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A B S T R A C T   

Adverse health effects have been linked with exposure to livestock farms, likely due to airborne microbial agents. 
Accurate exposure assessment is crucial in epidemiological studies, however limited studies have modelled 
bioaerosols. This study used measured concentrations in air of livestock commensals (Escherichia coli (E. coli) and 
Staphylococcus species (spp.)), and antimicrobial resistance genes (tetW and mecA) at 61 residential sites in a 
livestock-dense region in the Netherlands. For each microbial agent, land use regression (LUR) and random forest 
(RF) models were developed using Geographic Information System (GIS)-derived livestock-related characteristics 
as predictors. The mean and standard deviation of annual average concentrations (gene copies/m3) of E. coli, 
Staphylococcus spp., tetW and mecA were as follows: 38.9 (±1.98), 2574 (±3.29), 20991 (±2.11), and 15.9 
(±2.58). Validated through 10-fold cross-validation (CV), the models moderately explained spatial variation of 
all microbial agents. The best performing model per agent explained respectively 38.4%, 20.9%, 33.3% and 
27.4% of the spatial variation of E. coli, Staphylococcus spp., tetW and mecA. RF models had somewhat better 
performance than LUR models. Livestock predictors related to poultry and pig farms dominated all models. To 
conclude, the models developed enable enhanced estimates of airborne livestock-related microbial exposure in 
future epidemiological studies. Consequently, this will provide valuable insights into the public health impli-
cations of exposure to specific microbial agents.   

1. Introduction 

A growing body of epidemiological research demonstrates links be-
tween residential proximity to livestock farms and adverse health effects 
(Radon et al., 2007; Schulze et al., 2011; Borlée et al., 2015; Mirabelli 
et al., 2006; Pavilonis et al., 2013; Schinasi et al., 2011; Sigurdarson and 
Kline, 2006). Air pollution originating from these farms is a likely 
culprit, highlighting the need for reliable predictive models to evaluate 
airborne concentrations. Historically, environmental impact studies 
have primarily focused on ammonia, dust and methane emissions from 
livestock farms and have thus developed models for these emissions 
(Pohl et al., 2017; de Rooij et al., 2018; Chai et al., 2014; de Vries et al., 
2023). However, the biological components of livestock farm emissions 
have received limited attention despite their substantial emission 
quantities and potential significance for public health. Limited research 

exists concerning the evaluation and modelling of livestock-related 
microbial air pollution. 

Livestock farms can emit various biological agents, including bac-
teria and antimicrobial resistant bacteria harbouring antimicrobial 
resistance genes (ARGs) (Davis et al., 2018; de Rooij et al., 2019a; 
Franceschini et al., 2019; Gao et al., 2023; Gibbs et al., 2006), therefore 
these are good indicators of livestock-related microbial emissions that 
can be used for modelling. The bacteria Escherichia coli (E. coli) and 
Staphylococcus species (spp.) are both well-known livestock commen-
sals, and elevated concentrations have been identified in the air in close 
proximity to farms (de Rooij et al., 2019a). Moreover, ARGs are 
commonly detected in the air around livestock farms, with higher levels 
observed downwind compared to upwind (Gibbs et al., 2006). The ARGs 
tetW and mecA confer resistance to antimicrobial classes that are widely 
used in livestock (tetracycline and beta-lactam antibiotics, respectively) 
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(Robles-Jimenez et al., 2021). In the Netherlands, the substantial use of 
veterinary antibiotics, particularly tetracycline and broad-spectrum 
penicillins (including beta-lactams), led to policy interventions in 
2007 (Mevius and Heederik, 2014). Despite a significant decrease since 
then, antimicrobial usage on livestock farms continues to exceed human 
antimicrobial use (Jaarverslag, 2015). As reliable and specific indicators 
of livestock-related microbial emissions, these commensal bacteria and 
ARGs were selected as candidates for modelling in this study. 

Although spatial models have been developed for various chemical 
air pollutants in the past, only recently have researchers started to 
explore the potential of models for predicting concentrations of bio-
aerosols (de Rooij et al., 2018; Hjort et al., 2016). Modelling of microbial 
emissions poses distinct challenges. Microbial emissions, being living 
organisms subject to biological processes, are likely to exhibit more 
spatial heterogeneity compared to that of chemical emissions. Given this 
likely increased spatial heterogeneity, accurately capturing microbial 
emission patterns becomes challenging. Therefore, it is important to 
investigate the use of empirical models for livestock-specific microbial 
emissions to assess the effectiveness of such models for these types of 
emissions and to identify the most suitable modelling approach. Addi-
tionally, this study contributes to the broader understanding of 
employing spatial models for biological agents, thereby enhancing 
exposure assessment and facilitating the implementation of effective 
strategies for public health management. 

Historically, estimating residential exposure to livestock-related 
emissions relied on simple proxies like distance to the nearest farm. 
While proxies provide reasonable estimations of exposure, they lack the 
ability to identify specific agents relevant to particular health outcomes 
and they do not consider emission patterns. In a previous study, the 
spatial distribution of endotoxin, a component of Gram-negative bac-
terial cell walls, was examined and modelled using Land Use Regression 
(LUR) models (de Rooij et al., 2018). While endotoxin serves as a useful 
marker of general bacterial emissions, further research is required to 
explore the spatial variation of other microbial agents more specific to 
livestock farming. In addition, due to the limited studies on microbial 
emission modelling, we seek to investigate whether the Random Forest 
(RF) method, which is inherently more flexible, could outperform LUR 
models. While machine learning models are increasingly being applied 
in the realm of chemical air pollution (Liu et al., 2022), there is a lack of 
studies focussing on their application for microbial pollution. 

In this paper, our primary objective is to evaluate the feasibility of 

developing empirical spatial models for predicting residential exposure 
to livestock-specific microbial agents. Additionally, we aim to compare 
the performance of two modelling approaches: LUR and RF. We 
hypothesise that RF modelling, with its ability to handle nonlinearities 
and interactions between microbial emissions and predictor variables, 
will outperform standard linear regression-based modelling like LUR, 
resulting in more accurate estimates of microbial exposure. By 
employing these modelling approaches, we gain valuable insights into 
the patterns of livestock-related microbial emissions and its potential 
applicability in future health studies. 

