
International Journal of Approximate Reasoning 161 (2023) 108985
Contents lists available at ScienceDirect

International Journal of Approximate Reasoning

journal homepage: www.elsevier.com/locate/ijar

Two generalizations of the semi-graphoid rule of probabilistic 

independence and more

Janneke H. Bolt a,b,∗
a Department of Mathematics and Computer Science, Eindhoven University of Technology, the Netherlands
b Faculty of Science, Open University of the Netherlands, Heerlen, the Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 December 2022
Received in revised form 10 July 2023
Accepted 12 July 2023
Available online 20 July 2023

Keywords:
Probabilistic independence
Rules of probabilistic independence
Semi-graphoid rules

Probabilistic independence is a key concept in probability theory and statistics. For prob-
abilistic independence a set of well known qualitative rules exists, the so-called semi-
graphoid rules, which can be summarized into a single semi-graphoid rule. This rule 
system was conjectured to be complete, it is however incomplete and an additional five 
rules were formulated. The generalization of one of those rules subsequently showed that 
no finite rule system exists and in recent work even all five additional rules were (further) 
generalized. In this paper, two new generalized rules are stated, both involving n, n ≥ 1
variable sets Ci . These rules generalize the semi-graphoid rule for n is odd and general-
ize one of the additional rules for n is even. Furthermore two new rules of probabilistic 
independence are given. The paper thereby contributes to the insights into the structural 
properties of probabilistic independence and provides an enhanced description of proba-
bilistic independence by means of rules.
© 2023 The Author. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Probabilistic independence is a key concept in probability theory and statistics and the notion plays a fundamental role in 
learning and reasoning in systems dealing with knowledge and uncertainty. Within the topic of probabilistic independence 
the so called probabilistic implication problem is of great importance. This problem asks for an answer to the question 
whether or not some probabilistic independence statement is enforced by a given set by probabilistic independences.

In [3], a set of sound qualitative rules of probabilistic independence is given; the well known semi-graphoid rules. 
These rules can be summarized into a single semi-graphoid rule which, given the symmetry property of probabilistic in-
dependence, is just as powerful [2,4]. Pearl conjectured that the semi-graphoid rules would be complete for probabilistic 
independence, however, in [5] a new rule of probabilistic independence was formulated. The semi-graphoid rules thus are 
incomplete and a set of independence statements that is closed under these rules, may lack statements that are enforced 
by probabilistic independence. In [7], yet another four new rules are stated and in [6,8] the authors show that there even 
is no finite complete system of rules of probabilistic independence by generalizing one of the new rules to an unlimited 
number of variable sets involved. The generalized rule then includes the original rule as a special case. In the proofs of 
the correctness of the rules, properties of the conditional mutual information between (sets of) variables and the relation 
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between conditional mutual information and the multi-information function were used. Recent work showed that not just 
one, but that all five additional rules can be generalized to an unlimited number of variable sets [1].

In this paper, two new generalized rules are formulated, both these rules include generalizations of the semi-graphoid 
rule and, surprisingly, both rules also comprise yet another generalization of one of the rules generalized in [1]. With the 
generalizations stated in this paper it thus is established that the semi-graphoid rule is just a special case of, at least, 
two general rules. Moreover, with these generalizations the question whether more than one generalization of some of the 
additional rules exists is answered. To conclude, two more rules of probabilistic independence are stated. These rules show 
that the generalized rules stated thus far for do not capture yet all rules of probabilistic independence that can be found by 
the proof method used. All in all, the paper gives an enhanced description of probabilistic independence by means of rules. 
The paper thereby provides for better tools to solve the probabilistic independence problem and further contributes to the 
insights into the structural properties of probabilistic independence.

This paper is an extended version of the paper ‘Two generalizations of the semi-graphoid rule of probabilistic indepen-
dence’ presented at the WUPES 2022 workshop.

2. Preliminaries

2.1. Probabilistic and semi-graphoid independence relations

Throughout the paper, a set V of discrete random variables with subsets A, B , C , ... is considered. Set union is noted by 
concatenation of the sets, for example, A ∪ B is written as AB . A triplet 〈A, B | C〉, with A, B, C pairwise disjoint subsets 
of V and A and B nonempty, states that the sets of variables A and B are probabilistic independent given observations for 
the variables in set C . An elementary triplet is a triplet with A and B singletons. The set of all disjoint triplets is noted as 
T (V ). A subset I of T (V ) is called a probabilistic independence relation if there exists a probability distribution Pr(V ) for 
which 〈A, B | C〉 is true for all 〈A, B | C〉 ∈ I and 〈A, B | C〉 is false for all 〈A, B | C〉 /∈ I .

In [3] Pearl proposed four rules of probabilistic independence. These rules sum up in the following two rules [4]:

A1: 〈A, B | C 〉 ↔ 〈B, A | C 〉
A2: 〈AB, C | D〉 ↔ 〈A, C | B D〉 ∧ 〈B, C | D〉

A set of valid independence statements closed under these two rules is called a semi-graphoid independence relation.
In [2] Matúš argued that any semi-graphoid independence relation is fully captured by its elementary triplets. He more-

over considered the first two positions of a triplet as unordered and alternatively defined a semi-graphoid independence 
relation as a set of elementary triplets that is closed under the rule:

A2′: 〈A, C | D〉 ∧ 〈B, C | AD〉 ↔ 〈A, C | B D〉 ∧ 〈B, C | D〉

In this paper rule A2′ will also be called the semi-graphoid rule.
The semi-graphoid rules are sound with respect to probabilistic independence relations. The system of rules, however, 

is not complete as shown by Studený in [5]. In this paper he stated a new rule of probabilistic independence, which he 
numbered A3. The correctness of this new rule was proved by using the relation between condition mutual information and 
the so-called multiinformation function. This is further discussed in the next section. In [7] another four new rules, rules A4 
to A7, were proposed.

