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Abstract

Latent variable models are well-known to suffer from rank deficiencies, causing problems with

convergence and stability. Such problems are compounded in the “reduced-group split-ballot

multitrait-multimethod model", which omits a set of moments from the estimation through a

planned missing data design. This paper demonstrates the existence of rank deficiencies in

this model and give the explicit null space. It also demonstrates that sample size and distance

from the rank-deficient point interact in their effects on convergence, causing convergence to

improve or worsen depending on both factors simultaneously. Furthermore, it notes that the

latent variable correlations in the uncorrelated methods SB-MTMM model remain unaffected

by the rank deficiency. I conclude that methodological experiments should be careful to

manipulate both distance to known rank-deficiencies and sample size, and report all results,

not only the apparently converged ones. Practitioners may consider that, even in the presence

of nonconvergence or so-called "inadmissible" estimates, a subset of parameter estimates may

still be consistent and stable.

Keywords: latent variable models, split-ballot, multitrait-multimethod, planned missing

data, identification, information matrix
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Rank-deficiencies in a reduced information latent variable model

In a wide variety of fields, different data sources inform on the same phenomenon, the

problem being to determine how these different sources should be combined, and how validly

each measures the phenomenon of interest. For example, in official statistics, contradictory

administrative registers and surveys may be available on citizens’ employment contracts

(Oberski et al., 2017; Pankowska et al., 2018); in family sociology, reports from different

family members may not always match up (Kenny et al., 2006); and in medicine, a hospital

may have data on patients’ condition from electrocardiograms, echocardiograms, radiological

examinations and individual laboratory measurements simultaneously (Sammani et al., 2019).

In all such cases, latent variable models (Bartholomew et al., 2011) can prove powerful tools

to combine different data sources measuring the same phenomenon in a principled manner

(Hand, 2018; Oberski, 2018).

A particularly useful approach is the “multitrait-multimethod” design, which was

introduced by Campbell and Fiske (1959) to measure a single phenomenon (“trait”) using

different data sources (“methods”), and to evaluate the sources’ validity as measures of their

underlying “traits”. To analyze the resulting data, MTMM factor models were developed by

Browne (1984); Widaman (1985); Cudeck (1988); Millsap (1995); Wothke (1995), and Eid

(2000). Extensions to nonlinear and nonnormal latent variable models were recently developed

by Oberski et al. (2017). The advantage of MTMM models is that they recognize not only the

common variance due to measurement of the same phenomenon, but also any common biases

that arise from the use of a common data source. For example, survey answers may correlate

due to “acquiescence” and social desirability bias (Cernat and Oberski, 2019), and

electrocardiograms are susceptible to bias from manual annotators and placement of the

electrodes (Zhu et al., 2015). MTMM models are designed to provide the researcher with an

indication of the extent to which such biases are present and cause common correlation. At

the same time, they determine implicit rules for the optimal guess regarding the true latent

variable under study – dispensing with the commonly used ad-hoc rules of data fusion.

However, a disadvantage of latent variable models is that they are especially prone to

problems of identification, nonconvergence, “inadmissible” estimates outside the acceptable

range, and unstable estimates (Bartholomew et al., 2011). MTMM models are especially

well-known to suffer from such problems (Marsh, 1989; Brannick and Spector, 1990; Kenny
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and Kashy, 1992; Marsh et al., 1992; Bagozzi, 1993; Révilla and Saris, 2013). Solutions to this

problem have also been suggested. For example, Marsh et al. (1992) suggested omitting a

model for all method factors while acconting for the resulting correlations; Eid (2000)

suggested omitting one method factor from the model; and Castro-Schilo et al. (2016)

suggested use of an additional, completely independent, data source for each trait; and Saris

and Satorra (2019) suggested leveraging information from multiple groups (countries) to aid

estimation. Each of these solutions has its relative merits and disadvantages; specifically, each

requires either the abandonment of method effects as target parameters, or additional

information that may only sometimes be available. For these reasons, the final solution to

estimation problems with MTMM is still under expert discussion.

In spite of the existence of suggested solutions–and regardless of their relative

merits–relatively little is known about the cause of estimation problems in MTMM models:

rank deficiencies in the model’s information matrix. In this paper, we will investigate that

cause in analytical detail, and indicate exactly how it operates to generate nonconvergence

and parameter instability (“inadmissible” estimates, bias in constrained estimation). To do

this, we will use a particularly problematic version of the MTMM model as case study: the

“reduced-group split-ballot multitrait-multimethod” model (Saris et al., 2004). This model is

problematic because it involves a planned missing data design, and therefore estimation

provides even more limited information about the parameters than is usually the case in

MTMM.

The following section first defines the factor or structural equation (SEM) model

framework that is commonly used in MTMM. It also explains how nonconvergence and

“inadmissible” estimates can occur, even when the model is correctly specified. The

relationship of rank deficiency with identification is explained, and some intuition regarding

rank deficiencies of zero probability measure are given. The subsequent section defines the

reduced-group correlated trait-uncorrelated method SB-MTMM model used by Saris (2014);

Révilla and Saris (2013), and Saris and Satorra (2019), and derives the rank deficiency that

occurs in this model using a computer algebra system. We then perform two Monte Carlo

experiments that demonstrate the consequence of such rank deficiencies in simple factor

models, as well as the CTUM RG-SB-MTMM model. Finally, the conclusion reflects on the

role different types of parameters play in the estimation, the paradoxical role of sample size,
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the need to report nonconverged results in simulation studies, and, finally, the connection to

modern unsupervised machine learning versions of LVM’s and regularization. It is hoped the

methods presented in this paper can form the basis for routine evaluation of latent variable

models, and can provide insight in the potential solutions to their woes.

