq cHL 
samples, although this difference was small in the scRNA-seq data (1% compared to 
2% of all cells in both cases). In addition, a higher number of myeloid cells was found 
in bulk cHL compared to bulk RLN (p=0.015), while this was not the case in scRNA-
seq. These cells likely have a lower survival during the freeze-thawing and single-
cell sorting procedure and are therefore underrepresented. In addition, while in the 
scRNA-seq naive B cells were more common in cHL lymph nodes, in deconvolution, 
these cells were more abundant in RLN. These results validated that germinal center 
B cells are depleted from cHL tissue, and that exhausted CD4 T cells are the most 
enriched type. It seems therefore likely that HRS cells interact most with exhausted 
CD4 T cells.

Our data provides a unique opportunity to investigate in vivo interactions between 
HRS cells and the TME on a per-patient basis. Interaction scores were calculated by 
grouping cell types into broader categories and multiplying the expression of a ligand/
receptor in a TME cell type of one patient with the expression of the corresponding 
receptor/ligand in the HRS cells of the same patient (Fig. 4A). Most interactions that 
we identified were only observed in one or a few patients (Fig. S5) and 49% of the 
interactions that were found to be active in cHL had a similar or stronger activity in 
RLN. In CD4 and CD8 T cells, B cells, and DCs an enrichment could be observed 
for interactions with HRS cells that were present in all eight investigated cHL lymph 
nodes. Of these, HRS had the highest number of consistent interactions with CD4 T 
cells. 

The high number of exhausted CD4 T cells in cHL, and the high number of predicted 
interactions between HRS and CD4 T cells suggest an important role for this cell 
type in HRS survival. Indeed, some of the strongest interactions in cHL had a role 
in the inhibition/exhaustion of T and NK cells. Compared to RLN, CD4 T cells 
expressed more CTLA4. LAG3 was overexpressed in the CD8 T cells in our data set 
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Only interactions are shown that are present between HRS cells and a single immune cell type in 3 or 
more samples. The difference in the maximal interaction strength is indicated on the right side of the plot.  
B) The number of samples in which an interaction was present between HRS cells and the indicated cell 
type. C) The percentage of cells expressing inhibitory receptors on T or NK cells per sample. For each 
receptor, the percentage of HRS cells expressing the corresponding ligand is depicted. Each dot is an outlier.  

(Fig. 4C), while in adults, LAG3 is mostly expressed in CD4 T cells19. In addition, NK 
cells expressed more HAVCR2 (TIM3), and myeloid cells expressed the inhibitory 
immunoglobulin-like gene LILRB1 (CD85J). Ligands for these receptors were 
expressed in HRS cells (CD80, HLA-II, HMGB1, HLA-I, Fig. 4C). PD-1L is highly 
expressed in HRS cells due to 9p24.1 alterations43, which is confirmed in our data. 
However, the PD-1L/PD1 interaction was not present. The only subtype of T cells 
that expressed PD1 in our dataset was the TFH cell (Fig. 4C). TFH cells were depleted 
in cHL lymph nodes in our data, which might explain the previous observation that 
cHL tumors are depleted of PD1-expressing T cells44. Finally, Galectin-1 (LGALS1) is 
highly and specifically expressed in HRS cells of all samples. Galectin-1 can induce 
T cell exhaustion via the CD69 receptor, which is expressed on a subset of cHL T 
cells45. Targeting this interaction has been proposed as a general method to enhance 
T cell anti-tumor immunity in cancers46 and might thus be of interest for developing 
strategies to treat cHL using targeted approaches. However, the interaction scores 
varied greatly between patients. For example, the highest interaction score for 
CTLA4-CD80 in CD4 T cells was 14 times higher than the lowest score. The ratio 
between the highest and lowest interaction score was 7 for CD69-LGALS1, and the 
ratio was one of the lowest for LAG3-HLA-DRA at 1.8, indicating this is one of the 
most common and consistent interactions in pediatric cHL and thus likely important 
for HRS survival.

Inter-patient spatial heterogeneity of commonly detected interactions
To validate the presence of the inhibitory interactions between HRS and T cells and to 
investigate the inter-patient heterogeneity of these interactions, RNAscope imaging 
was performed (Fig. 5A, S6). For 4 patients, the interaction between HLA-DRA+ HRS 
cells and LAG3+ CD8 T cells was studied (probes for HLA-DRA, LAG3, CD8, and 
TNFRSF8, refered to as CD30). In a separate panel the interaction between LGALS1+ 
HRS cells with CD69+ T cells was studied (probes for LGALS1, CD3E, CD69, TNFRSF8/
CD30). Two of the samples were selected from the patients of the scRNA-seq cohort, 
two were from cHL patients outside of our scRNA-seq cohort (Table 1). RNAscope 
was applied on entire slices of the cHL lymph nodes. For each patient, between 4 
and 8 representative regions with varying expression of the different markers were 
selected for further inspection. Interestingly, the total LAG3 expression per region 
correlated with CD8A expression, as did CD69 expression with CD3E (R2>=0.7 in 
each patient, Fig. 5A,B). Second, CD8A was more often co-expressed with LAG3 
in the same cells compared to background (Fig. 5C). CD3E was co-expressed with 
CD69, but to a lower extent. In summary, the RNAscope data confirms the frequent 
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Figure 5. Spatial assessment of LAG3+CD8A+ and CD69+CD3E+ T cells with HRS cells
A) Examples of RNAscope images of HRS cells (CD30) with T cells in close proximity. On the left side 
images of RNAscope panel 1 of patient PB26217 are depicted. On the right, images of panel 2 of patient 
PB27302 are depicted. The legend continues on the next page.
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B) RNAscope co-expression of CD8A and LAG3 across regions of cHL lymph nodes. Regions were 
separated into 51px blocks. The fraction of blocks positive for each marker is depicted. Each dot is a 
region of one lymph node. C) The same as B, but for CD69 and CD3E expression. D) Co-expression of 
genes in 51px blocks (7.2 µm). The fold change of block positive for a gene (on the x axis) that is also 
positive for a second gene (above each plot) compared to the background expression of that second 
gene in the other blocks. A value above 0 means co-expression is more often observed than expected 
by chance. Each dot is a single region in a sample. E) The fraction of T cells (as defined by CD3E or 
CD8A expression) that express the inhibitory receptor genes LAG3 and CD69. T cells were separated 
into blocks surrounding HRS cells that did not express the inhibitory ligand (“lig- HRS”), blocks 
surrounding HRS cells that expressed the inhibitory ligand (“lig+ HRS”), and regions not adjacent to 
any HRS cell (“no HRS”). Ligands are LGALS1 for the CD69 receptor and HLA-DRA for the LAG3 
receptor. F) Enrichments of the data shown in E. Top: T cells expressing the inhibitory receptor gene 
near HRS cells (“lig- HRS”/”lig+ HRS” in E) compared to T cells not near HRS cells (“no HRS” in E). 
Bottom: T cells expressing the inhibitory receptor gene near ligand-positive HRS cells (“lig+ HRS” in E) 
compared to ligand-negative HRS cells (“lig- HRS” in E). Log2 fold changes of values in E are shown. 
The bar plot is based on all T cells in all regions of an individual patient. The dots indicate the log2 fold 
change in single regions.

expression of LAG3 on CD8 T cells and the expression of CD69 on CD3 T cells, 
although at a lower frequency, which is in line with the scRNA-seq results (Fig. 4C).

CD30 and LGALS1 were co-expressed more often than background, although this 
enrichment was not as high as the enrichment of the inhibitory receptors on the 
T cells (Fig. 5C). HLA-DRA expression was the same on CD30-expressing cells as 
background. This means that HRS cells do express LGALS1 more than other cells, but 
not HLA-DRA. Of note, large variability was observed between patients and regions 
between the expression of the T and HRS markers with no consistent correlation 
between the two (Fig. S6, S7). This suggests that HRS cells do not consistently induce 
expression of the inhibitory receptors on T cells across patients and tissue regions.

To see if there was an indication of cell-cell interactions, we analyzed the local 
enrichment of T cells around HRS cells. We found CD30+ cells closely surrounded 
by CD69+ and LAG3+ cells (Fig. 5D). Therefore, we assessed whether T cells near 
HRS cells were more or less likely than other T cells to express CD69 or LAG3. In 
41 out of 45 regions, T cells expressing CD69 or LAG3 were enriched near HRS 
cells. This indicates that this subset of T cells is either recruited towards HRS, or the 
expression of the inhibitory receptor is induced near HRS cells. Still, the variation 
across different regions of the tumors was high in most patients (Fig. 5E,F). Then, the 
enrichment of CD69/LAG3-expressing T cells was compared between HRS cells that 
expressed the corresponding ligand and the other HRS cells (Fig. 5F). Interestingly, 
in patient PB26217 T cells near LGALS1+ HRS cells expressed CD69 more often in all 
tumor regions, but this was more variable for patients PB27302 and PB11473 and not 
the case for patient PB06422. The expression of LAG3 on T cells was not enriched 
near HLA-DRA+ HRS cells compared to other HRS cells in any patient.
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Discussion
Here, we present a unique method to simultaneously capture scRNA-seq data of HRS 
and TME cells. While previous cHL scRNA-seq studies only captured TME cells20,21 
and compared their data to publicly available bulk HRS cell profiles of another 
cohort19, we could identify constitutively expressed HRS cell membrane protein 
genes and identify the strength of HRS-immune cell interactions per patient. This 
approach gave us a possible explanation for the previously observed depletion of 
PD1+ T cells in cHL tissue44, namely the depletion of germinal center cell types in 
cHL tumors including PD1+ TFH cells. 

