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Chapter 1

1.1. Context

Since the start of the Industrial Revolution, humanity has increasingly emitted carbon dioxide 
(CO2) and other greenhouse gases into the atmosphere through the combustion of fossil 
fuels, other industrial activity, and land use change (especially deforestation). The resulting 
increase in atmospheric greenhouse gas concentrations has led to more heat being trapped 
in the earth system, known as radiative forcing. As a result, the global mean temperature has 
increased by 1.1°C on average during the 2011-2020 period compared to pre-industrial levels 
(IPCC, 2023). This increase in temperature coincides with other changes in climate (such as 
more extreme weather) leading to a range of wide-spread impacts on society, ecosystems 
and the economy across the world (IPCC, 2022a). The impacts of climate change can already 
be observed now. The heatwave in Northern Europe in 2018, wildfires in Australia in 2019-
2020, extreme monsoon floodings in South Asia in 2017, the extreme droughts in East Africa 
in 2017, and many more extreme weather events have been fully or partially attributed to 
human induced climate change (Funk et al., 2019; Rimi et al., 2019; Van Oldenborgh et al., 
2021; Yiou et al., 2020).

Without climate policies, the global mean temperature could increase to over 3.4°C by the 
end of this century compared to pre-industrial times as a result of further greenhouse gas 
emissions (Riahi et al., 2022), leading to unprecedented, widespread and devastating impacts 
of climate change (IPCC, 2022a). The emission of greenhouse gases needs to be reduced 
drastically to limit these impacts. This can be achieved with a wide variety of options, such 
as switching to alternative, clean energy sources, improving efficiency and through lifestyle 
changes. However, these options are often costly and sometimes require substantial societal 
transformations.

Global climate change policy, including the level of ambition, has been subject to many 
debates and negotiations, given the difficulty of substantially cutting down emissions. In 
1992, the first international binding agreement (the United Nations Framework Convention 
on Climate Change, UNFCCC) was agreed upon in Rio de Janeiro, Brazil. Its objective was to 
“stabilize greenhouse gas concentrations at a level that would prevent dangerous anthropogenic 
interference with the climate system” (UNFCCC, 1992). Five years later, in 1997, the first more 
concrete action under UNFCCC, i.e. the Kyoto Protocol, was adopted, stating that developed 
countries should reduce their greenhouse gas emissions by 5% by 2008-2012, compared 
to 1990 levels (UNFCCC, 1997). Subsequent negotiations to strengthen reductions in devel-
oped countries and mitigate emissions in developing countries have, however, been very 
problematic—including the dramatic failure of the Copenhagen climate summit in 2009. 
Arguably the most successful agreement was signed in 2015 in Paris and adopted by the 
196 countries of the UNFCCC. This agreement stated that global mean temperature increase 
should be limited to well below 2°C, with efforts to keep the temperature below 1.5°C com-
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pared to pre-industrial levels (UNFCCC, 2015). Despite the negotiations, emissions have been 
rising steadily, from 38 GtCO2-eq/yr in 1990 to 59 GtCO2-eq/yr in 2019 (IPCC, 2022b), mostly 
because emissions have increased in upcoming economies.

Model-based scenario analysis forms one way to help decision-makers to better understand 
the climate problem and possible response strategies. One specific form, cost-benefit analysis 
(CBA), focuses on the economic aspect of climate change by comparing the costs of mitiga-
tion to the avoided climate impacts. More ambitious climate policy leads to higher benefits 
of reduced damages, but also to higher mitigation costs. This leads to many challenging 
questions: how fast and how deep should emissions be reduced? What are the costs of these 
policies? What are the expected future climate impacts without action? Where should these 
emission reductions take place? How much climate impacts will still remain, and how much 
should regions invest in adaptation against these remaining impacts? To answer such ques-
tions, one needs to have insights into the key relationships between emissions, mitigation 
and climate impacts and the associated uncertainties.

1850 1900 1950 2000

0°C

0.5°C

1°C

Global warming has increased, and already leads to climate impacts now

a. Observed global mean temperature increase b. Regional distribution of observed impacts of climate change 
     on humans

Water scarcity

Heat and 
malnutrition

Agriculture

Mental
health

Animal
productivity

Displacement

Infectious
diseases

Flooding
and storms

Con�dence in
attribution to
climate change:

High or 
very high Medium

Figure 1.1. (a) Observed global mean temperature change relative to 1850-1900, as assessed by 
the IPCC (IPCC, 2023). (b) Observed impacts to human systems that can be attributed to climate 
change with very high, high or medium confidence, for the regions Europe, Asia, Africa and the 
Americas (IPCC, 2022a). Missing impacts in a region does not necessarily mean that the impact 
does not exist, it might also be due to a research gap.
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1.2. Scenarios and Integrated Assessment Models

Model-based scenario analysis is often used to explore future pathways with varying assump-
tions, since the factors that determine the answers to the questions raised in the previous 
paragraph are strongly interconnected and have deep associated uncertainties. Scenarios 
are defined as a coherent, internally consistent, and plausible description of possible future 
states of the world. An important tool to create such scenarios are Integrated Assessment 
Models (IAMs). These computer models are developed to assess the interactions between the 
environmental aspects and the human aspects of future climate change and climate policy. 

Model-based scenarios do not aim to predict the future but rather sketch out plausible future 
pathways. Credible predictions are not feasible, as models cannot represent the many social 
and political forces that can influence the way the world evolves. Instead, by examining 
different routes, trajectories and developments, scenarios offer a method to map out future 
landscapes. Scenarios are based on qualitative storylines, a set of derived quantitative as-
sumptions, and final (quantitative) model results. By varying the assumptions and storylines 
of the scenarios, they shed light on essential sources of system uncertainty.

Box 1.1: socio-economic scenarios and climate scenarios: the SSP-RCP matrix

A set of five Shared Socio-economic Pathways (SSPs) have been created in 2017 to system-
atically assess different socio-economic developments (Riahi et al., 2017a). These scenarios 
are based on different assumptions on future evolution of the economy, population, global 
cooperation and governance, technological growth, and other socio-economic developments 
and are designed to represent varying levels of challenges in mitigation and adaptation. Each 
SSP comes with a specific narrative and storyline (Figure 1.2.a):

•	 SSP1: Sustainability – Taking the green road (low challenges to mitigation and adaptation)
•	 SSP2: Middle of the road (medium challenges to mitigation and adaptation)
•	 SSP3: Regional rivalry – A rocky road (high challenges to mitigation and adaptation)
•	 SSP4: Inequality – A road divided (low challenges to mitigation, high challenges to 

adaptation)
•	 SSP5: Fossil-fueled development – Taking the highway (high challenges to mitigation, 

low challenges to adaptation)

Each SSP has subsequently been quantified by six major Integrated Assessment Models to 
create an internally consistent set of quantified scenarios matching each storyline. 

The SSPs do not have explicit assumptions on climate policy: in theory, a wide range of 
mitigation targets can be imposed for each SSP, even though it is much more unlikely that 
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1climate policies are adopted in SSP5 than SSP1. For this purpose, the SSPs were combined 
with the earlier developed Representative Concentration Pathways (RCPs) (Van Vuuren et al., 
2011). Resulting from a collaboration between geophysical climate modellers, Earth system 
modellers and integrated assessment modellers, the RCPs define trajectories of future radi-
ative forcing (until 2100 and beyond). The RCPs cover radiative forcing targets between 2.6 
W/m2 (RCP 2.6) and 8.5 W/m2 (RCP 8.5). The radiative forcing targets can then be translated 
into carbon budgets or temperature targets: RCP 2.6 matches a temperature increase of well 
below 2°C, relevant for the Paris Agreement, while RCP 8.5 leads to temperatures of 4°C to 
5°C. Later, RCP 1.9 was added to the set of standard RCPs, matching the 1.5°C temperature 
target of the Paris Agreement.

The SSPs and the RCPs can be combined in a so-called SSP-RCP matrix (Figure 1.2.b). However, 
not all combinations lead to feasible results: RCP 1.9 is generally assumed to require too strict 
mitigation action or too much global cooperation that it does not match with the SSP3, SSP4 
and SSP5 storylines. Moreover, RCP 8.5 is only compatible with the storyline of SSP5, since 
it requires levels of emissions that only match the fossil-fuel development storyline of SSP5.

Di�erent socio-economic futures combined with di�erent levels of climate ambition

a. Shared socio-economic pathways (SSPs) b. Possible combinations of socio-economic (SSPs) 
     and climate (RCPs) dimensions
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Figure 1.2. (a) The five different SSPs place on the two axes: challenges to adaptation and challenges 
to mitigation. (b) SSP-RCP matrix with the feasible combinations highlighted in grey.

 
The scenarios in this thesis are created and assessed using IAMs. The goal of IAMs is to help 
explore the effect of different climate policy options, or the absence thereof, on both the 
human and environment aspects (Weyant, 2017). The main dynamics of the Earth system, 
including geophysical processes on land and in the atmosphere, the carbon cycle, ecosystem 
dynamics, and climate change, are combined with socio-economic drivers like population 
dynamics, economic activity, technological development, energy demand and production, 
and agriculture.
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IAMs vary in their technological and economic detail, the complexity of the represented 
geophysical processes, their regional scope in their adopted methodology (e.g. simulation 
vs optimisation). In general, they can be classified into two main types: detailed-process IAMs 
and cost-benefit-IAMs (CB-IAMs). Detailed-process IAMs are typically large-scale, complex 
models with a high level of detail of the socio-economic and technological processes rele-
vant to climate policy, the associated mitigation costs and the representation of feedbacks 
in the geophysical climate system. These models typically only include some incomplete 
representation of impacts and damages of climate change (Piontek et al., 2021). Since these 
models can analyse the impact of a wide variety of climate policies and societal develop-
ments on global levels of greenhouse gas emissions and the economy, they are widely 
used in policy assessments around the world – most notably in the Assessment Reports of 
the IPCC when analysing different mitigation pathways (IPCC, 2022b). The most common 
detailed-process IAMs are REMIND, MESSAGE, GCAM, WITCH, IMAGE, AIM and COFFEE, but 
several dozen others exist.

In contrast to detailed-process IAMs, cost-benefit IAMs aim for a wider, more holistic approach: 
instead of only focusing on mitigation, these models focus on the interactions between 
climate policy, climate damages and adaptation, mainly from an economic perspective. In 
view of their focus on overall dynamics, CB-IAMs typically have a less detailed representation 
of technological processes and a more stylized representation of the climate feedbacks. 
They rely on relatively aggregated estimates of the cost of climate policy, often calibrated 
on the detailed-process IAMs. These mitigation costs are then compared with the economic 
damages of climate change, which are quantified by aggregated damage functions. Such 
damage functions typically relate global mean temperature with the economic loss from 
the associated climate impacts, either economy-wide or with a sectoral disaggregation. The 
main goal of CB-IAMs is to compare the costs of mitigation with the benefits of reducing the 
climate damages, thereby optimizing the climate policy target from an economic perspective.

1.3. Previous studies of the costs and benefits of climate policy 

The first and most extensively researched CB-IAM is DICE (Dynamic Integrated Climate-Econ-
omy model), developed by Nordhaus in 1992 (Nordhaus, 1992a). Due to its transparency, 
accessibility and ease of extension and modification, DICE continues to play a fundamental 
role in the literature on cost-benefit analysis of climate policy. Since its first introduction, a 
plethora of updates and variants have been developed, with DICE2016R2 (Nordhaus, 2017) 
the latest version, and variants like RICE (Nordhaus, 2010a), AD-RICE (De Bruin, 2014), NICE 
(Dennig et al., 2015), gro-DICE (Moore & Diaz, 2015), and DSICE (Cai et al., 2012). Other of-
ten-used CB-IAMs are PAGE (Hope, 2013), first developed in 1995, and FUND (Anthoff & Tol, 
2014), initially developed in 1997.
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1A key application of CB-IAMs is the calculation of cost-optimal global temperature targets or, 
at the very least, to understand what factors and uncertainties play a role in choosing opti-
mal temperature targets. The optimal target can be calculated by equalizing the marginal 
mitigation costs to the marginal damages: in other words, by finding the point at which a 
small additional amount of mitigation starts to cost more than the extra benefits of reduced 
climate impacts (accounting possibly for adaptation). This analysis is highly dependent on 
estimates of mitigation costs, and of climate damages. Especially the latter is notably difficult 
to estimate (see Box 2). Partly for this reason, there has been strong variation in published 
cost-optimal temperature targets: from 3.1°C using the original DICE version in 1992, 3.0°C 
with RICE-2010 (Nordhaus, 2010a), 3.5°C with the latest default version of DICE2016R2, all 
the way to 1.4°C when using different assumptions on discounting and the climate module 
(Hänsel et al., 2020). In general, the cost-optimal temperature target according to the literature 
has become gradually lower over time, mainly due to improved insights on the damages of 
climate change (Kikstra & Waidelich, 2023).

A second application of models like DICE, PAGE and FUND is calculating the Social Cost of 
Carbon (SCC): the cost of extra climate impacts caused when emitting one additional unit of 
carbon dioxide into the atmosphere. For the SCC estimates, the damage estimates are criti-
cally important. Together with the trend that optimal temperatures have generally decreased 
over time, the SCC estimates have generally increased over time, but with large uncertainty 
ranges (Tol, 2005, 2023). As the SCC translates a complex topic (all future additional damages 
from climate change) into a single, easy-to-interpret, number, it has been used extensively 
in climate policies around the world. Most notably, the United States have since 2010 based 
their climate policy on the social cost of carbon. The SCC has even been called the “most 
important figure you’ve never heard of” by Michael Greenstone, the chief economist of the 
Council of Economic Advisors under the first Obama administration. However, the concept 
has also been criticized, because of its high uncertainty and strong sensitivity to assumptions 
of discounting and time preference, future climate impacts and how to monetize them, 
and future emission pathways (Pezzey, 2019; Stern, Stiglitz, Stiglitz, 2021; van den Bergh & 
Botzen, 2015). Moreover, since many impacts of climate change cannot be easily translated 
into monetary terms, like biodiversity loss, the social cost of carbon can give an incomplete 
view of the true damages of a unit of CO2 emissions.

Since impacts of climate change occur on long timescales (end of century and beyond), the 
way future impacts are compared with present mitigation costs is highly relevant for policy 
making (Arrow et al., 2013). For this reason, the role of discounting and intergenerational equity 
in the context of CBA has been extensively studied. In literature, discounting future costs is 
applied to account for (a) future increases in income and GDP, (b) uncertainty of the future 
and (c) the fact that most people inherently put more weight on present than on future costs. 
The magnitude of the discount rate has been subject to many debates (Caney, 2014; Creedy & 
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Guest, 2008; Dasgupta, 2008; Drupp et al., 2018; Portney & Weyant, 2013; Traeger, 2014): while 
the DICE model typically uses relatively high discount factors (Nordhaus, 2017), Stern (2007) 
defended a much lower discount rate (or, more precisely, a pure rate of time preference) of 
almost zero, arguing that it is not ethically defendable to value costs for future generations 
less than for the present one. Using IAMs, studies have analysed the role of discounting on 
a range of issues including the optimal temperature (Hof, van Vuuren, et al., 2010), the social 
cost of carbon (Guo et al., 2006), low-probability high-impact events (Dietz, 2011; Hof, van 
Vuuren, et al., 2010), and the amount of negative emissions (Emmerling et al., 2019).

While the choice of discount rate already strongly determines the outcome of cost-benefit 
analyses, the role of other inherently uncertain processes are also significant. The most im-
portant aspect is the uncertainty surrounding the estimation of climate damages (see Box 
1.2 for an overview). Going beyond the traditional climate impacts included in CB-IAMs, 
including the uncertainty with respect to climate tipping points substantially increases the 
social cost of carbon (Lontzek et al., 2015b). Moreover, to address decision making under 
deep uncertainties, strategies have been proposed that go beyond pure cost-benefit analysis 
and optimal temperature targets: from hedging strategies (Manne & Richels, 1995; Ybema & 
Bos, 1998) to mini-max approaches (Hof, van Vuuren, et al., 2010; Van Den Bergh, 2004). The 
Dismal Theory by Weitzman even argues that uncertainty can be so large that meaningful 
economic cost-benefit analyses become practically infeasible (Weitzman, 2009), although 
this topic has been subject to further debates (Horowitz & Lange, 2014).

Box 1.2: Estimating the impact of climate change

Estimating the impact and consequences of climate change is complex. Throughout this 
thesis, we distinguish three levels of climate change impacts: (a) geophysical changes to 
the climate, (b) physical sectoral impacts, and (c) economic impacts. Each level is assessed 
using different types of models.

First, the increase of greenhouse gases causes changes in geophysical conditions of the 
Earth: atmospheric temperatures rise, precipitation patterns change, sea-levels rise, extreme 
weather events become more extreme and frequent. Highly detailed and computationally 
expensive climate models have been used to assess these changes, mainly using Global 
Circulation Models (GCMs) and Earth System Models (ESMs) (IPCC, 2021).

Second, the geophysical changes projected by the GCMs and the ESMs are used as input to 
sectoral physical impact models. These models are designed to estimate how climate change 
affects sectors like agriculture, coastal systems, fisheries, forests, energy, diseases, health and 
more. Many of these impact models collaborate through the ongoing Inter-Sectoral Impact 
Model Intercomparison Project, ISIMIP (Warszawski et al., 2014).
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1Third, the economic impacts of climate change can also be estimated (Tol, 2018). While 
there is a rich literature on mitigation costs, the economic estimation of climate damages 
remains especially difficult. In current literature, the economic impacts of climate change 
are typically modelled by either a bottom-up or a top-down approach. The bottom-up ap-
proach considers the outcomes of physical impact models described above and/or expert 
judgement to quantify and aggregate the economic damages into a reduced-form damage 
function. However, these damage estimates are often incomplete, as they cannot cover all 
sectors where climate change might have an economic impact. Moreover, some impacts, 
such as on human health, biodiversity or ecosystems, called non-market damages, are by 
nature notoriously difficult to monetise (Tol, 2009). Bottom-up estimates therefore typically 
result in an underestimation of the economic damages of climate change. The top-down 
approach, on the other hand, combines observed historical fluctuations in weather and 
(regional) economic output, to obtain empirical, data-driven damage estimates (Burke et 
al., 2015; Diaz & Moore, 2017; Hsiang et al., 2017; Kahn, Mohaddes, Ng, et al., 2019; Kalkuhl & 
Wenz, 2020; Moore & Diaz, 2015). While this approach is based on observed data, the asso-
ciated uncertainty is still large as it is questionable if these relations hold far into the future 
(Letta & Tol, 2019; Tol, 2019).

Economic
impacts

“Market” damages

“Non-market”
damages

Economic models (CGE),
empirical estimates, ...

Physical
impacts

⦁ Flooding
⦁ Agriculture impacts
⦁ Human heat strokes
⦁ Wild�res
⦁ ...

Physical impact models

Geophysical
consequences

⦁ Temperature
⦁ Precipitation
⦁ Extreme weather

Earth system models &
global circulation models

Climate change impacts are assessed on di�erent levels...

... and by di�erent types of models

Climate
change

Figure 1.3. Three levels of climate impacts considered in the literature, with the associated model 
type used to assess the impacts. In this thesis, we focus on the economic impacts of climate change.
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Another source of uncertainty in determining cost-optimal climate policy trajectories is the 
inclusion of adaptation. While mitigation efforts reduce emissions, and thereby prevent fur-
ther climate change, adaptation action gives countries the ability to cope with the damages 
caused by climate change. Given the challenges to estimate the costs, effectiveness and 
limitations of adaptation, comprehensive studies covering adaptation for use in IAMs have 
been sparse. The most prominent studies have extended the DICE, RICE and WITCH models 
to also include adaptation explicitly, becoming AD-DICE, AD-RICE and AD-WITCH (Agrawala 
et al., 2011; Bosello et al., 2010, 2014; De Bruin, 2014; De Bruin, Dellink, Tol, 2009; Hof, den Elzen, 
et al., 2010). Modelling adaptation against sea-level rise has been studied more frequently in 
IAMs, since the costs and effectiveness of dikes and other infrastructure is better quantifiable 
than other adaptation measures (Lincke & Hinkel, 2018; Schinko, Drouet, Vrontisi, Hof, Hinkel, 
Mochizuki, Bosetti, Fragkiadakis, van Vuuren, et al., 2020).

While most of the research with CB-IAMs has focused on target setting and calculation of 
costs and emission pathways, distributional impacts of climate policy and damages, both 
between and within countries, have also been addressed in literature. First, effort-sharing 
regimes have been designed to redistribute mitigation efforts among countries, following 
pre-defined principles of equity (capacity, equality, responsibility, continuity and cost-efficiency) 
regimes (Botzen et al., 2008; Höhne et al., 2014; Holz et al., 2018; Leimbach & Giannousakis, 
2019; Robiou Du Pont et al., 2017; van den Berg et al., 2020). This literature has mainly looked 
at target setting (at the national and regional scale). Second, in the context of CB-IAMs, 
studies have focused on inequality aversion and investigating how costs between regions 
should be compared in a welfare-utility framework (Anthoff & Tol, 2010a, 2014; Berger & 
Emmerling, 2020; Gazzotti et al., 2021; Tol, 2012; Tol et al., 2004; van Ruijven et al., 2015). Third, 
an emerging field of research goes beyond interregional equity and analyses within-region 
inequality between income groups using a modified version of DICE, called NICE (Dennig, 
2018; Dennig et al., 2015). 

1.4. Limitations of current research

Despite the extensive body of literature on costs and benefits of climate policy, several 
substantial limitations can be noted.

First, limited attention is given to comprehensive uncertainty analyses. Several studies have 
analysed the effect of various assumptions and uncertainties (for instance, related to the 
discount rate, climate sensitivity or the damages of climate change) on the optimal pathway. 
However, such studies are often limited in scope (Hänsel et al., 2020; Ueckerdt et al., 2019), only 
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1perform a sensitivity analysis (Glanemann et al., 2020; Hope, 2006), or perform a simulation 
instead of an optimization (Drouet et al., 2015; Lamontagne et al., 2019).

