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Introduction

This chapter includes parts of the following publication:

A perspective towards mass-spectrometry-based de novo sequencing of

endogenous antibodies

Sebastiaan C. de Graaf*, Max Hoek*, Sem Tamara and Albert J.R. Heck

mAbs (2021), 14:1, 2079449, DOI: 10.1080/19420862.2022.2079449 Review
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1.1 Prelude - The importance of antibodies

AROUND the time of their initial discovery, antibodies were termed by various il-

lustrious names, such as ‘Immunkörper’, ‘Amboceptor’, and ‘Zwischenkörper’,

among many others. These terms were used more than a century ago to describe

substances with antitoxin, lysin, agglutinin, and precipitin activities (1, 2). Nowa-

days, the generally accepted term antibody refers to secreted immunoglobulins (Igs),

whose sequence variety is several orders more diverse than the assortment of their

historical names. Antibodies represent some of the most important molecules in the

human immune system. Over the last century, Igs have been intensively studied be-

cause of their role in combatting infectious diseases and have taken centre stage for

development of therapeutics in the last decade (3–5). Beyond infectious diseases,

recombinant antibodies are now also developed for cancer, rheumatoid arthritis, and

various other pathological conditions (6). As key entities in the body’s defence mech-

anism, circulating antibodies are found in various bodily fluids, such as serum, saliva,

milk, the lumen of the gut, and cerebrospinal fluid (7). New leads for biotherapeutic

development of recombinant antibodies come either from immunizing animals with

specific antigens, or by discovering pathogen-neutralizing antibodies from recovered

patients (8–10). The estimated diversity of Ig molecules a human body can gener-

ate extends beyond 1015 theoretical sequences (11, 12), indicating that each antigen

may lead to a unique antibody response. These 1015 possible antibody sequences

are all unique yet highly alike, posing a serious challenge for their characterization

and sequencing, which has remained, to this day, a tremendously challenging task.

Ideally, one would like to sequence antibodies at the protein level instead of through

B-cell receptor (BCR) sequencing (13), as is currently the norm, to more directly

probe circulating antibody repertoires and their relative abundances in specific en-

vironments. Mass spectrometry (MS) is expected to be the method of choice to

potentially achieve this feat, as MS-based protein analysis has advanced and ma-
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tured considerably (14, 15). However, antibodies represent a very special and rather

challenging class of proteins. Consequently, while MS has already been used to

characterize and sequence highly purified monoclonal antibodies (mAbs) (16–18),

further technical developments in sample preparation and data analysis are needed

to incorporate MS fully and efficiently into an endogenous humoral antibody discov-

ery and characterization pipeline. In this thesis, I evaluate the role that MS can play

in sequencing, identifying, and characterizing antibodies, focusing mainly on emerg-

ing strategies employed to enable identification and characterization of endogenous

neutralizing antibodies.

1.1.1 Nomenclature, structure, and diversity of antibodies

Humoral human antibodies are complex proteins produced by B cells (7, 19). Most

antibody molecules (e.g. IgGs) are made up of four protein chains: two identical

light chains and two identical heavy chains, which are interconnected by disulphide

bridges (Figure 1). The light and heavy chain form two heterodimers, which are con-

nected via disulphide bridges in the hinge region to form the intact antibody. Func-

tionally, the intact antibody can be divided into two antigen-binding domains (also

known as Fab or fragment antigen-binding) and a constant domain (also known as

Fc or fragment crystallizable) (20) (Figure 1a). The Fc is the effector entity of the anti-

body and can bind to Fc-receptors on immune cells (7) and mediate immune effector

responses such as phagocytosis, antibody-dependent cell-mediated cytotoxicity, res-

piratory burst, and cytokine release (21). In contrast to the fully conserved sequence

and structure of the Fc, the Fab is responsible for the vast diversity in recognized anti-

gens and is thus hypervariable. Because there is an endless and constantly evolving

pool of pathogens, the antibody repertoire needs to be incredibly diverse and versa-

tile to counteract these challenges (22, 23). In humans, this enormous diversity in

the potential antibody repertoire is achieved through several mechanisms. Starting
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at the genomic level, the light and heavy chains are encoded in four genes each:

variable (V), diversity (D), joining (J), and constant (C), with the light chain lacking

the D-gene. These genes are encoded in multiple alleles, which can recombine to

a staggering number of combinations (Figure 1b) (24). The recombination process

is also error-prone, leading to insertions and deletions at the junctions between the

regions, referred to as junctional diversity. By recombination alone, the number of

possible variable domain sequences already reaches tens of thousands. However,

the eventual antibody diversity is expanded even further by natural polymorphisms,

mutations, and class switching. As the major contributor to antibody hypervariability,

somatic hypermutations can occur during B-cell affinity maturation and do so at a

million-fold increased rate compared to the usual mutation rates (11). These muta-

tions are largely concentrated in the complementarity-determining regions (CDR1-3),

separated by framework regions (FR1-4), which form the conserved backbone of the

Fab structure (Figure 1c). Located at the tips of the Y-shaped antibody structure,

CDRs are primarily responsible for antigen binding, and, therefore, elucidation of their

sequences is of the utmost importance for antibody discovery. The Fc part of Igs is

used to classify antibodies into one of 5 classes: IgA, IgD, IgE, IgG, and IgM. Some of

these classes are divided further into subclasses denoted by numbers, e.g., IgG1-4

or IgA1 and IgA2. Although the function of the classes and subclasses is different,

their variable regions stem from the shared pool of genes. Therefore, for simplicity,

in this review, we focus primarily on IgG1, the most abundant antibody subclass in

serum, and the predominantly used subclass for biotherapeutic development. Still,

concerning de novo sequencing by MS, different Ig classes and subclasses pose

similar challenges and opportunities.
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Figure 1: Nomenclature, structure, and diversity of IgG1 antibodies. a) Nomenclature and protein
fragments of an IgG1 molecule. The antigen-binding domain, containing light and heavy chain (LC and
HC respectively) variable regions, is termed Fab (or Fab2 when dimerized). The constant part of the
heavy chain carrying an N-glycosylation site is called Fc. Other IgG subclasses vary in their heavy chain
constant region (Fc) and disulphide patterns. b) The diversity in antibodies originates primarily from the
V, D, J, and C-allele (each annotated with a distinct colour) recombination process. In this process, each
of many individual V, D, J, and C-alleles can recombine with any of the other gene segments, yielding
thousands of possible combinations, in particular for the heavy chain, which incorporates the most diverse
D region. c) Sequence logo created by the alignment of in silico generated sequences of Ig kappa (IGK)
and lambda (IGL) light chains and Ig heavy chain (IGH) from the international ImMunoGeneTics (IMGT)
information system database (25). Even though the displayed sequences are part of the variable domain,
large stretches of these sequences, also known as the framework regions (FRs), are relatively conserved,
compared to the hypervariable complementarity determining regions (CDRs), coloured in accordance with
a) .

1.1.2 Modalities of MS-based antibody analysis

Proteomics is the large-scale study of proteins. Many different peptide- and protein-

centric MS-based approaches have been developed for proteomics, whereby some

of these have been adapted for de novo sequence analysis of antibodies. Bottom-up

(BU) or shotgun proteomics is by far the most widespread approach in MS-based

protein analysis. In it, protein samples are digested by one or more proteases, and

the resulting peptides are separated by some form of liquid chromatography (usually

reversed-phase (RP)-HPLC), after which their peptide masses are recorded (MS1).
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Highly abundant precursor ions are then selected for fragmentation, and the masses

of their fragment ions (MS2) are recorded. Because digestion and MS-based frag-

mentation adhere to highly specific rules, peptides and their gas-phase fragment ions

can be predicted. Consequently, peptides and their parent proteins are identified by

comparing recorded spectra to the spectra simulated from protein or DNA databases

(26). For antibody sequencing, personalized databases are required for identifica-

tion. Yet, digestion-based strategies are still widely used even without an available

database. Individual spectra can be de novo sequenced, and the resulting reads

can be assembled into full-length sequences (16, 27, 28). Additionally, intact mass

analysis is a useful tool for protein analysis, providing masses that can be considered

fingerprints of the species (known as proteoforms) present in the sample. Comparing

different masses can lead to conclusions about relations between multiple species,

for instance, if they differ by the mass of a known mutation, post-translational modifi-

cation (PTM), or signal peptide (29). In the case of antibodies, such analysis can be

performed with the protein in its native, and possibly complexed, state, or unfolded

and separated into the comprising chains. Such approaches can provide valuable

insights in the context of antibodies, e.g., by assessing the complexity of antibody

repertoire or following changes in abundance of specific clones (30). When applied

to de novo sequencing, the precursor mass knowledge can help determining the light

and heavy chain pairing or sequence prediction accuracy in BU sequencing (31). In

addition, both denatured and native antibodies can also be fragmented to yield some

sequence information, this approach is called top-down (TD) MS. Because of the

much larger size and higher charge of the analysed species, such intact-protein frag-

mentation spectra are more complex and harder to interpret than peptide spectra

(32, 33). To mitigate this, specific proteases can be used to cleave proteins into

smaller subunits. This practice is called middle-down (MD) MS, and in the context of

antibodies it is often performed by cleaving the hinge region of the heavy chain be-

fore MS analysis (34). Fragmentation spectra of entire chains or intact antibodies can
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provide valuable tools for both sequence determination and validation of sequence

predictions, as fragmentation is highly specific for the precursor clone, which is often

untrue in BU analysis (35).

1.2 The emerging role of mass spectrometry in anti-

body discovery

Due to the structural complexity and immense sequence diversity of antibodies, the

development of therapeutic antibodies has always been a very challenging and labour-

intense task, especially when compared to small-molecule drug development. For

example, the discovery of Trastuzumab was achieved by using mice immunized with

antigen-expressing cells. Following the generation and selection of hybridomas that

showed specific activity (36), the sequence of the selected antibody was determined

after cloning and expression. A humanized antibody could be produced only there-

after by adapting and modifying the sequence accordingly (37). The same approach

was used in the development of several other mAbs (38–41). Apart from being ex-

pensive and laborious, these early strategies required knowledge and availability of

purified antigens and animal models that can produce specific antibodies in response

to these antigens (42). More recently, alternative strategies for antibody discovery

have been explored starting with the screening of B cells from individuals who suc-

cessfully overcame an infection. In this approach, peripheral blood mononuclear

cells (PBMCs) are isolated, immortalized, and screened for antigen reactivity. The

reactive clones are further expanded and characterized. This method has proven

effective in finding new neutralizing antibodies that can be used to combat certain in-

fectious diseases, e.g. Ebola (8, 9) or severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2) (10). These recent advances show that the discovery of antibodies

from human subjects, in addition to animal models, represents a viable method for

7



1

Chapter 1

developing new avenues for therapies. However, it may be even more advantageous

to discover and characterize mature antibody clones directly from clinical samples at

the protein level in their functionally matured and active form.

Figure 2: Three approaches in MS-based antibody sequencing. a) Recombinant antibody sequenc-
ing generally starts with abundant highly purified mAbs, which can be fully sequenced through BU MS,
where hundreds of peptides are generated by digesting the mAb with one or several proteases, provid-
ing multiple overlapping short sequence reads. After liquid chromatography-mass spectrometry (LC-MS)
measurement, the spectra can be processed by several different de novo sequencing software solutions
and assembled into full-length mAb sequences (17). b) In repertoire analysis, a sequence database is
generated through B-cell sequencing, and MS-data is obtained through BU MS experiments. After gen-
eration of the personalized database, a high throughput of the LC-MS is possible (43). While not strictly
de novo since only hits from the sequence database are identified, it is a powerful tool for antibody reper-
toire analysis. c) Endogenous antibody sequencing cannot rely on BU MS alone, as direct sequencing
of endogenous humoral antibodies is hampered by inherent challenges and complexity. Emerging MD
and TD MS techniques provide clone-specific sequence information highly complementary to traditional
sequencing. Integrating BU MS and MD/TD MS makes it possible to achieve full-length coverage of anti-
body sequences (30).

In recent years, MS-based proteomics has advanced tremendously in sample prepa-

ration, MS and liquid chromatography instrumentation, and data analysis (14, 15).
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Using all these advances, antibody sequencing at the protein level by MS has come

within reach. Figure 2 highlights three – chiefly MS-based – strategies used to deter-

mine antibody sequences. These three pillars are primarily classified by the source

of sample material and the attainable sequencing information. The first strategy ap-

plies to highly purified recombinant antibodies that are now amenable for full se-

quencing with BU MS, often by combining several different proteases and advanced

algorithms. Second, hybrid approaches have been introduced for analysing endoge-

nous antibody repertoires by combining MS-based techniques with genomics or tran-

scriptomics, e.g., whole genome sequencing or BCR sequencing, ideally from the

same donor. The third set of techniques encompasses several MS-based de novo

approaches that aim to determine complete antibody sequences of selected clones

directly from clinical samples without the aid from alternative omics data. While each

strategy is distinct, they all share common aspects.

1.2.1 MS-based sequencing of monoclonal antibodies

Before delving into the topic of MS-based sequencing of endogenous antibodies from

clinical samples, we first discuss the current state-of-the-art sequencing approaches

developed for recombinant mAbs. Principles of mAb sequencing by MS share many

technical considerations with sequencing of antibodies present in complex mixtures.

Furthermore, currently available strategies for recombinant mAb sequencing provide

great context for discussing limitations and bottlenecks that hamper sequencing of

endogenous antibody clones.

Shotgun, bottom-up strategies used for sequencing of highly purified mAbs

Antibodies are often analysed after digestion with one or more proteases to gen-

erate peptides (Figure 2). Such peptide-centric approaches are known as BU MS

and represent the most popular type of proteomics experiments. In contrast to most

9



1

Chapter 1

shotgun proteomics experiments, de novo sequencing through BU MS necessitates

a high depth of sequence coverage, i.e. each sequence position in the antibody is

ideally supported by multiple overlapping unique peptides. With a typical highly spe-

cific protease such as trypsin, which cleaves C-terminally of lysine and arginine, and

a low number of missed cleavages, sequence-coverage depth is often limited be-

cause only a few of the generated peptides overlap in sequence. Although this suits

standard shotgun proteomics experiments, which do not require full sequence cover-

age of the analysed proteins, de novo sequencing of antibodies thus requires other

approaches. Several methods to generate complete and deep sequence coverage

by overlapping peptides have been introduced. For example, a shortened protease

incubation time was successfully used to increase the number of peptides carrying

missed cleavage sites (44). Some proteases generate a high number of overlap-

ping peptides through non-specific cleavage (31, 45, 46). Alternatively, non-specific

cleavage can be also achieved through non-enzymatic treatment, e.g., microwave-

assisted hydrolysis (47). For these methods to work, digestion conditions must be

tightly controlled to avoid abnormally long or short peptides and ensure reproducibil-

ity. Another elegant option is to use multiple proteases with synergistic sequence

specificities. For instance, Peng et al. (17) recently used a total of 9 proteases, both

specific and non-specific, to successfully de novo sequence a full-length anti-FLAG-

M2mouse mAb (Figure 3). The strength of a large panel of proteases is shown in the

validation of the CDR sequences by high scoring peptides covering the entire CDR.

The 6 chosen peptides are the result of digestion by 5 different proteases (trypsin,

chymotrypsin, lysC, thermolysin, and elastase, Figure 3a and b). Nowadays, most

de novo sequencing solutions, such as ALPS/PeaksAB (27), GenoMS (46), Super-

Novo (16) and Champs (48) are quite successful in obtaining full sequence cover-

age of highly purified antibodies. To determine the antibody sequences de novo,

all these software tools require large number of overlapping peptides, spanning the

entire sequence, which are successfully fragmented and converted into predicted
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peptide sequence reads (Figure 2a). This necessitates generation of BU MS data

by using multiple proteases. While complicating sample preparation and increasing

the required amount, such multi-protease approaches are advantageous for de novo

sequencing by alleviating the sequence assembly problem.

Figure 3: Sequencing of a monoclonal Anti-FLAG M2 antibody. The variable regions of the heavy a)
and light chains b) are shown. The de novo sequence derived by MS is shown on top, alongside the previ-
ously published sequence used in the crystal structure of the Fab (PDB ID: 2G60), and germline sequence
(IMGT-DomainGapAlign; IGHV1-04/IGHJ2; IGKV1-11⋆7/IGKJ1). Differential residues are highlighted by
asterisks (*). Exemplary MS/MS spectra in support of the assigned sequences are shown below the align-
ments, labelled with protease, precursor charge state, and fragmentation type. The peptide sequence
and fragment coverage are indicated in the top-right of each spectrum spectra, with b/c ions indicated in
blue/teal and y/z ions in red/orange. The same colour annotation is used for peaks in the spectra, with
additional peaks such as intact/charge reduced precursors, neutral losses, and immonium ions indicated
in green. To prevent overlapping peak labels, only a subset of successfully matched peaks are annotated.
Figure and caption adapted from Peng et al. (17)

Benefits of complementary peptide fragmentation techniques

In MS-based sequencing, extensive fragmentation of peptide ions is essential to gen-

erate arrays of adjacent fragments that reveal the amino acid sequence, often re-

ferred to as ion ladders or sequence tags (Figure 4a). The amino acid sequence
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of the fragmented peptide is derived by comparing the mass difference between two

adjacent fragment ion peaks to the masses of amino acids and combinations thereof.

The produced fragment ion series must contain very few gaps larger than a single

amino acid residue, because such gaps lead to exponential growth of the amino acid

combinations that fit the mass difference, particularly for spectra of lower resolution

(49). Since there is no universal fragmentation method that can produce uninter-

rupted fragment ion ladders for all possible peptides, it is highly advantageous to use

various fragmentation methods with distinct mechanisms and specificities to com-

plement each other (Figure 4b) (50). While collisional dissociation (CID/CAD/HCD)

is the most used technique in shotgun proteomics experiments, multiple alternative

fragmentation techniques have been introduced and have proven to be complemen-

tary. These specificities stem from the unique ion activation mechanisms employed

by each method. In collision-based techniques, energy is deposited to the multi-

ply protonated peptide ions through low-energetic collisions with inert neutral atoms

or gas molecules. This energy is redistributed vibrationally throughout the peptide

backbone, fragmenting the most labile bonds and yielding b/y-type fragment ions,

as defined by the Roepstorff-Fohlmann-Biemann ion nomenclature (Figure 4c) (51).

Although protonated amide bonds are usually the most susceptible to fragmentation,

collisional dissociation often also leads to loss of labile PTMs, such as phosphory-

lation and sialyation. In electron-based techniques (ECD/ETD), positively-charged

peptide ions capture electrons, leading to the generation of odd-electron species

that dissociate promptly without significant vibrational redistribution (53–55). In con-

trast to collisional dissociation, this process is not directed towards the most labile

bonds, and produces distinctively c and z fragment ions through the dissociation of

N-Cα bond (Figure 4c). Similarly, high-energy photon-based activation techniques

(UVPD) also cause bond dissociation without substantial energy redistribution. This

is enabled by a number of chromophores along the peptide backbone and results

in a wide array of co-occurring fragment ion types (a/x, b/y, c/z), depending on the
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Figure 4: Peptide fragmentation in MS-based de novo sequencing. a) An illustrative fragmentation
spectrum. In the spectrum, fragment ion peaks are colour annotated according to the type of fragment
ion (a: purple, b: blue, c: light blue, x: pink, y: red, and z: brown) the unfragmented peptide (precursor
ion) is shown in green as well as the precursor ion with neutral loss of CO. Adjacent fragment ions of the
same type have a mass difference corresponding to a single amino acid, which is used to determine the
sequence as is illustrated for b-ions above spectrum. Below the spectrum the amino acid sequence is
shown together with the fragment ion annotation, N-terminal fragments (a-, b- ,c-) are below the sequence
and C-terminal fragments (x-, y-, z-) are shown above the sequence. b) Three predominant gas phase
fragmentation techniques with their predominantly produced fragment ion types. Collisional dissociation
(CID/CAD/HCD) predominantly yield b/y ions. Electron based dissociation (ECD/ETD) yields c/z ions.
Contrary the other techniques, high energy photon based dissociation (UVPD) results in all fragment ion
types (52). c) The Roepstorff-Fohlmann-Biemann nomenclature used for peptide fragment ions denotes
different fragment ion types by italic letters a-c and x-z. The numbering indicates the position of the bond
in the amino acid sequence with respect to the N- and C-termini.

wavelength used (52, 56). Highly energetic fragmentation methods can also lead to

w-type ions, which involve an amino acid side chain dissociation (57, 58). In de novo

sequencing, this may be advantageous since it allows to distinguish between leucine

and isoleucine, which are commonly misassigned because they have an identical

mass. While having multiple fragment ion types in a single spectrum can compli-

cate ion ladder detection (Figure 4a), it can also provide insight into the direction of

fragment ion series, revealing to which terminus (N or C) peptide fragments belong.

This is possible due to the characteristic mass shift patterns of consecutive a, b, c

fragments and consecutive x, y, z fragments originating from the same peptide bond.

Horn et al. (59) pioneered this approach for de novo protein sequencing by combining

CID and ECD to discern between the N- and C-terminal fragment ions, which sim-

plified the detection of consecutive fragment ions. Subsequently, many others have
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used similar strategies (60–64). The previously described publication by Peng et

al. (17) also demonstrates the successful application of using multiple fragmentation

techniques. They recorded spectra using a dual fragmentation scheme of both high-

energy collision dissociation (HCD) and electron-transfer high-energy collision disso-

ciation (EThcD), resulting in a reduced number of sequencing errors when compared

to using a single fragmentation method. The spectra selected to support the CDR

predictions are also derived from both fragmentation techniques, showing that this

versatile fragmentation strategy can benefit sequence coverage in these challenging

and important regions (Figure 3). Such multiplexing MS strategies have made de

novo sequencing of mAbs feasible, at least when they are of sufficient purity. How-

ever, the procedure is quite laborious as it often involves using multiple proteases

to generate overlapping peptides and multiple peptide fragmentation techniques to

obtain unambiguous sequence reads, which entails longer sample preparation time,

the requirement of larger sample amounts, and extensive data acquisition.

Homology-aided de novo sequencing of antibodies

To identify peptides and proteins, shotgun proteomics experiments rely on match-

ing observed fragmentation spectra to theoretical spectra generated from sequence

databases. However, complete and accurate mature sequences are not generally

available for many proteins, especially for highly variable or frequently mutated pro-

teins like antibodies. Instead, homologous sequences, primarily derived from ge-

nomic or transcriptomic experiments, can be used. For antibodies, the genes en-

coding for each of the regions (V, D, J, and C) are available as germline sequences

and can be retrieved from the IMGT database (25, 65). While such a database of

homologous sequences can facilitate verification or guide predictions of de novo se-

quences, it should be noted that the exact match to the target sequence is likely not

present even in the most extensive databases. Traditional database searches are

thus not applicable because they require exact mass matching of fragments, and a
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single amino acid mutation can prevent identification. Instead, error-tolerant frag-

ment matching algorithms, either based on sequence alignments or subsequence

(i.e., sequence tag) extractions, can use homologous databases to score experimen-

tally determined sequences. An example of a homology-aided approach is searching

BU MS data from a sample of human antibodies against a proteome database such

as Swiss-Prot, whereafter the identified peptides are aligned to the IMGT database

(66, 67). Further reported adaptations include de novo sequencing of unidentified

features from the initial search with dedicated tools, such as PEAKS, to sequence

and identify hypervariable regions (68, 69). Homology-aided de novo sequencing

algorithms are also advantageous in identifying erroneous de novo peptide reads

by comparing them against homologous sequences. In addition, they can be used

as a germline template to aid in the assembly of de novo peptide reads. Alterna-

tive to scaffolds based on homologous sequences, accurate masses of the antibody

clones and constituent parts, e.g., light chain or heavy chain, can create mass-based

scaffolds. However, these masses need to be obtained separately by performing

additional protein-centric MS experiments.

Protein-centric MS approaches

Although conventional de novo sequencing of proteins predominantly follows a peptide-

centric approach, there have been various attempts to analyse recombinant mAbs

intact or at the level of large domains, e.g., Fabs, bringing along a new set of chal-

lenges. First, compared to peptides, intact proteins sometimes ionize less efficiently,

and liquid-chromatography-based separation of peptides is more established and ef-

ficient than separation of intact proteins. Furthermore, in MS analysis, mass accu-

racy and resolution typically diminish with increasing molecular weight, even when

using the latest high-resolution mass spectrometers (29, 70, 71). In addition, full

sequence coverage is generally unattainable for intact proteins with masses above

20 kDa. These factors have significantly held back the implementation of protein-

15



1

Chapter 1

centric MS for de novo sequencing of antibodies. However, more recently, several

advances in the field resulted in relatively high sequence coverages, reported for re-

combinant mAbs with available reference sequences (35, 72–74). Protein-centric ap-

proaches, termed TD MS (32), can provide additional valuable information, including

the mass of the intact antibody (29), masses of the light and heavy chains, and some

predictable fragment ions, which could be used as mass constraints (18, 30, 75–

77). Similar to peptide-centric strategies, there is the potential to combine multiple

fragmentation techniques in TD MS to boost sequence coverage. In addition, intact

antibody sequencing can be simplified by reducing the complexity and size of the

antibody through disulphide reduction or by digestion of the antibodies using specific

proteases, such as IgdE (commercially termed FabALACTICA), which cleaves above

the hinge region of IgG1, specifically producing 50 kDa Fab fragments (78), or IdeS

(FabRICATOR), a cysteine protease that digests antibodies at a specific site below

the hinge, generating F(ab’)2 fragments of all IgG subclasses (34). Such strate-

gies deviate from intact protein sequencing, which resulted in the introduction of the

term MD MS (79). However, these MD strategies still adhere to the core principles

of protein-centric MS, whereby large (50-100 kDa) domains of antibodies are anal-

ysed. In a large body of works, Fornelli et al. (35, 80–82) have shown how various

factors, including sample preparation strategies, fragmentation conditions, and other

improvements in instrumentation and experimental design, influence sequence cov-

erage in the protein-centric analysis of recombinant mAbs. Recently, Shaw et al. (83)

demonstrated that with modern instrumentation it is possible to successfully fragment

intact mAbs in their native state (Figure 5). By combining ECD and HCD in a single

tandem MS experiment, 42% sequence coverage for the light chain (Figure 5a) and

20% sequence coverage for the heavy chain (Figure 5b) of Trastuzumab were ob-

tained. The resulting fragmentation spectrum contained not only the multiply charged

backbone fragmentation products but also the intact light chain, ejected from the an-

tibody by fragmentation of the intermolecular disulphide bridge, providing information
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on the light and heavy chain pairing (Figure 5c). These and many other studies cul-

minated in a large joint effort by the Consortium for Top-Down Proteomics, wherein

they comprehensively described available approaches, techniques, and instrumen-

tation for the analysis of recombinant mAbs (18). Electron-based fragmentation of

intact protein ions holds great potential for mAb sequencing. Several recent stud-

ies showed that these methods consistently yielded nearly uninterrupted c-ion lad-

ders spanning the CDR3, which is paramount to antigen binding (30, 75, 76, 83, 84).

These studies also demonstrated for various antibody subclasses (IgG1-4 and IgA1)

that electron-based fragmentation methods consistently provide fragments contain-

ing the entire variable region of both the light and heavy chain. Notably, very similar

fragments were formed for the intact mAb, the F(ab’)2 (produced with IdeS enzyme),

and Fab molecules (produced with IgdE or Operator enzymes), showing that reduc-

ing antibody complexity through the removal of the Fc portion is not detrimental for

protein-centric analysis of mAbs. While significant advances have been made in

protein-centric sequencing of purified recombinant antibodies, studying endogenous

antibodies remainsmuchmore challenging. The separation of intact proteins by liquid

chromatography is typically less efficient than the separation strategies available for

peptides (85). This problem is exacerbated for antibody mixtures since different anti-

body clones are very similar and only vary in a small fraction of the overall sequence.

Such minute differences are easily resolved on the peptide yet are significantly more

difficult to distinguish on the level of intact antibodies with more than 1000 amino acid

residues. Notwithstanding the challenges of intact protein MS, the prospects and po-

tential benefits that protein-centric approaches bring to the de novo analytical toolbox

are hard to neglect. While it is still nearly impossible to fully de novo sequence intact

mAbs, protein-centric sequencing can be combined with peptide-centric methods in

a hybrid MS approach, providing complementary information substantially advanc-

ing towards the goal of complete antibody sequencing by MS, as further described

in the section “Combining peptide- and protein-centric MS approaches for antibody
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sequencing” (Figure 2b).

Figure 5: Light chain a) and glycosylated heavy chain b) fragmentation maps illustrate sequence
coverage produced by the combination of ECD and HCD on Trastuzumab. Disulphide bonds are
shown by dashed lines, CDR3 regions are highlighted in yellow. The corresponding fragmentation spec-
trum c) for the 25+ charge state of intact Trastuzumab with insets displaying the zoomed in region con-
taining the 9+ charge state of the light chain and various fragment ions. Red and blue fragment ion labels
correspond to the light and heavy chain, respectively. Asterisk indicates the mass-selected precursor ion.
Figure adapted from Shaw et al. (83)

Dedicated software solutions for MS-based antibody sequencing

The various sample preparation methods and intricate experimental designs pre-

sented above result in extended datasets that are not feasible for manual interpreta-

tion. Thus, development of dedicated software tools for data interpretation is essen-

tial. With regards to BU MS data, presently, two popular software suites are tailored

towards de novo sequencing of antibodies, SuperNovo (16) and PeaksAB (27, 86).

These suites can utilize the benefits of data generated by using multiple enzymes,

multiple fragmentation methods, and the use of a homologous antibody germline se-
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quence database like IMGT to make a complete de novo sequence prediction based

on the BU MS data. More specifically, the software iteratively screens predicted pep-

tides against the germline gene segments of the antibody to determine the positions

on the final chain construct. Homologous germline sequence candidates represent

scaffolds that are then modified to account for the highest scoring predicted peptides.

This allows for predicting both heavy and light chain sequences with a minimal error

rate of only a few single amino acids per sequenced antibody. A downside, however,

is that the software works so far exclusively for sequencing single, highly purified anti-

bodies. Novel software solutions for de novo antibody sequencing are emerging and

advancing in parallel with improvements in experimental design and instrumentation.

The fast development of new de novo sequencing strategies encourages the devel-

opment of new software solutions and improvement of already established tools and

requires adaptable software to accommodate the frequent and considerable shifts in

de novo sequencing approaches, such as the inclusion of TD or MDMS data, multiple

fragmentation methods or the analysis of polyclonal samples as opposed to mAbs.

Combining peptide- and protein-centric MS approaches for antibody sequenc-

ing

Recent advances in protein-centric MS have spawned various software tools that use

these data either in a standalone manner, such as in Twister (61, 87), or integrate

them with BU MS data, as in TBNovo (88). Twister applies methods similar to those

used for BU MS sequencing, recombining individual sequence tags (rather than pep-

tide reads) into longer sequences using a specific implementation of de Bruijn graphs

(T-Bruijn graphs) and sequence tag convolution (61, 87). TBNovo uses sequence

tags and precursor masses from TD MS to provide a scaffold for positioning the de

novo predicted peptide reads to fill the complete sequence. Their analysis makes

use of external BU de novo sequencing software, PEAKS (86), and was tested on

protein mixtures. TBNovo has not achieved widespread adoption, perhaps due to
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the software’s complexity and because protein-centric MS was still barely practiced

at the time of its first release. Although antibody sequencing at the protein level is still

not trivial, it is being applied on a steadily increasing scale in academia and industry.