Most interactions were found between HRS and T cells. We found that in pediatric 
cHL, NK cells and each T cell subset express a different inhibitory receptor gene. In 
addition, we were able to identify CD69/Galectin-1 and LAG3/HLA-II as a probable 
interaction between the HRS and T cells in most tumors based on scRNA-seq. 
Imaging analysis validated the expression of LAG3 and CD69 on CD8 and CD3 T 
cells respectively and indicated that their expression was enriched on T cells that 
surrounded HRS cells in all patients, although the amount of enrichment varied 
greatly. However, when also studying the corresponding ligand, the CD69/Galectin-1 
interaction was present in one out of four investigated tumors, and the interaction 
was only identified in a subset of the tissue regions of the other tumors. The LAG3/
HLA-II interaction was not observed in any patient. Possibly, other ligands on HRS 
cells are important for the interaction in the patient without enrichment, or the 
protein level of the ligands in HRS cells is different from transcript levels. The LAG3/
HLA-II and CD69/Galectin-1 interaction might thus not be universally targetable 
but could pose a potential targetable interaction in a subset of patients. Experiments 
should validate the in vivo protein-protein binding of this ligand-receptor pair and 
should assess the effect of interfering with this interaction.

By capturing single HRS cells, new potential universal membrane markers could be 
identified. In addition, in one patient a continuum of the HRS-core transcriptional 
program could be identified. Extended cohorts capturing more HRS cells should 
validate this transcriptional heterogeneity and investigate its link with treatment 
response and prognosis, as this would for example reduce their usefulness as 
universal HRS markers in flow cytometry. A combination of single-cell DNA and 
RNA sequencing might elucidate whether the transcriptional heterogeneity can be 
explained by heterogeneity on the DNA level, like previously indicated for CNVs47, 
or whether it is absent as was suggested for patient PB16107. 

In addition, most interactions identified in this study were only found in one or a few 
patients. This highlights the importance of considering the inter- and intra-patient 
heterogeneity of the cHL TME when investigating new targets for immunotherapies. 
Finally, some differences were found with previous studies, e.g., a higher fraction 
of CD8 T cells expressing LAG3 compared to CD4 T cells, while the opposite was 
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previously reported in adults19, calling for a study investigating the differences 
between childhood/young adult cHL and adult cHL.
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Methods
Patient material
All lymph nodes that were used for scRNA-seq were obtained as frozen single-
cell suspensions from the biobank of the Princess Máxima Center for Pediatric 
Oncology, Utrecht, the Netherlands in accordance with the declaration of Helsinki. 
The use of the material was approved by the Biobank and Data Access Committee 
under proposals PMCCRC2018016 (Hodgkin Lymphoma lymph nodes) and under 
PMCLAB2021-254 (reactive lymph nodes). 

Patients were selected that were diagnosed between 2019 and 2022 with cHL of 
any subtype and for who frozen single cell suspensions of lymph node material was 
available. After the initial two patients were processed by scRNA-seq (PB24752, 
PB262127), the other samples were screened for having cells with HRS cell-like 
marker expression (see below). Only those samples that had those cells were selected.
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Immunohistochemistry
Immunohistochemistry (IHC) information was obtained from routine diagnostic 
IHC. IHC was performed on the Leila Bond III staining system. IHC stainings were 
analyzed by an experienced pathologist. EBV status of HRS cells was determined by 
EBER in situ hybridization imaged on the same machine.

Single cell suspension
Single cell suspensions were made by the diagnostic technicians specialized in 
flow cytometry as follows. Wash medium (20% FCS, 80% RPMI-Glutamax) with 
2% gentamycine was added to the lymph node biopsies, which were minced and 
pushed through a 100um cell strainer, spun down for 10 minutes at 300 RCF at 
room temperature and resuspended in washing medium and put on ice. Cells were 
divided over different ampuls, spun down at 469 RCF for 5 minutes, resuspended in 
500 ul washing medium, 500ul freezing medium was added in drops (80% washing 
medium, 20% DMSO) and cells were stored in liquid nitrogen freezers.

Fluorescence-activated cell sorting
Samples were thawed and stained for FACS after which events were sorted in 384 
well plates. Sorting was performed on a Sony SH800S Cell Sorter. In all samples, 
all sorted events were DAPI-negative singlets, as determined by an FSC-H/FSC-A 
and an SSC-H/SSC-A gate. The Sony SH800S measures backward scatter, not side 
scatter, but as these are indicative for the same granularity/complexity “SSC” is used 
for clarity as the abbreviation throughout the manuscript. In addition, for all samples 
unbiased live singlets were sorted into the majority of the wells. In addition, for all 
samples, part of the wells was filled with SSC+ cells. Except for the first two processed 
cHL lymph node samples, the other seven were stained with fluorescently labeled 
antibodies against CD20, CD30, CD40, CD95, and CD15. Depending on the number 
of cells present after thawing and the fractions of cells that were part of these subsets, 
part of the wells were filled with SSC+CD20- cells (“tumor-lenient”) and SSC+CD20-

CD30+CD40+CD95+CD15+ cells (“tumor-strict”). The gating strategy for the HRS 
cell gate is depicted in Fig. S1. Reactive lymph nodes were stained with CD20 and 
part of the wells were filled with SSC+ and CD20+ cells. The BioLegend antibodies 
used were as follows. CD20-BV421 (clone 2H7, 302329, 1:50), CD15-FITC (clone 
HI98, 301903, 1:50), CD95-PE (clone DX2, 305607, 1:50), CD30-APC (BY88, 
333909, 1:25), CD40-AF700 (clone 5C3, 334327, 1:50), CD3-APC/Fire750 (clone 
SK7, 344839, 1:50). In addition, samples were stained with DAPI (Sigma-Aldrich, 
D9542-1MG, 500mM 1:250). Reactive lymph nodes were stained with CD20-FITC 
(clone 2H7, 302303) instead of CD20-BV421, DAPI, and DRAQ5 (50uM 1:100). For 
a full overview of samples, cell numbers and sorting strategy, see Table S1.

Single-cell RNA sequencing library, processing, and filtering
Single-cell RNA sequencing was performed according to the SORT-seq protocol23. 
384 well plates were filled with Sigma mineral oil (10ul), RT primers (50nl), and 
External RNA Controls Consortium (ERCC) spike-in transcripts. The first 
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column was left empty to be able to control for background contamination after 
sequencing. Library preparation was done as previously described23,48. Paired-end 
75bp sequencing was performed on an Illumina Nextseq 500. Mapping to reference 
genome hg38, annotation using Gencode 26, and gene-level transcript quantification 
was done with the Sharq pipeline49.

Only wells in which the library was successfully constructed and sequenced, as 
judged from the ERCC transcripts, were considered. Then DecontX was run, using 
all the successful wells from all plates, to remove ambient RNA50. Finally, wells with 
less than 1000 transcripts, less than 200 measured genes, or with more than 50% 
mitochondrial reads were removed. Further processing was done using the Seurat 
R package v4.1.151. This included normalization to 10,000 transcripts, data scaling, 
and identification of the 2000 most variable features. Variable features were filtered 
for cell cycle genes, sex genes, shock protein genes, and ribosomal genes as described 
before52. This resulted in a list of 1798 variable genes. Principal component analysis 
(PCA, 100 PCs) was performed, and the first 30 principal components were used for 
UMAP dimensionality reduction and shared nearest neighbor clustering (resolution 
0.05).

To identify cell types in the scRNA-seq data, first the HRS cells were identified. Then, 
the expression of HRS markers per cluster was compared to the HRS expression 
pattern based on the immunohistochemistry of the pathology department. Then 
SingleR package v 1.10.027 was applied with the celldex v.1.6.0 Monaco reference data. 
In addition, CHETAH v 1.13.026 was run with the default tumor immune reference. 
Based on these classifiers and canonical marker expression, cell types were assigned 
to each cluster. Subsequently, the clusters containing T cells were processed separately 
by Seurat as described above to better define the T cell subtypes. These subtypes were 
determined by T cell marker expression. The same procedure was performed for all 
myeloid cells.

