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A B S T R A C T

We study metastability in a three-state lattice spin system in presence of zero-boundary condition, which is a
relevant choice from the point of view of applications, since it mimics the presence of defects in the system.
This problem is studied in the framework of the stochastic Blume–Capel model with Glauber dynamics and
it is proven that the presence of zero-boundary conditions changes drastically the metastability scenarios. In
particular we show that, depending on the parameters of the model, the stable phase nucleation can be either
homogeneous or heterogeneous. Notably, heterogeneous nucleation is proved in the region of the parameter
space where the chemical potential is larger than the external magnetic field.
1. Introduction

We study the metastable behavior of the stochastic Blume–Capel
model [1,2] under the Glauber dynamics with zero-boundary condi-
tions.

This model represents, together with the Potts model, a paradig-
matic example of multi-state spin systems and a natural generalization
of the two-state Ising model. Moreover, it has been considered in the
literature for several applications in different fields. It was originally
introduced to study the 3He-4He transition, but, thanks to the richness
of its behaviors, in more recent years it has been exploited to address
several problems, such as the spinodal decomposition in presence of
solvent [3,4], with potential application to solar cell technologies, and
to biological systems, for instance, the study of the ground states of
DNA molecule [5].

In the framework of the spinodal decomposition problem the
Blume–Capel model has shown its ability to describe the formation
of patterns of three different phases. This is achieved essentially by a
sudden quench to a subcritical temperature of an infinite temperature
state, namely, a completely randomly chosen configuration. In this
paper we shall analyze the behavior of the model in a completely
different regime, indeed the low temperature and the presence of an
external field will ensure the existence of a unique equilibrium state
and we shall describe how the system, starting from a non-equilibrium
metastable state, will perform the transition to the stable one via the
nucleation of a critical droplet, achieved by means of a long series
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of random fluctuations. In particular, we shall study the effect of the
boundary conditions on this nucleation process.

As we shall discuss below, the Blume–Capel model, in this
metastable regime, shows an amazing variety of nucleation processes
that might inspire future generalizations to more mathematically treat-
able complex model, closer to the Cellular Potts Model [6,7]. The
Cellular Potts Models (CPM) represent indeed a popular and successful
method for modeling collective cell behavior during tumor development :
e.g., cell sorting, gastrulation, or angiogenesis. This dynamics presents
different time scales and, in some regions of the parameter space,
metastability shows up.

The metastable behavior of the Blume–Capel model has been firstly
rigorously studied in [8] in finite volume in the limit of temperature
tending to zero. In that paper the parameters have been chosen so that
the metastable state is unique. The same regime is studied in [9–11],
where the parameters are chosen in such a way that the model has two
non-degenerate in energy metastable states [12]. The infinite volume
regime was considered in [13,14]. The study of the metastability for
three different types of spins, −1, 0,+1 has similarities with the two
types of particles 1, 2 and the empty space (0) in [15], where the authors
study the evolution of the system under Kawasaki dynamics.

We recall, also, that the metastable behavior of the Blume–Capel
model has been studied at finite temperature via non-rigorous methods,
such as the transfer–matrix method and the Monte Carlo simulations,
in several papers, see, for instance, the classical Ref. [16] and the
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more recent [17] where the anisotropic case has been approached. We
mention, also, the useful review [18] for a complete report on the
numerical approaches to metastable states.

Metastability is a widely studied phenomenon that has been inves-
tigated on mathematical grounds over the last fifty years from different
points of view and with several approaches. We will use, here, the
so-called pathwise approach, originally proposed in [19] and then de-
veloped in several more recent studies [20–23]. This method provides
a standard way of characterizing metastable states and a technique to
compute their exit time and to describe the typical exit trajectories.

Two other approaches to the rigorous mathematical description of
metastability have been developed in recent decades, the potential-
theoretic approach [24–26] and the trace method [27].

The study of metastability is typically carried out for periodic
boundary conditions; indeed, these are a rather natural setting in this
context. In particular periodic boundary condition have been consid-
ered in all the above mentioned studies of the Blume–Capel model. In
the present paper we will consider the case of zero-boundary condition,
which is particularly important from the point of view of applica-
tions, because non-periodic boundary conditions mimic the presence
of defects or boundaries in the system.

In the presence of defects (or boundaries), the nucleus of the new
phase forms in contact with the impurities (or boundaries), so that
the properties of the impurities control the nucleation rate. Indeed,
the nucleation starts at phase boundaries or impurities, since at these
sites the free energy barrier is lower, and the nucleation is facilitated.
Therefore, the nucleation observed in practice is usually catalyzed and
it is called heterogeneous nucleation: see for instance [28,29] for the
crystallization case, and [30] for the condensation.

In order to understand the general mechanisms triggering the het-
erogeneous nucleation, Monte Carlo simulations for simple toy models
(e.g., Ising and lattice gas models) are often used, see [31]. For instance,
in [32] Monte Carlo simulations for two-dimensional Ising models
are used to study the role of pores on the surface in the nucleation
process. The simulations show that the nucleation occurring at pores
has a nucleation rate that is of orders of magnitude higher than that
starting on flat surfaces. This behavior is very common for porous
materials, which in fact often exhibit the well-known phenomenon of
capillary condensation, i.e., the condensation of liquid bridges in the
pores, see [33].

Simulations of two dimensional Ising model have also been used to
study the role of microscopic impurities (i.e., sites with fixed spins) in
the bulk [34]: the heterogeneous nucleation, starting from a single fixed
spin, is more than four orders of magnitude faster than homogeneous
nucleation. Therefore, small microscopic impurities strongly promote
nucleation, making it very difficult to purify a sample sufficiently in
order to observe homogeneous nucleation. The same conclusions are
also obtained as well for the two-dimensional Potts model [35] with
competitive nucleating phases.

Heterogeneous nucleation also plays a pivotal role in the process
of crystallization of proteins on surfaces (see [36]): by tuning the ge-
ometrical properties of the surface (porosity, pore size, roughness),
heterogeneous nucleation can be activated, enhancing the probability
of obtaining crystals of appropriate size. The paper [37] uses a two-
dimensional Ising model to show the dependence of the nucleation
rate on the polymeric surfaces used as substrate for heterogeneous
nucleation. Indeed, Different rough surfaces are modeled with different
profiles of fixed spins at the boundaries.

The effect of the boundary conditions on the metastable behavior
has been rigorously studied in [38] in the framework of the Ising model;
there the free boundary condition case was considered. The authors
proved that the main features characterizing the metastable behavior in
the case of periodic boundary conditions remain unchanged. However,
some new effects appear: the main difference with the periodic case is
that the nucleation phenomenon is no more spatially homogeneous, in
2

the sense that the critical droplet, that must be formed to nucleate the n
stable state, necessarily occurs at one of the four corners of the lattice.
Other details, such as the size of the critical droplet, are different and
hence the exponential estimate of the exit time.

In this paper we will show that, due to the three-state character
of the Blume–Capel model, the metastability scenario proven for peri-
odic boundary conditions [8] changes deeply when different boundary
conditions are considered.

The Hamiltonian of the Blume–Capel model depends on two pa-
rameters, the magnetic field ℎ and the chemical potential 𝜆. The spin
variables can take three values, −1, 0, and +1. We limit our discussion
to the case 𝜆, ℎ > 0, where the chemical potential term favors minus
and plus spins equally with respect to the zeros and the magnetic field
favors pluses and disadvantages minuses with respect to the zeros.
In this parameter region, in the periodic case, the following result
was proved in [8] (see Fig. 1 for a schematic description): the stable
state is the homogeneous plus state and the metastable state is the
homogeneous minus state. Furthermore, for ℎ > 2𝜆 the system exits
the metastable state by forming a zeros square droplet and reaches the
homogeneous zero state. Then, at a random time the transition from
the zero state to the stable state is realized via the formation of a plus
square droplet. For 2𝜆 > ℎ the system exits the metastable state by
forming a plus square droplet separated from the sea of minuses by a
layer of zeros of width one (with minus at the corners in the case 𝜆 > ℎ).
In this way the stable state is reached directly.

This scenario changes drastically when zero-boundary conditions
are considered: for ℎ > 𝜆 the metastable state is the homogeneous zero
state and the plus stable state is reached via the formation of a plus
square droplet at any point in the lattice. For 𝜆 > ℎ, on the other hand,
the situation is similar to the periodic boundary condition case, but,
starting from the minus metastable state, the stable phase is nucleated
at one of the four corners of the lattice via the formation of a plus
square droplet separated from the sea of minus by a one site zero layer.
Thus, the nucleation is spatially homogeneous for ℎ > 𝜆 and spatially
non-homogeneous for 𝜆 > ℎ. This scenario is rigorously proven in the
𝜆 > ℎ > 𝜆∕2 region of the parameter plane.

The paper is organized as follows. In Section 2 we introduce the
model and discuss some preliminary properties. In Section 3.1 we
present the heuristic study of the metastable behavior of the model in
the parameter region ℎ, 𝜆 > 0 and in Section 3.2 we state our rigorous
results for the restricted region 𝜆 > ℎ > 𝜆∕2. Section 4 is devoted to
the proof of the results given in Sections 2 and 3.2. Our conclusions
are summarized in Section 5. The proofs of the technical lemmas are
reported in Appendix.

2. Model and definitions

In this section we define the model and we give some definitions
and preliminary results. Proofs are postponed to Section 4.

2.1. The lattice

We consider the set Z2 embedded in R2 and call sites its elements.
iven two sites 𝑖, 𝑖′ ∈ Z2 we let |𝑖 − 𝑖′| be their Euclidean distance.
iven 𝑖 ∈ Z2, we say that 𝑖′ ∈ Z2 is a nearest neighbor of 𝑖 if and only if
𝑖 − 𝑖′| = 1. Pairs of neighboring sites will be called bonds. A set 𝐼 ⊂ Z2

s connected if and only if for any 𝑖 ≠ 𝑖′ ∈ 𝐼 there exists a sequence
1, 𝑖2,… , 𝑖𝑛 of sites of 𝐼 such that 𝑖1 = 𝑖, 𝑖𝑛 = 𝑖′, and 𝑖𝑘 and 𝑖𝑘+1 are

nearest neighbors for any 𝑘 = 1,… , 𝑛 − 1.
A column, resp. a row, of Z2 is a sequence of 𝐿 connected sites

of 𝛬 such that the line joining them is parallel to the vertical, resp.
horizontal, axis.

Given 𝐼 ⊂ Z2 we call internal boundary 𝜕−𝐼 of 𝐼 the set of sites in
having a nearest neighbor outside 𝐼 . The bulk of 𝐼 is the set 𝐼 ⧵ 𝜕−𝐼 ,

amely, the set of sites of 𝐼 having four nearest neighbors in 𝐼 . We call
xternal boundary 𝜕+𝐼 of 𝐼 the set of sites in Z2 ⧵ 𝐼 having a nearest

eighbor in 𝐼 .
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A set 𝑅 ⊂ Z2 is called a rectangle (resp. square) if the union of
the closed unit squares of R2 centered in the sites of 𝑅 with sides
parallel to the axes of Z2 is a rectangle (resp. a square) of R2. The sides
of a rectangle are the four maximal connected subsets of its internal
boundary (note that they lie on straight lines parallel to the axes of Z2).
The length of one side of a rectangle is the number of sites belonging
to the side itself. A quasi-square is a rectangle with side lengths equal
to 𝑛 and 𝑛 + 1, with 𝑛 an integer greater than or equal to one.

For any set 𝐼 ⊂ Z2 we call rectangular envelope of 𝐼 the smallest (with
respect to inclusion) rectangle 𝑅 ⊂ Z2 such that 𝐼 ⊂ 𝑅. Two rectangles
of Z2 are called interacting if their mutual distance is smaller than or
equal to 2, that is to say, either their intersection is not empty or there
exist two neighboring sites belonging one to the first rectangle and the
other one to the second rectangle or there exists a site not belonging to
them at distance one from both. Given a finite set 𝐼 ⊂ Z2, the bootstrap
construction associates to 𝐼 a collection of not interacting rectangles
through the following sequence of operations: (i) partition 𝐼 in maximal
connected subsets. (ii) Consider the family of rectangles obtained by
collecting the rectangular envelope of each maximal connected subset
of 𝐼 . (iii) Partition the family of rectangles in maximal sequences of
pairwise interacting rectangles. (iv) Consider a new family of rectangles
obtained by collecting the rectangular envelope of the union of the
rectangles of each of the maximal sequences constructed at point (iii).
(v) Repeat the operations (iii) and (iv) until the family of rectangles
constructed at point (iv) is made of pairwise not interacting rectangles.

2.2. The Blume–Capel model

Consider the square 𝛬 = {1,… , 𝐿}2 ⊂ Z2. Let {−1, 0,+1} be the
single spin state space and  ∶= {−1, 0,+1}𝛬 be the configuration or state
space. With −1−1−1, 000, +1+1+1 we denote the homogeneous configurations in
which all the spins are equal to −1, 0, and +1, respectively. Let 𝜂 ∈ 
and 𝐴 ⊆ 𝛬, we denote by 𝜂𝐴 the restricted configuration of 𝜂 on the subset
𝐴. We say that two configurations 𝜎 and 𝜂 are communicating, and we
write 𝜎 ∼ 𝜂, if and only if they differ at most for the value of a spin.

The Hamiltonian of the model1 is

𝐻(𝜂) = 𝐽
2

∑

𝑖,𝑗∈𝛬∶
|𝑖−𝑗|=1

[𝜂(𝑖) − 𝜂(𝑗)]2 + 𝐽
∑

𝑖∈𝜕−𝛬

∑

𝑗∈Z2⧵𝛬∶
|𝑖−𝑗|=1

[𝜂(𝑖)]2

−𝜆
∑

𝑖∈𝛬
[𝜂(𝑖)]2 − ℎ

∑

𝑖∈𝛬
𝜂(𝑖)

(2.1)

for any 𝜂 ∈  , where 𝐽 > 0 is called the coupling constant, 𝜆, ℎ ∈ R
are called chemical potential and magnetic field respectively. The first
term at the right-hand side of (2.1) will be called internal interaction
term, the second term boundary interaction term, and the last two will
be called site terms. We stress that the second term accounts for the
interaction between the spins at the sites of the internal boundary of

1 As mentioned in the Introduction, the Blume–Capel model has several
hysical applications. In this context its Hamiltonian is usually written in

slightly different way. For instance, in the case of periodic boundary
onditions, following [16], we could write
̄ (𝜂) = −𝐽

∑

⟨𝑖,𝑗⟩
𝜂(𝑖)𝜂(𝑗) + �̄�

∑

𝑖∈𝛬
[𝜂(𝑖)]2 − ℎ̄

∑

𝑖∈𝛬
𝜂(𝑖),

where the sum in the interaction term is extend to the 2|𝛬| not oriented pairs of
nearest neighbors. Now, starting from the periodic boundary condition version
of the hamiltonian (2.1), namely,

𝐻(𝜂) = −𝐽
∑

⟨𝑖,𝑗⟩
[𝜂(𝑖) − 𝜂(𝑗)] − 𝜆

∑

𝑖∈𝛬
[𝜂(𝑖)]2 − ℎ

∑

𝑖∈𝛬
𝜂(𝑖),

a straightforward computation yields

𝐻(𝜂) = −2𝐽
∑

⟨𝑖,𝑗⟩
𝜂(𝑖)𝜂(𝑗) − (𝜆 − 4𝐽 )

∑

𝑖∈𝛬
[𝜂(𝑖)]2 − ℎ

∑

𝑖∈𝛬
𝜂(𝑖).