In [6,8] the authors established that there is no finite complete system of rules of probabilistic independence by general-
izing rule A6 to an unlimited number of variables and in [1] it is shown that all rules A3 to A7 can be (further) generalized 
resulting in rules G3 to G7. An overview of all rules A3 to A7 and G3 to G7 is given in Appendix B. Rule A2′ plus the rules 
G3 to G7 will be referred to as rule system R.

2.2. Mutual information, multiinformation and probabilistic independence

In proving the correctness of the new rules of probabilistic independence, the relation between the mutual conditional 
information and the so-called multiinformation function was used, as discussed below [5,8].

Given a probability distribution Pr over V , the mutual information of two sets of random variables A and B in the 
context of a third set C , noted I(A; B|C), is a measure of the mutual dependence between A and B in the context of C (see 
for example [9]). The conditional mutual information given a discrete probability distribution Pr is defined as:

I(A; B | C) =
∑

abc

Pr(abc) · log
Pr(ab | c)

Pr(a | c) · Pr(b | c)

where abc ranges over all possible value combinations for the variables in ABC with Pr(a|c), Pr(b|c) �= 0. The conditional 
mutual information has as properties that for any A, B, C
2
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• I(A; B|C) ≥ 0;
• I(A; B|C) = 0 iff 〈A, B | C〉 is true.

The multiinformation function M(A|| Pr) induced by a probability distribution Pr over V is a real function M : 2V →
[0, ∞) on the elements A of the power set of V defined by:

M(A||Pr) = H(Pr(A)|
∏

i∈A

Pr(i)), M(∅||Pr) = 0

Where H is the relative entropy between the distributions Pr(A) and 
∏

i∈A Pr(i). Note that M(A|| Pr) ≥ 0 and that 
M(A|| Pr) = 0 iff Pr(A) = Pr(

∏
i∈A Pr(i)).

The mutual conditional information is related to the multiinformation function by:

• I(A; B | C) = M(ABC) + M(C) − M(AC) − M(BC)

We thus have that:

• M(ABC) + M(C) − M(AC) − M(BC) ≥ 0;
• M(ABC) + M(C) − M(AC) − M(BC) = 0 iff 〈A, B | C〉.

This relation enables straightforward proofs for rules of probabilistic independence: a rule is sound if the multiinformation 
terms of its set of premise triplets can be converted into the multiinformation terms of its set of consequent triplets. Below 
as an example a proof of rule A2.

Example 1. The probabilistic soundness of 〈AB, C | D〉 ↔ 〈A, C | B D〉 ∧ 〈B, C | D〉 is proved as follows:

We have that 〈AB, C | D〉 is a valid independence statement if and only if

0 = M(ABC D) + M(D) − M(AB D) − M(C D) ⇔
0 = M(ABC D) + M(D) − M(AB D) − M(C D)

+M(B D) − M(B D) + M(BC D) − M(BC D) ⇔
0 = M(ABC D) + M(B D) − M(AB D) − M(BC D)

+M(BC D) + M(D) − M(B D) − M(C D)

which is true if and only if 〈A, C | B D〉 and 〈B, C | D〉 are valid independence statements.

The last step in the proof above is based on the fact that the conditional mutual information for any three sets of variables 
is larger than or equal to 0. Note that the order of the first two positions of the triplets indeed doesn’t affect the proof.

3. Two generalizations of rule A2′

In this section two generalizations of rule A2′ are stated. These generalizations include an unlimited number of rules of 
independence, defined by the choice of n. Both generalizations involve the variable sets A and B and a set C of n, n ≥ 1
variable sets Ci . For each Ci two triplets are found both in the premise and in the consequent of the rules. One triplet with 
A as first argument and Ci as second argument and one triplet with B as first argument and Ci as second argument. The 
sets C \ Ci are distributed over the third arguments of those two triplets; in one of those triplets supplemented with the set 
A or B . The two rules differ in the specific composition of the third arguments of their triplets. Proofs of the propositions 
are constructed with the method described in the previous section and are provided in the appendix. Note that the proofs 
of both proposition are given for n is odd and n is even separately.

Remark furthermore that the triplets of rule A1, the triplets of rule A2 and the triplets of rule A2′ share a set of condi-
tioning variables. (The set C in rule A1 and the set D in rules A2 and A2′ .) In the generalizations given in this paragraph 
and in the two new rules in the next paragraph such a shared set is omitted for clarity of exposition. A shared condition 
set can be added to the triplets of a rule without affecting its validity. The proof of a rule’s validity with or without such a 
set is fully analogous.

Proposition 1. Let A, B, C1, . . . , Cn with n ≥ 1, be non-empty, mutually disjoint sets of variables. Then (taking Ci · · · Ci−1 := ∅)

G2a:
∧

i ∈ {1, . . . ,n},
i odd

[ 〈A, Ci | C1 · · · Ci−1〉 ∧ 〈B, Ci | A Ci+1 · · · Cn〉
] ∧
3
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∧

i ∈ {1, . . . ,n},
i even

[ 〈A, Ci | B C1 · · · Ci−1〉 ∧ 〈B, Ci | Ci+1 · · · Cn〉
] ↔

∧

i ∈ {1, . . . ,n},
i odd

[ 〈A, Ci | B Ci+1 · · · Cn〉 ∧ 〈B, Ci | C1 · · · Ci−1〉
] ∧

∧

i ∈ {1, . . . ,n},
i even

[ 〈A, Ci | Ci+1 · · · Cn〉 ∧ 〈B, Ci | A C1 · · · Ci−1〉
]

is a sound rules of probabilistic independence.