Differential composition analysis was performed using the R package DCATS 
v0.99.641 with default settings to determine which cell types were depleted and 
enriched in cHL compared to RLN. The p-values from the likelihood ratio test were 
fdr corrected.

Copy number variation
The inferCNV package28 v 1.12.0 was used to infer CNVs from the scRNA-seq data, 
using the standard settings “cutoff=0.1, denoise=TRUE, cluster_by_groups=TRUE”.

Cell-cell interactions
The immune cell composition of the cHL lymph node from PB24752, in which no 
HRS cells could be detected, had a high fraction of GC-B and TFH cells, but almost 
no exhausted T cells. As this makes it likely that the part of the lymph node tissue that 
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was analyzed had low or no HRS cells and was thus not representative of the tumor 
tissue, this sample was excluded in all subsequent immune cell analyses.

Receptor-ligand pairs were taken from the curated iCellNet interaction database53. 
Only those interactions were selected for which all ligand and receptor genes were 
measured in the scRNA-seq data. First, the expression of each ligand and receptor 
was averaged per cell type per patient. For each patient, only cell types with 5 or more 
cells were used. Interaction scores were determined by multiplying the averaged 
ligand expression of one cell type with the averaged receptor expression of another 
cell type from the same patient. An interaction was considered to be active in a 
patient when the interaction score was 0.1 or higher. “Common” interaction between 
HRS and a specific cell type were those that were present in at least all but 2 patients 
(with a minimal of 3).

Bulk RNA-seq
Bulk RNA sequencing data generated for routine diagnostics were obtained from 
the Princess Máxima Center biobank under proposals PMCLAB2021-205 and 
PMCLAB2021-254.
Cell type deconvolution was performed with CIBERSORTx42. A signature matrix was 
constructed from the scRNA-seq data using default settings. Cell type fractions were 
imputed in “absolute mode” using “S-mode” batch correction with 100 permutations. 
Differential cell abundance was calculated with the Wilcoxon-test and fdr corrected.

HRS markers
Differential expression analysis (DEA) was performed for the scRNA-seq data using 
the FindMarkers function from the Seurat package, comparing HRS cells to all other 
cell types, using the setting “logfc.threshold = 0, min.pct = 0, min.diff.pct = 0, min.
cells.feature = 0, min.cells.group = 0”. Affymetrix data from Tiacci et al.13 and Steidl et 
al.30 were normalized using RMA (oligo package v1.60.054) and DEA was performed 
using limma v3.52.2 with standard settings55. HRS cells from Steidl et al. were 
compared to bulk cHL, GC-B cells, and centroblasts. In the data from Tiacci et al. 
HRS were compared to naive B cells, memory B cells, centrocytes, and centroblasts. 
In the bulk-RNA seq data, DEA was performed using the DESeq2 v1.36.0 package 
using standard settings and using data of reactive lymph node samples as the control56.

For each of the four expression datasets, a gene was considered differentially expressed 
when the adjusted p-value was lower than 0.01 and the log2 fold change (log2FC) 
was higher than 0 for the bulk RNA seq, or the average log2FC in the scRNA-seq 
was higher than 0, or the minimal log2FC of all comparisons with the normal B cell 
references was greater than 0 for Affymetrix data. HRS core genes were those that 
were identified in the two Affymetrix datasets and the single-cell RNA seq data.
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Bulk RNA sequencing data was also obtained from non-Hodgkin lymphoma 
samples from the Princess Máxima Center biobank. Deseq2 was applied to perform 
differential expression analysis between Hodgkin and non-Hodgkin lymphomas as 
described above.

GO term enrichment was performed using the enrichGO function from 
ClusterProfiler v.4.4.4. using the “biological process” ontology57. KEGG pathway 
enrichment was performed with the diffEnrich v0.1.2 package with the following 
setting, “N = 5” 58.

SurfaceGenie59 was used to extract genes that express a protein that has a high 
likelihood of being present on the surface of the cell membrane. High likelihood 
was defined as being predicted as a membrane protein by at least 4 out of 5 methods. 
Then, HPAanalyze60 v1.14.0 was used to select genes that were expressed in fewer 
than 10 out of 127 normal cell types from 55 tissues from the Human Protein Atlas.

WGS, processing, SNV calling, and copy number variation
For patient PB16107, whole genome sequencing was performed on 3,500 bulk-sorted 
HRS cells. The sorting protocol was the same as described above for the scRNA-seq 
with cells sorted based on FSC/SSC characteristics and the following staining profile 
DAPI-SSC+CD20-CD30+CD40+CD95+CD15+. DNA was isolated using the NEBNext 
Ultra II FS DNA Library Prep kit. As a control, bulk T cells (CD20-CD3+) were 
sorted (~500.000 cells) and DNA was isolated with the Qiagen QIAamp DNA micro 
kit. DNA of HRS and T cells was sent for 30X WGS. FREEC was used to determine 
the copy number variation in this sample using a bin size of 2Mb61. The IAP pipeline 
was used for read alignment and variant calling and further filtering was performed 
using SMuRF v2.1.2 as described previously62. For each SNV position in the WGS, 
all scRNA-seq reads from PB16107 that spanned the mutation sites were extracted. 
SNVs that had at least 80 reads spanning it were selected. From these reads, per 
cell, the number of alternative and reference reads was determined based on unique 
UMIs. Finally, per cell the total number of UMIs that supported any of the alternative 
alleles was calculated.

RNAscope In Situ Hybridization
In situ hybridization assays were performed with RNAscope technology using the 
RNAscope Fluorescent Multiplex kit v2 (ACD, 323100) and 4-plex Ancillary Kit 
(ACD, 323120). Formalin-fixed, paraffin-embedded (FFPE) tissues from four cHL 
patients were cut into 6μm sections using a microtome. Probes used included the 
following: Hs-TNFRSF8-C1 (ACD, 593451-C1), Hs-LGALS1-C2 (ACD, 486281-
C2), Hs-HLA-DRA-C2 (ACD, 475891-C2), Hs-CD69-C3 (ACD, 494471-C3), Hs-
CD8A-C3 (ACD, 560391-C3), Hs-LAG3-C4 (ACD, 553931-C4), and Hs-CD3E-C4 
(ACD, 553971-C4). FFPE sections were deparaffinized in xylene and rehydrated in 
ethanol. RNAscope Hydrogen Peroxide was applied to block endogenous peroxidase 
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activity before target retrieval was performed for 15 min in a preheated glass beaker 
(100oC) containing target retrieval solution. Protein digestion was then carried out 
by applying RNAscope Protease Plus. Probes were hybridized for 2 hours at 40oC 
followed by signal amplification. After amplification, probes were fluorescently 
labelled with Opal dyes: Opal 520 (Akoya Biosciences, FP1487001KT, 1:1500) was 
assigned to HLA-DRA and CD3E, Opal 570 (Akoya Biosciences, FP1488001KT, 
1:1500) was assigned to LGALS1 and CD8A, Opal 620 (Akoya Biosciences, 
FP1495001KT, 1:1500) was assigned to CD69 and LAG3, and Opal 690 (Akoya 
Biosciences, FP1497001KT, 1:1500) was assigned to TNFRSF8. Finally, slides were 
incubated for 30 sec in DAPI and then coverslipped. Following staining, imaging was 
performed on a Leica STELLARIS 8 Confocal Microscope with a white light laser 
(tunable range 440-790 nm) using a 20x/0.75 NA multi-immersion objective set to 
oil. Tilescan images were acquired with 10% overlap at pixel size 0.142 x 0.142 µm in 
16Bit. The tiles were merged in Leica LASX software.

RNAscope data processing
Upper and lower limits were set for each fluorescent label for each slide based on 
a manual inspection in ImarisViewer. ImarisViewer was also used to select 5-7 
regions of approximately equal sizes that encompassed all variability in the slides. 
In python v3.9.16, the regions were isolated from each image and values outside of 
the determined limits were capped, and the minimal values were restored to 0. Then, 
scikit-image (v0.19.2) was used to determine a threshold between true and false 
positive signals using Otsu’s method. Values below this threshold were reduced to 0 
to further reduce noise. Then, scikit-image was used to erode and dilute 1px of the 
remaining values in order to remove the last noise. Finally, the signal of each block of 
51px (7.242 µm) was averaged. Subsequent analysis was done in R v4.2.1 and tidyverse 
1.3.1. Mean intensities per block were converted to z-scores as z = (intensityblock – 
min(intensityregion))/sd(intensityregion). Then z-scores were normalized to 0-1. 
When investigating the z-scores, a bimodal distribution was observed with a minor 
peak near 0 and a major peak at 0.4. The dip between these peaks was found at 0.14 
and values below 0.14 (3.3% of total positive values) were filtered out.