Background

Let y ∈ Rq be an q-vector of observable variables. For simplicity, we will assume all

variables are centered. The basic confirmatory factor analysis (CFA) model is then

y = Λη + ε, (1)

where the “common factors” η ∈ Rq∗ and “residuals” ε ∈ Rq are unobserved vectors of latent

variables. Generally, there are fewer factors than observed variables, q∗ < q, and we assume

the factors and residuals are uncorrelated, E(ηε) = 0, and both latent variable vectors have

constant variance matrices, say, Var(η) = Φ, and Var(ε) = Ψ.

The parameters of interest of the factor model are the loading matrix Λ, the factor

variance matrix Φ, and the residual variance matrix Ψ. Generally, these matrices are sparsely

parameterized, so that only certain elements are free parameters of the model to be estimated.

We collect these free parameters into a single parameter vector, θ = (λT ,φT ,ψT )T , say, of

length p. Under the above assumptions of linearity and homoskedasticity, the implied variance

of the observed variable vector is then

Var(y|θ) = Σ(θ) = ΛΦΛT + Ψ. (2)

The parameters of interest θ can be estimated in a sample through maximum-likelihood with

Σ(θ) as the covariance matrix, or, equivalently, by minimizing the weighted least squares loss,

θ̂n = arg min
θ∈Θ

F, (3)

where the loss function F is the weighted sum of squared residuals,

F (θ) = [sn − σ(θ)]T V [sn − σ(θ)] , (4)

and sn = vech(Sn) is the half-vectorized observed covariance matrix obtained from an i.i.d.

sample of size n, with σ(θ) = vech[Σ(θ)], of length p∗. Throughout, we will assume that both

the observed and the population covariance matrices are positive-definite. (This assumption is

violated, for example, in the case of high-dimensional data with q > n.)
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Setting

V := 2−1DT (Σ̂−1 ⊗ Σ̂−1)D,

where D is the "duplication matrix", yields normal-theory maximum likelihood estimation

(Neudecker and Satorra, 1991). Here Σ̂ is a consistent estimate of the population covariance

matrix Var(y). Some procedures set Σ̂ := Σ(θ̂) iteratively during estimation, while others use

Σ̂ := Sn. More generally, we will assume V to be any positive-definite matrix of estimation

weights.

Estimation, nonconvergence, and “inadmissible” estimates

Sample parameter estimates θ̂n are generally found through an optimization procedure

with objective given in Equation 3. The gradient of F with respect to the parameters plays a

key role in convergence of any such procedure. For example, in gradient descent optimization,

the updating step at iteration t+ 1 is

θ̂t+1 ← θ̂t −At · g(θ̂t), (5)

where g(θ̂t) is the gradient vector at iteration t, g = Ḟ (θ), and At a "learning rate" matrix.

Common choices for the learning rate in SEM software are the observed information at step t,

i.e. At := F̈ (θ)−1, which gives Newton-Raphson optimization; the expected information,

At :=
(
∆TV∆

)−1
, which gives Fisher scoring; or an approximation to the inverse observed

Hessian used in quasi-Newton methods such as BFGS. In the machine learning literature,

other gradient-baed methods have been developed, with a baseline choice being At := γ, a

scalar constant learning rate (for a short overview of various optimization methods, see

Goodfellow et al., 2016, Ch. 8).

Convergence of these optimization algorithms is achieved when the gradient vector

equals zero. However, when the gradients are linearly dependent, convergence will never be

achieved, since the norm of the gradient will not decrease along the line n · g = 0 for some

n 6= 0, by the definition of linear dependence. Here, n is a non-trivial (nonzero) basis for the

“nullspace” of the gradient. Note that the same holds for non-gradient based optimization

methods; for example, proof of convergence of the Nelder-Mead algorithm requires the absence

of linear dependencies in the gradient as well (Lagarias et al., 1998, e.g.). For SEM, this

gradient is

g = Ḟ (θ) = ∆TV [s− σ(θ)] , (6)
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where ∆ is the Jacobian of the implied (co)variances with respect to the parameters,

∆ = σ̇(θ). This Jacobian has p∗ (the number of unique variances and covariances) rows and p

(number of parameters) columns; note that the degrees of freedom of the model equals p∗ − p.

Drawing a parallel with linear regression, the matrix ∆ can be thought of as a design matrix

in the linearized mapping of parameters into (co)variances (Savalei, 2014). Since S, Σ, and V

are positive-definite by assumption, linear dependence in the gradients can only occur as a

consequence of a rank deficiency in the Jacobian ∆. Thus, nonconvergence is a direct

consequence of rank deficiency of ∆, i.e. when the column rank rk(∆) < p.

So-called “inadmissible” estimates also result from rank deficiencies in the Jacobian ∆.

“Inadmissible” estimates – such as negative estimates for variance parameters or non-positive

definite latent variable corvariance matrices – are possible because the optimization space is

usually taken as Rp, which includes “inadmissible” subsets. In fact, for many standard CFA

models, most of the optimization space is “inadmissible” (see Mulder et al., 2010, for the

closely related concept of“complexity” of inequality-constrained Bayesian models as the

admissible probability mass). For this reason, as the variance of the estimates increases, so

does the the probability of so-called “inadmissible” sample estimates of the parameter vector.

This holds regardless of whether the “population parameter vector” – the solution to which

Equation 3 convergences as n grows without bound – is not itself “inadmissible”. A separate

case is misspecification of the model, which is the most widely-recognized cause of

“inadmissible” population parameter vectors (Chen et al., 2001). Here we will ignore such

cases, and assume the model is correctly specified. We will see that even in this idealized

situation, severe problems with estimation can occur when there are rank-deficient points in

the Jacobian.