In the sequel specific instances of generalize rules will be indicated by a subscript, for example, rule G2a for n = 1 will 
be noted by G2a1.
Rule G2a1 equals (with an additional conditioning set D) rule A2′ and rule G2a2 equals rule A7 (taking A = A, B = D , C1 = C
and C2 = B). Rule G2a3, for example, states that

〈A, C1 | ∅〉 ∧ 〈A, C3 | C1C2〉 ∧ 〈B, C1 | A C2C3〉 ∧ 〈B, C3 | A〉 ∧
〈A, C2 | B C1〉 ∧ 〈B, C2 | C3〉 ↔
〈A, C1 | B C2C3〉 ∧ 〈A, C3 | B〉 ∧ 〈B, C1 | ∅〉 ∧ 〈B, C3 | C1C2〉 ∧
〈A, C2 | C3〉 ∧ 〈B, C2 | A C1〉

In Fig. 1 the structure of G2a is clarified by a graphical representation of rules G2a1 to G2a5. Each X Z Y in this figure 
represents a triplet 〈X, Y | Z〉. This representation shows clearly the way the rule develops with increasing n.

Proposition 2. Let A, B, C1, . . . , Cn with n ≥ 1, be non-empty, mutually disjoint sets of variables. Then (taking Ci · · · Ci−1 := ∅)

G2b:
∧

i ∈ {1, . . . ,n},
i odd

[ 〈A, Ci | C1 · · · Ci−1〉 ∧ 〈B, Ci | A Ci+1 · · · Cn〉
] ∧

∧

i ∈ {1, . . . ,n},
i even

[ 〈A, Ci | B Ci+1 · · · Cn〉 ∧ 〈B, Ci | C1 · · · Ci−1〉
] ↔

∧

i ∈ {1, . . . ,n},
i odd

[ 〈A, Ci | B C1 · · · Ci−1〉 ∧ 〈B, Ci | Ci+1 · · · Cn〉
] ∧

∧

i ∈ {1, . . . ,n},
i even

[ 〈A, Ci | Ci+1 · · · Cn〉 ∧ 〈B, Ci | A C1 · · · Ci−1〉
]

is a sound rules of probabilistic independence.

Rule G2b1 equals (with an additional conditioning set D) rule A2′ and rule G2b2 equals rule A4 (taking A = C , B = A, C1 = B
and C2 = D). Rule G2b3, for example, states that

〈A, C1 | ∅〉 ∧ 〈A, C3 | C1C2〉 ∧ 〈B, C1 | A C2C3〉 ∧ 〈B, C3 | A〉 ∧
〈A, C2 | B C3〉 ∧ 〈B, C2 | C1〉 ↔
〈A, C1 | B〉 ∧ 〈A, C3 | BC1C2〉 ∧ 〈B, C1 | C2C3〉 ∧ 〈B, C3 | ∅〉 ∧
〈A, C2 | C3〉 ∧ 〈B, C2 | A C1〉

In Fig. 2 the structure of G2bn is clarified by a graphical representation of rules G2b1 to G2b5.

All rules in R∪ {G2a} ∪ {G2b} (and also the rules given in Section 4) are bi-implications so the premise triplets may 
be either the triplets at the left hand side or at the right hand site of the rule. Note however, that for each rule, it holds 
4
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Fig. 1. The structure of rule G2a for n = 1 to n = 5.

that set of triplets at left and right hand side only differ in the names of variable sets. The set premise triplets of each 
rule therefore can be represented by a single set of triplets. For rule G2a3, for example this set is {〈V 1, V 3 | ∅〉, 〈V 2, V 3 |
V 1 V 4 V 5〉, 〈V 1, V 4 | V 2 V 3〉, 〈V 2, V 4 | V 5〉, 〈V 1, V 5 | V 3 V 4〉, 〈V 2, V 5 | V 1〉}.

Rules G2a and G2b both strengthen (for n > 2) rule system R, as stated in Proposition 3. This proposition is based on 
Lemmas 1 to 6.
5



J.H. Bolt International Journal of Approximate Reasoning 161 (2023) 108985
Fig. 2. The structure of rule G2b for n = 1 to n = 5.

Lemma 1. Let TG2a be the set of premise triplets of rule G2a and let TG2b be the set of premise triplets of rule G2b. Then

∀k,l;k �=l TG2al � TG2ak and

∀k,l;k �=l TG2b � TG2b
l k

6
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Proof. By definition of rule G2a, for all l it holds that

{〈V 1, V 3 | ∅〉, 〈V 2, V 3 | V 1 V 4, . . . Vl+2〉} ⊆ TG2al

however for all k; k �= l it holds that

{〈V 1, V 3 | ∅〉, 〈V 2, V 3 | V 1 V 4, . . . Vl+2〉} � TG2ak

Therefore TG2al � TG2ak for all k, l with k �= l. The proof of TG2bl � TG2bk is similar. �
Corollary 1. Let TG2a and TG2b as before and let TA2 be the set of premise triplets of rule A2. Since TA2 = TG2a1 = TG2b1 , by Lemma 1

∀k>1 TA2 � TG2ak and

∀k>1 TA2 � TG2bk �
Lemma 2. Let TG2a and TG2b as before and let TG3 be the set of premise triplets of rule G3. Then

∀k,l TG3l � TG2ak and

∀k,l TG3l � TG2bk

Proof. By definition of rule G3, for all l it holds that

{〈V 1, V 2 | ∅〉, 〈V 1, V 2 | V 3, . . . Vl〉} ⊆ TG3l

however, by definition of rule G2a, for all k it holds that

{〈V 1, V 2 | ∅〉, 〈V 1, V 2 | V 3, . . . Vl〉} � TG2ak

Therefore, TG3l � TG2ak for all k, l. The proof of TG3l � TG2bk is similar. �
Lemma 3. Let TG2a and TG2b as before and let TG4 be the set of premise triplets of rule G4. Then