2. Materials and methods 

2.1. Microbial air pollution data 

This study made use of microbial air pollution data collected in the 
period of May 2014 to December 2015 as published by De Rooij et al (de 
Rooij et al., 2018; de Rooij et al., 2019a). In brief, airborne particle 
samples (PM10) were collected using a filter-based technique (Teflon 
filters, Pall Corporation, Ann Arbor, USA) from 61 residential sites in the 
southeast of the Netherlands as part of the “Livestock Farming and 
Neighbouring Residents’ Health” (VGO) project (de Rooij et al., 2018). 
Sites were selected to represent a variety of livestock-related charac-
teristics (Fig. 1 gives a geographical overview of the selected sites and 
surrounding farms). Each site was repeatedly measured three or four 
times over a period of 14 days across all seasons. Simultaneous mea-
surements were performed at 10 sites per sampling session, giving a total 
of 235 air samples. Additionally, to account for the temporal variability 
of the airborne microbial concentrations, a reference site was installed 
and continuously sampled throughout. Harvard Impactors (Air Di-
agnostics and Engineering Inc., Naples, ME, USA) sampled air at a flow 
rate of 10 L/min for 15 min of each hour during the 14-day sampling 
period. After sampling, air filters were processed further in the lab for 
DNA extraction which was performed using the NucliSENS Magnetic 
bead DNA extraction kit (Biomerieux-diagnostics, Marcy l’Etoile, 
France) (see de Rooij et al., 2019a for full extraction details). Subse-
quently quantitative polymerase chain reaction (qPCR) analyses were 
used to quantify DNA sequences from E. coli, Staphylococcus spp., tetW 
and mecA genes in ambient PM10 fraction (primers used can be found in 
Table S1). DNA sequences from E. coli, Staphylococcus spp., tetW and 
mecA were found (above the limit of detection) in the majority of 

Fig. 1. Distribution of the 61 measurement sites in the Netherlands. The figure was created using ArcGIS (version 10.2.2; Esri) and the grey background is from the 
Esri Nederland & Community Maps Contributors. 
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samples (75%, 95%, 95% and 88%, respectively) (de Rooij et al., 
2019a). All measured concentrations were adjusted for temporal vari-
ation by implementing the difference method using the concentrations 
measured at the reference site, as described previously (Eeftens et al., 
2012; de Hoogh et al., 2013). Next, the annual average arithmetic mean 
concentration per site was calculated for each of the microbial agents, 
and these concentrations were subsequently natural logarithm (ln) 
transformed due to skewness of their distribution. Descriptive statistics 
of the annual average microbial concentrations can be found in Table S2, 
expressed both at the ln-transformed and original scales. To assess the 
efficacy of the difference method to adjust for temporal variation at each 
measurement site, we computed the per-site standard error of the mean 
(SEM). This allowed us to evaluate the accuracy of the annual average 
concentration at each site following correction for temporal variation. 
Formula S1 presents the SEM calculation utilised in this analysis. 

2.2. Potential predictor variables 

For this study, we made use of general and detailed livestock-related 
characteristics in the surroundings of the 61 measurement sites as 
computed with Geographic Information System (GIS) software (ArcGIS; 
version 10.2.2, Esri) using livestock data from 2015 as previously 
described (de Rooij et al., 2018; de Rooij et al., 2019a). These charac-
teristics included the distance to the nearest farm and specific farm 
types, as well as the number of farms and animals within various buffer 
zones surrounding the measurement sites (250m, 500m, 1000m and 
3000m). In addition, the distance-weighted number of farms and ani-
mals within these buffer zones were taken into account. For an overview 
of the GIS-computed livestock-related characteristics, see Table S3. The 
computed livestock-related predictors were winsorized to their 95th 

percentile, in accordance with de Rooij et al. (2018), in order to mitigate 
the influence of outliers due to their right-skewed distributions. To 
facilitate direct comparisons of the associations among different pre-
dictors, each variable was additionally scaled to its respective 10th to 
90th percentile range. For model development, only livestock-related 
characteristics with non-zero values for more than 20 of the 61 sites 
were considered as predictors, resulting in a total of 133 potential pre-
dictors (refer to Table S4 for the list of potential predictors, including the 
descriptive statistics). 

2.3. Model development 

In this study we developed models to estimate the concentrations of 
E. coli, Staphylococcus spp., tetW and mecA using two different methods: 
1) land use regression procedure (LUR) (Eeftens et al., 2012), and 2) 
random forest algorithm (RF) (Hu et al., 2017; Meng et al., 2018). 
Models were developed using the ln-transformed estimated yearly 
average concentrations of the microbial agents as dependent variables, 
while the livestock-related characteristics were used as the predictor 
variables. Both model types were constructed at three levels, each 
incorporating livestock-related characteristics of increasing detail as 
predictor variables. Level 1 utilised generic livestock-related charac-
teristics such as distance to nearest farm, without specifying the type of 
animal. Level 2 models included characteristics specific to the main 
different animal species (poultry, pigs, horses, cows and sheep). The 
most comprehensive level, level 3, incorporated farm type-specific 
characteristics, such as subtypes of cattle farms (dairy, meat). For a 
detailed list of predictor variables considered in each model level, refer 
to Table S5. All modelling was performed using R Statistical Software 
(version 4.2.2; R Core Team, 2022). 

2.3.1. Land use regression (LUR) models 
Predictor variables were entered into the model using a forward 

supervised stepwise selection procedure as previously described, where 
predictors with the a priori defined direction of effect were offered in the 
model building process (Eeftens et al., 2012). The first variable included 

in the model was that with the highest adjusted explained variance (R2). 
Additional variables were included in the model in a stepwise manner if 
they improved the adjusted R2. Any model variables with a p value >0.1 
or a variance inflation factor >3 were excluded from the model. Other 
model assumptions, including normality and homoscedasticity of re-
siduals were evaluated, in addition to a check for influential observa-
tions (Cook’s distance >1). 