Second, no studies exist that have compared cost-minimising pathways with cost-benefit 
pathways using the same model framework—except for Nordhaus (2008), who did this for a 
few selected assumptions regarding discounting and climate targets. Since most CBA studies 
only focus on cost-optimal pathways, the effect of damages on cost-effective pathways is 
largely overlooked, including the effect on negative emissions.

Third, both the data on mitigation costs and the data on climate impacts used by the main 
CBA-studies do not always reflect the latest scientific insights, which can lead to outdated 
results (Drouet et al., 2015; Hof et al., 2008; Pindyck, 2013a; Pycroft et al., 2011). This constitutes 
one of the main criticisms of CBA for climate change (Keen, 2020; Mercure et al., 2021; Pindyck, 
2013b, 2013a; Sinden, 2019; Spash, 2007; Stern, Stiglitz, Taylor, 2021). When using outdated 
climate damage estimates, major benefits of mitigation are consequently excluded, which 
lead to less policy action in situations where the policy is based on cost-benefit analysis, like 
the US climate policy (Sinden, 2019).

Fourth, most current studies focus on economically optimal outcomes, which does not always 
lead to equitable outcomes. Most of the scenarios currently submitted to the new IPCC AR6 
scenario database (Byers et al., 2022) are based on IAMs operating under a cost-minimisa-
tion approach. This means that there is no explicit consideration of equity. The issue of a 
fair allocation in climate mitigation, however, has been studied extensively in the literature, 
mainly by assessment of different effort-sharing regimes. Most of the literature that does 
this, however, only takes mitigation costs into account (Bertsimas et al., 2012; Du Pont et al., 
2016; Höhne et al., 2014; Leimbach & Giannousakis, 2019; Pan et al., 2023; Robiou Du Pont 
et al., 2017; van den Berg et al., 2020). This means that it ignores that countries can also be 
significantly impacted by climate damages—which also leads to fairness considerations. While 
there are some exceptions (De Cian et al., 2016; Hof, den Elzen, et al., 2010), these studies use 
outdated estimates of climate damages.
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1.5. Research questions and structure of this thesis

As discussions and choices related to climate policies become increasingly important within 
society, there is a growing demand for science-based insights into the intricate interplays 
between mitigation policies and the effects of climate change. This research aims to address 
some critical policy questions and respond to the knowledge gap identified in the previous 
section by examining various aspects of cost-optimal climate policy. To that end, the main 
research question of this thesis is: “How could climate policy be effectively designed 
on the basis of cost-benefit analysis, taking into account new insights in the costs of 
climate policy, the damages of climate change, and key uncertainties?”

Given the broad scope of this topic, the main research question is divided into four sub-re-
search questions:

1.	 What are the most relevant sources of uncertainty in cost-benefit analysis of climate 
change?

2.	 To what extent do new insights in climate damages alter the outcome of cost-benefit 
analysis, in particular the cost-optimal temperature target?

3.	 How do decisions regarding negative emissions and uncertainties in socio-economic 
development and related adaptive capacities, influence the cost-optimal emission 
trajectory?

4.	 How can equity and welfare considerations be combined with cost-optimality in de-
termining regional emission reduction targets?

These research questions will be tackled using five research chapters. The relation between 
the chapters and the research questions is shown in Table 1. 

Chapter 2 provides an analysis of the main sources of uncertainty that have been identified 
in the literature as critical for the outcomes of cost-benefit analysis. These are damage costs, 
mitigation costs, the geophysical climate uncertainty, socio-economic developments and 
discounting (appreciation of future costs versus present costs). By calculating cost-optimal 
emission with and without using a carbon budget for all combinations of parameters, the 
chapter mainly address research question 1. The uncertainty in carbon price levels and 
the uncertainty in temperature target is decomposed into contributions of each of the 5 
main sources of uncertainty using a Sobol variance decomposition. Moreover, we analysed 
the effect of including damages when calculating the optimal emission pathway under a 
carbon budget.

In Chapter 3, new, state-of-the-art regional damage functions are created and presented. 
These damage functions have an internally consistent uncertainty representation, following 
from the variation of assumptions in the underlying physical impacts models. With these new 
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damage estimates, we perform a cost-benefit analysis to determine cost-optimal tempera-
ture targets, through a multi-model analysis with three different IAMs of varying complexity 
(MIMOSA, WITCH and REMIND), thereby addressing research question 2. Moreover, the 
Benefit-Cost Ratio is calculated: how much higher are the benefits of avoided damages than 
the costs of mitigation? 

Chapter 4 analyses the effect of overshooting a temperature target or carbon budget, 
compared to never exceeding the target. Many detailed process IAMs rely on overshoot to 
reach a target: mitigation action is then slightly delayed, to be compensated by large-scale 
net negative emissions towards the end of the century. While this is typically cheaper, the 
overshoot means that more damages are incurred throughout the century than if the tem-
perature goal had not been exceeded. In this chapter, the additional climate damages of this 
overshoot are compared to the reduced costs of mitigation, for different assumptions of the 
level of climate damages and discounting. This informs the debate about the (dis)advantages 
of net negative emissions and therefore addresses research question 3. Moreover, in this 
chapter, the effect of (partial) irreversibility of climate impacts on the cost-optimal amount 
of overshoot is quantified. 

Chapter 5 explores in more detail the implications of different socio-economic pathways 
(SSPs) on both the mitigation costs and climate impacts. More concretely, we create an 
SSP-RCP matrix with damage costs, and compares that to the matrix for mitigation costs. A 
fundamental aspect of the SSPs are the challenges to adaptation. While there is only very 
sparse literature on adaptation in IAMs, this chapter aims to incorporate adaptation explicitly 

 Chapter 2

Uncertainty

Chapter 3

New damage 
estimates

Chapter 4

Overshoot

Chapter 5

Adaptation

Chapter 6

Equity

RQ 1: uncertainty

RQ 2: new damage 
estimates

RQ 3: negative emis-
sions and adaptation

RQ 4: equity

Table 1.1. Overview of the research questions and their relation with the research chapters.

Main focus of chapter.     Addresses the RQ, but not the main focus.
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into CB-IAMs, while taking into account socio-economic limitations to adaptation. These 
limitations are time-, region- and SSP-specific. Due to its focus on adaptation, this chapter 
mainly addresses research question 3. It also addresses research question 2 as it uses the 
newly developed damage cost functions. Moreover, this chapter discusses which aspects 
influence the mitigation and damage costs, and how they depend on future socio-economic 
development, which addresses research question 1.

As the discussion about climate policy shifts from target setting towards implementation, 
the question of how the mitigation effort should be distributed across regions in a just and 
equitable manner becomes increasingly relevant. One of the main points of criticisms of 
IAMs is the lack of explicit representation of equity. In Chapter 6, several ways of incorpo-
rating equity are examined by comparing the traditional cost-minimization approach with 
effort sharing regimes and different welfare representations that take into account regional 
differences in income, mitigation capacity and damage costs. Specifically, for each of the 
equity representations, the 2035 regional reduction targets are calculated that are required 
to reach a 1.5°C temperature target, as well as long-term implications for mitigation costs 
and inequality. This addresses research question 4.

1.6. MIMOSA

The MIMOSA model was developed as part of this research and used in each research chapter 
of this thesis. MIMOSA, Mathematical Integrated Model for Optimal and Stylised Assessment, 
is a cost-benefit IAM based on FAIR (Hof et al., 2008) and DICE (Nordhaus, 2017). A schematic 
overview of the model is shown in Figure 1. It consists of four main modules: economics, 
emissions, damages, and mitigation.

Economics

The economic module consists of a Cobb-Douglas production function which calculates 
GDP using exogenous population and total factor productivity. The GDP is divided between 
a fixed share to investments (determined by a fixed savings rate) and the remaining share to 
consumption. The investments are added to the global capital stock, which forms together 
with labour the two production factors for GDP in the next time step. The development of 
labour is set equal to population developments. MIMOSA is mostly used to maximise dis-
counted utility, where utility is an increasing concave function of consumption.

Greenhouse gas emissions and climate change

CO2 emissions are calculated based on GDP and an emission factor representing the carbon 
intensity of the economy, calibrated on the SSPs. Climate change is subsequently modelled 
on the basis of cumulative CO2 emissions that are related to global mean temperature (GMT) 



15

Introduction

1

through the linear and instantaneous TCRE (Transient Climate Response to Emissions) relation. 
This simple climate model is shown to provide more realistic outcomes than the DICE native 
(and more complex) climate module (Dietz & Venmans, 2019). The TCRE includes the effect of 
non-CO2 emissions, which are therefore implicitly coupled to the CO2 emissions. As suggested 
in previous research (Van Vuuren et al., 2020), the non-CO2 emissions are correlated with CO2 
emissions, making this a reasonable assumption. There are two linkages between the climate 
module and the economic module, i.e. via damages and via mitigation.

Damages

The increase in GMT causes GDP loss, quantified through damage functions. In the literature, 
various estimates of economic damages as function of changes in global mean temperature 
can be found. In Chapter 2 and 4, three global damage functions are used, covering the 
current literature range: the DICE damage function (Nordhaus, 2017), a medium damage 
function resulting from a meta-analysis by Howard & Sterner (2017) and the empirical damage 
function from Burke et al. (2015). In Chapter 3, 5 and 6, the damage functions are updated by 
new, state-of-the-art probabilistic regional damage functions developed in Chapter 3. The 
damages are subtracted from the produced GDP in the economic module.

Adaptation 
(new in chapter 5)

Sea-level rise 
(new in chapter 3)

Equity & effort sharing 
(new in chapter 6)

Damagest

Temperaturet

Figure 1.4. Schematic overview of the MIMOSA model. The blue hexagons represent the main 
input parameters and sources of uncertainty. The green rectangles are new components that have 
been gradually added to MIMOSA after the initial version of chapter 2.
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Mitigation

Mitigation is introduced in the model to reduce emissions. This is simulated via a carbon price. 
Using time- and scenario-dependent Marginal Abatement Cost (MAC) curves (indicating 
emission reduction versus the carbon price), the carbon intensity is reduced leading to lower 
emissions. The MAC curve is also used to determine the mitigation costs, which are deducted 
from the GDP, similar to DICE and FAIR. The mitigation costs are directly calibrated on the full 
cost range of the scenarios in the IPCC AR5 Working Group 3 database (chapters 2 and 4 of this 
thesis) and AR6 database (chapters 3, 5 and 6). The limited availability of negative emissions 
is modelled by imposing a global and regional minimum emission level. Inertia is modelled 
by applying a constraint on the difference in CO2 emissions between two consecutive years.

Regional scale

Chapters 2 and 4 use a global version of MIMOSA. The other chapters use a regionalised 
version with 26 regions covering the world. The region definition is the same as for FAIR and 
TIMER of the IMAGE framework (Hof et al., 2011; Stehfest et al., 2014; Van Vuuren et al., 2021). 

 Chapter 2

Uncertainty

Chapter 3

New damage 
estimates

Chapter 4

Overshoot

Chapter 5

Adaptation

Chapter 6

Equity

Regional scope of 
MIMOSA

Global Regional Global
Regional, 

aggregated to 
global

Regional

Mitigation cost 
calibration

AR5 AR6 AR5 AR6 AR6

Damage functions
DICE, 

Howard et al. 
& Burke et al.

COACCH 
(2023)

DICE, 
Howard et al. 
& Burke et al.

COACCH  
(2023)

COACCH 
(2023)

Optimisation 
method

Bellman 
equation

Pyomo/IPOPT Pyomo/IPOPT Pyomo/IPOPT Pyomo/IPOPT

Extensions 
compared to first 
version

N.a. Sea-level rise
Partially 

irreversible 
damages

Sea-level rise, 
adaptation

Sea-level rise, 
equity

Table 1.2. Overview of different MIMOSA versions used for each chapter. Note that in chapter 2 
and 4, the model was not yet called MIMOSA.
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1Regional population, initial capital stock and baseline GDP and CO2 emissions are directly 
calibrated on the SSPs (Van Vuuren et al., 2021), and mitigation costs are defined through 
a regional MAC curve. Each region uses the same global MAC curve (calibrated on the AR6 
WG3 scenario database), with a region-specific scaling factor calibrated using MAC curves 
from the TIMER model.

Table 1.2 provides an overview of the differences in MIMOSA version between research 
chapters in this thesis.

Optimisation

In chapter 2, the optimal carbon price is calculated using the Bellman Equation with as state 
variables the cumulative emissions and the capital stock, as control variable the carbon price 
at each time period and as objective function the discounted utility. The Bellman Equation 
provides a global optimum, but is computationally expensive. In subsequent chapters, MI-
MOSA transitioned to the Python-based, open-source optimisation modelling language 
Pyomo (Bynum et al., 2021; Hart et al., 2011). The model is then solved using the open-source 
large-scale non-linear solver IPOPT (Wächter & Biegler, 2006).

Implemented extensions

Besides becoming regional, the MIMOSA model has seen several developments throughout 
this research (highlighted in green in Figure 1.4). Mainly, a sea-level rise module was added 
in chapter 3, partially irreversible damages in chapter 4, adaptation and adaptive capacity in 
chapter 5, and equity and effort sharing in chapter 6. 

Open source

The MIMOSA model is fully open source and available at https://github.com/kvanderwijst/
MIMOSA. Moreover, the model can be easily installed in Python using:

pip install mimosa

https://github.com/kvanderwijst/MIMOSA
https://github.com/kvanderwijst/MIMOSA
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Determining international climate mitigation response strategies is a complex task. 
Integrated Assessment Models support this process by analysing the interplay of the 
most relevant factors, including socio-economic developments, climate system un-
certainty, damage estimates, mitigation costs and discount rates. Here, we develop a 
meta-model that disentangles the uncertainties of these factors using full literature 
ranges. This model allows comparing insights of the cost-minimising and cost-benefit 
modelling communities. Typically, mitigation scenarios focus on minimum-cost path-
ways achieving the Paris Agreement without accounting for damages; our analysis 
shows doing so could double the initial carbon price. In full cost-benefit setting, we 
show that the optimal temperature target does not exceed 2.5°C when considering 
medium damages and low discount rates, even with high mitigation costs. With low 
mitigation costs, optimal temperature change drops to 1.5°C or less. The most impor-
tant factor determining the optimal temperature is the damage function, accounting 
for 50% of the uncertainty. 
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2.1. Introduction

As part of the United Nations Framework Convention on Climate Change (UNFCCC), countries 
have agreed to prevent “dangerous anthropogenic” climate change. In the Paris Agreement, 
this was specified further as the aim to keep the increase of global mean temperature change 
well below 2°C and pursuing efforts to limit it to 1.5°C. Determining a goal for international 
climate policy is extremely complex, as it involves many socio-economic, geophysical and 
even ethical aspects. To explore and understand this complexity, researchers have developed 
Integrated Assessment Models (IAMs) describing the interplay of several factors relevant to 
climate change. 

A plethora of IAMs has already been developed, with varying degrees of complexity and 
differing in focus. One category of models focuses on cost-minimising carbon price or emis-
sion pathways to achieve a specific climate target (Calvin et al., 2011; Emmerling et al., 2016; 
Fujimori et al., 2014; Riahi et al., 2011a; Stehfest et al., 2014). A second category consists of 
models that determine optimal pathways which balance the costs and benefits of climate 
policy (Anthoff & Tol, 2014; Hope, 2013; Kypreos, 2007; Nordhaus, 2014; Nordhaus, 2010b). In 
this type of models, the climate target is an outcome rather than determined exogenously. 
These two types of models have developed relatively independently. However, in both types, 
a (shadow) carbon price is used as a key indicator of mitigation effort and costs associated 
with the transition towards a low-carbon future – and the development of carbon prices 
and emissions forms a key component in both types of models. 

Several studies have analysed the effect of various assumptions and uncertainties (for in-
stance, related to the discount rate, climate sensitivity or the damages of climate change) on 
the optimal pathway. However, such studies are often limited in scope (Hänsel et al., 2020; 
Ueckerdt et al., 2019), only perform a sensitivity analysis (Glanemann et al., 2020; Hope, 2006), 
do not capture the latest insights (e.g., outdated damage functions) (Drouet et al., 2015; Hof 
et al., 2008; Pindyck, 2013a), or perform a simulation instead of an optimisation (Drouet et al., 
2015; Lamontagne et al., 2019).  Moreover, no studies exist that have compared cost-mini-
mising pathways with cost-benefit pathways using the same model framework - except for 
Nordhaus (2008), who did this for a few selected assumptions regarding discounting and 
climate targets. Such a comparison would provide insight into under which conditions taking 
into account climate damages would change the cost-optimal carbon price and emission 
pathway, given a fixed climate target.

A comprehensive analysis of cost-benefit versus cost-minimising pathways, including an un-
certainty analysis of the most important parameters, requires a model that is simple enough 
to use mathematical optimal control theory techniques but complex enough to capture the 
relevant technological and socio-economic dynamics. Moreover, the model should easily 
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be calibrated to the literature ranges. In this paper, we develop a flexible and transparent 
model to calculate the optimal carbon price path under a set of assumptions regarding 
damage functions, temperature goals, mitigation costs, climate sensitivities, discount rates 
and socio-economic developments. With this model, we directly compare the insights of 
the two main Integrated Assessment Modelling communities: the cost-minimising models 
which focus on how climate targets (e.g., a carbon budget) can be reached, without taking 
damages into account, and the cost-benefit models which compare the marginal mitigation 
costs to marginal damages to calculate optimal temperature goals.

With this model, we first analyse each parameter’s effect on the timing of mitigation in 
cost-minimising paths (also called cost-effective paths). We then quantify how these cost-min-
imising mitigation paths are impacted if the economic impact of climate damages is included, 
and not only mitigation costs. We analyse how the relative importance of each parameter’s 
uncertainty varies over time.

Besides cost-minimising paths with a carbon budget, we analyse optimal cost-benefit paths 
(which do not require a preset carbon budget). In particular, the resulting optimal end-of-cen-
tury temperature has been the subject of much research. Here, we provide a comprehensive 
analysis of how this optimal temperature depends on the literature ranges of the relevant 
parameters—moving beyond current literature which only considers a limited range of dam-
ages or mitigation costs (Glanemann et al., 2020)—and investigate under which assumptions 
the 2°C temperature target set by the Paris Agreement is optimal.

We move beyond studies presenting sensitivity analysis of the assessed parameters and 
conduct a systematic uncertainty analysis using ranges based on literature. We also analyse 
the interaction between parameters and assess to which degree uncertainty in individual 
parameters affect total uncertainty in the optimal carbon price or end-of-century temperature.

The model used in this paper is based on a simple economic growth model (Figure 1). This 
model shows some similarities with the DICE (Nordhaus, 2014) and the FAIR (Hof et al., 2008) 
model. The production function is combined with estimates on mitigation costs and climate 
damages from recent literature. In the model, a global carbon price is applied such that the 
discounted utility is maximised. This transparent model is still solvable using the Bellman 
equation, which guarantees mathematical optimal solutions.

The model is calibrated using literature ranges on parameters relevant for global climate 
policy (highlighted in colour in Figure 1). The socio-economic variables are obtained from 
the Shared Socio-economic Pathways (SSPs, blue) (Riahi et al., 2017b). The damage functions 
(green) cover the low range of damage functions (DICE-2016R2 damage function (Nordhaus 
& Moffat, 2017)), the medium (based on a meta-analysis by Howard et al. (2017) of empirical 
and traditional IAM estimates and referred to as Howard Total in this article), and the high 
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range (long-run empirical damage function from Burke, Hsiang and Miguel (2015)). Both the 
Transient Climate Response to Emissions (TCRE, pink), linking temperature to cumulative CO2 
emissions, and the mitigation costs (yellow), are calibrated to IPCC AR5 data (IPCC, 2013; IPCC, 
2014) and both span the 5-95th percentile range (Van Vuuren et al., 2020). Finally, we use three 
values for the pure rate of time preference (purple): 0.1%, 1.5% and 3% per year. The values 
used for each parameter are summarised in Table 1. While other parameters like different 
technological growth assumptions, social inertia and welfare are relevant, their impact on 
this paper’s main policy outcomes is significantly smaller than the five main parameters we 
focus on in this paper (see Discussion).

With our model, we discuss how these parameters affect optimal carbon price paths and 
associated emission paths in a cost-minimising setting, by imposing a carbon budget. When 
considering cost-minimising pathways reaching the Paris Agreement’s temperature target, 
including medium damages can double the initial carbon price compared to purely con-
sidering mitigation costs. Moreover, decreasing the pure rate of time preference from 1.5% 

Figure 1. Schematic representation of the model. The model consists of an economic module 
(top) with a Cobb-Douglas production function, and an emission module. The interactions between 
these two modules occur through damages and mitigation costs. The coloured boxes represent 
the parameters for which we use a representative range from literature. The carbon price path, in 
black, is the input variable of the model and the control variable in the optimisation. 
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to 0.1% also doubles the initial carbon price. Over the century, the cost-minimising carbon 
price mostly rises with per capita GDP growth. The level of mitigation costs dominates the 
variance of the carbon price. The discount rate, damage function and socio-economic scenario 
contribute in almost equal part to the remaining variance, with a drop in absolute variance 
around 2070. Consequently, the choice of discount rate and how climate damages are val-
ued have a substantial effect on the carbon price in a cost-minimising setting. To reduce the 
uncertainty in climate policy, these choices have to be made as soon as possible. 