Efforts to extend the sequencing of antibodies to polyclonal mixtures have however

proven extremely challenging. The first obstacle is sample availability. While recom-

binant mAb samples are typically available in milligram quantities, polyclonal antibody

samples are often derived from clinical samples and thus will only be available in lim-

ited quantities. Because the median concentration of individual clones in plasma is

∼1 µg/mL the available protein per individual clone is generally orders of magnitude

less compared to mAbs (30). Furthermore, isolation of individual clones is extremely

challenging, further complicating the sequencing process as most software tools are

exclusively designed for assembling a single antibody and therefore fail when data

represents several alike Ig sequences. Additionally, in complex endogenous poly-

clonal antibody mixtures, key sequence evidence on the hypervariable regions is

often not detected due to a dilution effect, whereby sequence information from the

conserved regions becomes amplified (as the latter is present in every clone) and thus

suppresses the signal of the CDRs, which are unique for all clones. Even though the

algorithms developed for mAb sequencing are not directly applicable for polyclonal

antibody sequencing, they provide a great starting point for developing new tools.

1.2.2 Hybrid and multi-omics approaches for studying antibody

repertoires

One way to further bridge the gap between sequencing of a single purified antibody

and those present in bodily fluids, e.g., serum, is to use hybrid or multi-omics strate-

gies. Using a multi-omics approach, for instance, by supplementing BU MS data

with genomics or transcriptomics data derived from the same donor, allows bypass-

ing some challenging aspects of genuine de novo sequencing, albeit at the cost of
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a more complex, labour- and data-intensive workflow (Figure 2c). Presently, direct

de novo sequencing of antibodies from a complex mixture is still a tremendous chal-

lenge. However, integrating complementary information frommultiple sourcesmakes

it possible to derive valuable data, even on endogenous antibody repertoires. Several

approaches have been pioneered recently, as depicted in Figure 6 and described in

more detail below.

Ig-seq

Since the CDRs of the antibodies largely determine antigen specificity, it comes as

no surprise that methods specifically targeting CDR-derived peptides have emerged.

Notably, the Ig-seq method pioneered by Lavinder et al. (89) in the Georgiou lab

applies B-cell sequencing of a given donor to construct a database of putative CDR3

heavy chain peptides. This database is then used to identify and quantify antibodies

using CDR-specific tryptic peptides, effectively side-stepping the need for complete

de novo sequencing (Figure 6a). This workflow is very effective because trypsin-

targeted residues (arginine and lysine) are found to precede the CDR3 specifically

and are found in the relatively conserved FR4 of the heavy chain, ensuring that tryptic

peptides contain the heavy chain CDR3 in the majority (>92%) of IgG clones (90).

BU MS is highly optimized for measuring and detecting tryptic peptides, which makes

this approach highly effective, as shown when this method was applied to the longitu-

dinal monitoring of influenza antibodies over multiple years. Monitoring the effects of

influenza vaccinations showed that ∼60% of the response to vaccination originated

from pre-existing clonotypes and highlighted the existence and relatively high abun-

dance of broadly protective, non-neutralizing antibodies (91). Years later, follow-up

studies showed that persistent antibodies account for >70% of the serum response

over five years, further promoting the efficiency and strength of the Ig-seq method

(92). It should be noted that relying solely on sequences obtained from PBMCs

may provide an incomplete database (31), as it is only feasible to obtain a subset
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of PBMCs for analysis. Nonetheless, Ig-seq presents one of the most efficient and

successful approaches to analyse and identify clones in Ig repertoires and monitor

how they (dis)appear following a change in physiology, e.g., infection or vaccination.

Figure 6: Selected recent approaches aiming towards MS-based de novo sequencing of serum
antibodies. a) In Ig-seq (89) a personalized database generated by BCR sequences is used to iden-
tify specific clones, using tryptic peptides covering the CDR3 region. Figure adapted from Lavinder et al.
(89) b) Template proteogenomics (46) use genomic data to generate template sequences. The specific
construction of the templates can be defined by the user from either whole genome sequencing or BCR
sequencing data. Figure adapted from Castellana et al. (46) c) PolyExtend (31) helped to analyse a poly-
clonal mixture of antigen-specific purified antibodies measured by BU MS and intact mass measurements.
Using a user-assisted algorithm, these data from different MS modalities were combined to sequence the
most abundant clones. Figure adapted from Guthals et al. (31) d) Fab profiling (30) measures and
quantifies intact masses of Fabs to provide a view of the IgG1 clonal repertoire, enabling to quantify and
monitor individual clones. Abundant serum clones are identified by using BU and MD MS data iteratively
to generate full IgG de novo sequences. Figure adapted from Bondt et al. (30)

Alternative proteogenomics approaches

Extending beyond the Ig-seq strategy, proteogenomics approaches as taken byCastel-

lana et al. (46) incorporate personalized genomics data into the antibody sequenc-
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ing workflow to identify complete antibody sequences. In their software package

GenoMS (46) they accept both proteomic and genomic databases as input, which

are used to reconstruct antibody (sub)sequences from BU MS data. The database

is used to find a homologous template sequence, whereby missing, mutated, and

spliced genes are considered. The software also allows for a high degree of flexibil-

ity through user-defined constraints. In addition, users can define how the template

database is used, excluding certain genes, or using multiple gene segments (V, D,

J, or C) to make up a single sequence (Figure 6b). As often occurs with hybrid ap-

proaches, the power of this proteogenomics strategy comes at a cost. While broadly

applicable and very powerful, the required expertise increases because of the use

and combination of multiple omics techniques. However, when successfully applied,

this workflow produces exciting results, as recently shown in the analyses of antibod-

ies from immunized rabbits (93) and the characterization of neutralizing antibodies

against the Ebola virus antigen (94) with notable improvements in integration and

visualization of the data. Unfortunately, not all these tools are currently publicly avail-

able, although several underlying protocols are open source (95–97).

1.2.3 Protein-centric sequencing of endogenous antibodies

Some attempts have emerged aiming at novel antibody discovery by MS-based se-

quencing alone, directly from serum samples or other liquid biopsies, circumventing

the need for genomics/transcriptomics data (multi-omics approaches). Above we re-

viewed several techniques for sequencing purified antibodies. As we pointed out,

these methods are geared towards highly purified mAb samples and are therefore

not directly applicable for polyclonal antibody mixtures. However, advancements in

sample preparation, instrumentation, and bioinformatics make it possible to obtain

partial and sometimes complete de novo sequences of endogenous antibody clones

by combining different mass spectrometric techniques, as discussed further below.
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Antigen-specific capture

For many pathologies, it is common to screen patient’s serum for antibodies that

exhibit activity against the antigens originating from the pathogen, for example, by

enzyme-linked immunosorbent assay (ELISA). Using pathogen-based antigens, it is

also possible to capture specific antibody clones from serum that exhibit high affin-

ity against the antigen. This typically reduces the complexity of the antibody mixture

substantially. Nevertheless, it is still nearly impossible to reduce the complexity down

to a single clone, as often, multiple antibodies with varying affinities for any given anti-

gen co-occur. An example of a capturing method whereby additional intact mass data

was used to derive de novo sequences was described by Guthals et al. (31). Follow-

ing affinity purification of antibodies from the serum of a cytomegalovirus-exposed

individual, using the glycoprotein B antigen, both intact mass and BU MS measure-

ments were performed. Their semi-automated software PolyExtend seeks to use

the intact mass measurements to retrieve the average mass of the most abundant

species in an antibody mixture, which in turn is used as a mass constraint for a se-

quence derived using the BU MS data (Figure 6c). PolyExtend builds further upon

the meta-SPS algorithm (28), which was initially designed to extend subsequences

by assembling multiple sequence predictions into longer subsequences. However,

diverging extensions for the same subsequence are treated as sequencing errors with

one extension selected for the output. In the case of antibodies, such divergences

may indicate the presence of two similar clones. To account for this, the software

displays the possible extensions as a ranked list, and the user can then select the

extension. This approach aims at expanding the de novo sequencing capabilities of

the previously established meta-SPS algorithm to deal with simultaneous presence

of multiple clones, and Guthals et al. (31) demonstrated a clear proof of concept.
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Antibody profiling and sequencing in polyclonal mixtures

While it is still not possible to de novo sequence entire serum antibody repertoires,

recent advances in LC-MS of intact proteins enabled detecting and resolving sin-

gle clones from complex antibody mixtures. For instance, developments have been

made that specifically profile intact light chains from serum, even providing partial se-

quence information by using MDMS. Impressively these studies successfully demon-

strate the analysis in serum without requiring antigen-specific capture, although they

used either a spiked-in mAb as a model or worked with disease models that cause

monoclonal Ig overexpression in serum (mono-gammopathy) such asmultiplemyeloma.

Nonetheless, these studies demonstrated that detection and characterization of in-

dividual endogenous light chains is possible (98–102). Taking this one step further,

Wang et al. (103) developed a method to detect individual Fab fragments in serum.

They were able to identify tens of heavy and light chains of serum autoantibodies.

Although attempts were made to de novo sequence these antibodies at the intact

protein level, the obtained results were limited to a few sequence tags. In light of

the SARS-CoV-2 pandemic, Melani et al. (104) focused their profiling efforts on the

vaccine-targeted spike protein receptor-binding domain. The approach is named Ig-

MS and features two novel metrics for capturing the intensity and complexity of the

antibody response. In short, the method uses affinity purification to capture antigen-

specific clones. A mAb-containing standard is spiked in for quantitation, and the sam-

ple is disulphide-reduced. After reduction, individual ion MS (105) is used to measure

a mass fingerprint of the sample. The ratio between the intensity of clonal peaks and

the standard is used to estimate the response (“Ion Titer”), and the complexity of

the response (“Degree of Clonality’) is assessed by the ratio of the most intense light

chain peak to that of the summed intensity of all light chain peaks. Finally, these met-

rics are correlated to the ELISA-based antibody titer and neutralization efficiency, to

verify their accuracy. In a recent study, Bondt et al. (30) used an approach to gen-
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erate Fab fragments exclusively from the entire IgG1 repertoire. They were able to

longitudinally profile IgG1 Fabs from the serum of both healthy and sepsis-inflicted

donors without the need for any enrichment of specific clones. They observed a range

of 50-500 distinct detectable IgG1 Fab clones per donor and showed that most clones

persist over multiple months of sampling. Contrary to widely held belief, they showed

that the IgG1 repertoire is in abundance dominated by just a few hundred clones and

that each donor exhibits a unique repertoire of clones. They also managed to directly

de novo sequence a single highly abundant clone in one of the donors without the aid

of antigen-specific capture. The de novo sequencing was achieved by a combina-

tion of protein-centric sequencing using ETD, and a BU MS approach using multiple

proteases for digestion. First, closely matching light and heavy chain germline tem-

plates were selected from the IMGT database. Subsequently, the data was used to

refine these templates iteratively, yielding the final mature sequence. This provided

proof of concept that de novo sequencing of clones directly from serum is feasible,

although still arduous and limited to specific cases (Figure 6d). Notably, the deter-

mined sequences contained more mutations (compared to germline sequences) than

expected from the reported rates fromBCR sequencing studies (106), which is indica-

tive of potential discrepancies between protein-level and gene-level sequencing. This

first attempt focused exclusively on IgG1, by using an IgG1-specific protease to gen-

erate the Fab fragments. In another work, Bondt et al. (107) extended their method

to IgA1 by using a protease specific to the O-glycans present in IgA1 hinge region to

generate Fab fragments, albeit now exclusively from IgA1. Overall, they showed that

– similar to serum IgG1 – just a handful of clones dominates the secretory IgA1 profile

of humanmilk. Using a somewhat comparable approach, Dupré et al. (102) analysed

isolated light chains from the urine of a patient affected by multiple myeloma. They

assembled de novo data from peptides into a full-length sequence, using the intact

mass data as a scaffold. Subsequently, they used TD MS to validate their findings

and further characterize the proteoforms of the light chains, including PTMs. The BU
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MS data further supported the resulting proteoforms, showing a similar added benefit

from iteratively combining BU and TD MS data.

1.2.4 Additional benefits of studying antibodies at the protein

level

The capabilities of MS allow for antibody characterization beyond the primary amino

acid sequence. Antibodies are known to harbour multiple important PTMs: Fab- and

Fc-glycosylation (108), deamidation (109), and C-terminal truncation (110), to name a

few. Moreover, although the disulphide bonds in IgG1 are thoroughly described, other

subclasses, notably IgG2, appear to occur as structural isomers induced by different

disulphide-bridge patterns. These PTMs and disulphide bridges become even more

pronounced in IgA and IgM, which can form higher-order structures connected by

the joining-chain in serum and other bodily fluids. All these features influence the

antibody’s efficacy and stability. Such information cannot easily be obtained at the

nucleotide level, requiring protein-level analysis.
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1.3 Thesis overview

Throughout this thesis, I detail my efforts to develop computational workflows and

tools that facilitate the analysis of complex LC-MS proteomics data. There is a strong

focus on the analysis of antibody repertoires, apart from Chapter 2 which focuses on

analyzing cross-linking MS data. The work described in this chapter shaped what be-

came the guiding principle of my academic efforts; that standardized computational

tools are of vital importance for reproducible research. As such, I consider it the spiri-

tual predecessor to the subsequent chapters and an important example of the central

theme.

Chapter 2 describes how we developed CrossID, a tool to analyze large and com-

plex cross-linking proteomic datasets. CrossID was developed to facilitate explo-

rative analysis of large amounts of crosslinking data. We show that integration of

data from multiple sources can provide valuable insights, as the integrated data from

protein databases enables gene ontology enrichment analysis and grouping based

on function. Furthermore, we showcase how mapping of crosslinked residues onto

3D-structural models for proteins can help refine these models or help to generate

models for protein complexes.

In Chapter 3, the LC-MS based antibody repertoire profiling approach which enabled

the research in Chapter 4 and 5 is introduced. In this initial application of the tech-

nique on a cohort of sepsis patients we found the serological IgG1 repertoires to be

unique to each individual, stable over time, responsive to physiological events and

relatively simple, consisting of several hundred clones despite there being an enor-

mous number of theoretically possible clones. Furthermore, this chapter provides

proof of concept for de novo sequencing of endogenous antibodies by using a multi-

tier mass spectrometry approach to sequence the most abundant clone for a donor.

Chapter 4 describes the analysis of breastmilk SIgA1 profiles of six mothers who
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had received two identical SARS-CoV-2 vaccinations over 16 timepoints. We use

the extensive sampling and repeated vaccination to define clonal populations based

on the detection window of these clones relative to the vaccination events. We also

discover that the second vaccination induces the emergence of a population of novel

clones and show that titer fluctuations as measured by ELISA can be driven by highly

divergent clonal populations.

In Chapter 5, we build upon the proof of concept for de novo sequencing of endoge-

nous antibodies by hybrid top-down and bottom-up mass spectrometry approaches.

We present a more standardized workflow for sequencing antibody chains in mix-

tures. Our approach resolves ambiguity in sequence predictions for the hypervariable

complementarity determining regions by mass-filtering candidate sequences based

on the gap size between adjacent framework regions, which we determine using

middle-down fragmentation data.

Finally, Chapter 6 contains a summary and a discussion of the advances that en-

abled the work in this thesis, the impact of the findings for others in the field, the

challenges that lay ahead and how they may be overcome, along with an outlook on

where I believe the field is heading.
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Protein interactions enable much more complex behavior than the sum of

the individual protein parts would suggest and represents a level of biological

complexity requiring full understanding when unravelling cellular processes.

Crosslinking mass spectrometry has emerged as an attractive approach to

study these interactions and recent advances in mass spectrometry and data

analysis software have enabled the identification of thousands of crosslinks

from a single experiment. The resulting data complexity is however difficult

to understand and requires interactive software tools. Even though solutions

are available, these represent an agglomerate of possibilities and each fea-

tures its own input format often forcing manual conversion. Here we present

Cross-ID, a visualization platform that links directly into the output of XlinkX

for Proteome Discoverer, but also plays well with other platforms by support-

ing a user-controllable text-file importer. The platform includes features like

grouping, spectral viewer, GO enrichment, PTM-visualization, domain- and

secondary structure mapping, dataset comparison, pre-visualization overlap-

check and more. Validation of detected crosslinks is available for proteins and

complexes with known structure or for protein complexes through the DisVis

online platform. Graphs are exportable in PDF format, and datasets can be

exported in tab separated text files for evaluation through other software.
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2.1 Introduction

PROTEIN interactions represent a level of cellular complexity that is essential for

almost all biological processes. The protein assemblies they represent are

highly dynamic and orchestrate cellular processes by regulating enzymes and form-

ing macromolecular clusters capable of more complex behavior than the sum of their

parts would suggest. Crosslinking mass spectrometry (XL-MS) has emerged as an

attractive approach to elucidate protein-protein interactions (PPIs) bymass spectrom-

etry. It uses small reagents with two reactive moieties capable of forging a covalent

bond between two amino acids in close proximity. Upon application to proteins and

protein-protein complexes followed by their proteolytic digestion, four distinct pep-

tide products are formed: non-modified, mono-linked, loop-linked, and crosslinked

peptides (1). The first three product groups consist of single peptides in various

forms that yield limited or no structural information. The fourth group consists of

two peptides captured by the crosslinking reagent; this yields valuable distance in-

formation for the elucidation of protein tertiary structure (the two peptides originate

from the same protein) or protein quaternary structure (the two peptides originate

from different proteins). Identification of both peptides by mass spectrometry allows

for localization of the crosslink within the proteins of interest. Although several well

established methods like affinity purification mass spectrometry (AP-MS) (2–7) are

available for studying PPIs at high speeds (8), most of these are limited to stable in-

teractions and/or provide little to no structural information. XL-MS on the other hand

has the potential to capture weak and transient interactions complete with structural

information. With recent advances in mass spectrometry, crosslinker chemistry, pre-

fractionation techniques and data analysis software, XL-MS can now routinely detect

thousands of crosslinked peptides from a single experiment (9–12). Even in the case

of single proteins, XL-MS can yield hundreds of detected distance restraints (13).

An attractive means to obtain a bird’s-eye view of the crosslinking results are net-
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Figure 1: Visualization with Cross-ID.

Figure 2: Screenshot of Cross-ID.

work graphs (14–16). This type of visualization however also becomes cumbersome

to read for increasing sizes of the depicted datasets, where the large number of nodes

and edges can easily obfuscate the view (17). Additionally, when no connection be-

tween the visualized elements and the initial input datasets exists it remains very diffi-

cult for the user to browse the data and check for validity. To circumvent these obsta-

cles advanced software allowing the network to be visualized, organized and filtered

in real-time is needed. Several software platforms partly supporting such features

exist (18–26), with varying degrees of specificity towards XL-MS. The most widely

used examples consist of xiNet (27) and xVis (28). Each of these tools has a unique

set of features and each offers a different subset of visualization options, which tailors

them for particular applications (e.g. Xwalk (20) calculates solvent accessible surface
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distances or XlinkAnalyzer (21) fits distance restraints to a given 3D model). How-

ever, when it comes to visualization of large scale crosslinking datasets like whole

cell lysates, a combination of software solutions is often required. Proteome-wide

interactomes can for example be visualized with biological network builders such

as Cytoscape (14, 15), but there are no tools specifically tailored towards in-depth

analysis of large proteome-wide XL-MS datasets. Added to this, relatively few tools

support generic input formats from multiple software platforms (prominent example

which do include this are xiNET (27) and ProXL (23) ); however, most are tightly

linked to a specific search engine or define their own data format requiring cumber-

some file format changes to compare results between different datasets. Here we

present Cross-ID, a standalone solution for visualization of XL-MS data as network

graphs. It provides a direct connection to the output of XlinkX for Proteome Discov-

erer 2.3 but also supports an importer for comma-separated text output generated by

any XL-MS search engine. Additional to crosslinking data, Cross-ID can display any

data containing connection or distance restrains (e.g. small-angle X-ray scattering

or SAXS data (29) ) as long as it is available in a tabular form. The importer uses

natural language processing to predict the use of each column-header in the output

file and allows the user to make adjustments where required. The generated graphs

are highly interactive and can be explored by filtering, expanding, repositioning, high-

lighting, mapping or altering the graph directly. Ultimately, this will enable the user

to draw meaningful conclusions from the graphs edited inside Cross-ID and without

the need for editing the input dataset each time before uploading. It is also possi-

ble to group proteins based on detected interlinks or according to other parameters

(e.g. their GO enrichment coefficient), significantly simplifying the data analysis. A

number of site-specific findings from the Uniprot database (30) (among others glyco-

sylation, disulfide bridges and phosphorylation sites) can be mapped onto all protein

representations, as well as residues of interest. In addition, it is also possible to de-

pict specific modifications detected by the search engine and quantitation by various
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methods. Cross-ID also supports validation of crosslinks for a single protein or protein

complex using available structures in protein data bank (PDB) format. Alternatively,

Cross-ID provides a direct link to DisVis for validating potentially interacting partners

based on the detected crosslinks (31, 32). As a showcase study we provide a whole

cell lysate dataset with 2754 crosslink spectra matches (CSMs), obtained from PC9

cells. To showcase the quantitation functionalities we used Tandem Mass Tag (TMT)

quantitation to quantitate protein kinase A (PKA), activated upon addition of cAMP

as a model system.

2.2 Materials and Methods

2.2.1 DSSO Protein-Protein Crosslinking

Crosslinked cell lysates have been prepared as previously described (33). Briefly,

PC9 (Sigma-Aldrich, Steinheim, DE) cells were collected and washed 3x with PBS

(Lonza, Basel, SUI). After centrifugation, the cell pellet was resuspended in crosslink-

ing buffer consisting of 50 mM HEPES, 150 mM NaCl and 1.5 mM MgCl2 (all from

Sigma-Aldrich, Steinheim, DE). Protease inhibitors (Roche, Basel, SUI) and 0.5 mM

DTT (Sigma-Aldrich, Steinheim, DE) were added right before use. After the cells

were lysed with a Bioruptor (Diagenode SA, Seraing, BE), freshly dissolved disuc-

cinimidyl sulfoxide or DSSO in DMSO (Sigma-Aldrich, Steinheim, DE) was added to

a final concentration of 2 mM. The crosslinking reaction was quenched after 30 min-

utes with Tris-HCl at a final concentration of 20 mM. The crosslinked proteins were

denatured and reduced and alkylated in a mixture of 8 M Urea, TCEP and CAA. Pro-

teolytic digestion was performed in 2 steps: for 30 min with LysC (Wako, Tokyo, JPN)

at room temperature and overnight with Trypsin (Promega, Madison, WI, USA) at

37 ⁰C. Digested peptides were desalted with a Sep-Pak cartridge and dried prior to

fractionation.
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2.2.2 Fractionation of Crosslinked Peptides

Strong Cation Exchange (SCX) chromatography was performed on an Agilent 1200

HPLC system (Agilent Technologies, Waldbronn, DE). The setup was previously de-

scribed (34), but shortly consists of an Opti-Lynx trap column connected to a PolyLC

SCX-separation column (PolyLC Inc., Columbia, MD, USA). Peptide mixtures were

reconstituted in 5% DMSO/10% formic acid/85% water (v/v/v) and separated over a

gradient of 120 minutes, resulting in 50 collected factions. A total of 15 crosslinks-

rich fractions were chosen for analysis and prior to further analysis dried and stored

at -80 ⁰C.

2.2.3 LC-MS/MS Analysis

Peptide mixtures were reconstituted in 5% DMSO/10% formic acid/85% water (v/v/v)

and analyzed on an Orbitrap Fusion Lumos (Thermo Fisher Scientific, San Jose,

CA, USA) coupled online to an Agilent 1290 UPLC (Agilent Technologies, Wald-

bronn, DE). Peptides were trapped on a double-frit C18 pre-column (Reprosil C18,

Dr. Maisch, 100 µm x 2 cm, 3 µm; packed in-house) for 5 min with buffer A (0.1%

formic acid) and separated on a single-frit analytical column (Poroshell 120 EC C18,

Agilent Technologies, 50 µm x 50 cm, 2.7 µm) over 155 minutes with a linear gradient

from 10% to 40% B (B: 0.1% formic acid, 80% acetonitrile). Optimized MS settings

were described previously (11, 33). Acquired data were analyzed with the Proteome

Discoverer software suite 2.3 (Thermo Fisher Scientific, San Jose, CA, USA) with in-

corporated XlinkX nodes. Spectra werematched against the Homo sapiens database

from SwissProt (version 2018_06, 20,349 sequences, downloaded from Uniprot).

The protease was set to “Trypsin” and the maximum number of missed cleavages

was defined as 2. Carbamidomethylation of cysteines was set as fixed modification

and oxidation of methionine and protein N-terminal acetylation as variable modifica-

tions. For the linear peptide search, precursor mass tolerance was defined as 20
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ppm and fragment mass tolerance as 0.5 Da for ion trap readout or 20 ppm for the

Orbitrap readout. For the crosslinked peptides search, the minimum peptide length

was set to 5 and minimum peptide mass to 300, while the maximum peptide mass

was set to 7000. The precursor mass tolerance was set to 10 ppm, FTMS fragment

mass tolerance at 20 ppm and ITMS fragment mass at 0.5 Da. FDR threshold was

set to 0.01 (1%) and FDR strategy as “Percolator”.

2.2.4 TMT Experiments

TMT labels were purchased from Thermo Fisher Scientific (San Jose, CA, USA) and

the labelling protocol performed according to supplier instructions after desalting of

the crosslinked peptides. 10 channels were used to label 10 samples of model sys-

tem PKA (Sigma-Aldrich, Steinheim, DE) solubilized at a concentration of 5.74 µM

with added cAMP (Sigma-Aldrich, Steinheim, DE) ligand to the final concentration

of 0-8 µM and 10 µM respectively. Digestion, fractionation and LC-MS/MS analysis

were performed according to the procedure described above, except for alterations

to the LC gradient consisting of increasing the starting point from 5% to 36% of buffer

B. For this data, the Orbitrap Fusion (Thermo Fisher Scientific, San Jose, CA, USA)

with tune page version 3.1.2412.14 was used for data acquisition with the standard

template for TMT labeled crosslinking samples. For data analysis, the TMT-specific

nodes were added to the standard crosslinking data acquisition protocol (33) after

“Precursor Ion Exclusion” node namely: “Isobaric Tag Loss” was set to TMT, “Pre-

cursor Selection Range” with Mass Range 400-1200 m/z followed by 10 SPS scans

with HCD at 65% NCE and resolution of 50000 in Orbitrap. Recorded data were

searched against PKA protein complex proteins with 200 Human proteins as decoys

taken from the reviewed Swiss-Prot database. In addition to the standard XlinkX

processing workflow, “Reporter Ions Quantifier” node was added with “Integration

Tolerance” set to 0.03 Da and “Centroid With Smallest Delta Mass” as “Integration
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Method”. For the consensus workflow, “Reporter Ions Quantified” node was included

with standard settings.

Figure 3: Visualization with Cross-ID on a PC9 whole proteome data set. a) Snapshot of the gener-
ated protein interaction network. b) Spectral viewer for selected top-scored cross-links. c) Comparison
of bar and circle views for filtered proteins with depicted phosphorylation, glycosylation, and DSSO mono-
links together with the known protein domain. d) Comparison of cross-links filtered by XlinkX score at 50
with 13 intralinks and 7 interlinks. e) Clustering according to the EggNOGG database for filtered proteins.
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2.2.5 Software and Data Availability

Cross-ID was developed in Microsoft Visual Studio 2017 as a C# WinForms appli-

cation using Windows Presentation Foundation elements. The GraphX .NET library

was used as the foundation for the network visualizations. For running the tool, mini-

mally .NET version 4.7 needs to be installed. The software can be downloaded from

https://www.hecklab.com/software/xlinkx/ together with an instruction video. The raw

data, all the associated output and databases used in this study have been de-

posited to the Proteome-Xchange Consortium (35) via the PRIDE partner reposi-

tory with the identifier PXD008418 (already published and openly accessible) for the

whole-proteome dataset and PXD011077 (user: reviewer59676@ebi.ac.uk; pass-

word: 7H5TMR0l) for the TMT dataset.

Figure 4: Validation of cross-links detected for alpha-enolase. a) Distance distribution of mapped
cross-links on alpha-enolase. b) Detected crosslinks on crystal structure. c) Interaction interface gener-
ated by DisVis based on indicated restraints (grey surface) in comparison to the existing dimeric interface
(dark purple and dark orange).

2.3 Results and Discussion

2.3.1 Data Import

Cross-ID provides a direct link to the output generated by the XlinkX nodes integrated

in the Proteome Discoverer data analysis environment (33). The files with extension

‘.pdResult’ contain all information required to build the visualization of the network,

including the spectra and protein information, together with the tables generated by
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Table 1: List of Crosslinks Detected for Alpha-Enolase.

XlinkX. By loading this directly, correctness and access to all required information is

ensured. To work with output from other search engines, Cross-ID provides a con-

venient import interface for tab- or comma-delimited text files, with column names
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on the first line. Since column names are not fixed between different search en-

gines, or even in some cases between different versions of the same search engine,

Cross-ID assists in manually selecting the correct columns. It provides a predic-

tion of the purpose of each column by calculating a Levenshtein distance (36) to

pre-defined column names. The full Uniprot database (30) is supported by Cross-

ID and is used to provide additional information about the identified proteins, like

known PTMs and secondary/tertiary structure information. It can however only do

so when the crosslinked peptides contain valid Uniprot accessions from the proteins

they derive from (e.g. when the RAW data was analyzed against a protein FASTA

file extracted from Uniprot). For those cases where Uniprot accessions are not avail-

able, Cross-ID automatically provides the opportunity to load the appropriate protein

FASTA file for basic visualization and validation tasks described later.

2.3.2 Basic Protein Visualization

To show the basic functionality of Cross-ID we provide a whole cell lysate dataset

with 2754 CSMs, obtained from PC9 cells (Table S1). Individual proteins are visual-

ized either as a horizontal bar or circular view, with the addition of their short or full

protein name or the Uniprot accession number in the form of an editable label. For a

‘clean’ view these labels can be removed completely or resized. At any time the vi-

sualization style can be altered from circular to bar or vice-versa by mouse right-click

for each individual protein (Figure 2a). Both the circular and horizontal bar protein

visualizations represent the amino acid sequence in clockwise fashion or from left to

right respectively. In the horizontal bar, the width of the bar represents the length of

the amino acid sequence, helping to get insight in the relative sizes of the different

proteins and the exact positions of the detected crosslinks. To provide initial insight

in the potential of PTM-driven interactions, both representations can be annotated

with PTMs visualized as spherical tags containing the first letter describing the mod-
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ification, both from Uniprot and/or detected by the search engine. Uniquely for the

circular view, grey lines on the circle depict residues involved in interlinks. Interlinks

are connected by a line between circles, at the positions from the crosslink with the

highest score. The number of crosslinks between two proteins is shown above the

connecting line, something which is also reflected by the thickness of the line. Black

lines on the circle depict residues involved in intralinks, which are also connected by

a line inside the circle. A number inside the circle depicts amount of unique intralinks.

To assist in locating proteins with a high degree of interconnectivity, the size of both

the circular display and the label are scaled according to the amount of interlinks de-

tected for that protein. In addition, switching from circular to the horizontal bar view,

provides insight into both domain and secondary structure information extracted from

Uniprot. Using a search bar, individual proteins and crosslinks can easily be located

within the graphs by full name, abbreviated name or accession. All proteins involved

in crosslinks are displayed in the protein browser tab and detected crosslinks in the

link browser. Here the user can center the graph on selected proteins/crosslinks,

sort and filter based on the source dataset, number of inter- or intra-links, associ-

ated GO-term (when grouped by GO-term) and whether or not the protein has been

selected. Browsers can be sorted on a column by clicking the column name, while

clicking the right mouse button on column names opens a filtering menu. For exam-

ple, in the link browser, interactions can be filtered and sorted through both protein

names (“source” and “target”), the number of crosslinks representing the interaction,

the maximum score, dataset origin and crosslink type by mouse clicking on these

column names. The protein browser can be filtered and sorted in a similar manner.