2.3.2. Random forest (RF) models 
To develop these models, the R package ranger (version 0.14.1) was 

used to train and calibrate the RF models (Wright and Ziegler, 2017). 
Since the performance of a RF model is highly sensitive to the values of 
its hyperparameters, it is crucial to select the optimal set of values in 
order to improve the prediction accuracy and generalisability of the 
model, as well as to reduce the risk of overfitting (Cutler et al., 2012). 
The R package tuneRanger (version 0.5) was used to optimise the 
hyperparameters of the RF models (Probst et al., 2019). This was done 
through a grid search procedure, tuning the hyperparameters “mtry” 
(number of variables split at each node), “sample.fraction” (number of 
observations to sample for each decision tree) and “min.node.size” (the 
minimal size of the terminal nodes). The grid search performed an 
exhaustive search across a range of potential hyperparameter values to 
determine the best combination of values based on the highest R2 value 
achieved by the model. The identified hyperparameters were subse-
quently used to train the model. The resulting optimised hyper-
parameter values for all models can be found in Table S6. 

2.4. Model composition comparison 

The composition of the LUR models can be readily determined by 
examining the predictor variables included in the models and their 
corresponding coefficients, which provide insight into the importance of 
each predictor. In the case of RF models, we could assess the individual 
contributions of each predictor variable to the model performance by 
calculating the reduction in node impurity caused by each predictor. In 
RF regression models, such as those developed here, node impurity re-
fers to the variance following a split on that variable. The most impor-
tant variables achieve larger decreases in impurity, or in other words, 
greater increases in purity, by explaining more variance in the data. The 
decrease in impurity is calculated for each variable in every tree in the 
RF by summing up the impurity reduction as a result of splitting by that 
variable. These values, computed for each tree, are then averaged across 
all trees to give the mean decrease in impurity. Subsequently, these 
importance scores are normalised, enabling us to make comparisons of 
the importance scores across different models. 

2.5. Model evaluation 

To evaluate model robustness, both LUR and RF models underwent 
10-fold CV. This process involved dividing the measurement sites into 
training (90%) and test sets (10%), resulting in the development of 10 
cross-validated models for each model (Briggs et al., 1997). These 
models were then applied to predict microbial concentrations at the 
corresponding sites that were held out from the model building process. 
Predictions from these 10 models were regressed against the actual 
microbial concentrations to compute the 10-fold CV R2 and RMSE 
values. For the RF models, we employed a 10-fold nested CV approach to 
simultaneously tune the hyperparameters of the models and estimate 
model performance (Krstajic et al., 2014). Consequently, the best 
hyperparameter combination was selected for training on the full 
dataset. It has been shown that the nested CV approach provides unbi-
ased estimates of model performance (Varma and Simon, 2006). The full 
dataset was split 10 times into outer loop training and test sets. Subse-
quently the outer loop training set was further divided into 10 folds for 
which we performed inner loop CV using the tuneRanger package to tune 
the hyperparameters of the model as described above. For each of the 10 
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outer loops, we trained a RF model using the optimal hyperparameters 
as identified from the inner loop 10-fold CV to make predictions at the 
sites held out from the model training. For all exposure models, training 
model R2 and RMSE were computed by training the models on the full 
dataset and regressing the model predictions against the measured mi-
crobial concentrations for all 61 measurement sites. Refer to Formulae 
S2 and S3 for those implemented for the calculations of R2 and RMSE 
values (10-fold CV and training), respectively. 

3. Results 

3.1. Microbial air pollution data 

Considerable spatial variation of the annual average concentrations 
of the four microbial agents was observed (coefficients of variation for 
the absolute concentrations: 77.6%, 91.6%, 83.8%, 129.8% for E. coli, 
Staphylococcus spp., tetW and mecA, respectively). Fig. 2 shows the dis-
tributions of the temporally adjusted ln-transformed annual average 
concentrations of each microbial agent across the 61 measurement sites 
along with the coefficient of variation of the natural logarithm for each 
agent (CVnL). Moderate to strong correlations (0.66 ≤ ρ ≤ 0.81) were 
found between measured average concentrations of the four microbial 
agents (de Rooij et al., 2019a). 

The efficacy of the difference method in adjusting for temporal 
variation at each measurement site is shown by the site-specific SEM 
both before and after adjustment. The mean site SEM values prior to 
temporal variation adjustment for E. coli, Staphylococcus spp., tetW and 
mecA were as follows: 0.50, 0.91, 0.66, 0.71 units, respectively, which 
all dropped to the following SEM values following temporal variation 
adjustment: 0.35, 0.61, 0.38, 0.54. These drops in SEM values showed us 
that by implementing the difference method, we improved the precision 
of the mean measurements by accounting for temporal variation. For 
E. coli, Staphylococcus spp. and tetW, the SEM values (post adjustment) 
were all less than 10% of the sample mean, and for mecA it was less than 

20% of the sample mean, indicating a high level of accuracy in esti-
mating the annual mean after correcting for temporal variation. 
Descriptive statistics of the SEM values before and after correction for 
temporal variation can be found in Table S7. 

3.2. Model structure 

The predictors selected in all three levels of the LUR modelling for 
each microbial agent along with their estimates are shown in Table S8. 
The LUR1 models for each microbial agent incorporated only one pre-
dictor variable, with the most common predictor being the number of 
livestock farms (irrespective of the animal type) weighted by the dis-
tance in a 3000m buffer (Σ(N/m)). The number of predictors included in 
each of the LUR2 models ranged between two and four, while for the 
LUR3 models, it ranged between three and five. LUR2 and LUR3 models 
for all microbial agents were dominated by predictors related to poultry, 
pigs and horses. 