In a cost-benefit setting (without carbon budget), even with high mitigation costs, the op-
timal end-of-century temperature with medium damages and a low discount rate does not 
exceed 2.5°C. For low mitigation costs or with the high damage function, we find an optimal 
temperature of 1.5°C or less. The effect of a different TCRE is negligible for scenarios with an 
optimal temperature between 1.5 and 2°C. Over 50% of the uncertainty comes from the 
damage function, compared to only 2% from the TCRE. Many of these results individually 
are consistent with previous research. This paper presents a comprehensive overview of the 
relative importance of each of these results.

2.2. Results

2.2.1. Optimal carbon price paths with a fixed carbon budget

This section focuses on optimal carbon price paths reaching a fixed carbon budget in 2100 
(cost-minimising setting). The carbon budget here is 1344 GtCO2, which leads to a 2°C tem-
perature increase compared to pre-industrial with 67% certainty given the normal distribution 

Parameter SSP
Damage 
function

TCRE
Mitigation 
cost level

Pure rate 
of time 

preference

Values
SSP1, SSP2*, 
SSP3, SSP4, 

SSP5

No damage**,  
DICE 2016R2 

(low), 
Howard Total 

(middle)*, 
Burke (LR) (high)

0.42, 0.62*, 0.82 
°C/1000 GtCO2

From IPCC AR5 
consumption 

losses: 
low, medium*, 

high

0.1%/yr, 
1.5%/yr*, 
3.0%/yr

Table 1. Values for the main parameters of the model. 

*: default parameter value if not specified 
**: only used in cost-minimising scenarios with a fixed carbon budget
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of the TCRE (see SI. 4.1). The effect of changing various parameters on the shape of the carbon 
price and, subsequently, the emission path, is shown in Figure 2. Each experiment compares 
the cost-minimising path without damages (solid lines) with cost-minimising paths including 
damage costs, based on the medium damage function Howard Total (dotted lines). Moreover, 
the effect of varying each remaining parameter individually (mitigation cost level, SSP, TCRE 
and discount rate) is analysed (various colours in each subplot). In each of the experiments, 
we use the default values of Table 1, unless specified otherwise.

In each of the experiments, the carbon prices increase over time, before they start falling 
again when the imposed minimum emission level, set to represent restrictions on carbon 
dioxide removal technologies (see Methods), is reached (if at all). Including damages leads 
to a shift of the mitigation effort from the end of the century towards the present: the op-
timisation aims to reduce the impact of damages on GDP development by increasing the 
mitigation effort early on. Consequently, the carbon price path becomes more linear. This 
impact depends on the damage function and is smaller for the DICE damage function and 
strongest for the Burke function. In fact, in the latter case, the optimisation can lead to smaller 
carbon budgets than the target.

Unsurprisingly, higher marginal abatement costs lead to higher carbon prices to reach the 
given carbon budget (Figure 2a). In the no-damage scenario, the carbon price path is linearly 
dependent on the height of the MAC and so there is no impact on timing (Supplementary 
Figure 6.1). Interestingly, when including damages, the initial carbon price (in 2025 to avoid 
initial inertia constraints) depends on the interaction between damages and mitigation costs. 
For high mitigation costs, the medium damage function implies an initial price that is 32% 
higher than without taking damages into account, while for low mitigation costs, this is 282% 
higher. When using the higher (Burke) and lower (DICE) damage functions, this effect also 
exists but is larger or smaller, respectively. When assuming medium damages, taking into 
account damages to determine the optimal emission pathway only leads to a substantially 
different optimal emission pathway if low mitigation costs are assumed, with very early 
reductions and hardly any net negative CO2 emissions.

The SSP substantially impacts the optimal carbon price (Figure 2b) (see also (Riahi et al., 2017c)). 
First of all, the difference in baseline emissions (e.g., between SSP1 and SSP5) explains that 
the SSP5 carbon price path grows earlier and more rapidly. Despite this higher carbon price, 
the minimum emission level is reached before the end of the century in SSP5. Second, since 
utility is derived from per capita consumption, a high population growth combined with a 
low GDP, as in SSP3 (Supplementary Figure 1.2), means that end-of-century costs have a larger 
impact on total cumulative utility. Therefore, the mitigation effort is more linear in SSP3: a 
much higher initial carbon price is followed by lower carbon prices towards 2100 compared 
to the SSP1 and SSP5 paths. In other words, cost-minimising paths without damages lead 
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Figure 2. Optimal carbon price paths (left) with corresponding emission path (right) for 
different scenarios with a 1344 GtCO2 carbon budget (cost-minimising setting). For each 
scenario the default parameters (see main text) are used, with one parameter changed (a: mitiga-
tion cost level, b: SSP, c: TCRE, d: pure rate of time preference). The solid lines correspond to purely 
cost-minimisingpaths (no damages), the dotted lines take into account the medium damage 
function Howard Total.
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to initially exponentially increasing price paths, unless one assumes that our future society 
will not be much richer than today, confirming previous findings (Goulder & Mathai, 2000). 

The TCRE dependence (Figure 2c) is relatively straightforward: the higher the TCRE, the higher 
the impact of damages on the carbon price and emission pathway (thus leading to a stronger 
preference for early mitigation). In fact, the initial carbon price increases almost linearly with 
the TCRE (Supplementary Figure 6.3).

Higher discount rates shift mitigation efforts towards the future (Figure 2d). In a cost-min-
imising setting without damages, decreasing the pure rate of time preference from 3% to 
1.5% almost doubles the initial carbon price. Moving from 1.5% to 0.1% almost doubles the 
initial price again. 

Subsequently, we analyse the combined effect of all parameters on the optimal carbon price 
and determine each parameter’s contribution to the total variance. This is quantified by 
Sobol indices, calculated with a Monte Carlo simulation using each combination of param-
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Figure 3. Contribution to the variance of each parameter as a function of time using Sobol 
Indices (cost-minimising setting). In the top row, all parameters are considered. In contrast, in 
the bottom row, the same analysis is performed while fixing the mitigation costs at three distinct 
levels: low, medium and high costs. Note that for clarity, the square root of the variance – the 
standard deviation – has been shown: the unit then becomes US$ instead of the square of it. The 
decomposition with variances is shown in Supplementary Figure 2.2.



28

Chapter 2

eter values of Table 1 (see Methods): the total variance is split in partial variances attributed 
to each parameter, along with interactions between them. As we consider scenarios with 
a fixed carbon budget here, we focus on the determinants for the optimal carbon price 
only. The top panel of Figure 3 shows the standard deviation of the optimal carbon price 
and its determinants over time. The standard deviation remains relatively constant until the 
mid-2060s, after which it increases strongly, as a result of the increasing mean values of all 
carbon prices over time. The dip in variance in the first decade comes from the constraining 
effect of inertia to reduce initial emissions. The main contribution to the variance is by far 
the mitigation cost level, especially in the longer term. However, the initial carbon price, 
however, is also strongly influenced by future socio-economic developments (through the 
SSPs, see also Supplementary Figure 2.4). To better analyse the contribution of the remaining 
parameters, we perform the same analysis but by fixing the cost level at low, medium and 
high mitigation costs (bottom three panels of Figure 3).

The variance of the optimal carbon price due to other determinants is the highest towards 
the end of the century. Interestingly, for all cases presented there is very little variance around 
2070. This can be explained by the fact that most changes in parameter values induce a 
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Figure 4. Costs versus benefits (cost-minimising setting). The costs are calculated as the net 
present value (NPV) of abatement costs as a share of GDP, while the benefits are the NPV of avoided 
damages as a share of GDP compared to the baseline SSP scenario, for each scenario reaching the 
carbon budget of 1344 GtCO2, and for each combination of parameters of Table 1. 
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shift in mitigation effort either towards the present or towards the end of the century. They 
therefore increase (or decrease) the initial carbon price, and decrease (or increase) the final 
carbon price – leading to similar carbon prices by 2070.

The SSP, discount rate and damage function contribute equally to the total variance for medi-
um mitigation cost levels. For low mitigation costs, the damages become more important. In 
contrast, the SSP becomes more dominant for high mitigation cost levels, where the marginal 
mitigation costs become substantially larger than the marginal damages. The contribution 
of the uncertainty in TCRE is negligible, accounting for less than 0.5% of the variance. This 
confirms previous findings (Van Vuuren et al., 2020), which state that the socio-economic 
uncertainty is far more important than the geophysical uncertainty in scenarios with stringent 
temperature targets.

For all the cost-minimising 2°C pathways, it can be determined whether the monetary benefits 
(damages avoided compared to a baseline scenario) outweigh the costs (net present value of 
abatement costs). While this does not imply that the pathways are optimal in a cost-benefit 
setting, at least the pathways lead to net benefits compared to baseline if this is the case. 
This comparison is very similar to the comparison of the Stern Review (Stern, 2007), in which 
a stringent scenario was compared to no mitigation at all. Of all parameter combinations 
with either medium or high damages, 95% lead to avoided damages exceeding mitigation 
costs (Figure 4). The remaining 5% consists mostly of high mitigation cost scenarios. For the 
DICE damage function, only 40% of all parameter combinations lead to higher benefits than 
costs. The magnitude of the damages, and much less the magnitude of the mitigation costs 
or the discount rate, therefore largely determines whether the benefits of 2°C outweigh the 
costs. The optimal balance between avoided losses and mitigation costs – the cost-benefit 
setting –  is another question, however, and is discussed in the next section.

2.2.2. Cost-benefit paths (without a carbon budget)

This section considers purely cost-benefit scenarios, without carbon budget or temperature 
target: the optimal price path results from an optimal balance between mitigation costs and 
damages. We discuss the optimal temperature in 2100 for different parameter combinations 
and subsequently, we analyse the contribution to the variance of the optimal temperature 
resulting from each parameter. Finally, we briefly discuss the resulting shape of the optimal 
carbon price path in a cost-benefit setting.

Figure 5 shows the optimal temperature in 2100 for all combinations of the discount rate, 
damage function, mitigation cost level, and SSP. A 2°C temperature target or lower is found 
to be optimal in most parameter combinations in cost-benefit setting with high damages 
or with a low discount rate, the latter with the exception when combined with DICE dam-
ages. Low discounting does not always lead to optimal temperatures below 2°C, especially 
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if high mitigation costs and medium to low damages are assumed. However, in most cases, 
the optimal temperature is 3°C or significantly less with low discounting, except for SSP5 
socio-economic developments. The optimal temperature in SSP5 is consistently higher than 
in other SSPs: between 3°C and 4.5°C. On the other hand, SSP1 and SSP4 have consistently 
lower optimal temperatures (between 1°C and 3°C), directly correlated with the baseline 
emissions of these SSPs. In fact, with a high discount rate or low damages, the influence of 
the SSP becomes much more important. This is discussed in more detail below. 

The effect of assuming a low or high TCRE instead of the median value is mostly linear with 
the optimal temperature (Supplementary Figure 3.4): the higher the optimal temperature 
with median TCRE, the higher the effect. A lower TCRE leads to a lower optimal temperature. 
Conversely, a high TCRE leads to a higher optimal temperature, but this effect is dampened by 
an increased abatement effort to counter the increased damages. Scenarios with an optimal 
temperature around 2°C hardly see any impact of a change in TCRE. 
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Figure 5.  Optimal temperature in 2100 (cost-benefit setting), for three different pure rate of 
time preference rates (columns), three damage functions (rows) and mitigation cost levels (colors). 
The median value of the TCRE is used for each scenario here. Therefore, the end-of-century tem-
perature corresponds linearly to the cumulative CO2 emissions from 2020 to 2100.
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Figure 6. Conditional variance tree for the temperature in 2100 (cost-benefit setting). At 
the central node, a Sobol variance decomposition is performed on the whole set of parameter 
values. The pie chart represents the percentage each parameter contributes to the total variance. 
The outer colour is the parameter with highest variance. The node is split in each of this parameter 
value, and the variance decomposition is repeated with this parameter value fixed. By repeating 
this process, a conditional variance tree is created. The grey colour in each node represents the 
interaction terms in the Sobol decomposition.
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To assess the contribution to the variance of each model parameter on the optimal tem-
perature, we perform a Sobol variance decomposition using the same method as for the 
variance decomposition of the carbon price in a cost-minimising setting. The difference here 
is that we focus on the optimal temperature in 2100 instead of the carbon price over time. 
The total variance is split into percentages attributed to each parameter. When considering 
all combinations of parameter values, the damages are responsible for the highest variance 
(58%), followed by the discount rate (15%) and the mitigation cost level (14%). This is shown 
as the central node in the conditional variance tree of Figure 6. We split on the variable with 
the highest variance (damages) and perform the same analysis, conditional on each value 
of this parameter. By repeating this process, we fix the parameters’ values with the highest 
conditional variance and obtain a tree structure.

Interestingly, the parameters with the highest variance within each level of this tree (large grey 
circles in Figure 6) are not identical. For instance, with a medium or high damage function 
(Howard Total and Burke), the discount rate and mitigation cost level dominate the variance 
since the mitigation effort level is then mainly determined by how much weight is given to 
costs for future generations. When considering a low damage function (DICE) with a high 
discount rate, where the optimal emission path is closer to the baseline emissions, the next 
parameter with the highest variance is the SSP. The mitigation costs in this case only play a 
significant role in SSP5 (with its higher baseline emissions), whereas, for the other SSPs, the 
geophysical uncertainty in TCRE dominates the variance. 

The interaction terms, represented in grey in Figure 6, can be further decomposed. As shown 
in Supplementary Fig. 3.8, the two highest interaction terms are between SSP and the dam-
age function (due to the large differences in baseline between SSPs, where some SSPs are 
much more sensitive to climate damages) and between the TCRE and the damage function 
(since the TCRE has a direct influence on the temperature and therefore the damages). This 
shows that while the first-order variances of SSP and TCRE are small, their total variance is 
larger when including interaction terms.

The timing of mitigation is obviously at least as important as the optimal temperature. The 
optimal carbon price paths in a purely cost-benefit setting increase almost linearly (Supple-
mentary Figure 3.3), consistent with simpler settings in earlier studies (Goulder & Mathai, 2000). 
While greater damages lead to slightly steeper carbon price paths, most factors influence 
mainly the initial carbon price. The exception here is the SSP (panel b, Supp. Fig. 3.3): the SSP 
determines mostly the steepness of the carbon price path. Similar to cost-minimising paths, 
the SSP3 path is much flatter than the other SSPs. The uncertainty in carbon prices in the 
cost-benefit setting (sometimes called the social cost of carbon) can be directly compared 
to the carbon price’s corresponding uncertainty in the cost-minimising setting (cf Fig. 3 and 
Suppl. Fig 3.4b). Interestingly, uncertainty in mitigation costs has a much smaller impact on 
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the level of the cost-benefit carbon price (Supplementary Figure 3.4 a and b): it explains 
around 10% of the total variance. The damage function (45%-60%) dominates the variance 
instead. The discount rate is the most important factor for low damages, while conditional 
on high damages, the mitigation cost level contributes most to the variance. 

2.3. Discussion

This paper focuses on the economic aspects of climate policy by discussing cost-minimising 
paths and optimal temperatures in a cost-benefit setting. The approach provides insight into 
the critical factors that determine the attractiveness of various mitigation pathways. Moreover, 
it allows extending on current literature research on cost-benefit analysis.

This paper also adds some nuance to the claims of recent literature (Glanemann et al., 2020; 
Hänsel et al., 2020) stating that the 2°C temperature goal, as set in the Paris agreement, is 
indeed optimal. Glanemann et al. (2020) focus on the Burke baseline damage functions 
(short run), which correspond roughly to the Howard Total damage: the optimal tempera-
ture in 2100 using Burke (short run) divided by the results using Howard Total damages has 
a mean of 0.97 (standard deviation of 0.07). While the optimal temperature using medium 
mitigation costs and a small discount rate is indeed very close to 2°C, different mitigation 
cost levels or discount rates have a strong impact, leading to optimal temperatures between 
1.1 and 3.5°C. This confirms the importance of considering the full literature range for these 
parameters. On the other hand, Glanemann et al. observe a larger impact of using different 
climate sensitivities (moving the optimal temperature from 2°C to 1.5 or 2.5°C for different 
climate sensitivities). This difference is likely due to DICE’s different climate module: while we 
use the instantaneous TCRE relation, DICE uses a two-box model with much longer lag times. 
Similarly, our results are in line with Hänsel et al. (2020), considering that they used a similar 
range in social discounting parameters, but only our medium estimates for climate damage 
and mitigation costs. Our full range of optimal climate targets is much larger. Whereas Drouet 
et al. (2015) use emission pathways generated using more detailed IAMs, the damages were 
only added afterwards. Considering the climate damages in the optimisation leads to signif-
icant differences in carbon prices, as shown in Fig. 2. Moreover, the optimal carbon budget 
candidates selected in Drouet et al. (2015) are higher than our optimal carbon budgets, 
mainly due to the much lower, now outdated, damage functions employed in their paper. 
Finally, our uncertainty decomposition contrasts with Lamontagne et al (2019), as we show 
a much larger uncertainty from damage function and mitigation costs. This difference is 
directly attributable to the use of full literature ranges instead of much smaller damage and 
abatement cost sensitivity ranges in ref (Lamontagne et al., 2019). 

Sensitivity runs.  Moving from a quadratic MAC to a cubic MAC has a small effect on the 
optimal temperatures (Suppl. Figure 5.2): more cheap mitigation options are available with 
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a cubic MAC, but options become quickly expensive after these cheap options have been 
implemented. This leads to a smaller spread in optimal temperatures. In the cost-benefit 
setting, using a cubic MAC only significantly effects the carbon price in the low mitigation 
cost scenario (Supplementary Figure 5.3), where the carbon price is increased by about 20%, 
necessary to reach the more expensive high mitigation options of the cubic MAC. On the 
other hand, the cubic MAC only has a significant effect on the carbon prices in a cost-mini-
mising setting when assuming high mitigation costs: to reach the 2°C target, very high carbon 
prices are warranted with high mitigation costs, where the difference between the MACs is 
highest (Supplementary Figure 5.1).

As an alternative welfare formulation, we have performed the same analysis with the PRTP 
and elasticity of marginal utility (elasmu) values from a recent expert elicitation (Drupp et al., 
2018). Using 172 combinations of these parameter values, the 5th, 50th and 95th percentile 
values can be calculated (see SI.7), giving a significantly wider range in the social discount 
rate. In fact, instead of using the PRTP values of 0.1%, 1.5% and 3% with a fixed elasmu of 
1.001, the Drupp et al. (2018) survey yields 0% and 0.5, 0% and 1.5 and 2% and 2.5 for the 
PRTP and elasmu values respectively. However, since these values cannot be considered to 
be uniformly distributed (as in our main analysis), the effect on the uncertainty is very small 
(Supplementary Figure 7.3 and 7.6). For the main analysis, we have chosen to use the literature 
range of PRTP values instead of focusing on a single expert elicitation.

Changing the minimum emission level from -20GtCO2 to 0 (therefore avoiding an emission/
temperature overshoot) influences the results in varying ways (SI 5.2). In the carbon budget 
setting, the mitigation effort is shifted towards the first half of the century due to the extra 
constraint. With medium assumptions and no damages, this leads to an 18% higher carbon 
price. Assuming greater damages reduces this difference since these scenarios already used 
less net negative emissions. In the cost-benefit setting, the impact of avoiding overshoot is 
negligible for scenarios ending up above 2°C, since the optimal emission paths leading to 
these temperatures hardly use net negative emissions in the first place. For lower optimal 
temperatures, the constraint leads to an increase in end-of-century temperature up to 0.2°C 
in SSP2 and up to 0.3°C in SSP5. 

Many factors are not captured in the current model and therefore insights in general outcomes 
are more interesting than the absolute numbers. Key factors not included are, for instance, 
heterogenous impacts (for different societal groups) and the possibility of environmental 
feedbacks and tipping points, possibly with stochastic behaviour. we have chosen the Howard 
Total damage function to account for the missing tipping point modelling, which includes 
catastrophic damages through a proxy for tipping points in a traditional IAM damage func-
tion. Other factors like inequality and regional heterogeneity cannot be addressed with our 
global model – moving to a regional model would provide further insights. 
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In this research, we have considered a large range of damage functions, implicitly considering 
a wide array of assumptions on climate impacts. In future work, it would be interesting to 
disentangle this uncertainty. For example, recent work has shown that the role of biodiversity 
and ecosystem services and the associated scarcity of environmental goods is relevant for 
cost-benefit work (Bastien-Olvera & Moore, 2020). Including natural capital in the produc-
tion function would be a first step towards decomposing the damage uncertainty. Using 
bottom-up sectoral climate damages could decompose this further.

Parameter validity.  The Burke damage function (Supplementary Figure 1.4) as calculated 
using our calibration reports end-of-century damages which are significantly lower than 
the damage function shown in Burke et al. (Extended Data Figure 6) (Burke et al., 2015). This 
difference is due to a combination of three factors: 1) damages to the GDP also affect future 
GDP growth due to a loss in capital, 2) Burke et al. assume a linear increase in temperature 
instead of the baseline SSP temperature increase and 3) the global estimates are slightly 
lower than the sum of local estimates due to downscaling factors and the non-linearity of 
the temperature-growth impact relationship.

Uncertainty. Throughout this paper, we have considered the extensive range of key parameter 
values as the source of uncertainty. However, these represent the fact that these parameter’s 
precise values are unknown – and not the uncertainty in a stochastic sense. Adding stochasticity 
to the model would allow for a more comprehensive investigation of the impact of tipping 
points. Previous work on stochastic IAMs (Helwegen et al., 2019; Lontzek et al., 2015a) could 
be extended to include the literature ranges of the parameters provided in this paper, and 
possibly be extended with data on socio-economic tipping points (Van Ginkel et al., 2020). 
This would effectively widen the range of possible damages.