Under the assumption of a correctly specified model, variance of SEM estimates θ̂n is

obtained, through standard likelihood theory, as the inverse Fisher information,

Asy.Var(θ̂n) =
(
∆TV∆

)−1
. (7)

Relevant theory and extensions to more general settings can be found in (Satorra, 1989).

Again, since V is positive-definite by assumption, the inverse in Equation 7 will grow without

bound as the Jacobian ∆ approaches singularity, causing bad performance in terms of MSE,

as well as “inadmissible” estimates.

Some authors (e.g. Rindskopf, 1983) have suggested solving the problem of
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“inadmissible” estimates by excluding them from the optimization space. The same idea

appears the norm in the literature on Bayesian SEM (Lee, 2007; Muthén and Asparouhov,

2012; Merkle and Rosseel, 2018). However, others have pointed out that constrained

estimation to prevent “inadmissible” estimates creates bias in the parameter estimates (e.g.

Chen et al., 2001). The estimates that would otherwise have been “inadmissible” will “pile

up” along the constraint boundary, neglecting to cancel out sample estimates further to the

opposite side of the true parameter value. In other words, the underlying problem is not a

computational one, and “solving” it with a computational trick such as constrained estimation

will simply transfer the problem to a different part of the overall procedure, like pushing on an

air mattress to deflate it while forgetting to open the valve. Due to this “air matress”

principle, we will refer mostly to the problem of “inadmissible” estimates, with the

understanding that the reader who prefers constrained estimation may mentally substitute

this for the problem of bias.

In discussions of rank-deficiencies of parametric models, the information matrix inverted

in Equation 7 is taken as a point of departure (e.g. Wald, 1950; Bekker and Wansbeek, 2001).

In the case of linear and homoskedastic (SEM) models with full-rank estimation weight matrix

V, rank-deficiency of the information matrix is equivalent to rank-deficiency of the Jacobian

of the sufficient statistics, σ̇(θ) = ∆. Because of this equivalence, and because the Jacobian

has a much simpler form than the information matrix, we will focus here on the Jacobian.

When is the Jacobian rank deficient?

We have seen that the Jacobian ∆ plays a central role in generating nonconvergence

and “inadmissible” estimates (or bias), specifically when this matrix is rank-deficient. But

when do such deficiencies occur? Here, we will distinguish two cases: underidentification and

singular points.

Underidentification is the most well-known cause of rank deficiency of ∆. For example,

when the degrees of freedom are negative, p∗ < p it is obvious that the p∗ × p matrix ∆ will

not have full column rank. The same occurs whenever the implied (co)variances of the model,

and therefore the likelihood for which these are sufficient statistics, are equal for two different

sets of parameter values, i.e. σ(θ) = σ(θ′) but θ 6= θ′ (e.g. Wald, 1950; Bekker and Wansbeek,

2001). The absence of this problem is referred to as “local” identification in the literature



RANK DEFICIENCIES IN A LATENT VARIABLE MODEL 9

when the condition needs to hold only for an open neighborhood of the parameter vector,

rather than for every point of the parameter space. Note that (local) underidentification is not

related to the sample at hand; it is a property of the population model.

While local underidentification causes a rank-deficient Jacobian, the converse is not true

(Shapiro and Browne, 1983): when the Jacobian is rank deficient, it is not necessarily the case

that, for all samples, σ(θ) = σ(θ′) (the model is underidentified). Generally, this can occur

because the reverse implication holds only when the loss function is twice differentiable and

the Jacobian has constant rank in a neighborhood around the parameter vector. When there

are single parameter points at which the rank becomes deficient, this last assumption is

violated. A well known example is the two-factor model with two indicators for each factor,

which has a rank deficiency when the correlation among factors is zero. Since the probability

of finding such a rank-deficient point exactly equals zero, the model is said in the literature to

be locally identified “almost everywhere”, i.e. everywhere except in points with probability

measure zero (Shapiro, 1985).

To illustrate intuitively how it is possible to have a rank-deficient information matrix

(second derivative) at a singular point but no identification problem, consider Figure 1. The

Figure illustrates the function f(x) = sign(x) · x3. In this example, f(x) plays the role of the

(log)“likelihood”, x is the parameter, the first and second derivatives (second and third

panels) are the gradient and Hessian, and the fourth panel plots the inverse second derivative,

which plays the role of the variance of the parameter estimate. It can be seen in Figure 1 that,

while the second derivative is rank-deficient at the point x = 0, which also happens to be the

maximum, this maximum is still uniquely identifiable. However, as the point is approached,

the variance of any finite-sample estimate of the parameter will grow without bound

(asymptote in fourth panel).

Figure 1 shows that estimation problems do not only occur at the “almost surely”

impossible point x = 0. Points close to this “point of deficiency” (p.o.d.) will also generate

extremely high variance of the sample estimates, causing inadmissibility and instability, and

nearly singular gradients, generating nonconvergence. Therefore, although the probability of

solutions to the objective being at the p.o.d. exactly is zero, the p.o.d. creates a zone of

near-deficiency that will cause serious estimation problems in practice. Others have noted this

issue as well; because of the dependency of practical problems on data, Aldrich (2002)
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Figure 1 . Example of a rank-deficient function, f(x) = sign(x) · x3. The function has a unique

maximum at x = 0, but at this point its second derivative is zero and changes discontinuously.

The rightmost panel shows the negative inverse second derivative, which plays the role of the

variance in likelihood theory, has an asymptote at this point.

suggested to abandon the idea of “identification” and suggested replacing it with a concept of

the informativeness of data. Goodfellow et al. (2016, ch. 8) discuss how the neural network

community shifted its focus from the investigation of rank deficiencies to evaluating whether

solutions that result are acceptable in terms of the cost function. In short, the econometric

concept of “almost sure” stability may not be as comforting as it sounds. At the same time,

the existence of rank deficiencies need not always generate serious problems with the

estimation.