For all microbial agents, the most important predictor variable 
included in the RF1 models (based on reduction in node impurity) was 
the number of farms (all) in a 3000m buffer. The structure of the RF1 
models for all microbial agents was comparable. For the RF2 models, 
predictors related to poultry and pigs dominated the top five predictors 
across the four microbial agents. When comparing the structure of the 
RF2 models for the different agents, we found that livestock predictors 
related to pig farms dominated most strongly in the E. coli RF2 models 
compared to the other agents, whereas livestock predictors related to 
poultry farms consistently appeared in the top five predictors for all 
microbial agents. Cattle farm predictors appeared in the top five only for 
Staphylococcus spp. and mecA RF2 models. In the RF3 models, predictors 
related to specific types of pigs and poultry were identified as variables 
of importance. As with the RF2 models, pig farm predictors were the 
most dominant in the E. coli RF3 model compared to the other agents, 
and did not appear in the top five predictors in the Staphylococcus spp. 
and mecA RF3 models. Poultry farm predictors consistently dominated 

Fig. 2. Distribution of the temporally adjusted, ln-transformed annual average airborne concentrations of E. coli, Staphylococcus spp., tetW and mecA. The top and 
bottom limits of the boxes are the upper and lower quartiles of the mean pollutant concentration at each site. The horizontal line in each box is the median site 
average concentration and the whiskers indicate the variability outside the upper and lower quartiles. Individual circles plotted outside the whiskers are outliers 
defined as values which are either 1.5 × IQR above the third quartile or 1.5 × IQR below the first quartile. 
CVnL = coefficient of variation of the natural logarithm for each agent. 

B. Cornu Hewitt et al.                                                                                                                                                                                                                          



Environmental Pollution 346 (2024) 123590

5

in all RF3 models, and cattle farm predictors appeared in the top five 
predictors only for Staphylococcus spp. and mecA RF3 models. The list of 
the top five variables of importance in the three levels of RF models for 
each microbial agent can been found in Table S9. 

Table 1 shows the predictor variables selected in the LUR2 models 
and the five most important variables in the RF2 models for each mi-
crobial agent. When comparing the structure of the LUR and RF models 
for each microbial agent, we observed notable similarity between the 
livestock predictors incorporated in the LUR models and the top five 
predictors in the corresponding RF model. In the E. coli models, pre-
dictor variables related to pigs were dominant. Conversely, models for 
the other livestock commensal, Staphylococcus spp., were dominated 
with predictor variables related to poultry, along with several predictors 
associated to horse farms. Models for tetW and mecA exhibited similar 
structures, with predictors related to poultry and pigs dominating these 
models, with a possible small additional contribution of horse farms. 
Most of the predictors incorporated in the LUR models, as well as those 
of high importance in the RF models, were livestock variables computed 
within a 3000m buffer, the largest buffer size considered in the model 
building process. Overall, for all microbial agents, livestock predictors 
related to poultry and pigs were incorporated the most frequently as 
predictors in the LUR models and with high importance in the RF 
models, indicating their likely importance in predicting spatial variation 
of these agents in this study. 

3.3. Model performance 

The model performance metrics are presented in Table 2 which in-
cludes the training and 10-fold CV R2 and RMSE values for all LUR and 
RF models developed. Regarding the ability to predict spatial variation 
of the four microbial agents, the LUR models exhibited varying levels of 
explanatory power. Specifically, the best performing LUR model for 
each microbial agent could explain 37.0%, 10.0%, 8.4% and 16.7% of 

the spatial variation of E. coli, Staphylococcus spp., tetW and mecA at the 
hold-out sites, respectively. Overall, the LUR2 models, which incorpo-
rated predictors with greater livestock farm details than LUR1 but less 
detail than LUR3, performed the best in comparison to the LUR1 and 
LUR3 models. The RF models consistently outperformed their respective 
LUR model for all microbial agents. The best performing RF model for 
each microbial agent was able to explain 38.4%, 20.9%, 33.3% and 
27.4% of the spatial variation of E. coli, Staphylococcus spp., tetW and 
mecA at the hold-out sites, respectively. 

For all LUR and RF models, we observed a large drop from training 
model R2 to 10-fold CV R2. This drop was comparable for all LUR and RF 
models, with a mean decrease of 66.3% and 63.1% for LUR and RF 
models, respectively. This drop was more pronounced with increasingly 
complex models (i.e. models including more predictor variables). 

3.4. Model predictions 

We observed consistent agreements amongst the predictions from all 
LUR and RF training models for each microbial agent at the 61 moni-
toring sites, with strong and highly significant correlations (Pearson 
correlation coefficients (r) ranging from 0.62 to 0.99, all p values <
0.001; Fig. 3). The average r amongst the predictions from the six models 
for E. coli, Staphylococcus spp., tetW and mecA were 0.879, 0.812, 0.804, 
0.858, respectively. These results indicate that the different models for 
each microbial agent generated comparable predictions of their con-
centrations. Fig. 3 presents correlation matrices illustrating the re-
lationships between the predictions from all LUR and RF models for each 
microbial agent individually. Besides these within-agent model agree-
ments, also between-agent model prediction agreements were observed 
(Fig. S1). Modelled predictions of the different microbial pollutants 
exhibited moderate to good correlations, with r values ranging from 
0.51 to 0.96, all p values < 0.001. This underlines the similarities in 
model structure between the four microbial agents. 

Table 1 
List of predictors included in the LUR2 models and list of top five predictors included in the RF2 models for each microbial agent. LUR2 and RF2 models include animal 
species predictors but no subspecies information.   