The expression of T cells expressing inhibitory markers was done by dividing the 
7.242 µm blocks in three categories, 1) those directly adjacent to blocks with CD30 
expression and the interaction ligand (LGALS1/HLA-DRA), 2) those directly 
adjacent to blocks with CD30 expression, but not the expression of the ligand, 3) 
those no adjacent  to a block with CD30 expression. For of the three categories, 
in each region in each tissue, the number of blocks with T cells was determined 
(based on CD3E/CD8A expression). Then, the fraction of these T cell blocks that 
co-expressed the inhibitory receptor (CD69/LAG3) was determined. To calculation 
enrichment, the fraction of T cells that expressed the inhibitory receptor was 
compared between category 1/2 and category 3 (general enrichment around HRS 
cells) or between category 1 and 2 (enrichment around HRS cells that expressed the 
interaction ligand).
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Supplementary Figure 2. The identification of immune cell types in the scRNA-seq data
A) UMAP plot with cells labeled with cell types labels generated by the CHETAH algorithm using the 
default reference data. Node[x] labels indicate intermediate assignments in the hierarchical classification
The legend continues on the next page.
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model. B) UMAP plot labeled with cell type labels generated using SingleR with the Monaco et al. 
reference from celldex. C) UMAP plots colored by different Seurat Module scores (normalized mean 
scores) of canonical immune cell markers. D) The expression of markers in the NK and T cell subset of 
the scRNA-seq data. A UMAP plot of the NK and T cells, processed separately (left). A dotplot showing 
the fraction of each cell types expressing genes and the mean expression in these cells (middle). A 
comparison of the percentage of each cell type in cHL lymph nodes compared to reactive lymph nodes. 
E) Similar to (D), but for myeloid cells and marker genes.
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were plotted separately. D) Violin plots of T cell marker genes, clustered by cell type. The HRS cells of 
each patient were plotted separately.
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Supplementary Figure 5. Most HRS-immune cell interactions are only found in one or a 
few patients.
A) Similar to Figure 4A, but interactions present in less than 3 samples are shown.
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Supplementary Figure 6. T and HRS marker gene expression does not correlate across 
tumor regions
A) The entire RNAscope image of panel 1 of patient PB06422. The regions used for analyses are indicated 
in white circles. Zoom-in images of these regions are shown in C-E. B) The entire RNAscope image of 
panel 2 of patient PB06422. The regions used for analyses are indicated in white circles. Zoom-in images 
of these regions are shown in F-H. C-E) Zoomed in images of the regions indicated in A. F-H) Zoomed 
in images of regions indicated in B. 
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Supplementary Figure 7. A lack of correlation between T and HRS marker expression 
over regions
A) Similar to Figure 5A, but for all correlation not shown there. 
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Single cell RNA-sequencing reveals T cell inhibition in pediatric Hodgkin Lymphoma

Supplementary Table 1. Number and type of events that were sorted, sequenced, and 
passed QC per sample.

patient Wells 
sorted

Wells 
pass 

CD20 Live 
singlet

SSC+ SS-
C+CD20-

Tumor 
strict

PB19568 738 480 0 204 67 114 95
PB09287 738 389 0 225 51 72 41
PB31727 738 336 0 167 58 74 37
PB26217 738 483 0 440 43 0 0
PB16107 1107 858 0 322 65 0 471
PB11473 738 396 0 217 44 94 41
PB05088 738 324 0 132 42 55 95
PB09908 738 441 0 188 57 80 116
PB24752 1107 499 0 710 28 0 0
PB25394 738 382 71 226 85 0 0
PB32331 738 384 67 226 91 0 0
PB32684 738 499 84 312 103 0 0
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Since the introduction of chemotherapy, survival rates of pediatric cancer patients 
have greatly improved1–3. However, the pace of improvement has steadily declined 
for multiple cancer types, e.g., acute lymphoblastic leukemia (ALL)4,5. In addition, 
the burden of late effects in pediatric cancer survivors remains high6,7. Currently, 
these two problems are addressed through the two following approaches. First, the 
dose of some chemotherapeutic drugs is reduced in subgroups of patients who have 
good survival rates, even after dose reduction6,8,9. For this, currently administered 
compounds are identified that are toxic to normal tissues and thus candidates for 
dose reduction. Second, therapies are developed that specifically target malignant 
cells. These have reduced toxicity in normal tissues compared to conventional 
chemotherapy and should thus cause fewer late effects. In addition, these targeted 
therapies have the potential to further improve survival rates, primarily in high-
risk patient groups10,11. Although efforts in these two areas have been ongoing for 
multiple decades, chemotherapy usage as a cornerstone for cancer therapy has not 
declined6 and the number of patients that are eligible for treatment with targeted 
therapies remains low12,13. The work described in this thesis aims to expand our 
molecular understanding of late effects and therapy targets. In the long term, this 
could contribute to a reduction of late effects in pediatric cancer survivors. To this 
end, recently developed single-cell transcriptomics and genomics approaches were 
applied. In this chapter, the results of the work described in this thesis are combined 
and discussed, follow-up studies are proposed, the effectiveness of the work is 
evaluated, and the potential fundamental and clinical impact of the work is reviewed.

Which drugs mutate which cells? Looking beyond a single tissue or cohort.
In chapter 2, we directly answered the important questions of whether, and to what 
extent, chemotherapy can mutate the DNA of normal cells in vivo. We showed 
that thiopurines and platinum compounds are directly mutagenic to healthy cells. 
In addition, we found two mutational signatures (SBSB and SBSC) for which the 
causative treatment still needs to be identified. Adding additional cases in chapter 3 
revealed an additional signature, SBSG. This signature was present in three patients 
who had a primary Ewing sarcoma and SBSG is therefore likely linked to Ewing 
sarcoma treatment. A genetic study from the United States of pediatric, therapy-
related myeloid neoplasms (t-MN) also identified the first two mutagenic drug 
groups but did not identify signatures SBSB, SBSC, or SBSG14. Another recent study, 
of adult t-MN, on the other hand, found an additional mutational signature linked to 
melphalan treatment, a drug not administered to the patients described in chapter 
215. In conclusion, the administered drugs, and therefore identifiable signatures, 
differ per cohort. To determine the in vivo mutagenicity of every drug, more studies 
similar to the ones mentioned above should be conducted. These should focus on 
studying cohorts with varying primary cancer types, patient ages, and geographical 
locations, as treatment protocols vary over all these groups. In addition, chapter 4 
describes that ganciclovir, an antiviral nucleoside analog, is mutagenetic to healthy 
cells, highlighting that such cohort studies should be extended beyond the context 
of cancer.
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The data generated in chapters 2, 3, and 4 were all derived from a single tissue, 
i.e., blood. Are the results therefore only applicable to this tissue, or can they be 
generalized to the rest of the body? Chapter 2 revealed that platinum compounds 
are mutagenic to all exposed normal and leukemic blood cells. Previous research has 
indicated that these drugs are also mutagenic in normal liver cells, in normal colon 
cells16, and in cancer metastases of a large variety of tissue types17. In this specific case, 
the results from chapter 2 can therefore be extrapolated to most or all other tissues. 
In contrast, while in vitro exposure to 5-FU induces signature SBS17 mutations, 
this footprint is not consistently found in cancer and normal cells after exposure 
to the drug in vivo16,18–20. This observation indicates that 5-FU, and perhaps also 
other drugs, might be mutagenic to only a subset of cell types, cell states, or tissues. 
The source of the studied cells can also be important, for example in the context of 
hematopoietic stem cell transplantation (HSCT). Here, only the donated blood cells 
undergo the transplantation procedure, while only the recipient’s tissues are exposed 
to the conditioning regimen. In chapter 4, we showed that the HSCT procedure 
is not associated with mutagenesis in the transplanted blood cells and is therefore 
genetically safe for the donated blood. In contrast, in a therapy-related myeloid 
neoplasm (t-MN) patient described in chapter 2, the recipient’s hematopoietic 
stem and progenitor cells (HSPCs) accumulated additional mutations after each 
unsuccessful round of allogeneic HSCT. These mutations were of a unique signature 
“SBSB” and were therefore likely a consequence of the conditioning regimen. So, 
while we concluded in chapter 4 that the procedure is safe for the donated blood cells, 
all the recipient’s cells can still be mutated by the procedure, which may contribute 
to late effects. Taken together, findings of mutagenicity studies performed in a single 
tissue and setting are not necessarily directly translatable to other tissues/settings. 
It is therefore important that studies into the in vivo mutagenicity of therapeutic 
compounds, as proposed in the previous paragraph, are performed in a variety of 
tissues. Ideally, a large study would be conducted that, post-mortem, collects many 
normal tissues of patients treated with a large variety of treatments and compares 
treatment-induced mutations.

How chemotherapies drive t-MN: selection, mutational aging, and drivers
In chapters 2 to 4 we studied the mechanisms by which exposure of healthy cells to 
chemotherapies and nucleoside analogs can contribute to the development of t-MN. 
One of the ways this can occur is by altering selective pressures. In chapter 3, we 
described how the end of platinum compound exposure is the rate-limiting step for 
the development of TP53-proficient pediatric t-MN. These t-MN only started to 
expand after the cessation of platinum drug administration. The expansion of TP53-
deficient cells, as observed in Li-Fraumeni patients who carry a TP53 germline 
mutation, was less inhibited by platinum compounds. 