∀k,l TG4l � TG2ak and

∀k>2,l TG4l � TG2bk

Proof. By definition of rule G4, for all l it holds that

{〈V 1, V 2 | V 3〉, 〈V 2, V 3 | V 1, V 4 . . . Vl+2〉} ⊆ TG4l

however, by definition of rule G2a, for all k it holds that

{〈V 1, V 2 | V 3〉, 〈V 2, V 3 | V 1, V 4 . . . Vl+2〉} � TG2ak

Therefore, TG4l � TG2ak for all k, l. The proof of TG4l � TG2bk for all k > 2, l is similar. Note that TG42 = TG2b2 , therefor now 
the condition k > 2 has to be made. �
Lemma 4. Let TG2a and TG2b as before and let TG5 be the set of premise triplets of rule G5. Then

∀k,l TG5l � TG2ak and

∀k,l TG5l � TG2bk

Proof. By definition of rule G5, it holds that for all l, the set TG5l includes at least four triplets with a single set at the third 
position. By definition of rules G2a and G2b, it holds that for all k, the sets TG2ak and TG2bk include at most two triplets 
with a single set at the third position. Therefore TG5l � TG2ak and TG5l � TG2bk for all k, l. �
Lemma 5. Let TG2a and TG2b as before and let TG6 be the set of premise triplets of rule G6. Then

∀k,l TG6l � TG2ak and

∀k,l TG6 � TG2b
l k

7
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Proof. By definition of rule G6, for all l it holds that the set TG6l includes at least three triplets with the same set at one 
of the first two positions plus an equal number of sets at the third position. By definition of rules G2a and G2b, for all k it 
holds that the sets TG2ak and TG2bk do not fulfill this condition. Therefore TG6l � TG2ak and TG6l � TG2bk for all k, l. �
Lemma 6. Let TG2a and TG2b as before and let TG7 be the set of premise triplets of rule G7. Then

∀k>2,l TG7l � TG2ak and

∀k,l TG7l � TG2bk

Proof. By definition of rule G7, for all l it holds that

{〈V 1, V 2 | ∅〉, 〈V 3, V 4 | ∅〉} ⊆ TG7l

however, by definition of rule G2b, for all k it holds that

{〈V 1, V 2 | ∅〉, 〈V 3, V 4 | ∅〉}� TG2bk

Therefore, TG7l � TG2bk for all k, l. Further, TG71 = TG2a2 . By Lemma 1, therefore TG71 � TG2ak for k > 2. By definition of rule 
G7, for l > 1 it holds that

{〈V 1, V 2 | ∅〉, 〈V 3, V 4 | ∅〉, 〈V 5, V 6 | ∅〉} ⊆ TG7l

however, by definition of G2a, for all k it holds that

{〈V 1, V 2 | ∅〉, 〈V 3, V 4 | ∅〉, 〈V 5, V 6 | ∅〉}� TG2ak

Therefore, TG7l � TG2ak for all k > 2, l. �
Lemma 7. Let TG2a and TG2b as before then

∀k>1,l TG2bl � TG2ak and

∀k>1,l TG2al � TG2bk

Proof. TG2a1 = TG2b1 therefore, by Lemma 1, ∀k>1 TG2b1 � TG2ak . Further, by definition of G2b, for all l > 1 it holds that

{〈V 1, V 2 | ∅〉, 〈V 2, V 3 | V 1, V 4 . . . Vl+2∅〉, 〈V 3, V 4 | V 2〉} ⊆ TG2bl

however, by definition of G2a, for all k it holds that

{〈V 1, V 2 | ∅〉, 〈V 2, V 3 | V 1, V 4 . . . Vl+2∅〉, 〈V 3, V 4 | V 2〉} � TG2ak

Therefore, TG2bl � TG2ak for all k > 1, l.
Since TG2a1 = TG2b1 by Lemma 1 also ∀k>1, TG2a1 � TG2bk . Further, by definition of G2a, for all l > 1 it holds that1

{〈V 1, V 2 | ∅〉, 〈V 2, V 3 | V 1, V 4 . . . Vl+2〉, 〈V 3, V 4 | V 5 . . . Vl+2〉} ⊆ TG2al

however, by definition of G2b for all k it holds that

{〈V 1, V 2 | ∅〉, 〈V 2, V 3 | V 1, V 4 . . . Vl+2〉, 〈V 3, V 4 | V 5 . . . Vl+2〉} � TG2bk

Therefore, TG2al � TG2bk for all k > 1, l. �
Proposition 3. For k > 2 all rules G2ak and G2bk individually strengthen rule system R.

Proof. In Lemmas 2 to 6 plus Corollary 1 it is shown that for k > 2 there is no rule in R of which the set of premises is a 
(sub)set of the set of premises of the rules G2ak or G2bk . So, for k > 2 both rules G2ak and G2bk allow for derivations from 
a given set of triplets were no derivations can be made with the rules in R. Moreover, it is shown in Lemma 1 that for 
each rule G2ak it holds that there is no ruleG2al with l �= k of which the set of premise triplets is a subset of the premise 
triplets of G2ak . So each rule G2ak allows for a derivation where no derivation can be made with rules G2al , l �= k. The same 
holds for G2b. To conclude, in Lemma 7 it is shown that for k > 1, l, there is no rule G2bl of which the premise triplets are 
a subset of the premise triplets of G2ak and vice versa. So all rules G2ak , k > 1 allow for derivations, not allowed by any 
rule G2bl and all rules G2bk , k > 1 allow for derivations, not allowed by any G2al . Thus for k > 2, all rules G2ak and G2bk
individually strengthen rule system R. �

1 taking {V 5 . . . Vl+2} := ∅ for l = 2.
8
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Fig. 3. Rule A8.

Fig. 4. Rule A9.

The two rules presented in this section comprise generalizations of the semi-graphoid rule. Surprisingly, the first gen-
eralization not only includes (for n = 1) the semi-graphoid rule, but also includes (for n = 2) rule A7, as a special case. 
Moreover, in the proof of its soundness a distinction has to be made between n is odd and n is even. So, in fact the first 
generalization can be considered as a generalization of the semi-graphoid rule for n is odd and as a generalization of rule 
A7 for n is even. Likewise, the second generalization, not only includes (for n = 1) the semi-graphoid rule, but also includes 
(for n = 2) rule A4 as a special case and, again, in the proof of its soundness a distinction has to be made between n is odd 
and n is even. So, in fact the second generalization can be considered as a generalization of the semi-graphoid rule for n
is odd and as a generalization of A4 for n is even. Obviously, since the generalized rules are new, the generalizations of A7 
and A4 presented here differ from their generalizations given in [1].