To assess the data underlying the visualization, both the proteins and connecting

lines can be clicked to access a list of all associated crosslinks and their proper-

ties. Selecting an individual crosslink in this list provides another list of associated

CSMs and selecting a CSM shows the associated spectra in an integrated spectrum

viewer together with information about the linked peptides and all detected modifi-
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cations (Figure 2b). This option will however only work when the path to the folder

containing the (Thermo) raw file has been correctly specified.

2.3.3 Graph Visualization Options

The network graph can be laid out in three different fashions: circular layout, Lin Log

layout (37) or via one of various grouping options. The Lin Log algorithm positions

the largest groups of interconnected nodes in the center of the graph, and places

groups of interconnected nodes increasingly further from the center the smaller they

are, thereby minimizing the “energy” of the graph (38). The grouping algorithm can

group on GO-terms, source dataset, by protein function according to the eggNOGG

database (39), by creating hubs of equally interconnected proteins or by user-defined

groups (Figure 2e). In all cases, the largest group of proteins is placed at the center

as a circle of nodes and the rest of the groups as smaller circles around it. The GO-

term grouping is determined by comparing the frequency of the associated terms to

either occurrence in a reference dataset (provided in the form of a list of accession

numbers) or in the whole genome of the organism under investigation by performing

a Fisher’s Exact test (40). The term with the lowest resulting p-value for each type

of GO-term chosen by user (“P” for Pathway, “F” for Function or “C” for Compart-

ment) is assigned as the term of interest for a given protein, and grouping can be

done based on a term of interest for any of these three types. When clustered by

connectivity, proteins are localized according to the number of interacting partners

providing interaction hubs. To make the graph more clear, crosslinks and/or proteins

can be hidden through several mechanisms. For example, display of inter- and/or

intra-links can be turned off and a minimum score can hide potentially lower quality

crosslink identifications. Alternatively, displayed proteins can be filtered based on the

minimum number of inter- or intralinks (Figure 2c). Within the link or protein browser

more intricate filters can be assembled as well (right-click the column of interest, se-
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lect filtering and implement the desired filter). The filtered datasets, as displayed in

the protein browser or link browser, can consequently be exported as a .CSV file and

if required loaded again into Cross-ID, enabling the creation of more compact graphs.

Cross-ID also implements functionality to easily compare two datasets (e.g. controls

vs experimental groups). When comparing multiple datasets, proteins and interac-

tions are colored based on which dataset they occur in: dataset 1 – darkred, dataset

2 – blue, or both – pink (Figure 2d). Additionally, the number of crosslinks from each

dataset is provided and a filter responsive Venn-diagram is included as well, indi-

cating overlap for shown proteins. To support replicates, there is an overlap-check

function for multiple datasets which requires as additional input a minimum number

of datasets in which a crosslink must occur before it is included in the final dataset.

Additionally, the fraction of crosslinks included in the final dataset is shown, as well

as a Venn-diagram if more than one input file was provided. As before, the filtered

dataset can be exported to .CSV or directly used as a dataset for further processing.

2.3.4 Mapping Detected Crosslinks to Existing Structures

An often time-consuming task when analyzing crosslinking data is mapping the de-

tected crosslinks on existing structures. A major hurdle here is that the sequences

in structures in PDB format tend to not precisely match those in standard databases

like Uniprot, usually caused by truncations, point mutations or exclusive availability of

a structure from another organism. Such differences require a lot of time-consuming

and error-prone manual work to locate the correct position for each crosslink. Es-

pecially for large structures like the ribosome, this task quickly becomes infeasible.

Automation is therefore desirable and a number of separate solutions are available.

One of the notable examples is Xlink Analyzer (21), a Chimera (41) module which

requires only structure and distance restraints as an input for mapping. Similar input

information is required for the R package XLmap (24), which also generates over-
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laid plots of crosslinked sites on contact maps and assigns a score to each model.

Cross-ID incorporates extensive automation for this cumbersome task. It aligns the

sequences used for analysis and those encapsulated within the crystal structure file

using the Smith-Waterman local sequence alignment together with the BLOSUM62

substitution matrix (42). Non-natural amino acids such as pyrrolysine and seleno-

cysteine are automatically substituted with standard lysine and cysteine respectively

prior to alignment. The minimum sequence similarity for this step can be defined by

the user, but is set by default to 60% which works well in most cases. This initial

alignment step is used to determine which proteins’ structure is represented in the

provided PDB structure and select these proteins and their crosslinks as candidates

for validation. Next, alignment of the selected crosslinks’ peptides by the same pro-

tocol is performed. Again a minimum sequence similarity can be defined, but the

default is 88%. To guide the process the residues involved in the crosslink can be

defined, set by default to lysine. In case another residue is matched after alignment,

the software automatically verifies whether this residue is characterized by similar

chemistry (e.g. arginine instead of lysine). In those cases where this is not so, the

crosslink is flagged and the user can decide on a case-to-case basis how to proceed.

Afterwards, the crosslink positions are mapped to the structure, and Euclidian dis-

tances between the Cα atoms of linked residues are calculated and presented in a

filter-responsive list. This list also contains the last 8 characters of the PDB filename

and the detected distances, as well as amino acid sequences of crosslinked peptides

with the highest sequence overlap. Upon completion, the user is presented with a

dialog summarizing the validation by detailing the amount of unvalidated intra and

inter-links, substituted residues and flagged residues. The distribution of the found

distances is automatically shown in a histogram (Figure 3a). Another major hurdle is

the preparation of the existing structures and crosslinking data for automated docking

procedures. Cross-ID also provides far-reaching automation for these purposes by

integrating with the DisVis/HADDOCK computational structural docking environment
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(31, 32, 43, 44). For this purpose, Cross-ID currently provides automated access to

DisVis (31, 32), although we intend to add more options in future releases. Given a

known structure for potential interacting partners, DisVis is able to predict prospec-

tive interaction interfaces based on user-supplied distance restraints (Figure 3c), and

has already been applied successfully to XL-MS datasets (33). Restraints which are

violated in the predicted interface will be marked as false positives and will be omit-

ted prior to further modelling steps. A score indicating the probability of occurrence

of each of the restraints between the submitted structures is calculated as well. All

required files are automatically prepared and uploaded based on the results from the

sequence alignment step described above. Prior to upload, the minimum and max-

imum restraint length can be changed manually. As a model for validation we used

alpha enolase, which has a known PDB structure (PDB ID: 2PSN; resolution 2.2 Å).

For this protein, XlinkX detected a total of 28 crosslinks (Table S1) of which 16 are on

enolase alone (Table 1). Of these, 12 restraints are within the DSSO crosslinking dis-

tance of 30 Å while four exceed this (Figure 3b). Enolase however exists in solution

as a dimer, meaning that the violated restraints are potentially crosslinks between the

two subunits. To verify this, we submitted chain A and chain B from a known PDB

structure with only the outliers to DisVis (Table S2). Three out of four restraints were

detected as valid and indeed could be mapped on a dimer structure with distances of

14.0 Å, 20.0 Å and 21.2 Å. The remaining restraint has been detected by DisVis as

a false-positive and can be mapped on a dimer with a distance of 64.2 Å (Table S3).

2.3.5 Quantitation

Quantitation of crosslinks is rapidly becoming an important facet for crosslinking anal-

yses, providing insight in structural rearrangement of proteins upon stimulation. To

support quantitation coming from crosslink analysis, Cross-ID offers two quantitation

parameters in the generated graphs: intensities and crosslink occupancy (represent-
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ing how often a pair of residues were actually crosslinked as opposed to not modified

or mono-linked). The latter value is mapped as a heat-colored circle on the crosslink

line (black for 0, white for 1 and a scale from red to yellow in between). In case

intensities are provided, the column names in the input file have to be edited accord-

ingly (Table 2). Measured CSM intensities (from label-free or labeling experiments

like TMT) are clustered using the k-means algorithm (45). When several identified

spectra for the same crosslink positions are quantified, the median value is taken for

further analysis. The number of clusters is set by default to 4. The clustered intensi-

ties are subsequently visualized in table format within the graph, using heat colored

squares, the color of which is determined by their log transformed intensity relative to

the rest of the cluster. The number of columns of this table can be set to match the

number of clustered intensity channels. The intensity values are automatically log

transformed before clustering and the base of this log transformation can be set by

the user. Within the table representation, a column represents the experiment (e.g.

in the case of TMT labeling, the first column represents channel 1, etc.). The clus-

tered values can be accessed for a more detailed overview by pressing the “C” key

while clicking on either the edge (for interaction clustering) or the protein (for protein

intensity clustering). The crosslinks sorted by cluster are returned, as well as a line

graph for the selected cluster showing the median intensities as a thick red line with

error bars and all the individual intensities as faded out gray thin lines.

To demonstrate the ability of Cross-ID to rapidly leverage quantitation information, we

performed TMT labelling experiments on the bovine Protein Kinase A (PKA) complex.

PKA is a tetramer composed of two regulatory subunits and two catalytic subunits.

Each regulatory subunit is able to bind 2 molecules of cyclic AMP (cAMP), upon

binding the catalytic subunits are released. We used TMT 10-plex to measure the

structural behavior for increasing concentrations of cAMP. There are two types of

regulatory subunits; for each type the alpha- and beta-forms are present and a com-

plex can be formed either by combination of the alpha- and beta-forms or by one a
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Table 2: Recommended Input Format for Cross-IDa
aOptional columns were kept for the purpose of providing the user with additional information for inspection
in tabular format and for exporting.
bColumns with a name indicating a range (e.g., charges A−B) indicate multiple columns with the same
requirements. Columns needing an array of values (e.g., “all scans”) require those values to be separated
by semicolons.
cIntensity columns are imported through a separate mechanism to avoid cluttering of the importer form.
This means that the intensity columns should be named: intensity1, intensity2, and so on. Other column
names do not require specific formatting as long as the importer is used.
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single form. Catalytic subunits are also present as alpha- and beta-forms, but only

one of the forms is present in the PKA complex. As the structure for the bovine type

II alpha regulatory subunit is missing, we modelled this protein from residue 97 to

402 with I-TASSER (46) (Structure S1), using the available template from mouse

(PDB ID 3TNP with resolution 2.3 Å, chain b) . As structure with the bound cAMP

ligand, we used a previously modelled structure from the SWISS-MODEL repository

(47) (Structure S2). We detect 5 intralinks for the type II regulatory subunit alpha-

form (Uniprot accession P00515, Figure 4a) and for the beta-form no crosslinks.

The catalytic subunit is represented by the alpha subunit with 5 intralinks (Uniprot

accession P00517, Figure 4a). In both cases, it was possible to group the behavior

of all detected crosslinks into 4 clusters even though the number of maximum clus-

ters was set to 5 (see Table S5 and Figure S1a-d).It is known that the regulatory

subunit undergoes conformational changes upon binding of cAMP. Cluster 3 and 4

contain crosslinks with increasing intensities for increasing concentrations of cAMP.

Crosslink 187-269 ismapped as 46.6 Åwhen no ligand is present (see Figure 4b) and

21.0 Å with the ligand present (see Figure 4c); for this crosslink we detect a 10-fold

increase in intensity. Crosslink 342-376 is mapped as 21.2 Å on the holoenzyme reg-

ulatory subunit and quantified with relatively low intensity in the control experiment.

On the folded conformation the same restraint is 30% shorter and shows an intensity

increase upon cAMP addition of almost 4–fold. There is one unmapped crosslink

between lysine residues 315, which is located on the surface exposed flexble loop

and might belong to an alternative folded conformation of the complex. Notably, the

remaining crosslinks are mapped within the DSSO crosslinking range for at least one

of the conformations of the regulatory subunit (Table S6). The catalytic subunit is

released upon cAMP binding and with this release cteayes a highly dynamic protein

with domains involved in hinge and shear motions (48). Even though it is expected

that this protein is very flexible, all detected intra-links can be mapped on the avail-

able apoenzyme structure (PDB ID 5VI9 with resolution 1.9 Å, chain a) within the
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DSSO maximum crosslinking distance (Table S6). Crosslink 24-193 is located in

cluster 1 (Figure S1e) and shows a drastic decrease in intensity for higher concen-

trations of cAMP. This behavior is not readily explainable, but we hypothesize that

upon substrate binding the protein is made structurally less flexible by formation of a

salt-bridge between one of these lysines and Asp’162 (see Figure 4d).

2.4 Conclusions

Crosslinking mass spectrometry experiments tend to produce such large amounts of

data, that processing rapidly becomes impractical – especially in the case of whole

proteome experiments. To alleviate this we present Cross-ID, a tool that produces

graph presentations of crosslinking data and offers several tools to bring the detected

crosslinking data into structural data like crystal structures. It offers optimal integra-

tion with the XlinkX data analysis pipeline (11, 33), but also supports import of data

in CSV format from other search engines with partial automation through a natural

language importer. Various forms of grouping of the protein network are supported

for gaining optimal insights in the detected data, with support for grouping on exter-

nal data like e.g. GO annotations. To support analyses of the detected crosslinks on

existing crystal structure data, Cross-ID implements automated sequence alignment

to bridge the differences between the used sequences and those in the crystal struc-

tures. As further support in this direction, it also offers a convenient interface to the

structural modeling pipeline of DisVis/HADDOCK. With support for various quantita-

tion options with automated clustering, the tool provides a very detailed look at struc-

tures from a crosslinking point-of-view. Cross-ID was developed with extensibility in

mind and as part of the XlinkX data analysis pipeline will see continued development

and support. Future functionalities currently already under development include: in-

tegration of PPI databases such as String (49) and CORUM (50) to group based

on known complexes, further integration with the HADDOCK software for structural
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Figure 5: Quantitation with Cross-ID. a) Detected cross-links for the PKA complex in circular repre-
sentation (left: regulatory subunit; right: catalytic subunit alpha). b) Ligand-free and c) cAMPbounded
structures of bovine alpha type II regulatory subunit. d) Structure of bovine catalytic subunit alpha with
mapped cross-links. Cross-links mapped in black do not change intensity across TMT channels, whereas
residues and cross-links mapped in dark red are changing their intensity across the TMT channels.
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modelling, implementation of true distance measures like e.g. Xwalk implements

(20), integration with standardization efforts like mzIdentMl, and many others. To

further integrate with other softwares, we aim to add support for non csv/text based

output formats like pepXML (51) and/or pepXMLTab (52).
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2.A Supplementary material

Supplementary Structure 1-2, Supplementary Result 1-2 and Supplementary Table

1 and 5-6 can be found online at:

https://pubs.acs.org/doi/full/10.1021/acs.jproteome.8b00725

The Cross-ID software, documentation and instructional video can be found online

at:

https://www.hecklab.com/software/xlinkx

Figure S1: Intensity clusters generated with Cross-ID for TMT-labelled crosslinked peptides of
Protein Kinase A proteins. TMT channels 1 to 10 corresponds to increasing concentration of cAMP
ligand from 0 µM for channel 1 and 10 µM for channel 10. (A-D) Crosslinks intensity for bovine type II
regulatory subunit alpha. (E-F) Crosslinks intensity for bovine catalytic subunit alpha.
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Table S1: Detected and mapped interlink-crosslinks for Alpha-Enolase.

Table S2: DisVis input example file for potentially intersubunit Alpha-Enolase crosslinks.

Table S3: DisVis output example for potentially intersubunit Alpha-Enolase crosslinks.
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Although humans can produce billions of IgG1 variants through recombination

and hypermutation, the diversity of IgG1 clones circulating in human blood

plasma has largely eluded direct characterization. Here, we combined sev-

eral mass-spectrometry-based approaches to reveal that the circulating IgG1

repertoire in human plasma is dominated by a limited number of clones in

healthy donors and septic patients. We observe that each individual donor

exhibits a unique serological IgG1 repertoire, which remains stable over time

but can adapt rapidly to changes in physiology. We introduce an integrative

protein- and peptide-centric approach to obtain and validate a full sequence of

an individual plasma IgG1 clone de novo. This IgG1 clone emerged at the on-

set of a septic episode and exhibited a highmutation rate (13%) comparedwith

the closest matching germline DNA sequence, highlighting the importance of

de novo sequencing at the protein level.
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3.1 Introduction

THE human immune system protects us not only from threats posed by pathogens

but also cancer and various other diseases. The immune response in health and

disease is crucially dependent on each person’s repertoire of immune cells, antibod-

ies, and other circulating plasma proteins. A detailed molecular view of these plasma

components is crucial to understanding how they affect each individual’s immune

response. Immunoglobulins (Igs) represent some of the most important molecules

in the human immune system. Ig molecules consist of two identical heavy chains

and two identical light chains, held together by a network of disulfide bridges. The

heavy chains possess three (IgG, IgA, and IgD) to four (IgM and IgE) immunoglob-

ulin domains with large, conserved regions, which play a role in receptor binding

and complement activation. Similar to the heavy chain, the C-terminal domain of the

light chain is constant. On the other hand, for both heavy and light chain, the se-

quence of the N-terminal Ig domains is hypervariable and contains the recognition-

determining parts, better known as complementarity-determining regions (CDRs), of

the molecule. They are enclosed in the two fragment antigen-binding (Fab) arms of

the antibody, consisting of the light chain and the N-terminal parts of the heavy chain

(Fd). The variable regions of the antibody, in particular the CDRs, are optimized

to recognize antigens by a process known as affinity maturation. The best antigen

binders, modified through somatic recombination and hypermutation of numerous

coding gene segment variants, give rise to the mature IgG secreting plasma B cells

that produce the antibodies that end up in our circulation. The circulating antibodies,

thus, consist of the fully matured heavy- and light-chain variable domain sequences

that harbor the CDRs, joined by generally less sequence-variable framework regions

(FR). Each unique combination of mature chains is called an Ig clone. Considering

the genes encoding the variable domain sections and the known genomic rearrange-

ments, somatic hypermutations, and post-transcriptional processes that join these
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sections—resulting into the ultimate protein products—it has been estimated that in

humans the theoretical molecular Ig diversity may extend beyond 1015 (1). Not all

theoretically possible Ig clones will be expressed in the human body, since the num-

ber of B cells in a human body is several orders of magnitude lower (1–2 × 1011)

(2). Nevertheless, it has been assumed that the actual repertoire of circulating Igs

is extremely large and diverse (3, 4). Recombinantly expressed clones (mainly IgG)

have become a major class of therapeutics, used to fight multiple types of patholo-

gies such as cancers and various infectious diseases. Recent developments have

moved the field toward using therapeutic monoclonal antibody (mAb) sequences de-

rived from human subjects instead of laboratory animals; this trend is exemplified

by successful new treatments for Ebola (5–7) and COVID-19 (8). These therapeutic

antibody sequences are inferred from genetic material recovered from patients that

successfully overcame the disease. The ability to detect and identify individual ma-

ture IgG protein sequences directly from donor specimens would aid such efforts. To

experimentally determine the Ig repertoire, attempts have been made to sequence

Ig nucleic acids from bulk B cell populations or B cell subsets from single donors.

These Igs are analyzed with high-throughput sequencing (Ig-seq or Rep-seq) at the

DNA or RNA level (9), resulting in datasets of tens to hundreds of thousands of unique

reads of variable abundance (10). Unfortunately, these analyses at the level of DNA

and RNA do not measure the actual antibodies of interest, and the presence of a

cognate BCR sequence in the B cell population provides no information regarding

abundance levels of the antibodies that end up in circulation. Alternatively, the chal-

lenge could be approached from the protein level, analyzing the Ig repertoire present

in circulation. The most abundant Ig in human plasma is IgG, at a concentration of

approximately 10 mg/mL during health (11, 12). Of the four IgG subclasses, IgG1 is

the most abundant, accounting for more than 50% of all IgGs (13) in most people.

Given the extremely high theoretical limits on Ig diversity and the large number of

experimentally determined variants, most researchers have refrained from analyzing
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plasma antibodies directly at the protein level. It has been mostly assumed that it is

impossible to detect any single Ig clone against the expected background of thou-

sands to millions of other clones. However, in recent years, several attempts have

been made to identify plasma Igs directly. G. Georgiou and colleagues should be

considered pioneers. In their method (also referred to as Ig-seq, but protein-based

instead of solely gene-based), IgGs are purified from plasma, and tryptic Ig peptides

are characterized using liquid chromatography coupled online to tandem mass spec-

trometry (LC-MS/MS), focusing on the detection of IgG heavy-chain CDR3 peptides

(14–18). Another recently developed proteomics approach uses LC-MS to profile

intact light chains purified from plasma (19–24). In another report, profiling and se-

quencing of intact Fabs was attempted, but the sensitivity was too low, and only a

few sequence tags could be derived from separated light chains (25). In these ap-

proaches, information about the heavy- and light-chain pairing is often lost, which is

unfortunate as only the combined CDRs from both heavy and light chain provide the

full complementarity against an antigen. Of note, in nearly all these studies, only a

subset of plasma immunoglobulins recognizing and binding a specific antigen was

targeted, or a mAb spiked into plasma was used as a model. Nevertheless, the re-

markable observation wasmade that a person’s plasma Ig repertoire could be several

orders less variable than assumed based on the available B cell repertoire and likely

dominated by only a limited number of clones. Whether this observed number of IgGs

is a consequence of the targeted analysis of antigen-specific IgGs or diseases with

monoclonal IgG overexpression (gammopathy) remained unclear. Here, we intro-

duce a sensitive and efficient approach for quantitative plasma IgG1 clone profiling.

The method was applied to a sample set of two healthy control donors, as well as

eight critically ill patients, from which sequential plasma samples were retrieved while

developing nosocomial sepsis, experiencing a dramatic immunological change in a

relatively short time span (Figure 1a). The application of our method revealed sev-

eral important properties of the human plasma IgG1 repertoire: (1) the total IgG1
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repertoire is dominated by a few dozen clones, but (2) is unique for each individual,

and (3) single clones are differentially affected by physiological changes. Next, as

proof of concept, we de novo sequenced a single plasma clone—that appeared at

sepsis onset—directly from human plasma, only made possible by using iteratively

a combination of protein-centric and peptide-centric proteomics. To validate the cor-

rectness of the derived de novo IgG1 sequence, we produced its recombinant mAb

equivalent and compared its key structural features with the plasma clone. We fore-

see that this approach will unlock the potential of mass spectrometric analysis and

identification of disease-responsive IgGs that may be directly evaluated and used as

therapeutic agents, as they do already represent fully matured, fully human Abs.

Figure 1: Monitoring individual plasma IgG1 profiles. a) Longitudinal analysis of the IgG1 repertoire
from sepsis patient plasma obtained at four time points, reveals its simplicity and clonal dynamics: some
clones are fairly constant (green), some disappear (blue), whereas others appear over time (red). b) The
experimental approach taken involves IgG capturing from 10–100 μL of serum, followed by the specific
enzymatic digestion of the IgG1 molecules in their hinge region, generating two identical Fab portions.
All generated Fabs are collected and subsequently subjected to LC-MS analysis. The clonal repertoire is
profiled, whereby each identified clone is characterized by its unique mass and retention time. A single
post-sepsis clone from one of the patients (F59) was selected for de novo sequencing, combining protein-
and peptide-centric mass-spectrometry-based sequencing. The extracted full sequence of the plasma
IgG1 was validated by analyzing, in a similar manner, a recombinant IgG1 analog of the plasma clone.
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3.2 Results

3.2.1 Mass-spectrometry-based Fab profiling of the humanplasma

repertoire

To chart and monitor the nature of the plasma IgG1 repertoire, we started our analysis

with 10 μL of plasma, derived from a single donor. From such a sample, we first cap-

tured all intact IgGs using affinity beads. Subsequently, the captured IgG molecules

were digested using the highly specific Ig degrading enzyme (IgdE), cleaving specif-

ically IgG1’s at a defined site in the upper hinge region, resulting in the segregated

Fc (that remains bound to the affinity beads) and two identical Fabs (Figure 1b) (26).

We focused on the Fab fragments derived from the intact IgGs because this (1) con-

centrates the clonal signal since each IgG1 provides two identical Fab molecules, (2)

results in more homogeneous mass profiles by removing the Fc portions that har-

bor two heterogeneous N-glycosylation sites, and (3) retains all hypervariable CDRs,

which define the unique identity and antigen recognition of each clone. Following

elution of the IgG1 Fabs, all these intact 45–53-kDa Fab molecules were subjected

to reversed-phase LC-MS. All individual Fab fragments were subsequently charac-

terized by their distinctive mass and chromatography retention time. In our analyses,

we spiked-in two monoclonal IgG1 antibodies (Data S1, mAbs #1 and #2) of known

sequence at a defined concentration. These mAbs were used as internal standards

for mass and retention time calibration and quantification of all the other distinctive

plasma IgG1 clones. This also allowed us to calculate the precision and accuracy

of retention time, mass, and quantification in our measurements as illustrated in Fig-

ure S1a. Using a mixture of six monoclonal antibodies (Data S1) spiked into a single-

donor plasma background, we furthermore observed linear relationship between (1)

the quantity of mAbs that were spiked into the plasma sample, and (2) the quantity

that is observed (R2 = 0.99, Figure S1b), using a dilution/titration with 4,000, 800,
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200, and 20 ng per mAb. Of note, no discrepancy was observed for the Fab glycosy-

lated mAb as compared to the other mAbs. To evaluate the repeatability (technical

replicate and sample preparation replicate), the 100 most abundant plasma-derived

clones in this sample were quantified in multiple replicates (Figure S1c). Finally, one

of the samples was injected three times to serve as injection replicates (Figure S1c,

#1). From all these validation experiments, we concluded that, by using the approach

depicted here (Figure 1), the repertoire of Fab clones could be accurately and repro-

ducibly determined from as little as 10 μL of plasma obtained from a single donor at

a single time point.

3.2.2 Plasma IgG1 repertoires are dominated by a few clones

Next, we analyzed in parallel a set of 32 plasma samples obtained from eight pa-

tients of the Dutch molecular diagnosis and risk stratification of sepsis (MARS) cohort

(Figure 1a; Data S2). All these patients underwent major gastrointestinal surgery

and subsequently developed an infectious complication (i.e., anastomotic leakage or

pneumonia) resulting in sepsis. Plasma samples were obtained from the patients at

four different stages: within 24 h of surgery when no signs of sepsis were present

(sample T1; between t = −19 and t = −2 days), on two consecutive days after onset

of sepsis (samples T2 and T3; t = 0 and t = 1 day), and upon intensive care unit (ICU)

discharge, when the sepsis had been resolved (sample T4; between t = 3 and t = 61

days) (Figure 1a). In addition, to monitor the nature of the plasma IgG1 repertoire

in healthy donors, we performed an identical analysis on two sets of three sequen-

tial healthy donor plasma samples, each collected roughly 1 month apart. In marked

contrast to expectations of extensive IgG1 diversity, we observed that all the LC-MS

profiles of IgG1 Fab molecules were dominated by just a few dozen peaks, both in

the 32 sepsis plasma samples as well as in the six plasma samples of the healthy

donors (Data S1 and S2). In each of the LC-MS runs, we could pick up distinctive
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IgG1 signals of between 35 and 543 in abundance dominant clones (median 196;

Data S1) that we distinguished by their masses in Dalton and retention times (RT)

in minutes. Each detected clone was given a unique identifier: RT # mass. We found

that the summed concentrations of the 30 most abundant IgG1 clones account for

more than two-thirds of all IgG1 molecules detected from plasma (median 71.8%,

range 47.3%–98.3%, Data S1). The full lists of detected clones are provided in Data

S1. In addition, the deconvoluted mass plots (similar to Figure 2c) and the raw chro-

matograms supported by extracted chromatograms for all identified Fabs obtained in

the LC-MS measurements are provided in Data S2, and one example of the actual

raw mass spectrometry data of Fabs that we have analyzed is provided in Data S3.

Next, we looked at the cumulative mass distribution of all detected IgG1 Fabs in

the plasma samples from all donors and at all time points. This cumulative mass

distribution—representingmore than 5,500 clones experimentally identified—resembled

the expected mass distribution of over 130 million IgG1 Fabs constructed from the se-

quences in the ImMunoGeneTics information system (IMGT) (27) database (Figure S1d),

revealing that we profiled a representative IgG1 repertoire.

As can be seen in Figure S1d, most Fab fragments exhibit masses between 46 and

49.5 kDa. However, we also did detect some higher Fab masses, which may be

indicative of Fab glycosylation. The average mass of Fab glycans is estimated to

be around 2,300 Da (28, 29). In two of our donors, annotated M66 and M77, we

did detect relatively high levels of Fab glycosylation as shown for M66, time point

3, in Figure S2a, with the annotation of the putative Fab glycosylation annotated

in Figure S2b. Still the Fab glycosylated clones represented just a few percent of

the total abundance (2%–6% for donor M66 and M77). The fractional abundance of

glycosylated Fabs in the other patients was between 0% and 1.86% (with a median

of 0.295%) (Figure S2c). Also, in the two healthy donors, one displayed a fractional

abundance of glycosylated Fabs of about 3% (F66H), whereas in the other donor

this remained around 0.5% at all sampling time points. This fractional abundance is
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Figure 2: Figure legend on next page.
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Figure 2: Monitoring personalized plasma Fab repertoires reveals not only their simplicity and ex-
treme donor uniqueness but also longitudinal clonal variations within a single donor. a) Heatmap
illustrating the degree of overlap between the detected IgG1 repertoires in all analyzed sepsis patient
plasma samples. For each of the eight donors, four sampling times were available, and Fab profiles were
measured by LC-MS analysis. Each LC-MS peak, exhibiting a unique mass and retention time pair, was
considered a unique clone and annotated as RT # mass. The amount of Fab molecules, based on inten-
sity that is persistent, is quantified and shown as a percentage as indicated by the color bar. In between
donors, the overlap is found to be on average 3%, whereas within a single donor at different time points the
overlap was found to be in between 26% and 98%. b) Hierarchical clustering of the Fab clonal repertoires
based on correlation distance. The branch lengths depict the distance between the repertoires. Donors
are colored as in Figure 1a. c) Longitudinal deconvoluted Fab mass profiles of donor F76 at each of the
four time points. Each peak represents a unique Fab at its detected mass and plasma concentration. The
top 30 most intense Fab clones in each sample are colored reflecting the time points, the other clones
are colored gray. Five peaks are highlighted with a box that is colored based on the longitudinal behavior
of the Fab concentration in plasma (blue, diminishing clone; green, persistent clone; and red, post-sepsis
clone), a magnified version of each of these Fab signals is shown in e) . d) Pie charts portraying the total
number and distribution of clones in donor F76 for each time point. The value within the chart displays the
number of identified unique Fab molecules. The five most intense Fabs are colored based on longitudinal
behavior, and their mass and retention time are depicted in the legend in order of abundance. e) Mag-
nified mass plots for each of the highlighted clones. The peaks are colored according to the time points,
the surrounding border and sign indicate the longitudinal behavior and the top right shows the annotated
clone ID.

substantially lower than would be predicted based on the IMGT database (∼11% of

these 130 million sequences carry at least one consensus N-glycosylation site) and

lower than the ∼17% described in literature (28, 29). However, our data reveal that

the fractional abundance of glycosylated Fabs is also donor-dependent.