Besides changing selective pressures, exposure to chemotherapeutic drugs also 
induces mutations in normal cells. Mutations accumulate in healthy cells during a 
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person’s lifetime, a phenomenon known as mutational aging21. The extent to which 
mutational aging contributes to biological aging is not fully understood. Neither is 
it known whether this might be accelerated by chemotherapy-induced mutations. 
An undisputed process by which mutations contribute to aging-associated diseases 
is by causing cancer-driver mutations. Chemotherapy accelerates this process. For 
example, chemotherapy induces single nucleotide cancer driver mutations in t-MN 
(chapter 2). More importantly, many of the fusion genes that are the main driver 
of t-MN are likely chemotherapy-induced (chapter 2). Interestingly, the number of 
translocations that were found in normal cells in these patients was low. This would 
suggest that chemotherapy-induced translocations are a rare event and thus the rate-
limiting step in t-MN development. However, it is possible that most normal cells 
that acquire a chemotherapy-induced structural variant either do not survive in vivo 
or are not able to clonally expand in vitro. In both cases, they would not be captured 
in our studies. PTA is mainly applied to study t-MN blasts in chapter 3. However, it 
could be applied to normal cells as well, which would remove the in vitro selection 
bias in future studies.

Whether chemotherapy-induced passenger mutations, which don’t drive cancer, also 
contribute to biological aging is less clear. In chapter 2, the number of mutations 
detected in the normal HSPCs of a few pediatric cancer patients was in the range 
of healthy elderly individuals. Despite childhood cancer survivors experiencing an 
earlier onset of chronic health conditions, their individual physiological aging after 
treatment does not entirely mirror that of an elderly person. Interestingly, carriers 
of germline aberrations in the proofreading domain of POLE, which encodes for 
DNA polymerase ε, can even accumulate up to ten times the normal mutation load 
in their cells, to levels never observed during normal aging. Still, they have normal 
rates of biological aging, other than an increased cancer risk21. Therefore, there seems 
to be no correlation between the absolute number of mutations in cells and biological 
aging in these two patient groups. There are multiple possible explanations for this 
lack of a correlation.

First, the type of mutations that accumulate might be important. In human tissues, 
mutational signatures SBS1, SBS5, and SBS18 accumulate at a constant rate in tissues 
over a person’s lifespan and are therefore called “clock-like”22–24. These signatures are 
also observed during aging in different mammalian species25. The longer the life span 
of a species, the slower the accumulation of these signatures is. This suggests that 
these types of mutations are somehow connected to biological aging. The mutations 
caused by chemotherapy generally do not have the same mutational profile as clock-
like signatures and might therefore have a different effect on cells. The same holds 
true for mutations in POLE germline mutation carriers.

Second, the effect of accumulated mutations on aging might not be direct and 
immediate. Recent studies have shown that during aging, tissues like the skin 



217

8

General discussion

and esophagus are taken over by clones that harbor cancer-driving mutations26,27. 
These clones can have an altered or decreased functioning, leading to age-related 
diseases28–30. The additional chemotherapy-induced mutations in childhood cancer 
survivors might increase the number of cells that harbor cancer-driving mutations. 
These could outcompete neighboring cells over time resulting in more and larger 
clones at an earlier age. However, this process takes time. The latency between the 
initial mutation and the clonal outgrowth and resulting disease might therefore 
explain why not all effects of chemotherapy are immediate. This can relatively easily 
be investigated by performing the clonal analysis used in the abovementioned studies 
on tissues of childhood cancer survivors and comparing the number and size of 
clones with data from healthy adults of similar ages.

Finally, chemotherapy-induced DNA damage might induce biological aging via other 
mechanisms than mutations. For clarity, DNA damage (or a DNA lesion) is a physical 
abnormality in the DNA, like a DNA break, an abnormal base like 8-oxoguanine, or 
a DNA adduct. A somatic mutation on the other hand is a DNA sequence in which 
nucleotide(s) are changed compared to the germline, which can be the consequence 
of an unrepaired or incorrectly repaired DNA lesion that mismatches during 
replication. The presence of DNA damage in a cell can trigger pathways that induce 
senescence and inflammation, both of which are linked to aging31. In addition, the 
activity of the DNA damage repair (DDR) machinery can have other consequences 
besides DNA repair. For example, the DDR machinery can permanently alter the 
epigenetic markers surrounding the original damage, which has been linked to 
aging31. In conclusion, not only mutations, but also epigenetic changes, senescence, 
and inflammation are caused by DNA damage and can contribute to aging.

Remarkably, it is estimated that the DNA in most cells of the body is damaged 105 

times per day under normal circumstances31. Still, healthy cell accumulates 10-60 
clock-like mutations per year per cell. The estimated error rate of the DDR machinery 
is therefore ~10-6  24. It seems likely that the fraction of drug-induced DNA lesions that 
is not (correctly) repaired and thus results in a mutation is higher compared to aging-
related DNA lesions. Ganciclovir (GCV) is antiviral nucleoside analog drug that 
induces single base substitutions.  Lesions segregation analysis in chapter 4 indicated 
that tens to hundreds of GCV DNA lesions remained unrepaired and resulted in 
mutations during one HSPC cell cycle. This means that only in the unlikely case that 
GCV caused 107-108 DNA lesions during this time, would the DNA repair efficiency 
of GCV be the same as that of aging-related DNA lesions. Equally high numbers 
of segregating lesions were observed after in vitro exposure of iPSCs to multiple 
exogenous compounds among which chemotherapeutic drugs32. The potentially 
lower efficiency of the DDR machinery to repair exogenous DNA damage could be 
because the DDR is optimized during evolution for repairing aging-associated DNA 
lesions. Alternatively, the DDR could already be saturated by the repair of aging-
associated damage, and any additional damage is repaired less efficiently.
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If the DDR machinery indeed has a lower efficiency of repairing drug-induced 
compared to aging-induced DNA lesions, this would be relevant for the link between 
the number of drug-induced mutations in a cell and biological aging. Under this 
hypothesis, a cell would have undergone less DNA damage and less DNA repair 
when it has 100 drug-induced mutations in its genome compared to 100 age-related 
mutations. Such a cell would therefore have accumulated fewer of the changes 
induced by DNA damage and the DDR machinery, such as the epigenetic changes, 
inflammation and senescence described above. In other words, when we identify a 
child in chapter 2 that has mutation loads in their HSPCs that are similar to those 
of an elderly person due to chemotherapy-induced mutations, the amount of DNA 
damage and thus age-related physiological changes that the cell underwent would 
still be lower than the cell of an elderly person, and its functioning would therefore be 
better. This would explain the lack of correlation between the number of mutations 
and biological aging in these children. 

A similar explanation could underly the normal rate of biological aging in carriers 
of proofreading mutations in POLE, in whom mutations accumulate faster due to 
polymerase mistakes not being repaired. In these patients, the rate of DNA damage 
and the level of DDR activity do not differ with normal aging. Therefore, the rate 
of physiological cell changes, other than DNA mutations, and therefore the rate 
of biological aging is the same as in healthy individuals. This theory might also be 
relevant for pediatric HSCT recipients of older (e.g., parental) stem cell donors. 
Even though the HSCT procedure does not generally induce mutations (chapter 4), 
the transplanted blood of an older donor harbors more age-related mutations, and 
therefore also the physiological cell alterations associated with aging, than a child’s 
blood. Indeed, in most HSCT studies, younger donor age is associated with better 
overall and disease-free survival, both in adult and pediatric recipients33–37.

In conclusion, chemotherapeutics and other drugs can contribute to different steps 
of t-MN development. How treatments affect t-MN development likely depends on 
which drugs are administered, at which concentrations, the patient’s age, and the 
presence of germline mutations. Indeed, 24% of children with t-MN carried cancer 
predisposition mutations, whereas in primary cancers this is 8.5%38. Although this 
work investigated some of these components for specific contexts, such as a single 
treatment or specific germline mutation, in many other contexts the role of and 
interplay between these components is still not unraveled. For example, while we 
showed that exposure to platinum compounds can inhibit t-MN expansion (chapter 
3), other drugs may have the same effect. Also, we showed an interaction between 
germline TP53 mutations and platinum compound exposure, but likely more of 
such genotype-exposure interactions exit. Finally, potential synergistic interactions 
between classes of chemotherapeutic drugs that promote t-MN development are 
yet to be found. For example, hypothetically, the combination of topoisomerase 
inhibitors followed by platinum compounds might be synergistic in inducing t-MN, 
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as the former can induce fusion genes, and the latter can prevent clonal expansions of 
cells that harbor such a driver until the many other cells in the microenvironment are 
killed by the chemotherapy and the cell has a highly competitive advantage.