Suitability of the model.  The use of IAMs, in general, has been criticised both for cost-ben-
efit analysis (for models like DICE) (Pindyck, 2013a) and cost-minimising analysis, but this 
general critique has been discussed elsewhere. Our analysis’ added value is that it allows us 
to investigate the effect of critical, normative assumptions on policy-relevant quantities, like 
the magnitude of the carbon price or the optimal temperature. The simple model allows 
for more transparency in how our results are obtained and our parameters are calibrated. 
Moreover, some of the criticisms, such as ad hoc input parameters and damages (Pindyck, 
2013a), are addressed using the full literature ranges of key parameters.

Given the extensive range of optimal temperatures, one can ask how to use the results. It 
should be noted, however, that dealing with uncertainty and normative choices is part of 
climate policy decision-making, with or without insights of different models. This will include 
deciding on acceptable risk levels and normative choices like the discount rate. From our 
analysis, the risk of high damages appears to be higher than the risk of high mitigation costs. 
If this is combined with the suggestion of Stern and, more recently, Emmerling et al. (2019) 
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(Emmerling et al., 2019) that low discount rates are warranted for long term climate policy, 
our results confirm that for low discount rates and medium to high damages, cost-optimal 
temperatures are in line with the long-term objectives of the Paris Agreement. Moreover, 
research could possibly reduce some of the uncertainties over time.

2.4. Methods

2.4.1. The model

A schematic overview of the model is shown in Figure 1. The economic module (top grey 
box) consists of a Cobb-Douglas production function which calculates GDP using exogenous 
population and total factor productivity (Riahi et al., 2017c). The GDP is divided between a 
fixed share to investments and the remaining share to consumption. The investments are 
added to the global capital stock, which forms together with labour the two production 
factors for GDP in the next time step. The development of labour is set equal to population 
developments. The goal is to maximise discounted utility, where utility is an increasing func-
tion of consumption.

The next component of the model is the emissions module. CO2 emissions are calculated 
based on GDP and an emission factor representing the carbon intensity of the energy system 
(bottom grey box in Figure 1). The interactions between the emission module and the eco-
nomic module occur through two mechanisms: damages from climate change, and mitiga-
tion costs. Unlike the DICE model, which uses a two-box climate module (which has recently 
been shown not to be able to reach a 2°C target (Howard & Sylvan, 2020)), the cumulative 
CO2 emissions in our model are translated into global mean temperature (GMT) through 
the linear and instantaneous TCRE (Transient Climate Response to Emissions) relation. This 
simple climate model is shown to provide more realistic outcomes than the DICE  climate 
module (Dietz & Venmans, 2019). The TCRE includes the effect of non-CO2 emissions, which 
are therefore implicitly coupled to the CO2 emissions. As suggested in previous research (Van 
Vuuren et al., 2020), the non-CO2 emissions are correlated with CO2 emissions, making this 
a reasonable assumption.

The increase in GMT causes GDP loss, quantified through damage functions. To counter these 
damages, a global carbon price is used at every time period, which causes a reduction of 
emissions as defined through a quadratic Marginal Abatement Cost (MAC) curve with tech-
nological learning (learning-by-doing). The MAC also quantifies the mitigation costs, which 
are deducted from the GDP, similarly to DICE and FAIR (Hof et al., 2008; Nordhaus, 2014). To 
model the limited availability of negative emission technologies (Van Vuuren et al., 2013), 
we impose a minimum emission level of -20 GtCO2/yr. This value is based on the minimum 
emission levels of the scenarios in the scenario explorer for 1.5°C pathways (Huppmann, Daniel 
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and Kriegler, Elmar and Krey, Volker and Riahi, Keywan and Rogelj, Joeri and Rose, Steven K. 
and Weyant, John and Bauer, Nico and Bertram, Christoph and Bosetti, Valentina and Calvin, 
Katherine and Doelman, Jonathan and Drouet, Laurent an, 2018) underpinning the IPCC 
Special Report on Global Warming of 1.5°C (Masson-Delmotte et al., 2018). Inertia is mod-
elled by applying a constraint on the difference in CO2 emissions between two consecutive 
years of 2.2 GtCO2/year (based on the maximum reduction speed of the IPCC 1.5C database 
(Huppmann, Daniel and Kriegler, Elmar and Krey, Volker and Riahi, Keywan and Rogelj, Joeri 
and Rose, Steven K. and Weyant, John and Bauer, Nico and Bertram, Christoph and Bosetti, 
Valentina and Calvin, Katherine and Doelman, Jonathan and Drouet, Laurent an, 2018)).In 
every experiment, the time horizon is the year 2100, but the optimisation runs throughout 
the 22nd century to counter end-of-horizon problems.

The optimal carbon price is calculated using the Bellman Equation with as state variables the 
cumulative emissions and the capital stock, as control variable the carbon price at each time 
period and as objective function the discounted utility. This methodology is detailed in SI.4.2.

We distinguish between two cases: scenarios with a fixed carbon budget (or temperature 
target), and scenarios without target. The first case represents a cost-minimising setting while 
the second constitutes a traditional cost-benefit analysis. In the literature, cost-minimising 
analysis is typically performed using relatively detailed process models, for instance to look 
into the role of specific technologies or determine regional costs. In this approach it is as-
sumed that climate targets are chosen by policy-makers in international negotiations (based 
on both monetary and non-monetary information). Cost-benefit models, in contrast, are 
typically more stylised models that determine an optimal target based on cost-optimisation 
(which means that all damages need to be expressed in monetary terms). The model here 
can be used for both types of analysis. It is also able to account for the impact of damages 
in cost-minimising analysis (which is typically not done). 

The full mathematical formulation of the model is available in SI.4.

While there are some modelling differences between our model and DICE (e.g. different 
climate module, fixed investment savings rate, endogenous technological change, inclusion 
of inertia), the main differences reside in the calibration of the parameters.

2.4.2. Model parameters

This model allows using literature ranges on parameters relevant for global climate policy. 
These parameters are highlighted in colour in Figure 1.

First, the socio-economic variables like population, total factor productivity (TFP) and base-
line emissions intensity are obtained from the Shared Socio-economic Pathways (SSPs, blue) 
(Riahi et al., 2017c).
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The damage functions (green) cover the current literature range by choosing a low, medium 
and high damage function (see SI.1.3):

•	 the DICE 2016R2-damage function, representing low damages,
•	 the medium damage function resulting from a meta-analysis by Howard et al, which 

they refer to as “the preferred model for total (non-catastrophic plus catastrophic) 
damages”. This function is based on empirical damages and traditional estimates like 
DICE and FUND. We refer to this damage as “Howard Total”.

•	 the empirical damage function from Burke, Hsiang and Miguel (2015) (Burke et al., 
2015). To cover the high end of damages, we use their Long Run (LR) version, which 
takes into account damages to the GDP growth rate based on the temperature of the 
5 previous years. The GDP per capita growth losses are converted to a GDP damage 
function using an iterative calibration method (Glanemann et al., 2020) (see SI.1.3).

The effect of CO2 emissions on global temperature is assumed to be linear and instantaneous 
through the TCRE relation (Dietz & Venmans, 2019). Based on the IPCC AR5 Working Group 
1 (IPCC, 2013) relationship, we derive a value of the TCRE between 0.38 and 0.86 °C per 1000 
GtCO2 (5-95th percentile), with median of 0.62, equal to the range used in van Vuuren et al 
(2020) (Van Vuuren et al., 2020).

The MAC curve is calibrated to three levels of mitigation costs, using the consumption loss 
range from the IPCC AR5 Working Group 3, Fig. 6.23 (IPCC, 2014). This calibration is performed 
using quantile regression at the 5th, 50th and 95th percentiles to give a MAC with low, middle 
and high mitigation costs respectively. More information on the calibration is available in SI.1.

Finally, the utility is discounted at three pure rate of time preference values (also called utility 
discount rates): the low bound of 0.1%, as used in the Stern review (Stern, 2007), 1.5% and 
3%. The latter two values correspond with the values used in DICE-1999 and DICE-2007 (and 
following versions) (Nordhaus, 2008; Nordhaus & Boyer, 2000), respectively. These values span 
a similar range as a recent expert elicitation of social discount rates, where the 5th and 95th 
percentiles of the PRTP values are 0% and 3.5%/year (Drupp et al., 2018; Hänsel et al., 2020), 
with an average reported value of 1.1%/year.

The effect of using a cubic, instead of a quadratic, MAC is discussed in SI.5.1, as well as the 
effect of using the full range of PRTP/elasticity of marginal utility combinations from the 
aforementioned expert elicitation (SI.7).

2.4.3. Analysing the variance using Sobol decomposition

Due to the relative simplicity of this model, we are able to calculate the optimal carbon price 
path (both with and without carbon budget) for every combination of parameter values 
shown in Table 1 (405 scenarios). This allows us to analyse the relative importance of each 
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parameter. We quantify the contribution to the variance of each parameter with the Sobol 
indices (Saltelli, 2002; Sobol’, 1993). These are calculated using a Monte Carlo method. This 
method requires a distribution for each parameter. However, sampling from a continuous 
distribution for each parameter would require thousands or millions of runs, which is com-
putationally infeasible. For this reason, we approximate the distribution of each parameter by 
a discrete distribution best matching the normal distribution of the underlying distribution 
using only the parameter values available in Table 1. Since the values for the mitigation costs 
and the TCRE represent the 5th, 50th and 95th percentiles, the discrete distribution with 
equal mean and variance is a weighted distribution where the median value is 3.4 times 
more likely to be chosen (see Supplementary Information 4.3). A problem of this method is 
that the SSP, damage function and discount rate do not have an underlying distribution. To 
still be able to quantify the relative importance of each parameter, we associate a uniform 
discrete distribution to these parameters. More details of this method are available in SI.4.3.

Code availability

The full model code is available at https://github.com/kvanderwijst/DamagesAndCarbonPrice 
(http://doi.org/10.5281/zenodo.4555423).

Data availability

The data used for the SSP-related quantities (baseline GDP and population) are available at 
the IIASA SSP-database: https://tntcat.iiasa.ac.at/SspDb/. The data for each figure and under-
lying model runs are available at https://github.com/kvanderwijst/DamagesAndCarbonPrice 
(http://doi.org/10.5281/zenodo.4555423).
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Economic analyses of global climate change have been criticised for their poor rep-
resentation of climate change damages. Here, we develop and apply aggregate dam-
age functions in three economic Integrated Assessment Models (IAMs) with different 
degrees of complexity. The damage functions encompass a wide, but still incomplete, 
set of climate change impacts based on physical impact models. We show that with 
medium estimates for damage functions, global damages are in the range of 10% to 
12% of GDP by 2100 in a baseline scenario with 3 °C temperature change, and about 
2% in a well-below 2 °C scenario. These damages are much higher than previous es-
timates in benefit-cost studies, resulting in optimal temperatures below 2 °C with 
central estimates of damages and discount rates. Moreover, we find a Benefit-Cost 
Ratio of 1.5 to 3.9, even without considering damages that could not be accounted 
for, such as biodiversity losses, health, and tipping points. 
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3.1. Introduction

Cost-benefit analysis (CBA) of climate change provides insight into the economic conse-
quences of different climate policy strategies. The results of CBAs critically depend on the 
quality of the underlying information on mitigation costs, avoided damages, the processes 
represented in the models and the coverage of relevant uncertainties. While there is a rich 
literature on mitigation costs (Harmsen et al., 2021; IPCC, 2014; Köberle et al., 2021; Krey, 2014; 
Riahi et al., 2021; Rogelj et al., 2013; Van Vuuren et al., 2020), it has been notoriously difficult to 
get reliable information on the damages. Similarly, much less is known about the role of the 
type of integrated assessment model used to analyse the costs and benefits. While model 
intercomparison studies are common for other climate change research areas (CD-LINKS, EMF 
33, ENGAGE, NAVIGATE, REINVENT), very few have been performed on cost-benefit analyses. 

In CBA models, the benefits of climate change mitigation can be obtained from reduced-form 
damage functions, which relate global average temperature increase to aggregate economic 
losses. In recent years, empirical, top-down estimates have been developed which relate 
observed temperature with economic growth (Burke et al., 2015; Dell et al., 2012; Kahn, 
Mohaddes, C Ng, et al., 2019). The disadvantage of this method is that the underlying driv-
ers of climate damages are unknown, and it is very uncertain whether historical empirical 
correlations between temperature and economic growth can be extrapolated to the (far) 
future. In earlier CBA studies, on the other hand, most estimates of damage functions relied 
on semi-qualitative assessment by experts, which are currently considered mostly outdated 
(Bosello et al., 2021; Dellink et al., 2019; Eboli et al., 2010; Howard & Sterner, 2017; Parrado & 
De Cian, 2014; Szewczyk et al., 2020; Tsigas et al., 1997; Van der Wijst, Hof, van Vuuren, 2021). 

To overcome these drawbacks, a new set of regional climate change damage functions 
(Bosello et al., 2021) were recently built in a bottom-up process as part of the European Ho-
rizon 2020 project COACCH (www.coacch.eu). They are based on physical impacts derived 
from last-generation impact models covering a wide range of sectors (agriculture, forestry, 
fishery, energy demand, energy supply, labour supply, riverine floods, transportation, and 
sea-level rise) (Bosello et al., 2021). The impact of these physical damages on economic losses 
were estimated by an economic model: the Computable General Equilibrium (CGE) model 
(Dellink et al., 2019; Szewczyk et al., 2020; Tsigas et al., 1997) ICES (Parrado & De Cian, 2014) 
with improved representation of driving forces and transmission mechanisms of economic 
impacts (Fig. 1 and Extended Data Table 1). 

Compared with similar exercises (Dellink et al., 2019; Eboli et al., 2010; Szewczyk et al., 2020), 
the damage functions developed here use a higher level of regional detail and provide 
internally consistent uncertainty ranges. This high spatial granularity applies particularly to 
the EU, where the macroeconomic impact assessments are determined at the NUTS2 level. 
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The consistency in uncertainty representation derives from accounting for i) different climate 
scenarios, ii) different socio-economic scenarios, iii) different impact ranges within each climate 
scenario originated by impact model uncertainty, and, finally, iv) how the economy reacts 
to these impacts. The new damage functions have been separately estimated for impacts 
related to temperature increase and sea-level rise (with a much longer time delay). The 
damage curves also include versions for the case of sea-level rise with and without optimal 
adaptation (see Methods).
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Figure 1. Overview of the creation and use of the damage functions. Results from 9 sectoral 
impact models are included in a CGE model to calculate GDP losses for various scenarios and points 
in time. Using quantile regression, a curve is fitted through the points at the 5th percentile (low 
estimate), 50th percentile (medium) and 95th percentile (high), for each region. These reduced form 
damage functions are used in the Integrated Assessment Models for the macroeconomic analysis 
of this paper. The example damages shown in the bottom panel are the combined damages 
(including sea-level rise, no adaptation) aggregated for the world, and are compared to several 
literature damage estimates.
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Literature shows that the results of cost-benefit studies depend not only on the damage 
function but also on the macroeconomic parameters and assumptions like discounting or 
savings, as well as the representation of mitigation costs and dynamics (Van der Wijst, Hof, van 
Vuuren, 2021). Several studies have been published in recent years looking into uncertainty 
in cost-benefit analysis. These studies typically only consider a single model (Glanemann et 
al., 2020; Hänsel et al., 2020; Rennert et al., 2022; Van der Wijst, Hof, van Vuuren, 2021) and use 
the older top-down or empirical damage functions. Here, we perform the first multi-model 
CBA study using the newly developed COACCH damage functions, allowing to explore the 
impacts of a consistent set of damage curves (including an explicit uncertainty estimate) 
in different models. Three IAMs are used: the reduced form model MIMOSA (Van der Wijst, 
Hof, van Vuuren, 2021), and the process-based models WITCH (Emmerling et al., 2016) and 
REMIND (Baumstark et al., 2021). First, we investigate how the damage functions translate 
to (regional) GDP losses given different temperature pathways and how the results from 
each model relate to each other (so covering the uncertainty as result of model representa-
tion). Next, we determine the combined effect of mitigation costs and damages on optimal 
emission pathways using cost-benefit analysis and compare them with the goals of the Paris 
Agreement (Fig. 1). We also calculate Benefit-Cost Ratios (BCRs) for these optimal emission 
pathways, which indicates the relationship between the relative costs and benefits of climate 
mitigation. For medium estimates of damage function and discount rate, we find a BCR of 
1.5 to 3.9. This presents an important case to improve societal acceptance of climate policy, 
as the purely economic benefits of reduced climate damages significantly outweigh the 
costs of climate policy.

3.2. Multi-model comparison of economic damages 

We first compare the sensitivity of final economic damages to different model dynamics. 
To do this, we calculate the macro-economic effect of the damage functions in the three 
IAMs under two fixed temperature pathways: the Representative Concentration Pathway 
(Van Vuuren, Kriegler, et al., 2014) (RCP) 6.0 leading to a global average temperature change 
of about 3°C by 2100 (also coinciding with the no-policy scenario in one of the models, RE-
MIND), and RCP 2.6, which is a trajectory in line with the well below 2 °C target of the Paris 
Agreement, i.e. RCP 2.6. We fixed the temperature pathways to reveal whether the model 
parameterisations shaping the economic growth differ substantively.

The COACCH functions allow decomposing the total GDP losses into (i) direct impacts from 
sea level rise, (ii) direct temperature-related impacts and (iii) indirect impacts from cumulated 
dynamic effects, e.g. through investment (Fankhauser & Tol, 2005; Kikstra et al., 2021). Unless 
stated otherwise, we assume that optimal adaptation has taken place against sea-level rise 
(SLR) damages. Therefore, reported SLR damages are the sum of SLR adaptation costs and 
residual damages. 
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On a global level, the GDP loss in the baseline RCP 6.0 scenario ranges from 10 to 12% at 
the end of the century when using medium damage (50th damage quantile) estimates. The 
damages are significantly reduced in the mitigation scenario RCP 2.6 to 3.1-3.6% GDP loss in 
2100. The economic damages are not very sensitive to the model used. 
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Figure 2. End-of-century damages for the 5 macro-regions for two scenarios. The damages 
are split in three damage types (direct temperature related damages, direct sea-level rise damages 
and indirect damages from GDP loss accumulation). The damages are shown for the year 2100 in 
(a) the RCP6.0 scenario and (b) the RCP2.6 scenario. Both scenarios assume optimal sea-level rise 
adaptation. This figure does not show intra-regional differences; only the population-weighted 
average per macro-region is shown. 
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In Fig. 2, higher spatial resolution results from the original COACCH damage functions and 
the IAM used have been aggregated for the five macro-regions of the SSP database (Riahi 
et al., 2017a) to facilitate comparison (see Methods). 

There is high agreement across models also on regional damage patterns, although the 
ranges are larger in some regions than others. In the RCP 6.0 scenario (Fig. 2a), the damages 
are the highest in the Middle East and Africa region, with total losses between 13% and 18% 
of GDP, followed by 12% to 14% for Asia. The other three regions have lower total damages 
(6-8% for Latin America, 5% for OECD and 3-5% for Eastern Europe and Northern Asia). This 
figure does not show intra-regional differences; only the population-weighted average per 
macro-region is shown.

Even with optimal adaptation, sea-level rise damages, including adaptation costs, make up 
a significant part (10-13% of total direct damages) in Asia and the OECD region. This share 
is much lower in the other regions (as low as 2% of total direct damages for Africa). Without 
sea-level rise adaptation (Fig. SI.1.1), total damages per region become substantially higher 
(from global average damages of 11-12% with SLR adaptation to global damages of 14-17% 
without SLR adaptation). This is especially pronounced in the OECD (5-6% total damages 
with SLR adaptation to 12% total damages without SLR adaptation), which confirms previous 
literature on the benefits of SLR adaptation (Schinko, Drouet, Vrontisi, Hof, Hinkel, Mochizuki, 
Bosetti, Fragkiadakis, Van Vuuren, et al., 2020).

RCP 2.6 reduces the total damages to a regional maximum of 4.5%, compared to the 18% for 
RCP 6.0 (Fig. 2b). The regional distribution of damages is similar to RCP 6.0, except that Asia 
has now slightly higher damages than Africa. Because of the slow processes of sea-level rise, 
the differences in sea-level rise damages between RCP 2.6 and RCP 6.0 are relatively small 
in the first half of the century. Accordingly, the relative share of damages from sea-level rise 
becomes larger, especially in regions with relatively long coastlines, like Asia and the OECD. 
Without SLR adaptation, Asia and the OECD have the highest damages in RCP 2.6, as, in that 
case, sea-level rise damages account for most of the total damages (Fig. SI.1.1b).

3.2.1. Impact of damage curve uncertainty

The total damages are significantly higher when using the high end of the damage quantile 
(95th damage quantile, see Methods): 18-22% global average GDP loss instead of 11-12% 
for the medium damage quantile (Fig. 3). There is a small probability that global impacts are 
slightly positive up to 2050, indicated by negative GDP losses for the 5th damage quantile, 
due to significant gains in Latin America from increased agricultural yield (see Fig. SI.1.4b). 
These gains are offset by sea-level rise damages towards the end of the century.
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Until 2050, the differences between RCP 2.6 and 6.0 are still moderate. They only strongly 
diverge towards 2100 (up to 50% higher damages in RCP 6.0 than RCP 2.6 in 2050, whereas 
the damages are 300% higher towards the end of the century).

REMIND shows lower indirect effects than the other models. While in MIMOSA and WITCH all 
economic assets are fixed, in REMIND, assets can be relocated, facilitated by more advanced 
trade mechanisms (Leimbach & Bauer, 2021), and, accordingly, losses are lower.

3.3. Cost-benefit analysis

We now add mitigation costs of each model to perform a comprehensive CBA. 