Thus, the two functions 𝐻 and �̄� coincide provided 𝐽 = 2𝐽 , �̄� = −(𝜆 − 4𝐽 ),
̄

3

and ℎ = ℎ.
Fig. 1. Schematic representation of the behavior of the Blume–Capel model in the
region ℎ, 𝜆 > 0 in the case of periodic boundary condition (top pictures) and in the
case of zero-boundary condition (bottom pictures). Gray for minuses, black for pluses,
and white for zeros.

𝛬 and the zero external boundary conditions: each site of the internal
boundary contributes with one single bond, excepted for the four sites
at the corners of 𝛬, which contributes with two bonds each. We will
refer to 𝐻(𝜂) as the energy of the configuration 𝜂.

In order to state our results we will rely on the following assump-
ions on the parameters of the model.2

ondition 1. We assume that the parameters of the model satisfy the
ollowing properties:

1. 𝐽 ≫ 𝜆, ℎ > 0,
2. 𝐿 >

(

2𝐽
|𝜆−ℎ|

)3
,

3. 2𝐽
𝜆+ℎ ,

2𝐽
𝜆−ℎ ,

2𝐽+𝜆−ℎ
𝜆+ℎ , 𝐽+𝜆+ℎ

ℎ are not integers.

Note that the third condition is made so to avoid strong degener-
acy of the critical configurations. Similar assumptions are common in
literature (see, e.g., [39–41]).

The Gibbs measure associated with the Hamiltonian (2.1) is

𝜇𝛽 (𝜂) =
1
𝑍𝛽

exp{−𝛽𝐻(𝜂)}, (2.2)

here 𝑍𝛽 =
∑

𝜂′∈ exp{−𝛽𝐻(𝜂′)} is the partition function and 𝛽 > 0 the
nverse temperature.

The time evolution of the model will be defined by assuming that
pins evolve according to a Glauber dynamics, with the Metropolis
eights. More precisely, we consider the discrete time Markov chain
𝑡 ∈  , with 𝑡 ≥ 0, with transition matrix 𝑝𝛽 defined as follows:
𝛽 (𝜂, 𝜂′) = 0 for 𝜂, 𝜂′ ∈  not communicating configurations,

𝑝𝛽 (𝜂, 𝜂′) =
1

2|𝛬|
𝑒−𝛽[𝐻(𝜂′)−𝐻(𝜂)]+ (2.3)

or 𝜂, 𝜂′ ∈  communicating configuration such that 𝜂 ≠ 𝜂′ (where, for
any real 𝑎, we let [𝑎]+ = 𝑎 if 𝑎 > 0 and 0 if 𝑎 < 0), and

𝑝𝛽 (𝜂, 𝜂) = 1 −
∑

𝜂′≠𝜂
𝑝𝛽 (𝜂, 𝜂′) (2.4)

for any 𝜂 ∈  . The dynamics can be described as follows: at each time a
site is chosen with uniform probability 1∕|𝛬| and a spin value differing
from the one at the chosen site is selected with probability 1∕2, then the

2 With the notation 0 < 𝑎 ≪ 𝑏 we mean 0 < 𝑎 < 𝑐𝑏 for some positive
constant 𝑐 > 1 that we are not interested to compute exactly.
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Table 2.1
Energy difference for a spin flip for all neighbor configurations (opposite sign for
reversed flip). The number of neighbor minuses, zeros, and pluses is reported in the first
three columns and the energy difference in the last three. For flips at the boundary
(resp. corners) see the rows with at least one (resp. two) zero among the nearest
neighbors.

Minuses Zeroes Pluses Minus to zero Minus to plus Zero to plus

4 0 0 4𝐽 + 𝜆 − ℎ 16𝐽 − 2ℎ 12𝐽 − 𝜆 − ℎ
3 1 0 2𝐽 + 𝜆 − ℎ 12𝐽 − 2ℎ 10𝐽 − 𝜆 − ℎ
3 0 1 +𝜆 − ℎ 8𝐽 − 2ℎ 8𝐽 − 𝜆 − ℎ
2 2 0 +𝜆 − ℎ 8𝐽 − 2ℎ 8𝐽 − 𝜆 − ℎ
2 1 1 −2𝐽 + 𝜆 − ℎ 4𝐽 − 2ℎ 6𝐽 − 𝜆 − ℎ
2 0 2 −4𝐽 + 𝜆 − ℎ −2ℎ 4𝐽 − 𝜆 − ℎ
1 3 0 −2𝐽 + 𝜆 − ℎ 4𝐽 − 2ℎ 6𝐽 − 𝜆 − ℎ
1 2 1 −4𝐽 + 𝜆 − ℎ −2ℎ 4𝐽 − 𝜆 − ℎ
1 1 2 −6𝐽 + 𝜆 − ℎ −4𝐽 − 2ℎ 2𝐽 − 𝜆 − ℎ
1 0 3 −8𝐽 + 𝜆 − ℎ −8𝐽 − 2ℎ −𝜆 − ℎ
0 4 0 −4𝐽 + 𝜆 − ℎ −2ℎ 4𝐽 − 𝜆 − ℎ
0 3 1 −6𝐽 + 𝜆 − ℎ −4𝐽 − 2ℎ 2𝐽 − 𝜆 − ℎ
0 2 2 −8𝐽 + 𝜆 − ℎ −8𝐽 − 2ℎ −𝜆 − ℎ
0 1 3 −10𝐽 + 𝜆 − ℎ −12𝐽 − 2ℎ −2𝐽 − 𝜆 − ℎ
0 0 4 −12𝐽 + 𝜆 − ℎ −16𝐽 − 2ℎ −4𝐽 − 𝜆 − ℎ

flip of the spin at the chosen site to the selected spin value is performed
with the Metropolis probability.

The probability measure induced by the Markov chain started at 𝜂
is denoted by 𝑃𝜂 .

Lemma 2.1. The Markov chain defined above is reversible with respect
to the Gibbs measure (2.2), i.e., the detailed balance condition

𝜇𝛽 (𝜂)𝑝𝛽 (𝜂, 𝜂′) = 𝜇𝛽 (𝜂′)𝑝𝛽 (𝜂′, 𝜂) (2.5)

is satisfied for any 𝜂, 𝜂′ ∈  .

2.3. Energy landscape

A crucial ingredient for several results discussed in this section and
in the following ones is the value of the energy difference (energy cost)
ssociated with each possible spin flip.

The energy differences for a spin flip for all neighbor configurations
btained from (2.1) are listed in Table 2.1. Since, as noted above,
he boundary interaction term is equal to the internal interaction with
ixed zero condition in the external boundary, the energy difference
ssociated with possible spin flips at the boundary is given by the rows
f Table 2.1 with at least one zero among the nearest neighbors (at
east two for the flip of a spin at the corners of 𝛬).

As we will see below, the homogeneous states −1−1−1, 000, and +1+1+1 will
play a crucial role in our study. We remark that, from (2.1), it follows

𝐻(±1±1±1) = 4𝐽𝐿 − |𝛬|(𝜆 ± ℎ) and 𝐻(000) = 0. (2.6)

Thus, under the assumptions 1 and 2, the energy hierarchy of the
homogeneous states is

𝐻(+1+1+1) < 𝐻(000) < 𝐻(−1−1−1) for ℎ ≥ 𝜆 (2.7)

and

𝐻(+1+1+1) < 𝐻(−1−1−1) < 𝐻(000) for ℎ < 𝜆. (2.8)

The ground states of the system (or of the Hamiltonian) are the con-
figurations where the Hamiltonian (2.1) attains its absolute minimum.
We let  s be the set of ground states (see, e.g., Fig. 2 for the ground
states in the period boundary condition case).

Lemma 2.2. Under Condition 1 the homogeneous state +1+1+1 is the sole
ground state of the system,3 namely,  s = {+1+1+1}.

3 We note that if the second term at the right-hand side of (2.1) was not
resent, then, both for free and periodic boundary conditions, for 𝜆 > 0, the
4

Fig. 2. The zero-temperature phase diagram in the plane 𝜆−ℎ in the periodic boundary
condition case. The three states 000, −1−1−1, +1+1+1 coexist at the point (0, 0).

We say that a configuration 𝜂 ∈  is a local minimum of the
Hamiltonian if and only if for any 𝜂′ ≠ 𝜂 communicating with 𝜂 we
have 𝐻(𝜂′) > 𝐻(𝜂). Important examples of local minima, in suitable
regions of the parameter plane 𝜆 − ℎ, are the homogeneous states. We
make this remark rigorous in the following lemma.

Lemma 2.3. Assume 1 is satisfied. For ℎ > 𝜆 the homogeneous state 000 is
a local minimum of the Hamiltonian. For ℎ < 𝜆 the homogeneous states 000
and −1−1−1 are local minima of the Hamiltonian.

We stress that for ℎ > 𝜆 the state −1−1−1 is not a local minimum,
indeed, from row 1 in Table 2.1, it follows that the four corner spins
can be flipped to zero by decreasing the energy. Moreover, by repeating
similar flips a downhill path from −1−1−1 to 000 can be constructed.

2.4. Paths, energy costs, metastable states

A sequence of configurations (𝜔1, 𝜔2,… , 𝜔𝑛) ∈ 𝑛 such that 𝜔𝑖 and
𝜔𝑖+1 are communicating for any 𝑖 = 1, 2,… , 𝑛 − 1 is called a path of
length 𝑛. A path (𝜔1,… , 𝜔𝑛) is called downhill (resp. uphill) if and only
if 𝐻(𝜔𝑖) ≥ 𝐻(𝜔𝑖+1) (resp. 𝐻(𝜔𝑖) ≤ 𝐻(𝜔𝑖+1)) for any 𝑖 = 1, 2,… , 𝑛 − 1.
In addition, a path (𝜔1,… , 𝜔𝑛) is called two-steps downhill if and only
if 𝐻(𝜔𝑖) ≥ 𝐻(𝜔𝑖+2) ≥ 𝐻(𝜔𝑖+1) for any 𝑖 = 1, 2,… , 𝑛 − 2. Given two
configurations 𝜂, 𝜂′ ∈  , the set of paths with first configuration 𝜂 and
last configurations 𝜂′ is denoted by 𝛺(𝜂, 𝜂′).

Given a path 𝜔 = (𝜔1,… , 𝜔𝑛), its height 𝛷(𝜔) is the maximal energy
reached by the configurations of the path, more precisely,

𝛷(𝜔) = max
𝑖=1,…,𝑛

𝐻(𝜔𝑖) . (2.9)

iven two configurations 𝜂, 𝜂′, the communication height between 𝜂 and
′ is defined as

(𝜂, 𝜂′) = min
𝜔∈𝛺(𝜂,𝜂′)

𝛷(𝜔) . (2.10)

ny path 𝜔 ∈ 𝛺(𝜂, 𝜂′) such that 𝛷(𝜔) = 𝛷(𝜂, 𝜂′) is called optimal for 𝜂
nd 𝜂′.

The stability level of a configuration 𝜂 ∈  ⧵  s is defined as

𝜂 ∶= 𝛷(𝜎,𝜂) −𝐻(𝜂), (2.11)

ground state would be the plus homogeneous configuration +1+1+1 for ℎ > 0 and
the minus homogeneous configuration −1−1−1 for ℎ < 0. This would follow from
the fact that in these homogeneous states the interaction contribution to the
Hamiltonian is zero and the site contribution is minimal.
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where 𝜎 is the set of configurations with energy strictly lower than
𝐻(𝜂). The maximal stability level is defined as

𝛤m ∶= max
𝜎∈⧵s

𝑉𝜎 . (2.12)

The metastable states are defined as the states, different from the ground
states, such that their stability level is maximum, namely, it is equal to
𝛤m.

Based on Lemma 2.3, at the heuristic level, we can expect that the
homogeneous states −1−1−1 and 000 are potential metastable states in the
region of the parameter plane considered in the lemma.

3. Main results

In this section, we present the main results of the model.
Beforehand, in Section 3.1 we describe the general metastable

behavior in the whole region 0 < ℎ, 𝜆 ≪ 𝐽 using some heuristic ar-
guments. Therefore, in Section 3.2 we state the main results rigorously
in the parameter region 𝜆 > ℎ > 𝜆∕2. Proofs are postponed to Section 4.

3.1. Heuristic discussion

We approach the heuristic study of the Blume–Capel model with
zero-boundary conditions in the whole region 0 < ℎ, 𝜆 ≪ 𝐽 . We will
have to distinguish several subregions where the metastable behavior
will show peculiar features.

This analysis is based on a very simple idea: the homogeneous
states, if local minima of the Hamiltonian, are potential metastable
states of the system. When several possible metastable states are
present, the true one is the one from which the system has to overcome
the largest barrier to reach the stable state. In order to compute such
a barrier we imagine that the transition is realized through a sequence
of local minima in which a droplet of stable phase grows in the sea of
the metastable one.

3.1.1. Region ℎ > 𝜆 > 0
In view of Lemma 2.3 we are interested in the structures that give

rise to local minima with zero background.
From rows 13–15 of Table 2.1 it follows that a configuration in

which the sites with plus spin form a rectangle plunged in the sea of
zeros is a local minimum. We stress that the rectangular plus droplet
can be located at one corner of the lattice 𝛬. We add that if the shape of
the plus region is not a rectangle, then, since there exists at least a zero
with more than two neighboring pluses, from rows 13–15 of Tables 2.1
it follows that the configuration is not a local minimum.

The energy of a square plus droplet of side length 𝓁 plunged in the
sea of zeros with respect to the energy of 000 is 4𝐽𝐿 − (𝜆 + ℎ)𝓁2. Since
its maximum is attained at 2𝐽∕(𝜆 + ℎ), we can infer that this is the
critical length, in the sense that droplets with side length smaller than
2𝐽∕(𝜆 + ℎ) tend to shrink, otherwise they tend to grow. Moreover, we
note that the difference of energy between the critical droplet and the
configuration 000 is 4𝐽 2∕(𝜆 + ℎ).