3.2.3 Plasma IgG1 repertoires are unique for each donor

Next, we compared the IgG1 Fab profiles between time points not only within a sin-

gle donor but also between different donors. Interindividual analyses showed that

virtually none of the Fab IDs overlapped between individuals (Figure 2a, Figure S3

and Figure S4a and b). Also, hierarchical clustering based on clone IDs clusters

each donor distinctively (Figure 2b). Thus, each donor has its own simple albeit

unique IgG1 repertoire. However, within each individual, overlap between the mea-

sured IgG1 repertoires measured across time was found to be very high, even when

the time span largely exceeded the average half-life of IgG1s (Figure 2a–d and Fig-

ure S4). A large portion of the most abundant IgG1s remains present throughout
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the sampling window of up to 2 months, although we also observe a response in the

IgG1 profile due to changes in the patient’s physiology (discussed below). To exclude

whether these findings were due to the severe physiological state of the eight septic

patient donors, we performed a similar analysis on plasma of two healthy donors. In

the absence of a dramatic immunological challenge, the IgG1 profiles, as obtained

from the two healthy donors, show (1) a very high stability over time within individu-

als and (2) an interindividual overlap in uniquely RT- and mass-identified IgG1 clones

near to zero (Figure S4a and b).

3.2.4 Longitudinal quantitative monitoring of single IgG1 clones

By spiking in two recombinant IgG1 mAbs at a known concentration to the plasma

samples prior to sample preparation, we could provide additional absolute quantifi-

cation for the abundance of the detected IgG1s. The concentrations of the LC-MS-

detected endogenous IgG1 clones present in plasma ranged from less than 0.05 up to

>400 μg/mL (<300 pM up to >2.5 μM, median ∼6.25 nM; Data S1). Monitoring sero-

logical IgG1 repertoires over time in patients who had undergone a septic episode,

we observed several distinct quantitative patterns. The most recognizable patterns

are highlighted in Figure 2c–e. There are IgG1 clones that become lower in concen-

tration over time (Figure 2c–e, blue boxes). Another category of IgG1 clones was

undetectable in the plasma until post-sepsis but became abundantly present at T4

(Figure 2c–e, red boxes). Yet, another group of IgG1 clones was found to be rather

persistent in concentration over all sampling moments (Figure 2c–e, green boxes).

In healthy donors, the majority of clones were more persistent in concentration, al-

though some subtle changes could be observed for some clones.
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3.2.5 Full de novo sequencing of an individual plasma IgG1 clone

From the data presented earlier, we can conclude that the plasma IgG1 repertoire

of individual healthy and diseased donors is unique and dominated by a few dozen

abundant clones. Next, we sought to identify the exact sequences of these clones

to obtain further insight into their function and origin. Complete de novo sequencing

of serological IgGs is notably difficult for several reasons. First, the inherent se-

quence hypervariability has so far proven to be highly challenging even when (per-

sonalized) genome-based sequence templates are available. Second, de novo se-

quencing of antibodies at the protein level by MS is hampered by the complex nature

of IgG molecules, stemming from their multichain structure and the intricate network

of disulfide bridges. Finally, although shotgun proteomics can be used to obtain (par-

tial) sequences of purified mAbs (30–32), this becomes several orders of magnitude

more difficult in a plasma background containing many IgG molecules of closely ho-

mologous sequences. To tackle this challenge, we explored a hybrid and iterative ap-

proach combining state-of-the-art peptide-centric (i.e., bottom-up) and protein-centric

(i.e., middle-down) mass-spectrometric sequencing methods, using dedicated algo-

rithms to mix-and-match the extracted proteomics-based sequencing data. As proof

of concept, we attempted to fully sequence the light and heavy chain of a Fab de-

rived from a single highly abundant IgG1 clone observed in donor F59. This donor

showed a plasma IgG1 repertoire dominated by two clones in particular: 24.4 1 47,359.4

(average mass 47,359.4 Da, retention time 24.4 min) and 20.6 2 47,025.7 (Figure 3a).

We focused on the 24.4 1 47,359.4 clone, as this clone appeared exclusively after the

onset of sepsis.

Following fractionation and selection of the 24.4 1 47,359.4 clone, we subjected this

Fab to mass-spectrometry-based de novo sequencing, combining data from middle-

down and bottom-up proteomics (Figure 1b). The de novo sequence information

from both approaches was used to first select several closely matching light- and
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Figure 3: Middle-down sequence characterization of the Fab clone 24.4 1 47,359.4 that becomes dom-
inant in the repertoire after the onset of sepsis—under reducing and non-reducing conditions. a)
Reversed-phase LC-MS base peak profiles of the Fab repertoire detected in samples T1-4 from donor
F59 (top 4 profiles) reveal the dominance of a small number of clones, whereby especially clone 24.4 1
47,359.4 becomes dominant in abundance after the onset of sepsis. The LC-MS chromatogram of the re-
duced and denatured Fab repertoire from donor F59 at T3 is depicted in the bottom panel. The light chains
(LCs) and the N-terminal portions of the heavy chains (Fd) of the two dominant clones are annotated with
corresponding colors and chain names. All species highlighted in red were subjected to middle-down
LC-MS/MS using ETD. b) Data processing workflow to prepare middle-down ETD-MS/MS spectra for
fragment matching and sequence-tag detection (see Methods section for details). c) Deconvoluted ETD-
MS/MS spectra of the intact Fab (top spectra) and reduced LC and Fd fragments thereof (mirrored spectra)
with the c/z-fragment ions annotated for the LC (left) and Fd (right). The isotopic envelopes of the most
abundant charge states of the LC and Fd fragments released from the Fab upon ETD are depicted in the
insets with theoretical isotope distributions of the corresponding chain sequences overlaid as black circles.
Masses of the LC and Fd fragments and the cumulative mass of the Fab are indicated above the spectra.
See also Figure S6 for more detail on the fragment ions identified in these middle-down MS spectra.
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heavy-chain templates from the publicly available IMGT database of IgG germline

sequences (Figure S5; Table S3 and Table S4). Subsequently, the bottom-up and

middle-down sequencing data and the measured intact accurate masses of the Fab,

light chain, and Fd were used to refine the selected template sequences and ulti-

mately determine the mature sequence present in the donor, revealing discrepan-

cies between the germline and mature sequences. In the protein-centric approach,

we performed electron transfer dissociation (ETD) on the intact Fab, as well as the

light chain and Fd separately, obtained by reduction of the Fab molecule (Figure 3a,

bottom trace). Several fragmentation scans obtained for the intact Fab, the sepa-

rated light chain, and Fd were grouped and combined based on their unique precur-

sor mass and retention time (Figure 3b). The ETD mass spectra of the intact Fab

yielded accurate masses of the light chain and Fd by cleavage of the interchain disul-

fide bond, thus providing direct information about the light-chain-heavy-chain pairing

(Figure 3c, top spectra). In addition, these ETD spectra yielded extended sequence

tags, covering informative parts of the CDR3 and framework (FR) 4 regions of both

Fab chains, in a similar manner as previously reported by performing ETD or ECD

of intact IgG molecules (33–35). Complementary, ETD spectra of the separated Fab

chains yielded partial sequence information for the FR1, CDR1, FR2, CDR2, and the

constant region of the selected clone (Figure 3c, bottom spectra and Figure S6).

Although our middle-down MS data provided valuable information about the clone of

interest, they did not fully cover the sequence, primarily due to incomplete fragment

formation and ambiguous sequence information obtained from the larger fragments.

To further extend our sequencing attempt, we subjected the fraction containing the

targeted IgG1 clone to enzymatic digestion, using in parallel four proteases: trypsin,

chymotrypsin, thermolysin, and pepsin. The resulting peptides were analyzed by

a bottom-up approach, using de novo sequencing algorithms for sequence annota-

tion (36). Although fractionated and enriched for the desired 24.4 1 47,359.4 clone, the

bottom-up MS data also contained numerous peptides originating from co-isolated
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plasma clones (Figure S7), which made it impossible to determine the correct se-

quence by solely using the bottom-upMS data. Nevertheless, by iteratively extending

the sequence information from the middle-down MS approach with the de novo pep-

tides from the bottom-up MS approach, we ultimately were able to extract the most

likely germline precursor of the targeted clone and, notably, its mature sequence by

implementing various single-amino-acid mutations not present in the IMGT database

(Figure 4).

In more detail, by using the IMGT database of germline sequences as input, the cu-

mulative MS evidence revealed that the analyzed IgG1 Fab carried a lambda light

chain. This light chain originated from a combination of the immunoglobulin lambda

(IGL) variable (V) 2-14⋆01 (IMGT/LIGM-DB: Z73664), IGL joining (J) 2⋆01 (IMGT/LIGM-

DB: M15641), and IGL constant (C) 2⋆01 (IMGT/LIGM-DB: J00253) alleles. For the

heavy-chain Fd portion, we determined that it was constructed from the immunoglob-

ulin heavy (IGH) V3-9⋆01 (IMGT/LIGM-DB: M99651), IGHJ5⋆01 (IMGT/LIGM-DB:

J00256), and IGHG1⋆03 (IMGT/LIGM-DB: Y14737) alleles and a diversity (D)-region,

which substantially deviated from any reported germline D-region. Although initial

identification resulted in just a partial sequence coverage, we could fill the gaps in

the germline sequences using sequence tags from the middle-down MS and the de

novo peptides from the bottom-up MS (Figure S8 and Figure S9). Eventually, our

approach resulted in a complete and exact precursor mass match for the light and

heavy chains, 100% sequence coverage in bottom-up MS, and near-complete an-

notation of all available fragments in the middle-down MS data. In this process, nu-

merous mutations had to be incorporated when comparing our data with the germline

template sequences (Figure 4b and c, in red letters), revealing somatic hypermuta-

tion (SHM) of around 13% and 16% for the V gene of the light chain and the heavy

chain, respectively. The level of confidence in each identified mutation site is based

on several criteria, including support of a mutation by consecutive mass peaks in the

middle-down MS retrieved sequence tags, the peptide scores and coverage depth
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Figure 4: Integrative de novo sequencing of the Fab clone 24.4 1 47,359.4 from donor F59 combining
middle-down and bottom-up MS data. a) Data analysis pipeline displaying the key steps in the de novo
sequencing, namely, filtering of the germline database of light- and heavy-chain sequences, assembling
of selected allelic variants with mass constraints, scoring of the assembled sequences by using middle-
down MS data, iterative refining of the best scoring templates by using peptides in bottom-up MS, and
benchmarking of the optimized mature sequences using data from both middle-down and bottom-up MS
analysis. b) Alignment of the best matching germline IGLV amino acid sequence from the IMGT database
(IGLV2-14⋆01) with the mature sequence that was determined for the light chain of the dominant clone
(top box), the fragments from middle-down MS (middle box), and the peptides from bottom-up MS. c)
Alignment of the best matching germline IGHV amino acid sequence from the IMGT database (IGHV3-
9⋆01) with themature sequence that was determined for the Fd of donor F59’s clone 24.4 1 47,359.4 (top box),
the fragments from middle-down MS (middle box), and the peptides from bottom-up MS. CDR regions in
top panels of b) and c) were annotated with reference to the closest matching IMGT sequence. Amino
acids that were determined to be different in the mature 24.4 1 47,359.4 sequence are highlighted in red.
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in the bottom-up MS data as well as the frequency of amino acid occurrence at a

given position in a pool of experimental and the germline IgG1 sequences (Data S5;

Figure S10). Together this provides proof of concept that it is possible to de novo

sequence IgG1s present in plasma. The definitive sequence assignment benefited

largely from gathering multiple pieces of experimental evidence, notably (1) the ac-

curate mass of the Fab, (2) the highly accurate masses of the two individual chains

comprising the Fab, (3) the de novo identified amino acid sequence reads, retrieved

from the middle-down fragmentation of intact chains and intact Fab molecule, and

(4) the de novo identified amino acid reads from the—multiple proteases-based—

peptide-centric bottom-up approach.

3.2.6 Validation of the de novo sequencing-derived sequence

To validate the accuracy of the full de novo sequence of the 24.4 1 47,359.4 clone

from donor F59, we generated a synthetic recombinant IgG1 clone based on the

experimentally determined sequence. We used exactly the same procedures to se-

quence the recombinant mAb as applied to the plasma-obtained clone, including all

the peptide- and protein-centric approaches. Since CDRs are the most critical and

hypervariable regions of the antibody, we set out to find peptides in the two datasets

covering these regions, so that we could directly compare their fragmentation spec-

tra. A direct comparison of tandem MS spectra of the CDR-spanning peptides from

the donor clone and the recombinant mAb are presented in Figure 5a and b, cov-

ering parts of the light chain and Fd portion, respectively. Above the graphs, the

de-novo-obtained sequence is shown with the annotated CDRs, whereby the purple

lines indicate the selected peptides. In each panel, the MS/MS spectra obtained from

peptides derived from the plasma clone of donor F59 and the recombinant mAb are

shown, with the donor spectrum on top and the recombinant mAb spectrum mirrored

below. Through visual comparison and as evidenced by the high correlation scores
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ranging between 0.91 and 0.98, the spectra obtained for peptides originating from

the recombinant clone were highly similar to the MS/MS spectra from the peptides

derived from the plasma clone 24.4 1 47,359.4. The observed high similarity was not

restricted to the m/z positions but was found to be also reflected into fragment ion

intensities, which are quite sequence specific, thus presenting an additional layer of

confidence.

Such a direct comparison of spectral features was extended to the middle-down anal-

ysis, used for obtaining sequence tags of the intact Fab (Figure 5c). The intact re-

combinant Fab displayed a nearly identical retention time profile when compared with

the plasma clone 24.4 1 47,359.4 Fab (Figure 5c, left panel). Furthermore, both clone
24.4 1 47,359.4 and the recombinant mAb emerged with nearly identical charge distri-

butions (Figure 5c, middle panel), whereby the slight differences in the distribution

are likely due to the underlying background of co-eluting Fabs in the plasma-derived

sample. Nevertheless, the masses detected for the two Fabs were identical, i.e.,

within a 20-ppm mass error. Moreover, when the intact Fabs were subjected to ETD,

alike fragment masses and retention times for both the light chain and Fd were ob-

served, comparing the recombinant mAb with the plasma-derived clone. Finally, the

generated lower mass fragment ions used for sequence-tag generation were also

very similar (Figure 5c, right panel). Likewise, the in-solution reduction of the Fabs

revealed that there were no mass differences between the donor clone and recom-

binant mAb (light chain and Fd mass within 10 ppm). Based on all these data, we

can conclusively state that the sequence of the plasma-derived clone 24.4 1 47,359.4 is

identical to that of the recombinant mAb, with practically identical data observed at

every step of our integrative de novo sequencing approach. This not only validates

the accuracy of the IgG1 sequence that we obtained for clone 24.4 1 47,359.4 but also

reinforces that the methodology presented here can be used to derive the correct

full sequences from individual clones even when they are in a background of other

plasma (highly sequence-homologous) IgG1 clones. Although this whole analysis
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Figure 5: Comparison of sequencing data for clone 24.4 1 47,359.4 of the donor F59, and the corre-
sponding recombinant mAb validates the correctness of the de novo sequencing approach. a)
Peptide fragmentation spectra of CDR-spanning peptides from the HC of the dominant 24.4 1 47,359.4 clone
with, mirrored to each other, annotated spectra from the donor (top) and the recombinant IgG1 (bottom).
b) Peptide fragmentation spectra of CDR-spanning peptides from the LC of the dominant 24.4 1 47,359.4
clone with, mirrored to each other, annotated spectra from the donor (top) and the recombinant IgG1 (bot-
tom). Spectra in a) and b) are annotated with a-ions in purple, b-ions in blue, y-ions in red, c-ions in
orange, and z-ions in dark blue. Corresponding fragmentation maps are displayed above each spectral
pair. c) Comparison of the middle-down LC-MS/MS analysis of the 24.4 1 47,359.4 clone and the recombi-
nant IgG1. Shown are the base peak chromatograms (left panel), the charge-state distributions detected
in MS1 of the Fab (middle panel), and the deconvoluted ETD fragmentation spectra for the donor (top) and
recombinant (bottom) IgG (right panel). The Pearson correlation coefficients (r) calculated for all demon-
strated spectral pairs in a) , b) , and c) are indicated at the bottom of each spectrum.
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pipeline is still quite arduous, requiring manual validation throughout the process, we

consider this proof of concept a major step forward and expect that further fine-tuning

of the algorithms will enhance the throughput in the future.

3.3 Discussion

The human body can make billions of different antibodies, stemming from the versa-

tile and complex recombination process, accompanied by additional somatic hyper-

mutations, helping us to adapt to a life-long exposure to various pathogens. Here,

we demonstrate that it is feasible to profile the IgG1 repertoire of individual donors

qualitatively and quantitatively by LC-MS, following the capturing of IgGs from plasma

and analyzing the generated IgG1 Fab fragments. From this technical advance, one

of the key observations we make is that in all studied donors at all time points, only

a limited number of IgG1 clones dominate an individual’s repertoire. In all donors,

the 30 most abundant clones make up two-thirds of all detected circulating IgG1

molecules; in one donor just two clones contributed ∼50% to the detected serum

population of IgG1 molecules. The IgG1 clonal profiles are found to be unique for

each donor. Within a donor, the profiles are highly similar across time, but they

also adapt to physiological changes (e.g., sepsis). The mass-spectrometry-based

approach requires only minute amounts of plasma (∼10 μL) and does not involve

labor-intensive enrichment protocols. We further show that specific IgG clones can

be extracted from the plasma and analyzed in depth, ultimately leading to the mass-

spectrometry-based de novo sequencing of the whole Fab molecule. Therefore, one

of the holy grails in proteomics, de novo sequencing of antibodies directly extracted

from plasma, seems to be within reach. The ultimate mature sequence of 24.4 1 47,359.4

clone we sequenced here revealed that around 13% and 16% of the amino acids of

the V-regions of light and heavy chains were different when compared with the clos-

est germline sequence match within the IMGT database. This number of mutations is
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higher than the reported average (7%) for IgG1 heavy-chain variable regions, as de-

termined from RNA sequences (37). This suggests that DNA/RNA templates of the

IgG sequences can be helpful, but for obtaining the correct sequence of the circulating

clone, analyzing sequences at the level of the proteins will be essential. The ability

to de novo sequence the whole Fab molecule is the result of combining, iteratively,

middle-down and bottom-up proteomics data. An alternative strategy employed is to

combine bottom-up proteomics data with BCR sequences using RNA sequencing of

one donor to generate a database to match this donor’s Ig bottom-up proteomics data

against (16). Although also very powerful, a recent application of this approach high-

lighted further the relevance of antibody sequencing at the level of proteins, when

it was shown that for the six potent anti-HIV1 antibodies found by antigen-specific

single-B-cell sequencing, only three could also be detected in circulation as IgG pro-

tein products (38). All these issues highlight the necessity of direct analysis of the

serum Ig repertoire at the protein level, as we now demonstrated here to be feasible.

Longitudinal quantitative clonal profiling, as presented here, opens a myriad of future

prospects, both fundamental and applied. It allows to advance our understanding of

B cell biology and antibody dynamics. Historically, general observations have been

made about antibody half-lives using a single dose of labeled antibodies (39) or by de-

termining the restoration of normal IgG levels following high-dose administrations of

intravenous IgG (40). Through the method presented here, we can monitor the longi-

tudinal abundance of each single clone in the circulation and monitor how it responds

to changes in the donor’s physiology. Given the approximately 20-day IgG antibody

half-life, it is expected that in the time span studied here (10–63 days), a decay in the

concentration of clones would be detected. Indeed, we do observe several diminish-

ing clones as depicted in Figure 2 and Figure S4. However, other patterns are also

observed, indicative of continuous production of the clone, even over a timewindow of

two months. This is in line with previous reports on the presence of and production of

antibodies by long-lived plasma cells, both in mice and humans (41–43). In addition,
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persistence of autoreactivity has been reported before (44), as well as persistence of

antibody clonotypes detected by CDR-H3 proteomics (17). From our data, we cannot

derive information regarding (auto)reactivity, but the data do suggest that long-term

stability is not exclusive to autoantibodies and is instead a common phenomenon.

In summary, the de novo sequencing at the protein level of IgG clones circulating in

plasma is shown here to be feasible. We demonstrate the synergistic power of com-

bining iteratively peptide- and protein-centric-based sequencing, which is capable of

not only identifying the distinct alleles from which a clone originates but also its entire

mature sequence. The work presented here is still quite a laborious proof of concept.

Our aim for the future is quantitative monitoring and mass-spectrometry-based se-

quencing of multiple serum immunoglobulins directly at the protein level, i.e., as they

appear in circulation and function in the human immune response.

3.3.1 Experimental model and subject details

Human subjects

We obtained longitudinal plasma samples from the Molecular Diagnosis and Risk

Stratification of Sepsis (MARS) biorepository (ClinicalTrials.gov identifier NCT01905033),

for which subjects had been included in the mixed ICU of a tertiary teaching hospital

in the Netherlands (University Medical Centre Utrecht, Utrecht) since January 2011.

Donors were enrolled via an opt-out consent method approved by the institutional

review board of the UMC Utrecht (IRB no. 10-1056C). Daily leftover EDTA plasma

(obtained from blood drawn during routine care) was stored at -80 °C until use. For

the current study, we included eight patients with esophageal or gastroesophageal

junction cancer who underwent an elective esophagectomy and gastric pull-through

procedure and had subsequently developed an infectious complication (i.e., anas-

tomotic leakage or pneumonia). These patients were all admitted to the Intensive

Care Unit on two occasions. The first admission concerned routine observation after
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elective resection followed by an uncomplicated ICU stay of fewer than 2 days. All

patients were subsequently readmitted to the ICU due to sepsis. For all episodes of

sepsis, microbiological cultures were obtained either before or during ICU readmis-

sion, and clinical infection was adjudicated highly plausible according to pre-defined

criteria (45). Furthermore, all infectious episodes met SIRS criteria and had a Se-

quential Organ Failure Assessment (SOFA) score ≥ 2, thus fulfilling current Sepsis-3

definitions (46). All patients were ultimately discharged from ICU in a clinically stable

condition. We analyzed plasma samples obtained at four well-defined time points:

within 24 hours of surgery when no signs of sepsis were present (sample T1), on two

consecutive days after onset of sepsis (samples T2 and T3), and upon ICU discharge

following resolution of sepsis (sample T4). Patient characteristics are summarized in

Data S2. All patients had been treated with neoadjuvant chemoradiotherapy prior

to surgery. None of the patients received treatment with immunoglobulins or mon-

oclonal antibodies either prior to or during ICU admission. In addition, longitudinal

EDTA plasma samples from two healthy Caucasian donors were purchased from

Precision Med (Solana Beach, CA, US). The samples were part of the ‘Normal Con-

trol Collections’, protocol number 7005-8200. These donors were selected having

similar characteristics as the sepsis donors regarding age and gender.

3.3.2 Method details

Plasma IgG purification and Fab generation

The IgG purification and generation of Fabs was adapted from an earlier published

protocol (47). The FcXL affinity matrix used in the workflow, which binds to the CH3

domain of the IgG constant region, has recently been shown not to provide a bias

regarding analysis of the Fc glycosylation residing in the CH2 domain (48). Mobicol

spin filters were assembled according to the manufacturer’s instructions and placed

in 2 mL Eppendorf tubes. Then 20 μL FcXL affinity matrix slurry was added to the
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spin filter, followed by three washing steps with 150 μL PBS, in which the liquid was

removed by centrifugation for 1 min at 1000 × g. Two additional washing steps with

150 μL were performed. After washing, the 2 mL tube was replaced by a 1.5 mL tube.

The affinity matrix was resuspended in 150 μL PBS, and 10 μL plasma was added.

Furthermore, 1 μL of a solution containing two known mAbs at 200 μg/mL each was

added, corresponding to 20 μg/mL when calculated to the plasma concentration. The

samples were then incubated, under shaking conditions for one hour at room temper-

ature. After the incubation, the flow-through was collected, and the affinity matrix with

bound IgGs was washed four times with 150 μL PBS. Finally, 50 μL PBS containing

100 U of the IgdE (FabALACTICA; Genovis AB, Lund, Sweden) protease was added

before incubating on a thermal shaker at 37 °C for >16 hours. After the incubation, 10

μL of Ni-NTA beads were added to bind and remove the His-tagged protease, where-

after the samples were incubated for an additional 30 minutes. The flow through after

centrifugation contained the Fab fragments generated from IgG1.

Method optimization and validation using a mixture of recombinant mAbs

In an array of experiments, we optimized and validated the robustness and accu-

racy of our IgG1 capturing approach, the generation of the Fab fragments and the

analysis of the Fab LC-MS profiles. Therefore, we prepared a mixture of six IgG1

monoclonal antibodies, including the two spiked into every plasma sample subse-

quently analyzed. For the method optimization the 6 recombinant mAbs were added

to the plasma of a single donor in different quantities: 4,000, 800, 200, 20, 2, or

0.5 ng per mAb. The mAbs used were trastuzumab (Roche, Penzberg, Germany),

alemtuzumab (Genmab, Utrecht, The Netherlands), the Fab glycosylated cetuximab,

rituximab, bevacizumab, and infliximab (Evidentic, Berlin, Germany). Fab sequences

and theoretical masses of these mAbs, including the most abundant cetuximab gly-

coforms, are shown in Data S1. All these samples were injected once, except for the

200 ng sample which was injected three times to provide additional injection repli-
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cates.

LC-MS(/MS)

Reversed-phase liquid chromatography was performed by using a Thermo Scientific

Vanquish Flex UHPLC instrument, equipped with a 1 mm x 150 mm MAbPac RP

analytical column, directly coupled to an Orbitrap Fusion Lumos Tribrid (Thermo Sci-

entific, San Jose, CA, USA) or Q Exactive HF-X mass spectrometer (Thermo Fisher

Scientific, Bremen, Germany). The column preheater, as well as the analytical col-

umn chamber, were heated to 80 °C during chromatographic separation. Both sam-

ples, either containing intact Fabs or separate Fab chains, were separated over 62

min at a 150 μL/min flow rate. Gradient elution was achieved by using two mobile

phases A (0.1% HCOOH in Milli-Q) and B (0.1% HCOOH in CH3CN) and ramping

up B from 10 to 25% over one minute, from 25 to 40% over 55 min, and from 40 to

95% over one minute. MS data were collected with the instrument operating in Intact

Protein and Low Pressure mode. Spray voltage was set at 3.3 kV, capillary tempera-

ture 350 °C, probe heater temperature 100 °C, sheath gas flow 35, auxiliary gas flow

10, and source-induced dissociation was set at 15 V. The electrospray voltage was

applied after 2 min to prevent the salts in the sample from entering the MS. Intact

Fabs were recorded with a resolution setting of 7,500 (@ m/z 200) in MS1, which

allows for better detection of charge distributions of the large proteins (> 30 kDa)

(49). Separate Fab chains were analyzed with a resolution setting of 120,000 (@

m/z 200) in MS1, which allows for more accurate mass detection of smaller proteins

(< 30 kDa). MS1 scans were acquired in a range of 500-3,000 Th with the 250%

AGC target and a maximum injection time set to either 50 ms for the 7,500 resolu-

tion or 250 ms for the 120,000 resolution. In MS1, 2 μscans were recorded for the

7,500 resolution and 5 μscans for the 120,000 resolution per scan. Data-dependent

mode was defined by the number of scans: single scan for intact Fabs and two scans

for separate Fab chains. In both cases, MS/MS scans were acquired with a resolu-
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tion of 120,000, a maximum injection time of 500 ms, a 1,000% AGC target, and 5

μscans averaged and recorded per scan. The ions of interest were mass-selected

by quadrupole in a 4 Th isolation window and accumulated to the AGC target prior

to fragmentation. The electron-transfer dissociation (ETD) was performed using the

following settings: 16 ms reaction time, a maximum injection time of 200 ms, and

the AGC target of 1e6 for the ETD reagent. For the data-dependent MS/MS acquisi-

tion strategy, the intensity threshold was set to 2e5 of minimum precursor intensity.

MS/MS scans were recorded in the range of m/z = 350-5,000 Th using high mass

range quadrupole isolation.

Clonal profiling data analysis

Masses were retrieved from the generated RAW files using BioPharmaFinder 3.2

(Thermo Scientific). Deconvolution was performed using the ReSpect algorithm be-

tween 5 and 57 min using 0.1 min sliding window with 50% offset and a merge tol-

erance of 50 ppm, with noise rejection set at 95%. The output mass range was set

at 10,000 to 100,000 with a target mass of 48,000 and mass tolerance of 30 ppm.

Charge states between 10 and 60 were included, and the Intact Protein peak model

was selected. Further data analysis was performed using Python 3.8.10 (with li-

braries: Pandas 1.2.4 (50), Numpy 1.20.2 (51), Scipy 1.6.2 (52), Matplotlib 3.3.4 (53)

and Seaborn 0.11.1). Masses of the BioPharmaFinder identifications (components)

were recalculated using an intensity weighted mean considering only the most in-

tense peaks comprising 90% of the total intensity. Furthermore, using the data of

two spiked-in mAbs (trastuzumab and alemtuzumab) a mass correction was applied

based on the difference between the calculated and observed mAb masses, and

similarly, a retention time alignment was applied to minimize deviation between runs.

Components between 45,000 and 53,000 kDa with the most intense charge state

above m/z 1,000 and score ≥40 were considered Fab portions of IgG clones. The

clones were matched between runs using average linkage (unweighted pair group
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method with arithmetic mean UPGMA) L∞ distance hierarchical clustering. Flat clus-

ters were formed based on a cophenetic distance constraint derived from the mass

and retention time tolerance. These tolerances were defined as three times the stan-

dard deviation of the mAb standards, which were 1.4 Da and 0.8 min, respectively.

Clones within a flat cluster were considered identical between runs.

Peptide-centric (bottom-up) de novo sequencing

Clones of interest were captured through fraction collection using the same chro-

matography setup used for LC-MS profiling. Samples were dried under vacuum and

resuspended in a 50 mM ammonium bicarbonate buffer. To boost signal intensity, the

fractions were pooled across the time points. Samples were equally split for diges-

tion with four proteases. For digestion with trypsin, chymotrypsin and thermolysin, a

sodium deoxycholate (SDC) buffer was added to a total volume of 80 μL, 200 mM

Tris pH 8.5, 10 mM tris(2-carboxyethyl)phosphine (TCEP), 2% (w/v) SDC final con-

centration. For pepsin digestion, a urea buffer was added to a total volume of 80 μL,

2M Urea, 10 mM TCEP. Samples were denatured for 10 min at 95 °C followed by

reduction for 20 min at 37 °C. Next, iodoacetic acid was added to a final concentration

of 40 mM and incubated in the dark for 45 min at room temperature for alkylation of

free cysteines. Then for trypsin, chymotrypsin and thermolysin 50 mM ammonium

bicarbonate buffer was added to a total volume of 100 μL. For pepsin 1 M HCl was

added to a final concentration of 0.04 M. 0.1 μg of each protease was added and

incubated for 4 hours at 37 °C. After digestion 2 μL HCOOH was added to precipitate

the SDC. SDC was removed by centrifugation for 20 min at max speed (20,817 ×

g) after which the supernatant was moved to a new tube. Samples were desalted

by Oasis HLB (Waters Corporation, Millford, MA, USA) following a 5-step protocol.

1) Sorbent was wetted using 2x 200 μL CH3CN, 2) followed by equilibration with 2x

200 μL water/10% HCOOH. 3) The sample was loaded and 4) washed with 2x 200

μL water/10% HCOOH. 5) Finally, the sample was eluted using 2x 50 μL water/50%
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CH3CN /10% HCOOH and dried down by vacuum centrifuge. Prior to MS analysis

samples were reconstituted in 2% HCOOH.