The cost-optimal (or, in a strict sense, welfare-optimal) end-of-century temperature for the 
medium estimates of damages is similar for all three models: around 1.9°C above pre-in-
dustrial levels (Fig. 4). These temperature estimates are median climate estimates; we have 
not assessed uncertainty in the climate module. Interestingly, none of the models applies 
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Figure 3. Sensitivity analysis of the global damage costs. Damage cost decomposition of 
the global GDP losses with optimal sea-level rise adaptation for RCP 6.0 (top row) and RCP 2.6 
(bottom row) for three levels of damages (low: 5th quantile, medium: 50th quantile, high: 95th 
quantile), in 2030, 2050 and 2100.
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net-negative emissions to limit temperature increase to these levels. This is a consequence 
of running the models in cost-benefit mode (minimising damages and mitigation costs) 
instead of cost-effectiveness mode (minimising mitigation costs only). Previous (Schultes et 
al., 2021; Van der Wijst, Hof, van Vuuren, 2021; Van der Wijst, Hof, Van Vuuren, 2021) research 
has shown that cost-benefit runs lead to much higher reductions early in the century and 
less use of net-negative emissions than cost-effectiveness runs.

As expected, the low damage function leads to higher optimal end-of-century temperature 
increases of 2.8-3.1°C, and the higher end of the damages leads to optimal temperature 
increases, which are very close to the 1.5 °C target of the Paris Agreement (1.5-1.7°C). 
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Figure 4. Emission pathways, damage costs and climate policy costs in cost-benefit (CBA) 
setting. (a) Cost-optimal emission trajectory and corresponding end-of-century temperature in 
cost-benefit runs for the low, medium and high end of the damage function uncertainty range 
(damage quantiles). While only global CO2 emissions are shown in this figure, each model takes 
into account non-CO2 gases as well in their calculation of temperature outcomes. (b) GDP loss 
(compared to baseline GDP) decomposed in policy costs (mitigation costs), damage costs and 
indirect costs. Here, the indirect costs result from accumulated GDP impacts from mitigation and 
damage costs.
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3.3.1. Model uncertainty

The optimal emission pathways in MIMOSA, WITCH and REMIND are similar. REMIND is slight-
ly less sensitive to variability in the damage function than the other two models. It can be 
also noted that overall mitigation costs are lower in REMIND (Fig. 4b, see also (Harmsen et 
al., 2021)). Nonetheless, in terms of temperature, the model shows the smallest difference 
(only 0.2°C) between the 50th and 95th damage quantile. The bottom-up description of 
mitigation options, including hard-to-abate processes, puts stringent constraints on the total 
mitigation potential; this means that the model already exploits the largest share of the total 
mitigation potential already in the 50th damage quantile run. In MIMOSA, the mitigation costs 
are higher (around 2% of GDP for the medium CBA scenario) than REMIND, but the model 
is more flexible in achieving higher mitigation levels. It has less strict inertia constraints and 
allows more net-negative emissions towards the end of the century than REMIND or WITCH, 
explaining the lower optimal end-of-century temperature in the high damage quantile sce-
nario. WITCH shows a stronger initial mitigation effort and less towards the end of the period, 
even with the modest global carbon price of $67/tCO2 in 2030 (see Fig. SI.2.1) for medium 
damages. WITCH still reaches similar end-of-century temperatures as REMIND and MIMOSA, 
based on different assumptions about land-use CO2 emissions, other greenhouse gases, and 
the climate model used.

3.3.2. The role of discounting

Another key component in long-term cost-benefit analysis is the discount rate. By default, we 
use a pure rate of time preference (PRTP) of 1.5%/year, combined with an elasticity of marginal 
utility of 1, in line with recent literature (Hänsel et al., 2020; Van der Wijst, Hof, van Vuuren, 
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Figure 5. Optimal temperature in 2100 in CBA for different levels of discounting and SLR ad-
aptation assumptions. The levels of discounting are quantified by three values of the Pure Rate of 
Time Preference (PRTP), also called utility discounting. REMIND has not been calibrated to use the 
low utility discount rate.
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2021) and a recent expert elicitation (Drupp et al., 2018). We perform a sensitivity analysis 
with a lower and higher discounting parameter to cover the full range of current discounting 
estimates. We use 0.1%/year as a low PRTP value, as in the Stern (Stern, 2007) review, and 3%/
year as a high PRTP value covering a range similar to the Inter-Agency Working Group on 
the Social Cost of Carbon (IAWG, 2010), while keeping the elasticity of marginal utility fixed.

As shown in Fig. 5, the impact of damage function uncertainty on the cost-optimal end-of-cen-
tury temperature is twice as large as the impact from discounting uncertainty. The spread 
in optimal temperatures is around 1.5°C for damage cost uncertainty and 0.7°C for uncer-
tainty in discounting. Without sea-level rise adaptation, the optimal temperature is, across 
all discounting scenarios, between 0.1°C and 0.2°C lower than with optimal sea-level rise 
adaptation, as the models choose to reduce the other damages as much as possible. Only 
for end-of-century temperatures of 1.5°C or lower, peak temperatures are in some cases more 
than 0.1°C higher than 2100 temperatures (see Suppl. Fig. 2.2).

3.3.3. Comparing costs to avoided damages using the Benefit-Cost Ratio

Besides providing a cost-optimal target, an important and policy-relevant metric is the Ben-
efit-Cost Ratio, showing by how much the avoided damages outweigh the mitigation costs. 
When subtracting the residual damages of a CBA scenario from the damages in a baseline 
scenario, we obtain the avoided damages, or, in other words, the economic benefits of mit-
igation (expressed as % of GDP). Comparing the total discounted avoided damages to the 
total mitigation costs gives a Benefit-Cost Ratio of mitigation (Extended Figure 1). Globally, 
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most benefits occur in the second half of the century or even beyond 2100, as damages 
increase slowly while mitigation costs increase early, even incurring the large costs at the 
beginning of the transformation. Therefore, we consider the 2020-2150 time range. Using a 
medium discount rate (pure rate of time preference of 1.5%/yr), the benefits are almost twice 
the total discounted costs (multi-model range of 1.5 to 3.9, Fig. 6). This gives strong economic 
validation of the Paris-consistent mitigation scenario, especially when considering that the 
damage functions are likely to be underestimates since not all damage sectors have been 
included (see Discussion). When assuming the high damage function, the benefit-cost ratio 
increases to 1.8 - 5.0 for medium discounting (Figure SI.2.2.). Since the low damage function 
yields CBA paths with very low to no mitigation effort, the BCR is not calculated here. Since 
these scenarios are performed in a cooperative setting, only the global results are calculated. 
A regional BCR requires assumptions on equity and burden sharing, which are outside the 
scope of this paper (see Discussion).

3.4. Discussion

The results in this study show that, from a purely economic perspective, the benefits of re-
duced climate damages significantly outweigh the costs of climate policy, even when some 
climate change damages, including those on biodiversity and health, are not accounted for. 
This presents an important case to improve societal acceptance of climate policy.

The results are based on i) detailed process-based biophysical impacts, ii) a consistent eco-
nomic modelling approach to quantify and monetise these impacts in a multi-model context, 
iii) the separation of temperature and sea-level rise impacts, and iv) allowing for sea-level 
rise adaptation investment. We show that with medium damages (evaluated at the median 
of our multi-impact-model chain estimated damage function), the optimal temperature 
increase is below 2°C according to all three models. Assuming the high end of the damage 
function (estimated at the 95th percentile), the optimal temperature increase is close to 1.5°C 
in all three models. Since the COACCH damage functions do not include all impacts (e.g. 
biodiversity loss, health impacts and tipping points), the resulting temperature outcomes 
are likely to be conservative, meaning that this study gives strong economic validation of the 
Paris Agreement. Our damage functions only explicitly modelled adaptation for sea-level rise. 
For the other impacts, adaptation is implicitly addressed in the CGE (market-driven adapta-
tion), but not in the impact models. Future research needs to improve our understanding of 
adaptation in a comprehensive global impact study.

Interestingly, when aggregated globally, the COACCH low, medium and high damage func-
tions are close to, respectively, the DICE (Nordhaus, 2014), Howard et al. (Howard & Sterner, 
2017) and Burke et al. (Burke et al., 2015) functions (see Fig. 1.), thus also leading to similar 
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optimal temperature levels22. However, the methodology for creating the damage function 
is completely different. While DICE, just like the new functions presented here, also relies on 
bottom-up sectoral physical impacts, major criticisms about these damage functions (as 
used in DICE (Nordhaus, 2014), FUND (Anthoff & Tol, 2014) and PAGE (Hope, 2013)) are the 
lack of empirical foundation, the relatively simple monetisation method used, and that they 
are based on relatively old and scarce impact data (Pindyck, 2019, 2020). A more recent study 
(Rennert et al., 2022) with bottom-up impacts directly included damages from a limited set 
of 4 sectors in their IAM using a simplified damage function for each of the sectors. Contrary 
to the bottom-up methods like DICE and Rennert et al (2022) (Rennert et al., 2022), empirical 
damage functions, like Burke et al., with their “reduced-form nature” constitute black boxes: 
the underlying impact drivers are unknown, which makes it far from certain that these his-
torical correlations between temperature and economic growth also hold for the (far) future 
(Bosello & Parrado, 2020; Piontek et al., 2021). With the advancement of sectoral physical 
impact models, the COACCH damage functions rely much less on semi-qualitative expert 
assessment and avoid simple monetisation by translating the state-of-the-art physical impacts 
into economic damages using a CGE. This improves the transparency of how each type of 
physical impact is implemented in the economical assessment (see Table SI. 3.1). However, 
more research should be performed to monetize and include more climate impact sectors, 
like biodiversity losses, health impacts and tipping points.

Apart from the results of the CBA, the regional macro-economic implications of the new 
COACCH damage functions show equally important insights. While there is a lot of atten-
tion regarding the regional distribution of mitigation costs (Höhne et al., 2013; X. Pan et al., 
2014; Raupach et al., 2014; van den Berg et al., 2020), this research shows that financing loss 
and damages is just as important, since even Paris-compliant scenarios still yield significant 
damages, especially in developing regions. While the new damage functions provide im-
proved estimates of economic climate damages on a regional level (as shown in Fig. 2), the 
Benefit-Cost Ratios provided in this study are only applicable on a global scale. A regional 
BCR would imply specific assumptions about regional equity regarding the distribution of 
mitigation costs, like burden sharing regimes and emission trading schemes (Bauer et al., 
2020; van den Berg et al., 2020), which are outside the scope of this study. 

In this research, we have not taken all possible uncertainties into account. We have instead 
concentrated on the two main sources of uncertainty in CBA: damage costs and discounting, 
together accounting for almost 75% of total variance in cost-optimal temperature variance 
according to a recent CBA study (Van der Wijst, Hof, van Vuuren, 2021). Other relevant sources of 
variance are mitigation cost uncertainty, climate uncertainty and socio-economic uncertainty. 
By systematically using three different IAMs, this study considers between-model uncertainty 
in mitigation costs and climate model, but not within-model uncertainty.
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An extra source of uncertainty originates from the separation between sea-level rise damages 
and purely temperature related damages. While all three models considered in this study have 
the ability to separate the two by modelling sea-level rise explicitly, this is not the case for 
all IAMs. For this reason, the new damage functions are also provided as combined damage 
functions depending only on temperature (SI.3.2c). These functions include the aggregated 
effect of SLR and non-SLR damages. They result in similar damages for high temperature 

Climate change 
impact area

Agriculture EPIC biophysical 
model47 and 
GLOBIOM model48, 
updated in 2021

(Change in) Crop yield Changes in the productivity of the "land 
input" to the regional agricultural 
sectors

Forestry G4M model49 (Change in) Net physical wood 
production per hectare

Changes in the productivity of the 
"natural resource" input to the regional 
timber industries

Fishery DBEM envelope 
model50 and DSFM 
food web model51

(Change in) Fish catches Changes in the productivity of the 
"natural resource" input to the regional 
fish industries

Impact model 
sourcing data

Variable Modelling implementation for the 
economic assessment

Sea-level rise DIVA model52 - Annual land loss due to   
submergence
- Expected annual damages to 
assets
- Expected annual number of 
people flooded
- Annual protection costs (for the 
adaptation scenario)

- Changes in land input available to the 
regional agricultural sectors
- Changes in the capital stock available 
to regional economies
- Changes in the productivity of the 
labour input
- Opportunity cost of capital (lower 
capital stock, and lower damages for the 
adaptation scenario)

Riverine floods GLOFRIS model53 - Expected annual damages for 
the industrial, commercial, and 
residential sectors
- Expected annual number of 
people flooded

- Changes in the capital stock available 
to regional industrial, commercial, 
building sectors
- Changes in the productivity of the 
labour input

Road 
transportation

OSDaMage model54 Expected annual damages for 
the road infrastructure

Change in the total factor productivity of 
the regional road transportation sector

Energy supply Schleypen et al., 
(2019)55

Changes in wind and 
hydropower production

Change in the total factor productivity of 
the regional wind and hydro energy 
sector

Energy demand Scheypen et al., 
(2019)55

Changes in energy demand by 
households and by the 
industrial, agricultural and 
service sectors for coal, oil, gas, 
electricity

- Changes in energy demand by the 
regional household
- Changes in productivity of energy input 
for the macro sectors

Labour 
productivity

Dasgupta et al., 
(2022)56

Changes in per capita 
production of value added

Changes in regional labour productivity

Extended Data Table 1. Impacts categories included in the estimation of the reduced-form 
climate change damage functions and implementation for their economic assessment.
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scenarios (RCP 6.0, see Suppl. Fig. 1.2). However, the combined damages are up to 50% lower 
than the disaggregated damage functions in an RCP 2.6 scenarios without SLR adaptation 
(Suppl. Fig. 1.2), due to the different time scales that are not being captured when SLR is not 
modelled explicitly. This highlights the importance of separating sea-level rise damages from 
other temperature-related damages.

This analysis shows the importance of including the full range of damage function uncertainty, 
as this strongly influences possible policy recommendations. It also highlights that different 
models can lead to different results. Using multiple models can highlight these differences 
and lead to more robust outcomes in the case of model agreement. While the uncertainty 
due to three models in the cost-optimal end-of-century temperature is much smaller than 
the damage and discounting uncertainty, the model range in the Benefit Cost Ratio does 
show the importance of including multiple models in a cost-benefit analysis.

3.5. Methods

3.5.1. Damage functions

Damage functions connect global or local temperature increase to loss of income or con-
sumption. Here, we use the newly created COACCH damage functions. 

In a first step a set of climate change damages quantified by process-based sectoral impact 

No damage
baseline GDPt

Actual GDPt
Actual GDP equals baseline GDP minus
policy, damage and indirect costs

No policy GDPt

GDP

DIRECT POLICY
COSTS

DIRECT DAMAGE
COSTS

TOTAL POLICY
COSTS

TOTAL DAMAGE
COSTS

INDIRECT
COSTS

TOTAL AVOIDED
DAMAGES

For BCR, indirect costs are distributed
over policy and damage costs

Avoided damages equal no policy-
damages minus residual damages
in CBA scenario.

BCR equals total policy costs divided
by total avoided damages

Extended Data Figure 1. Calculation of the costs and the benefits (avoided damages) for 
the Benefit-Cost-Ratio analysis. First, the direct policy and residual damage costs are scaled to 
include the indirect costs (remaining difference with a baseline run without damages). The scaled 
residual damages are subtracted from the total damages from a no-policy run.
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models have been evaluated in their macroeconomic consequences applying the ICES re-
cursive-dynamic computable general equilibrium model (Parrado & de Cian, 2014) (www.
icesmodel.org). The list of impacts considered and their implementation in the CGE model 
for the evaluation are reported in Extended Data Table 1. The climate change impacts do not 
include potential losses originated in ecosystems or in the health sector. This is motivated by 
the difficulty to address with a “market-transaction-based” model like a CGE, the non-market 
dimension of those impacts. Also, catastrophic events are not considered, even though some 
“extremes” (riverine floods) are included. 

To provide the amplest account for uncertainty, all the impacts have been specified for 9 
combinations of climate change scenarios (RCPs), social economic development scenarios 
(SSPs) (see Fig. SI.3.1) between 2020 and 2070, a range of low-to-high variability in the climate 
and impact models used and two different assumptions on investment mobility determining 
the economic consequences. 

In a second step, these data are used to extrapolate the reduced-form climate change damage 
functions. Two different types of damage functions have been estimated using linear and 
quadratic quantile regression, depending on the region (see SI.3.1). One specific to sea-level 
rise (SLR); the other to the remaining climate change damages. SLR damage functions have 
been estimated assuming “current level adaptation” and “incremental adaptation”, when coastal 
protection upgrades following the prescription of “optimal” adaptation from the DIVA model 
(Lincke & Hinkel, 2018). For the remaining damages, adaptation is not explicitly modelled. 
However, some level of adaptation occurs in the CGE optimization process, where economical 
assets can be reallocated between sectors and regions. All damage functions and underly-
ing GDP loss estimates are provided in SI.3.1. The damage functions have been estimated 
through different damage quantiles. Unless otherwise stated, the medium damage estimate 
is the 50th quantile, with the low and high estimates respectively the 5th and 95th quantile.

3.5.2. Direct vs. indirect costs

The COACCH damage functions are level damage functions: they directly impact economic 
output, instead of economic growth. However, a reduced economic output also has an in-
direct impact on GDP growth (Kikstra et al., 2021) through reduced investments for the next 
time period. For this reason, we also report indirect damages, accounting for this reduced 
growth effect. When fixing the temperature path to RCP6.0 or RCP2.6, we calculate the indi-
rect damages as the difference between an RCP run with and one without damages, while 
keeping the mitigation costs constant. This yields the total damages. By subtracting the direct 
damages as reported from the damage function, we obtain the indirect damages. For the 
CBA runs, it is not possible to distinguish between reduced economic growth from climate 
impacts and from mitigation costs. We therefore do not report the indirect damages, but 
the combined indirect costs from both damages and policy costs. These are calculated as 
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the difference between in GDP between the CBA run and a baseline without damages and 
without mitigation costs. By subtracting both the direct damages and the mitigation costs, 
we obtain the combined indirect costs. For the Benefit-Cost Ratio calculation, the indirect 
costs need to be included for a fair comparison of benefits and costs. We therefore scale the 
direct policy and residual damage costs to include the indirect costs to obtain total policy 
and residual damage costs. The residual damages are then subtracted from the total damages 
in a no-policy scenario (Extended Fig. 1).

3.5.3. Integrated Assessment Models

To assess the macro-economic implications of the new COACCH damage functions, we use 
three different IAMs of varying levels of complexity. IAMs are models designed to capture 
the interplay between, among others, the climate, the economy and the energy system.

MIMOSA (Van der Wijst, Hof, van Vuuren, 2021) is a recent IAM based on FAIR (Den Elzen & 
Lucas, 2005), with 26 regions covering the whole world. It is a relatively simple Cost-Benefit 
IAM but still covers the relevant technological and socio-economic dynamics. Temperature 
is a linear function of cumulative CO2 emissions (Dietz & Venmans, 2019). MIMOSA uses 
the DICE sea-level rise module. In contrast with the previous global version, we have now 
regionalized the mitigation costs, population, initial capital stock and baseline GDP and CO2 
emissions (see SI.4 for more details). The direct regional mitigation costs are calculated as 
area under the Marginal Abatement Cost (MAC) curve, and have been recalibrated to the 
IPCC AR6 WGIII database.

WITCH (Emmerling et al., 2016) is a dynamic optimisation IAM of intermediate complexity, 
with 17 world regions. The climate module is based on the DICE and MERGE climate modules, 
calibrated to reproduce the CMIP5 model ensemble results. The sea-level rise module is the 
model of Li et al. (2020) (Li et al., 2020). Mitigation costs are endogenously computed based 
on a fully hard-linked energy system covering all main energy supply technologies and de-
mand sectors. Moreover, land-use mitigation actions and costs are computed based on the 
linked GLOBIOM model. The policy costs are then calculated as total GDP loss compared to 
a baseline scenario without climate policy.

REMIND (Baumstark et al., 2021) is an optimal growth IAM with a high level of detail in the 
representation of the economy and the energy sector including mitigation options in the 
energy system and land-use sector. REMIND is soft-coupled to MAGICC (Meinshausen et al., 
2011) as its climate module. The policy costs are calculated as GDP losses compared to a 
baseline scenario without climate policy.

3.5.4. The Computable General Equilibrium model

ICES (Parrado & De Cian, 2014) is a recursive dynamic computable general equilibrium (CGE) 
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model for the world economy based on the GTAP 8 database (Narayanan et al., 2012). While, 
at the time of writing, GTAP10 is available, ICES has been calibrated separately for the entire 
2020-2070 period according to the macroeconomic trends of the SSPs, making it less sen-
sitive to updates of the starting point (more recent calibration years) from the newer GTAP 
versions. It simulates in 5-year time steps from 2020 to 2070. For this exercise, a model version 
has been developed featuring a sub-national resolution for the EU economies represented by 
138 territorial units. 24 different economic sectors are considered. An extended description 
of the ICES model and of the calibration process is provided in SI.6. Using a CGE to calculate 
the damages allows to use the highly detailed representation of the economy to account 
for feedbacks and rebound effects triggered by climate change impacts. 

3.5.5. Harmonisation

To allow a comparison of the results between the models, we harmonise key assumptions. 
We use the SSP2 (Riahi et al., 2017b) assumptions on baseline GDP and population growth 
and baseline emissions. The discounting is also harmonised: by default, we use a Pure Rate 
of Time Preference (PRTP, also called utility discount factor) of 1.5%/year and an elasticity of 
marginal utility of 1.001, in line with a recent expert elicitation (Drupp et al., 2018) on discount 
rates. Since temperature is an essential factor determining the climate damages, the climate 
models are calibrated such that the 2020 temperature is harmonised and equal to 1.16°C 
above pre-industrial levels (Visser et al., 2018). Moreover, all damages are reported relative to 
2020 damage levels. While the COACCH damage functions are calibrated for the 1986-2005 
period and therefore report non-zero damages in 2020, we assume that the observed GDP 
of 2020 already incorporates these damages. Specifically, if the COACCH damage function 
relative to 1986-2005 temperature is noted by ( )  for temperature level , 
the damages as incorporated in the models are:

rel. to 2020 level( ) = ( ) ( ),

where  is the global mean temperature in 2020.