At the level of our very rough heuristic discussion, we can conclude
that the metastable state is the 000 configuration, the transition to the
stable state is performed via the nucleation of a square droplet of pluses
of side length 2𝐽∕(𝜆 + ℎ) at any site of the lattice 𝛬 (homogeneous
nucleation), and the exit time is of order exp{𝛽4𝐽 2∕(𝜆 + ℎ)}.

3.1.2. Region 𝜆 > ℎ > 0
In view of Lemma 2.3 we are interested in the structures that give

rise to local minima with zero or minus background.
In the case of zero background, the same discussion as in Sec-

tion 3.1.1 suggests that the system can exit the state 000 by overcoming
the energy barrier 4𝐽 2∕(𝜆 + ℎ) and reaching the stable state +1+1+1 via
the formation of a critical square droplet of pluses with side length
2𝐽∕(𝜆+ℎ). But also the possibility that the system abandons 000 reaching
11−1 must be explored: from rows 1, 2, and 4 of Table 2.1 it follows that
5

t

a configuration in which the sites with minus spin form a rectangle
plunged in the sea of zeros is a local minimum. The energy of a
square minus droplet of side length 𝓁 plunged in the sea of zeros with
respect to the energy of 000 is 4𝐽𝐿 − (𝜆 − ℎ)𝓁2. The critical length is
2𝐽∕(𝜆 − ℎ) and the difference of energy between the critical droplet
and the configuration 000 is 4𝐽 2∕(𝜆 − ℎ). Since in this parameter region
4𝐽 2∕(𝜆 + ℎ) < 4𝐽 2∕(𝜆 − ℎ) we can conclude that the system, starting
from 000, will perform a direct transition to the stable state +1+1+1 paying
the energy cost 4𝐽 2∕(𝜆 + ℎ).

For what concerns the minus background case, we note4 that a
ectangle of pluses in the sea of minuses is not a local minimum, since
see row 6 of Table 2.1) the flip to zero of one plus with two pluses
nd two minuses among its neighbors (corner) decreases the energy of
he configuration.

Some relevant structures that are local minima are reported in
ig. 3. To prove that the depicted structures are local minima the reader
an use Table 2.1. The five structures in the figure will be addressed in
he sequel as (a) frame, (b) boundary frame, (c) corner frame, (d) chopped
orner frame, (e) chopped boundary frame.

For each structure we compute its energy with respect to −1−1−1 as
function of the side length 𝓁 of the internal plus square. With an

ntuitive notation we have:

𝛥a(𝓁) = − 2ℎ𝓁2 + 4𝐽𝓁 + 4𝐽 (𝓁 + 2) + 4𝓁(𝜆 − ℎ),

𝛥b(𝓁) = − 2ℎ𝓁2 + 4𝐽𝓁 + 2𝐽 (𝓁 + 2) + (4𝓁 + 2)(𝜆 − ℎ),

𝛥c(𝓁) = − 2ℎ𝓁2 + 4𝐽𝓁 + (4𝓁 + 3)(𝜆 − ℎ),

d(𝓁) = − 2ℎ𝓁2 + 2𝐽𝓁 + 2𝐽 (𝓁 + 1) − 2𝐽 + 2𝓁(𝜆 − ℎ),

𝛥e(𝓁) = − 2ℎ𝓁2 + 3𝐽𝓁 + 𝐽 (3𝓁 + 2) + 3𝓁(𝜆 − ℎ). (3.13)

ow, we note that

𝛥a − 𝛥d =4𝐽𝓁 + 8𝐽 + 2𝓁(𝜆 − ℎ),

b − 𝛥d =2𝐽𝓁 + 4𝐽 + (2𝓁 + 2)(𝜆 − ℎ),

𝛥c − 𝛥d =(2𝓁 + 3)(𝜆 − ℎ),

𝛥e − 𝛥d =2𝐽𝓁 + 2𝐽 + 𝓁(𝜆 − ℎ). (3.14)

ince these differences are all positive, we can conclude that the
echanism providing the transition from −1−1−1 to +1+1+1 is the formation and

rowth of a chopped corner droplet.
The length 𝓁 maximizing the energy (critical length) of such droplet

s [2𝐽 +(𝜆−ℎ)]∕(2ℎ) and the energy of the critical droplet, with respect
o −1−1−1, in the limit 0 < ℎ < 𝜆 ∼ 0 is 2𝐽 2∕ℎ.

At the level of this heuristic analysis, it seems that the mechanism
f the chopped corner frame is the best to perform the transition from
he homogeneous −1−1−1 state to the stable state +1+1+1. This transition is
erformed via the nucleation of a chopped corner frame of internal side
ength [2𝐽 + (𝜆 − ℎ)]∕(2ℎ) (not homogeneous nucleation) and the exit
ime is of order exp{𝛽2𝐽 2∕ℎ}. To establish which, between −1−1−1 and 000, is
he metastable state in the region 0 < ℎ < 𝜆 we note that in this region
f the parameter plane 4𝐽 2∕(𝜆 + ℎ) < 2𝐽 2∕ℎ and, so, the metastable
tate is −1−1−1. Moreover, we remark some relevant facts: the transition
rom the metastable to the stable state is direct (i.e., not mediated by
n intermediate phase), the nucleation is not homogeneous, and the
xit time does not depend on 𝜆.

4 We also note that a rectangle of zeros in the sea of minuses is not a local
inimum, since (see row 4 of Table 2.1) the flip to minus of one zero with two

eros and two minuses among its neighbors (corner) decreases the energy of
he configuration. But this remark is not relevant from the metastability point
f view, since, in view of (2.8), the transition from −1−1−1 to 000 is of no interest in

his region of the parameters.
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Fig. 3. Representation of local minima in the sea of minuses. Light gray for minuses,
black for pluses, and white for zeros.

Fig. 4. The critical configuration 𝜎s. Black, white, and gray sites represent pluses,
zeros, and minuses respectively. The rectangle of pluses has side lengths 𝑙c and 𝑙c − 1.

3.2. Main results for the region 𝜆 > ℎ > 𝜆∕2

We note that the condition ℎ > 𝜆∕2 is purely technical and useful
to keep simple the argument used in the proofs, indeed our findings
should be valid in the whole region 𝜆 > ℎ > 0 as suggested by the
heuristic discussion of Section 3.1.

The first theorem states that every configuration of  different from
{−1−1−1,+1+1+1} has a stability level strictly

smaller than

𝛤 ∶= 𝐻(𝜎s) −𝐻(−1−1−1) = 4𝐽𝑙c + 2𝜆𝑙c − 2ℎ𝑙2c − 2ℎ, (3.15)

where

𝑙c = ⌊

2𝐽 + 𝜆 − ℎ
2ℎ

⌋ + 1, (3.16)

and 𝜎s is the critical configuration represented in Fig. 4.

Proposition 3.1. Let 𝜂 ∈  be a configuration such that 𝜂 ∉ {−1−1−1,+1+1+1},
then 𝑉𝜂 < 𝛤 .

This result suggests that the only configurations with a stability level
greater than or equal to 𝛤 could be −1−1−1 and +1+1+1. This is confirmed by
Theorem 3.1, where we identify the unique metastable state −1−1−1 and the
stable state +1+1+1 in the region 𝜆 > ℎ > 0, and we compute the maximal
stability level.

Theorem 3.1 (Identification of the Metastable State). In the region 𝜆 >
ℎ > 𝜆∕2, the unique metastable state is −1−1−1 and 𝛤m = 𝛤 .

In the following theorem, we state the recurrence of the system to
the set {−1−1−1,+1+1+1}. In particular, (3.18) implies that the system reaches
with high probability either the state −1−1−1 (which is a local minimizer
of the Hamiltonian) or the ground state in a time shorter than 𝑒𝛽(𝛤+𝜖),
uniformly in the starting configuration 𝜂 for any 𝜖 > 0. In other words
we can say that the dynamics speeded up by a time factor of order
6

𝑒𝛽𝛤 reaches with high probability {−1−1−1,+1+1+1}. To make this statement
rigorous, for the chain 𝜎𝑡 started at 𝜂 ∈  , we define the first hitting
time from 𝜂 ∉  to  ⊂  in the following way

𝜏 ∶= inf
𝑡>0

{𝑡 ∶ 𝜎𝑡 ∈ }. (3.17)

Theorem 3.2 (Recurrence Property). For any 𝜖 > 0 and sufficiently large
𝛽, the function

𝛽 → sup
𝜂∈

P𝜂(𝜏{−1−1−1,+1+1+1} > 𝑒𝛽(𝛤+𝜖)) (3.18)

is super-exponentially small.5

The last goal is that of finding the asymptotic behavior as 𝛽 → ∞ of
the transition time for the system started at the metastable state −1−1−1.

Theorem 3.3 (Asymptotic Behavior of 𝜏+1+1+1 in Probability). For any 𝜖 > 0,
we have

lim
𝛽→∞

P−1−1−1(𝑒𝛽(𝛤−𝜖) < 𝜏+1+1+1 < 𝑒𝛽(𝛤+𝜖)) = 1. (3.19)

4. Proof of the main results

In this section we collect the proofs of the lemmas of Section 2 and
the theorems of Section 3.

4.1. Proof of Lemma 2.1

The statement is trivial in the cases 𝜂 and 𝜂′ not communicating and
𝜂′ = 𝜂. Thus, suppose 𝜂 ≠ 𝜂′ are communicating: if 𝐻(𝜂) = 𝐻(𝜂′) then
(2.5) is immediate, on the other hand if 𝐻(𝜂′) > 𝐻(𝜂) (the opposite case
can be treated analogously) the statements follows from the definition
of the Gibbs measure (2.2) and the fact that

𝑝𝛽 (𝜂, 𝜂′) =
1

2|𝛬|
𝑒−𝛽[𝐻(𝜂′)−𝐻(𝜂)] and 𝑝𝛽 (𝜂′, 𝜂) =

1
2|𝛬|

. □

4.2. Proof of Lemma 2.2

Recall we assumed that Condition 1 is in force.
Case 1: pick a configuration 𝜂 ≠ +1+1+1, such that there is at least one

minus spin. Consider the configuration 𝜂′ obtained by flipping in 𝜂 all
the minuses to plus. We claim that 𝐻(𝜂′) < 𝐻(𝜂), indeed, (i) the internal
interaction term at the right-hand side of (2.1) is smaller for 𝜂′ since
nothing changes for the bonds between minus spins of 𝜂 and for the
bonds in which, in 𝜂, one site has spin minus and the other has spin
zero, on the other hand the interaction decreases if, in 𝜂, one of the
sites of the bond has spin minus and the other has spin plus; (ii) the
boundary interaction term is the same in 𝜂 and 𝜂′; (iii) the chemical
potential term in 𝜂′ is the same as the one in 𝜂; (iv) the magnetic field
in 𝜂′ is smaller than that in 𝜂 by the amount 2ℎ for each flipped spin. If
𝜂′ = +1+1+1 the proof is over, otherwise there exists in 𝜂′ at least one zero
spin and the proof will be completed in the following case.

Case 2: consider a configuration 𝜂′ ≠ +1+1+1, such that there is no minus
spin. Consider the configuration 𝜂′′ obtained by flipping to plus all the
zero spins in 𝜂′ associated with the sites belonging to one of the not
interacting rectangles obtained by applying the bootstrap construction
(see Section 2.1) to the set of sites where 𝜂′ is plus one. If 𝜂′′ ≠ 𝜂′ then
𝐻(𝜂′′) < 𝐻(𝜂′) because it is possible to construct a downhill path from
𝜂′ to 𝜂′′ such that at each step a zero spin with at least two neighboring
plus sites and no neighboring minus is flipped to plus decreasing the
energy of the configurations (see rows 13–15 in Table 2.1). If 𝜂′′ = +1+1+1
the proof is over. In case 𝜂′′ ≠ +1+1+1, let 𝓁 be the largest side length of the
rectangles in which 𝜂′′ is plus one and consider the following cases.

5 We say that a function 𝛽 ↦ 𝑓 (𝛽) is super exponentially small if
lim log 𝑓 (𝛽) = −∞.
𝛽→∞ 𝛽
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Case 2.1: suppose 𝓁 < 2𝐽∕(ℎ + 𝜆). Consider the configuration 𝜂′′′

obtained by flipping to zero all the pluses in one of the sides of length
𝓁. From (2.1) we get 𝐻(𝜂′′′) −𝐻(𝜂′′) = −2𝐽 + (𝜆 + ℎ)𝓁, which implies
𝐻(𝜂′′′) < 𝐻(𝜂′′). By removing one side after the other we prove 𝐻(000) <
𝐻(𝜂′) and, from (2.7), which is valid under the hypotheses of this
lemma, we get 𝐻(+1+1+1) < 𝐻(𝜂′).

Case 2.2: suppose 𝓁 > 2𝐽∕(ℎ + 𝜆). Now, consider one of the
rectangles on which 𝜂′′ is plus one with maximal side length equal to
𝓁. Consider the configuration 𝜂′′′′ obtained by flipping to plus all the
zeros associated with sites neighboring one of the sides of this rectangle
whose length is equal to 𝓁. From (2.1) we get 𝐻(𝜂′′′′) − 𝐻(𝜂′′) =
2𝐽 − (𝜆 + ℎ)𝓁, which implies 𝐻(𝜂′′′′) < 𝐻(𝜂′′).

If 𝜂′′ has a single rectangle of pluses, this growth mechanism can be
continued until +1+1+1 is obtained proving the statement of the lemma. If
𝜂′′ has two or more rectangles of pluses, this growth mechanism can be
continued until two or more interacting rectangles are found. In such a
case, by performing bootstrap mechanism steps and boundary growth
of rectangles the +1+1+1 configuration will be eventually constructed com-
pleting the proof of the lemma. □

4.3. Proof of Lemma 2.3

Case ℎ > 𝜆: row 11 of Table 2.1 implies that the state 000 is a local
minimum of the Hamiltonian, since all the possible spin flips have a
positive energy cost.

Case ℎ < 𝜆: the fact that 000 is a local minimum is proven as above.
Moreover, from row 1 of the Tables 2.1 it follows that the state −1−1−1 is
a local minimum of the Hamiltonian, as well. □

4.4. Proof of Proposition 3.1

The proof of Proposition 3.1 is based on Lemmas. 4.4–4.10. which
are listed at the end of this subsection. We prove that for every
configuration 𝜂 ∉ {−1−1−1,+1+1+1}, the stability level is strictly smaller than
the energy barrier 𝛤 .

First of all, given a configuration 𝜂 ∈  , we consider the set (𝜂) ⊆
R2 defined as the union of the closed unitary square centered at sites 𝑖
with the boundary parallel to the axes of Z2 and such that 𝜂(𝑖) = +1.