LC-MS/MS Data acquisition was performed on the Orbitrap Fusion Tribrid Mass

Spectrometer (Thermo Scientific, San Jose, CA, USA) coupled to UHPLC 1290 sys-

tem (Agilent Technologies, Santa Clara, CA, USA). Peptides were trapped (Dr. Maisch

Reprosil C18, 3 μm, 2 cm × 100 μm) prior to separation (Agilent Poroshell EC-C18,

2.7 μm, 500 mm × 75 μm). Trapping was performed for 10 min in solvent A (0.1%

HCOOH inMilli-Q), and the gradient was as follows: 0 – 13% solvent B (0.1%HCOOH

in 80% CH3CN) over 5 min, 13 – 44% solvent B over 65 min, 44 – 100% solvent B

over 4 min, and 100% B for 4 min (flow was split to achieve the final flowrate of ap-

proximately 200 nL/min). Mass spectrometry data was collected in a data-dependent

fashion with survey scans ranging from 350-2,000 Th (resolution of 60,000 @ m/z

200), and up to 3 sec for precursor selection and fragmentation with either stepped

higher-energy collisional dissociation (HCD) set to [25%, 35%, 50%] or electron trans-

fer dissociation (ETD), used with charge-normalized settings and supplemental ac-

tivation of 27%. The MS2 spectra were recorded at a resolution of 30,000 (@ m/z

200). The AGC targets for both MS and MS2 scans were set to standard within a

maximum injection time of 50 and 250 ms, respectively.

Data analysis RawLC-MS/MS data were processed using PEAKSX software (Bioin-

formatics Solutions Inc., Waterloo, ON, Canada) for de novo sequencing of peptides.

The following parameters were used for de novo sequencing: parent mass error tol-

erance – 12 ppm, fragment mass error tolerance – 0.02 Da, max number of variable

PTMs per peptide – 3. Fixed modifications: Carboxymethyl; variable modifications:

Oxidation (HW), Oxidation (M), Pyro-glu from E, Pyro-glu from Q, Carboxymethyl

(KW, X@N-term), and Carbamylation. Resulting de novo peptide tables were ex-

ported as.csv files and used for filtering of the IMGT database and determination of
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the mature 24.4 1 47359.4 clone sequences.

Protein-centric (middle-down) de novo sequencing

Fab samples were prepared without treatment as well as under denaturing and re-

ducing conditions for analysis of intact Fab and separate Fab chains, respectively.

The latter were denatured and reduced in 10 mM TCEP at 60 °C for 30 min prior to

LC-MS/MS analysis. Approximately 2-5 μg of each sample was injected for a single

middle-down LC-MS(/MS) experiment using the parameters described above.

Data analysis Full middle-down MS spectra were deconvoluted with either Xtract

(54) or ReSpect (Thermo Fisher Scientific, Bremen, Germany) for isotopically-resolved

(separate Fab chains) or unresolved (intact Fabs) data, respectively. Middle-down

LC-MS/MS data were charge-deconvoluted and deisotoped into singly-chargedmass

spectra using the ‘Parallel Xtract’ node and converted to mascot generic format (mgf)

files in Thermo Proteome Discoverer (version 2.3.0.523; Thermo Fisher Scientific,

Bremen, Germany). Deconvolution parameters were set as follows: ReSpect: pre-

cursor m/z tolerance – 0.2 Th; relative abundance threshold – 0 %; precursor mass

range from 3 to 100 kDa; precursor mass tolerance of 30 ppm; charge states be-

tween 3 and 100. Xtract: signal/noise threshold of 3; m/z range – 500-3,000 Th.

For the analysis of the final mature Fab chains of the most abundant clone in the

plasma of patient F59, we used an integrative approach that utilizes bottom-up and

middle-down data and the international ImMunoGeneTics information system (IMGT)

database (Figure 3b). First, the replicate middle-downMS/MS spectra were grouped

per deconvoluted mass feature in the LC-MS-only runs by using a 3 Da mass win-

dow and a 3 min retention time window. The resulting grouped spectra were merged

into a single spectrum, whereby peaks’ intensities were combined when they coin-

cided within a 2 ppm window. The identity of the constant domain (C-) gene was

determined by matching the fragments in these combined spectra to a database of
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all functional, open reading frame, and in-frame pseudogene alleles for C-genes re-

trieved from IMGT/Gene-DB (27). Next, bottom-up LC-MS/MS spectra of the frac-

tionated 24.4 1 47359.4 clone were screened against a database of all functional, open

reading frame, and in-frame pseudogene alleles for the variable domain (V-) genes

retrieved from the IMGT/Gene-DB (27), using local Smith-Waterman alignment with

the BLOSUM62 matrix in which the common de novo sequencing errors I/L, Q/E and

N/D were modified to neutral substitutions (55). From any gene regions with con-

fident peptide matches (FDR < 1%), we then took the FR1, 2 and 3 regions and

subjected them to an in-house scoring algorithm to score their agreement with our

middle-down data (Figure S5). In short: the algorithm searches for peak patterns

that would occur as a result of fragmentation of the provided sequence regions, dis-

regarding preceding and succeeding parts of the initial sequence. Ranking the gene

regions by a resulting composite score enabled us to select top-scoring templates as

a starting point for our sequencing efforts as well as discard low-scoring regions from

further analyses. The remaining gene regions were then used to in silico generate a

database of germline light and heavy chains. Then, using a custom implementation

of the DirecTag algorithm (56), all possible sequence tags were detected and an-

notated in the combined middle-down spectra. These sequence tags were used to

search the filtered germline light and heavy IgG chains. For the best scoring germline

sequences, consistent sequence tags with a length of more than 4 amino acids were

searched against de novo predicted peptides originating from the bottom-up peptide-

centric MS data. In an iterative manner, the matching peptides were used to modify

the best scoring selected germline sequences until the mass of the final sequence

matched the precursor masses determined by middle-down MS (Figure S8 and Fig-

ure S9). In more detail, the gaps between the consecutive sequence tags extracted

from the middle-down MS data were first filled with amino acids from the best match-

ing germline sequence. Then, the filled gaps were compared to the highest scoring

peptides retrieved from the bottom-up MS data, aligned to the region of interest us-
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ing Clustal Omega algorithm. When aligned peptides showed discrepancies from the

germline sequence the amino acid residues in the gaps were altered and the theoreti-

cal mass of the gap was compared to the experimental mass, defined by the mass dif-

ference between consecutive sequence tags. Finally, the modified sequences were

rescored by spectral alignment, sequence-tag detection, and a bottom-up database

search, providing the final mature Fab sequences. The final predicted sequences

– and more specifically the identified mutations when compared to the most closely

related gene regions – were additionally compared to the frequency of amino acid

occurrence at their specific positions (as numbered by IMGT) in both the AbYsis

database (57) and the recombined full IMGT database (27). This screening yielded

an estimate of how likely the mutations were to occur. While some of the predictions

are rather rare, none of them are impossible as reported by AbYsis (Data S5).

3.3.3 Quantification and statistical analysis

For quantification of LC-MS profiling data, the intensity values of the two mAb stan-

dards (trastuzumab and alemtuzumab) were averaged in each run and set to 20

μg/mL. The intensity values of all other detected Fabs were normalized to these val-

ues in order to determine the concentration of each individual clone. For the quan-

tification of mAbs in the validation experiment, a slightly different normalization was

used. The intensity values of the detected mAbs in all runs were normalized to the

intensity values of trastuzumab and alemtuzumab as measured in the first 200 ng

replicate. Statistical values in figures depicted as lower-case letter r indicate Pear-

son correlation coefficients. Distances between samples as shown in Figure 2bwere

determined by distance correlation. Linear regression for validation of quantification

Figure S1b was determined by ordinary least squares regression with the coefficient

of determination given as uncentered R2. The error-bars in the figure represent the

standard error of the mean (SEM).
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Figure S1: Figure legend on next page.
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Figure S1: Performance evaluation of plasma Fab profiling approach using various experimental
controls. a) Accuracy and precision in mass, retention time and abundance of spiked-in monoclonal
antibody controls. The boxplots show aggregated data from the mAb controls over all plasma measure-
ments. The box indicates median and inter quartile ranges (IQRs), and the whiskers span 1.5 times the
IQR. Values outside this range (fliers) are marked with diamonds. From left to right, the panels show
observed mass error of these mAbs, observed retention time, and detected intensity. b) Linearity of
detection. For these experiments six monoclonal antibodies (Trastuzumab, Cetuximab, Rituximab, Cam-
path, Bevacizumab and Infliximab) were added at 20, 200, 800 and 4000 ng in a plasma background. The
detected response of all of these mAbs was compared to the expected response visualized as scatterplot.
The error bars depict the standard error, and the dotted line shows an ordinary least squares (OLS) linear
regression accompanied by a R2. c) Reproducibility of quantitation. The reproducibility of the top 100
most intense clones in a plasma were measured over several replicates and visualized as boxplots. The
values are shown as fold change of the concentration compared to the first replicate measurement. The
first two boxplots depict injection replicates, i.e. replicates from multiple injections of the same sample.
The other boxplots show technical replicates, which constitute the entire sample preparation procedure
starting from the plasma. The boxes are constructed using the same method as the boxplots in panel a)
. d) Distributions of detected Fab masses compared to the expected mass distribution. Kernel density
estimation of all Fabs detected in all sepsis donors, at all analyzed time points, compared against an in
silico generated distribution of Fabs from the IMGT database. The number of Fabs used to generate each
distribution is shown in the Figure legend. Both distribution histograms use a bin size of 100 Da. The
Pearson correlation coefficient (r) was calculated between both kernel density estimations.
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Figure S2: Figure legend on next page.
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Figure S2: Extent of Fab glycosylation in the plasma repertoire a) Fab mass profile of donor M66,
taken from the plasma sample at time point 3. Themass range between 50,400 Da and 52,000 Da is boxed
in red and shown magnified in panel b) . b) Zoomed-in mass profile with annotation of glycan-related
masses. Monosaccharides mass differences between peaks are annotated as follows: blue square =
GlcNAc (203 Da), magenta diamond = sialic acid (291 Da). For annotation of the glycosylation a mass
tolerance of 1 Da and a retention time tolerance of 0.6 min was used. c) Estimated percentages of
plasma Fab molecules being glycosylated in all samples measured. For this, Fab clones with a mass
>49,500 Da were assumed to carry one or more Fab glycans. This value was chosen because the in silico
Fab distribution generated from the IMGT database (shown in Figure S1d) extends up to 49,500 Da, the
majority of Fabs has a mass between 47,000 and 48,000, and the average literature described Fab glycan
has a mass of approximately 2,300 Da. The validity of this assumption is illustrated for M66 – T3 in panels
a) with the glycosylated Fabs being in mass quite separated from the other clones. The percentage of
plasma Fab molecules being glycosylated was calculated by taking the sum of Fab concentrations above
49,500 Da and dividing these by the total detected concentration in each sample. On the left in c) are
shown the % Fab glycosylation in the plasmas of the septic patients, on the right the % observed in two
healthy donors. In general, we observe that the % Fab glycosylation is < 1%, although in some donors it
is substantially higher, i.e. M66, M77 and F66H.
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Figure S3: Fab mass profiles are simple and uniquely individual. The by LC-MS obtained Fab mass
profiles are shown for plasma taken from each patient at time point 1 (post-operative). The Fab mass
profiles are plotted along the full mass range. In each profile the top 30 most intense clones are colored,
with a separate color for each donor. The remaining clones are shown in grey. The concentrations were
determined from the LC-MS intensities, normalized against two spiked in recombinant mAbs.
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Figure S4: Figure legend on next page.
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Figure S4: Longitudinal plasma Fab profiles obtained for two healthy donors. a) Heatmap of
healthy donors F66H and M57H constructed using the same method as used in Figure 2a. Time points
are marked M0, 1, and 2, representing month 0, month 1 and month 2, to clearly distinguish these from the
sepsis donor time points. Inside each cell of the heatmap a percentage value shows the degree of overlap
between samples, which is also represented by the color bar. b) Heatmap showing the Fab overlap in
consecutive time points of all healthy and sepsis affected donors, showing only the degree of overlap for
consecutive time points within each donor. The colors match those of the color bar from panel A. c)
Mass profiles of healthy donors with donut charts. For each mass profile the top 30 most intense clones
are colored, and the remaining clones are colored grey. In the donut charts the colored slice displays the
distribution of the top 30 most intense clones compared to the other clones. The value inside the donut
shows the total number of detected clones.

Figure S5: Templatematching of the obtained sequencing data for the Fab clone 24.4 1 47359.4 versus
the IMGT database. The filtering of IMGT database and scoring of the germline IGXV and IGXC-alleles
was performed by using iteratively bottom-up (BU) and middle-down (MD) proteomics data. a) Filtering
of germline IGL and IGK alleles with BU and MD mass spectrometry (MS) reduces the number of possible
germline light chain sequences from 3,577 to 6 candidate sequences (∼600-fold reduction). b) Filtering
of germline IGH alleles with BU MS and MD MS reduces the number of possible germline heavy chain
sequences from 42,840 to 8 candidate sequences (∼5,000-fold reduction). c) Fragment matching scores
for the germline C-gene alleles of the light (left) and heavy (right) chain of the Fab clone 24.4 1 47359.4 using
the middle-down MS data. d) Fragment matching scores for the Framework Regions 1, 2, and 3 of the
germline V-gene alleles of light (left) and heavy (right) chains of IgG1 determined by using the middle-down
MS data.
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Figure S6: Middle-down ETD analysis and sequence annotation of the light chain and the N-
terminal portion of the heavy chain from clone 24.4 1 47359.4 from donor F59. a) Fragmentation
maps of the light chain (left) and Fd (right) when subjected to ETD within the intact Fab molecule. b)
Fragmentation maps of the light chain (left) and Fd (right) when subjected to ETD after reduction and de-
naturation of the precursor Fab. c) Mass errors and their distribution of the light chain fragments observed
in ETD of Fab and the light chain alone, and mass errors and distribution thereof for Fd fragments detected
in ETD of Fab and Fd alone.
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Figure S7: Large homologous families of Ig V-gene alleles (e.g. IGHV3) are observed among the
top-scoring identifications as extracted from the bottom-up proteomics data. a) Cumulative PSM
scores determined for the germline V-gene alleles of the Fab heavy (left) and light chains (right). On the
left, alleles from the largest IGHV3 family are displayed as filled circles; alleles of other IGHV families
are shown as empty squares. On the right, alleles from larger and more homologous IGKV families are
shown as empty squares, while filled circles display alleles of IGLV families. Germline V-gene sequences
were downloaded from IMGT. b) Correlation matrix displaying sequence similarity among all germline
V-gene sequences of the Fab heavy (left) and light (right) chain. Normalized cumulative PSM scores are
shown below the correlation maps. Some of the top-scoring V-gene sequences are indicated with black
arrows. The V-genes ultimately determined for clone 24.4 1 47359.4 by the integrative de novo bottom-up
and middle-down sequencing are highlighted in green.
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Figure S8: Refining of the sequence of clone 24.4 1 47359.4 light chain germline IGLV2-14⋆01-
IGLJ2⋆01, based on the iterative integration of middle-down and bottom-up proteomics data. a)
First, the sequence tags detected in the middle-down MS data were used as arrays of consecutive frag-
ment peaks, which directly hinted at the presence of 11 mutations (M49L, Y51S, Y51S, N55D, N62S,
A85S, D86M, Y88F, S95D, S96L, S97T, T98S, and L99F). Next, these tags were aligned to the de novo
sequenced peptide sequences obtained by bottom-up MS, revealing 2 additional mutations. The highest
scoring aligned peptides were used to extend the initial sequence tags, and then these steps were iter-
atively repeated. At each step of tag extension, the mass offsets were calculated by comparing a mass
gap between two consecutive tags to the mass of amino acid residues in the corresponding gap in the
germline sequence. Iteratively, middle-down tags were extended with aligning peptides until all (if possi-
ble) mass offsets become equal to 0 Da. Eventually, 13 mutations and one modified residue (Pyro-Q) were
determined for the 24.4 1 47359.4 light chain sequence. De-charged isotopic distributions of the fragments
involved in each sequence tag are displayed as red peaks in the corresponding insets with the theoretical
isotopic distributions for these fragments displayed underneath each fragment. Fragmentation spectra of
the peptides used in this refining process for the CDRs are shown in Figure 5. See also Table S5. for an
overview of the evidence supporting each detected amino acid mutation.
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Figure S9: Refining of the sequence of clone 24.4 1 47359.4 heavy chain germline IGHV3-9⋆01-
IGHJ5⋆01, based on the iterative integration of middle-down and bottom-up proteomics data. a)
First, sequence tags were detected in the middle down MS data as arrays of consecutive fragment peaks
similar to refining of the light chain. Next, these tags were aligned to the de novo sequenced peptides
from bottom-up MS. The highest-scoring aligned peptides were used to extend the initial tags, and then
this step was repeated. At each step of tag extension, the mass offsets were calculated by comparing a
mass gap between two consecutive tags to the mass of amino acid residues in the corresponding gap in
the germline sequence. Iteratively, tags were extended with aligning peptides until all (if possible) mass
offsets become equal to 0 Da. Eventually, more than 20 mutations were determined for the N-terminal
portion of the heavy chain for clone 24.4 1 47359.4. De-charged isotopic distributions of the fragments in-
volved in each sequence tag are displayed as red peaks in the corresponding insets with the theoretical
isotopic distributions for these fragments displayed underneath each fragment. Fragmentation spectra of
the peptides used in this refining process for the CDRs are shown in Figure 5.
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Figure S10: Coverage depths for de novo sequenced light and heavy chains of the clone 24.4 1
47359.4 from donor F59. a) Values at each position represent the number of unique peptides identified in
the bottom-up LC-MS/MS data. The determined mutation sites are depicted in red. Only the first 110 and
120 amino acids are shown for the light and heavy chain, respectively.
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Upon vaccination against severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) humans will start to produce antibodies targeting virus specific

antigens that will end up in circulation. In lactating women such antibodies will

also end up in breastmilk, primarily in the form of secretory immunoglobulin

A1 (SIgA1), the most abundant immunoglobulin (Ig) in human milk. Here we

set out to investigate the SIgA1 clonal repertoire response to repeated SARS-

CoV-2 vaccination, using a LC-MS fragment antigen-binding (Fab) clonal pro-

filing approach. We analyzed the breastmilk of six donors from a larger cohort

of 109 lactating mothers who received one of three commonly used SARS-

CoV-2 vaccines. We quantitatively monitored the SIgA1 Fab clonal profile

over 16 timepoints, from just prior to the first vaccination until 15 days after

the second vaccination. In all donors, we detected a population of 89-191

vaccine induced clones. These populations were unique to each donor and

heterogeneous with respect to individual clonal concentrations, total clonal

titer, and population size. The vaccine induced clones were dominated by

persistent clones (68%) which came up after the first vaccination and were re-

tained or reoccurred after the second vaccination. However, we also observe

transient SIgA1 clones (16%) which dissipated before the second vaccination,

and vaccine induced clones which uniquely emerged only after the second

vaccination (16%). These distinct populations were observed in all analyzed

donors, regardless of the administered vaccine. Our findings suggest that

while individual donors have highly unique human milk SIgA1 clonal profiles

and a highly personalized SIgA1 response to SARS-CoV-2 vaccination, there

are also commonalities in vaccine induced responses.
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4.1 Introduction

IMMUNOGLOBULINS (Ig), or antibodies, are a key part of the adaptive immune re-

sponse capable of specifically recognizing and binding to antigens derived from

bacteria or viruses initiating and aiding in their neutralization. Every individual has a

unique antibody repertoire generated by a magnitude of distinct antibody-producing

B cells, with estimates ranging from 1013 to 1018 (1, 2). Throughout our lives these

repertoires are built up by encountering a huge variety of pathogens and other for-

eign stimuli, which we are exposed to daily or at specific moments in time, such as

vaccines. However, at a given moment in time there are likely only hundreds to thou-

sands of different detectable antibodies in human serum and milk, and typically the

top 50 most abundant Ig clones account for up to 90% of the complete Ig repertoire

(3–5). In our first moments of life, we begin to build this repertoire and are provided

passive immunity through breastfeeding, receiving in most cases our mother’s own

unique antibodies. After natural infection with severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2), SARS-CoV-2 specific antibodies with neutralizing ca-

pacity are present in human milk and are thought to provide immunity to infants (6–

12). The advantages of breastfeeding and the absence of vertical transmission of

SARS-CoV-2 via human milk (6, 8, 13–15) have led to the advice of the WHO to

encourage mothers to continue breastfeeding their infant during the COVID-19 pan-

demic (16). Recently, several SARS-CoV-2 vaccines have been widely administered

to people around the world. While the accumulated evidence has shown that these

vaccines are safe and effective also for pregnant and lactating women (17–22), this

more vulnerable group was excluded from initial SARS-CoV-2 vaccine trials. There-

fore, information regarding vaccine driven antibody development in lactating women

is still rather limited. This information is beneficial for breastfeeding women to make

a well-informed decision regarding vaccination to confer protection to not only them-

selves, but also their immune naïve infant (23). The most abundant Ig in human milk
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is IgA at a concentration of 1.0-2.6 g/L being 10 to 100 times greater than IgG and IgM

respectively (24, 25). IgA comes in two subclasses IgA1 and IgA2, with IgA1 typically

being the more abundant subclass in human milk. We recently developed methods

to study IgA1 clonal repertoires in human serum and milk. After affinity-purification,

all IgA (IgA1 and IgA2) molecules from human serum or milk (4, 5) become bound

to the affinity resins, whereafter we use specific enzymes to cleave IgA1 molecules

selectively, yielding the fragment antigen binding (Fab) domains that harbor the com-

plementarity determining regions. These Fabs are then subjected to intact mass

analysis by LC-MS clonal profiling. This yields a clonal profile that typically contains

several hundred unique clones, each identified by a specific LC-MS signature based

on mass and retention time. We can quantify the human milk concentrations of each

Fab clone by spiking in recombinant IgA1 mAb standards (4), enabling us to monitor

the abundance of individual clones over time. Monitoring the human milk IgA1 clonal

repertoire of healthy individuals, we observed that they are relatively simple, being

dominated by just a few hundred to thousand different clones at a given time. These

repertoires are unique and highly personalized as we do not observe the same clones

in more than one donor. Furthermore, we found the human milk IgA1 repertoires of

healthy donors to be very stable over time (4), whereas the clonal repertoires of in-

dividuals that experience serious illness, can undergo distinct and sudden changes

(3, 26). Mothers that were previously infected with SARS-CoV-2 have significantly

higher concentrations of spike specific IgA in their breastmilk than negative controls

(9), and using LC-MS we were able to detect spike specific secretory IgA1 (SIgA1)

Fab fragments in these donors. Interestingly, concentrations of spike specific IgA

in human milk had little correlation with neutralization capability, and spike specific

SIgA1 Fabs were of a relatively low concentration when compared to total SIgA1 in

human milk. Other studies have also shown weak correlations between antibody

titers and the frequency of recirculating memory B cells relative to a respective anti-

gen (27). These findings suggest that high concentrations of antibodies may not
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be good predictors for effective viral recognition and binding. Detailed knowledge

about the emergence and evolution of antibodies in response to vaccination could

render better insights into the immunity they provide and thereby yield better predic-

tors for its longevity and effectivity. Here, we aim to expand the knowledge about

the antibody response of lactating women following SARS-CoV-2 vaccination by in-

vestigating the SIgA1 profiles of six individuals that received repeated mRNA-based

or vector-based SARS-CoV-2 vaccines. Donors and their samples for this observa-

tional longitudinal case series were selected from a previously described cohort (28).

Using LC-MS Fab clonal profiling, we monitored the abundance of individual SIgA1

clones and studied the antibody response at a clonal level of detail. Novel in this

study is that we use computational methods to detect SIgA1 Fab clonal populations

emerging after vaccination by eliminating all clones that were present before a re-

sponse to vaccination could be expected. The human milk SIgA1 clonal repertoires

of six individual donors receiving one of three SARS-CoV-2 vaccines were longitu-

dinally (at 16 timepoints), quantitatively monitored. All six donors had unique SIgA1

clonal repertoires in which longitudinal changes were observed, with novel clonal

populations emerging after both the initial and second vaccination. Our data reveals

that antibody responses to vaccination are highly personalized traits and argues for

monitoring antibody responses beyond the total Ig titer level, using a more detailed,

personalized, and longitudinal approach.

4.2 Results

4.2.1 Vaccination results in a heterogeneous polyclonal response

In this observational longitudinal case series, we recorded the human milk SIgA1

clonal profiles of six individual donors receiving either Comirnaty, Spikevax or Vaxzevria

vaccines (Figure 1). We detected a total of 2553 clones across all donors, ranging
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Figure 1: Figure legend on next page.
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Figure 1: StudyWorkflow. a) Human milk samples were obtained from six donors across 16 timepoints,
from just prior to the first vaccination until 15 days after the second vaccination. Individual donors received
one of three vaccines, BNT162b2/Comirnaty (blue), mRNA-1273/Spikevax (purple) or AZD1222/Vaxzevria
(green). The sample collections are indicated by the tubes and each vaccination with a syringe. The
clock indicates the gap in time between vaccinations. b) SIgA1 was affinity-purified from human milk.
Subsequently, proteolytically formed SIgA1 Fab fragments were separated and analyzed by LC-MS to
obtain a list of clones (i.e., Fab molecules with a unique mass/retention time pair). The concentration of
each clone was retrieved at the sampled timepoints using two recombinant IgA internal standards. Clones
were then assigned to populations based on their window of detection relative to vaccination, and these
populations were analyzed for each donor individually. c) Illustrative examples of abundance profiles
of clonal populations over time. The y-axis shows the clonal titer (i.e., the summed concentrations of
the clones) for each population over time. Timepoints are referred to as for example V1D3, where D3
indicates the number of days since the last vaccination and V1 indicates the last vaccination. Clones
were assigned to one of four populations based on their detection window relative to vaccination. The
black line represents household clones, SIgA1 clones that were detected in one of the first two timepoints,
before a response to vaccination could be expected based on analysis of the parent cohort. All other clonal
population were absent from these time points and are considered vaccine induced clones. The remaining
three populations designated are persistent (teal), transient (mustard) and second dose induced (maroon)
clones. The transient population consists of clones that are only detected in the window V1D5 - V2D3.
The persistent clones are clones that arise in the window V1D5 - V2D3 and are also detected after V2D3.
Clones in the second dose induced population are clones that were not observed until after V2D3.

between 229 and 505 unique clones per donor (Figure 2a), excluding clones that

were only found at a single timepoint from all subsequent analysis to limit false dis-

coveries. In line with our previous studies, there was virtually no overlap in the clonal

repertoire between donors (only a single clone had an overlapping mass and reten-

tion time between donors). In contrast, overlap within each individual donor over the

longitudinal sampling was exceptionally high (over 95% of clones were detected at

more than one timepoint).

For all donors, the SIgA1 clonal repertoire was dominated by abundant clones that

were already detected in the first (V1D0) or second (V1D3) milk sample, before a

clonal response is expected as it is prior to or too close to vaccination, as also con-

firmed based on ELISA data (28) (Figure S1). These clones, which we term house-

hold clones (Figure 1c, Figure S2), accounted for 92% of the total SIgA1 clonal titer

(the summed abundance of all clones) of all samples combined (Figure 2b) and 83-

99% of the total SIgA1 clonal titer in any single sample. In each donor, we detected

between 89 and 191 clones that emerged more than 3 days after the first vaccina-
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Figure 2: Emergence of novel clones after vaccination. a) Pie charts showing the number of unique
clones designated as household (dark) and vaccine induced (light), colored per donor. Vaccine induced
clones made up 31% of all detected clones (793 out of 2553 clones). b) Pie charts showing the percent
total abundance the household clones (dark) and vaccine induced clones (light), colored per donor. c)
Longitudinal changes in total SIgA1 clonal titer (left) and vaccine induced SIgA1 clonal titers (right) for
each donor. Vaccine induced SIgA1 clonal titers rise in response to the repeated vaccinations and make
up an average of 7% of the total SIgA1 clonal titer. d) Total number of unique clones detected over time
(left) and number of unique vaccine induced clones (right). Novel clones emerge shortly after vaccination
and by day 7 nearly half of all vaccine induced clones (377 out of 793) have been detected.
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tion (V1D5 and later) (Figure 2a). These clones, which we termed vaccine induced

clones (Figure 1c, Figure S2), made up 31% of the total detected clones (793 out

of 2553 clones, Figure 2a). These vaccine induced clones were comparatively low

in abundance and made up a relatively small portion of the total SIgA1 clonal titer

per sample (Figure 2c). Most of the vaccine induced clones emerged shortly af-

ter the first vaccination was administered: 47% of the vaccine induced clones (377

clones), were first observed between V1D5 and V1D7 (Figure 2d). This agreed with

the ELISA findings for these same samples, where anti-spike SIgA titers started rising

around day 5, and further sharp increases were observed 9 days after vaccination

(Figure S1).

4.2.2 Novel clonal populations emerge after the second vaccina-

tion in all donors

As the vaccines the donors received consist of two doses, we defined four clonal pop-

ulations based on the window of detection relative to both vaccinations (Figure 1c,

Table S1). The first population we termed above as household clones. These are

SIgA1 clones that were detected before a clonal response was expected, at V1D0

or V1D3. The previously described vaccine induced clones were categorized into

three distinct populations: transient, persistent, and second dose induced clones.

The transient and persistent populations are both made up of clones that were de-

tected before timepoint V2D3 but were absent at the first two timepoints (V1D0 and

V1D3). The transient clones were only detected in the time window from V1D5 to

V2D3. Persistent clones arose in this same time window but were also detected af-

ter V2D3. Clones in the second dose induced population are clones that were first

observed after V2D3. These four populations were observed in all donors. Persis-

tent clones were the largest population: 21% of all detected clones were persistent

clones (539 clones, Figure 3a), and persistent clones made up between 50 and 80%
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of donor specific vaccine induced clones (Figure 3b). The transient and second dose

induced populations were much smaller and more diverse. The transient and sec-

ond dose induced populations each make up 5% of all clones (126 and 128 clones

respectively, Figure 3a), and 5-20% and 5-27% of donor specific vaccine induced

clones (Figure 3b) respectively. When looking at the fractional clonal titer (i.e., the

proportion a population contributed to the total SIgA1 clonal titer at a single timepoint)

over time, the behavior of these populations was remarkably similar between donors

(Figure 3c). The persistent clones dominated here too, as they made up the bulk

of the vaccine induced clonal titer at nearly all timepoints and on average of 5.9%

of the total SIgA1 clonal titer. Transient and second dose induced populations ac-

counted for a much smaller fraction (on average 0.7% and 1.7% respectively) of the

total SIgA1 clonal titer for any single sample (Figure 3c).