E. coli Staphylococcus spp. tetW mecA 

LUR2  • N pigs weighted to distance in a 
3000m buffer (Σ(N/m))  

• N poultry in a 3000m buffer  
• N pigs in a 500m buffer  
• N horses in a 3000m buffer  

• N poultry farms in a 3000m buffer  
• N horses in a 1000m buffer  
• N horse farms in a 3000m buffer  

• N farms weighted to distance in a 
3000m buffer (Σ(N/m))  

• N poultry farms in a 1000m buffer  
• N horse farms in a 3000m buffer  

• N poultry animals weighted to distance 
in a 3000m buffer (Σ(N/m))  

• N farms (all) in 3000m buffer 

RF2  • N pigs weighted to distance in a 
3000m buffer (Σ(N/m))  

• N pig farms weighted to distance in a 
3000m buffer (Σ(N/m))  

• N poultry in a 3000m buffer  
• N pig farms in a 3000m buffer  
• N farms (all) weighted to distance in 

a 3000m buffer (Σ(N/m))  

• N farms (all) in a 3000m buffer  
• N poultry in a 3000m buffer  
• N cows in a 3000m buffer  
• N poultry farms weighted to distance in 

a 3000m buffer (Σ(N/m))  
• Distance to the nearest pig farm (≥15 

animals) (− 1*m)  

• N pig farms to distance in a 3000m 
buffer (Σ(N/m))  

• N pigs weighted to distance in a 
3000m buffer (Σ(N/m))  

• N poultry weighted to distance in a 
3000m buffer (Σ(N/m))  

• N poultry in a 3000m buffer  
• N poultry weighted to distance in a 

1000m buffer (Σ(N/m))  

• N poultry in a 3000m buffer  
• N poultry weighted to distance in a 

3000m buffer (Σ(N/m))  
• N farms (all) in a 3000m buffer  
• N cows in a 3000m buffer  
• N poultry farms weighted to distance in 

a 3000m buffer (Σ(N/m))  

Table 2 
Training and 10-fold CV R2 and RMSE for the three levels of LUR and RF models developed for each of the four microbial agents. Level 1 models are constructed using 
generic livestock-related characteristics without specifying the type of animal. Level 2 models include characteristics specific to the main different animal species 
(poultry, pigs, horses, cows, sheep). Level 3 models include subtypes of species.   

E. coli Staphylococcus spp. tetW mecA 

Training 10-fold CV Training 10-fold CV Training 10-fold CV Training 10-fold CV 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

LUR1 0.353 0.543 0.163 0.631 0.223 1.042 0.078 1.157 0.242 0.643 0.080 0.725 0.255 0.810 0.120 0.898 
LUR2 0.590 0.432 0.370 0.551 0.353 0.950 0.100 1.170 0.370 0.586 0.026 0.823 0.390 0.733 0.167 0.898 
LUR3 0.654 0.397 0.199 0.642 0.406 0.911 0.090 1.181 0.439 0.553 0.084 0.776 0.471 0.682 0.143 0.933 
RF1 0.530 0.483 0.276 0.576 0.865 0.523 0.209 1.056 0.383 0.593 0.158 0.679 0.424 0.728 0.185 0.847 
RF2 0.865 0.311 0.384 0.536 0.714 0.756 0.168 1.081 0.937 0.257 0.333 0.607 0.686 0.595 0.264 0.807 
RF3 0.820 0.357 0.365 0.547 0.664 0.798 0.145 1.097 0.813 0.397 0.313 0.618 0.768 0.535 0.274 0.802  
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4. Discussion 

The primary objective of our study was to determine whether 
empirical spatial models could be constructed and used to predict 
airborne concentrations of livestock-specific microbial agents in a live-
stock dense region. Furthermore, we aimed to assess and compare the 
performances of LUR and RF modelling to determine whether one 
method outperformed the other. Our findings demonstrated that these 
LUR and RF models, developed using comprehensive livestock infor-
mation, are adequate at predicting spatial variation for each microbial 
agent, achieving moderate 10-fold CV performances. Additionally, we 
demonstrated that the RF models exhibited higher performances 
compared to LUR models, adding to the body of evidence comparing 
standard LUR methods to the machine learning-based RF approach 
(Brokamp et al., 2017; Brokamp et al., 2018; Chen et al., 2020). 

As indicators of microbial emissions from livestock farms, we chose 
the microbial agents E. coli, Staphylococcus spp., tetW and mecA for this 
study. These agents are emitted by livestock farms and are suitable for 
characterisation in ambient air (de Rooij et al., 2019a). In addition, 
these agents exhibit a higher degree of specificity to livestock compared 
to the previously studied endotoxin, which could originate from a wider 
variety of sources emitting high quantities of (Gram-negative) bacteria 
(e.g. industrial waste recycling activities). In addition, clear spatial 
variation of these agents has been observed previously, highlighting 
their suitability for spatial modelling (de Rooij et al., 2019a). To our 
knowledge, only a limited number of previous studies have utilised 
empirical modelling techniques to predict bioaerosol concentrations in 
ambient air: de Rooij et al. (2018) for endotoxin in a rural environment 
and Hjort et al. (2016) for allergenic pollen in an urban environment. 
Using the same model build-up and 10-fold CV evaluation strategy, LUR 

models developed by de Rooij et al. (2018) could explain up to 32% of 
the spatial variation of endotoxin at the hold-out sites. This level of 
explanatory power is comparable to the findings observed in this study. 
These R2 values are modest in contrast to modelling results of conven-
tional air pollutants such as PM2.5, NO2 and O3. Predicting bioaerosol 
concentrations in ambient air involves addressing a complex interplay of 
numerous contributing factors. Microorganisms, unlike chemical pol-
lutants, engage in intricate interactions with each other, undergo growth 
and decay processes, and dynamically respond to environmental con-
ditions. Furthermore, it is worth noting that the concentrations of bio-
aerosols are likely influenced not only by the number and type of farms 
(as taken into account in our modelling) but also by farm-level indi-
vidual practices, including antimicrobial use, biosecurity measures, 
manure handling procedures, feeding practices, housing conditions and 
ventilation systems. Prior research has indicated that, beyond animal 
type and density, factors like antimicrobial use, biosecurity measures 
and feed and bedding type are linked to absolute and relative ARG 
abundances in pig and poultry farm dust (Luiken et al., 2022). Unfor-
tunately, this detailed information was not available for our study. 