The maximal connected components 𝐶1,… , 𝐶𝑚, with 𝑚 ∈ N, of (𝜂)
are called clusters of pluses. We define in the same way the clusters of
minuses and the clusters of zeros. The boundary of each cluster is made of
straight lines and corners, that can be convex corners or concave corners
following the usual R2 definitions. Moreover, the straight portion of
the boundary delimited by two subsequent convex corners is called a
convex side of the boundary, otherwise it is called a concave side.

We observe that each cluster has at least one convex side, since 𝛬
is finite and we have assumed zero-boundary conditions.

In order to prove Proposition 3.1, in the following lemmas, we
partition the set of all configurations in suitable families according to
peculiar properties of their clusters and we provide their stability levels,
that turn out to be strictly smaller than 𝛤 . In particular, we first analyze
the configurations with at least a cluster of pluses, see Lemmas 4.4, 4.5,
4.6, 4.7, 4.8, 4.9. In addition, in Lemmas 4.6, 4.7, and 4.10 we discuss
the configurations containing only zero and minus spins. The proofs of
the previous lemmas are reported in Appendix A.1. □

Lemma 4.4. If 𝜂 is a configuration that contains a bond with minus and
plus spins, then there exists a configuration 𝜂′ such that 𝐻(𝜂′) < 𝐻(𝜂) and
the two configurations communicate with a downhill path.

Lemma 4.5. If 𝜂 is a configuration that contains at least a cluster of pluses
which is not a rectangle in R2, then 𝑉𝜂 < 2(𝜆 − ℎ).

Lemma 4.6. If 𝜂 is a configuration that contains either a cluster of pluses
which is a rectangle of R2 with one side length 𝑙1 < 2𝐽

𝜆+ℎ or a cluster of
minuses with at least a convex side with length 𝑙 < 2𝐽 , then 𝑉 < 2𝐽 .
7

2 𝜆−ℎ 𝜂
Fig. 5. The first part of the reference path, from −1−1−1 to 𝜎𝐹
2,2, a chopped corner frame

of both side lengths equal to two.

Lemma 4.7. If 𝜂 is a configuration that contains a cluster of pluses (resp.
a cluster of minuses) which is a rectangle of R2 with at least one side length
𝑙1 >

2𝐽
𝜆+ℎ (resp. 𝑙2 >

2𝐽
𝜆−ℎ ) at distance strictly greater than two from a minus

(resp. plus) spin, then 𝑉𝜂 < 2𝐽 .

Lemma 4.8. If 𝜂 is a configuration that contains a cluster of pluses which
is a rectangle of R2 with at least one side length 𝑙 > 2𝐽+𝜆−ℎ

ℎ , then 𝑉𝜂 < 5𝐽 .

Lemma 4.9. If 𝜂 is a configuration that contains a cluster of pluses which
is a rectangle of R2 with at least one side length 2𝐽

𝜆+ℎ < 𝑙 < 2𝐽+𝜆−ℎ
ℎ , then we

have 𝑉𝜂 < 𝛤 .

Lemma 4.10. The stability level of 000 is strictly smaller than 𝛤 , i.e., 𝑉000 <
𝛤 .

4.5. Proof of Theorem 3.1

To prove the theorem we have to identify the unique metastable
state and compute the value of the maximal stability level.

In order to do this, we first construct in Section 4.5.1 a reference
path to find an upper bound to the communication height between −1−1−1
and +1+1+1 and then, in Section 4.5.2, we prove a lower bound by using a
new strategy based on the computation of the number of bonds in any
configuration. More precisely, we shall first prove 𝛷(−1−1−1,+1+1+1)−𝐻(−1−1−1) ≤
𝛤 and then 𝛷(−1−1−1,+1+1+1) −𝐻(−1−1−1) ≥ 𝛤 .

These results and Proposition 3.1 above, together with [9, Theo-
rem 2.2] yield the theorem. □

4.5.1. Upper bound to 𝛷(−1−1−1,+1+1+1) −𝐻(−1−1−1)
We define the reference path 𝜔r as a path from −1−1−1 → +1+1+1 consisting in

a sequence of configurations with increasing clusters as close as possible
to chopped corner frame such that 𝛷(𝜔r ) −𝐻(−1−1−1) = 𝛤 . This implies that

𝛷(−1−1−1,+1+1+1) −𝐻(−1−1−1) ≤ 𝛤 . (4.20)

We denote by 𝜎𝑚,𝑛 the configuration that contains a chopped corner
frame such that the rectangle of pluses has horizontal and vertical side
length equal to 𝑚 and 𝑛.

In order to construct the path, see Fig. 5, we start by choosing one
of the four corners of 𝛬 and we consider its two nearest neighbors. We
flip, one after the other in any order, these two minus spins to zero with
the energy cost that is independent on the order and equal to 3(𝜆− ℎ),
see Table 2.1. Then, we flip the zero in the corner to plus increasing
the energy by 4𝐽 − (𝜆+ ℎ). Thus the total energy cost to construct 𝜎1,1,
i.e. to form a chopped corner frame of both side lengths equal to one,
is 4𝐽 + 2𝜆 − 4ℎ.

Next, we first flip to zero the minus spins at distance smaller than or
equal to

√

2 from the zeros of 𝜎1,1 starting from those closest and then
we construct a 2 × 2 square of pluses. In this way a chopped corner
frame of both side lengths two is formed, see Fig. 5.

We grow up this chopped corner frame by applying the following
steps: (i) flipping to zero with the energy cost 𝜆 − ℎ a minus spin at
distance one from this frame and from the boundary of 𝛬 (this is the
effect of the zero-boundary conditions); (ii) flipping to plus the unique
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Fig. 6. A part of the reference path from 𝜎𝑛−1,𝑛 to 𝜎𝑛,𝑛.

zero with two zero nearest neighbors; (iii) repeating steps (i) and (ii)
to grow up the chopped corner frame 2 × 2 to a chopped corner frame
2 × 3, namely, 𝜎2,3. Next, we grow up the chopped corner frame 2 × 3
by performing similar steps along its longest side and obtaining 𝜎3,3.

This growth mechanism can be iterated, always by flipping first a
minus to zero and then a zero to plus, see Figure 6, until the chopped
corner frame invades all the lattice 𝛬 and the configuration +1+1+1 is
reached.

In order to compute the height of this path, we first evaluate
the height of the portion of the path connecting −1−1−1 to a general
configuration 𝜎𝑚,𝑛. Suppose 𝑚 ≤ 𝑛, we have

𝐻(𝜎𝑚,𝑛) = 2𝐽 (𝑛 + 𝑚) + 4𝐽𝐿 − (𝜆 + ℎ)𝑛𝑚

− (𝜆 − ℎ)(𝐿2 − 𝑛𝑚 − 𝑛 − 𝑚), (4.21)

where 2(𝑚 + 𝑛) is the number of bonds with spins 0 and +1, 4𝐿 is the
number of bonds with spins 0 and −1, 𝑚𝑛 is the number of pluses, and
(𝐿2 − 𝑛𝑚 − 𝑛 − 𝑚) is the number of minuses in 𝜎𝑚,𝑛. Thus, by (2.6), we
get

𝐻(𝜎𝑚,𝑛) −𝐻(−1−1−1) = 2𝐽 (𝑛 + 𝑚) + 𝜆(𝑛 + 𝑚)

− ℎ(2𝑚𝑛 + 𝑛 + 𝑚) (4.22)

By using (4.22) one can compute explicitly 𝐻(𝜎𝑛,𝑛−1), 𝐻(𝜎𝑛,𝑛), and
𝐻(𝜎𝑛,𝑛+1) and prove that

𝐻(𝜎𝑛,𝑛−1) ≷ 𝐻(𝜎𝑛,𝑛) ≷ 𝐻(𝜎𝑛,𝑛+1) if 𝑛 ≷ 2𝐽 + 𝜆 − ℎ
2ℎ

.

Thus, the height of the reference path 𝛷(𝜔r ) is equal to 𝛷(𝜎𝑙c ,𝑙c−1, 𝜎𝑙c ,𝑙c ),
where 𝑙c is defined in (3.16).

The maximal energy reached by the portion of the path from 𝜎𝑙c ,𝑙c−1
to 𝜎𝑙c ,𝑙c is achieved after the first three steps and its value is 2𝐽 − (𝜆 +
ℎ)+2(𝜆−ℎ). Indeed, the first step is the flip to zero of the minus spin at
distance one from the chopped corner frame and from the boundary of
𝛬, which costs 𝜆−ℎ. The second step is the flip to plus of the unique zero
with two zero nearest neighbors which costs 2𝐽−(𝜆+ℎ). The third step is
the flip to zero of the minus at distance one from the first flipped minus
and two from the boundary of 𝛬, which costs 𝜆−ℎ. The remaining part
of the considered portion of the path yielding to 𝜎𝑙c ,𝑙c is a sequence of
flips of zeros to plus with the energy decrease 𝜆+ℎ followed by flips of
minuses to zero with energy cost 𝜆− ℎ, which implies that this portion
of the path is a two-steps downhill path.

Finally, by (4.22), we have

𝛷(−1−1−1,+1+1+1) −𝐻(−1−1−1) ≤ 𝛷(𝜔r ) −𝐻(−1−1−1)

= 𝛷(𝜎𝑙c ,𝑙c−1, 𝜎𝑙c ,𝑙c ) −𝐻(−1−1−1)

= 𝐻(𝜎𝑙c ,𝑙c−1) + 2𝐽 − (𝜆 + ℎ) + 2(𝜆 − ℎ) −𝐻(−1−1−1)

= 4𝐽𝑙c + 2𝜆𝑙c − 2ℎ𝑙2c − 2ℎ = 𝛤 , (4.23)

which proves (4.20).

4.5.2. Lower bound to 𝛷(−1−1−1,+1+1+1) −𝐻(−1−1−1)
We use the Lemmas. 4.11–4.18, which are collected at the end of

this subsection, to prove the lower bound

𝛷(−1−1−1,+1+1+1) −𝐻(−1−1−1) ≥ 𝛤 . (4.24)
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Fig. 7. Configurations 𝜎c and �̃�c. The cluster of pluses with side lengths 𝑙c and 𝑙c − 1,
can be in one of the four corners of 𝛬 and the protuberance can be attached along
one of the two sides of the rectangular cluster of pluses and near the boundary of 𝛬.
With an abuse of notation, we denote all of these configurations with 𝜎c and �̃�c.

We denote by 𝑛+ the set of configurations with 𝑛+ plus spins. We
set

𝑛+c ∶= 𝑙c(𝑙c − 1) and 𝜎c = 𝜎𝑙c−1,𝑙c ∈ 𝑛+c
, (4.25)

see Fig. 7. We remark that in 𝜎c the smallest rectangle that contains the
frame of pluses and zeros has side lengths 𝑙c and 𝑙c + 1. The envelope
of this rectangle contains 2(2𝑙c − 1) bonds between a plus and a zero,
and 2𝑙c + 1 bonds between a minus and a zero. The other bonds in the
envelope are between two spins of the same type. Outside this envelope
there are 4𝐿 − (2𝑙c + 1) bonds between a minus and a zero according
to the zero-boundary conditions, and the other bonds are between two
spins of the same type.

Moreover, we introduce the peculiar configurations �̃�c, see Fig. 7,
which will play a crucial role in the proof. It is useful to compare �̃�c
and 𝜎c with the configuration 𝜎s introduced in Fig. 4.

We remark that the energy of the configurations �̃�c and 𝜎s is larger
than that of 𝜎c, indeed,

𝐻(�̃�c) = 𝐻(𝜎c) + 2𝐽 − (𝜆 + ℎ) + (𝜆 − ℎ) (4.26)

and

𝐻(𝜎s) = 𝐻(𝜎c) + 2𝐽 − (𝜆 + ℎ) + 2(𝜆 − ℎ). (4.27)

We also note that 𝐻(𝜎s) = 𝐻(�̃�c) + (𝜆 − ℎ) and that, by Table 2.1, the
minimal energy quantum to be paid to jump from �̃�c to 𝜎s is 𝜆−ℎ. This
implies that, for any configuration 𝜂 ∈  ,

if 𝐻(𝜂) > 𝐻(�̃�c) then 𝐻(𝜂) ≥ 𝐻(𝜎s). (4.28)

We are now ready to discuss the proof of (4.24) and we split it into
two main steps.

First step: we prove that 𝜎c in (4.25) is the energy minimizer of
the manifold 𝑛+c

, that is 𝜎c = argmin𝜉∈𝑛+c
𝐻(𝜉). This is achieved in

Lemma 4.14 by means of Lemmas. 4.11–4.13. The strategy of proof
implemented by the lemmas is essentially the following: all the config-
urations in 𝑛+c

are taken into account and it is proven that any con-
figuration 𝜂 differing from 𝜎c does not belong to the set of minimizers

𝑀 = {𝜎 |𝐻(𝜎) = min
𝜉∈𝑛+c

𝐻(𝜉)}. (4.29)

Second step: we use the information on the minimum of the energy
in the manifold 𝑛+c

proven in the first step to get (4.24), by consider-
ing all the paths from −1−1−1 to +1+1+1 and showing that their height is larger
than or equal to 𝐻(𝜎𝑠).

Indeed, since all such paths must necessary visit the set 𝑛+c
, we can

partition them in those that do not pass through 𝜎c and those that visit
such configuration. The first ones are treated in Lemma 4.15, while for
other ones, namely, those visiting 𝜎c, we consider the following three
alternatives:

(a) the path visits �̃� ∈  + , see Lemma 4.16;
c 𝑛c +1
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(b) the path visits a configuration 𝜂 ∈ 𝑛+c +1
different from �̃�c but

with the same energy, see Lemmas 4.17 and 4.18;
(c) the path visits a configuration in 𝑛+c +1

with energy strictly larger
than 𝐻(�̃�c) and thus the energy is larger than or equal to 𝐻(𝜎𝑠),
as observed in (4.28).