Finding rank-deficient points in the Jacobian is a challenging task. For factor analysis,

and specifically multitrait-multimethod models, existing literature has developed several

analytical results (see Shapiro, 1985; Kenny and Kashy, 1992; Grayson and Marsh, 1994, and

references therein). An alternative approach is to employ computer algebra systems to

investigate rank deficiency (Bekker et al., 1994). This is what the following section will do for

the reduced-group split-ballot multitrait multimethod (SBMTMM) model.

Rank-deficiencies in reduced-group split-ballot multitrait-multimethod models

The split-ballot MTMM design (Saris et al., 2004) is a two-group randomized design in

which different elements of y are observed for two groups of subjects. This yields a planned

missing data design. In the reduced-group SBMTMM design, not all possible combinations of

methods are observed. For example, in the European Social Survey (ESS), group 1 receives a

questionnaire with versions 1 and 2 of a questionnaire (method 1 and 2), whereas group 2

receives a questionnaire with versions 1 and 3 (methods 1 and 3). Therefore, all covariances
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between measures obtained with methods 2 and 3 are completely missing. Révilla and Saris

(2013) noted that this particular design yields serious problems with nonconvergence,

instability, and inadmissible estimates.

Here, we will follow the ESS design discussed by Révilla and Saris (2013): three traits,

three methods, and two groups in which methods 1 and 2 (group 1) and methods 1 and 3

(group 2) have been used. Let yg be the vector of observed variables for group g, and let ytm

indicate the measure of the t-th trait obtained with the m-th method. The observed variable

vectors are then y1 = (y11, y12, y21, y22, y31, y32)T (group 1) and

y2 = (y11, y13, y21, y23, y31, y33)T (group 2). Note that neither group contains both methods 2

and 3. As above, the CFA model per group is

Σg(θ) = ΛgΦgΛTg + Ψg, (8)

where subscripts g indicate group specific vectors. To facilitate further analysis, we redefine

the vector of (co)variances as σ(θ) := (σ1(θ)T ,σ2(θ)T )T , thus deleting the unobserved

moments, and will do the same for observed moments s.

As in Révilla and Saris (2013), we then specify the “correlated-trait

uncorrelated-method” (CTUM) model with equal method loadings,

Λ1 =



λ11 0 0 1 0

λ12 0 0 0 1

0 λ21 0 1 0

0 λ22 0 0 1

0 0 λ31 1 0

0 0 λ32 0 1


Λ2 =



λ11 0 0 1 0

λ13 0 0 0 1

0 λ21 0 1 0

0 λ23 0 0 1

0 0 λ31 1 0

0 0 λ33 0 1


, (9)

standardized trait and method factors, with uncorrelated method factors,

Φ1 =



η1 η2 η3 ξ1 ξ2

η1 1 ρ12 ρ13 0 0

η2 ρ12 1 ρ23 0 0

η3 ρ13 ρ23 1 0 0

ξ1 0 0 0 1 0

ξ2 0 0 0 0 1


, Φ2 =



η1 η2 η3 ξ1 ξ3

η1 1 ρ12 ρ13 0 0

η2 ρ12 1 ρ23 0 0

η3 ρ13 ρ23 1 0 0

ξ1 0 0 0 1 0

ξ3 0 0 0 0 1


, (10)
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and error variance matrices

Ψ1 = diag(ψ1, ψ2, ψ3, ψ4, ψ5, ψ6), Ψ2 = diag(ψ1, ψ7, ψ3, ψ8, ψ5, ψ9). (11)

The Jacobian of this model, ∆sbmtmm, is given in Equation 17 in the Appendix. When

applying a computer algebra system such as Mathematica (Wolfram Research, 2018) to this

problem, we obtain a non-trivial nullspace only in the following conditions:

1. All loadings are equal, λtm = λ and;

2. All correlations are equal, ρtt′ = ρ.

In this case, a basis for the nullspace is

Null(∆sbmtmm) =
[ λ11 ... λ12 ... ψ1 ψ2 ... ρ12 ρ13 ρ23 φ4 φ5 φ6

1
2λρ . . . − 1

2λρ . . . +ρ−1
ρ −ρ−1

ρ . . . 0 0 0 −1 1 1
]
(12)

Crucially, Null(∆sbmtmm) has zeroes in the three places that correspond to the three

correlation parameters ρ12, ρ13, and ρ23. The nullspace is orthogonal to these parameters,

which are not involved in the dependency. We will see in the experiments that this means that

models that appear to lack convergence, will actually converge for these three parameters, and

estimates of these parameters will be stable in spite of high-variance (often inadmissible)

estimates for the others.

The result that the Jacobian is deficient only under the above two conditions may seem

somewhat surprising given the literature on MTMM.

First, Wald (1950) and Kenny and Kashy (1992) suggested that rank-deficiency of Λ

would generate an “underidentified” model. Grayson and Marsh (1994) showed that this is

correct, for the CTM and CTCM models, which introduces correlation parameters among

methods (CTCM) and, additionally, between methods and traits (CTM). Second, Grayson

and Marsh (1994, p. 130) also suggested conditions under which the CTUM under

consideration here would be identified. These conditions are met under conditions 1 and 2

above. However, these authors did not consider the reduced-group split-ballot model; in this,

present, model, the missing heteromethod moments generate the rank deficiency above. This

fact explains observations by Révilla and Saris (2013) that the observed nonconvergence and

stability issues with reduced-group SBMTMM disappear when a third group including these
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heteromethod moments is included in the analysis. Finally, Saris et al. (2004) remarked that

rank-deficiency of the reduced-group SBMTMM model occurs whenever condition 2 above is

fulfilled. Our analysis indicates that this is not sufficient to generate a rank deficiency, but

both conditions 1 and 2 must be fulfilled. At the same time, as noted by Révilla and Saris

(2013), problems are indeed observed primarily when condition 2 is approached. The following

sections bear out this observation.