Our LUR and RF models moderately explained the spatial variation 
in concentrations of the four microbial agents observed at the 61 mea-
surement sites. The RF2 model for E. coli demonstrated the highest 
performance, with 38.4% of the spatial variation explained. Model 
robustness was evaluated using 10-fold CV, which has been shown by 
others to be a stringent validation test to gain insight into the general-
isability of the models (Basagaña et al., 2012; Wang et al., 2012). 
Overall, the RF approach outperformed the LUR approach at all three 
model levels. This could be attributed to the capacity of RF models to 
capture non-linear relationships between predictors and outcomes, in 
addition to its enhanced ability to effectively capture interaction effects 

Fig. 3. Correlation matrix plot between all six training model predictions for a E. coli, b Staphylococcus spp., c tetW and d mecA concentrations. Numbers show 
Pearson correlation coefficients between the predictions from the different models, asterisks indicate the level of statistical significance for the corresponding 
correlation coefficients, where *** = p value < 0.001. 
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among predictors, surpassing the capabilities of LUR models. Limited 
studies have made comparisons between the LUR and RF approaches in 
relation to air pollution and these previous studies were conducted in 
very different settings. Chen et al. (2019) developed spatial PM2.5 
models (based on 543 sites) and NO2 models (based on 2399 sites) and 
found comparable performances between the LUR and RF algorithms in 
5-fold CV. Kerckhoffs et al. (2019) found modest improvements in the 
spatial predictions of external measurements of ultrafine particles by RF 
models in comparison to LUR models. 

Livestock predictors related to poultry and pigs appeared the most 
frequently overall across all LUR models and had the highest ranks of 
importance in the majority of RF models for all four microbial agents. It 
is important to note that these models are not designed specifically for 
source attribution and the selection of predictors in the models is not 
solely determined by their individual source strength, but also takes into 
account their geographical distribution. Despite similarities in the model 
structure for the microbial agents overall, we observed that E. coli 
models were dominated with predictor variables related to pig farms, 
Staphylococcus spp. models by those related to poultry farms and tetW 
and mecA models were dominated by both pig and poultry. These dif-
ferences in dominance of predictor variables for the four microbial 
agents may reflect their source. E. coli is a bacterium commonly found in 
the gastrointestinal tracts of animals. Although it is usually a commensal 
bacterium, causing no disease in the animal, it can be transferred to the 
environment via faecal matter and possibly cause harm to others that 
ingest or inhale it (Ramos et al., 2020). It could be that pig faeces contain 
higher levels of E. coli compared to that of other livestock animals. 
Research has indicated that E. coli is one of the predominant genera in 
the gastrointestinal tract of adult pigs, whereas for chickens this is not 
the case (Forcina et al., 2022). Alternatively or additionally, it could be 
that specific pig farm-related practices, such as faecal storage methods, 
enhance the dispersion of E. coli in the air. Staphylococcus spp. have been 
identified in a variety of animals including poultry and pigs (Davis et al., 
2018; Syed et al., 2020). Of particular note, bird feathers have been 
identified as a potential source of Staphylococcus spp. (Miskiewicz et al., 
2018), hence providing a possible explanation to why poultry farms play 
an important role in explaining the spatial variation of Staphylococcus 
spp. concentrations. Many bacteria originating from both poultry and 
pig farms have been identified with ARGs. ARGs encoding resistance to 
tetracycline antibiotics (such as tetW) have been identified commonly in 
E. coli strains (Ramos et al., 2020). In addition, it has been shown that 
Staphylococcus aureus populations commonly harbour the mecA gene 
(Wielders et al., 2002). Despite this suggestion that pig and poultry 
farms may be the dominant players in contributing to microbial air 
pollution, the importance of pig and poultry farm variables in our 
models may also be caused by a higher contrast in geographical distri-
bution across our study region of these farm types, allowing us to 
distinguish their association with microbial agents measured in ambient 
air more clearly. Livestock predictors with buffer sizes of 3000m were 
the most commonly incorporated in the LUR models and were of high 
importance in the RF models. This indicates that livestock-related mi-
crobial agents are likely to disperse several kilometres from farms. This 
implies that an individual’s modelled microbial air pollutant concen-
trations at the home address is the cumulative exposure to those live-
stock farms in the surroundings that can best explain exposure contrast 
within this study population instead simply of the nearest farm 
contribution. 

We observed large decreases from training R2 to 10-fold CV R2 values 
(mean decrease of 66.3% and 63.1% for LUR and RF models, respec-
tively). Overall, as anticipated given the flexibility of the RF models, we 
observed that they exhibited higher training model R2 values, which also 
corresponded to higher 10-fold CV R2 values compared to the LUR 
models. A few previous studies have evaluated the effects of the number 
of measurement sites on LUR model performance (Basagaña et al., 2012; 
Wang et al., 2012; Johnson et al., 2010). These studies have demon-
strated that training model R2 values provide overly overoptimistic 