The proof of (4.24) is thus concluded.

emma 4.11. If 𝜂 ∈ 𝑛+c
is a configuration that contains at least a

olumn (or a row) with only zero spins, then 𝜂 ∉ 𝑀 .

emma 4.12. Let 𝜂 ∈ 𝑛+c
be a configuration that contains a cluster

f pluses with a shape different from a rectangle (a quasi-square) with side
engths 𝑙c and 𝑙c − 1. Then 𝜂 ∉ 𝑀 .

emma 4.13. If 𝜂 ∈ argmin𝜉∈𝑛+c
𝐻(𝜉), then the following conditions

old:

(i) 𝜂 contains a cluster of pluses which is a rectangle (a quasi-square) of
R2 with side lengths 𝑙c and 𝑙c − 1;

(ii) Let 𝑄 be the rectangle of sites inside the cluster of pluses, we have
𝜂𝑄 = +1+1+1𝑄, 𝜂𝛬⧵(𝑄∩𝜕+𝑄) = −1−1−1𝛬⧵(𝑄∩𝜕+𝑄). and 𝜂𝜕+𝑄 = 000𝜕+𝑄,

emma 4.14. 𝐻(𝜎c) = min𝜉∈𝑛+c
𝐻(𝜉).

emma 4.15. If 𝜔 is a path from 𝑛+c
⧵ {𝜎𝑐} to 𝑛+c +1

, then 𝛷(𝜔) >
𝐻(�̃�c) and, hence, 𝛷(𝜔) ≥ 𝐻(𝜎s).

Lemma 4.16. If 𝜔 is a path from �̃�c to 𝑛+c +2
such that 𝜔 =

(�̃�c, 𝜂1, 𝜂2,… 𝜂𝑛), with 𝑛 ≥ 1, 𝜂𝑛 ∈ 𝑛+c +2
, and 𝜂𝑖 ∈ 𝑛+c +1

for every
𝑖 = 1,… , 𝑛 − 1, then 𝛷(𝜔) ≥ 𝐻(𝜎s).

Before stating the last lemmas we agree on calling strip of pluses
(resp. strip of minuses) a connected subset of a column or a row of 𝛬
filled with all the spins equal to plus (resp. equal to minus). Moreover,
we define the set 𝒮 as the set of all configurations of 𝑛+c +1

such that

a. bonds with a spin plus and a spin minus are not present;
b. there exists a single cluster of pluses and its half-perimeter is

equal to 2𝑙𝑐 ;
c. the minimal rectangle of R2 that contains the cluster of pluses has

either side lengths (𝑙c, 𝑙c) or (𝑙c + 1, 𝑙c − 1);
d. one of the sites lying in the cluster of pluses is one of the four

corners of 𝛬;
e. there is only one strip of minuses in each column and row of 𝛬.

e note that �̃�c ∈ 𝒮 .

emma 4.17. Let 𝜂 ∈ 𝑛+c +1
be such that 𝐻(𝜂) = 𝐻(�̃�c), then 𝜂 ∈ 𝒮 .

emma 4.18. Let 𝜂 ∈ 𝒮 ⧵ {�̃�c}. Every path 𝜔 connecting 𝜂 to −1−1−1 is such
that 𝛷(𝜔) > 𝐻(𝜎s).

The proofs of the previous lemmas are in Appendix A.2.

.6. Proof of Theorem 3.2

By applying [21, Theorem 3.1] for 𝑉 ∗ = 𝛤 and Proposition 3.1, we
get (3.18). □

4.7. Proof of Theorem 3.3

The results in Theorem 3.1 above, together with [21, Theorem 4.1]
with 𝜂 = −1−1−1 yield the theorem. □
9
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5. Conclusions and perspectives

We investigated the metastable behavior of the stochastic Blume–
Capel model evolving according to the Glauber dynamics with zero-
boundary conditions. We have shown that, due to the three-state
character of the model, the metastability scenario changes profoundly
with respect to the one proven in previous papers where periodic
boundary conditions are assumed.

The Hamiltonian of the Blume–Capel model is characterized by the
magnetic field ℎ and the chemical potential 𝜆. For 𝜆, ℎ > 0 the chemical
potential term equally favors minus and plus spins with respect to
zeros, while the magnetic field favors pluses and penalizes minuses
with respect to the zeros. A thorough heuristic study suggested that the
region in which the effect of the boundary conditions is more relevant
is the sector 𝜆 > ℎ > 0. We thus restricted our rigorous analysis to
this part of the parameter space adding the supplementary technical
restriction ℎ > 𝜆∕2.

We have proven that the unique metastable state is −1−1−1 and we have
computed the energy barrier from −1−1−1 to the stable state +1+1+1, yielding an
estimate for the asymptotic behavior of the exit time as 𝛽 → ∞, where
𝛽 is the inverse temperature. We have also shown that the nucleation
is heterogeneous in the sense that it is performed via the appearance
of a critical droplet localized in one of the corners of the lattice.

In order to get the energy barrier we have computed an upper bound
by means of classical techniques, see [21,22], while to find the lower
bound we have provided new ideas and methods based on the partition
of the lattice into columns and rows with different interactions inside.

We remark finally, that this paper is part of a long term project
having as final goal the study of the metastable behavior of the Blume–
Capel model with the (conserved) Kawasaki dynamics. We expect
different behaviors at the level of the exit path with respect those
proven for the non-conserved dynamics in the present paper. Indeed, it
is well known that the exit paths from a metastable state are strongly
affected by the details of the considered stochastic dynamics.

In order to implement such a dynamics, indeed, it is necessary to
give up the periodic boundary conditions in favor of the zero ones.
The results proven in this paper for the Glauber dynamics are thus
a necessary first step that will be the starting point of our future
investigations.

Moreover, we expect that the techniques and the machinery devel-
oped in this paper will be useful in solving the much more intricate
problems arising in the Kawasaki setup.
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Fig. A.8. Local configurations with at least a plus spin whose energy cannot be
decreased via a single spin flip. The spin 𝑠 in (𝐼𝑉 ) takes value in {−1, 0}.

Appendix. Proof of lemmas

In this appendix we collect the proofs of the lemmas of Section 4.

A.1. Proofs of lemmas in Section 4.4

Proof of Lemma 4.4. Using Table 2.1, it is possible to reduce the
energy of all configurations with a bond with minus and plus spins
except the configuration where the plus and the minus have three
pluses and three minuses, respectively, as neighboring spins.

In the latter case, we analyze the two columns (or rows) to which
the plus and the minus belong to until we possibly find a bond different
from (+,−). In such a case the energy of 𝜂 can be decreased using
Table 2.1. Otherwise, we have that 𝜂 contains two columns composed
by all bonds (+,−). In this case, by looking at the last bond of the two
columns in the internal boundary of 𝛬, we can prove that the energy of
the configuration can be decreased taking advantage the zero-boundary
conditions: see, indeed, the row five or the row nine of Table 2.1 and
flip a minus to zero (row five) or a plus to zero (row nine). □

Before proving the remaining lemmas, we let the local configuration
of the site 𝑥 in 𝜂 be the restricted configuration 𝜂𝑈𝑥

, where 𝑈𝑥 = {𝑦 ∈
𝛬 | |𝑥 − 𝑦| = 1}, see Fig. A.8 for some examples.

Proof of Lemma 4.5. Suppose that 𝜂 does not contain bonds (+,−),
otherwise the statement follows from Lemma 4.4. Using Table 2.1, we
find that the sole local configurations containing a plus whose energy
cannot be decreased via a single flip are those depicted in Fig. A.8.

Let 𝜂 be a configuration that contains at least a local configuration of
type (𝑉 ) in Fig. A.8. We consider 𝜂′ obtained by flipping in 𝜂 the minus
to zero and the zero at the center to plus. Recalling that 𝜂 does not
contain bonds (+,−), we have 𝐻(𝜂′) < 𝐻(𝜂) and 𝛷(𝜂, 𝜂′)−𝐻(𝜂) ≤ 𝜆−ℎ.

Next, suppose that 𝜂 is a configuration that contains at least a local
configuration of type (𝑉 𝐼). We consider 𝜂′ obtained from 𝜂 in three
steps: we flip the two minuses to zero and then we flip the zero at the
center to plus. Recalling that 𝜂 does not contain bonds (+,−), we have
𝐻(𝜂′) ≤ 𝐻(𝜂)+2(𝜆−ℎ)− (𝜆+ℎ). By the assumption ℎ > 𝜆

2 > 𝜆
3 , we have

that 𝐻(𝜂′) < 𝐻(𝜂), and 𝛷(𝜂, 𝜂′) −𝐻(𝜂) ≤ 2(𝜆 − ℎ).
It follows that a cluster of pluses is composed solely by local

configurations of types (𝐼), (𝐼𝐼), (𝐼𝐼𝐼) with a plus at the center and
only local configurations of type (𝐼𝑉 ) with a plus in the neighborhood,
thus it is a rectangle. □

Proof of Lemma 4.6. Let 𝜂 be a configuration as in the assumption.
Suppose that the configuration does not contain bonds (+,−), otherwise
the statement follows from Lemma 4.4. We prove the result for the
cluster of pluses, the other case is similar. Suppose that the cluster of
pluses has at least one convex side with length 𝑙1 <

2𝐽
𝜆+ℎ . We flip the 𝑙1

pluses along the side to zero decreasing in energy with a height smaller
10
Fig. A.9. On the left, in black, an example of cluster of pluses of 𝜂 with some minus
spins at distance

√

2 and 2. On the right, the evolution of this cluster in 𝜂′: all minuses
at distance

√

2 and 2 from the cluster are replaced by zeros, and all zeros at distance
one are replaced by pluses.

than or equal to 𝐻(𝜂)+(𝜆+ℎ)(𝑙1−1) < 𝐻(𝜂)+2𝐽 , see row 13 in Table 2.1.
Note that at each flip of the first 𝑙1 − 1 steps, the energy increases by
𝜆+ℎ, since the number of the bonds between two equal spins does not
change, although a plus is replaced by a zero. Finally, the effect of the
last (𝑙1–th) flip is that of decreasing the energy by 2𝐽 − (𝜆+ℎ), see row
12 in Table 2.1. □

Proof of Lemma 4.7. Let 𝜂 be a configuration as in the assumption.
Suppose that 𝜂 does not contain bonds (+,−), otherwise the statement
follows from Lemma 4.4. We prove the result for the cluster of pluses,
the other case is similar. By assumptions, the rectangle of pluses has at
least a side length 𝑙1 > 2𝐽

𝜆+ℎ at distance strictly greater than two from
a minus spin. We suppose that there are only zero spins at distance
two from the pluses along this side, see Table 2.1. Then, we consider
these 𝑙1 zeros and we flip them to plus obtaining 𝜂′ and decreasing in
energy. In particular, the height of the path connecting 𝜂 to 𝜂′ is at most
2𝐽 − (𝜆 + ℎ) +𝐻(𝜂) (if the side is convex, otherwise 𝛷(𝜂, 𝜂′) = 0 indeed
if the side is concave then the energy decreases by 𝜆 + ℎ see Table 2.1
at row 13), see Table 2.1 at row 12. Indeed the first flip has an energy
cost equal to 2𝐽 − (𝜆 + ℎ), since a zero is replaced by a plus and the
number of the bonds between two equal spins has decreased by two.
The other steps form a downhill path. Thus, denoted by 𝜔 this path, we
have 𝛷(𝜔) = 2𝐽 − (𝜆 + ℎ) +𝐻(𝜂) < 2𝐽 +𝐻(𝜂). □

Proof of Lemma 4.8. Let 𝜂 be a configuration as in the assumption.
Suppose that 𝜂 does not contain bonds of type (+,−) otherwise we
conclude applying Lemma 4.4. Moreover, the cluster of pluses is a
rectangle otherwise the statement is proven by Lemma 4.5. We consider
a configuration 𝜂′ obtained from 𝜂 in the following way. All minuses at
distance

√

2 and 2 from the side of the rectangle with length 𝑙 > 2𝐽+𝜆−ℎ
ℎ

in 𝜂 are replaced by zeros. Moreover, all zeros at distance one from the
same side are replaced by pluses, see Fig. A.9. Next, we construct a path
𝜂 → 𝜂′ with 𝛷(𝜔) −𝐻(𝜂) < 5𝐽 and we show that 𝐻(𝜂′) < 𝐻(𝜂). In the
worst case scenario, all spins at distance

√

2 and 2 from the rectangle
are minuses. Thus, in particular we start flipping the two minuses at
distance

√

2 from the side of the rectangle, and the energy increases by
2(𝜆 − ℎ). Next, we consider one of the 𝑙 minuses at distance two from
the considered side of the rectangle, and we flip it to zero. Then, we
flip the nearest zero to plus. Starting from a minus at distance one from
the minus considered before, we iterate these two steps (−1 → 0 and
0 → +1) for 𝑙 − 1 times obtaining 𝜂′ such that 𝐻(𝜂′) < 𝐻(𝜂). Indeed,
the first flip of the minus to zero has an energy cost of 2𝐽 + (𝜆 − ℎ)
and the first flip of the zero to plus has an energy cost of 2𝐽 − (𝜆 + ℎ),
see Table 2.1 at row 2 and 12 respectively. The rest of the steps has
an energy cost of 𝜆 − ℎ when we flip a minus to zero and −(𝜆 + ℎ)
when we flip a zero to plus. Thus, we have 𝐻(𝜂′) ≤ 𝐻(𝜂) + 4𝐽 + 2(𝜆 −
ℎ) − 2ℎ𝑙 < 𝐻(𝜂) since 𝑙 > 2𝐽+𝜆−ℎ

ℎ , and the height along this path is
2(𝜆 − ℎ) + [2𝐽 + (𝜆 − ℎ)] + [2𝐽 − (𝜆 + ℎ)] + (𝜆 − ℎ) = 4𝐽 + 3𝜆 − 5ℎ < 5𝐽
since we chose 𝐽 ≫ 𝜆 > ℎ. □

Proof of Lemma 4.9. We observe that if 𝜂 contains a cluster of pluses
with at least a side length 𝑙 > 2𝐽 at distance strictly greater than
𝜆+ℎ
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Fig. A.10. The rectangular cluster of pluses with side lengths 𝑘 and 𝑚 grows the side
with length 𝑚 for 𝑙𝐹 − 𝑘 times. In this way we obtain a configuration containing a
rectangular cluster of pluses with side lengths 𝑙𝐹 and 𝑚.

two from a minus spin, then the proof is concluded by Lemma 4.7.
Thus, suppose that there are some minuses at distance 𝑑 smaller than
or equal to two from the cluster of pluses. In particular

√

2 ≤ 𝑑 ≤ 2,
otherwise there is a bond of type (+,−) and we conclude the proof by
Lemma 4.4. Moreover, the cluster of pluses is a rectangle, otherwise the
proof is over by Lemma 4.5. We observe that the rectangle of pluses
has both side lengths in ( 2𝐽

𝜆+ℎ ,
2𝐽+𝜆−ℎ

ℎ ), otherwise we conclude applying
Lemma 4.6 or Lemma 4.8. Denote by 𝑙+ = ⌈

2𝐽
𝜆+ℎ ⌉ and 𝑙𝐹 = ⌊

2𝐽+𝜆−ℎ
ℎ ⌋,

moreover we indicate by 𝑙 = ⌊

𝐽+𝜆+ℎ
ℎ ⌋. Next, we construct a path 𝜔

from 𝜂 to 𝜂′, where 𝜂′ is a configuration such that 𝐻(𝜂′) < 𝐻(𝜂) and
𝛷(𝜔) −𝐻(𝜂) < 𝛤 . In order to find 𝜂′, we distinguish two cases. Let 𝑚, 𝑘
be the two side lengths of the rectangle of pluses and we suppose 𝑘 ≥ 𝑚,
then we have two possible cases:

(a) both sides have length strictly greater then 𝑙, that is 𝑘, 𝑚 ∈ [𝑙 +
1, 𝑙𝐹 ];

(b) at least one of two side lengths is smaller than 𝑙, that is 𝑚 ∈ [𝑙+, 𝑙].