Finally, since each model uses different regional definitions, we aggregate all results to the 
five macro regions of the SSP database (Riahi et al., 2017a) (see https://tntcat.iiasa.ac.at/
SspDb/dsd?Action=htmlpage&page=about#regiondefs for the detailed country mapping 
of each region):

•	 ASIA: most Asian countries, except for the Middle East, Japan, the Russian Federation, 
Central Asia and the Caucasus region

•	 EENA: Eastern Europe and North Asia: Russian Federation, Belarus, Ukraine, the Caucasus 
region, Central and North Asia

•	 LAM: Latin America
•	 MAF: the Middle East and Africa
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•	 OECD: includes all OECD and EU countries except Egypt, Israel, Mexico and South 
Korea. Also includes Albania, Bosnia and Herzegovina, Bulgaria, Guam, Macedonia, 
Montenegro, Puerto Rico, and Serbia

While these key assumptions have been harmonised across the three IAMs, the models differ, 
among others, in their representation of the economy, their internal climate and sea-level 
rise module, and the energy sector.

Data availability

All regional damage coefficients for the reduced-form climate change damage functions are 
available at https://zenodo.org/record/5546264#.YlWeBehBw2w. This includes the sea-level 
rise, non-sea-level rise and combined damage functions for all used damage quantiles. All 
scenario data from the three models is available at https://doi.org/10.5281/zenodo.7627679.

Code availability

The calculations and the figures used in this paper and the scripts required to reproduce 
them are available at https://doi.org/10.5281/zenodo.7627679.

The model code and documentation of the MIMOSA model is available at https://github.com/
kvanderwijst/Project-MIMOSA/, of the WITCH model at https://www.witchmodel.org/ and 
of the REMIND model at https://rse.pik-potsdam.de/doc/remind/2.1.0/ and https://github.
com/remindmodel/remind for the model code.
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The 2°C and 1.5°C temperature targets of the Paris Agreement can be interpreted as 
targets never to be exceeded, or as end-of-century targets. Recent literature proposes 
to move away from the latter, in favour of avoiding a temperature overshoot and the 
associated net negative emissions. To inform this discussion, we investigate under 
which conditions avoiding an overshoot is economically attractive. We show that 
some form of overshoot is attractive under a wide range of assumptions, even when 
considering the extra damages due to additional climate change in the optimisation 
process. For medium assumptions regarding mitigation costs and climate damages, 
avoiding net negative emissions leads to an increase in total costs until 2100 of 5% 
to 14%. However, avoiding overshoot only leads to some additional costs when miti-
gation costs are low, damages are high and when using a low discount rate. Finally, if 
damages are not fully reversible, avoiding net negative emissions can even become 
attractive. Under these conditions, avoiding overshoot may be justified, especially 
when non-monetary risks are considered. 
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4.1. Introduction

At the 21st Conference of the Parties to the United Nations Framework Convention on Climate 
Change (UNFCC) in 2015, 174 countries ratified the Paris Agreement. They agreed to limit 
global mean temperature change to well below 2°C and pursue efforts to stay below 1.5°C 
above pre-industrial levels. Different interpretations of such temperature targets can be found 
in the literature, i.e. either a value that can never be exceeded or something that needs to be 
achieved this century (allowing a temporary overshoot). Given the near-linear relationship 
between CO2 emissions and global temperature change, the former translates into a peak 
carbon budget, i.e. the cumulative net CO2 emissions until net-zero CO2 emissions is reached. 
In contrast, the latter translates into a net carbon budget during the 21st century (in both 
cases assuming an equivalent reduction of non-CO2 greenhouse gas emissions). Many of the 
scenarios developed by Integrated Assessment Models (IAMs) used in the fifth assessment 
report of the IPCC followed the second approach: first, they exceeded the carbon budget 
(for a short period), after which the excess emissions were compensated by net negative 
emissions towards the end of the century (IPCC, 2014; Van Vuuren et al., 2013). In response, 
there has been a lively debate in the literature about both the risks related to (net) negative 
emissions and the allowance of overshoot (Fuss et al., 2018; Van Vuuren et al., 2017).

In this context, Rogelj et al. (Rogelj et al., 2019) proposed to replace the end-of-century budgets 
with so-called peak budgets. Interestingly, in their proposal, little consideration was given to 
the related costs and benefits of avoiding net negative emissions. On the one hand, avoiding 
overshoot avoids the extra damages from climate change incurred throughout the century as 
a result of exceeding the temperature target. On the other hand, it also leads to less flexibility 
in the timing of mitigation, leading to higher mitigation costs (up to 80% higher in current 
IAM literature scenarios (Hilaire et al., 2019)). In this paper, we fill this gap by investigating 
the net effect of these opposite economic impacts of avoiding overshoot. More specifically, 
we determine under which conditions peak budgets might be an attractive strategy from 
an economic perspective and under which conditions it would not be.

The answer to these questions depends on several factors, such as the severity of damag-
es, discount rate, climate sensitivity, and mitigation costs. We perform a sensitivity analysis 
covering the literature ranges for each of these factors to investigate the economic effect of 
the decision not to allow overshoot – therefore providing evidence of the rationality of such 
a choice based on abatement costs and damage costs. This informs the debate about the 
(dis)advantages of net negative emissions. It should be noted that this is not accounting all 
factors. Negative emissions could also impact biodiversity and food security (Boysen et al., 
2017; Smith et al., 2016) (depending on the choice of technology and uncertainties regarding 
efficiency and management; some amount of negative emissions can probably be generated 
with relatively little impacts (Fuss et al., 2018)).



68

Chapter 4

An additional novel aspect of our research in the discussion of the role of negative emissions 
related to carbon budgets is that we take into account partially irreversible damages. Most, 
if not all, traditional Integrated Assessment Models (IAMs) assume that when temperature 
decreases, damages decrease accordingly (Howard & Sterner, 2017). However, some types of 
damages, such as disappearing glaciers and species extinction, are irreversible, and, therefore, 
will remain even when temperature declines. We propose a modelling framework including 
partially irreversible climate damages in an IAM setting. 

4.2. Economic impact of avoiding net negative emissions  

We analyse the economic impact of avoiding net negative emissions using a simple and 
transparent integrated assessment model similar to DICE (Nordhaus, 2014) (see Methods). 
Gross GDP is calculated in this model using a production function based on technological 
progress (Total Factor Productivity, TFP), capital and population. Both climate mitigation costs 
and damage costs resulting from climate change impacts are subtracted from the gross GDP. 
The resulting net GDP is divided in a fixed share to consumption and investments. Therefore, 
the mitigation and damage costs induce a direct loss of consumption and an indirect effect 
on economic growth by affecting investments. The model maximises the total discounted 
per capita utility, which is a concave function of per capita consumption, using Pure Rate of 
Time Preference (PRTP) values spanning the current literature range. The temperature is cal-
culated as a linear function of cumulative emissions using the Transient Climate Response to 
Emissions (TCRE) relation (Dietz & Venmans, 2019). We calibrated all factors in the model based 
on the literature (see Methods). For mitigation costs, the mitigation potential as a function 
of costs is calibrated to the literature range in the IPCC scenario database for AR5 and SR1.5 
(underlying a range of mitigation options). In a scenario where net-negative emissions are 
allowed, the yearly CO2 emissions are limited to -20 GtCO2/year representing the limits due 
to biophysical, technical, economic and sustainability constraints. In the literature a wide 
range of values for the contribution of net negative emissions can be found, ranging from 
zero to more than 40 GtCO2/yr (Fuss et al., 2018; Hanssen et al., 2020), similar to the literature 
range for high overshoot scenarios in the IPCC SR1.5 database (5-30 GtCO2/yr) (Huppmann, 
Daniel and Kriegler, Elmar and Krey, Volker and Riahi, Keywan and Rogelj, Joeri and Rose, Ste-
ven K. and Weyant, John and Bauer, Nico and Bertram, Christoph and Bosetti, Valentina and 
Calvin, Katherine and Doelman, Jonathan and Drouet, Laurent an, 2018; Masson-Delmotte 
et al., 2018).. Avoiding net-negative emissions sets this limit to 0 GtCO2/year. Unless stated 
otherwise, the end-of-century carbon budget is set to 600 GtCO2, in line with a 1.5°C target 
(Masson-Delmotte et al., 2018) (median climate temperature estimate). Finally, for damage 
costs, we use a stylised function that can be scaled (using a damage coefficient) to mimic 
the entire range from the DICE damage function (Nordhaus, 2014) to the long-run damage 
function from Burke et al (Burke et al., 2015), with as default medium damage estimate, the 
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meta-model damage estimate from Howard et al (Howard & Sterner, 2017). For baseline 
assumptions, we use the SSP2 scenario (covering medium estimates for GDP, population 
and emission growth, see Methods). 

The economically optimal emission paths and associated macroeconomic costs of a scenario 
with and without net negative emissions are shown in Figure 1. These results are creat-
ed using a medium mitigation cost level, medium damage function (i.e. Howard Total, see 
Methods), medium TCRE and the three pure rate of time preferences spanning the current 
literature range: 0.1%/year, as used in the Stern review (Hof et al., 2008), 1.5%/year, as used 
in DICE-2007 and following versions (Nordhaus, 2008), and 3%/year, as used in the original 
DICE model (Nordhaus, 1992b).
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Figure 1. Difference in emission paths (a, b) and costs (c) between a scenario with and 
without net negative emissions. These results are calculated for medium mitigation cost, medium 
TCRE and medium damage function (Howard Total) settings. The net present values (NPV) of the 
damage and mitigation costs are calculated with a fixed discount rate of 4%/year, regardless of 
the pure rate of time preference (PRTP) used.



70

Chapter 4

In a scenario where net negative emissions are avoided, strong emission reductions need 
to occur in the first half of the century to stay within the carbon budget (Figure 1a; dotted 
versus solid lines). In the scenarios that allow for net negative emissions, some mitigation 
effort is delayed to the second half of the century, reaching net zero around 2075 instead 
of 2050. While the net negative emissions have a higher marginal cost, the fact that they 
occur later in combination with discounting makes their use economically attractive. This 
also means that a lower PRTP significantly reduces the amount of net negative emissions, 
from 469 GtCO2 with a 3% PRTP to 115 GtCO2 for 0.1% PRTP (Figure 1b; see also Figure 1a for 
time profile). This corresponds to a temperature overshoot of respectively 0.29°C and 0.07°C 
(similar results were found in previous studies (Emmerling et al., 2019)). 

Avoiding net negative emissions leads to a reduction in damage costs varying from 10 to 
34%, caused by a combination of avoiding overshoot and earlier mitigation effort (Figure 1c). 
Simultaneously, the mitigation costs increase between 9% for low discount rates and 37% 
for the highest discount rate assumed, leading to an increase in total costs (sum of damage 
and mitigation costs) of 5% to 14%. Both damage and mitigation costs are calculated using 
their Net Present Value (2020-2100) with a fixed 4% social discount rate, regardless of their 
PRTP value (see Methods).

In other words, in all cases, allowing for some negative emissions is for medium parameters 
settings for mitigation and damage costs, from an economic perspective, attractive (even if 
damages are accounted for). The level of this preference, however, depends on the discount 
rate.

An important aspect to consider is the timing of mitigation effort and incurred damages. In 
Figure 2, we show the abatement costs and damage costs over time. For medium parameter 
values, the peak of total costs (abatement plus damage costs) occurs towards the end of 
the century when allowing net negative emissions (2%, 5% and 8% of GDP for respectively 
2030, 2060 and 2090). When net negative emissions are not allowed, the peak in total costs 
is much earlier, albeit slightly lower (4%, 6.5% and 4% of GDP for 2030, 2060 and 2090). 
Once the minimum emission level is attained, the relative mitigation costs decrease due to 
technological learning and the increasing baseline GDP of SSP2. The corresponding global 
carbon prices are shown in Supplementary Figure 7 and reach a maximum of 800-1000 USD/
tCO2 when avoiding net negative emissions and 810-1250 USD/tCO2 when net negative 
emissions are allowed (as a comparison, the European Trading System carbon prices are 
around 40 €/tCO2 in 2021).

Besides discounting, the assumed level of climate damages plays an important role in de-
termining the economic attractiveness of net negative emissions as well. In Figure 2, we 
perform a sensitivity analysis on the damage function (specifically, the damage coefficient, 
see Methods). We use a low damage function (DICE, giving 2% GDP loss at 3°C warming), 
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a medium one (Howard Total, 9% GDP loss at 3°C) and a high damage function (Burke LR, 
22% GDP loss at 3°C). For the low damage function, the extra mitigation effort early in the 
century when avoiding net negative emissions leads to much higher total costs (19% to 29% 
increase in NPV of total costs). However, when the damage function is high, the early emission 
reduction leads to significantly lower damages, making the total cost difference smaller.

For the Burke damage function with low PRTP, the total costs are minimal when no net 
negative emissions are used. For such a high damage function, the economically optimal 
emission path is to reduce as much as possible at any point in time. Allowing net negative 
emissions allows for deeper reductions throughout the century, with corresponding higher 
mitigation costs but lower damages. The effect of these lower damages increases further after 
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Figure 2. Timing of abatement costs (light shade) and damage costs (dark shade) for sce-
narios without (yellow) and with (purple) net negative emissions, as a percentage of GDP. The 
columns represent three levels of damage functions (low, medium and high), the rows represent 
three values of the pure rate of time preference (PRTP). The grey bars give relative change in net 
present value (NPV, 2020-2100) of total costs (abatement plus damage costs) when avoiding net 
negative emissions. The NPVs are calculated using a fixed social discount rate of 4%/year. When 
this change is negative, the economic benefits of allowing net negative emissions only happen 
after 2100.



72

Chapter 4

2100. Since in Figure 2, we report the NPV from 2020 to 2100, but we optimise discounted 
utility until 2150, it is possible to obtain higher total costs until 2100 in a scenario with no 
net negative emissions than in a scenario with negative emissions.

The damage function (specifically, the damage coefficient, see Methods) and the mitigation 
cost level have an equally strong influence on the difference in total costs. We perform a 
sensitivity analysis on these three factors: PRTP, damage coefficient and mitigation cost level. 
For each combination of parameter values, we run a scenario with and one without net neg-
ative emissions and calculate the increase in total costs between the two (Supplementary 
Figure 11). The extra costs, from low mitigation costs to high mitigation costs, range from 
+0% to +24% (with medium values for the other parameters). For damage cost uncertainty, 
the extra costs range from +0% to +28% from low damages (DICE) to high damages (Burke), 
again with all other values medium.

Higher mitigation costs always lead to higher additional costs of avoiding negative emissions, 
as depicted by the differences between the panels in Supplementary Figure 11. The impact 
of damage cost uncertainty is similar to the impact of mitigation cost uncertainty: the higher 
the damage coefficient, the earlier the mitigation effort occurs to avoid high climate damages 
later in the century. Early abatement action leads to a decrease in total net negative emis-
sions (Supplementary Figure8 ). In fact, the emission paths, and associated cost differences 
between allowing and avoiding net negative emissions of a scenario with low mitigation 
cost and medium damage function are very similar to a scenario with medium mitigation 
costs and high damages. The total costs, relative to GDP, are, of course, significantly higher 
in the latter scenarios. 

Interesting interactions between these parameters can be observed. First, the influence of 
damage costs uncertainty on timing increases with lower mitigation costs, simply because 
the relative importance of damages in total costs increases. As a result, in the case of low 
mitigation costs and high damages, avoiding negative emissions hardly leads to additional 
total costs. The additional costs even become slightly negative, as was already shown for 
high damages and low discounting in Figure 2, which is possible as utility until 2150 instead 
of total costs until 2100 is optimised. It can also be noted that the impact of higher damage 
estimates becomes non-linear for the combination of low mitigation cost levels and low 
PRTP: in that case, the optimal emission path stays significantly below the set carbon budget 
(see Supplementary Figure 9). For this set of parameters, a higher damage coefficient leads 
to more net negative emissions to keep climate-related damages at a minimum.

The costs differences become significantly lower when using a less stringent carbon budget. 
When using a carbon budget reaching 2°C instead of 1.5°C, avoiding net negative emissions 
only leads to extra costs when mitigation costs are high, or damages low (Supplementary 
Figure 18).
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The effect of using the low or high instead of the median value of the TCRE is only significant 
for high damage coefficients. A high TCRE accentuates the effect of climate impacts resulting 
in more negative emissions if allowed in the scenario (Supplementary Figure 8).

4.3. Partially irreversible climate damages

We have shown that if climate damages are reversible, it is in most cases economically optimal 
to allow some net negative emissions (and thus exceed the peak budget). However,  not all 
damages might be fully reversible. While climate impacts like reduced yields, health impacts 
and extra energy consumption for air conditioning are likely to be reversible, disappearing 
glaciers, species extinction and biodiversity loss are clearly irreversible processes. For other 
factors, it is more uncertain: while sea-level rise could be considered an irreversible process 
due to ice melting, the slow timescale at which it occurs also makes it relatively insensitive 
to a limited period of temperature overshoot.

Here, we investigate the consequences of assuming that a share of the damages is irreversible. 
The implementation details are discussed in SI 1.1. However, to properly assess the impact 
of (ir)reversibility of climate impacts, the carbon budget constraint must be changed. The 
reason is that the damages (and thus the optimal pathways) do not depend anymore on the 
cumulative net emissions. In fact, enforcing a carbon budget goal could be so restrictive that 
the model shows negative emissions even without any reversibility, which does not make any 
economic sense. We therefore translate the carbon budget to a maximum damage target for 
2100 (see Methods). Such a maximum damage target inevitably depends on the assumed 
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damage function. The 600 GtCO2 carbon budget translates to maximum damage costs in 
2100 of respectively 0.25%, 1% and 2.7% of GDP for the DICE, Howard Total and Burke (LR) 
damage functions.

Figure 3a shows that the amount of economically optimal net negative emissions is strongly 
dependent on the percentage of irreversible damages. For low discounting, net negative 
emissions are almost entirely unattractive when 30% of damages are irreversible. This hap-
pens around 70% of irreversibility for medium discounting – but the use of net negative 
emissions is already a factor 2 lower if 50% of damages are irreversible. For high discounting, 
the irreversibility of damages only becomes significant beyond a share of 50%.

As a consequence of the irreversibility of damages, net negative emissions need to be com-
pensated by extra mitigation effort to reach the maximum damage target (Figure 3b). When 
damages are (almost) fully reversible, the cumulative emissions are close to the original carbon 
budget from which the damage target was derived, even when using a high amount of net 
negative emissions (left part of Fig. 3b). When damages are partially irreversible, it becomes 
economically attractive to have some overshoot (155 GtCO2 for medium assumptions), even 
at the cost of extra mitigation effort (85 GtCO2 for medium assumptions, middle part of Fig. 
3b). When damages are even more irreversible, net negative emissions become less attractive, 
leading again to cumulative emissions close to the original carbon budget (right part of Fig. 3b).

An exception for this is the combination of high damage function and low discounting (dot-
ted blue line in Fig. 3b): the damage target constraint is not economically optimal anymore, 
resulting in lower cumulative emissions than prescribed by the maximum damage target. 

4.4. Discussion

Time evolution of GDP

Avoiding an emission overshoot requires earlier mitigation effort, leading to increased total 
discounted costs (Fig. 1c). This influences the GDP growth path. As shown in Supplementary 
Figure 6, the mitigation costs in 2030 are twice as high when avoiding the overshoot, while 
the damages are still the same with and without net negative emissions. By 2070, the total 
costs (mitigation and damage costs) reach the same level in both scenarios. At the end of 
the century, the absolute GDP level of the scenario avoiding overshoot is significantly higher 
since the mitigation costs for the negative emissions start to increase after 2070. However, 
since we optimise on cumulative discounted utility and not on final GDP, the overshoot 
scenario is still economically favourable. Moreover, since the net negative emission costs 
are assumed to be phased out after 2100 to keep the same carbon budget, the GDP paths 
of both scenarios will gradually converge.
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Non-monetary aspects

In this paper, we only consider the macroeconomic effects of different emission paths: the 
increased monetary cost of climate policy (abatement costs) and the reduction of climate 
change damage due to earlier abatement effort. However, as mentioned in the introduction, 
this does not include the extra pressure on ecosystems and biodiversity due to the increased 
use of land-use related negative emission options such as BECCS and afforestation (Boysen 
et al., 2017; Fuss et al., 2018; Smith et al., 2016), the massive logistical and political bottlenecks 
associated with upscaling negative emission technology (Field & Mach, 2017; Shue, 2017), 
or the risks of non-performance at any point in the future. While it seems that some amount 
of negative emissions can be achieved without too many negative side effects (Fuss et al., 
2018) (or that some technologies, like afforestation and soil carbon management, could even 
have some co-benefits), the negative other consequences should still be weighed against 
the economic results presented in this paper. 

Reversibility of climate damages

We have shown that the amount of net negative emissions is strongly dependent on the 
extent to which climate damages are reversible. However, “reversibility” in climate change is 
a broad concept. In the literature on reversibility and climate change, three distinct effects 
are described, mostly independently of each other. First, climate reversibility, describing how 
temperature behaves under decreasing concentrations of atmospheric CO2. Second, the 
impact reversibility, which analyses how, and if climate damages decrease when temperature 
decreases. Third, the economic persistence, which treats the long term economic effects of 
a shock due to climate change.

Regarding the first topic of climate reversibility, our model assumes that temperature is directly 
proportional to cumulative emissions. Previous research has shown (Frölicher & Joos, 2010; 
Wu et al., 2015; Zickfeld et al., 2016) that the assumption of fixed temperature/concentration 
relation might not fully hold: under decreasing atmospheric CO2 concentrations, tempera-
ture decreases at a slower rate than when concentrations are rising. The impact is relatively 
small for a relatively small overshoot and the discrepancy with our modelling method, which 
focuses on the reversibility of damages is expected to be small.