estimations of performance in models built with limited sample sizes, 
leading to increased disparities between the training and CV R2 values. 
However, we observed even greater discrepancies than those reported in 
these studies. Johnson et al. (2010) and Basagaña et al. (2012) both 
demonstrated a convergence of training and validation R2 values for 
LUR models developed for NO2, benzene and PM2.5 only when models 
were developed with 125 or more sites. Similar to our study, Wang et al. 
(2012) developed models using carefully selected measurements sites. 
They concluded that models developed with as few as 40 sites can 
provide reliable estimations, indicating the likely sufficiency of the 
number of monitoring sites included in our study. However, due to 
limited studies on LUR modelling for bioaerosols, it is difficult to 
assuredly determine the optimal number of measurement sites. Bio-
aerosols have been shown to have a higher natural variation than PM10 
mass concentrations, and generally have a higher side-by-side variation 
(indicating both analytical and biological variability) compared to NO2 
concentrations, hence making extrapolation of these studies for bio-
aerosols difficult (de Rooij et al., 2018; de Rooij et al., 2019a). Chal-
lenges in collecting and detecting bioaerosols also augment the difficulty 
and limitations of including many sites within the monitoring campaign. 
The discrepancy between training and 10-fold CV R2 values observed in 
our study may partially be explained by overfitting as we observe an 
increased discrepancy as model complexity increases (Babyak, 2004; 
Craig et al., 2007). However, this discrepancy is evident across all three 
levels of models, including the simpler models. This suggests that 
overfitting may not be the primary contributing factor to the observed 
discrepancy. This higher discrepancy observed in our models compared 
to those developed for NO2 may reflect the likelihood that these agents 
have a larger diversity of sources in comparison to NO2. NO2 emissions 
are primarily associated with traffic sources in urban areas which exhibit 
more consistent emission patterns. This discrepancy between training 
and 10-fold CV R2 values is an important issue to consider in our study, 
as the aim of these models is to provide reliable exposure predictions for 
unmonitored sites (for example the residential addresses of health study 
participants) that have not been used for model training. Nevertheless, 
despite the drop in R2 values, considering the significant consistency 
observed between the different model predictions and the suboptimal 
alternatives for livestock exposure estimation (using proxies), we still 
deem the performance of the 10-fold CV model to be sufficient for 
estimating residential exposure. We believe that these model predictions 
will be of valuable use for future epidemiological studies investigating 
health effects of exposure to air pollution from livestock farms. 

Although 10-fold CV can provide reliable estimates of a model’s 
prediction performance for observations within the training dataset, it is 
not capable of evaluating a model’s predictive ability at locations that 
were not included in the model development process. Validation by 
means of an external dataset would be valuable to determine our 
models’ capabilities of estimating agent exposures at sites with differing 
spatial characteristics, as this would provide us with more robust con-
clusions regarding external performance and transferability. While an 
external validation dataset was not available for this study, monitoring 
sites were carefully selected to ensure that the full range of predictor 
variables was captured for the study region. Also, we did not have in-
formation on manure storage and land application which may have an 
impact on microbial pollutant concentrations in ambient air, as we know 
that manure handling is associated with increased occupational expo-
sure to dust and endotoxin (Basinas et al., 2014). In research thus far, 
LUR modelling in rural settings is underemployed. Before our models 
can be applied in other countries, thorough validation is essential as 
applicability face several challenges. These challenges arise due to 
substantial variations in farming practices worldwide and the likely 
limited availability of equivalent detailed and accurately geocoded 
livestock data in other areas. While our models offer an attractive 
alternative to previously employed exposure proxies such as distance to 
the nearest farm, they do not yield perfect estimations, as indicated by 
their moderate R2 values. Dispersion modelling, which is based on a 
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deterministic approach, has previously been applied successfully, after 
an intensive development phase, to model livestock farm-emitted 
endotoxin with the aim of estimating residential exposure (de Rooij 
et al., 2019b). This opens up possibilities to also explore this approach 
for other microbial agents. 

While the specific health effects of exposure to airborne E. coli, 
Staphylococcus spp. and ARGs have not yet been explicitly investigated, 
it is widely recognised that opportunistic zoonotic bacteria originating 
from livestock farms can be transmitted through the air. These bacteria 
have been shown to have the potential to infect and subsequently lead to 
the development of disease. The Q fever epidemic in the Netherlands is a 
telling example; rural residents became ill after inhalation of airborne 
Coxiella burnetii bacteria emitted from goat farms (de Rooij et al., 2016). 
Staphylococcus aureus is known to have the ability to form biofilms, 
which have been detected in the airways of patients with chronic lung 
diseases (Cullen and McClean, 2015; Shimizu et al., 2015). In a study 
conducted by White et al. (2020), it was demonstrated that when 
Staphylococcus aureus is aerosolised while attached to farm dust, it 
triggers an inflammatory response in human granulocytes during in vitro 
experiments. This indicates that exposure to airborne bacteria could be 
associated with deteriorations in lung function (White et al., 2020). 
Several studies have proposed direct airborne transmission of ARGs 
from farm dust to humans as an important route of transmission to 
humans (McEachran et al., 2015; Li et al., 2018; Mbareche et al., 2019; 
Bos et al., 2016; Dohmen et al., 2017). Additional studies have investi-
gated the impact of livestock exposure on the faecal resistome and ARG 
carriage (Zomer et al., 2016; Sun et al., 2020; Van Gompel et al., 2020). 
Although these studies have not specifically examined transmission 
routes, they consistently indicate that livestock exposure is a likely 
determinant for human ARG carriage in the gut in occupational settings 
and for neighbouring residents to farms. The observed associations be-
tween ARG carriage and livestock exposure might arise from direct 
ingestion, but could also be attributed to the inhalation of airborne 
bacteria carrying these ARGs, followed by the subsequent swallowing of 
these bacteria. It is plausible that airborne exposure exerts a more sig-
nificant impact on the microbiome and resistome of the airways. This is 
a currently understudied topic but highly interesting, particularly 
considering the combined exposure to multiple pollutants originating 
from livestock farms. The chemical and microbial emissions from such 
livestock farms are likely to impact the airways through various path-
ophysiological mechanisms (Yang et al., 2020; Albright and Goldstein, 
1996; Bessac et al., 2008). 

5. Conclusion 

The models developed in this study have the potential to estimate 
residential exposure to livestock farms within the context of epidemio-
logical research. Employing these modelled exposures has the potential 
to minimise exposure misclassification, a common concern when relying 
on exposure proxies. Through the quantification of exposure to micro-
bial emissions from livestock farms, our models offer a valuable pathway 
to gain better insights into the mechanisms underlying the observed 
health effects. Further understanding in this area could inform public 
health policies, particularly regarding monitoring and intervention 
strategies for regions with high livestock density and high population 
density, such as in the Netherlands. 

Associated content 

The Supplementary Material contains tables and figures related to 
model construction and evaluation. 