Experiments

Shapiro’s example: rank deficiency versus identification

To illustrate the problem of rank deficiencies in a simpler case than reduced-group

split-ballot multitrait-multimethod models, we will first discuss a simple classical example

discussed by Shapiro and Browne (1983).

Shapiro and Browne (1983) stressed that rank-deficiency of the information matrix need

not imply a non-identified model. Figure 1 demonstrated how this is possible: a function may

well have a unique maximum even though it does not have a full-rank second derivative at

every point. In this case, as noted by Shapiro and Browne (1983), the regularity conditions

suggested by Wald (1950) are violated, as the second derivative is not constant within any

neighborhood around the maximum, but changes abruptly when moving away from this point

(third panel in Figure 1). For this reason, the rank condition on the information matrix is

only indicative of a true identification problem when this regularity condition is met.

Shapiro and Browne (1983) illustrated this point with a three-indicator confirmatory

factor model reparameterized as y = Λη with

Λ =



η ε1 ε2 ε3

y1 λ1 ψ1 0 0

y2 λ2 0 ψ2 0

y3 λ3 0 0 ψ3

, Φ = Var(η) = I4. (13)

All implied variances and covariances can then be written σjj′(θ) = λjλj′ + δjj′ψ
2
j , where δjj′

is an indicator function that equals 1 if j = j′ and 0 otherwise. This parameterization ensures

that the implied error variances, ψ2
j , are positive, even though all parameters are reals.
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The Jacobian of this model is

∆Shapiro =



λ1 λ2 λ3 ψ1 ψ2 ψ3

σ11 2λ1 0 0 2ψ1 0 0

σ21 λ2 λ1 0 0 0 0

σ31 λ3 0 λ1 0 0 0

σ22 0 2λ2 0 0 2ψ2 0

σ32 0 λ3 λ2 0 0 0

σ33 0 0 2λ3 0 0 2ψ3


, (14)

so that simply setting any ψj = 0 will lead to a rank deficiency with null space equal to a

“one-hot” indicator vector, e.g. setting ψ3 = 0 gives Null(∆Shapiro) = [ 0 0 0 0 0 1 ]T .

However, Shapiro and Browne (1983) pointed out that even with ψ3 = 0, the system of

equations σ(θ) = σ can still be solved. Thus, similarly to the unidimensional function

f(x) = sign(x) · x3 shown in Figure 1 having a unique maximum, all parameters of the model,

including ψ3, are identifiable even though rk(∆) < p. This is possible because both functions

(the example function in Figure 1 and the fitting function for SEM) have a discontinuous

second derivative (Hessian) at the optimum.

While the above may seem like happy news, underidentification is not the only problem

that can be caused by rank deficiencies. This can be seen by generating data from the model

given above with the rank deficiency and fitting the model with free parameters to these data.

For illustration purposes, I used λ1 = 1, λ1 = 0.4, λ3 = 0.7, ψ1 = 1, ψ2 = 0.3, and ψ3 = 0 as

parameter settings and generated 2000 datasets with 100,000 cases each.

The results are shown in Figure 2 using maximum-likelihood (top panel) and a single

run of Hamiltonian Monte Carlo using stan (bottom panel). In both cases the results lead to

estimation problems. Using ML, the estimates ψ̂3 do not concentrate symmetrically around

the true value, ψ3 = 0. In spite of the very large number of cases, due to the rank deficiency,

there is a nonzero probability that ψ3 takes on an arbitrarily large value. For those solutions

that are near the true value (spike near zero), normal-theory standard errors are arbitrarily

large or cannot be calculated, so that the user cannot tell that the estimates were accurate.

To illustrate that these problems are not specific to the estimation method, or to

maximum-likelihood, I ran the same model in the Hamiltonian Monte Carlo (HMC) sampler

stan, a popular package for Bayesian modeling. The HMC chains in the bottom panel of
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Figure 2 . Empirical estimates of the parameter involved in Shapiro’s rank deficiency at large

samples. Yellow (light color) indicates “inadmissible” estimates (ψ̂3 < 0). Top:

maximum-likelihood estimates. Bottom: a single Bayesian trace plot produced by stan.

Figure 2 show poor mixing and exhibit bias due to the constraint that estimates should be

positive. In other words, the “admissibility” of solutions has been traded for bias. This

demonstrates that Bayesian estimation can solve the problem of inadmissibility only at the

cost of a bias that does not go to zero as the sample size grows. In addition, those draws that

are actually near the rank-deficient true value are marked by stan’s HMC sampler as

divergences. Again, the user would be warned off these most accurate estimates.

These problems occur only with the estimates ψ̂3. Standard results, such as convergence

to normality, large-sample unbiasedness, and correctness of normal-theory standard errors, do

accrue for every other parameter of the model. The reason for this is that the null space of ∆,

namely Null(∆Shapiro) = [ 0 0 0 0 0 1 ]T , does not involve any of these other
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parameters. We have noted a similar phenomenon in the CTUM SB-MTMM model, where the

correlations among traits are not involved in any rank deficiency.

In short, although Shapiro and Browne (1983) were correct in pointing out there is no

identification problem with this model, real-life analysis of this model using finite sample will

yield plenty of other problems, regardless of the estimation method used. The same

phenomenon occurs in more complex models such as the reduced-group split-ballot

multitrait-multimethod model, discussed in the following section.