The second concept, impact reversibility, is what we consider in this paper as irreversible 
climate damages. As already described, due to irreversible processes in biodiversity loss, 
melting glaciers and socio-economic tipping points, not all damages will decrease when 
temperature decreases.

The third concept is economic persistency. Empirical economic research has shown that 
climate change does not only induce direct monetary losses (like destroyed real estate after 
a flood) but also impacts economic growth (Burke et al., 2015; Estrada et al., 2015; Piontek 
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et al., 2019). The latter has a much longer-term effect. This paper considers this indirectly by 
using the Burke et al. (Burke et al., 2015) damage function at the high end of our sensitivity 
range on climate damages. While we have translated the growth effects of Burke et al. to a 
direct temperature-GDP loss relation (therefore not affecting growth rate), the underlying 
calibration still uses growth impacts (see Methods).

While the second and third concepts (impact reversibility and economic persistence) might 
be related, the exact relationship is still unclear. In fact, economic persistence also happens 
when temperatures are increasing, whereas impact reversibility is only relevant for decreasing 
temperatures.

Comparison to other literature

The increased mitigation costs when avoiding net negative emissions have already been 
assessed by Hilaire et al. (Hilaire et al., 2019) They analysed recent IAM mitigation scenar-
ios reaching 1.5°C and 2°C with varying levels of negative emissions. For the 1.5°C target, 
mitigation costs go from 2.26% of GDP for unconstrained BECCS to 4.1% of GDP with lim-
ited BECCS (both cost values are NPV 2010-2100, 5%/year), an increase of over 80%. In this 
study, we find an increase in mitigation costs of 9% to 37% for medium parameter values. 
This large discrepancy comes from two reasons. First, we calculate the NPV using a smaller 
discount rate of 4% instead of 5%, giving more weight to future generations (if we used 5%, 
the cost increase would be up to 53% for medium values). Second, and most importantly, 
we take damages into account when calculating the economically optimal emission trajec-
tory, whereas most traditional IAMs under carbon budget calculate the cost-effective path, 
ignoring climate damages.

4.5. Conclusions and implications

Our results suggest that economically, some form of overshoot is attractive, even when 
considering the extra damages in the optimisation process. The choice to avoid negative 
emissions, and thereby interpreting the Paris Agreement target as a “no overshoot” target will 
lead to a sum of abatement costs and damage costs that is around 13% higher than without 
the restriction when using a pure rate of time preference of 1.5% and the medium damage 
function. Still, the cost differences are much smaller if mitigation costs are assumed to be 
relatively small (compared to the literature median), damages high, or when a low discount 
rate is used. Moreover, assuming that climate damages are not fully reversible significantly 
reduces the attractiveness of net negative emissions. Assuming that 50% of damages are 
irreversible leads to 50% lower total net negative emissions, since extra mitigation effort is 
required to reach the same maximum damage target when using net negative emissions. 
Under a wide range of assumptions on damages, mitigation costs, time preference, reversi-
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bility of damages, we find that the attractiveness of negative emissions is much lower than 
often shown in scenarios based on optimisation of mitigation costs only. 

4.6. Methods

In this paper, we use a simple and transparent integrated assessment model described in 
detail in the SI. The model is similar to DICE (Nordhaus, 2014). Gross GDP is calculated using a 
production function based on technological progress (Total Factor Productivity, TFP), capital 
and population. The mitigation costs and the damage costs resulting from climate change 
impacts are subtracted from the gross GDP. The net GDP is divided in a fixed part (21%) of 
investments and the rest to consumption. The model maximises the total discounted per 
capita utility, which is a concave increasing function of per capita consumption. Greenhouse 
gas emissions are calculated by multiplying economic activity with an emission factor.

Each timestep, the emissions are added to the cumulative emissions. The cumulative CO2 
causes a change in global mean temperature, modelled through the instantaneous and 
linear TCRE (transient climate response to emissions) relation (Dietz & Venmans, 2019). This 
relation includes a linear relation between non-CO2 and CO2 emissions. The global mean 
temperature, in turn, determines the damage costs. In response, the model can determine 
to mitigate emissions. The mitigation level (or equivalently the carbon price) over time is 
determined by maximising the Net Present Value (NPV) of utility. The mitigation costs are 
subtracted from investments and consumption.

4.6.1. Calibration

The parameters are as much as possible calibrated against existing literature. Population, 
baseline emission intensity and TFP are exogenous and calibrated to match the growth rates 
of the Shared Socio-economic Pathways (SSPs) (Riahi et al., 2017c). We use the SSP2 (“Middle 
of the Road”) scenario which has medium assumptions about population growth, emissions, 
GDP, technological growth and lifestyle. For details, see Riahi et al. (Riahi et al., 2017b) and for 
the exact implementation in our model see SI 1.2.

Emission reductions are quantified through a quadratic Marginal Abatement Cost (MAC) 
curve. The area under the MAC gives the mitigation costs. The resulting mitigation costs are 
calibrated using the consumption loss range of the 5th Assessment Report of the IPCC (IPCC, 
2014). To consider the wide range in mitigation costs, we perform a quantile regression on 
the AR5 data points to the 5th, 50th and 95th percentiles to represent the low, medium and 
high end of the mitigation cost range. The 5th percentile leads to mitigation costs 2.5 times 
smaller than the median costs, the 95th percentile 2.5 times larger.
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The damage function is defined as a quadratic function of global mean temperature :

( ) = ,

where ( ) is the fraction of GDP loss due to climate impacts. The damage coefficient  is 
calibrated to capture the full literature range.

At the low end, we choose the DICE-2013R damage function (Nordhaus, 2014) with 
= 0.00267.  The medium estimate is based on the results from a meta-analysis of litera-

ture damage functions by Howard et al (Howard & Sterner, 2017), with a damage coefficient 
of = 0.01004 . The high end of the range is parametrised by the long-run empirical 
damage from Burke, Hsiang and Miguel (Burke et al., 2015). While their damage estimates are 
quantified as impacts on growth rates and not directly on GDP, we use the iterative strategy 
from recent literature (Glanemann et al., 2020) to create a damage function usable by IAMs 
like our model. The idea of this method is to calculate which direct GDP losses would result 
in the same GDP path as when Burke’s growth impacts are used. Iteratively, a damage curve 
(as function of temperature change) is created giving the same damages as the growth im-
pact definition (Van der Wijst, Hof, van Vuuren, 2021). A quadratic function is then fitted to 
the resulting approximation ( = 0.99), leading to = 0.02835, about 10 times higher 
than the DICE damage function. 

The utility discount rate, called throughout this paper the Pure Rate of Time Preference (PRTP), 
is chosen to be 0.1%/year, as used in the Stern review (Hof et al., 2008), 1.5%/year and 3%/
year, as used in DICE-1999, DICE-2007 and following versions (Nordhaus, 2008; Nordhaus & 
Boyer, 2000). The elasticity of marginal utility is 1.001. The combination of PRTP and elasticity 
of marginal utility are in line with the expert elicitation by Drupp et al (Drupp et al., 2018).

The minimum yearly emission level in the scenarios without net negative emissions, is, by 
definition, set at 0 GtCO2. The potential for net negative emissions is limited by biophysical, 
technical, economic and sustainability constraints. In the literature a wide range of values for 
the contribution of net negative emissions can be found, ranging from zero to more than 40 
GtCO2/yr. For instance, Fuss et al. (Fuss et al., 2018) estimated a maximum sustainable sup-
ply of about 5 GtCO2/yr for individual CDR options in 2050 – but the combination of these 
options could be higher, while Hanssen et al. (Hanssen et al., 2020) showed a maximum 
potential of 40 GtCO2/yr in 2100. The literature range for 1.5°C scenarios in the IPCC Special 
Report on 1.5°C is around 5 GtCO2 to 30 GtCO2/yr for overshoot scenarios. Here, we limit the 
contribution of net negative emissions to a maximum of 20 GtCO2/yr. Moreover, to account 
for technological and political inertia, we assume that the emissions cannot be mitigated 
faster than 2.2GtCO2 per year (based on the maximum reduction speed of the IPCC 1.5°C 
database (Huppmann, Daniel and Kriegler, Elmar and Krey, Volker and Riahi, Keywan and 
Rogelj, Joeri and Rose, Steven K. and Weyant, John and Bauer, Nico and Bertram, Christoph 
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and Bosetti, Valentina and Calvin, Katherine and Doelman, Jonathan and Drouet, Laurent an, 
2018)) for each scenario. Finally, from the year 2100 onwards, the cumulative emissions from 
2020 cannot exceed a carbon budget. Unless stated otherwise, the carbon budget is set to 
600 GtCO2, in line with a 1.5°C target (Masson-Delmotte et al., 2018).

Finally, the Transient Climate Response to CO2 Emissions (TCRE) determines the increase in 
global mean temperature per unit of extra CO2 emissions (Dietz & Venmans, 2019). Using the 
method from van Vuuren (2020) (Van Vuuren et al., 2020), the TCRE used here is calibrated 
to key results from the Working Group I from the IPCC AR5 report (IPCC, 2013). In this paper, 
three values are considered, corresponding to the uncertainty range’s 5th, 50th and 95th 
percentile. Unless mentioned differently, we use the median value for the TCRE, equal to 
0.62°C per 1000 GtCO2.

The percentage of climate damages which is irreversible has, to the best of our knowledge, 
not been fully estimated in current literature. While several studies have shown that impacts 
like decreased precipitation (Solomon et al., 2009) and sea level rise (Hinkel et al., 2014; Nauels 
et al., 2019) can continue to increase after atmospheric CO2 concentrations have stabilised, 
there is notoriously less literature quantifying how these impacts behave when emissions 
become net negative. For this reason, we cover the full range from 0% (fully reversible) to 
100% (fully irreversible), even though neither of these extremes is realistic. 

4.6.2. Cost comparison

The abatement and damage costs in this paper are presented as Net Present Value (NPV) 
relative to baseline GDP:

relative costs =
NPV(abat. costs)

NPV(baseline GDP)

and similar for the damage costs, where NPV is calculated as discounted sum until timestep :

NPV( ) = ( )

A fixed social discount rate of 4%/year is used, in line with our medium PRTP value and 
elasticity of marginal utility (see SI 1.2). In order to compare the macroeconomic costs of a 
scenario with and without net negative emissions, the ratio of their net present value GDP 
losses are calculated:

cost diff. =
relative costswith net negs

relative costswithout
1
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Supplementary Information

The supplementary information is available online at:

https://doi.org/10.5281/zenodo.8332323 

https://doi.org/10.5281/zenodo.8332323
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Future socio-economic development plays a crucial role in both climate policy and the 
impacts of climate change. In this study, we for the first time systematically compare 
the costs of mitigation, adaptation, and residual damage for different socio-economic 
and climate scenarios known as the Shared Socio-economic Pathways (SSPs). For this, 
we combine recent damage estimates with adaptation costs and introduce differences 
in the effectiveness of adaptation based on the SSP projection. The results can be 
presented in terms of SSP/RCP matrix, with optimal climate outcomes as a function 
of SSP. The results can also be used to identify critical factors determining the optimal 
temperature, including socio-economic development, technology development and 
limits to mitigation and adaptation. The socio-economic limits to adaptation lead to 
damage costs that are 15% to 60% higher than if optimal adaptation had been possible. 
Overall, this study demonstrates that the socio-economic developments assumed in 
the SSP, including inequality reduction and institutional strength, can be equally im-
portant for the optimal outcome as the factors typically studied such as discount rate.
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5.1. Introduction

Optimal climate policy aims to strike a balance between mitigation efforts, adaptation to the 
impacts of climate change, and accepting some residual impacts. One crucial element to 
consider is that these factors are uncertain and depend, among others, on socio-economic 
developments. In 2014, the SSP-RCP framework was suggested to help assess these factors 
systematically in relation to socio-economic development. The SSPs (Riahi et al., 2017a) (Shared 
Socio-economic Pathways) define five socio-economic storylines based on challenges to 
mitigation and adaptation, while the RCPs (Van Vuuren et al., 2011) (Representative Concen-
tration Pathways) reflect emission pathways resulting in different climate outcomes, quantified 
through the radiative forcing reached in each pathway. The goal of the SSP-RCP framework 
was to assess different levels of mitigation and adaptation simultaneously. Interestingly, such 
systematic research based on the SSP-RCP matrix still does not exist. While the scenarios 
were extensively used in mitigation and impact research, an integrated analysis looking at 
both (challenges to) mitigation and adaptation is missing (O’Neill et al., 2020; van Maanen 
et al., 2023). In this paper, we present to our knowledge for the first time, the first systematic 
analysis of the SSP-RCP matrix combinations, looking simultaneously at mitigation costs, 
residual damages, and adaptation.

In model-based scenario analysis, challenges to mitigation have been translated into param-
eters that influence the mitigation potential including so-called Shared Policy Assumptions 
(SPAs) (Kriegler et al., 2014). Despite the fact that the (in)effectiveness of adaptation is similarly 
important given the direct impact on damages inflicted by climate change. Very few cost-ben-
efit Integrated Assessment Models (IAM) (but also impact studies) explicitly pay attention to 
adaptation (van Maanen et al., 2023). Exceptions include AD-RICE (De Bruin, Dellink, Tol, 2009; 
Hof et al., 2009) and AD-WITCH (Agrawala et al., 2011; Bosello et al., 2010) and some studies 
that only implicitly included adaptation without explicit modelling (Glanemann et al., 2020; 
Hof et al., 2008; Van Der Wijst et al., 2023; Van der Wijst, Hof, van Vuuren, 2021). Most studies 
including adaptation assume optimal adaptation, which is highly unlikely (Juhola et al., 2016; 
Magnan et al., 2016; Patt et al., 2010; Schipper, 2020). The SSPs explicitly include storylines with 
high challenges to adaptation, but Shared Policy Assumptions (SPAs) (Kriegler et al., 2014) 
quantifying adaptation challenges do not exist yet. We therefore also introduce adaptation 
costs and SSP-based assumptions on the effectiveness to address this issue and create cost 
matrices of mitigation costs, adaptation costs and residual damages and compare them to 
find economically cost-optimal pathways for each SSP.

It is necessary to estimate to which degree societies can adapt to climate change to project 
adaptation costs and residual damages. Stronger adaptation lowers residual damages but 
increases adaptation costs. Literature on the costs of adaptation on a global scale is sparse 
(van Maanen et al., 2023). Here, we use the estimates from AD-RICE, developed by de Bruin 
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et al (De Bruin, Dellink, Agrawala, 2009; Hof et al., 2009). Previous research (Andrijevic et al., 
2020) has shown that the level of adaptation is not only the result of an optimisation process 
balancing the adaptation costs and residual damages, but also depends on the level at which 
countries are able to implement adaptation policies. In this paper, we incorporate this by 
using a regional, time-dependent reduction factor which lowers the actual adaptation level 
below the optimal level. This factor is based on a time-dependent, SSP-specific adaptation 
readiness index extrapolated from the ND-GAIN data by Andrijevic et al (Andrijevic et al., 
2020). This factor takes into account the different governance levels for each SSP and country 
and is therefore a useful proxy for the different challenges to adaptation of each SSP (van 
Maanen et al., 2023; Magnan et al., 2016).

In line with previous studies (Bosello et al., 2010; De Bruin, Dellink, Agrawala, 2009; De Bruin, 
Dellink, Tol, 2009), we calculate residual damages as a percentage of the gross damages – the 
damage costs without any adaptation – determined by the adaptation level. For damag-
es, we use the recently published probabilistic COACCH damage functions (Van Der Wijst 
et al., 2023), which have been developed by aggregating the damages for a wide range 
of sectors (agriculture, forestry, fishery, energy demand and supply, labour supply, riverine 
floods, transportation and sea-level rise). An advantage of using these damage functions 
is that adaptation is explicitly modelled for sea-level rise. The other sectors, unfortunately, 
do not model adaptation explicitly. For these sectors, we select the damage function such 
that when optimal adaptation is assumed, the same level of damages, including adaptation 
costs, are reached as with the medium COACCH damage function (50th percentile) (Van Der 
Wijst et al., 2023) (see Methods), using a similar methodology as previous studies (De Bruin, 
Dellink, Agrawala, 2009; De Bruin, Dellink, Tol, 2009). Clearly, several damage categories are 
not included in these functions, including biodiversity losses and tipping points.

Our results show that the high damage costs (8-9% in RCP6.0) for high emission scenarios are 
much higher than the high mitigation costs for stringent climate targets (2-3% for RCP1.9). 
Socio-economic limits to adaptation lead to damage costs of 15% to 60% higher than if 
optimal adaptation had been possible. While, in current literature, most of the focus is given 
to the mitigation level, this study shows that socio-economic developments, like inequality 
reduction and institutional strength, can be equally important.

5.2. Results

We analyse the mitigation and adaptation costs and residual damages for each combination of 
SSPs (SSP1 through SSP5) and RCPs (RCP 1.9 through RCP 6.0), except for those combinations 
that are generally seen as infeasible (SSP1-6.0, SSP3-1.9 and 2.6, SSP4-1.9 and SSP5-1.9, see 
Methods). To accomplish this, we run a cost-effective scenario using the Integrated Assessment 
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Model MIMOSA (Van Der Wijst et al., 2023; Van der Wijst, Hof, van Vuuren, 2021), using the 
socio-economic assumptions of each SSP, while imposing a temperature target matching the 
radiative forcing of each RCP. For each of the resulting scenarios, we calculate the net-present 
value of the mitigation costs, the adaptation costs, and the residual damages and present 
them in matrix-form in Fig. 1a (mitigation costs), Fig. 1b (adaptation plus residual damages) 
and Fig. 1c (total costs, i.e. sum of mitigation, adaptation and residual damage costs). Finally, 
the total costs allow us to select the RCP with least total costs, for each SSP, and compare this 
with the cost-benefit run (CBA) without any temperature target or carbon budget imposed.

5.2.1. Mitigation costs

The mitigation costs naturally increase with the stringency of the climate target (Fig 1a). 
However, there are strong differences between the various SSPs: reaching RCP 2.6 costs 0.8% 
of GDP for SSP1, and up to 2.8% for SSP4. The differences between SSPs arise from several 
factors: (a) different baseline emissions, (b) different marginal abatement costs (due to pref-
erences and technology development related to SSPs), (c) regionally differentiated carbon 
prices and (d) different GDP paths, including the impact on discounting (Table 1). Reaching 
RCP2.6 in SSP3 is not possible due to a combination of high baseline emissions and low 
mitigation potential. Indeed, as shown in Suppl. Fig. 2.4, baseline CO2 emissions vary greatly 
between SSPs, with cumulative emissions from 2020 to 2100 of 3000, 4900 and 7100 GtCO2 
for respectively SSP1, SSP3 and SSP5. 

Absolute mitigation costs are not only determined by the total amount of emissions to be 
reduced, but also by the marginal costs of reducing a unit of emissions. The end-of-century 
marginal abatement costs are projected to be 20-30% higher in SSP3 and SSP5 than in SSP2 due 
to the increased challenge for mitigation in the narrative, reflected in technology assumptions 
and the reduction potential. In MIMOSA, this is quantified by an SSP-dependent Marginal 
Abatement Cost (MAC) curve based on existing literature (see Methods). Conversely, SSP1 
has about 40% lower marginal abatement costs in 2100 compared to SSP2. The challenges 
to mitigation, as described in the SPAs, also originate from a different timing of global coop-
eration for climate policy. In this study, we apply a welfare loss minimisation to determine 
regional mitigation contributions: costs incurred in poorer countries have a larger weight than 
those incurred in richer regions. This method leads to endogenously differentiated carbon 
prices (see Methods), which are the most differentiated in SSP3 and SSP4 and lowest in SSP1, 
reflecting the SPAs for mitigation (Kriegler et al., 2014). Due to the differentiated carbon prices, 
overall mitigation costs are 25-30% higher in SSP3 and SSP4 compared to a situation with 
global carbon prices where costs were minimised, instead of welfare loss (Suppl. Fig. 2.6). The 
combination of large amounts of emissions to be mitigated, and higher relative marginal 
abatement costs, leads to high absolute mitigation costs in SSP3 and SSP5, and low absolute 
mitigation costs in SSP1, with SSP2 and SSP4 in between (Fig. 1d).
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Figure 1. Cost matrices of mitigation costs (a), damage costs (sum of residual damages 
and adaptation costs, b) and the total costs (sum of mitigation and damage costs, c), 
calculated as net present value using Ramsey discounting, relative to the NPV of GDP. In panel c, 
the 2100 temperature of the corresponding cost-benefit scenario (CBA) is shown. The y-position of 
the CBA label corresponds to the translated radiative forcing level of the CBA run. For each SSP-RCP 
combination, the absolute mitigation costs (in trillion USD) are shown in panel d, as well as how 
much larger the damage costs are compared to a situation where fully optimal adaptation would 
have been assumed (panel e). In panel f, the total costs are decomposed into mitigation costs, 
adaptation costs, residual non-sea-level rise damages and residual sea-level rise damages, both 
for the least-cost RCP as well as the cost-benefit path. Note that in Fig. 1d, to facilitate comparison 
between SSPs, the absolute mitigation costs have been discounted using a fixed discount rate of 
3%/year, to avoid the added SSP fingerprint when using Ramsey discounting, which is dependent 
on the GDP growth rate.
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The high absolute mitigation costs explain the very high relative mitigation costs of SSP3 in 
the mitigation cost matrix. The absolute mitigation costs are also high in SSP5, based on the 
high baseline emission and high marginal abatement costs (reflecting the high challenges 
to mitigation). However, in terms of costs per GDP the costs are lower in this baseline due 
to the very high baseline GDP path (Suppl. Fig. 2.5). Conversely, the low GDP path of SSP4 
results in high relative mitigation costs.