CRediT authorship contribution statement 

Beatrice Cornu Hewitt: Formal analysis, Methodology, Software, 
Visualization, Writing – original draft. Lidwien A.M. Smit: 

Conceptualization, Funding acquisition, Resources, Writing – review & 
editing. Warner van Kersen: Formal analysis, Software, Writing – re-
view & editing. Inge M. Wouters: Investigation, Writing – review & 
editing. Dick J.J. Heederik: Writing – review & editing. Jules Ker-
ckhoffs: Writing – review & editing. Gerard Hoek: Writing – review & 
editing. Myrna M.T. de Rooij: Conceptualization, Data curation, 
Formal analysis, Investigation, Project administration, Resources, Su-
pervision, Writing – review & editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgments 

We would like to thank the participating residents who cooperated 
with us in the study. We thank Isabella van Schothorst, Heike Schmitt, 
Ingmar Janse, Arno Swart, Karlijn Moonen, Erik van Deurssen, Jack 
Spithoven, Erik van Nunen, Nena Burger, Siegfried de Wind, Gerdit 
Greve and Rozemarijn van der Plaats for their work with sample 
collection, sample processing and/or laboratory analyses. Additionally 
we acknowledge the provinces of Noord-Brabant and Limburg for their 
provision of livestock data used in this study. 

The Livestock Farming and Neighbouring Residents’ Health (VGO) 
study was funded by the Ministry of Health, Welfare and Sports and the 
Ministry of Economic Affairs of Netherlands. The current study was 
funded by a Dutch Research Council (NWO) Aspasia grant to Lidwien A. 
M. Smit (015.014.067). 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.envpol.2024.123590. 

References 

Albright, J.F., Goldstein, R.A., 1996. Airborne pollutants and the immune System. 
Otolaryngol. Neck Surg. 114 (2), 232–238. https://doi.org/10.1016/S0194- 
59989670173-0. 

Babyak, M.A., 2004. What you see may not Be what you get: a brief, nontechnical 
introduction to overfitting in regression-type models. Psychosom. Med. 11. 

Basagaña, X., Rivera, M., Aguilera, I., Agis, D., Bouso, L., Elosua, R., Foraster, M., de 
Nazelle, A., Nieuwenhuijsen, M., Vila, J., Künzli, N., 2012. Effect of the number of 
measurement sites on land use regression models in estimating local air pollution. 
Atmos. Environ. 54, 634–642. https://doi.org/10.1016/j.atmosenv.2012.01.064. 

Basinas, I, Sigsgaard, T, Erlandsen, M, Andersen, NT, Takai, H, Heederik, D, Omland, Ø, 
Kromhout, H, Schlünssen, V, 2014 Jul. Exposure-affecting factors of dairy farmers’ 
exposure to inhalable dust and endotoxin. Ann Occup Hyg 58 (6), 707–723. https:// 
doi.org/10.1093/annhyg/meu024. 

Bessac, B.F., Sivula, M., von Hehn, C.A., Escalera, J., Cohn, L., Jordt, S.-E., 2008. TRPA1 
is a major oxidant sensor in murine airway sensory neurons. J. Clin. Invest. 118 (5), 
1899–1910. https://doi.org/10.1172/JCI34192. 

Borlée, F., Yzermans, C.J., van Dijk, C.E., Heederik, D., Smit, L.A.M., 2015. Increased 
respiratory symptoms in COPD patients living in the vicinity of livestock farms. Eur. 
Respir. J. 46 (6), 1605–1614. https://doi.org/10.1183/13993003.00265-2015. 

Bos, M.E.H., Verstappen, K.M., van Cleef, B.A.G.L., Dohmen, W., Dorado-García, A., 
Graveland, H., Duim, B., Wagenaar, J.A., Kluytmans, J.A.J.W., Heederik, D.J.J., 
2016. Transmission through air as a possible route of exposure for MRSA. J. Expo. 
Sci. Environ. Epidemiol. 26 (3), 263–269. https://doi.org/10.1038/jes.2014.85. 

Briggs, D.J., Collins, S., Elliott, P., Fischer, P., Kingham, S., Lebret, E., Pryl, K., Van 
Reeuwijk, H., Smallbone, K., Van Der Veen, A., 1997. Mapping urban air pollution 
using GIS: a regression-based approach. Int. J. Geogr. Inf. Sci. 11 (7), 699–718. 
https://doi.org/10.1080/136588197242158. 

Brokamp, C., Jandarov, R., Rao, M.B., LeMasters, G., Ryan, P., 2017. Exposure 
assessment models for elemental components of particulate matter in an urban 
environment: a comparison of regression and random forest approaches. Atmos. 
Environ. 151, 1–11. https://doi.org/10.1016/j.atmosenv.2016.11.066. 

B. Cornu Hewitt et al.                                                                                                                                                                                                                          

https://doi.org/10.1016/j.envpol.2024.123590
https://doi.org/10.1016/j.envpol.2024.123590
https://doi.org/10.1016/S0194-59989670173-0
https://doi.org/10.1016/S0194-59989670173-0
http://refhub.elsevier.com/S0269-7491(24)00304-X/sref2
http://refhub.elsevier.com/S0269-7491(24)00304-X/sref2
https://doi.org/10.1016/j.atmosenv.2012.01.064
https://doi.org/10.1093/annhyg/meu024
https://doi.org/10.1093/annhyg/meu024
https://doi.org/10.1172/JCI34192
https://doi.org/10.1183/13993003.00265-2015
https://doi.org/10.1038/jes.2014.85
https://doi.org/10.1080/136588197242158
https://doi.org/10.1016/j.atmosenv.2016.11.066


Environmental Pollution 346 (2024) 123590

9

Brokamp, C., Jandarov, R., Hossain, M., Ryan, P., 2018. Predicting daily urban fine 
particulate matter concentrations using a random forest model. Environ. Sci. 
Technol. 52 (7), 4173–4179. https://doi.org/10.1021/acs.est.7b05381. 
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Cirach, M., Declercq, C., Dėdelė, A., Dons, E., de Nazelle, A., Eeftens, M., Eriksen, K., 
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