4. Two additional rules of probabilistic independence

Below two more rules of probabilistic independence are given.

Proposition 4. Let A, B, C, D, E, be non-empty, mutually disjoint sets of variables. Then,

A8 : 〈A, C | ∅〉 ∧ 〈A, D | C E〉 ∧ 〈A, E | BC〉 ∧
〈B, C | AD E〉 ∧ 〈B, D | E〉 ∧ 〈B, E | A〉 ↔
〈A, C | B D E〉 ∧ 〈A, D | E〉 ∧ 〈A, E | B〉 ∧
〈B, C | ∅〉 ∧ 〈B, D | C E〉 ∧ 〈B, E | AC〉

is a sound rule of probabilistic independence.

Proof. The proposition can be proved straightforwardly by using the method described in Section 2.2. �
The structure of the rule is clarified in Fig. 3.

Proposition 5. Let A, B, C, D, E, be non-empty, mutually disjoint sets of variables. Then,

A9 : 〈A, C | ∅〉 ∧ 〈A, D | C E〉 ∧ 〈A, E | BC〉 ∧
〈B, C | D〉 ∧ 〈B, D | A〉 ∧ 〈B, E | AC D〉 ↔
〈A, C | D〉 ∧ 〈A, D | B〉 ∧ 〈A, E | BC D〉 ∧
〈B, C | ∅〉 ∧ 〈B, D | C E〉 ∧ 〈B, E | AC〉

is a sound rule of probabilistic independence.

Proof. The proposition can be proved straightforwardly by using the method described in Section 2.2. �
The structure of the rule is clarified in Fig. 4.
9
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None of the sets of premise triplets of the rules in R ∪ {G2a, G2b} are included in the set of premise triplets in rules 
A8 and A9. These two rules thus show that the generalized rules stated thus far do not capture yet all rules of probabilistic 
independence that can be found by the method described in Section 2.2.

5. Conclusions and future research

In this paper two generalizations of the semi-graphoid rule of probabilistic independence were formulated. These gen-
eralizations include an unlimited number of rules of independence, defined by the choice of n. The rules were proved to 
be sound by a proof method based on the relation between conditional mutual independence and the concept of multi-
information. The first generalized rule joins a generalization of the semi-graphoid rule of probabilistic independence and 
a generalization of rule A7 from [7] and the second generalized rule joins a generalization of the semi-graphoid rule and 
a generalization of rule A4 from [7]. The generalizations of A4 and A7, moreover, differ from their generalizations given in 
[1]. With these two generalizations it is established that the semi-graphoid rule, which summarizes the well known semi-
graphoid rule system, is just a special case of at least two general rules. These generalizations moreover show that more 
than one generalization of rules A4 and A7 exists. Also two new rules of probabilistic independence were given. These rules 
show that the generalized rules stated so far thus do not capture yet all rules of probabilistic independence that can be 
found by the used proof method. The paper all in all contributes to the insights in the structural properties of probabilistic 
independence and to the description of probabilistic independence by a qualitative rule system.

An obvious question for future research is whether the two new non-general rules can be generalized as well. Another, 
more fundamental, question is whether or not the number of (generalized) rules that can be found by the proof method 
based on the relation between conditional mutual independence and the concept of multiinformation is limited.
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Appendix A. Proofs of Propositions 1 and 2

Both propositions are proved using the method described in Section 2.2.
In both proofs {i, . . . , i − 2} := ∅ and

m1(i) = M(C1 · · · Ci−1) m9(i) = M(BC1 · · · Ci−1)

m2(i) = M(C1 · · · Ci) m10(i) = M(BC1 · · · Ci)

m3(i) = M(Ci · · · Cn) m11(i) = M(BCi · · · Cn)

m4(i) = M(Ci+1 · · · Cn) m12(i) = M(BCi+1 · · · Cn)

m5(i) = M(AC1 · · · Ci−1) m13(i) = M(ABC1 · · · Ci−1)

m6(i) = M(AC1 · · · Ci) m14(i) = M(ABC1 · · · Ci)

m7(i) = M(ACi · · · Cn) m15(i) = M(ABCi · · · Cn)

m8(i) = M(ACi+1 · · · Cn) m16(i) = M(ABCi+1 · · · Cn)

Moreover 
∑

i ∈ {1, . . . ,n}, i odd is abbreviated by 
∑

i odd and 
∑

i ∈ {1, . . . ,n}, i even by 
∑

i even .

Proposition 1

We have that
∧

i ∈ {1, . . . ,n},
i odd

[ 〈A, Ci | C1 · · · Ci−1〉 ∧ 〈B, Ci | A Ci+1 · · · Cn〉 ] ∧

∧

i ∈ {1, . . . ,n},
i even

[ 〈A, Ci | B C1 · · · Ci−1〉 ∧ 〈B, Ci | Ci+1 · · · Cn〉
]

10
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are valid independence statements if and only if

0 =
∑

i odd

[
m6(i) + m1(i) − m5(i) − m2(i) + m15(i) + m8(i) − m16(i) − m7(i)

]

+
∑

i even

[
m14(i) + m9(i) − m13(i) − m10(i) + m11(i) + m4(i) − m12(i) − m3(i)

]

Given n is odd, we have that
∑

i odd

[
m6(i) + m8(i)

] =
∑

i even

[
m5(i) + m7(i)

] + M(AC1 · · · Cn) + M(A)

∑

i odd

[ − m5(i) − m7(i)
] =

∑

i even

[ − m6(i) − m8(i)
] − M(A) − M(AC1 · · · Cn)