How to find therapy targets: Hodgkin Lymphoma as an example
Targeted therapies pose an alternative to conventional chemotherapy, and they have 
the potential to increase survival while decreasing the toxic exposure of normal cells. 
In chapter 7, potential targets of pediatric Hodgkin lymphoma were investigated 
by single-cell RNA sequencing (scRNA-seq), and it applies the scRNA-seq cell type 
classifier described in chapter 6. Although the newly described CD69-galectin 1 
interaction could be a potential therapy target, the study indicated that the interaction 
was not present in all patients. The interaction could thus not be used to develop 
a new general therapy. Recently, a WGS study of isolated HRS cells was published 
that focused on the developmental trajectory of HL39. Hopefully, more such studies 
will be carried out, as they could identify genomic targets that are more consistently 
affected and are essential for malignant cell survival, like the NF-κB or JAK/STAT 
pathways that were identified in previous studies40,41.

How fundamental research could influence clinical care: a long and difficult 
road
The ultimate long-term goal of the work described in this thesis is to contribute to 
improved clinical care that results in a reduced chance that cancer survivors develop 
late adverse effects. Some of the findings presented here could be of consequence 
to the patient, but the amount of additional evidence needed to move towards the 
clinic, and the conditions needed for actual change in clinical practice are vast. 

As discussed previously, one of the main aims of this work is to identify genotoxic 
drugs that could be candidates for dose reduction or replacement. One of the most 
mutagenic groups of drugs identified by us (chapter 2, 3) and others is platinum 
compounds. Platinum compounds have been increasingly administered to cancer 
patients in the last few decades6,14,17. When used, they are essential for the effectiveness 
of the regimen. Therefore, dose reduction has only been attempted in patient groups 
that have a very good outcome and that have tumors that respond well to chemo- 
and radiotherapy such as HPV-associated oropharyngeal cancer42. However, even in 
these patients, full replacement of cisplatin with another drug results in a significantly 
worse outcome42.  GCV was another highly mutagenic compound identified in this 
work (chapter 4). GCV and its prodrug valganciclovir are used to treat and prevent 
CMV disease in immunocompromised individuals, who sometimes receive GCV 
prophylactically for extensive periods of time43. In this setting, the question arises 
whether the prevention of a potential infection outweighs the additional risk that 
comes with mutating many cells in the patient’s body. Stopping the prophylactic use 
of GCV will be taken as an example to explore the steps between the fundamental 
research described in this thesis and changes in clinical practice.
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First, it is essential to quantify the additional risks of developing late effects that 
may be associated with GCV treatment. To reliably determine the relative risk for, 
e.g., cancer, the presence of GCV mutations must be assessed in larger numbers of 
patients compared to the few patients in chapter 4. As WGS, and certainly single-
cell WGS, is an expensive technique to apply to thousands of samples, alternative 
approaches should be taken. Primarily, the power of large, existing databases 
could be leveraged. A recent study searched for the mutational signature of GCV 
in two targeted sequencing databases covering more than 100,000 samples and 
identified 22 samples with GCV-induced mutations44. This study confirmed the 
overrepresentation of drivers in RAS-family genes in these 22 cancers and gained 
additional evidence that GCV is involved in inducing these cancer driver mutations. 
This approach is very promising for assessing the mutagenicity of other drugs in a 
population-wide manner. However, there are a few limitations to this approach. First, 
such studies are only possible when a drug induces a specific mutation (e.g. T>G) 
in a limited number of contexts. For example, GCV induces only C>A mutations 
and these were only induced in four out of sixteen possible trinucleotide contexts. 
Similarly, the majority of mutations that are induced by molnupiravir (chapter 
4), platinum compounds (chapter 2), and thiopurines (chapter 2) occur in a few 
specific trinucleotide contexts. Some other drugs like zidovudine (chapter 4) induce 
mutations of all mutation types in all contexts with approximately equal likelihood. 
Other drugs induce mutations that mimic clock-like signatures (chapter 2). In both 
cases, it is impossible to pinpoint these drugs’ exact contribution to carcinogenesis 
using mutational signature analysis as their mutations are indistinguishable from 
aging-associated mutations. Second, because sequencing is mainly performed in 
healthy individuals or in the context of cancer, for most other patient groups there 
are no large sequencing databases. Because no large sequencing databases exist for 
patients with viral infections, tracing the effect of antiviral drugs will be more difficult. 
Third, comprehensive clinical metadata including a registry of all administered drugs 
is needed to link drugs to mutations and late effects. Even in the study with more than 
100,000 samples, no cancer risk estimation could be made for the use of GCV. The 
reason was that only the cancer treatment, and not the use of other drugs, like GCV, 
were recorded in the investigated sequencing studies. Therefore, it was impossible to 
calculate the fraction of GCV-treated patients that developed cancer and compare 
it to a reference population. Gathering such detailed information on such a scale is 
highly difficult and will remain a significant obstacle in research into the involvement 
of drugs like GCV in late effects, even though the number of patients included in 
(sequencing) databases is growing constantly.
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A more conventional step in the research of carcinogenicity is an in vivo rodent study. 
Both the EMA and FDA report that systemic exposure to GCV can lead to embryo 
growth retardation in pregnant mice and decreased fertility in males and that GCV is 
mutagenic and carcinogenic in animal studies in dose ranges comparable to human 
administration45,46. However, as is inherent to mice experiments, how the cancer risk 
in rodents translates to the human setting remains unknown.

If a significant additional risk for late effects after GCV treatment exists and can be 
proven, the second step would be to assess the feasibility of discontinuing prophylactic 
use of GCV. More than half of the people in high-income countries are seropositive for 
CMV47, and when CMV disease develops in immunocompromised patients most die 
of the infection when it is untreated48. Prophylactic GCV treatment is successful and 
reduces CMV disease prevalence to approximately 6% of CMV-infected patients49,50. 
However, preemptive treatment, i.e., treatment only after detection of viral DNA or 
protein in the blood, is similarly effective in preventing symptomatic CMV infections 
in transplant recipients compared to general prophylactic treatments for all patients 
and is now preferred in most centers49–51. This approach already decreased the number 
of patients that receive GCV. Interestingly, preemptive use of the non-mutagenic 
foscarnet (chapter 4) results in similar survival as GCV52. However, even though 
GCV induces neutropenia in one-third of the recipients, the severe metabolic and 
nephrological toxicity associated with foscarnet is the reason that it is mostly used as 
a second-line treatment of CMV52,53. Of note, the prophylactic use of (val)acyclovir, 
which was not mutagenic in our screen (chapter 5), was described as less effective 
in early studies but has recently been shown to be as effective as GCV treatment in 
subgroups of transplant recipients53,54. However, it is associated with severe psychiatric 
side effects. Finally, in 2017 letermovir, an inhibitor of the CMV terminase complex, 
was approved as a CMV prophylaxis and was shown to be similarly effective as GCV, 
while inducing less neutropenia55,56. However, the cost of letermovir is currently an 
order of magnitude higher than the cost of GCV57. In conclusion, there are potential 
alternatives to the prophylactic use of GCV, but the decreased risk of long-term side 
effects needs to outweigh the additional acute side effects or additional costs.

The last step in implementing clinical change based on the results of chapter 4 would 
be a long-term follow-up study that compares the number of infections, the survival, 
the costs, the acute side effects, and the long-term side effects of an alternative 
approach to preemptive GCV. Such a study would take at least a decade and would 
be resource-intensive. It is thus important that great care is taken in the assessment 
of the potential impact, feasibility, and costs at each subsequent step of the research 
pipeline. This way, the increasing costs of each subsequent study are spent effectively.



222

Chapter 8

How impactful and disruptive is fundamental research: money well spent?
When discussing the effectiveness of the entire clinical research pipeline, it is 
important to include an evaluation of pre-clinical research, like the work presented 
here. The effectiveness of fundamental research could be defined as the quality of the 
newly obtained fundamental knowledge compared to the money and time invested 
in the research. High-quality fundamental knowledge can achieve two things. Either 
it is in line with previous work and incrementally adds knowledge and theory, or 
it disrupts existing theories and renders previous work obsolete. Within the (bio-) 
medical field, disruptive work has the potential to induce clinical changes although 
this can take a long time, as has been discussed above. According to a recent study 
based on paper citation networks, the disruptiveness of research has steadily declined 
over the past 8 decades58. This emphasizes the need for constant monitoring of the 
(cost-)effectiveness of one’s research. As WGS currently costs 1000 euros for 30x 
coverage of one sample, the sequencing costs of the WGS studies described here 
approach 50,000 euros, which does not include the costs of wet lab experiments, 
salaries, and other expenses. The results of these studies might be categorized 
as introducing incremental change rather than being disruptive. For example, 
thiopurines and platinum compounds were previously shown to be mutagenic in 
cancer cells and were expected to also mutate healthy cells (chapter 2)17,18,59. Similarly, 
clonal hematopoiesis in adults after treatment with platinum compounds is enriched 
in TP53 mutations, suggesting that cells with those mutations were selected by this 
treatment (chapter 3)60. When purely focusing on the research into childhood cancer 
treatment with the most impact (either clinical or social), one could argue that the 
resources for this research would have been more effectively spent in fields that have 
a more direct, and more substantial impact on the clinic, like the optimization of 
personalized dosing61,62.  