Convergence and “admissibility” of SB-MTMM model

The previous section illustrated the basic problems that result from a simple rank

deficiency in a simple model. I now illustrate how rank deficiencies affect estimation of the

reduced-group split-ballot multitrait-multimethod model.

I generated data from a 3× 3 CTUM-MTMM model with equal loadings, and

correlations that differed by a distance δ:

Λ =



η1 η2 η3 ξ1 ξ2 ξ3

y11 1 0 0 1 0 0

y12 1 0 0 0 1 0

y13 1 0 0 0 0 1

y21 0 1 0 1 0 0

y22 0 1 0 0 1 0

y23 0 1 0 0 0 1

y31 0 0 1 1 0 0

y32 0 0 1 0 1 0

y33 0 0 1 0 0 1



, Φ =



η1 η2 η3 ξ1 ξ2 ξ3

η1 1 0.5− δ 0.5 0 0 0

η2 0.5− δ 1 0.5 + δ 0 0 0

η3 0.5 0.5 + δ 1 0 0 0

ξ1 0 0 0 1 0 0

ξ2 0 0 0 0 1 0

ξ3 0 0 0 0 0 1


, Ψ = I9,

(15)

and data were generated from the standard confirmatory factor model,

y = Λη + ε, with η ∼ MVN(0,Φ) and ε ∼ MVN(0,Ψ). (16)

When the SB-MTMM model is applied to this population, its Jacobian is rank deficient,

rk(∆) < p, when δ = 0.

Conditions were then defined by fully crossing the following two factors:
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Figure 3 . “Admissibility” and convergence of the split-ballot CTUM MTMM model for

different sample sizes and distances δ from the rank-deficient point.

• Sample size n ∈ {50, 75, 100, 500, 103, 104, 105}

• Distance from rank deficiency δ ∈ {0, 0.01, 0.05, 0.1, 0.2, 0.3}

For each of the 7× 6 = 42 conditions, 2000 datasets were generated by sampling the nine

observed variables jointly from a multivariate normal distribution. To simulate the planned

missing data design, the first half of each dataset set all values for variables y13, y23, and y33

to “missing”; the same was done for y12, y22, and y32 in the second half of each dataset. Using

lavaan 0.6-5 (Rosseel, 2012), I fit a CTUM MTMM model to each synthetic split-ballot

dataset using maximum-likelihood under ignorability (“full-information maximum

likelihood”). I then recorded whether the model converged using the default tolerance and

whether the solution was “admissible” – i.e. whether all variance matrices were

positive-definite. R code for the simulation can be found in the Appendix.

Figure 3 shows the results of the simulation study.

The left-hand side of Figure 3 shows the proportion of "admissible" estimate sets. As

expected, this proportion simply increases as the sampling variance decreases. As shown

above, distance to the rank deficiency, δ, interacts with the sample size to increase the

admissible solutions; the further the population is from the rank deficiency, the stronger the
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influence of sample size. An exceptional case is the rank-deficient point itself, δ = 0; at this

point increasing the sample size does not ultimately lead to 100% admissibility, regardless of

sample size. For smaller distances, enormous sample sizes are needed to counteract the

variance inflation. For example, at δ = 0.01, even 100,000 cases is not enough to yield 80%

admissible solution sets.

The right-hand side of Figure 3 shows the proportion of solutions that were deemed to

have converged by the optimizer, nl2sol (Dennis et al., 1981). Note that nl2sol employs

several convergence tests simultaneously, including an explicit test for singularity of the

Hessian. As for the admissibility, distance to the singular point δ interacts with the sample

size. In addition, a paradoxical phenomenon can be observed at low values of δ and smaller

sample sizes: there are points at which increasing the sample size decreases the convergence.

This happens because MLE’s of parameters close to the rank deficient point can lie far away

from this point when the sampling variance is large. In other words, the model converges more

often because estimates may be far from the truth.

Figure 4 demonstrates why nonmonotone effects can occur in the results in Figure 3.

The Figure illustrates the overlap, in percentage area, between an arbitrary contour of the

MLE (solid circle) around its true value (dark point) with an arbitrary region (red filled circle)

leading to convergence problems around the rank deficient point (cross). The size of the

contour (radius of the circle) depends on the variance of the MLE. The size of the region of

nonconvergence will depend on the optimizer and choices regarding tolerance: lower tolerance

will lead to larger red shaded regions. The bottom part of Figure 4 plots the proportion

overlap between two such areas as a function of the radius of the circle (MLE variance). It can

be seen that this overlap shows the nonmonotone pattern found in the experiments. With

large variance, fewer nonconvergence problems can occur, but only because the estimates are

far from the true values. In these cases, “inadmissible” solutions (or bias when these are

prevented using priors or restrictions) will also be more prevalent.

Conclusion

Even when a latent variable model is correctly specified, the model is identified, and the

sample size is in the thousands or tens of thousands of cases, the sample may still very often

lack information about some of its parameters. In the literature on MTMM models, this
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Figure 4 . As the variance of the MLE decreases, the probability that it is located in an area

that will lead to nonconvergence first increases, then decreases.

phenomenon has often been noted under such descriptions as “nonconvergence”, “empirical

underidentification”, “inadmissible estimates”, and “parameter instability”. This paper has

investigated deficient-rank Jacobians as the common cause for these ails. Using the

reduced-group split-ballot multitrait-multimethod model as a use case, we have demonstrated

how rank deficiencies can be found and investigated using a computer algebra system.