∑

i even

[
m9(i) + m11(i)

] =
∑

i odd

[
m10(i) + m12(i)

] − M(BC1 · · · Cn) − M(B)

∑

i even

[ − m10(i) − m12(i)
] =

∑

i odd

[ − m9(i) − m11(i)
] + M(B) + M(BC1 · · · Cn)

and thus find that

0 =
∑

i odd

[
m15(i) + m12(i) − m16(i) − m11(i) + m10(i) + m1(i) − m9(i) − m2(i)

]

+
∑

i even

[
m7(i) + m4(i) − m8(i) − m3(i) + m14(i) + m5(i) − m13(i) − m6(i)

]

which is true if and only if
∧

i ∈ {1, . . . ,n},
i odd

[ 〈A, Ci | B Ci+1 · · · Cn〉 ∧ 〈B, Ci | C1 · · · Ci−1〉
] ∧

∧

i ∈ {1, . . . ,n},
i even

[ 〈A, Ci | Ci+1 · · · Cn〉 ∧ 〈B, Ci | A C1 · · · Ci−1〉
]

are valid independence statements.

Given n is even, we have that
∑

i odd

[
m6(i) + m8(i)

] =
∑

i even

[
m5(i) + m7(i)

]

∑

i odd

[ − m5(i) − m7(i)
] =

∑

i even

[ − m6(i) − m8(i)
]

(since m5(1) = m8(n) (= M(A)) and m7(1) = m6(n) (= M(AC1 . . . Cn)))∑

i even

[
m9(i) + m11(i)

] =
∑

i odd

[
m10(i) + m12(i)

]

∑

i even

[ − m10(i) − m12(i)
] =

∑

i odd

[ − m9(i) − m11(i)
]

(since m10(n) = m11(1) (= M(BC1 · · · Cn)) and m12(n) = m9(1) (= M(B)))

and thus again find that

0 =
∑

i odd

[
m15(i) + m12(i) − m16(i) − m11(i) + m10(i) + m1(i) − m9(i) − m2(i)

]

+
∑

i even

[
m7(i) + m4(i) − m8(i) − m3(i) + m14(i) + m5(i) − m13(i) − m6(i)

]

11
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which concludes the proof.

Proposition 2

We have that

∧

i ∈ {1, . . . ,n},
i odd

[ 〈A, Ci | C1 · · · Ci−1〉 ∧ 〈B, Ci | A Ci+1 · · · Cn〉
] ∧

∧

i ∈ {1, . . . ,n},
i even

[ 〈A, Ci | B Ci+1 · · · Cn〉 ∧ 〈B, Ci | C1 · · · Ci−1〉
]

are valid independence statements if and only if:

0 =
∑

i odd

[
m6(i) + m1(i) − m5(i) − m2(i) + m15(i) + m8(i) − m16(i) − m7(i)

]

+
∑

i even

[
m15(i) + m12(i) − m16(i) − m11(i) + m10(i) + m1(i) − m9(i) − m2(i)

]

We observe that, given n is odd,
∑

i odd

[
m1(i) + m15(i)

] +
∑

i even

[ − m2(i) − m16(i)
] = M(∅) + M(ABC1 · · · Cn),

∑

i odd

[ − m2(i) − m16(i)
] +

∑

i even

[
m1(i) + m15(i)

] = −M(C1 · · · Cn) − M(AB)

and thus find

0 =
∑

i odd

[
m6(i) − m5(i) + m8(i) − m7(i)

]

+
∑

i even

[
m12(i) − m11(i) + m10(i) − m9(i)

]

+M(∅) − M(C1 · · · Cn) + M(ABC1 · · · Cn) − M(AB)

Given n is odd we moreover have that

∑

i odd

[
m6(i) + m8(i)

] =
∑

i even

[
m5(i) + m7(i)

] + M(AC1 · · · Cn) + M(A)

∑

i odd

[ − m5(i) − m7(i)
] =

∑

i even

[ − m6(i) − m8(i)
] − M(A) − M(AC1 · · · Cn)

∑

i even

[
m12(i) + m10(i)

] =
∑

i odd

[
m11(i) + m9(i)

] − M(BC1 · · · Cn) − M(B)

∑

i even

[ − m11(i) − m9(i)
] =

∑

i odd

[ − m12(i) − m10(i)
] + M(B) + M(BC1 · · · Cn)

and that

M(ABC1 . . . Cn) + M(∅) =
∑

i odd

[
m14(i) + m4(i)

] +
∑

i even

[ − m13(i) − m3(i)
]

−M(AB) − M(C1 . . . Cn) =
∑

i odd

[ − m13(i) − m3(i)
] +

∑

i even

[
m14(i) + m4(i)

]

and thus find that
12



J.H. Bolt International Journal of Approximate Reasoning 161 (2023) 108985
0 =
∑

i odd

[
m14(i) + m9(i) − m13(i) − m10(i) + m11(i) + m4(i) − m12(i) − m3(i)

]

+
∑

i even

[
m7(i) + m4(i) − m8(i) − m3(i) + m14(i) + m5(i) − m13(i) − m6(i)

]

which is true if and only if
∧

i ∈ {1, . . . ,n},
i odd

[ 〈A, Ci | B C1 · · · Ci−1〉 ∧ 〈B, Ci | Ci+1 · · · Cn〉
] ∧

∧

i ∈ {1, . . . ,n},
i even

[ 〈A, Ci | Ci+1 · · · Cn〉 ∧ 〈B, Ci | A C1 · · · Ci−1〉
]

are valid independence statements.