4.2.3 Clonal titer fluctuations can be driven by highly divergent

clonal populations

From the ELISA analysis by Juncker et al. (28), donor 4 was identified as the strongest

responder in terms of spike-specific IgA. This prompted us to have a closer look at this

donor. Our analysis confirmed the strong response, as the vaccine induced clonal

titer reached a peak concentration of 26.3 μg/mL, higher than any other donor (max-

imum 14.7 μg/mL, Figure 2c), and featured 191 unique clones, more than any other

donor (maximum 138 clones, Figure 2a). Uniquely in donor 4, we observed that

the second dose induced clonal titer increased comparably to the persistent clonal

titer (Figure 3c), indicating that the clonal makeup of the response to the second

vaccination was strongly divergent from the response to the initial vaccination. De-

spite looking very similar to the first phase of the biphasic response (Figure 2c), the

second phase of the response was largely driven by the second dose induced pop-

ulation and not the persistent population that was induced by the first dose as the
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Figure 3: Clonal population analysis. a) Pie charts showing the total number of unique clones in
each population. Clones were assigned to populations based on their detection window relative to the
vaccination moments: persistent (teal), transient (mustard), and second dose induced clones (maroon).
b) Pie charts showing the number of unique clones in each population per donor. Each pie chart shows
data for a single donor (Comirnaty (2 blue donors), Spikevax (2 purple donors) and Vaxzevria (2 green
donors)). c) Longitudinal changes in fractional clonal titer (i.e., fraction of the total clonal titer made up by
each population) for the vaccine induced clonal populations. Vaccination moments are depicted as color-
coded syringes. Each panel shows donor-specific, fractional clonal titers for the three vaccine induced
populations. While all donors show a unique repertoire without overlapping clones, varying in number of
clones and total clonal titer, when grouped into populations the responses are more consistent. Persistent
clones make up the bulk of the vaccine induced SIgA1 clonal titer at nearly every timepoint. The clonal
titers of the transient and second dose induced populations account for a much smaller fraction of SIgA1.

persistent population clonal titer remained relatively stable (Figure 3c). The second

dose induced population that drives this second peak in the vaccine induced titer is

the largest andmost abundant in this study, consisting of 52 unique clones (Figure 3),

peaking at over 10 μg/ml (Figure S3). Additionally, the second dose induced pop-

ulation made up 45-50% of the vaccine induced clonal titer and 39-44% of vaccine

induced clones during the last 3 timepoints (Figure 4), demonstrating how seem-
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ingly similar titer fluctuations can be driven by highly divergent clonal populations. At

Figure 4: Clonal profile analysis for donor 4, a strong responder. Changes in the vaccine induced
clonal profile for donor 4 are depicted, with the 4 most abundant vaccine induced clones annotated by their
mass and retention time, highlighted in bold, with each timepoint annotated with a triangle indicating if the
clone trends upwards or downwards in concentration over the course of this study. On the left we show
mass profiles (SIgA1 clonal concentration in µg/mL) showing either household clones (top two profiles,
in black) or vaccine induced clones (subsequent profiles, with individual clones colored according to their
assigned population (persistent (teal), transient (mustard), and second dose induced clones (maroon)).
Each peak indicates a single clone and each row a single timepoint. The line plot on the right shows the
abundance of individual vaccine induced SIgA1 clones over all timepoints, colored by their population, with
the same clones as the mass plots highlighted in bold, labeled with their mass and retention times and
annotated with triangles indicating if the clone trends upwards or downwards in concentration throughout
the study duration. The highlighted persistent clones are initially highly abundant, but their abundance
decreases rapidly, and at the final timepoint none of them are detected. The highlighted second dose
induced clone is part of a large and abundant population of second dose induced clones, which at the final
timepoints make up 45-50% of the vaccine induced clonal titer.
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these final timepoints, the persistent clonal titer had decreased to approximately half

its peak value (Figure S3). However, we did not observe a similar decrease in the

number of detected persistent clones suggesting either a simultaneous drop in the

intensity of the individual persistent clones or a strong decrease in abundance of one

or more dominant clones from this population. Inspection of the individual persistent

clones revealed that at its peak (V1D13), the persistent population included three

highly abundant clones which together made up 60% of the persistent clonal titer

(Figure 4). While initially these highly abundant clones almost completely dictated

the persistent clonal titer fluctuations, they quickly declined in abundance after an

initial peak and eventually disappeared while the persistent clonal titer remained rel-

atively stable (Figure 4 and Figure S2), seemingly causing the persistent clonal titer

drop between the first and second phase. A similarly dominant second dose induced

clone was observed to increase in concentration as the three dominant persistent

clones were decreasing at V2D5 (Figure 4). The abundance profile of this clone mir-

rored the upward trending second dose induced titer (Figure S3) and was the most

abundant clone at the final timepoint, at 3.1 μg/mL (Figure 4). However, 37 other

second dose induced clones are still detected at the last timepoint and as we saw

with the persistent clones, it may be these lower abundant clones that persist in the

long term. These dominant clones demonstrate how clonal titers fluctuations can be

strongly influenced by a limited number of abundant clones. Sometimes these clones

only amplify the behavior of their parent population, as with the highlighted second

dose induced clone. However, they may paint a misleading picture by masking the

cumulative behavior of the remaining, lower abundant, clones in the population. The

clonal resolution of the LC-MS based Fab profiling method enables us to zoom in on

individual clones and allows us to confirm the presence or absence of factors that

drive polyclonal responses.
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4.3 Discussion

The current body of knowledge about humoral immunity in response to infections

and vaccinations are normally determined by ELISAs for total antigen-specific an-

tibody titers and more recently by screening for antigen-specific B-cells. However,

recent work by Wolf et al. (27) shows that the antibody titers are poor markers of

the frequency of memory B cells after an infection. Therefore, alternative analyses

are needed to assess the basics of humoral immunity. We may gain new insights

by uncovering when, how and why specific antibodies come up after an infection or

vaccination. A first step in doing this is by monitoring individual clones and extracting

patterns from clonal populations, as we demonstrate here. In this study, we detected

a heterogeneous polyclonal response to vaccination, as distinct populations of novel

clones emerged in every donor after vaccination. We defined three populations vac-

cine induced clones can be assigned to based on their window of detection relative

to vaccination: transient, persistent and second dose induced clones (Figure 1c,

Figure S2). These populations were not only observed in all donors, but also be-

haved remarkably similar relative to each other, as the persistent population was

dominant both in terms of clonal titer and size, regardless of which vaccine the donor

had received. As the donors in this study had not been exposed to SARS-CoV-2

prior to vaccination, the clonal response to the first vaccination can be considered

the primary response: a first generation of antibodies, having undergone little to no

somatic hypermutation (29). The dominant persistent clones we observe might be

the effective portion of the primary response, which are encoded in long lived plas-

mablasts or memory B cells that proliferate quickly in response to restimulation with

the same antigen whereas the transient population could be the ineffective portion

of the primary response. The response to the second vaccination can then be con-

sidered the secondary response. In every donor, we observed a population of novel

clones emerge during this secondary response. In at least one donor, donor 4, the
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secondary response had a strongly divergent clonal makeup from the primary re-

sponse, as it was not predominantly driven by clones induced upon the first vaccine

dose but largely by a completely novel clonal population. These novel clones may

be the result of a completely new gene recombination but could also be the result of

somatic hypermutation of transient or persistent clones, as even small mutations are

likely to cause shifts in mass and retention time. Alternatively, they could be clones

that escaped detection during the primary response or clones that were derived from

previously undetected clones through somatic hypermutation or isotype switching,

as our profiling method in this study was limited to SIgA1. While more extensive

sequence information is needed to definitively determine the genetic and cellular ori-

gin of circulating clones, the second dose induced clones in this study seemingly did

not emerge faster than the transient clones, possibly indicating they are not matu-

rations of the first batch of B cells. However, given the small sample size in this

study, we are unable to sufficiently answer these questions. In the parent study of

this cohort, spike specific IgAs were longitudinally monitored by ELISA. A biphasic

antibody response to SARS-CoV-2 vaccination was observed for spike-specific IgA

in these samples, with an accelerated response after the second vaccination, in line

with expectations based on leading theories on humoral immune responses (29). We

were able to confirm a number of these findings from our case series analysis of this

cohort. From both the ELISA and Fab profiling data, donor 4 could be identified as a

strong responder, with an observed biphasic response irrespective of analysis type.

These confirmations, however, could only be made qualitatively. Quantitatively, we

observed a discrepancy between the reported ELISA and measured clonal titers.

We believe there are several factors contributing to these discrepancies. First, the

applied ELISA measured IgA1 and IgA2, whereas our profiling method detect only

IgA1 (9, 28). Furthermore, the ELISA measured spike-specific IgA titers, using a pre-

fusion stabilized variant of the spike protein sequence termed 2P (30). Thus, clones

that do not bind to the 2P spike protein variant, but perhaps to other components of
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the vaccine, will not be detected. Similarly, weak binders may be underrepresented

in affinity-based assays. As a recent study showed that low rather than high affinity

antibodies delivered greater antibody-mediated receptor activity through increased

receptor clustering (31), these low affinity clones may be of particular importance. To

date, it is often thought that highly efficient neutralizing antibodies would perhaps not

be among the most abundant clones. However, at the current stage of implementa-

tion the most reliable detection and quantitation through LC-MS is limited to relatively

abundant clones, and low abundant clones likely exist at concentrations below our

limit of detection. One way to study these low abundant clones is through fractiona-

tion or purification. While there is value in retaining biological context by minimizing

purification, simultaneous analysis of the sample in an enriched form can enable a

more targeted look at clones of interest or provide us with contextual information

about clones in our sample such as binding affinity. For example, in a recent study

van Rijswijck et al. (26) analyzed serum samples of SARS-CoV-2 patients, with and

without affinity purification, and combined the results to yield information about the

cross-reactivity of individual clones to different SARS-CoV-2 variants of concern. This

illustrates how the ability to identify and track clones between samples and experi-

ments can be used to obtain functional information about individual clones, and how

we can relate this information back to the original abundance profile. Future applica-

tions of LC-MS fab profiling hold the promise of high throughput characterization of

antibody repertoires, allowing for a greater understanding of the mechanisms related

to antibody mediated immunity and defining immune signatures that predict how an

individual will respond to future encounters with similar antigens. We imagine this to

have future applications similar to HLA phenotypes for organ transplants or genetic

markers for cancer treatment. In addition to defining such “biomarkers” for individ-

ual patients, we could identify markers of efficacy for individual clones, potentially

enabling the direct identification of potential therapeutic antibodies from polyclonal

samples. We believe studies like this pave the way to elucidate the mechanisms
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involved in mounting an effective antibody response and can lead to future targeted

efforts to find potential therapeutic candidates.

4.4 Methods

4.4.1 Study design

In this study we used samples from an existing prospective longitudinal study COVID

MILK – POWER MILK (28). All participants were subjected to longitudinal analysis

of specific antibodies against the SARS-CoV-2 spike-protein by ELISA and general

SIgA1 Fab clonal profiling in human milk after vaccination against COVID-19 with

BNT162b2/Comirnaty developed by Pfizer-BioNTech, mRNA-1273/Spikevax devel-

oped by Moderna or AZD1222/Vaxzevria developed by Oxford/AstraZeneca. Ethical

approval was acquired from an Independent Ethics Committee

(2020.425/NL74752.029.20). The study was conducted in accordance with the prin-

ciples of the declaration of Helsinki and the ICH GCP Guidelines, and the Regulation

on Medical Research involving Human subjects.

4.4.2 Subjects

Details concerning subjects have been extensively described (28). Briefly, lactating

women in the Netherlands receiving one of the above-described SARS-CoV-2 vac-

cines were eligible to participate and were recruited through social media platforms.

There were no exclusion criteria. All participants were requested to send their vacci-

nation certificate, including the type of vaccination and lot number. From the larger

study a subset of 2 women per vaccine group were selected based on the following

criteria: 1) a pre-vaccine milk sample was available, 2) data from an enzyme-linked

immunosorbent assay (ELISA) with the SARS-CoV-2 spike protein for human milk

SIgA was available and indicated high spike-specific SIgA titers. Written informed
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consent was obtained from all participants.

4.4.3 Sample collection

Sample collection was performed between January 2021 and July 2021. Human milk

samples were collected longitudinally over a period of up to 95 days (Figure 1). In this

study, 16 samples of human milk were analyzed per lactating woman. These sam-

ples were collected according to the following schedule: one sample before the first

vaccination and one sample on days 3, 5, 7, 9, 11, 13, and 15 after the first vaccina-

tion. This schedule was the same for the second vaccination (Table S1). Participants

were instructed to empty one breast in the morning, before the first feeding moment,

and collect 5 mL of milk after mixing the milk. Participants were requested to store

the milk samples in the home freezer. Samples were transported back to the lab on

dry ice and remained at -80 until analysis (9, 28).

4.4.4 Fab clonal profiling from human serum and milk

IgA enrichment, capture, and digestion

Methods for IgA1 Fab profiling have previously been extensively detailed (3, 4). Briefly,

all IgA was captured using CaptureSelect IgA affinity matrix (Thermo Fisher Scien-

tific). Human milk samples were assumed to contain 0.8 µg/µL SIgA and added

to excess amount of bead slurry, PBS, and 200 ng of the monoclonals anti-CD20

mIgA1 (7D8-IgA1) and anti-cMET (5D5v2-IgA1). These monoclonals were used as

internal standards for quantification, and were a gift fromGenmab (Utrecht, NL). Sam-

ples were incubated followed by removal of the flow through, containing all non-IgA

human milk components. The samples were then washed several times and IgA

was digested overnight with the O-glycopeptidase from Akkermansia muciniphila,

OgpA (OpeRATOR®, Genovis, Llund, Sweden). Digestion was performed using

40 U SialEXO (a sialidase cocktail to remove sialic acids from the O-glycans) and
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40 U of OgpA enzyme, and incubated overnight at 37 °C, in an Eppendorf thermal

shaker (Eppendorf, The Netherlands). Following overnight digestion with OgpA, Ni-

NTA agarose slurry was added to the samples to bind the enzyme and incubated for

30 min. Finally, the flowthrough, containing the IgA1 Fabs, was collected by centrifu-

gation.

Fab profiling by LC-MS

The LC-MS and data processing approaches as described by Bondt et al. were

applied (3, 4). In short, the collected Fab samples were separated by reversed

phase liquid chromatography on a Thermo Scientific Vanquish Flex UHPLC instru-

ment, equipped with a 1 mm x 150 mmMAbPac analytical column, directly coupled to

an Orbitrap Fusion Lumos Tribrid mass spectrometer (Thermo Fisher Scientific, San

Jose, California, USA). The column preheater and the analytical column chamber

were heated to 80°C during chromatographic separation. Fab samples were injected

as 10 µL and subsequently separated over a 62 min gradient at a flow rate of 150

µL/min. The gradient elution was achieved using mobile phases A (0.1% HCOOH in

Milli-Q HOH) and B (0.1% HCOOH in CH3CN), see previous publications for details

(3, 4). The instrument was operating in Intact Protein and “Low Pressure” mode for

the acquisition of MS data, with a spray voltage of 3.5 kV set from minute 2 to minute

50 of the gradient. The ion transfer tube temperature was set at 350°C, vaporizer

temperature at 100°C, sheath gas flow at 15, auxiliary gas flow at 5, and source-

induced dissociation (SID) was set at 15 V. Spectra were recorded with a resolution

setting of 7,500 (@ 200m/z) in MS1. Scans were acquired in the range of 500-4,000

m/z with an AGC target of 250% and a maximum injection time set to 50 ms. For

each scan 5 µscans were recorded.
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IgA1 clonal profiling data analysis

Intact masses were retrieved from the generated RAW files using BioPharmaFinder

3.2 (Thermo Scientific). Deconvolution was performed using the ReSpect algorithm

between 5 and 57 min using 0.1 or 0.3 min sliding windows with a 25% offset, a

merge tolerance of 30 ppm, and noise rejection set to 95%. The output mass range

was set from 10,000 to 100,000 with a target mass of 48,000 and mass tolerance 30

ppm. Charge states between 10 and 60 were included and the Intact Protein peak

model was selected. Further data analysis was performed using Python 3.9.13 (with

libraries: Pandas 1.4.4 (32), NumPy 1.21.5 (33), SciPy 1.9.1 (34), Matplotlib 3.5.2

(35) and Seaborn 0.11.2). Masses of the BioPharmaFinder identifications (compo-

nents) were recalculated using an intensity weighted mean considering only the most

intense peaks comprising 90% of the total intensity. Using the mAb standards, the

intensity was normalized, a relative mass shift was applied to minimize the mass error

and a retention time shift was applied to minimize deviation between runs. Compo-

nents between 45 and 53 kDa with the most intense charge state above m/z 1000

and a score of at least 40 were considered Fab portions of IgA1 clones. The clones

in samples of the same donor were matched between runs using average linkage

(unweighted pair group method with arithmetic mean UPGMA) L∞ distance hierarchi-

cal clustering. Flat clusters were formed based on a cophenetic distance constraint

derived from a mass and retention time tolerance which were 2 Da and 1 min respec-

tively. Clones within a flat cluster were considered identical between runs. Clones

that were only detected at a single timepoint within a donor were excluded from the

analysis. Clones were assigned to populations according to their detection window

relative to vaccination as outlined in Figure S2.
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4.A Supplementary material

Figure S1: Quantified ELISA Spike-specific IgA titers. A biphasic antibody response to SARS-CoV-2
vaccination was observed for spike-specific IgA, with an accelerated response after the second vaccina-
tion. Original data from Juncker et al. (28).
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Figure S2: Clonal population inclusion criteria. Description of the criteria used to assign clones to the
designated clonal populations based on their first and last detection moment (i.e., their detection window)
relative to vaccination. Time windows are colored by appearance of clones relative to vaccination. Grey
window (V1D0 – V1D3): Not attributed to vaccination. Light pink window (V1D5 – V2D3): Attributed to
the first vaccination. Dark pink window (V2D5 – V2D15): Attributed to the second vaccination. Clones
not detected in the first window were considered vaccine induced clones, and further assigned as follows:
Clones first detected in the light pink window were considered transient clones if they were only detected
in the light pink window, or persistent clones if they were detected in the dark pink window as well. Clones
first detected in the dark pink window were considered second dose induced clones.
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Figure S3: Longitudinal changes in absolute clonal titers for the vaccine induced populations.
Each panel shows the population clonal titer (i.e., the summed concentrations of the individual SIgA1
clones) for our three assigned, vaccine induced populations: Persistent clones (teal), transient (mustard)
and second dose induced (maroon). Each panel shows data for a single donor (Comirnaty (2 blue donors),
Spikevax (2 purple donors) and Vaxzevria (2 green donors)). Vaccination moments are depicted as color-
coded syringes. Each panel shows donor-specific, clonal titers for the three vaccine induced populations.
While all donors show a unique repertoire without overlapping clones, varying in number of clones and
total clonal titer, when grouped into populations the responses are more consistent. Persistent clones
make up the bulk of the vaccine induced SIgA1 clonal titer at nearly every timepoint. The clonal titers of
the transient and second dose induced populations account for a much smaller fraction of SIgA1.
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Table S1: Sampling schedule for each donor. The “Day” column indicates the number of days between
the last vaccination and the collection of each sample. The “Label” column indicates the label that is to
refer to each sample in this manuscript. These are constructed as follows: for a sample labeled V1D3, D3
indicates the number of days since the last vaccination and V1 indicates the last vaccination received by
the donor, so this sample was taken three days after the first vaccination. Samples collected just before
vaccination are referred to as day 0 (i.e., V1D0 and V2D0). The actual days samples were collected
from each individual donor are indicated as the number of days between the first vaccination and each
sample collection. For some samples, the number of days between sample collection and the preceding
sample collection deviated slightly from the schedule, these samples were underlined. NA indicates that
the sample was collected but a date was not recorded. Blank spaces indicate that no sample was collected.
The parent study included a follow-up sample, V2D70, for donor 2, 3 and 4. For donor 4, sample V2D15
was lost, and the follow-up sample was used instead. To unify the number of samples analyzed per donor
per population, we excluded the remaining 2 follow-up samples from our analysis. The original study refers
to donor 1-6 as PM2272, PM2183, PM2387, PM0281, PM0287 and PM0267 respectively.
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Antibodies form an important class of biomolecules that are produced by the

immune system to defend us against infections. Their importance is under-

lined by their successful use as therapeutic agents, enabled by their pro-

duction as recombinant monoclonal proteins (mAbs). Prior to development

of an antibody lead, identification of the amino acid sequence needs to be

achieved. Commonly B-cell sequencing is used to identify the DNA/RNA se-

quences that lead to the antibodies of interest, although only a small sub-

set of the B cells produce antibodies that end up in circulation. More re-

cently mass spectrometry-based (MS) methods have been used for sequenc-

ing, with the added benefit that this is a direct approach to extract the se-

quence of the protein in circulation, thereby potentially providing insights into

post-translational modifications. Both approaches have their implicit chal-

lenges, and the complete extraction of the amino acid sequence is still dif-

ficult to achieve. In MS-based approaches mostly shotgun proteomics has

been applied, where the antibody is digested into peptides prior to identifica-

tion. With such an approach, gaps in sequence coverage often arise, mostly

in the complementarity-determining regions (CDRs) of the antibody that are

responsible for the recognition and binding of infectious agents. Here, we

demonstrate that by combining shotgun proteomics with middle-down (MD)

proteomics, where the protein or large fragments thereof are measured in-

tact, these gaps can be filled and better information on the sequence can be

extracted. We therefore developed and described here software solutions to

iteratively integrate data from BU and MD proteomics.
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5.1 Introduction

ANTIBODIES, or immunoglobulins, are one of the cornerstones of the human im-

mune system and are abundantly present in various bodily fluids, such as serum,

saliva, milk, the lumen of the gut, and cerebrospinal fluid (1). Because of their impor-

tant role in combatting infectious diseases, immunoglobulins have been intensively

studied and in the last decades have taken centre stage for the development of novel

therapeutics (2–4). In the last decade, antibodies have become the best-selling drugs

in the market, notably in 2018 eight of the top ten bestselling drugs were biologics.

New antibody leads for biotherapeutics can be extracted from various sources, such

as immunized animals or recovered patients who carry pathogen neutralizing antibod-

ies (5–7). The incredible potential for diversity of immunoglobulin molecules in the hu-

man body, with over 1015 theoretically possible sequences (8, 9), indicates that each

antigen exposure may lead to a unique, personalized (polyclonal) antibody response.

One way to chart the antibody repertoire is to sequence the B-cell receptors of all B

cells that can produce antibodies. It is however thought that only a marginal fraction

of all these B cells indeed produce immunoglobulin proteins that end up in circulation,

making this an inefficient undertaking. Alternatively and more ideal, investigation and

sequencing of antibodies occurs directly at the protein level (10). Mass spectrome-

try (MS) has become the method of choice for analysing protein mixtures (11, 12),

but sequencing polyclonal antibody mixtures still poses one of the major remaining

challenges (13–15). Most protein analyses by MS are performed by peptide-centric

proteomics, also called shotgun or bottom-up (BU) proteomics, where the presence

and relative abundance of proteins is inferred from peptides obtained by digesting

the proteins with proteases, prior to sequencing. For the identification, this approach

makes use of a protein sequence database to generate theoretical peptides from

which the expected precursor mass and fragmentation spectrum is generated (16).

A sequence database is however not available for the full repertoire of antibodies, as
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their sequences are the result of the recombination and mutation of several genes

encoded by many different alleles in each person. An option to sequence antibodies

by shotgun proteomics is by using de novo sequence analysis, where peptide se-

quences are directly determined from the fragmentation spectra. The resulting short

peptide reads, typically 5-25 amino acid residues in length, are assembled into longer

contigs or even full-length protein chain sequences (13, 17, 18). A factor that makes

read assembly for antibodies particularly difficult is that the sequence of both the light-

and heavy chain of an antibody aremade up of alternatingly conserved and hypervari-

able sequence domains (19, 20). Fortunately, the quality of software platforms for de

novo sequence analysis of antibodies by MS is steadily increasing (21). Virtually all

published platforms make use of homologous sequence templates (13, 17, 22, 23),

obtained by comparing experimental data to an immunogenetic database such as the

IMGT (24, 25). The commercially available antibody sequencing platform Supernovo

for example takes BU data as an input and returns a full-length sequence, along with

the determined germline template sequences (13). Through recent development in

software andmass spectrometry results of these approachesmay now lead to correct

sequencing, albeit only for monoclonal antibody samples (14). However, established

software solutions in the field, including Supernovo, cannot yet sequence antibodies

in polyclonal mixtures with equal success. Recent advances in instrumentation, sep-

aration, sample preparation and computational power have facilitated protein-centric

proteomics (also called top-down proteomics). This enables the simultaneous analy-

sis of an entire protein, removing the need for protein inference (26). This approach

is very enticing as it side-steps the need for assembling peptide sequences into a

full protein sequence. While the field has not yet matured to yield spectra that can

routinely be used for confident de novo sequencing without additional data, the con-

tinuous advances indicate that the future of antibody sequence analysis will surely

include these techniques as a complementary source of information to the more es-

tablished peptide-centric (BU) analyses. One particularly striking example of this is
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the use of middle-down (MD) proteomics for antibody sequence analysis, which im-

proves sequence coverage and reduces complexity of the spectra by cleaving the

constant region of the heavy chain with high specificity (27). Reports of sequencing

components of polyclonal mixtures are currently released as proof-of-concept stud-

ies (22, 28, 29), where most of the studies make use of some form of intact protein

(fragment) analysis, pointing towards integrative workflows combining multiple MS

approaches as the way forward. Recently, a tool to sequence polyclonal mixtures

using only BU de novo peptides was reported. The tool, named Stitch, yields excit-

ing results by resequencing an abundant clone from serum (22). Here we describe

an integrated approach that builds upon Stitch by integrating MD-MS data, with the

aim of improved antibody sequencing. This workflow sequences a target chain, se-

lected from deconvoluted MS1 spectra of reduced antibody chains, in a modular,

three-stage process based on germline domains as defined in the IMGT residue

numbering scheme (30). Each stage deals with increasingly large sequence seg-

ments, first sequencing the framework regions (FRs), then CDRs with flanking FRs

(FR-CDR-FRs), and ultimately full-chain sequences (Figure 1a). To demonstrate the

performance of this approach, we analysed three samples of increasing complexity:

a pure therapeutic antibody, namely Trastuzumab, both in a monoclonal sample and

in a mixture of three monoclonal antibodies, as well as a single abundant IgA1 clone

endogenously present in the serum repertoire of a sepsis patient. We used these

samples to test the effectiveness of the workflow, by reconstructing the known se-

quence of the Trastuzumab heavy chain to a high degree in the monoclonal sample

as well as in the more complex mixture of three monoclonal antibodies. We next

applied the approach to sequence an abundant IgA1 heavy chain in a highly diverse

polyclonal sample of IgA1 clones present in the serum of a sepsis patient. We chose

to describe our sequencing efforts for the more complex heavy chain rather than de-

scribe the same steps for the light chain simultaneously, for the sake of brevity as

the analysis treats the two as completely separate entities. We show how integration
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of MD-MS data can be used to resolve ambiguity in de novo sequence predictions,

particularly in hypervariable regions, through determining the mass of the CDR and

using this mass to filter candidate CDR sequences and confirm their pairing to the

fragmented precursor chain. We hypothesize that such improvements will be particu-

larly beneficial when analysing polyclonal mixtures of increasing complexity or when

lower sample amounts are available. The algorithms supporting the analyses were

programmed in the C# programming language and are freely available on GitHub.

5.2 Results

Antibody sequencing by any source of information poses a tough challenge due to

the hypervariable yet homologous nature of the vast number of sequences. For

example, reference databases are of little to no benefit when sequencing the hy-

pervariable CDRs, which in turn makes assigning bottom-up reads to these regions

extremely difficult. Using MD proteomics provides not yet a realistic alternative, as

the fragment coverage in MD-MS, although superior to that of top-down (TD) MS,

is still too limited for stand-alone de novo sequencing, although exciting progress is

made for sequencing reduced light chains (29, 31). Here, our hypothesis was that

by combining BU- with MD-MS data, and reference sequences from immunological

databases, these sources of information can complement each other and be used to

fill gaps not covered by the individual approaches. Therefore, we make use of MD-

MS fragmentation spectra combined with the relatively conserved nature of the FRs

to determine the molecular mass of the CDRs. This is subsequently used as a filter

to substantially reduce the number of candidate CDR sequences while simultane-

ously confirming their pairing to the fragmented precursor target chain. The workflow

consists of three stages: we first consider only FR sequences, then the FR-CDR-

FR sequences, and finally the full-length sequences. Each stage first generates a

candidate pool of sequence-solutions by considering ambiguities left by the previous
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stage, then evaluates these candidates using the integrated evidence streams, and

finally resolves the ambiguities by discarding candidates that do not have supporting

evidence (Figure 1a). By starting with the FRs, which are relatively well-conserved

sequence segments, and resolving ambiguities at this scale before moving to longer,

more variable segments by joining adjacent FR candidates into FR-CDR-FR contigs,

the size of the search space at each stage remains at manageable sizes, limiting

computational costs and enabling the analysis of more complex samples (Figure 1b).

Figure 1: Modular sequencing can be used to limit the search space. a) Schematic of data-integration
workflow. The approach consists of three stages in which increasingly large sequence segments are
sequenced and then used as input for the next stage. Initially, only the framework regions (FRs) are
sequenced. Then the FR candidates are converted into extended FR-CDR-FR candidates (i.e., CDRs with
adjacent FRs). Finally, the FR-CDR-FRs are recombined into full chain candidates. Each stage follows
a flow starting with sequence candidate generation based on input data (“Generate”). These candidates
are scored using multiple data streams (“Integrate”), then the best candidates are selected using these
scores (“Evaluate”). b) Size of the search space throughout the workflow. The approximate number
of candidates is shown in the modular approach (pink) versus processing the whole sequence at once
(teal). By first sequencing smaller segments, the search space can be kept relatively small. The segment
candidate pool is expanded at the start of the stage and reduced after scoring. This ensures we never
consider more than ∼103 segment candidates at the same time, keeping computational cost in balance .

5.2.1 Target mass determination and sample characterization by

using MD-MS

To characterize the complexity of the samples and determine the precursor masses of

the target chains, we collectedMD LC-MS/MS data for all samples. Our MD approach
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was performed according to previously published protocols (see subsection 5.4.1:

Immunoglobulin capture and Fab generation) (28, 32). These protocols yield Fab

fragments by specifically cleaving the Fc portion of the heavy chain. The resulting

Fab fragments were then reduced before LC-MS/MS analysis, to yield separated Lc

and Fd chains. We then deconvoluted the MS1 spectra to assess the number of

unique Lc and Fd masses in each sample (Figure 2)

Figure 2: Increasing complexity leads to an increase in ambiguity in mass determination in middle-
down proteomics of antibodies. LC-trace (top panel), zero-charge deconvolutedmass spectrum (middle
panel), and averaged MS2 spectrum (bottom panel). a) Pure Trastuzumab with clear signals for the
light chain and the Fd chain. b) Mixture of Trastuzumab and two other monoclonal antibodies. c)
Polyclonal sample from plasma. The contributions of the target and paired chains diminish relatively when
the background becomes more complex.

For the monoclonal sample, as expected, 2 highly abundant peaks were observed

(originating from the separated Lc and Fd chains), accounting for over half of the to-

tal deconvoluted intensity. When adjacent peaks in both mass and retention time

(±50 Da and ±1 minute) are considered, this increases to over 90% with the re-

maining masses consisting of background peaks of less than 5% relative abundance

(Figure 2a). For the mixture of 3 mAbs, likewise and as expected, six abundant

peaks were observed. The abundance of the target chains (±50 Da and ±1 minute)

made up ∼33% of the deconvoluted intensity. The other clones make up a total of
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50% of deconvoluted intensity and ∼20% is background (Figure 2b). Lastly, for the

polyclonal sample, the target clone (±50 Da and ±1 minute) made up less than 20%

of deconvoluted intensity (Figure 2c). The data in Figure 2 highlight challenges in

deconvoluting MD-MS spectra. We observe that the deconvolution software reports

(inaccurate) masses besides the expected masses, increasingly so for more complex

samples. To obtain the most exact masses, we averaged the MS1 spectra recorded

over the elution window of each target chain (Figure 2; highlighted in red) before

deconvolution. This improved the mass assignments to within 30 ppm accuracy for

the Trastuzumab Fd in the monoclonal and mix sample and yielded a target pre-

cursor mass of 24811.17 Da for the most abundant clone in the polyclonal sample

extracted from serum. Similarly, the MS2 fragmentation spectra were averaged over

the elution windows of the target chains and deconvoluted. This yielded 919, 265 and

469 deconvoluted fragment ion peaks for the monoclonal, mix and polyclonal sample

respectively (Table S1 ).