In the first case, we obtain 𝜂′ growing the rectangle of pluses as in
proof of Lemma 4.8. In particular, we grow the side of the rectangle
with length 𝑘 for 𝑙𝐹 − 𝑘 times, that is the rectangle grows up until it
reaches the longer side length 𝑙𝐹 . We observe that to grow the side
of length 𝑘, we have to add 𝑚 pluses along the side of length 𝑚, see
Fig. A.10. We call �̃� this configuration. Along this first part 𝜂 → �̃� of
the path 𝜂 → 𝜂′, the energy increases, because the rectangle is not
supercritical. Then, we will grow up a supercritical rectangle until we
obtain 𝜂′ with 𝐻(𝜂′) < 𝐻(𝜂). Along this last part of path the energy
decreases because it is a two-steps downhill path, so the height between
𝜂 and 𝜂′ is the same between 𝜂 and �̃�. Then, as proof of Lemma 4.8,
we have 𝛥𝐻(side growth of length 𝑚) ≤ 4𝐽 + 2(𝜆 − ℎ) − 2ℎ𝑚. Thus, we
obtain

𝛥𝐻(total growth)
≤ (𝑙𝐹 − 𝑘)𝛥𝐻(growth side of length 𝑚)

≤
( 2𝐽 + 𝜆 − ℎ

ℎ
− 𝑘

)

(4𝐽 + 2(𝜆 − ℎ) − 2ℎ𝑚). (A.1)

To find an upper bound to the communication height, we have to
sum the energy difference from the rectangle with longer side length 𝑘
to 𝑙𝐹 with the energy cost to reach the rectangle with side length 𝑙𝐹 +1.
In particular, we conclude finding the following upper bound

𝛷(𝜂, 𝜂′) −𝐻(𝜂)

≤
𝑙𝐹
∑

𝑗=𝑘
𝛥𝐻(growth side of length 𝑚) + (4𝐽 + 3𝜆 − 5ℎ)

≤ (4𝐽 + 2(𝜆 − ℎ) − 2ℎ𝑚)(𝑙𝐹 − 𝑘 + 1) + (4𝐽 + 3𝜆 − 5ℎ)

≤ (4𝐽 + 2(𝜆 − ℎ) − 2ℎ(𝑙 + 1))(𝑙𝐹 − 𝑙) + (4𝐽 + 3𝜆 − 5ℎ)

< 𝛤 .

where the second inequality follows from 𝑘, 𝑚 ≥ 𝑙, and the last one
follows from 𝑙 = ⌊

𝐽+𝜆+ℎ
ℎ ⌋ and 𝐽 ≫ 𝜆 > ℎ.

In the second case, we obtain 𝜂′ shrinking the rectangle of pluses as
in proof of Lemma 4.6. In particular, we cut the side of the rectangle
11
Fig. A.11. The rectangular cluster of pluses with side lengths 𝑘 and 𝑚 shrinks until it
is totally replaced by a rectangular cluster of zeros with the same size.

Fig. A.12. A part of the path 𝜔 ∶ 000 ↦ +1+1+1. The white part represents the region with
zero spins, the black region is the cluster of pluses. We remark that the first flip from
zero to plus can occur at any site of 𝛬 with the same probability, this is the case of
the homogeneous nucleation.

with length 𝑚 until the cluster of pluses is replaced by a cluster of zeros,
see Fig. A.11. First of all, we prove that 𝐻(𝜂′) < 𝐻(𝜂). We observe that
𝑘 ≤ 𝑙𝐹 < 2𝐽𝑚

(𝜆+ℎ)𝑚−2𝐽 , where the second inequality is due to ℎ > 𝜆
2 , and

then we have 𝐻(𝜂) −𝐻(𝜂′) = 2𝐽 (𝑘 + 𝑚) − (𝜆 + ℎ)𝑘𝑚 > 0.
To find an upper bound for the communication height, first of all

we compute the energy to cut a side of the rectangle and the height
along this part of the path 𝜔. For the first 𝑘 − 1 times, we have
𝛥𝐻(shrink side of length 𝑚) = (𝜆+ℎ)𝑚−2𝐽 . And 𝛷(𝜔)−𝐻(𝜂) = (𝜆+ℎ)𝑚.
Indeed, when we cut 𝑘−1 sides of length 𝑚, we obtain a configuration
with a rectangle 1 ×𝑚, so the path toward 𝜂′ is a downhill path. Thus,

𝛷(𝜂, 𝜂′) −𝐻(𝜂)

≤
𝑘−2
∑

𝑗=1
𝛥𝐻(shrink side of length 𝑚) + (𝜆 + ℎ)𝑚

= [(𝜆 + ℎ)𝑚 − 2𝐽 ](𝑘 − 2) + (𝜆 + ℎ)𝑚

< [(𝜆 + ℎ)𝑙 − 2𝐽 ](𝑙𝐹 − 2) + (𝜆 + ℎ)𝑙 < 𝛤 ,

where for the first inequality we used 𝑚 ≤ 𝑙 and 𝑘 ≤ 𝑙𝐹 . The second
inequality follows from the values of 𝑙, 𝑙𝐹 and the assumption ℎ > 𝜆

2 ,
𝐽 ≫ 𝜆 > ℎ. □

Proof of Lemma 4.10. To prove the result, we provide a path from 000
to +1+1+1. We define our path 𝜔 ∶ 000 ↦ +1+1+1 as a sequence of configurations
from 000 to +1+1+1 with increasing clusters as close as possible to quasi-square,
see Fig. A.12. We construct a path in which at each step we flip one
spin from zero to plus. We flip the spin at the origin and then we add
clockwise three square units to obtain the first square with side length
𝑙 = 2. Then we flip the zero spins on the top of the square 2 × 2, adding
consecutive square units until we obtain a quasi-square 2 × 3. Next we
flip the zero spins along the longest side to obtain a square 3 × 3. We go
on in the same manner flipping consecutive zero spins at distance one to
the cluster of pluses. We iterate this nucleation process until the quasi-
square takes up all the space 𝛬. In the following we compute the height
of this procedure. First of all, we compute the energy cost between the
configuration 000 and a configuration with a rectangular cluster of pluses
with side lengths 𝑚 and 𝑛, called 𝜎𝑚,𝑛,

𝐻(𝜎𝑚,𝑛) −𝐻(000) = 2𝐽 (𝑛 + 𝑚) − (𝜆 + ℎ)𝑚𝑛 (A.2)

where 2(𝑚 + 𝑛) is the number of bonds (0,+) and 𝑚𝑛 is the number of
pluses in 𝜎𝑚,𝑛. Eq. (A.2) attains the maximum for (𝑚, 𝑛) =

(

2𝐽
𝜆+ℎ ,

2𝐽
𝜆+ℎ

)

,
that corresponds to a configuration with a quasi-square of pluses with
side lengths �̃� = ⌊

2𝐽
⌋ and �̃� + 1. Starting from 𝜎 to reach the
𝜆+ℎ �̃�,�̃�+1
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configuration 𝜎�̃�+1,�̃�+1, the energy cost is given by the first step and its
alue is 2𝐽 − (𝜆 + ℎ), see Table 2.1 at row 12, the rest of the path is a
ownhill path. Thus, recalling that 𝐻(000) = 0, using the value of �̃� and
he assumption 𝜆 > ℎ, we have

(000,+1+1+1) −𝐻(000)

≤ 𝛷(𝜎�̃�,�̃�+1, 𝜎�̃�+1,�̃�+1) −𝐻(000)

= 𝐻(𝜎�̃�,�̃�+1) + 2𝐽 − (𝜆 + ℎ) −𝐻(000)

< 4𝐽 2

𝜆 + ℎ
+ 2𝐽 + (𝜆 + ℎ) < 2𝐽 2

ℎ
+ 2𝐽𝜆

ℎ
− 3ℎ < 𝛤 . □

A.2. Proofs of lemmas of Section 4.5.2

We first state few preliminary results necessary to prove Lem-
mas. 4.11–4.13, and then we report the proofs of these lemmas. We
start by simple result which is an immediate corollary of Lemma 4.7.

Corollary A.1. Let 𝜂 be a configuration that contains a strip of minuses
ith at least a side length 𝑙 > 2𝐽

𝜆−ℎ at distance strictly greater than two from
plus spin. Then 𝑉𝜂 < 2𝐽 .

emma A.19. Let 𝜂 ∈ 𝑛+𝑐
be a configuration that contains a rectangle

with side lengths 𝑙1, 𝑙2 > ⌊

2𝐽
𝜆−ℎ ⌋+2 with inside no plus spins. Assume that

𝑅⧵𝜕−𝑅 ≠ −1−1−1𝑅⧵𝜕−𝑅. If 𝜂(𝑥) = −1 for at least a site 𝑥 ∈ 𝑅 ⧵ 𝜕−𝑅, then there
xists a configuration 𝜂′ ∈ 𝑛+𝑐

such that 𝐻(𝜂′) < 𝐻(𝜂).

Lemma A.20. Let 𝜂 ∈ 𝑛+𝑐
be a configuration that contains a rectangle 𝑅

with side lengths 𝑙1, 𝑙2 > ⌊

4𝐽
𝜆−ℎ ⌋+2 with inside no plus spins. Let 𝑆 = 𝑅⧵𝜕−𝑅

nd 𝜂(𝑥) = 0 for every 𝑥 ∈ 𝑆, then the configuration 𝜂′ ∈ 𝑛+𝑐
such that

𝜂′𝛬⧵𝑆 = 𝜂𝛬⧵𝑆 and 𝜂′𝑆 = −1−1−1𝑆 has 𝐻(𝜂′) < 𝐻(𝜂).

Proof of Corollary A.1. If a configuration contains a strip of minuses
as in the assumptions, then there exists a cluster of minuses containing
this strip with at least a side length 𝑙 > 2𝐽

𝜆−ℎ at distance strictly
reater than two from a plus spin, then we conclude by applying
emma 4.7. □

roof of Lemma A.19. Let 𝜂 be a configuration as in the assumptions.
e distinguish two cases: (i) 𝜂 contains at least a cluster of minuses
ith shape different from a rectangle, (ii) 𝜂 contains only cluster of
inuses with rectangular shape. In the first case, there is at least a zero

pin with two minus spins at distance one, then we find 𝜂′ by using
able 2.1 at row 4 (by flipping this zero in to a minus). In the second
ase, we find 𝜂′ by applying either Lemma 4.6 or Lemma 4.7, according
o the side length of the cluster of minuses. □

roof of Lemma A.20. Consider 𝜂 and 𝜂′ as in the assumption. The
nergy difference between 𝜂 and 𝜂′ is given by

(𝜂′) −𝐻(𝜂)

= 2𝐽 (𝑙1 − 2 + 𝑙2 − 2) − (𝜆 − ℎ)(𝑙1 − 2)(𝑙2 − 2)

< 2𝐽 8𝐽
𝜆 − ℎ

− (𝜆 − ℎ)
( 4𝐽
𝜆 − ℎ

)2
= 0.

To compute the height 𝛷(𝜂, 𝜂′), we argue as in proof of Lemma 4.10.
Indeed the computation of 𝛷(𝜂, 𝜂′) is similar to one of 𝛷(000,+1+1+1), hence
it is strictly smaller than 𝛤 . □

Proof of Lemma 4.11. Let 𝜂 be a configuration as in the assumption
and we suppose by contradiction that 𝜂 ∈ 𝑀 . First of all, we observe
that if 𝜂 contains at least one of the local configurations in Fig. A.13
(or one of their rotations), then there exist 𝜂′ ∈ 𝑛+𝑐

such that 𝐻(𝜂′) <
𝐻(𝜂) by using Table 2.1, thus 𝜂 ∉ 𝑀 .

From now on, we suppose that 𝜂 does not contain the previous local
configurations in Fig. A.13. For the assumption, 𝜂 contains at least a
12

s

Fig. A.13. If 𝜂 contains one of these local configuration, then it reducible in energy
by flipping the zero in the center in to minus, see Table 2.1.

Fig. A.14. Local configurations with the center site along a column filled by only zero
spins.

Fig. A.15. Neighborhood of the column with only zeros spins with attached a strips
of minuses.

column (or a row) with only zero spins, then 𝜂 contains at least one of
the configurations in Fig. A.14.

We observe that 𝜂 does not contain only local configurations of
type (𝐼) among those in Fig. A.14, indeed 𝜂 ∈ 𝑛+𝑐

. Moreover, we
show that if 𝜂 contains only local configurations of type (𝐼) and (𝐼𝐼)
among those in Fig. A.14, then 𝜂 ∉ 𝑀 . Indeed, in this case 𝜂 does
not contain minus spins and by [42] we have 𝐻(𝜂) ≥ 𝐻(𝜉) where 𝜉
is the configuration with a quasi-square of pluses in a sea of zeros, and
for 𝐿 large enough we have 𝐻(𝜉) = 4𝐽 (2𝑙𝑐 − 1) − (𝜆 + ℎ)𝑙𝑐 (𝑙𝑐 − 1) and
(𝜎𝑐 ) = 4𝐽 (2𝑙𝑐−1)−(𝜆+ℎ)𝑙𝑐 (𝑙𝑐−1)+4𝐽𝐿−(𝜆−ℎ)(𝐿2−𝑙𝑐 (𝑙𝑐−1)−(2𝑙𝑐−1)),

implying 𝐻(𝜉) > 𝐻(𝜎𝑐 ) and 𝜂 ∉ 𝑀 . With the same argument, we may
state that if 𝜂 contains only local configurations of type (𝐼), (𝐼𝐼) and
(𝐼𝐼𝐼) among those in Fig. A.14, then 𝜂 ∉ 𝑀 .