Still, WGS studies have the potential to contribute to clinical practice by improving 
diagnosis and prognosis by identifying new drivers and subgroups with different 
survival rates. In addition, even though the studies in chapters 2 and 3 did not pose 
a revolutionary or disruptive idea, they confirmed common theories, something that 
is essential to moving the research field forward. Furthermore, GCV was previously 
proven to be mutagenic and carcinogenic in mice, but to prove its mutagenicity in 
un-infected human cells in vivo was important and, although not disruptive in the 
setting of fundamental science, has the potential to lead to significant clinical impact. 
If the prophylactic use of GCV would change, this would affect a significant part of 
the 80,000 yearly recipients of HSCT and 140,000 yearly recipients of solid organ 
transplants63,64. Still, at the moment of writing, the chapter 4 article has mostly been 
cited in the context of genomic consequences of HSCT, but a few times in the context 
of GCV safety. The absence of more follow-up or attention might be a consequence of 
the results not reaching the target audience of clinical researchers. Alternatively, the 
absence of solid clinical data in the article and the lack of a risk assessment make the 
clinical relevance smaller. So, even though the work presented here mostly confirms 
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previous theories and is therefore not disruptive in nature, the research findings are 
important and could contribute to clinical impact when sufficiently followed up in 
future research. 

Most importantly, it is critical that researchers (and funding agencies) continuously 
evaluate the social, clinical, and scientific impact and the novelty of their work and 
compare it to other lines of research. Inherent to fundamental science is the fact that 
the outcome is unknown and that sometimes accidental findings drive the biggest 
changes. For example, chapter 4 initially focused on the effect of hematopoietic 
stem cell transplantation on donated blood cells, and the mutagenicity of ganciclovir 
was an accidental finding. It is partly these kinds of findings that can move research 
and, eventually, the clinic forward. However, the unpredictability of fundamental 
research does not mean that scientists cannot reflect on the (maximum) potential 
fundamental, social, and clinical impact of their work and think about other 
techniques, approaches, or even other questions that could improve their impact. In 
this way, scientific progress and effectiveness can be maintained or even improved.

Concluding remarks: limitations and possibilities
Late effects severely decrease the quality of life of pediatric cancer survivors. Improving 
our understanding of the molecular mechanisms by which chemotherapies lead to 
late effects could further improve the survivors’ quality of life. Genomic studies, 
like those presented here, can teach us multiple things about second cancers, and 
how chemotherapies contribute to them. First, they aid in the characterization of 
the driver alterations and therefore diagnosis, prognosis, and risk stratification. 
In addition, genomic studies that identify mutational signatures and link them to 
drugs are creating a constantly growing “map” of mutagenic compounds and their 
mutational signatures. WGS studies of time-series samples and single-cell WGS are 
unraveling the timing of second cancer development relative to the primary diagnosis 
and treatment. This can help to better determine the role of the treatment and to 
identify the rate-limiting steps in the second cancer development. The next step in 
these studies is to identify the association between drugs, germline variants, tissue 
types, and/or patient groups. There are however limitations to what these kinds of 
genomic studies can teach us about second cancer development. In some t-MN, 
expansion only happens after the acquisition of a second driver besides a fusion gene. 
In other t-MN, the gene fusion is the only detectible driver. Was the clonal advantage 
of this fusion big enough for the clone to expand or was it a change in the epigenetic 
state of the precursor cell, or a change in its environment in which it had a higher 
clonal advantage? Are similar steps needed in t-MN with multiple drivers, or are the 
drivers enough in those cases? Other techniques are needed to answer these types 
of questions. In addition, even though this knowledge is important to understand 
the molecular mechanisms that lead to t-MN, the direct clinical impact of the work 
is limited, as most studied drugs are cornerstone treatments in cancer therapies. 
Studies, like the one described in chapter 7, are thus important to finally develop 
novel targeted therapies that could substitute chemotherapeutic drugs.
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In addition, the techniques described in this paper can also be applied to study 
how mutation accumulation and clonality can contribute to late effects other than 
cancer, by repeating the clonality studies from skin, liver, and esophagus in cancer 
survivors and comparing the outcomes to the published data on people who did 
not undergo treatment26,30,65. The main limitation here is the availability of material. 
Whereas blood (the main material studied in this thesis) can be obtained relatively 
noninvasively, this is more difficult, or impossible, for other non-malignant tissues.

In conclusion, exposure to chemotherapeutic drugs has many effects on healthy 
cells. DNA damage and mutations play a large role, but other mechanisms are likely 
involved. Also, how the changes in normal cells lead to the development of late 
effects is complex and many factors influence this development. Recently developed 
genomic methods help us to significantly improve our understanding of this process. 
However, there is a limit to what they can teach us about late effects, and they should 
therefore be combined with other techniques. Constant reflection of the scientific 
community on the subjects and techniques that will have the highest chance of 
gaining the most important fundamental knowledge with the largest social and 
clinical impact is essential to ensure that research funds are spent effectively, and 
patients are helped as best as possible.
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DNA-schade veroorzaakt kanker
Kanker is de belangrijkste doodsoorzaak in Nederland. Kanker ontstaat door schade 
in het DNA van gezonde cellen. DNA is een code met instructies voor het maken 
van eiwitten. Elke cel bevat een kopie van hetzelfde DNA, een code van 3 miljard 
moleculen, “nucleotide” genaamd. De hele DNA-code samen wordt het “genoom” 
genoemd en ieder stuk DNA dat voor een eiwit codeert heet een “gen”. Als cellen 
delen, moet het genoom gekopieerd worden. Dit kopiëren verloopt niet foutloos, 
waardoor veranderingen in het DNA ontstaan. Naast kopieerfouten kunnen DNA-
veranderingen ook ontstaan door stoffen of stralingen die het DNA beschadigen, 
zoals sigarettenrook en UV licht. Veranderingen in het DNA heten “mutaties”. Het 
grootste deel van de mutaties wordt gerepareerd in de cel, maar ook deze reparatie 
gebeurt niet altijd correct. Hierdoor krijgt elke gezonde cel in ons lichaam elk jaar 
enkele tientallen tot honderden mutaties erbij. De meeste mutaties hebben geen groot 
effect op hoe een cel functioneert. Alleen mutaties in het DNA dat voor eiwitten 
codeert, kunnen veranderen hoe een cel functioneert. Kanker ontstaat als een cel één 
of meerdere mutaties krijgt die zorgen dat de cel ongecontroleerd gaat delen. Deze 
mutaties worden “drivers” of oncogene mutaties genoemd.

De overlevingskans en behandeling van kinderkanker
Doordat kankercellen snel delen, kunnen ze gezonde cellen in de weg zitten 
waardoor organen steeds minder goed kunnen functioneren, waardoor iemand 
uiteindelijk kan overlijden. De behandeling van kanker is de afgelopen zeven 
decennia effectiever geworden. Dit is zeker het geval bij kinderen met kanker. Waar 
zeventig jaar geleden slechts 10% van de kinderen met kanker overleefden, is dat 
nu meer dan 80%. Chemotherapie, radiotherapie (bestraling) en chirurgie zijn de 
meest voorkomende behandelingen van kanker. Kinderen kunnen een hogere dosis 
chemotherapie verdragen. Hierdoor kunnen kankercellen beter gedood worden. 
Onder andere daardoor genezen kinderen vaker van kanker dan volwassenen.

Chemotherapie veroorzaakt late effecten
De hoge dosis chemotherapie, die aan kinderen gegeven wordt, heeft een keerzijde. 
Chemotherapie en ook radiotherapie beschadigen het DNA van cellen. Dit gebeurt 
niet alleen in kankercellen, maar ook in gezonde cellen. DNA-schade in gezonde 
cellen kan zorgen voor acute bijwerkingen, zoals haarverlies door het doodgaan van 
cellen in de haarzakjes. Ook komen er veel bijwerkingen op de lange termijn voor. 
Zulke bijwerkingen worden “late effecten” genoemd en kunnen jaren tot decennia na 
de kankerbehandeling optreden en/of aanhouden. Onder late effecten vallen onder 
andere onvruchtbaarheid en hart- en nierschade. Ook hebben overlevenden van 
kanker grotere kans op het krijgen van een nieuwe kanker dan gezonde mensen. 
Doordat kinderen met kanker eerder in hun leven radio- en chemotherapie krijgen 
dan volwassen patiënten, hebben late effecten langere tijd om te ontwikkelen. Dit, 
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in combinatie met de hogere dosis en het feit dat de kinderen in ontwikkeling zijn 
tijdens de behandeling, zorgt ervoor dat late effecten het meeste voorkomen bij 
patiënten die kinderkanker overleefd hebben.