Given n is even we have that
∑

i odd

[
m1(i) + m15(i)

] +
∑

i even

[ − m2(i) − m16(i)
] = 0,

∑

i odd

[ − m2(i) − m16(i)
] +

∑

i even

[
m1(i) + m15(i)

] =

M(∅) + M(ABC1 · · · Cn) − M(C1 · · · Cn) − M(AB)

and thus find, as in the case n is odd, that

0 =
∑

i odd

[
m6(i) − m5(i) + m8(i) − m7(i)

]

+
∑

i even

[
m12(i) − m11(i) + m10(i) − m9(i)

]

+M(∅) − M(C1 · · · Cn) + M(ABC1 · · · Cn) − M(AB)

Given n is even we moreover have that
∑

i odd

[
m6(i) + m8(i)

] =
∑

i even

[
m5(i) + m7(i)

]

∑

i odd

[ − m5(i) − m7(i)
] =

∑

i even

[ − m6(i) − m8(i)
] − M(A) − M(AC1 · · · Cn) + M(AC1 · · · Cn) + M(A)

∑

i even

[
m12(i) + m10(i)

] =
∑

i odd

[
m11(i) + m9(i)

] + M(B) + M(BC1 · · · Cn) − M(BC1 · · · Cn) − M(B)

∑

i even

[ − m11(i) − m9(i)
] =

∑

i odd

[ − m12(i) − m10(i)
]

and that

M(∅) + M(ABC1 . . . Cn) − M(C1 . . . Cn) − M(AB) =
∑

i odd

[
m4(i) + m14(i)

] +
∑

i even

[ − m3(i) − m13(i)
]

0 =
∑

i even

[
m4(i) + m14(i)

] +
∑

i odd

[ − m3(i) − m13(i)
]

13
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and thus find again that

0 =
∑

i odd

[
m14 + m9 − m13 − m10 + m11 + m4 − m12 − m3

]

+
∑

i even

[
m7 + m4 − m8 − m3 + m14 + m5 − m13 − m6

]

which concludes the proof. �
Appendix B. Rules A3 to A7 and rules G3 to G7

Below rules A3 to A7 from [5,7] are given.

A3 : 〈A, B | C D〉 ∧ 〈A, B | ∅〉 ∧ 〈C, D | A〉 ∧ 〈C, D | B〉 ↔
〈A, B | C〉 ∧ 〈A, B | D〉 ∧ 〈C, D | AB〉 ∧ 〈C, D | ∅〉

A4 : 〈A, B | C D〉 ∧ 〈A, D | B〉 ∧ 〈C, D | A〉 ∧ 〈B, C | ∅〉 ↔
〈A, B | D〉 ∧ 〈A, D | BC〉 ∧ 〈C, D | ∅〉 ∧ 〈B, C | A〉

A5 : 〈A, C | D〉 ∧ 〈B, D | C〉 ∧ 〈B, C | A〉 ∧ 〈A, D | B〉 ↔
〈A, C | B〉 ∧ 〈B, D | A〉 ∧ 〈B, C | D〉 ∧ 〈A, D | C〉

A6 : 〈A, B | C〉 ∧ 〈A, C | D〉 ∧ 〈A, D | B〉 ↔
〈A, B | D〉 ∧ 〈A, C | B〉 ∧ 〈A, D | C〉

A7 : 〈A, B | C D〉 ∧ 〈C, D | AB〉 ∧ 〈A, C | ∅〉 ∧ 〈B, D | ∅〉 ↔
〈A, B | ∅〉 ∧ 〈C, D | ∅〉 ∧ 〈A, C | B D〉 ∧ 〈B, D | AC〉

Below rules G3 to G7 plus a graphical representation (of an instance) of each rule (Fig. 5) from [1] are given.

G3: Let A, B, Ci, Di , i = 1, . . . , n, n ≥ 1, be non-empty, mutually disjoint sets of variables, and let C = C1 · · · Cn and D =
D1 · · · Dn . Then, taking Z j · · · Z j−1 := ∅, for Z = C, D

∧

i∈{1,...,n}

[ 〈A, Ci | Ci− Di++〉 ∧ 〈A, Ci | B Ci+ Di−−〉 ∧

〈B, Di | A Ci++ Di−〉 ∧ 〈B, Di | Ci−− Di+〉 ] ↔
∧

i∈{1,...,n}

[ 〈A, Ci | B Ci− Di++〉 ∧ 〈A, Ci | Ci+ Di−−〉 ∧

〈B, Di | Ci++ Di−〉 ∧ 〈B, Di | A Ci−− Di+〉 ]

where Zi− = Z1 · · · Zi−1, Zi+ = Zi+1 · · · Zn , Zi−− = Z1 · · · Zn−i+1 and Zi++ = Zn−i+2 · · · Zn . Note that for n = 1 the rule equals 
rule A3.

G4: Let A, B, C1, . . . , Cn , with n ≥ 2 even, be non-empty, mutually disjoint sets of variables. Then,
∧

i∈{1,3,...,n−1}
[ 〈A, Ci | Ci− B 〉 ∧ 〈B, Ci | Ci+ A 〉 ] ∧

∧

i∈{2,4,...,n}
[ 〈A, Ci | Ci−〉 ∧ 〈B, Ci | Ci+〉 ] ↔

∧

i∈{1,3,...,n−1}
[ 〈A, Ci | Ci+ B 〉 ∧ 〈B, Ci | Ci− A 〉 ] ∧

∧

i∈{2,4,...,n}
[ 〈A, Ci | Ci+〉 ∧ 〈B, Ci | Ci−〉 ]

where Ci− = C1 · · · Ci−1 and Ci+ = Ci+1 · · · Cn , taking C j · · · C j−1 :=∅. Note that for n = 2 the rule equals A4.
14
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Fig. 5. A graphical representation of rule G3 for n = 3, G4 for n = 6, G5, G6 and G7 for n = 7. Each X Z Y in the figure represents a triplet 〈X, Y | Z〉.

G5: Let A0, . . . , An, n ≥ 2, be non-empty, mutually disjoint sets of variables. Then,
∧

i∈{0,...,n}
〈Ai, Aμ(i+1) | Aμ(i+2)〉 ↔

∧

i∈{0,...,n}
〈Ai, Aμ(i+1) | Aμ(i−1)〉

were μ(x) := x mod (n + 1). Note that for n = 2, G5 equals A5.