Thus, we suppose that 𝜂 contains at least a local configurations of
type (𝐼𝑉 ) or (𝑉 ) and we start to analyze the two columns (or rows) that
contain the pair (−, 0) until we find a pair (𝜂(𝑥), 0) such that 𝜂(𝑥) ≠ −1.
First of all, we observe that if the strip of minuses in the first column has
a length smaller than 2𝐽

𝜆−ℎ , then there exists a configuration 𝜂′ ∈ 𝑛+𝑐
with 𝐻(𝜂′) < 𝐻(𝜂) by Lemma 4.6, and so 𝜂 ∉ 𝑀 . Moreover, if 𝜂(𝑥) = +1
hen we find 𝜂′ ∈ 𝑛+𝑐

such that 𝐻(𝜂′) < 𝐻(𝜂) by using Table 2.1,
nd also in this case 𝜂 ∉ 𝑀 . Thus, the unique possible pair (𝜂(𝑥), 0) is
0, 0). In this case, there is a plus spin at distance two from the strip of
inuses, otherwise 𝜂 satisfies the assumptions of Corollary A.1 and so
∉ 𝑀 , see Fig. A.15.

Moreover, for every configuration that contains a pair of two con-
ecutive columns filled by minuses and zeros, there are some plus spins
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that split the strips of minuses in parts with length smaller than 2𝐽
𝜆−ℎ ,

see Fig. A.15 for an example, otherwise we can reduce the energy of 𝜂
by applying Corollary A.1, and so 𝜂 ∉ 𝑀 . This implies that the distance
between two pluses at distance two from the strip of minuses is smaller
than 2𝐽

𝜆−ℎ , see Fig. A.15.
Starting from the pair (0, 0), we focus on the first plus at distance

two from the column of minuses and we consider the plus in the nearest
column, see Fig. A.15. We observe that the region between these pluses
contains only zero and minus spins for construction. In the following,
we will prove that this region is a rectangle with both side lengths
smaller than ⌊

4𝐽
𝜆−ℎ ⌋ + 2. Indeed, if this region is a rectangle with side

length greater than ⌊

4𝐽
𝜆−ℎ ⌋ + 2 and it contains only zero spins, then

we can apply Lemma A.20 and so 𝜂 ∉ 𝑀 . However, if this region
contains some minus spin then we may apply Lemma A.19, indeed the
assumption and 𝜂𝑅⧵𝜕+𝑅 ≠ −1−1−1𝑅⧵𝜕+𝑅 is satisfied otherwise 𝜂 contains the
last local configuration in Fig. A.13. Hence, the considered region is a
rectangle with both side lengths smaller than ⌊

4𝐽
𝜆−ℎ ⌋ + 2. Let 𝑑1 be the

distance between the two columns containing the two plus spins, 𝑑2
be the distance between the two rows containing the two plus spins,
then 𝑑1, 𝑑2 < ⌊

4𝐽
𝜆−ℎ ⌋ + 2, see Fig. A.15. Thus, the Euclidean distance

between the two pluses has to be smaller than
√

2
(

⌊

4𝐽
𝜆−ℎ ⌋ + 2

)

. So, we
can compute the maximal size of the minimal rectangle containing all
plus spins. Indeed the diagonal of this rectangle is 𝑛+𝑐

√

2
(

⌊

4𝐽
𝜆−ℎ ⌋ + 2

)

and its side lengths are smaller than 𝑙𝑅 = 𝑛+𝑐
(

⌊

4𝐽
𝜆−ℎ ⌋ + 2

)

.

Let 𝜕+𝑅 = 𝜕+𝑅 ∪ {𝑥 ∈ 𝛬 ⧵ 𝑅 ∶ |𝑥 − 𝑦| =
√

2 ∀ 𝑦 ∈ 𝑅}, the region
𝛬 ⧵ (𝑅 ∪ 𝜕+𝑅) can be composed by two, three or four rectangles that
circumscribing 𝑅, see Fig. A.16. We consider the rectangle 𝑅𝑀 with
maximal area among them and we prove that it has side lengths strictly
greater than ⌊

4𝐽
𝜆−ℎ ⌋+2. The maximal rectangle contained in 𝛬⧵(𝑅∪𝜕+𝑅)

has side lengths (𝐿, 𝑥) with 𝑥 ≥ 𝐿
2 − 𝑛+𝑐

(

⌊

4𝐽
𝜆−ℎ ⌋ + 2

)

− 1. In particular,

we have 𝐿, 𝑥 > ⌊

4𝐽
𝜆−ℎ ⌋ + 2, since 𝐿 >

(

2𝐽
𝜆−ℎ

)3
. Therefore, for every

position of 𝑅 in 𝛬, there is a rectangle 𝑅𝑀 that contains only minus
spins, otherwise it satisfies the assumption of either Lemma A.19 or
Lemma A.20, and so 𝜂 ∉ 𝑀 . Moreover, there is a strip of minus with
length 𝑦 > ⌊

2𝐽
𝜆−ℎ ⌋, see Fig. A.16, attached to 𝑅𝑀 . Thus, the rectangle 𝑆𝑀

attached to 𝑅𝑀 , see Fig. A.16, is filled by only minus spins, otherwise
we can apply Corollary A.1 and 𝜂 ∉ 𝑀 . Follows that the column with
length 𝐿 filled by only zero spins is not in 𝛬 ⧵ (𝑅 ∪ 𝜕+𝑅), then it is in
𝜕+𝑅∪𝑅. However, every column (and row) in 𝜕+𝑅∪𝑅 has length strictly
smaller than 𝐿, thus it is a contradiction. We can conclude 𝜂 ∉ 𝑀 . □

Proof of Lemma 4.12. Let 𝜂 be a configuration as in the assumption
and suppose by contradiction that 𝜂 ∈ 𝑀 . Let 𝑛0𝜂 be the number of
the zero spins in 𝜂. We first show that if a column or a row contains
only plus and zero spins, then 𝜂 ∉ 𝑀 . Suppose that 𝜂 contains a row 𝑟
with only plus and zero spins and we consider the maximal sequence
of 𝑁 > 0 consecutive columns that intersects 𝑟 without plus spins. This
set of consecutive columns forms a rectangle 𝑅𝐿,𝑁 and we note that
𝑁 > ⌊

2𝐽
𝜆−ℎ ⌋ + 2, indeed 𝐿

𝑛+𝑐
> ⌊

2𝐽
𝜆−ℎ ⌋ + 2 see Condition 1. If one of them

contains only zero spins, then 𝜂 ∉ 𝑀 by Lemma 4.11. Thus, we may
apply Lemma A.19 and we obtain 𝜂 ∉ 𝑀 .

Follows that, for each column and row that contains at least plus,
one of the following conditions holds:

(a) there are two bonds (+, 0) and at least two bonds (−, 0). No bond
(+,−) is present. In this case the energy contribution is at least 4𝐽 ,
by the definition of the Hamiltonian function (2.1), and we denote
by 𝛼1 the number of these columns and rows. See Fig. A.17.

(b) there are a bond (+,−), at least a bond (−, 0) and a bond (+, 𝑥)
where 𝑥 ∈ {−1, 0}. No more than one bond (+, 0) is present. The
energy contribution is at least 6𝐽 and we denote by 𝛼2 the number
of these columns and rows. See Fig. A.17.

(c) there are either at least four bonds (+, 0) and at least two bonds
(−, 0), or at least a bond (+,−), at least a bond (−, 0) and more
13
Fig. A.16. The minimal value of 𝑥 and 𝑦 is 𝐿
2
− 𝑛+𝑐

(

⌊

4𝐽
𝜆−ℎ

⌋ + 2
)

− 1, when 𝑅 centered

in the middle of 𝛬. In each case 𝐿, 𝑥 > ⌊

4𝐽
𝜆−ℎ

⌋ + 2.

Fig. A.17. The cluster of pluses are in dark gray. The white region indicates the zero
region, while the yellow region contains a mixture of zeros and minuses. The set of
the 𝑁 column without pluses that intersect 𝑟 is the rectangle 𝑅𝐿,𝑁 .

than one bond (+, 𝑥) where 𝑥 ∈ {−1, 0}. The energy contribution
is at least 6𝐽 and we denote by 𝛼3 the number of these columns
and rows. See Fig. A.17

Moreover, we observe that in 𝜂 there are no column filled with only
zero spins, otherwise we apply Corollary A.1. Then, the energy contri-
bution along every column and every row is at least 2𝐽 according to
the zero-boundary conditions. We denote by 𝛼4 the number of these
columns and rows.

We note that ∑4
𝑖=1 𝛼𝑖 = 2𝐿, since we found a partition of the set

of columns and rows in 𝛬 according to the presence or the absence
of pluses. Moreover, we observe that by [42] a cluster of pluses with
fixed area 𝑛+𝑐 = 𝑙𝑐 (𝑙𝑐 − 1) has perimeter 𝑝 ≥ 2(2𝑙𝑐 − 1). In particular, the
cluster with area 𝑛+𝑐 has minimal perimeter if and only if it is a quasi-
square with semi-perimeter 2𝑙𝑐 − 1. In our case, the cluster of pluses
has area 𝑛+𝑐 and a shape different from a quasi-square for assumption,
then its semi-perimeter is strictly greater than 2𝑙𝑐 −1. We note that the
semi-perimeter of such cluster coincide with the number of columns
and rows with a plus, that is ∑3

𝑖=1 𝛼𝑖 ≥ 2𝑙𝑐 − 1.
Let 𝑛−𝜂 be the number of minuses in 𝜂, we can write the energy

function of 𝜂 as

𝐻(𝜂) ≥ 4𝐽𝛼1 + 6𝐽𝛼2 + 6𝐽𝛼3 + 2𝐽𝛼4

− 𝑛+𝑐 (𝜆 + ℎ) − 𝑛−𝜂 (𝜆 − ℎ), (A.3)

and we have

𝐻(𝜂) ≥ 4𝐽 (𝛼 + 𝛼 + 𝛼 ) + 2𝐽 (𝛼 + 𝛼 )
1 2 3 2 3
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+ 2𝐽 (2𝐿 − 𝛼1 − 𝛼2 − 𝛼3) − 𝑛+𝑐 (𝜆 + ℎ) − 𝑛−𝜂 (𝜆 − ℎ)

= 2𝐽 (𝛼1 + 𝛼2 + 𝛼3) + 2𝐽 (𝛼2 + 𝛼3 + 2𝐿)

− 𝑛+𝑐 (𝜆 + ℎ) − 𝑛−𝜂 (𝜆 − ℎ). (A.4)

Recalling the remark below (4.25), we rewrite the energy of 𝜎𝑐 and in
the following we compare 𝐻(𝜎𝑐 ) with the energy of 𝜂 in (A.4).

𝐻(𝜎𝑐 ) = 4𝐽 (2𝑙𝑐 − 1) + 2𝐽 (2𝐿 − (2𝑙𝑐 − 1))

− 𝑛+𝑐 (𝜆 + ℎ) − 𝑛−𝜎 (𝜆 − ℎ)

= 2𝐽 (2𝑙𝑐 − 1) + 4𝐽𝐿 − 𝑛+𝑐 (𝜆 + ℎ) − 𝑛−𝜎𝑐 (𝜆 − ℎ). (A.5)

We distinguish two cases according to the number of zeros in 𝜂: 𝑘 >
2𝑙𝑐 − 1 = 𝑛0𝜎𝑐 and 𝑘 ≤ 2𝑙𝑐 − 1 = 𝑛0𝜎𝑐 . In the first case, by (A.4) and
recalling ∑3

𝑖=1 𝛼𝑖 ≥ 2𝑙𝑐 − 1, we obtain

𝐻(𝜂) −𝐻(𝜎𝑐 )

≥ 2𝐽 (𝛼2 + 𝛼3) + (𝑛−𝜎𝑐 − 𝑛−𝜂 )(𝜆 − ℎ)

= 2𝐽 (𝛼2 + 𝛼3) + (𝑛0𝜂 − 𝑛0𝜎𝑐 )(𝜆 − ℎ) > 0 (A.6)

since 𝛼2, 𝛼3 ≥ 0 and 𝑛0𝜂 − 𝑛0𝜎𝑐 > 0.
In the second case, we observe that 𝜂 has to contain a bond (+,−)

since the semi-perimeter of its cluster of pluses is strictly greater than
2𝑙𝑐 − 1 and the number of zeros 𝑘 is smaller than 2𝑙𝑐 − 1. This means
that either 𝛼2 ≥ 1 or 𝛼3 ≥ 1. In particular, if 𝛼3 = 0 (and 𝛼1 ≥ 1)
then 𝜂 contains a single cluster of pluses with a shape different from a
quasi-square and in this case 𝛼1 + 𝛼2 > 2𝑙𝑐 − 1. Hence, by using (A.4)
and (A.5), we obtain

𝐻(𝜂) −𝐻(𝜎𝑐 ) > 2𝐽 (𝛼2 + 𝛼3) + (𝑛−𝜎𝑐 − 𝑛−𝜂 )(𝜆 − ℎ)

≥ 2𝐽 + (𝑛0𝜂 − 𝑛0𝜎𝑐 )(𝜆 − ℎ)

= 2𝐽 + (𝑘 − 2𝑙𝑐 + 1)(𝜆 − ℎ)

≥ 2𝐽 + (2 − 2𝑙𝑐 )(𝜆 − ℎ) ≥ 0 (A.7)

where the last inequality follows by (3.16), 𝑘 ≥ 1 and 𝐽 ≫ 𝜆 > ℎ > 𝜆
2 .

Otherwise, if 𝛼3 ≥ 1 we note that 𝜂 contains at least two discon-
nected clusters of pluses and for the geometry of the lattice, also in
this case we have 𝛼1 + 𝛼2 > 2𝑙𝑐 − 1. Thus, arguing as above, we obtain
the same result as in (A.7). □

Proof of Lemma 4.13. Let 𝜂 ∈ argmax𝜉∈𝑛+𝑐
𝐻(𝜉). By Lemma 4.12 we

have that 𝜂 contains a single quasi-square 𝑄 of pluses. Moreover, we
may apply Lemma A.19 or Lemma A.20 in the region 𝛬 ⧵ 𝑄, then we
have 𝜂𝛬⧵(𝑄∪𝜕+𝑄) = −1𝛬⧵(𝑄∪𝜕+𝑄), otherwise 𝜂 ∉ 𝑀 . □

Proof of Lemma 4.14. Let 𝜂 ∈ 𝑛+𝑐
. By Lemma 4.13, we have that

𝜂𝑄 = +1𝑄 and 𝜂𝛬⧵(𝑄∩𝜕+𝑄) = −1𝛬⧵(𝑄∩𝜕+𝑄), otherwise 𝜂 ∉ 𝑀 . We will
prove that if 𝜂 ∈ 𝑀 , then 𝜂𝜕+𝑄 = 0𝜕+𝑄. Suppose that there exists
𝑥, 𝑦 ∈ 𝜕+𝑄 ∩ 𝛬, |𝑥 − 𝑦| = 1, such that 𝜂(𝑥) = 0 and 𝜂(𝑦) = −1, then
we find 𝜂′ ∈ 𝑛+𝑐

with 𝐻(𝜂′) < 𝐻(𝜂) by applying Table 2.1 at row 5
(by flipping the minus in 𝑦 in to zero). Then, we have either 𝜂(𝑥) = −1
for all 𝑥 ∈ 𝜕+𝑄∩𝛬, or 𝜂(𝑥) = 0 for all 𝑥 ∈ 𝜕+𝑄∩𝛬. However, in the first
case there exists 𝑥, 𝑦 ∈ 𝜕+𝑄 ∩ 𝛬, |𝑥 − 𝑦| = 1, such that 𝜂(𝑥) = 𝜂(𝑦) = −1,
then by flipping the two minuses in 𝑥 and 𝑦 into zero, we obtain a
configuration 𝜂′ ∈ 𝑛+𝑐

with 𝐻(𝜂′) = 𝐻(𝜂) − 2𝐽 + 2(𝜆 − ℎ) < 𝐻(𝜂) by
applying Table 2.1 at rows 3 and 5. Thus, 𝜂𝜕+𝑄∩𝛬 = 0𝜕+𝑄∩𝛬 otherwise
𝜂 ∉ 𝑀 .