We found that the rank deficiency of the RG-SB-MTMM model does not extend to the

estimation of the trait correlations. In other words, for all their problems, when the CTUM

model is deemed acceptable by the researcher, and the trait correlations are the parameters of

interest, the best course of action in the face of nonconvergence, inadmissible estimates, and

their equivalent problems is to simply ignore them. Of course, this no longer holds when the

(standardized) loadings or variance parameters themselves are of interest. Similarly, the result

does not apply to CTCM models, which do generate a dependency involving the trait

correlations. Nevertheless, it is clear that not all parameters are equally affected by estimation

problems; an interesting conjecture is therefore that the trait correlations are less affected by

these problems in general, even in CTCM or CTM models.

The role of sample size was found to be more complex than previously thought. Due to
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the dual role of the rank deficiency, in increasing the variance and generating nonconvergence,

increasing the sample size can sometimes deteriorate convergence. However, this does not

mean that smaller sample sizes are better; rather, it means convergence is only achieved far

away from the true value. Because convergence probability and the value of the parameter

estimate are closely related, when running simulation studies, it should be common practice to

report summaries for both the converged and the nonconverged estimates. Because previous

simulation studies have reported bias, MSE, and variance for the converged estimates only,

they were unable to detect empirically that trait correlations were unbiased.

Our results also suggest that estimation problems are fundamental properties of the

model and available information in the data, and cannot be solved with computational

“tricks”. For instance, after estimating the Shapiro model using a modern HMC sampler, as

commonly used in Bayesian modeling software, we found biased estimates and divergent

transitions near the true value. A different potential solution suggested in recent literature is

to employ Bayesian priors or penalized estimation (see Van Kesteren and Oberski, 2019, and

references therein). Employing such regularization methods can stabilize the estimates that

are affected by the rank deficiency; however, one should be extremely careful to prevent the

regularization from being applied to parameters that do not need it, such as the trait

correlations in this example. We would therefore suggest that methodologists who wish to use

regularization methods should consider these in the specific context of rank deficiencies in the

Jacobian; ideally, the regularization should remove these, while not introducing bias in

unaffected parameters. Similarly, the effect of alternative, potentially misspecified, model

formulations, such as including covariates or removing one method or trait factor, should be

carefully considered in this light.

MTMM is an old idea that has never been more relevant. As novel data sources flood

into the social, behavioral, and biomedical sciences, it is more important than ever to evaluate

the extent to which a combination of these different sources can provide us with valid and

reliable measurement. To accomplish this goal, latent variable models, whether they be linear

factor models or more modern (and complex) versions such as latent class MTMM (Oberski

et al., 2015, 2017), variational autoencoders, restricted Boltzman machines, or generative

adversarial networks, are extremely useful tools. They also make demands on the data that

can often not be met in practice. In the future, we hope that combining theory referred to in
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the present paper with practical goals of multi-source measurement will help overcome the

barriers to leveraging the power of latent variables.
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Appendix A

Jacobian of the CTUM reduced-group split-ballot multitrait-multimethod model

∆sbmtmm =



λ11 λ21 λ31 λ12 λ22 λ32 λ13 λ23 λ33 ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7 ψ8 ψ9 ρ12 ρ13 ρ23 φ4 φ5 φ6

λ2
11+ψ1+φ4 2λ11 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

λ11λ12 λ12 0 0 λ11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

λ11λ21ρ12+φ4 λ21ρ12 λ11ρ12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 λ11λ21 0 0 1 0 0

λ11λ22ρ12 λ22ρ12 0 0 0 λ11ρ12 0 0 0 0 0 0 0 0 0 0 0 0 0 λ11λ22 0 0 0 0 0

λ11λ31ρ13+φ4 λ31ρ13 0 λ11ρ13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 λ11λ31 0 1 0 0

λ11λ32ρ13 λ32ρ13 0 0 0 0 λ11ρ13 0 0 0 0 0 0 0 0 0 0 0 0 0 λ11λ32 0 0 0 0

λ2
12+ψ2+φ5 0 0 0 2λ12 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0

λ12λ21ρ12 0 λ12ρ12 0 λ21ρ12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 λ12λ21 0 0 0 0 0

λ12λ22ρ12+φ5 0 0 0 λ22ρ12 λ12ρ12 0 0 0 0 0 0 0 0 0 0 0 0 0 λ12λ22 0 0 0 1 0

λ12λ31ρ13 0 0 λ12ρ13 λ31ρ13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 λ12λ31 0 0 0 0

λ12λ32ρ13+φ5 0 0 0 λ32ρ13 0 λ12ρ13 0 0 0 0 0 0 0 0 0 0 0 0 0 λ12λ32 0 0 1 0

λ2
21+ψ3+φ4 0 2λ21 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0

λ21λ22 0 λ22 0 0 λ21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

λ21λ31ρ23+φ4 0 λ31ρ23 λ21ρ23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 λ21λ31 1 0 0

λ21λ32ρ23 0 λ32ρ23 0 0 0 λ21ρ23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 λ21λ32 0 0 0

λ2
22+ψ4+φ5 0 0 0 0 2λ22 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0

λ22λ31ρ23 0 0 λ22ρ23 0 λ31ρ23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 λ22λ31 0 0 0

λ22λ32ρ23+φ5 0 0 0 0 λ32ρ23 λ22ρ23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 λ22λ32 0 1 0

λ2
31+ψ5+φ4 0 0 2λ31 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0

λ31λ32 0 0 λ32 0 0 λ31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

λ2
32+ψ6+φ5 0 0 0 0 0 2λ32 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

λ2
11+ψ1+φ4 2λ11 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

λ11λ13 λ13 0 0 0 0 0 λ11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

λ11λ21ρ12+φ4 λ21ρ12 λ11ρ12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 λ11λ21 0 0 1 0 0