Het verminderen van late effecten
De hoeveelheid late effecten na kankerbehandeling is in de laatste decennia verlaagd 
door radiotherapie specifieker op de tumor te richten waardoor de schade aan 
gezonde cellen beperkt werd. Ook is het in sommige kleine groepen patiënten met 
een goede prognose mogelijk geweest om de dosis van alle chemotherapie te verlagen 
zonder dat het de overlevingskans verslechterde. Bij de meeste kinderen met kanker 
is dit echter niet mogelijk. Daarom zijn andere manieren nodig om late effecten te 
verminderen. 

Een van de manieren om late effecten te verminderen is door de dosis te verlagen 
van enkel die chemotherapiemedicijnen die het meest schadelijk zijn voor gezonde 
cellen. Daarvoor moet eerst bekend zijn welke medicijnen het meest schadelijk zijn. 
De studies die in hoofdstuk 2 tot en met 5 van dit proefschrift beschreven worden, 
onderzoeken welke medicijnen en behandelingen de meeste schade in het DNA van 
gezonde cellen veroorzaken. Hierbij wordt gebruikt gemaakt van het feit dat ieder 
proces dat DNA-schade veroorzaakt, dat doet in een specifiek patroon in het DNA. 
Dit is te vergelijken met voetafdrukken. Elk dier heeft een andere poot, voet, of hoef, 
en laat doordoor een andere voetafdruk achter in de grond als het loopt. Mutagenen 
“voetafdrukken” kunnen gebruikt worden voor het bepalen van de oorzaak van 
de DNA-schade die in een cel voorkomt. Om deze mutaties te kunnen detecteren 
worden verschillende recent ontwikkelde technieken toegepast die het mogelijk 
maken van het gehele genoom (alle 3 miljard nucleotiden) van een enkele cel uit te 
lezen, “sequencen” genoemd. 

Platina en thiopurine medicijnen veroorzaken tweede kankers 
door DNA-schade
Hoofdstuk 2 van dit proefschrift beschrijft onderzoek dat bestudeert welke 
chemotherapie medicijnen de meeste DNA-schade in gezonde bloedcellen kan 
veroorzaken en daarbij kan leiden tot tweede kankers in het bloed. In bijna alle 
patiënten die behandeld waren met chemotherapie was de hoeveelheid mutaties 
in het DNA van bloedcellen hoger dan in niet behandelde personen. Sommige 
cellen hadden een verhoogde hoeveelheid mutaties, maar hadden mutatiepatronen 
die leken op gezonde cellen. Wat het exacte mechanisme is dat de extra mutaties 
veroorzaakt in deze cellen is nog onbekend. In de andere cellen bleken voornamelijk 
twee groepen medicijnen mutaties te hebben veroorzaakt, “thiopurines” en platina 
bevattende medicijnen. Deze medicijnen bleken ook mutaties veroorzaakt te hebben 
die leidden tot het vormen van een nieuwe kanker in het bloed. In de toekomst zou 
dus gekeken kunnen worden of specifiek van deze medicijnen de dosis verlaagd kan 
worden voor het verminderen van late effecten.

Nederlandse samenvatting
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In hoofdstuk 3 wordt een vervolgonderzoek op hoofdstuk 2 beschreven dat aantoont 
dat platina bevattende medicijnen, naast het vormen van oncogene mutaties, nog een 
tweede rol hebben in het vormen van tweede kankers. Bij de meeste patiënten bleek 
dat een beschadigde bloedcel niet snel kon gaan delen zolang platina bevattende 
medicijnen gegeven werd. Pas wanneer de behandeling met platina medicijnen stopte, 
ging de beschadigde cel snel delen en werd het een tweede kanker. Er was echter één 
patiënt waarbij de tweede kanker tijdens de toediening van het platina bevattende 
medicijn snel ging delen en kanker werd. Deze patiënt bleek een mutatie in het TP53 
gen te bevatten in alle cellen in het lichaam, een zogenaamde “kiembaanmutatie”. 
Met celexperimenten wordt in hoofdstuk 3 aangetoond dat cellen met TP53 mutaties 
inderdaad tijdens behandeling met een platina bevattend medicijn kunnen delen. 
Voor patiënten met een TP53 kiembaanmutatie zou het daarom belangrijk kunnen 
zijn om al vroeg tijdens de behandeling te testen voor tweede kankers.

Antivirale medicijnen kunnen het DNA van gezonde cellen beschadigen
Bij sommige agressieve vormen van kanker in het bloed is de enige effectieve 
behandeling het doodmaken van alle bloedcellen van een patiënt, en het vervangen 
met het bloed van een donor. Dit heet een stamceltransplantatie. Hoofdstuk 4 toont 
aan dat deze behandeling geen extra mutaties veroorzaakt in de gedoneerde cellen, 
iets wat daarvoor onbekend was. Wel bleek door dit onderzoek dat er extra mutaties 
te vinden waren in de bloedcellen van patiënten die een virale infectie hadden 
gekregen na de stamceltransplantatie. Deze patiënten waren behandeld met het 
medicijn ganciclovir, een antiviraal middel dat bij de categorie “nucleotide analogen” 
hoort. Ganciclovir bleek grote hoeveelheden mutaties veroorzaakt te hebben in de 
gedoneerde, gezonde cellen van deze patiënten. Tijdens het bestuderen van grote 
genetische datasets van kankers werden ook ganciclovir-geïnduceerde mutaties 
gevonden. Sommige van deze mutaties hadden bijgedragen aan het ontstaan van 
de kanker. De behandeling met ganciclovir, in ieder geval in enkele gevallen, kan 
dus ernstige late effecten veroorzaken. Hoofdstuk 5 beschrijft een onderzoek waarin 
de DNA-schade in gezonde cellen wordt onderzocht na blootstelling aan veertien 
andere “nucleotide analogen” medicijnen. Uit deze studie blijkt dat waarschijnlijk 
zes van deze veertien medicijnen ook mutaties kunnen veroorzaken, maar allemaal 
veel minder dan ganciclovir. Het zou daarom de prioriteit moeten hebben om te 
onderzoeken aan welke patiënten minder ganciclovir gegeven kan worden.

Op zoek naar doelgerichte therapie voor Hodgkin Lymfoom
Voor de behandeling van kinderen met Hodgkin Lymfoom (HL), een vorm van kanker 
in het bloed, zijn grote hoeveelheden radio- en chemotherapie nodig. Deze kinderen 
krijgen een van de hoogste aantallen late effecten van alle kinderkankerpatiënten. 
Daarom is het belangrijk om medicijnen voor HL te identificeren die specifieker de 
tumorcellen doden en minder schadelijk zijn voor gezonde cellen. Zulke therapieën 
worden “doelgerichte therapieën” genoemd. Om “doelen” voor deze medicijnen 
te vinden kan de activiteit van alle genen (“expressie”) per cel uitgelezen worden, 
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om zo genen met een verhoogde activiteit in kankercellen te vinden. Deze techniek 
resulteert in een zogenaamd genexpressie profiel van duizenden cellen. De eerste 
stap van de analyse van deze data is het bepalen van het celtype waarvan elk profiel 
afkomstig is. Hoofdstuk 7 beschrijft CHETAH, een algoritme dat automatisch de 
celtypen kan herkennen in genexpressie data en gezonde cellen van tumorcellen 
kan onderscheiden. In hoofdstuk 8 wordt onder andere CHETAH gebruikt om de 
genexpressie profielen van gezonde en kankercellen in HL te bestuderen. Hierdoor 
worden genen gevonden die actiever zijn in de kankercellen dan in de gezonde cellen 
en daardoor mogelijk gebruikt kunnen worden om nieuwe therapieën te ontwikkelen. 
Ook worden genen beschreven die essentieel zijn voor het communiceren tussen de 
kankercellen en de cellen in de rest van de tumor. Mogelijk kunnen nieuwe therapieën 
deze communicatie verstoren en daardoor de tumorcellen doden.

Dit proefschrift beschreef moleculaire studies die chemotherapiemedicijnen en 
nucleotideanalogen identificeerden die het DNA van gezonde cellen beschadigen, 
en die genen beschreven die mogelijke nieuwe doelwitten kunnen zijn voor het 
ontwikkelen van minder schadelijke therapieën. Deze studie en andere vergelijkbare 
studies verbeteren ons begrip van de schadelijkheid van kanker therapie en kunnen 
gebruikt worden voor het effectief ontwerpen van toekomstige klinische studies 
die als doel hebben om late effecten bij kinderen met kanker te verminderen. Deze 
kunnen bijvoorbeeld minder schadelijke therapieën ontwikkelen of testen, of de 
dosis van, bijvoorbeeld, platina bevattende medicijnen of ganciclovir verminderen.
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