According to the zero-boundary conditions, the energy of 𝜂 de-
pends on the position of 𝑄, then 𝜂 can contain either a frame, or a
chopped boundary frame or a chopped corner frame. The energy of
these three configuration is computed in (3.13) and by using (3.14),
we can conclude that 𝜎𝑐 is the unique argmax𝜉∈𝑛+𝑐

𝐻(𝜉). □

Lemma A.21. If 𝜔 is a path from 𝜎c to 𝑛+c +1
such that 𝜔 =

(𝜎c, 𝜂1, 𝜂2,… , 𝜂𝑛), 𝑛 ≥ 1, with 𝜂𝑛 ∈ 𝑛+c +1
and 𝜂𝑖 ∈ 𝑛+c

for every
𝑖 = 1,… , 𝑛 − 1, then 𝛷(𝜔) ≥ 𝐻(�̃� ).
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c a
Proof of Lemma A.21. Consider a path 𝜔 as in the assumption, and
we suppose by contradiction that 𝛷(𝜔) < 𝐻(�̃�𝑐 ). If there exists 𝜂 ∈
𝑛+𝑐 +1 ∩ 𝜔 such that 𝜎𝑐 ∼ 𝜂, then by Table 2.1, we obtain

𝛷(𝜔) ≥ 𝐻(𝜂) = 𝐻(𝜎𝑐 ) + 4𝐽 − (𝜆 + ℎ) > 𝐻(�̃�𝑐 ). (A.8)

Then, we have 𝜎𝑐 ∼ 𝜂 where 𝜂 ∈ 𝑛+𝑐
∩ 𝜔. We note that, according to

Table 2.1, if the configuration contains a cluster of pluses with a quasi-
square shape, then the minimal energy contribution to add a plus is

2𝐽 − (𝜆+ ℎ). This is possible by flipping a zero with
0

+ ⋅ 0
0

nearest

eighbors into a plus, however all zero spins in 𝜎𝑐 have only a plus
nd at most two zeros nearest neighbors. Thus, we obtain 𝜂 from 𝜎𝑐

y flipping a minus into zero in order to create a zero with
0

+ ⋅ 0
0

earest neighbors, otherwise 𝛷(𝜔) ≥ 𝐻(�̃�𝑐 ). We note that the minimal
energy contribution to obtain 𝜂 is (𝜆− ℎ) when we flip a minus with at
most two minuses nearest neighbors to zero, see Table 2.1. Then, we
obtain from 𝜂 a configuration 𝜂′ ∈ 𝑛+𝑐

by adding a plus in the site

where there is the zero with
0

+ ⋅ 0
0

nearest neighbors. However,

also in this case we have 𝛷(𝜔) ≥ 𝐻(𝜂′) = 𝐻(𝜎𝑐 )+ (𝜆−ℎ)+2𝐽 −(𝜆+ℎ) =
(�̃�𝑐 ) and this is a contradiction. We observe that if we remove more

han one minus before adding a plus, the height is even greater. □

roof of Lemma 4.15. Let 𝜔 = (𝜂1,… .𝜂𝑛), 𝑛 ∈ N, be a path as in
the assumption. We consider the part of 𝜔 from 𝑛+𝑐

to 𝑛+𝑐 +1 and
let 𝜂𝑖 ∈ 𝑛+𝑐

∩ 𝜔 such that 𝜂𝑖 ∼ 𝜂𝑖+1 ∈ 𝑛+𝑐 +1. By the assumption
𝑖 ≢ 𝜎𝑐 , and we assume by contradiction that 𝛷(𝜔) ≤ 𝐻(�̃�𝑐 ). By applying

Lemma 4.14 we have 𝐻(𝜂𝑖) > 𝐻(𝜎𝑐 ), and in particular from Table 2.1
ince 𝜂𝑖 ≢ 𝜎𝑐 we have 𝐻(𝜂𝑖) = 𝐻(𝜎𝑐 ) + 2𝐽𝑎 + 𝑏(𝜆 − ℎ) with 𝑎 ∈ N and
∈ Z such that 2𝐽𝑎 + 𝑏(𝜆 − ℎ) > 0. Moreover, 𝐻(𝜂𝑖) ≤ 𝛷(𝜔) ≤ 𝐻(�̃�𝑐 ).

Then, by (4.26) we have 𝐻(𝜂𝑖) ≤ 𝛷(𝜔) ≤ 𝐻(�̃�𝑐 ) = 𝐻(𝜎𝑐 ) + 2𝐽 + (𝜆 − ℎ),
where we used (4.26). It follows that 𝑎 < 0 and 𝑏 < 0 and this is a
contradiction since we assumed 2𝐽𝑎 + 𝑏(𝜆 − ℎ) > 0. □

Proof of Lemma 4.16. Let 𝜔 be a path from �̃�𝑐 ∈ 𝑛+𝑐 +1 to 𝑛+𝑐 +2
without loops. Then, if there exists 𝜂 ∼ �̃�𝑐 such that 𝜂 ∈ 𝜔∩𝑛+𝑐 +2 then
by Table 2.1, we have 𝛷(𝜔) ≥ 𝐻(�̃�𝑐 ) + 2𝐽 − (𝜆 + ℎ) and we conclude
by (4.26) and (4.27). Otherwise, if along 𝜔 we have that �̃�𝑐 ∼ 𝜂 with
𝜂 ∈ 𝑛+𝑐 +1 then we conclude 𝛷(𝜔) ≥ 𝐻(�̃�𝑐 )+ (𝜆−ℎ) by using Table 2.1,
(4.26) and (4.27). □

Proof of Lemma 4.17. Let 𝜂 ∈ 𝑛+𝑐 +1 be a configuration such that
𝐻(𝜂) = 𝐻(�̃�𝑐 ). Then, by using the same partition of the columns and
ows in the proof of Lemma 4.12 (see conditions a, b, c and Fig. A.17,
e have

(𝜂) −𝐻(�̃�𝑐 )

= 4𝐽 (𝛼1 − 2𝑙𝑐 ) + 2𝐽 (𝛼4 − 2𝐿 + 2𝑙𝑐 )

+ 6𝐽 (𝛼2 + 𝛼3) + (𝑛−𝑐 − 𝑛−𝜂 )(𝜆 − ℎ)

= 2𝐽 (2𝛼1 + 𝛼4 + 3𝛼2 + 3𝛼3 − 2𝐿 − 2𝑙𝑐 )

+ (𝑛−𝑐 − 𝑛−𝜂 )(𝜆 − ℎ).

Since 𝐻(𝜂) = 𝐻(�̃�𝑐 ), it follows that 2𝛼1 + 𝛼4 + 3(𝛼2 + 𝛼3) = 2(𝐿 + 𝑙𝑐 )
nd 𝑛−𝑐 = 𝑛−𝜂 . The second equality implies that the number of minuses
n 𝜂 is the same as in �̃�𝑐 . Recalling that ∑4

𝑖=1 𝛼𝑖 = 2𝐿, we obtain
1 + 2(𝛼2 + 𝛼3) = 2𝑙𝑐 . Moreover, ∑3

𝑖=1 𝛼𝑖 ≥ 2𝑙𝑐 indeed the minimal semi-
erimeter of a cluster of pluses with area 𝑛+𝑐 is 2𝑙𝑐 by [42]. Then, we
erives 𝛼2 + 𝛼3 = 0. From the definitions of 𝛼2 and 𝛼3, it follows that
he bonds of type (+,−) are not present and that the number of bonds
+, 0) in each column and row is at most two. Hence, 𝛼1 = 2𝑙𝑐 and
4 = 2(𝐿 − 𝑙𝑐 ). This implies that the union of the clusters of pluses has
semi-perimeter equal to 2𝑙 . By [42], such union of clusters has to be
𝑐
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Fig. A.18. Examples of clusters of pluses with area 𝑛+𝑐 and the same perimeter of a
square with side length 𝑙𝑐 . The first three clusters are contained in a configuration of
𝒮 .

Fig. A.19. On the left, a configuration 𝜂 ∈ 𝒮 . In the middle 𝜂𝑘, with 𝑘 = 2 in this
case. On the right, an example of the configuration 𝜂𝑚 with 𝑚 = 3 and such that
𝐻(𝜂𝑚) = 𝐻(𝜂𝑘) + 𝑚(𝜆 + ℎ) − (𝑚 − 1)(𝜆 − ℎ).

contained either in a square with both side length 𝑙𝑐 or in a rectangle
with side length 𝑙𝑐 −1 and 𝑙𝑐 +1. Moreover, the cluster of pluses cannot
contain more than one protuberance along each side (otherwise 𝛼3 ≠ 0),
see Fig. A.18. We note that the cluster is in the corner of 𝛬, otherwise
either the number of zeros is greater than the number of zeros in �̃�𝑐 ,
or 𝜂 contains at least a bond (+,−). Finally, we observe that in case
the configuration contains more than one strip of minuses in at least a
column or a row of 𝛬, then 𝜂 contains a column among the 𝛼4 columns
with an energy contribution of 4𝐽 instead of 2𝐽 and so 𝐻(𝜂) > 𝐻(�̃�𝑐 ).
For the same reason, the protuberance attached to the cluster is at
distance one from the boundary of 𝛬, see Fig. A.18. We may conclude
that 𝜂 ∈ 𝒮 . □

Proof of Lemma 4.18. We consider a configuration 𝜂 ∈ 𝒮 ⧵ {�̃�𝑐}. By
the property of 𝒮 , the cluster of pluses of every configuration in 𝒮 has
perimeter equal to 2𝑙𝑐 , but the number of the sites along the external-
boundary of this cluster (the so called site-perimeter) changes according
to the number of its concave angles. We note that �̃�𝑐 contains 2𝑙𝑐 sites
along the external-boundary of the cluster of pluses, instead the other
configurations contains 𝑘 > 1 concave angles (see the second and the
third pictures in Fig. A.18 for two examples with 𝑘 = 2). Moreover,
every configuration in 𝒮 contains 2𝑙𝑐 zero spins, thus 𝜂 ≢ �̃�𝑐 contains
𝑘 ≥ 1 zero spins at distance strictly greater than one from the cluster. In
particular, this zero spins are in the minimal rectangle containing the
cluster of pluses and they are attached from the zero spins at distance
one from the cluster in order not to create more than one strip of
minuses in each column and row of 𝛬.

We consider the configuration 𝜂𝑘 obtained from 𝜂 by flipping these
𝑘 zero spins to minus, see Fig. A.19. For the definition of the set  and
by using Table 2.1, we have 𝐻(𝜂𝑘) = 𝐻(𝜂) − 𝑘(𝜆 − ℎ). By Table 2.1,
we note that 𝜂𝑘 is a local minimum, indeed every path from it is an
up-hill path. In particular, since to reach −1−1−1, 𝜔 must cross all the
manifold 𝑛+𝑐 +1, 𝑛+𝑐

, 𝑛+𝑐 −1, . . . , 0, then we consider 𝜂𝑚 be the
configuration with a protuberance with cardinality one obtained from
𝜂𝑘, see Fig. A.19 for an example of 𝜂𝑚. The path that connected 𝜂𝑘
with 𝜂𝑚 is a two-steps down-hill path, where the up-hill is the minimal
positive energy quantum 𝜆−ℎ, thus 𝛷(𝜂, 𝜂𝑚) ≥ 𝛷(𝜔). We obtain 𝐻(𝜂𝑚) =
𝐻(𝜂𝑘) +𝑚(𝜆 + ℎ) − (𝑚 − 1)(𝜆 − ℎ) by flipping 𝑚 pluses to zero and 𝑚 − 1
zeros to minus as in Fig. A.19 and by using Table 2.1. We note that
𝑚 ≥ 𝑘, indeed the cluster of pluses contains 𝑛+𝑐 +1 pluses in a rectangle
𝑙𝑐 × 𝑙𝑐 (or (𝑙𝑐 −1)× (𝑙𝑐 +1)) then when it contains 𝛾 concave angles then
the protuberance has cardinality more than 𝛾 because the pluses that
are not present in the sites of the concave angles must be located along
the protuberance to be inside the rectangle.
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Assume by contradiction that 𝛷(𝜔) ≤ 𝐻(𝜎𝑠). Thus, we have

𝐻(𝜎𝑠) ≥ 𝐻(𝜂𝑚) ≥ 𝐻(𝜂𝑘) + 𝑚(𝜆 + ℎ) − (𝑚 − 1)(𝜆 − ℎ)

≥ 𝐻(𝜂) − (𝑘 + 𝑚 − 1)(𝜆 − ℎ) + 𝑚(𝜆 + ℎ)

= 𝐻(�̃�𝑐 ) − (𝑘 + 𝑚 − 1)(𝜆 − ℎ) + 𝑚(𝜆 + ℎ)

≥ 𝐻(�̃�𝑐 ) + (1 − 𝑘)𝜆 + (2𝑚 + 𝑘 − 1)ℎ

= 𝐻(𝜎𝑠) − 𝑘𝜆 + (2𝑚 + 𝑘)ℎ

≥ 𝐻(𝜎𝑠) − 𝑘𝜆 + 3𝑘ℎ (A.9)

where the equality is obtained by (4.26) and (4.27) and the last
inequality follows from 𝑚 ≥ 𝑘. Then, we obtain a contradiction, indeed
𝐻(𝜎𝑠) ≥ 𝐻(𝜎𝑠) − 𝑘𝜆 + 3𝑘ℎ ≥ 𝐻(𝜎𝑠) − 𝜆 + 3ℎ > 𝐻(𝜎𝑠), since 𝑘 ≥ 1 and
ℎ > 𝜆∕2. □
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