5.2.2 Using multi-enzyme shotgun proteomics data for de novo

sequencing

As part of the analysis each sample was also measured by BU-MS, by digesting

each sample with 4 proteases in parallel and collecting peptide-centric LC-MS/MS

data. The resulting spectra were submitted for de novo peptide identification using

PEAKS (33), yielding a total (i.e., cumulatively from all protease treatments) of 14000,

27421 and 35003 de novo peptide reads for the monoclonal sample, the mixture of

three, and the polyclonal sample, respectively (Table S1). To illustrate the growing

challenges of sequencing through shotgun proteomics in more complex samples,

we reconstructed the known sequence of the Trastuzumab Fd from the recombinant

benchmark samples (i.e., the monoclonal and mixture of three sample) using BU-MS

data alone. To this end, the peptide reads for these samples were submitted to the de
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novo peptide assembly tool Stitch (22). The resulting output for the monoclonal sam-

ple was nearly perfect (Figure 3a). However, the consensus sequence as obtained

for the sample from the mixture of 3 mAbs contained 4 erroneous residue predic-

tions in the FR2, and 6 in the CDR1 and CDR2 (Figure 3c). These errors were the

result of low peptide coverage, caused by assigning reads to the wrong templates.

This caused splitting of reads that belonged to the same chain. Furthermore, the

unassisted germline recombination by Stitch failed to select the correct V-region for

recombination, as it was not the highest scoring V-region in the mix sample. This

standard de novo sequencing of a recombinant mAb, already becomes difficult when

two other mAbs of equal abundance are spiked into the sample.

Figure 3: Sequencing higher complexity samples lead to a loss of fidelity in sequencingwhen using
only shotgun proteomics data. Sequencing results for the monoclonal (panel a-b) andmixture of 3 mAbs
(panel c-d) samples are shown. Each sample was submitted to Stitch twice: as a template selection run
(light blue, panel a and c) and a definitive run (dark blue, panel b and d). Each panel shows residue
candidates as letters and depth of coverage as bars. The monoclonal sample had no coverage below the
cut-off (pink highlight), very few erroneous residue candidates (grey residues), ambiguity, or errors in the
consensus sequence (marked with “x”). The mixture of 3 mAbs sample had substantially more stretches
of sequence with low coverage (pink bars), resulting in more ambiguity, erroneous candidates, and errors.

To tackle these issues, we ran Stitch again with refined templates (i.e. the consensus

sequence as output by the initial Stitch run, or template selection run, rather than the

germline sequence) and a lower score cut-off for the input reads (50 instead of 85).

To ensure recombination of the correct V-region, we manually defined which V-region
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templates should be recombined by Stitch by providing refined templates equal to the

number of abundant clones present in the MD data (1 and 3 for the monoclonal and

mixture sample, respectively; Figure 2a and b). For the monoclonal sample we se-

lected the best scoring V-region, IGHV3-66, as a refined template. For the sample of

3 mAbs we selected 3 V-region templates: the highest unique score (IGHV4-39), the

highest score (IGHV4-30-4), and the highest score in a different family (IGHV3-66).

This additional Stitch run, or definitive run, gave a major improvement for analysis

of Trastuzumab in the 3 mAb sample, as it improved the depth of coverage 2 to 28-

fold and raised depth of coverage above the dynamic cut-off (the depth of coverage

at Cys104, Figure 3) for 13 out of 21 positions (Figure 3d). Pleasingly, these ad-

justed settings had no detrimental effects on the performance for the monoclonal

sample (Figure 3b), although some ambiguity remained in the predicted sequence

for Trastuzumab in the 3 mAb sample.

5.2.3 Integrating multiple evidence streams

Performance on recombinant samples

Framework region sequencing Using the residue frequency tables (Figure S1)

from both Stitch runs, as well as a residue frequency table generated from the IMGT

database, FR candidate sequenceswere generated by converting ambiguous residues

into sequence candidates (Figure S1). This yielded between 1 and 756 candidates

per target FR (Table S2) and included the known correct candidate for all recom-

binant benchmark samples. These candidates were evaluated against experimen-

tal BU- and MD-MS evidence and ranked by a combination of the resulting scores.

For BU-MS scoring, a score was used that represents the depth of coverage of ex-

act sequence matches longer than 6 residues, weighted by match length (termed

Shotgun-score; Table S3). For MD-MS scoring, a score was used that represents

the overlap between theoretical fragments of the sequence and peaks in the MD frag-
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mentation spectrum (MD-score; Table S3). The MD-score is obtained using a sliding

window scoring algorithm, which slides theoretical fragments generated from a given

(sub)sequence over the spectrum to find the best scoring position, and thus outputs

the optimal prefix- and suffix- mass of a given contig (Figure S2). Candidates missing

highly conserved residues (Cys23, Cys104) as well as terminal segment (i.e., FR1

and FR4) candidates with illogical prefix- or suffix- masses were removed in a first

pass filtering step. This reduced the candidate lists up to 10-fold, to a maximum of

90 candidates (Figure S3). We further filtered the candidate pools to a maximum

of 40 candidates (Table S2) without eliminating any correct candidates by manual

inspection of the scores. For the monoclonal sample, the correct FR1 candidate was

ranked #1 with a large discrepancy between scores (Figure S3). As FR2, FR3, and

FR4 only had one candidate each, no selection was needed. However, it was en-

couraging to see that the sliding window algorithm was able to correctly determine

the prefix masses for these contigs with a mass error that did not exceed 18 ppm.

The candidate pools for the mixture of 3 mAbs were reduced from 240, 756, 5 and

4 candidates to 40, 7, 1 and 2 candidates for al FRs respectively (Table S2). For

FR1, we rejected 200 candidates in the first pass, leaving 40 candidates. No further

filtering was possible, as fragment and read coverages were too low for confident

filtering (maximum of 2 fragments and no read coverage past Cys23). The FR2 can-

didates had many overlapping scores (Figure S3) due to low read coverage of the

N-terminal ambiguous residues (Figure 3c and d) and a near total overlap of theoret-

ical fragments for these candidates. We rejected the lower MD-scores (106 vs 121),

which represented the same fragments but without a fragment match on the second

residue. This reduced the number of candidates from 756 to 90. Subsequent fil-

tering using the Shotgun-score, rejecting all but the best Shotgun-score (9.4k), left

only 7 candidates, representing a single remaining ambiguous N-terminal residue.

For FR3, only 1 out of 5 candidates had the highly conserved Cys104, leading us to

reject all other candidates. For FR4, we rejected all candidates not starting with the
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conserved Trp118 but considered the difference in Shotgun-score for the remaining

2 candidates too small to reject either.

Complementarity determining region sequencing To determine the sequence

of the CDRs, we extended the selected FR candidates into FR-CDR-FR candidates.

All adjacent FR candidates were paired to obtain all possible neighbouring pairs. We

then calculated the mass gap between each of these FR pairs (which is equal to

the theoretical molecular weight of the CDR sequence) using the prefix- and suffix-

mass of each FR candidate. Each FR pair was converted into a set of FR-CDR-FR

candidates by connecting the FRs with candidate CDR sequences. These candi-

date CDR sequences were generated by first connecting peptide reads that extend

from the FRs into the CDR, then discarding the candidates that do not match the

calculated molecular weight of the CDR at 5 Da tolerance (Figure S4). The resulting

FR-CDR-FR candidates were scored and ranked using the MD- and Shotgun- score

(Table S3). The top 10 FR-CDR-FR candidates for each FR pair were manually eval-

uated based on the scores to select the most likely FR-CDR-FR candidates. For both

recombinant benchmark samples, these candidates contained the correct sequence

for CDR1, CDR2 and CDR3. For the monoclonal sample, 10 FR-CDR-FR candidates

were generated per CDR (Table S2). The correct candidate for each CDR could

easily be selected using the Spectrum and Shotgun-score (Figure S2). The selected

candidates all had the top MD-score (255, 508 and 1561 for the CDR1, CDR2 and

CDR3 respectively) and the best (CDR1 and CDR2) or second best (CDR3) Shotgun-

score (137k, 56k and 122k respectively). For the mixture of 3 mAb sample 1106, 49

and 20 FR-CDR-FR candidates were generated for the CDR1, CDR2 and CDR3,

respectively (Table S2). Despite the much larger starting pools, the correct CDR1-

and CDR2- candidates could be selected unambiguously during manual inspection

as they had the second best and best MD-scores (143 and 257 for CDR1 and CDR2

respectively) and the top Shotgun-score (30k and 40k respectively; Figure S3). The
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selected FR-CDR-FR candidates for CDR1 also caused rejection of the remaining in-

correct FR1 and FR2 candidates, which left only 7 FR-CDR-FR candidates for CDR2

as the rest did not contain the right FR2. Scoring for the CDR3 was more ambiguous.

Fragment coverage was insufficient to make a distinction between the FR-CDR-FR

candidates, as MD-scores ranged only from 280 to 282. The Shotgun-scores were

distributed in two clusters based on which FR4 candidate was included (Figure S3).

The correct FR4 (starting with WGQGT) scored∼221k while the incorrect FR4 (start-

ing with WGQGS) scored higher (∼244k). However, we noted that the candidates

with the wrong FR4 lacked connecting reads between the FR4 and CDR3. The can-

didates with the correct FR4 sequence had fewer but longer and more overlapping

reads which connected the CDR3 and FR4 better (average read length of ∼25 vs

average read length of ∼12). We rejected the higher Shotgun-scores on this basis.

The candidate pool with the correct FR4 included 2 incorrect FR-CDR-FR candidates,

SRWNDGFYAMDY and SRDNWGFYAMDY, that were nearly identical to the correct

candidate, SRWGGDGFYAMDY. We selected these 3 candidates based on the pres-

ence of longer and more overlapping reads in the CDR3 than the other 7, same as

above. However, we could not discriminate between the 3 isobaric candidates at this

point, leaving 3 candidates for the CDR3.

Full chain sequencing We next expanded the scope to the entire target chain

to verify the selected FR-CDR-FR candidates. To achieve this, we recombined all

remaining FR1 to FR4 candidates and transformed these FR-sets into full length

chain candidates by joining the FRs with CDR candidates in the same manner as be-

fore (see section 5.2.3: Complementarity determining region sequencing; Fig-

ure S4). The resulting chain candidates that deviated more than 5 Da from the pre-

cursor mass in the MD-MS data were discarded. To ensure that the selected FR-

CDR-FR candidates indeed represented the best predictions, all resulting chain can-

didates were scored and ranked using the MD- and Shotgun- score (Figure S3). This
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recombination yielded 930 chain candidates for the monoclonal sample and 616 for

the mixture of 3 mAb sample. The correct chain candidate for the monoclonal sam-

ple was ranked #1, despite not having the highest Shotgun-score (267k vs 270k) or

MD-score (1815 vs 1818). For the mixture of 3 mAb sample, the chain candidates

made up solely out of previously selected FR-CDR-FR candidates were ranked #3-

5, with the correct sequence at #5. The top 2 candidates had CDR3 sequences that

were previously rejected in the CDR sequencing stage, which were again rejected on

the same basis (shorter, less overlapping reads). The isobaric CDR3s still could not

be confidently ranked as the scores were too close, with Shotgun-scores between

255.7k and 255.8k and MD-scores between 426.1 and 427.2 (Figure S3). Low frag-

ment coverage combined with other clones being present at similar concentrations

seemingly prevented us from resolving the final ambiguities for the mix sample. This

is highlighted by the large difference between the MD-scores for the correct chain

candidates (426 for the mix sample vs 1815 for the monoclonal sample).

Performance on the complex polyclonal samples

After successfully reconstructing the known sequence of Trastuzumab from the re-

combinant samples, we proceeded to analyse the polyclonal sample. We selected

the most abundant heavy chain (precursor mass 24811.17 Da; Table S1) as a se-

quencing target and prepared deconvoluted fragmentation spectra from the raw MD-

MS data (see subsection 5.2.1: Target mass determination and sample charac-

terization using MD-MS; Figure 2c). To generate FR candidates for the selected

target chain, we submitted de novo peptide reads to Stitch (see subsection 5.2.2:

Using multi-enzyme shotgun proteomics data for de novo sequencing). From

the template selection run we selected IGHV3-33, the most abundant V-region in the

Stitch results, for recombination during the definitive run (Figure 4a). The Stitch fre-

quency tables from both runs were then converted into FR candidates as described

above (see section 5.2.3: Framework region sequencing; Figure S1).
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Figure 4: Sequencing an abundant IgA1 heavy chain in a polyclonal sample converges on a single
sequence prediction. The sequencing process of the target chain in the polyclonal sample is shown.
Residue candidates per position are shown in sequence logos, with rejected residue candidates in grey.
Below the sequence logos the number of candidates at the start and end of the stage is shown. a) The
selected germline template, IGHV3-33*06, is shown along with the deviations from the final sequence. b)
In the FR sequencing stage, we reduced all FR candidate pools to 4 candidates or less despite starting
with large pools of FR3 and FR4 candidates. c) During the CDR sequencing stage, we converged on
a single CDR1 and CDR2 candidate, thereby also rejecting the remaining incorrect FR1 and FR3 candi-
dates. The only remaining ambiguity was in between two isobaric CDR3 sequences. d) Recombining the
remaining FR candidates into chain sequences yielded 975 chain candidates. Two of these contained the
previously selected CDRs. These two candidates were isobaric, had highly similar Shotgun-scores and
fully overlapping fragment coverage. e) middle-down fragment coverage for the final sequence (constant
region not shown).

FR candidate generation yielded 8, 2, 384 and 64 candidates for the FR1 to FR4

respectively. After scoring and filtering this was reduced to 2, 1, 3 and 4 candi-

dates (Figure 4b, Table S2). From the FR candidates which remained after the first

pass (see section 5.2.3: Framework region sequencing; Table S2), we rejected

all but the top scoring candidates with respect to MD-score (10, 155, 163 and 133

for FR1 to FR4 respectively; Figure S3). We then manually selected candidates for

each FR based on Shotgun-score. For FR1, we selected the top 2 candidates (34k
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and 35k Shotgun-score) as the other two candidates had an LTC motif that had a

lower Shotgun-score. This left a single ambiguous isobaric residue, an N-terminal

pyro-Q/E. For FR2, only 1 candidate had the top MD-score, which was much higher

than the alternative candidate (155 vs 105). For FR3 the top 3 Shotgun-score can-

didates were selected (27k-30k), leaving 2 ambiguous sites (Q/E and TV/RA, Fig-

ure 4b). For FR4, the top 4 candidates in terms of Shotgun-score (308k-310k) were

selected, representing a single ambiguous N-terminal residue (Figure 4b). Using

these FR-candidates, 20, 30 and 120 FR-CDR-FR candidates were generated for

CDR1 to CDR3 respectively. The top MD- and Shotgun-scores were unambiguous

for CDR1 and CDR2 (Figure S3), identifying the CDR1 as GLTFSTYD (MD-score

118, Shotgun-score 57k), and CDR2 as LWNDGYNK (MD-score 377, Shotgun-score

51k). By selecting these FR-CDR-FR candidates, 2 out of 3 remaining FR3 candi-

dates could be rejected leaving 40 FR-CDR-FR candidates for CDR3. From these,

we selected 2 isobaric FR-CDR-FR candidates (LGQRPL and GLQRLP) with the

top Shotgun-scores (346.2k and 346.4k) and the second-best MD-score (both 370.7)

(Figure 4c, Figure S3). Recombining the selected FR candidates into chain candi-

dates yielded 975 chain candidates. Two chain candidates were made up of previ-

ously selected FR-CDR-FR candidates and scored very well as they had the fourth

highest MD-score (434) and top Shotgun-scores (411k; Figure S3). To resolve the

remaining ambiguity in the CDR3 (Figure 4d), we revisited the peptide coverage for

this region. This revealed a break in the peptide coverage of CDR3 in one of the

candidates suggesting the CDR3 sequence LGQRPL. However, strong support for

the LP motif in the CDR3 led us to reinspect the de novo reads manually, where we

found several reads suggesting the CDR3 sequence LGQRLP, a sequence absent

in any single bridging or overhanging CDR3 reads. Rescoring this sequence indeed

revealed an increased Shotgun-score, from 411.3k to 411.7k, providing the final piece

of the sequence (Figure 4e).
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5.3 Discussion

With this work we show that integration of BU and MD data is beneficial to achieve

a higher fidelity for de novo extraction of the sequences of antibodies. To provide

a solid basis with the de novo peptide data, we utilize Stitch (22) although this step

does not yet allow for unambiguous sequence determination. To correct the errors

and resolve this ambiguity, MD fragmentation data was used. Although the MD data

for even the most abundant clone in a mixture is far from complete, we show that it

can be used as a potent filter to remove erroneous candidates and even to assist with

filling gaps in the sequence. We have used the presented workflow to simultaneously

sequence light and heavy chains, but for the sake of brevity have omitted the light

chain sequencing efforts in this manuscript. As we analyse one chain at a time, there

is little difference between the analysis of light and heavy chains aside from differ-

ences arising from the quality of the data or the complexity of the target. Light chains

are less complex owing to a lower degree of somatic hypermutation and the lack of a

D-segment. Unsurprisingly therefore, these targets performed equally well or better

than their heavy chain counterparts. The polyclonal sample used in this study still

represents a hand picked case for sequencing plasma antibodies, where the sam-

ple was dominated by a single clone. While moving to more complex samples will

surely pose new challenges, it has been shown that circulating antibody repertoires

are, more often than previously thought, dominated by a limited number of clones

(28, 32). We are therefore optimistic that the presented approach will be applicable

to a significant fraction of polyclonal samples . Additionally, for those samples where

it does fall short due to sample complexity, enrichment strategies can be applied be-

fore analysis in an effort to reduce sample complexity and increase the chance of

successfully obtaining the protein sequence. Another point to improve is the need

for expert manual interpretation at various points in this workflow, which significantly

limits the throughput. Although the main goal of the presented work was to define

168



5

Chapter 5

a broadly applicable protocol for polyclonal antibody sequencing, we have not yet

been able to define robust score cut-offs for several decision points making this an

intermediate step in the development of a fully automated pipeline. The integration

of multiple data sources, as well as the diversity of the analysed samples (polyclonal,

complex), targets (light or heavy chain, dominant clones, isotypes and subclasses),

regions (FR1-4, CDR1-3) and segments (FRs, FR-CDR-FR, chain), makes this an

even bigger challenge. As the field matures however, a point will be reached where

scoring functions and corresponding cut-offs can be defined. This will automate an

ever-increasing portion of this work, eventually leading to a high throughput, fully

automated method.

5.4 Materials and Methods

5.4.1 Immunoglobulin capture and Fab generation

Recombinant IgG1 sample preparation

The IgG purification and generation of IgG1 Fabs for the recombinant monoclonal and

mix samples was performed as previously published (28). IgGs were captured using

CaptureSelect FcXL affinity matrix (Thermo Scientific). Mobicol spin filters were as-

sembled according to manufacturer instructions and placed in 2 mL Eppendorf tubes.

Then 20 µL FcXL affinity matrix slurry was added to the spin filter, followed by three

washing steps with 150 µL PBS, in which the liquid was removed by centrifugation for

1 min at 1000 × g. Two additional washing steps with 150 µL were performed. The

affinity matrix was resuspended in 150 mL PBS, and 100 µg of sample was added.

The samples were then incubated while shaking for one hour. Next, the flow-through

was collected and the affinity matrix with bound IgGs was washed four times with 150

µL PBS. bound IgGs were digested overnight using 50 µL PBS containing 100 U of

the IgdE protease (FabALACTICA®, Genovis, Llund, Sweden) on a thermal shaker
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(Eppendorf, The Netherlands) at 37 °C. Next, 10 µL of Ni-NTA beads were added

to bind and remove the His-tagged protease and left incubating for an additional 30

minutes. The flow through after centrifugation contained the IgG1 Fab fragments

generated.

Serum IgA1 sample preparation

The IgA purification and generation of IgA1 Fabs for the polyclonal sample was per-

formed as previously published (32). IgAs were captured from a patient serum sam-

ple using CaptureSelect IgA affinity matrix (Thermo Scientific). 40 µL bead slurry was

added directly to Pierce spin columns with screw cap (ThermoFisher Scientific). The

beads were then repeatedly washed with 150 µL PBS by centrifugation at 500 × g,

room temperature (RT). After the third wash, a plug was inserted to the bottom of the

individual spin columns and 100 µL PBSwas added to the beads. Twenty microliter of

serum was diluted in 150 µL PBS and added, then incubated for 1 hour while shak-

ing. Following the incubation, the plugs were removed from the spin columns and

the diluted sample was collected by centrifugation for 1 min at 500 × g, RT. Then the

beads were washed four times by addition of 200 µL PBS and subsequent centrifu-

gation for 1 min at 500 × g, RT. After the fourth wash the plugs were reinserted into

the bottom of the spin columns. We added to each spin column 50 µL PBS contain-

ing 40U SialEXO (SialEXO, Genovis, Llund, Sweden), a sialidase cocktail to remove

sialic acids from the O-glycans, and incubated for 1 h at 37°C with continuous shak-

ing at 750 rpm. 1 µL (40 U) of OgpA enzyme (OpeRATOR, Genovis, Llund, Sweden)

was then added, and incubation was continued overnight, in and Eppendorf thermal

shaker. Next, 10 µL of Ni-NTA beads were added to bind and remove the His-tagged

proteases and left incubating for an additional 30 minutes. The flow through after

centrifugation contained the IgA1 Fab fragments generated.
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5.4.2 Bottom-up de novo sequencing

Sample preparation

Fab fragments were digested for BU analysis as described previously (28). All puri-

fied Fab antibody fragments were dried under vacuum and resuspended in a 50 mM

aqueous ammonium bicarbonate buffer. For each bottom-up analysis, 12 µg of sam-

ple was used, 3 µg per protease. For digestion with trypsin, chymotrypsin, elastase

and thermolysin, a sodium deoxycholate (SDC) buffer was added to a total volume

of 80 µL, 200 mM Tris pH 8.5, 10 mM TCEP, 2% (w/v) SDC final concentration. For

digestion with pepsin, a urea buffer was added to a total volume of 80 µL, 2M urea,

10 mM TCEP. Samples were denatured for 10 min at 95 °C followed by reduction

for 20 min at 37 °C. Next, iodoacetic acid was added to a final concentration of 40

mM and incubated in the dark for 45 min at room temperature for alkylation of free

cysteines. Then for trypsin, chymotrypsin and thermolysin, 50 mM ammonium bicar-

bonate buffer was added to a total volume of 100 µL. For pepsin 1 M HCl was added

to a final concentration of 0.04 M. A total of 0.06 µg of each protease was added and

the mixture incubated for 4 hours at 37 °C. After digestion 2 µL formic acid was added

to precipitate the SDC. SDC was removed by centrifugation for 20 min at maximum

speed (20817 × g) after which the supernatant was moved to a new tube. The fi-

nal samples were desalted by Oasis HLB (Oasis).  Sorbent was wetted using 2x 200

µL ACN, followed by equilibration with 2x 200 µL water/10% formic acid.  The sample

was loaded and washed with 2x 200 µL Mili Q water/10% formic acid.  Finally, the

sample was eluted using 2x 50 µL water/50% ACN/10% formic acid and dried down

by vacuum centrifuge. Prior to MS analysis samples were reconstituted in 2% FA.

LC-MS/MS

Data acquisition was performed on the Orbitrap Fusion Tribrid Mass Spectrometer

(Thermo Scientific, San Jose, CA, USA) coupled to UHPLC 1290 system (Agilent
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Technologies, Santa Clara, CA, USA) as previously published (28). Briefly: Peptides

were trapped (Dr. Maisch Reprosil C18, 3 mm, 2 cm3 100 mm) prior to separation

(Agilent Poroshell EC-C18, 2.7 mm, 500 mm 3 75 mm). Trapping was performed for

10 min in solvent A (0.1% HCOOH in Milli-Q), and the gradient was as follows: 0 –

13% solvent B (0.1% HCOOH in 80% CH3CN) over 5 min, 13 – 44% solvent B over

65 min, 44 – 100% solvent B over 4 min, and 100% B for 4 min (flow was split to

achieve the final flowrate of approximately 200 nL/min). MS data was collected in

a data-dependent fashion with survey scans ranging from 350-2,000 Th (resolution

of 60,000 @ m/z 200), and up to 3 sec for precursor selection and fragmentation

with either stepped higher-energy collisional dissociation (HCD) set to [25%, 35%,

50%] or electron transfer dissociation (ETD), used with charge-normalized settings

and supplemental activation of 27%. The MS2 spectra were recorded at a resolution

of 30,000 (@ m/z 200).

Data analysis

Bottom-up MS/MS spectra were processed with the PEAKS-X de novo sequencing

suite (Bioinformatics Solutions Inc., Waterloo, ON, Canada). Default settings were

used unless explicitly mentioned. Variable modifications were set to pyro-Glu from E,

pyro-Glu from Q, oxidation (H/W), oxidation m) . Max 4 variable modifications per

peptide, max 5 peptides reported per spectrum, 0.02 fragment mass error tolerance,

20 ppm parent mass tolerance, fixed modification: Carboxymethyl. The resulting

de novo predictions (referred to as reads throughout the manuscript), were inserted

into the proteomic short read assembly tool Stitch for two subsequent runs to yield

a frequency table and select a germline sequence template for each target chain.

The residues of this sequence template were numbered according to the IMGT num-

bering convention (30). The de novo reads were numbered by aligning them to the

sequence template using the Smith Waterman algorithm with a custom scoring ma-

trix (Supplementary data 1) and copying the numbering. Throughout the manuscript,
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AA residues are referred to by their IMGT numbering.

Germline database preparation

The full IMGT database was used as a source of homologous germline sequences

(Supplementary data 2). This database was filtered by excluding non-human entries,

entries with identical sequences, partial or non-functional entries and sequences in-

cluding wildcards or non-canonical AAs. The resulting sequences were filtered by ex-

cluding allelic polymorphisms to create a reduced and nonredundant set of germline

template sequences, as described previously (22). Only the constant regions rele-

vant to the analysed sample were included (i.e., IgA1 for the polyclonal sample and

IgG1 for the monoclonal and mix samples). These constant regions were cleaved

to match the Fab fragments produced by the IgdE and OgpA enzymes. The re-

sulting template sequences were used by Stitch for template selection and read as-

sembly, and to generate the IMGT residue frequency table used for FR generation

(Figure S1).

5.4.3 Middle-down de novo sequencing

LC-MS/MS

All Fab samples were denatured and reduced in 10mM tris(2-carboxyethyl)phosphine

(TCEP) at 60 °C for 30 min prior to LC-MS/MS analysis. For each LC-MS/MS exper-

iment 2-5 µg of sample was injected. Reversed-phase liquid chromatography was

performed by using a Thermo Scientific Vanquish Flex UHPLC instrument (Thermo

Fisher Scientific, Germering, Germany), equipped with a 2.1 mm x 50 mm or 1 mm

x 150 mm MAbPac RP analytical column (Thermo Fisher Scientific, Germering, Ger-

many) and directly coupled to an Orbitrap Fusion Lumos Tribrid mass spectrometer

(Thermo Fisher Scientific, Bremen, Germany). The column preheater, as well as the

analytical column chamber, were heated to 80 °C during chromatographic separation.
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The recombinant samples were separated over 27 min at a flow rate of 250 µL/min.

The polyclonal sample in 22 min at a flow rate of 150 µL/min. Gradient elution was

achieved by using two mobile phases A (0.1% HCOOH in Milli-Q HOH) and B (0.1%

HCOOH in CH3CN) and ramping up B from 10 to 25% over one minute, from 25 to

40% over 14 min, and from 40 to 95% over one minute. MS data were collected with

the instrument operating in Intact Protein and Low Pressure mode. The spray voltage

was set at 3.3 kV, capillary temperature 350 °C, probe heater temperature 100 °C,

sheath gas flow 15, auxiliary gas flow 5, and source-induced dissociation was set at

15 V. The reduced Fab chains were analysed with a resolution setting of 120k (@

200 m/z) in MS1, which allows for more accurate mass detection of smaller proteins

(< 30 kDa) with 250% AGC target and a maximum injection time of 250-500 ms. For

the recombinant samples, 2 µscans were acquired and averaged per MS1 scan, in a

range of 500-3000 Th. For the polyclonal sample 5 µscans were averaged in a range

of 600-2000 Th. Data-dependent mode was defined as two scans. MS/MS scans

were acquired with a resolution of 120k (@ 200 m/z) and a maximum injection time

of 500 ms. The ions of interest were mass-selected by quadrupole 2-10 Th isolation

windows, depending on the sample complexity, and accumulated to the AGC target

prior to fragmentation. Electron-transfer dissociation (ETD) was performed using the

following settings: 16 ms reaction time, a maximum injection time of 200 ms, and

an AGC target of 1e6 for the ETD reagent. For data-dependent MS/MS acquisition,

the intensity threshold was set to 5e4. MS/MS scans were recorded in the range of

350-5000 Th using high mass range quadrupole isolation.

Data analysis

Following the MD LC-MS/MS data acquisition of the Fab fragments, MS1 features

were retrieved from the generated RAW files using BioPharmaFinder 3.2 (Thermo

Scientific). Deconvolution was performed using the ReSpect algorithm, deconvo-

luting averaged scans over a selected RT window where the target clone eluted
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(Table S1). The output mass range for the fragment ions was set at 10 to 40 kDa.

Charge states between 10 and 50 were included with a minimum of 6 and 10 adja-

cent charges for the low and high model mass respectively. No relative abundance

or score threshold was used. The target mass was set to 25 kDa, the number of

peak models to 1, with a shape of 2 and 2 (left/right). The peak detection minimum

significance measure was set to 1 standard deviation and the peak detection qual-

ity measured was set to 95%. The MS2 spectra over the selected retention time

were deconvoluted to yield their protonated monoisotopic fragment masses using

the Freestyles Xtract algorithm. The minimum charge was set to 1, the maximum

charge was set to 50, no thresholds were set for the minimum number of detected

charges and the relative abundance.

Contig scoring and refinement using middle-down data

Throughout the manuscript, we make use of a scoring algorithm to optimize contig

placement for a given MD-MS fragmentation spectrum, which we termed the slid-

ing window scoring algorithm (Figure S2). This algorithm slides a set of theoretical

fragments generated from the provided sequence along a providedm/z range, incre-

menting the fragmentmasses by a set increment (default 0.01 Th). To limit processing

time, peaks in the spectra are binned and the number of non-empty bins are counted

for each position. The top scoring positions (default: top 100) are then refined by

incrementing by smaller step size while scoring with a more refined scoring function

(34), and finally the best scoring position is returned. This enables error-tolerant scor-

ing of (sub)sequences, even if the exact prefix- and suffix- mass (distance from the

N- and C- termini respectively) is not known, for example for sequence candidates

which are not connected to the N- or C- terminus. In addition to a score, it also re-

turns the optimal prefix- and suffix- mass for the sequence, which is used to calculate

the theoretical molecular weight of CDRs during CDR sequencing, by calculating the

mass gap between adjacent FR candidates.
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5.A Supplementary material

Supplementary data as well as the source code can be found online at

https://github.com/Bdegraaf1234/FabLabPublic

Table S1: Overview of input data. Middle-down: The MS1 section shows the retention time window over
which MS1 scans were averaged before deconvolution to obtain the target precursor mass, the selected
mass, and the deviation of that selected mass from the known target mass. The MS2 section shows the
retention time window over which MS2 scans were averaged before deconvolution to obtain the fragment
masses, how many scans were averaged to achieve, and how many fragment masses were obtained.
Bottom-up: The bottom-up section of the table shows the number of raw files that were used as input,
which proteases were used for digestion and the number of peptides that resulted from de novo peptide
sequencing using PEAKS.