G6: Let A, B0, . . . , Bn , n ≥ 0, be non-empty, mutually disjoint sets of variables. Then, for all c ∈ [0, n],
∧

i∈{0,...,n}
〈A, Bi | Bc

i+〉 ↔
∧

i∈{0,...,n}
〈A, Bi | Bc

i−〉

where Bc
i+ = Bμ(i+1) · · · Bμ(i+c) , Bc

i− = Bμ(i−c) · · · Bμ(i−1) , taking Bc
i+ , Bc

i− := ∅ for c = 0, and where μ(x) := x mod (n + 1). 
Note that for n = 0, the rule equals A6.

G7: Let A0, . . . , An , with n ≥ 1 an odd number, be non-empty, mutually disjoint sets of variables. Then,
∧

i,k ∈ {0, . . . ,n},
i even,k odd

〈Ai, Aμ(i+k) | Ai+〉 ↔
∧

i,k ∈ {0, . . . ,n},
i even,k odd

〈Ai, Aμ(i−k) | Ai−〉

where Ai+ = Aμ(i+1) · · · Aμ(i+k−1) and Ai− = Aμ(i−k+1) · · · Aμ(i−1) , taking Ai+ , Ai− := ∅ for k = 1, and where μ(x) := x 
mod (n + 1). Note that for n = 1, the rule equals A7.

References

[1] J.H. Bolt, L.C. van der Gaag, Generalized rules of probabilistic independence, in: J. Vejnarová, N. Wilson (Eds.), Symbolic and Quantitative Approaches to 
Reasoning with Uncertainty, Springer International Publishing, Cham, ISBN 978-3-030-86772-0, 2021, pp. 590–602.
15

http://refhub.elsevier.com/S0888-613X(23)00116-0/bibF93D685144EDF3BFF95CA4CF0EBFB274s1
http://refhub.elsevier.com/S0888-613X(23)00116-0/bibF93D685144EDF3BFF95CA4CF0EBFB274s1


J.H. Bolt International Journal of Approximate Reasoning 161 (2023) 108985
[2] F. Matúš, Ascending and descending conditional independence relations, in: S. Kubik, J.A. Visek (Eds.), Proceedings of the Joint Session of the 11th 
Prague Conference on Asymptotic Statistics and the 13th Prague Conference on Information Theory, Statistical Decision Functions and Random Processes, 
Kluwer, 1992, pp. 189–200.

[3] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan Kaufmann, 1988.
[4] M. Studený, Attempts at axiomatic description of conditional independence, Kybernetika 25 (1989) 72–79.
[5] M. Studený, Multiinformation and the problem of characterization of conditional independence relations, Probl. Control Inf. Theory 18 (1989) 01.
[6] M. Studený, Conditional independence relations have no finite complete characterization, in: S. Kubik, J.A. Visek (Eds.), Information Theory, Statistical 

Decision Functions and Random Processes. Transactions of the 11th Prague Conference, vol. B, Kluwer/Academia, Dordrecht/Boston/London/Prague, 1992, 
pp. 377–396.

[7] M. Studený, Structural semigraphoids, Int. J. Gen. Syst. 22 (1994) 207–217, Gordon and Breach Science Publishers S.A.
[8] M. Studený, J. Vejnarová, The multiinformation function as a tool for measuring stochastic dependence, in: M.I. Jordan (Ed.), Learning in Graphical 

Models, Kluwer Academic Publishers, 1998, pp. 261–298.
[9] R. Yeung, A First Course in Information Theory, Kluwer Academic Publishers, Boston/Dordrecht/London, 2002.
16

http://refhub.elsevier.com/S0888-613X(23)00116-0/bib28731C3143C5C4A5531AB5858A75101Es1
http://refhub.elsevier.com/S0888-613X(23)00116-0/bib28731C3143C5C4A5531AB5858A75101Es1
http://refhub.elsevier.com/S0888-613X(23)00116-0/bib28731C3143C5C4A5531AB5858A75101Es1
http://refhub.elsevier.com/S0888-613X(23)00116-0/bib707B35E531277272C4AF37FC8F414AA6s1
http://refhub.elsevier.com/S0888-613X(23)00116-0/bib9970C67A1C319DE21088238A0E474DCDs1
http://refhub.elsevier.com/S0888-613X(23)00116-0/bibD91814C8338596D0F3CCEFAC12A3396Cs1
http://refhub.elsevier.com/S0888-613X(23)00116-0/bib48301596E8CAF690276C398CD46A0EDCs1
http://refhub.elsevier.com/S0888-613X(23)00116-0/bib48301596E8CAF690276C398CD46A0EDCs1
http://refhub.elsevier.com/S0888-613X(23)00116-0/bib48301596E8CAF690276C398CD46A0EDCs1
http://refhub.elsevier.com/S0888-613X(23)00116-0/bibAA0D6CB6A4D7DCA35FCC5A15700ABA80s1
http://refhub.elsevier.com/S0888-613X(23)00116-0/bibAD0D0B76A3E116FD55BEBB574C72350Ds1
http://refhub.elsevier.com/S0888-613X(23)00116-0/bibAD0D0B76A3E116FD55BEBB574C72350Ds1
http://refhub.elsevier.com/S0888-613X(23)00116-0/bibADBE62104F7413370E147E2B84223B18s1

	Two generalizations of the semi-graphoid rule of probabilistic independence and more
	1 Introduction
	2 Preliminaries
	2.1 Probabilistic and semi-graphoid independence relations
	2.2 Mutual information, multiinformation and probabilistic independence

	3 Two generalizations of rule A2′
	4 Two additional rules of probabilistic independence
	5 Conclusions and future research
	Declaration of competing interest
	Data availability
	Appendix A Proofs of Propositions 1 and 2
	Appendix B Rules A3 to A7 and rules G3 to G7
	References