λ11λ23ρ12 λ23ρ12 0 0 0 0 0 0 λ11ρ12 0 0 0 0 0 0 0 0 0 0 λ11λ23 0 0 0 0 0

λ11λ31ρ13+φ4 λ31ρ13 0 λ11ρ13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 λ11λ31 0 1 0 0

λ11λ33ρ13 λ33ρ13 0 0 0 0 0 0 0 λ11ρ13 0 0 0 0 0 0 0 0 0 0 λ11λ33 0 0 0 0

λ2
13+ψ2+φ6 0 0 0 0 0 0 2λ13 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1

λ13λ21ρ12 0 λ13ρ12 0 0 0 0 λ21ρ12 0 0 0 0 0 0 0 0 0 0 0 λ13λ21 0 0 0 0 0

λ13λ23ρ12+φ6 0 0 0 0 0 0 λ23ρ12 λ13ρ12 0 0 0 0 0 0 0 0 0 0 λ13λ23 0 0 0 0 1

λ13λ31ρ13 0 0 λ13ρ13 0 0 0 λ31ρ13 0 0 0 0 0 0 0 0 0 0 0 0 λ13λ31 0 0 0 0

λ13λ33ρ13+φ6 0 0 0 0 0 0 λ33ρ13 0 λ13ρ13 0 0 0 0 0 0 0 0 0 0 λ13λ33 0 0 0 1

λ2
21+ψ3+φ4 0 2λ21 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0

λ21λ23 0 λ23 0 0 0 0 0 λ21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

λ21λ31ρ23+φ4 0 λ31ρ23 λ21ρ23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 λ21λ31 1 0 0

λ21λ33ρ23 0 λ33ρ23 0 0 0 0 0 0 λ21ρ23 0 0 0 0 0 0 0 0 0 0 0 λ21λ33 0 0 0

λ2
23+ψ7+φ6 0 0 0 0 0 0 0 2λ23 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

λ23λ31ρ23 0 0 λ23ρ23 0 0 0 0 λ31ρ23 0 0 0 0 0 0 0 0 0 0 0 0 λ23λ31 0 0 0

λ23λ33ρ23+φ6 0 0 0 0 0 0 0 λ33ρ23 λ23ρ23 0 0 0 0 0 0 0 0 0 0 0 λ23λ33 0 0 1

λ2
31+ψ8+φ4 0 0 2λ31 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0

λ31λ33 0 0 λ33 0 0 0 0 0 λ31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

λ2
33+ψ9+φ6 0 0 0 0 0 0 0 0 2λ33 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1



(17)
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Appendix B

Simulation R code
library(tidyverse)

library(lavaan)

library(viridis)

sim_data <- function(n, mod, split_ballot = TRUE, ...) {

ydf <- simulateData(mod, sample.nobs = n, ...)

if(split_ballot) {

half <- floor(n/2)

ydf[1:half, c(3,6,9)] <- NA

ydf[(half+1):n, c(2,5,8)] <- NA

}

ydf

}

get_mod <- function(d) {

paste0("

T1 =~ y1 + y2 + y3

T2 =~ y4 + y5 + y6

T3 =~ y7 + y8 + y9

M1 =~ 1*y1 + 1*y4 + 1*y7

M2 =~ 1*y2 + 1*y5 + 1*y8

M3 =~ 1*y3 + 1*y6 + 1*y9

M1 ~~ 0*M2 + 0*M3 + 0*T1 + 0*T2 + 0*T3

M2 ~~ 0*M3 + 0*T1 + 0*T2 + 0*T3

M3 ~~ 0*T1 + 0*T2 + 0*T3

T1 ~~ start(", 0.5 - d,")*T2 + start(", 0.5 + d,")*T3 + 1*T1

T2 ~~ start(0.5)*T3 + 1*T2

T3 ~~ 1*T3

")
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}

any_variances_negative <- function(fit) {

th <- coef(fit)

any(th[grep("~~", names(th))] < 0)

}

runit <- function(n, mod) {

ydf_sb <- sim_data(n, mod = mod, split_ballot = TRUE)

fit <- lavaan(mod, data = ydf_sb, missing = "ml", int.ov.free = TRUE,

auto.var = TRUE, auto.fix.first = FALSE)

data.frame(converged = fit@Fit@converged,

admissible = !any_variances_negative(fit),

rbind(coef(fit)))

}

runsim <- function(n, d, nsim) {

purrr::map_df(1:nsim, ~runit(n, mod = get_mod(d = d))) %>% cbind(n = n, d = d)

}

set.seed(3452)

nsim <- 2e2

conditions <- expand.grid(n = c(50, 75, 1e2, 500, 1e3, 1e4, 1e5),

d = c(0, 0.01, 0.05, 0.1, 0.2, 0.3))

res <- purrr::pmap_df(conditions,

~ runsim(n = ..1, d = ..2, nsim = nsim))

res %>%

tidyr::gather("measure", "outcome", 1:2) %>%

mutate(d = as.factor(d)) %>%

group_by(n, d, measure) %>%

summarize(prop_good = mean(outcome),

se = sqrt((prop_good * (1 - prop_good))/nsim),

lo = prop_good - 2*se, hi = prop_good + 2*se) %>%
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ggplot(aes(n, prop_good, ymin = lo, ymax = hi, group = d, colour = d)) + ylim(0,1) +

geom_point(alpha = 0.5) + geom_line(lty = 2) + geom_errorbar(alpha = 0.5) +

facet_wrap(~measure) + ggplot2::scale_x_log10() + theme_bw() +

viridis::scale_color_viridis(discrete = TRUE) +

geom_smooth(se = FALSE, lwd = 2)
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