Table S2: Number of segment candidates throughout the workflow. The table shows the number of
segment candidates at the start and end of each stage. For the mix and polyclonal FR sequencing stage, a
middle column is included which displays the number of candidates after a “first pass” filtering, for example
excluding candidates that do not have highly conserved residues (Cys23 and Cys104 specifically), or
candidates with highly unlikely terminal mass offsets.
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Figure S1: Framework region candidate generation. Candidate FR sequences for each framework
region are generated from residue frequency tables from three sources: The definitive Stitch run, the tem-
plate selection Stitch run and the IMGT (from highest to lowest priority respectively). Residue candidates
are selected based on their relative frequency. For each position, residue candidates from the next fre-
quency table are only taken if the depth of coverage in the current table is lower than the depth of coverage
at the highly conserved Cys104. After residue candidates have been selected for all positions, all permu-
tations of these candidates are taken for each FR to yield sequence candidates for these FRs.

178



5

Chapter 5

Figure S2: Schematic of the sliding window fragment matching algorithm. The sliding window frag-
ment matching algorithm finds the optimum mass offset for an imperfect subsequence for a given frag-
mentation spectrum (FR2 in the figure). Theoretical fragments are generated at an approximate offset
and shifted by a predefined increment (default: 0.01 Da) throughout a predefined range (default: starting
position plus and minus 190 Da). This enables error-tolerant scoring of subsequences and determination
of the prefix- and suffix- (N- and C-terminal) masses.
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Figure S3: Figure legend on next page.
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Figure S3: BU- and MD- based scoring and germline-based selection criteria enable effective
segment candidate selection throughout the workflow. Score distributions (MD-score (x axis) and
Shotgun-score (y axis)) for all considered segment candidates are shown. Each column depicts segment
candidates for a sample. Each graph represents segment candidate scores for a target segment. Each
dot in the graphs represents a rejected candidate, whereas stars indicate selected candidates. A yellow
outline highlights the correct candidate. The correct candidate was selected in all stages (except for the
CDR3 and chain for the polyclonal sample, where it was not present.) However, ambiguity could not
be fully resolved everywhere. A legend with the consecutive selection criteria is shown at the top of the
figure. Grey: Input candidate. Red: First pass criteria met (default criterium: Has conserved Cys23 or
Cys104). Blue: Preliminary selection criterium met (default criterium: MD-score was <5 removed from the
maximum in the pool). Green: Selected for the next stage (default criterium: Top Shotgun-score). Any ad-
ditional/alternative criteria are shown in the graph itself (e.g., for the mix FR4 candidate pool, the first pass
filtering criterium included the presence of Trp118). The number of candidates satisfying each criterium is
given at the top of each graph. E.g., for the monoclonal, 8 FR1 candidates were considered in total. Of
these 8, only 4 had the highly conserved Cys23. Of these 4, only 2 were considered top candidates based
on their MD-score. A single candidate was finally selected for the next stage.
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Table S3: Different scores calculated throughout the workflow. The Template- and Germline- score
are not used in the manuscript. The local BU-score is only used for internal ranking before CDR rescoring
as the CDR-candidate are too short for the Shotgun-score.
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Figure S4: CDR candidate generation. Candidate CDR sequences are generated by joining a pair of
adjacent FR candidates (e.g. a FR1 candidate and a FR2 candidate) using overhanging reads from both
FRs. a) Reads containing the 3 CDR flanking residues are taken for the left (e.g. FR1) and right FR
(e.g. FR2). b) The N-terminal overhanging reads (left_overhangs) are then combined with the C-terminal
overhanging reads (right_overhangs), generating all possible combinations. c) The mass of the CDR is
calculated using the FR candidates and the sliding window score (Figure S2) and used to filter the CDR
candidates, retaining only those matching the target mass within a 5 Da tolerance.
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6.1 Summary

ANTIBODIES are essential to adaptive immunity and represent one of the most

polymorphic proteins found in the human body. This polymorphism provides

the incredible flexibility seen in adaptive immunity and makes antibodies a true ”per-

sonalized proteome”, unique to each individual and adapted to their needs. However,

this diversity also makes studying antibodies difficult. The chapters in this thesis de-

tail efforts to develop generalizable data analysis strategies for studying secreted

antibody repertoires using mass spectrometry.

Chapter 2 is on a distinctive topic, as we highlight the importance of having gen-

eralized computational tools to effectively analyze large and complex cross-linking

proteomic datasets. While crosslinking MS has emerged as an attractive method to

probe protein interactions, the complexity of dealing with protein interactions rather

than individual proteins has resulted in the production of large amounts of data, mak-

ing processing difficult, especially for experiments targeting the whole proteome. To

address this issue, we developed a tool that is interactive and facilitates analysis

and visualization of these large datasets. The tool directly handles the output of

XlinkX for Proteome Discoverer but can also be used with output from other plat-

forms through a user-controllable text-file importer. It comes equipped with a spec-

trum viewer and supports preprocessing of replicate datasets, enabling easy han-

dling of large amounts of data. We have also integrated data from protein databases

Eggnog and Uniprot, which enable integrated gene ontology enrichment analysis,

grouping based on function, and mapping of known post-translational modification

sites, domains, and secondary structures. Another feature is length-based validation

of detected crosslinks by mapping the crosslinked peptides onto validated structural

models of proteins or protein complexes. In situations where no structure is available,

structures obtained by homology modelling can be used. In such cases, crosslinked

peptides are aligned to the homologous sequence to obtain a confident placement
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of the linked residues before the distance between these residues is calculated us-

ing the 3D structure. Crosslinks between two proteins with known structures where

no structure of the complex is available can also be directly submitted to DisVis for

visualization and quantification of the information content of distance restraints.

In Chapter 3, we show how advancements in intact protein mass spectrometry allow

for the detection of IgG1 molecules in human serum with clonal resolution. This en-

abled the construction of personalized IgG1 repertoires. Despite there being an enor-

mous number of theoretically possible clones, the observed antibody repertoires were

relatively simple, with only several hundred clones dominating at any given time point.

Moreover, while the majority of the clones in these profiles were stable over time, we

observed substantial changes in the repertoires following a sepsis episode. We also

demonstrated that a combination of peptide- and protein-centric mass spectrometry

could be employed to de novo sequence individual clones directly from the serum.

The peptide-centric approach provided extensive coverage, while the protein-centric

(fragmentation) approach provided sequence information that is inherently grouped

per clone. The synergy between these techniques was used to sequence a single

highly abundant clone from the sample of one of our donors.

Chapter 4 showcases the potential of antibody repertoire profiling data to compare

and characterize individual donors within a group. We constructed SIgA1 profiles for

a cohort of six lactating women who had received two identical SARS-CoV-2 vaccina-

tions. The resulting profiles complement findings from earlier ELISA-based titer level

analysis of these samples, where a biphasic rise in spike-specific IgA was found. Our

observations indicate the emergence of a heterogeneous polyclonal population of be-

tween 100 and 200 novel clones in all donors after vaccination. This vaccine-induced

population is dominated by a persistent population of clones that appear shortly after

the initial vaccination and persist until at least five days after the second. However,

we also detect a population of clones that emerge more than three days after the
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second vaccination was administered, in every donor. In-depth analysis of a strong

responder, selected by ELISA and confirmed by our data, reveals that the second

rise in spike-specific IgA coincides with an abundant second dose-induced popula-

tion, highlighting the divergent clonal makeup of what initially seemed like a symmet-

rical biphasic response. Additionally, we observed several highly abundant clones

appear and subsequently disappear from the secreted repertoire over the course of

∼40 days, showing that highly abundant clones do not necessarily persist over time.

In Chapter 5, we built further upon the proof of concept for de novo sequencing

of endogenous antibodies by mass spectrometry initially presented in Chapter 3 to

create a more standardized and broadly applicable workflow for sequencing anti-

body chains in mixtures using a combination of peptide- and protein-centric mass

spectrometry. The proposed approach sequences a target chain in a modular, three-

stage process based on germline domains. It starts with sequencing the framework

regions, followed by complementarity determining regions with flanking framework

regions, and ultimately full chain sequences. Through integration of middle-down

fragmentation, we could resolve ambiguity in de novo sequence predictions for the

hypervariable complementarity determining regions. To achieve this, we filtered can-

didate sequences by comparing their theoretical mass to the gap between adjacent

framework regions. We demonstrated the effectiveness of this approach by accu-

rately sequencing a single targeted chain in a pure monoclonal antibody sample, an

equimolar mixture of three monoclonal antibodies, and a polyclonal serum sample.

This approach provides a broadly applicable workflow that could be used in future

studies to sequence complex samples with high accuracy, as well as a step towards

full automation of the process.
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6.2 Perspective and Outlook

Recent work by Wolf et al. (1) demonstrated that an individual’s antibody titers are

a poor marker of the frequency of memory B cells generated following SARS-CoV-2,

seasonal influenza, or EBV infection. If assessing humoral immunity through poly-

clonal antibody titers does not reflect an individual’s ability to mount an antibody re-

sponse, we need to find additional ways to determine an individual’s level of protec-

tion. The research presented in this thesis describes a promising new strategy to

achieve this goal through antibody repertoire characterization by using mass spec-

trometry. By monitoring antibody dynamics at an unprecedented resolution, we can

gain new insights into humoral immune responses by uncovering when, how, and

why specific antibodies are generated in response to physiological events. Coupled

with targeted sequencing of endogenous antibodies by MS, this approach holds ex-

citing potential for drug discovery as integration of these techniques into therapeutic

development pipelines could lead to significant advancements in the field. More-

over, large scale profiling of endogenous secreted antibody repertoires may lead to

the definition of immune signatures for use in disease risk assessment, diagnostic

classification, or measuring treatment effectiveness.

6.2.1 The importance of standardized tools

The advancements made over the last decade in MS-based antibody sequencing

provide an optimistic outlook for the future. I expect that a therapeutic antibody dis-

covered by MS could be right around the corner. Looking back at the timeline of key

developments in the field of antibody sequencing, we can notice several clear trends

(Figure 1). Since the 1960s, rudimentary sample preparation for antibodies was

available, but practical methods of obtaining sequence information appeared only in

1993, when Sanger sequencing was first applied to B cells. The first therapeutic an-

tibody was registered in 1986, and this advent launched large-scale development of
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mAbs, with a hundred mAbs registered by 2008 (2). At that point, next-generation

sequencing led to high-throughput sequencing workflows and further facilitated the

lead-finding and development of therapeutic antibodies. Over the last 20 years, the

rapid expansion of genome-based sequencing techniques kick-started antibody dis-

covery by allowing large-scale BCR sequencing, and the number of deposited anti-

body sequences and registered antibody therapeutics has been growing exponen-

tially ever since, with the 100th therapeutic mAb being approved by the United States

Food and Drug Administration (FDA) in 2021 (3). Observing this trend, the popular-

ization of MS-based proteomics has now spurred the development of platforms for

de novo sequencing of antibodies heavily supported by MS, and I envision that the

ongoing advancement of MS based antibody profiling and de novo sequencing will

complement available strategies by protein-level analysis. More specifically, mon-

itoring of antibody repertoires could be used to select a limited number of reactive

antibodies from a patient with an effective immune response, which could then be

sequenced, recombinantly produced and screened for neutralizing capacity. Such

a direct approach to antibody discovery would be much more straightforward than

screening of B-cells at the DNA/RNA level. The impact of accessible, standardized,

high throughput analytical methods, can be observed in the discovery of genomic

and proteomic biomarkers as well (4, 5). As standardized, high-throughput genomic

and proteomic techniques became widely accessible, the number of genomic and

proteomic biomarkers for disease risk assessment, early diagnosis, diagnostic clas-

sification andmeasuring treatment effectiveness rose drastically. I believe the current

advances in immune response characterization could represent a similar opportunity,

as large-scale, in-depth characterization of proteomic antibody repertoires may lead

to the discovery of defined immune signatures that could be used as immunological

biomarkers in very similar ways.
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Figure 1: Timeline of key developments paving the way towards MS-based de novo sequencing of
serum antibodies. Blue: Key developments in the field of genomic sequencing. Green: Key advances
in the field of antibody research. Orange: Selected hallmark papers in the field of MS-based antibody
sequencing. To visualize the impact of therapeutic antibody development, the bar graph indicates the
cumulative number of registered antibody-based drugs, and the line shows the number of registrations for
a given year (2).

6.2.2 Challenges

Larger sample size needed

However, several challengesmust be overcome before we can realize these goals. At

the present time, there is, at the protein level, simply not enough antibody repertoire

data to draw generalizable conclusions about antibody repertoire dynamics. While

we clearly observe drastic changes in the clonal abundance profiles in response to

disease and vaccination, the significance of these clones in relation to the antigen

is not yet immediately apparent. The fact that these repertoires are unique to each

donor means we cannot simply compare the clonal repertoires of donors to screen for

antibodies of interest, which, combined with the complex and heterogenous nature of

these responses, makes finding patterns extremely challenging. Larger cohorts will

need to be studied, and the obtained longitudinal antibody repertoires should be cor-

related to established techniques. Existing techniques like ELISA, BCR sequencing
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and neutralization assays will be well complemented by the detailed characterization

of the antibody repertoire. B cell receptor sequencing data could be used to deter-

mine the genetic and cellular origin of circulating clones, shedding light on whether

novel clones are the result of somatic hypermutation or if they are the result of a

completely new recombination of variable, diversity and joining (VDJ) gene recombi-

nation. Neutralization and binding assays could be used to determine exactly when

an effective response emerges which can then be related to changes in the clonal

profile. Such information on (individual) Fabs and the B-cells which produce them

could be useful in studying the personalized nature of immune responses. As we

increasingly correlate other assays to LC-MS Fab profiling data, we may also be able

to distill a set of features common to effective neutralizing antibodies.

Dealing with other isotypes and subclasses of antibodies

A complete characterization of the antibody repertoire also requires including more

antibody isotypes and subclasses, such as IgG1-4, IgA1-2, IgM, IgD, and IgE, as they

each exhibit a specific tissue distribution and effectiveness against certain pathogens.

Upon encountering antigens, B cells produce specific immunoglobulin isotypes and

subclasses, depending on the antigen type and entry mode. In humans, IgG1 and

IgG3 are effective against viruses, IgG2 against encapsulated bacteria, IgG4 and IgE

against large extracellular parasites, and IgA1 and IgA2 against pathogenic bacteria

at mucosal sites (6, 7). As these subclasses target different antigens, it follows that

their fab repertoires would not completely overlap. However, while differences be-

tween antibody isotypes and subclasses have been described extensively, compar-

atively little is known about their Fab repertoires. By comparing these repertoires we

may gain a better understanding of the interplay between them. The current Fab pro-

filing methodologies for antibody characterization by mass spectrometry are focused

on the two most abundant subclasses in humans, IgG1 and IgA1, as they require

highly specific Fab-cleaving proteases that are only available for these subclasses.
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However, with the increasing demand for proteomic antibody characterization, it is

likely that additional proteases will be developed, enabling the study of Fab reper-

toires of less abundant immunoglobulin isotypes and subclasses, thereby leading to

a more complete understanding of the humoral immune response.

Dealing with low-abundant clones

A deep characterization of the proteomic antibody repertoire would also be highly de-

sirable, as long lived, protective clones may not be among the most abundant fraction

of the repertoire. While the observed proteomic repertoires were simple, consisting

of 50-500 clones and dominated by a few abundant clones, the dynamic range of

these secreted antibodies was wide and there may still be low abundant clones at

concentrations below the current limit of detection. This is compounded by the fact

that obtaining accurate uncharged, deisotoped masses for intact proteins (i.e. de-

convolution) is an incredibly challenging task, particularly for low abundant species

in complex samples. As we identify clones by mass and retention time, inconsistent

mass determination impedes our ability to perform longitudinal tracking of clones in

question and can lead to an underestimation of clonal longevity and an inability to

deconvolute the LC-MS signal of a clone to an “antibody-like” Fab mass (i.e., a mass

of 45-53 kDa) will result in failure to identify said clone. Similarly, a robust chromatog-

raphy setup is required to prevent shifts in retention time due to an unstable system.

Clonal lineage analysis and profiling MS

Outside of experimental variation or artefacts of spectral processing, antibodies are

highly polymorphic species and as such are subject to constant mutations which al-

most certainly lead to significant mass- and retention time shifts. Mutated clones

would therefore show up as novel species in the antibody repertoire. While the ability

to distinguish between these clones makes our analysis powerful, it also means that

195



6

Chapter 6

we are unable to identify clones with a shared clonal ancestor. While such clonal

lineage analysis should in theory be greatly facilitated by referring detected masses

to BCR-sequencing data, we have only observed a very small overlap between these

two data streams. This apparent disjoint between the genomic or transcriptomic BCR

sequences and proteomic data suggests that we are still missing a piece of the puz-

zle. A possible explanation lies in the sampling of the sequenced B cells. The most

commonly used source of B cells for BCR sequencing is peripheral blood mononu-

clear cells, which only represent about 2% of the total B cell population (8).

The need for full sequencing

While limited sequence information, in the form of sequence tags for example (9),

can be used to reject the possibility of a shared clonal lineage, complete certainty

requires full knowledge of the protein sequence of two clones. Unfortunately, in the

current stage of implementation, de novo sequencing of antibodies is not suitable

for such analysis or at least not at a significant scale, as it is still a highly challeng-

ing task which requires manual curation by experts to derive the correct sequence.

This manual curation is not only time-consuming, but also makes the process subject

to interpretation errors when compared to more established sequencing techniques

such as next generation DNA/RNA sequencing. As such, the need for automation is

high, to improve not only the throughput but also the reproducibility and robustness.

Sequencing-specific challenges

Several challenges need to be overcome to achieve automated sequencing of abun-

dant clones in polyclonal mixtures. Similar to deconvolution of intact mass spectra

(MS1), accurate and consistent deconvolution of fragmentation spectra (MS2) is im-

mensely challenging, doubly so as signal intensity is split across multiple fragments.

Low abundant fragments are difficulty to acquire, and fragment coverage (i.e. the
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fraction of amide bonds that have one or more matching fragment mass in the spec-

trum) is typically limited (10). Peptide-centric analysis are hindered by the presence

of other clones with homologous sequences, short peptide length and low depth

of coverage, which make read assembly exceptionally challenging. Nevertheless,

leveraging the synergy between the peptide- and protein-centric MS, as well as the

available germline sequences has made sequencing of abundant clones in serum

possible, and the generalizable workflow presented in this thesis can be used as a

steppingstone towards full automation.

Factors impacting sequencing strategies

As antibody samples can be incredibly diverse, a big challenge for a robust antibody

sequencing workflow is keeping the workflow broadly applicable. The optimal strat-

egy for a sequencing experiment depends on many factors: How many other clones

are in the sample? Are these other clones relatively abundant compared to your

target clone? Are specific proteases available to facilitate middle down analysis?

How much sample is available? Are there coeluting clones? Is there the possibil-

ity for affinity purification or fractionation prior to sequencing? How divergent is the

clone from the germline sequence? How good is bottom-up coverage? How good

is top-down coverage? Many of these questions cannot be answered before starting

the experiment or require additional experiments and therefore time, resources, and

sample. While this may seem like a negative outlook, it is good to remember that just

a few years ago detection and deconvolution of individual antibody clones in com-

plex samples such as serum seemed practically impossible and sequencing even

more so. The incredible advances in the field of biomolecular mass spectrometry

over the past decades are an indication that there really is no telling how far we can

still improve through incremental improvements, not only to spectral processing and

acquisition but also to downstream processing of the data. In my opinion, the cur-

rent stage of implementation of de novo sequencing of endogenous antibodies has
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only scratched the surface of the possibilities, and there is a litany of opportunities

to improve data analysis, instrumentation and protocol adaptations that are readily

available.

Protein centric improvements

Nano-flow LC-MS can reduce sample requirements up to 100x, making it possible

to acquire more middle down fragmentation data using the same sample. However,

these systems are less robust than the high-flow systems used in our current ex-

perimental protocol (11, 12). Parallel acquisition strategies as seen in several 2D-

MS techniques could be used to boost signal intensity (13–15), and super resolution

methods could provide greater resolving power (16). Improving precursor selection

for fragmentation either by implementing some form of real-time processing (17) or

providing an inclusion list of target precursors based on a separate full MS spec-

trum of the same sample. Additionally, while the current generalized implementation

uses fragmented reduced antibody chains, fragmentation of intact Fabs through ECD

can yield highly complementary fragments which could be beneficial to the sequenc-

ing process (18). Furthermore, additional fragmentation methods could be used to

increase sequence coverage, as different fragmentation methods will preferentially

fragment different backbone positions (19, 20). We have also landed on the Xtract

and Respect deconvolution algorithms as our deconvolution method of choice, but

there are alternatives out there. One drawback of our current methodology is that it

is restricted to deconvolution of scans from a single raw file and does not allow for

manual selection of MS2 scans to average for deconvolution, instead only supporting

averaging scans over a selected retention time window. Ms_deisotope (21) is one

such alternative that could be explored.
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Peptide centric improvements

Our peptide centric efforts have been centered around using the de novo read as-

sembly tool stitch (22), combined with PEAKS de novo sequencing suite (23), both

of which are under continued development along, as are de novo peptide sequenc-

ing algorithms and are thus likely to show improved performance over time. While

the employed peptide-centric experimental strategies are highly optimized through

selection of complementary proteases and defining a robust data acquisition method

(24), we still find ways to improve throughput or performance regularly, for example

through the use of SP3 beads (25), and potential future improvements could include

providing exclusion lists of known constant region peptides.

6.2.3 Conclusion

Thework presented in this thesis emphasizes the need for advanced analytical strate-

gies in studying antibody dynamics and showcases the potential of MS-based pro-

teomics as one such strategy. In doing so, I hope to have made studying these com-

plex molecules less daunting for future researchers by outlining analytical strategies

for untangling them. Historically, the complexity of antibodies has made them difficult

to analyze on a large scale, as they lack the universal protein sequence databases

used in other proteomic studies. However, recent advances in MS-based proteomics

and de novo sequencing have paved the way for their inclusion, as evidenced by the

increasing number of published strategies for proteomic analysis of these repertoires.

Combined with the immunological studies of unparalleled scale that we are seeing

since the SARS-CoV-2 pandemic, the stage now looks to be set for large scale, in

depth, proteomic analysis of endogenous antibody repertoires. The incredible ad-

vances in studying these repertoires in multidisciplinary, collaborative studies has

left me feeling highly optimistic about the future of this field. Through comprehensive

analysis of endogenous antibody repertoires we can gain a deeper understanding of
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the immune responses they are a part of and I believe that mass spectrometry will

play an integral role in untangling these personalized proteomes.
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6.3 Samenvatting

Antilichamen zijn een essentieel onderdeel van ons immuun systeem en behoren tot

de meest polymorfe eiwitten in het menselijk lichaam. Dit polymorfisme zorgt voor

de ongelooflijke flexibiliteit van het verworven immuunsysteem en maakt ons antili-

chamen repertoire tot een ”gepersonaliseerd proteoom”, uniek voor elk individu en

aangepast aan diens behoeften. Deze diversiteit maakt het analyseren van antili-

chamen echter ook zeer uitdagend. De hoofdstukken in dit proefschrift beschrijven

mijn contributies aan het ontwikkelen van generaliseerbare computationale analyse

strategieën voor het bestuderen van antilichaam repertoires met behulp van massa-

spectrometrie.

Hoofdstuk 2 is uniek in dit proefschrift, omdat we het belang benadrukken van al-

gemene computationele hulpmiddelen om grote en complexe crosslinking proteo-

mics datasets effectief te analyseren. Crosslinking MS is een aantrekkelijke me-

thode geworden om eiwitinteracties te onderzoeken, maar levert zeer grote datasets

op, omdat de complexiteit van eiwitinteracties exponentieel stijgt ten opzichte van

individuele eiwitten. Dit heeft geleid tot de productie van grote hoeveelheden com-

plexe datasets waarvan interpretatie moeilijk is, vooral voor experimenten gericht

op het gehele proteoom. Om dit probleem te verhelpen hebben wij een interactief

programma ontwikkeld dat de analyse en visualisatie van deze grote datasets verge-

makkelijkt. Het programma, CrossID, verwerkt de output van XlinkX voor Proteome

Discoverer, maar kan ook worden gebruikt met output van andere platforms door

een flexibele import-module. Het kan spectra annoteren en visualiseren en onder-

steunt de analyse van replicaten, zodat grote hoeveelheden gegevens gemakkelijk

kunnen worden verwerkt. We hebben ook gegevens geïntegreerd uit de Eggnog

en Uniprot databases, die geïntegreerde genontologieverrijkingsanalyse, groepering

op basis van eiwitfunctie, en visualisatie van bekende posttranslationele modificatie-

plaatsen, domeinen en secundaire structuren mogelijk maken. Een andere functie
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is validatie van gedetecteerde crosslinks middels hun lengte door het plaatsen van

de gecrosslinkede peptiden op gevalideerde structurele modellen van eiwitten of ei-

witcomplexen. In situaties waarin geen structuur beschikbaar is, kunnen structuren

verkregen door homologiemodellering worden gebruikt. In dergelijke gevallen wor-

den gecrosslinkede peptiden met behulp van sequentiealignering (Engels: sequence

alignment) geplaatst op de homologe sequentie om een betrouwbare plaatsing van

de gekoppelde residuen te verkrijgen waarna de afstand tussen deze residuen wordt

berekend aan de hand van de 3D-structuur. Crosslinks tussen twee eiwitten met be-

kende structuren waar geen structuur van het complex beschikbaar is kunnen ook

direct worden ingediend bij DisVis voor visualisatie en kwantificering van de informa-

tie in de crosslinks. Hierbij worden de crosslinks, en het feit dat deze een bekende

min- en maximum lengte hebben, gebruikt om een structuur te genereren die zo goed

mogelijk overeenkomt met de crosslinking data.

In hoofdstuk 3 laten we zien dat ontwikkelingen in eiwitmassaspectrometrie de de-

tectie van individuele IgG1-moleculen in menselijk serummogelijk maakt, met klonale

resolutie. Dit stelde ons in staat om gepersonaliseerde klonale IgG1-repertoires te

construeren. Deze serologische repertoires werden gedomineerd door enkele hon-

derden klonen, een onverwachts laag aantal wanneer het enorme aantal theoretisch

mogelijke klonen in acht wordt genomen. Bovendien waren deze profielen groten-

deels stabiel: Het merendeel van de gedetecteerde klonen was langdurig aanwezig.

We zagen echter ook aanzienlijke veranderingen in de repertoires na een sepsis-

episode. Tevens hebben we aangetoond dat een combinatie van peptide- en eiwit-

gerichte massaspectrometrie kan worden gebruikt om de sequentie van individuele

klonen uit het serum de novo te bepalen. De peptide-centrische benadering levert

hierbij een uitgebreide dekking op, terwijl de eiwit-centrische benadering sequentie-

informatie oplevert die per definitie gegroepeerd is per kloon. De synergie tussen

deze technieken werd gebruikt om de sequentie van een enkele zeer abundante
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kloon uit het serum van een van onze donoren te bepalen.

Hoofdstuk 4 beschrijft hoewij de antilichaam repertoire-profileringstechniek uit Hoofd-

stuk 3 gebruikt hebben om individuele donoren binnen een groep te vergelijken en

te karakteriseren. We hebben SIgA1-profielen samengesteld voor moedermelk van

een cohort van zes moeders, die twee identieke SARS-CoV-2 vaccinaties hadden

ontvangen. De betreffende profielen vormden een aanvulling op bevindingen van

eerdere ELISA-gebaseerde analyse van deze monsters, waarbij een bifasische stij-

ging van spike-specifiek IgA werd gevonden. In alle donoren detecteerden wij een

heterogene polyklonale populatie van tussen de 100 en 200 klonen die na vaccinatie

onstonden. Deze populatie werd gedomineerd door populatie van persistente klonen

die kort na de eerste vaccinatie verschijnt en blijft bestaan tot ten minste vijf dagen

na de tweede vaccinatie. Wij observeerden bij elke donor ook een populatie klonen

die pas meer dan drie dagen na de tweede vaccinatie ontstaan. Diepgaande analyse

van een sterke responder, geselecteerd door ELISA en bevestigd door onze analyse,

toonde aan dat de tweede stijging van spike-specifiek IgA van deze donor werd ge-

dreven door een zeer abundante populatie van door de tweede dosis geïnduceerde

klonen, wat de uiteenlopende klonale samenstelling benadrukt van wat aanvanke-

lijk leek op een symmetrische bifasische respons. Bovendien zagen we enkele zeer

abundante klonen verschijnen en vervolgens verdwijnen uit het repertoire in een pe-

riode van ∼40 dagen, waaruit blijkt dat zeer overvloedige klonen niet noodzakelijk

langdurig dominant blijven.

In hoofdstuk 5 bouwen we op in hoofdstuk 3 gelegde funderingen voor antilichaam-

sequentiebepaling, door eenmeer gestandaardiseerde en algemeen toepasbare com-

putationele workflow te creëren voor de de novo sequentiebepaling van antilichaam-

ketens in mengsels met behulp van een combinatie van peptide- en eiwitgerichte

massaspectrometrie. Onze aanpak bepaalt de sequentie van een geselecteerde ei-

witketen in een modulair, drieledig proces op basis van sequentiedomeinen. We
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beginnen met het bepalen van de sequentie van de geconserveerde domeinen, de

zogeheten “framework” regios. Vervolgens bepalen we de sequentie van de com-

plementariteitsbepalende regios en de aangrenzende framework regios, voordat we

uiteindelijk de sequentie van de volledige eiwitketen bepalen. Door het gebruik van

middle-down fragmentatie konden we de ambiguïteit in de hypervariabele comple-

mentariteitsbepalende regios oplossen. Daartoe filterden wij kandidaat-sequenties

door hun theoretische massa te vergelijken met het “gat” tussen de aangrenzende

framework regios. We hebben de effectiviteit van deze aanpak aangetoond door de

sequentie van een antilichaamketen te bepalen in drie monsters: Een zuiver mo-

noklonaal antilichaammonster, een equimolair mengsel van drie monoklonale antili-

chamen en een polyklonaal serummonster. Deze aanpak biedt een generaliseerbare

workflow die in toekomstige studies kan worden gebruikt om complexe monsters met

hoge nauwkeurigheid te sequencen en brengt ons dichter bij volledige automatise-

ring van dit proces.
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7.1 Curriculum vitae

I was born on the 11th of September 1991 in Utrecht, the Netherlands. After finish-

ing high school in 2012, I started my Bachelor studies in Pharmaceutical Sciences in

Utrecht in 2012. During my bachelors I focussed on medicinal and organic chemistry,

developing a strong interest in chemical interventions on the biological processes of

our body. The completion of my studies was marked by writing my Bachelor the-

sis entitled “Explorative synthesis toward an asymmetrically protected entero-bactin

derivative suitable for conjugation using CuAAC”, which I conducted in the research

group of Prof. dr. Roland Pieters (Utrecht University), but also by the realisation that

I did not want to perform experiments, but rather focus my efforts on the computa-

tional front. In 2016, started my Master studies in drug innovation, with a bioinformat-

ics course load. My first computational research project was at the Computational

Structural Biology lab of Prof. Dr. Alexandre Bonvin, and involved protein-protein

docking. Continuing along this line of structural biology, I then joined the biomolec-

ular mass spectrometry group under the supervision of my current copromotor, Dr.

Richard Scheltema, but now using proteomic crosslinking MS data. I truly found my

passion in mass spectrometry. The simultaneous simplicity and versatility of ”molec-

ular scales” as my copromotor Richard so aptly puts it, being applied to yield rich data

and achieve so many different goals continues to amaze me. I decided to stay with

the group to write a research project, which ended up being the subject of my PhD

under the supervision of Prof. dr. Albert Heck and Dr. Richard Scheltema in 2019,

after a brief stint of travelling and work at a startup at the Delft University of Technol-

ogy. Leveraging the computational skills I had acquired, we set out to achieve what

then seemed like a herculean task, sequencing endogenous antibodies. However,

as presented throughout this thesis, we managed to not only achieve this but pave

the way towards a more generalizable workflow.
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