Finally, since the costs are calculated as Net Present Value (NPV) using Ramsey discounting 
(see Methods), a high economic growth rate means a higher discount rate, amplifying the 
effect that high GDP results in relatively lower mitigation costs.

5.2.2. Damage costs

Our results show damages (residual damage and adaptation costs) of 7.9-9.3% of GDP (NPV) 
in RCP 6.0, while for RCP 2.6 they drop to 2.5-3.0%. This means that the highest damage costs 
are about three times as high as the mitigation costs in the most stringent climate policy 
RCPs. As with mitigation costs, there are significant differences in damage costs between the 
SSPs (Fig. 1b), even though the temperature targets and damage functions are harmonised. 
The differences arise mainly due to (a) different adaptation levels, (b) different GDP growth 
and, to a lesser extent, (c) different timing in mitigation across the different SSPs (Table 1).

The high challenges to adaptation in SSP3 and SSP4 lead to reduced adaptation levels, which 
in turn imply higher damage costs. For RCP4.5, the total damage costs (residual damages 
plus adaptation costs) are about 50% higher in SSP3 and SSP4 compared to a situation with 
optimal adaptation, while SSP1 and SSP5, with low challenges to adaptation, only have 15-
20% extra damage costs due to sub-optimal adaptation (Fig. 1e). This highlights the need 
of higher adaptation readiness than is currently projected in most SSP narratives. Except 
for SSP3-RCP 6.0, more than half of these extra damage costs come from extra sea-level 
rise damages, since cheap adaptation options can strongly reduce sea-level rise damages 
(Schinko, Drouet, Vrontisi, Hof, Hinkel, Mochizuki, Bosetti, Fragkiadakis, van Vuuren, et al., 2020; 
Van Der Wijst et al., 2023). For low RCPs, this share becomes even larger, since sea-level rise in 
the first half of the century are much less dependent on the RCP than other damages, due 
to their high inertia (Schinko, Drouet, Vrontisi, Hof, Hinkel, Mochizuki, Bosetti, Fragkiadakis, 
van Vuuren, et al., 2020).

Besides differences in adaptation, the NPV of the damage costs vary across SSPs due to different 
GDP trajectories. Even though the damage costs themselves are calculated as percentage of 
GDP, when calculating the NPV, relative costs are first translated to absolute costs, giving a 
larger weight to the damages incurred when GDP is highest. Since for high RCPs, the largest 
damages happen at the end of the century, and beyond, the NPV will be slightly higher. 
However, using Ramsey discounting slightly attenuates this effect since a higher effective 
discount rate is used when the GDP per capita growth rate is high. 
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SSP1 SSP2 SSP3 SSP4 SSP5
Increases or 

decreases 
the costs?

Shown 
in:

Mitigation costs:

Baseline emissions Low Medium High Low
Very 
high

Increases
Suppl. Fig. 

2.4

Marginal abatement costs Low Medium
Very 
high

Medium High Increases
Extended 

Fig. 1d

Reginonally differentiated 
carbon prices

Low Medium High High Medium Increases
Suppl. Fig. 

2.6

Absolute mitigation costs Low Medium High Medium High Fig. 1d

GDP path High High Low Low
Very 
high

Decreases
Suppl. Fig. 

2.5

Mitigation costs 
(as % of GDP)

Low Medium
Very 
high

High Medium Fig. 1a

Damage costs:

Extra costs due to 
sub-optimal adaptation

Low Medium High High Low Increases Fig. 1e

GDP growth Medium Medium Low Low High Increases*
Suppl. Fig. 

2.5

Timing of mitigation Early Medium Medium Early Late
Decreases 

when earlier**
Suppl. Fig. 

2.4

Damage costs 
(as % of GDP)

Low Medium High High Medium Fig. 1b

* Using Ramsey discounting slightly attentuates this affect

** Only has a very small effect on NPV (≤0.2% of GDP)

Table 1. Overview describing the main drivers of variation of mitigation/damage costs 
between the SSPs, given a common climate target. The last column gives the reference to the 
figure where the specific driver/result is shown.
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Finally, a small difference in damage costs between SSPs is due to a different timing of mit-
igation action (at most around 0.2% of NPV GDP). While the same temperature targets are 
met for a given RCP, SSP5, for example, delays mitigation action more towards the end of 
the century, therefore relying more on net negative emissions and having higher damage 
costs towards the end of the century (Suppl. Fig. 2.4).

5.2.3. Adaptation costs

The adaptation costs shown in Figure 1 are much lower than the mitigation and damage costs. 
First, estimates of adaptation costs show that at lower levels of climate change, adaptation 
can be effective at relatively low costs (Extended Fig. 1c). Second, the assumptions made on 
challenges to adaptation lead to lower adaptation levels (and thus lower adaptation costs, 
but higher residual damages). However, while the adaptation costs expressed as percentage 
of NPV GDP are small, the yearly costs are still substantial: 50-220 billion US$ in 2070 in SSP2, 
growing to over 1000 billion US$ in 2100. These are well in line with current literature estimates 
(Suppl. Fig. 2.7) (Chapagain et al., 2020; Hof et al., 2009) . Finally, it should be noted that these 
adaptation costs do not cover sea-level rise adaptation costs, since they are already included 
in the sea-level rise damages (see Methods).

5.2.4. Total costs

Comparing the sum of mitigation, adaptation and damage costs across RCPs provides insight 
into cost-optimal climate targets for a given SSP (Fig. 1c). However, these scenarios were only 
calculated for a discrete set of five RCPs. Moreover, the timing of the RCP pathways do not take 
damages incurred throughout the century into account. To calculate the cost-optimal path-
ways for each SSP more accurately, and following recent best practices of including damages 
when calculating the emission pathway (Piontek et al., 2021; Van der Wijst, Hof, van Vuuren, 
2021), we perform a cost-benefit analysis (CBA) for each SSP. The cost-optimal temperature 
target range varies from 1.8 (SSP1) to 1.9-2.0 (SSP2, SSP4, SSP5) and 2.2°C (SSP3). It should 
be noted that the damage functions used do not account for all damages, like biodiversity 
loss, health impacts and tipping points nor do they include synergies such as air pollution 
and therefore underestimate the actual damages (Van Der Wijst et al., 2023). While it might 
seem counterintuitive that the SSPs have similar optimal temperatures, the combined effect 
of different adaptation levels and different socio-economic developments counteracts the 
different mitigation costs typically associated with the SSPs.

For each SSP, the cost decomposition of the respective least-cost RCP is shown in Fig. 1f, com-
pared to the cost decomposition of the CBA path. The mitigation costs make up roughly half 
of the total costs, residual damages (non-sea-level rise) 35%, residual sea-level rise damages 
15% and adaptation costs less than 1% of total costs. 
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5.3. Discussion

This paper shows that different socio-economic developments play a key role in the quanti-
fication of mitigation costs and damage costs. Mitigation costs, the mitigation potential, the 
adaptation level and residual damages differ strongly across SSPs. The differences can become 
even larger when not only considering emissions and costs, but also material flows, nature 
preservation and other sustainability principles. While mitigation costs strongly depend on 
baseline emissions and marginal abatement costs, damages mainly depend on the level of 
adaptation - given a certain emission pathway. While adaptation is a very cost-effective way 
of reducing residual damage costs, the potential is severely limited due to socio-economic 
constraints, especially in SSP3 and SSP4.

However, in the current literature, a wide range of systematic, global and comprehensive 
adaptation cost functions is lacking. In this paper we use the AD-RICE 2009 data. Although 
newer version of AD-RICE 2012 (De Bruin, 2014) and AD-WITCH (Agrawala et al., 2011; Bosello 
et al., 2013) also exist, the main difference is here that adaptation cost functions are split 
into two types of adaptation: stock and flow adaptation, corresponding to respectively a 
buildup of indirect adaptation capital and spending on reactive, direct adaptation. For this 
paper, the distinction between the two types of adaptation costs is irrelevant, and only 
leads to numerically more complex simulations. Since the newer versions of adaptation cost 
functions are calibrated to yield the same total costs as the original AD-RICE 2009 version, 
these were used here.

This study assumes that the adaptation level is reduced from the optimal level according to 
the adaptation capacity of each region, year, and SSP. While the ND-GAIN index uses a variety 
of socio-economic indicators to model adaptation capacity, the actual implementation of 
adaptation might be dependent on other aspects as well, like political factors and local risk 
perceptions. Moreover, the challenges to adaptation are now modelled by a direct linear 
reduction of the adaptation level. Besides non-linear responses, another option would be a 
more endogenous approach, by increasing the adaptation costs in regions and SSPs with 
higher adaptation challenges which could be subject of future work if underlying data would 
become available. 

Another, yet related, limitation is the lack of systematic damage estimates as function of 
adaptation. While there are several types of damage functions available in recent literature 
(Burke et al., 2015; Howard & Sterner, 2017; Nordhaus, 2014), none explicitly treat adaptation 
in a comprehensive way, at least not for all sectors (as an example, the COACCH damage 
functions only have explicit adaptation for sea-level rise). While using the 95th percentile 
(high end) of the COACCH damage function as gross damages leads to a medium residual 
damage level when using optimal adaptation, a better, more explicit representation of gross 
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damages with corresponding adaptation cost function would be necessary to improve the 
estimates of the damage costs. Moreover, the COACCH damage functions are incomplete: 
they do not account for biodiversity losses, health impacts and tipping points. Expanding the 
research on comprehensive gross damage functions would also allow for a more consistent 
uncertainty analysis of the cost matrices in this paper.

The mitigation costs in this study seem higher than the mitigation costs presented in the 
original SSP paper (Riahi et al., Figure S2 (Riahi et al., 2017a)), but the difference is mainly at-
tributable to a different discount rate. When recalculating the cost matrices from this study 
with a fixed social discount rate of 5%/year, the costs become very similar: all mitigation cost 
numbers are well within the range of Riahi et al. From an implementation point of view, the 
challenges to mitigation are implemented by having a SSP- and time-specific MAC curve, 
giving higher mitigation costs for SSP3 and SSP5 than SSP1, SSP2 and SSP4. Moreover, higher 
baseline emissions make mitigation even more challenging in SSP3 and SSP5. The Shared 
Policy Assumptions (SPAs) (Kriegler et al., 2014) define, for each SSP, a corresponding climate 
policy fragmentation phase. For SSP1 and SSP4, full regional collaboration is implemented 
after 2020, whereas this only happens in 2040 for SSP2 and SSP5 and more differentiated 
carbon prices for SSP3. MIMOSA also introduced fragmentated carbon prices but based on 
maximizing discounted utility taking inequality aversion into account (see Methods) (Suppl. 
Fig. 2.6). Rich regions take on a higher burden of the mitigation, favoring lower carbon prices 
in developing regions. Due to the higher inequality in SSP3, the resulting carbon prices are 
also more differentiated, matching the SPA storyline. For SSP1, SSP2 and SSP5 the level of 
differentiation in carbon price also matches the corresponding SPA storyline. On the other 
hand, due to the high inequality in SSP4, the carbon prices are also more differentiated, which 
does not match the quick global collaboration of the SPA of SSP4. However, since in the SSP 
story line, most of the mitigation happens in richer, developed countries, the overall effect of 
differentiated carbon prices is attenuated as these richer countries have a similar carbon price.

This analysis highlights the importance of systematically comparing mitigation costs to dam-
ages. The damage costs for high RCPs are much higher than the mitigation costs for low 
RCPs, giving economic validation to more stringent mitigation targets. The damage costs can 
be strongly reduced by a higher adaptation readiness. While the corresponding adaptation 
costs would increase, the total residual damages plus adaptation costs would be reduced 
by 13 to 37%, if the optimal adaptation level could be achieved. However, more research on 
adaptation is necessary to obtain a better estimate of this effect. Finally, the socio-economic 
developments (through, for example, different SSPs) are key in determining both the mitigation 
costs and the damage costs. In the climate policy debate, while most of the focus is given 
to the mitigation level, this study shows that socio-economic developments, like inequality 
reduction and institutional strength, can be equally important.
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5.4. Methods

A schematic overview of the methodology used to calculate the cost matrices is shown in Fig. 2.

5.4.1. The MIMOSA model

All model runs are performed using the reduced-form Integrated Assessment Model MIMOSA 
(Van Der Wijst et al., 2023; Van der Wijst, Hof, van Vuuren, 2021). It is a relatively simple, open 
source, Cost-Benefit IAM covering relevant technological and socio-economic dynamics, for 
26 regions covering the whole world.

The economic module of MIMOSA consists of a Cobb-Douglas production function, where 
the Total Factor Productivity is calibrated using the baseline GDP paths for each SSP. The 
mitigation costs are calculated using a regional Marginal Abatement Cost (MAC). While the 
global MAC curve is calibrated on the latest Assessment Report from the IPCC (AR6) (Byers 
et al., 2022), each region has its own MAC curve, which is calibrated on output data from 
the more complex process-based IAM IMAGE (more specifically, the TIMER energy module) 
(Van Vuuren et al., 2021). The absolute mitigation costs are then calculated by multiplying 
the area under the MAC by the baseline emissions.

The climate module consists of a linear relation between temperature and cumulative global 
emissions (Dietz & Venmans, 2019) following the TCRE relation (Transient Climate Response to 
Emissions), and the sea-level module comes from DICE 2016 (Nordhaus & Moffat, 2017). The 

RCP target

Damages

SSP
baselines

Gross damage
function: COACCH p95

Adaptation cost
function: from AD-RICE

Adaptation level: ND-
GAIN adapt. readiness

STEP 1 – Inputs: STEP 2 – Model: STEP 3 – Outputs:

MIMOSA

Mitigation costs

Damage costs
(Residual damages

+ adapt. costs)

GDP

Ramsey
discounting

STEP 4 –
Cost matrices:

NPV costs / NPV GDP

Figure 2. Overview of the methodology of creating the cost matrices. The most important inputs 
to the MIMOSA model are the RCP target, the gross damage functions, adaptation cost functions and 
adaptation levels per SSP, as well as the SSP-specific data (baseline emissions, GDP path and SSP-de-
pendent MAC calibration factor).
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damages are quantified using damage functions, split into sea-level rise and other damages 
(see next section on damages).

The model maximises total discounted utility and runs from 2020 to 2150 (but only results 
until 2100 are shown and used in this paper). As in previous versions of MIMOSA, utility is 
calculated with full inequality aversion, but without allowing for emission trading: each region 
pays for their own mitigation and damage costs, but costs in poor countries are weighted 
more strongly than costs in rich countries. This leads to higher carbon prices in rich countries 
than in poorer countries.

5.4.2. RCP targets

Originally, the RCPs were defined as pathways reaching a certain radiative forcing level, which 
in turn implied a temperature target. Since MIMOSA does not model radiative forcing directly, 
but only global mean temperature, we use the 2100 temperature levels from the original SSP 
scenarios (Riahi et al., 2017a) as calculated using the AR5 version of MAGICC6. More specifically, 
for each RCP, we take the median of the temperature value for all model-SSP combinations 
of that specific RCP. However, RCP 4.5 and RCP 6.0 do not reach their stabilisation radiative 
forcing of respectively 4.5 and 6.0 W/m2 in 2100: they only reach 4.28 and 5.49 W/m2. For 
that reason, we also impose a stabilisation temperature where we translate the stabilisation 
forcing levels to temperature targets using the MAGICC6 climate sensitivity relation and 
impose them as 2150 temperature targets. The resulting 2100 temperature targets and as-
sociated stabilisation temperatures are given in Table 2. RCP 8.5 was not used since it is only 
possible in SSP5 (Riahi et al., 2011b), and because of the recent general criticism in literature 
(Hausfather & Peters, 2020; Ho et al., 2019).

To match the original SSP pathways as closely as possible, the model does not take damages 
into account when calculating the emission pathway. They are instead calculated afterwards.

 Temperature in 2100 Stabilisation temperature

RCP 1.9 1.35 °C 1.35 °C

RCP 2.6 1.76 °C 1.76 °C

RCP 3.4 2.19 °C 2.19 °C

RCP 4.5 2.65 °C 2.76 °C *

RCP 6.0 3.30 °C 3.56 °C *

* Calculated using the MAGICC6 forcing-temperature relation
Table 2. Temperature targets for 2100 and 2150 as calculated from the SSP-MIP scenarios.
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5.4.3. Damages and adaptation

The damage costs presented in the cost matrices in this study represent the sum of adapta-
tion costs and residual damages, the damages which are not attenuated due to mitigation 
or adaptation measures. Given a regional adaptation level ( ) for region  at time , the 
residual damages RD ( ) are defined as the remaining fraction of gross damages GD ( ):

RD ( ) = 1 ( ) GD ( ) (1)

Therefore, the total damages are equal to the sum of residual damages and adaptation costs:

D ( ) = RD ( ) + Adapt. costs ( ) (2)

More specifically, the recent COACCH damage functions (Van Der Wijst et al., 2023) serve as 
basis for the damage estimates in this study. They provide regional damage functions based 
on bottom-up sectoral impact models using an internally consistent uncertainty specifica-
tion. The climate impact sectors considered when creating the aggregate damage functions 
are agriculture, forestry, fishery, sea-level rise, riverine flooding, road transportation, energy 
supply and demand and heat stress on labour force. An added advantage is that sea-level 
rise damages are treated separately from other damages.

The sea-level rise damage functions, dependent on physical sea-level rise instead of global 
mean temperature, are provided for both the optimal adaptation case (containing adaptation 
costs) and the no-adaptation case. In this study, we interpolate between the two cases when 
using sub-optimal adaptation.

However, the COACCH damage functions do not treat planned adaptation explicitly for the 
other, temperature dependent, impact sectors. To still be able to use a gross damage function 
that captures the latest estimates of climate impacts, we select the damage function such 
that, when optimal adaptation is applied, the sum of adaptation costs and climate damage 
costs match the best estimates of the COACCH damage function. As shown in SI.3.2, the 
COACCH 95th percentile damage function (described as “high end” of the damage function) is 
a good proxy for the gross damage function: when optimal adaptation is applied, the global 
damage level is almost the same as the 50th percentile. 

GD ( ) = COACCHp95( , )

The adaptation costs, defined as:

Adapt. costs ( ) = , , ,     with [0,1] (3)

express the adaptation costs as a direct function of the adaptation level  (between 0, no 
adaptation, and 1, all damages are fully adapted to). While slightly newer functional forms 
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of the adaptation costs exist (Agrawala et al., 2011; Bosello et al., 2010, 2013) that split the 
adaptation costs in stock and flow costs to represent planned and reactive adaptation, the 
overall adaptation costs remain the same. Due to the easier conceptual framework, the added 
numerical stability of the original method and the fact that for this purpose the difference 
between the two types of adaptation is not relevant, we have opted to use Eq. (3) for the 
adaptation costs.

The adaptation level  can be determined by an optimisation process that minimises the sum 
of residual damages and adaptation costs. However, this only yields the optimal adaptation 
level . The actual projected adaptation level is likely to be substantially lower. Andrijevic 
et al. (2019) quantified this reduction factor by a time-dependent, SSP-specific, regional 
adaptation readiness index, also ranging from 0 to 1. An index of 1 means that full optimal 
adaptation is achieved, while an index of 0 means that no adaptation at all can happen. SSP1 
and SSP5 see their adaptation readiness increase strongly over the century for almost every 
world region (Extended Fig. 1g), growing from a median of about 0.5 to about 0.75 in 2100, 
with some high outliers (Korea, Japan, Oceania, US, Western Europe, and Canada). SSP3 and 
SSP4, the SSPs with high challenge to adaptation, have adaptation readiness indices that 
grow much slower, with some regions even constant or declining index: most regions keep 
a readiness index between 0.3 and 0.5, with the same positive outliers as SSP1 and SSP5. 
The adaptation level is then equal to the product of the optimal level and the adaptation 
readiness factor (ARF):

= ARF

5.4.4. SSPs

The Shared Socio-economic Pathways form the base of the socio-economic assumptions 
in the calculations in this paper: the regional baseline GDP paths, baseline emissions and 
populations are calibrated to the respective SSPs. While this data is only available until 2100, 
the period 2100-2150 is extrapolated with stabilisation in 2150, following common practice 
in previous literature (Gazzotti et al., 2021; Van der Wijst, Hof, van Vuuren, 2021). While the 
default MAC curve (SSP2) in MIMOSA is calibrated on the IPCC AR6 mitigation cost data, we 
apply a time-dependent and SSP-specific calibration factor to account for the different chal-
lenges to mitigation of the SSPs (Extended Fig. 1d). This factor is calibrated on output from 
the energy model TIMER (part of the IMAGE detailed-process IAM) (Van Vuuren et al., 2021; 
Van Vuuren, van Ruijven, et al., 2014). The SSP1 MAC curve becomes gradually cheaper than 
the SSP2 MAC over time, while SSP3 and SSP5 become relatively more expensive to mitigate. 
These SSP-dependent calibrations are independent of the cost reductions over time due to 
learning-by-doing, which were already implemented in the MIMOSA model.
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5.4.5. Cost matrices

The cost matrices are created by calculating for each SSP-RCP scenario the net present value 
(NPV) of the mitigation costs and of the damages (residual damages plus adaptation costs) 
for the period 2020-2150 using Ramsey discounting. The NPV of a variable  (mitigation 
costs, damage costs, or GDP) are calculated as:

( ) = ,

where  is the Ramsey discount rate at time  and equal to:

= PRTP + elasmu,

with a Pure Rate of Time Preference (PRTP) of 1.5%/year and elasticity of marginal utility (elas-
mu) of 1.001, following the expert survey of Drupp et al. (2018) (Drupp et al., 2018). The yearly 
per-capita growth rate  is calculated for each scenario separately, as it is dependent on 
the GDP path. When calculating the absolute mitigation costs (Fig. 1.d), a fixed discount rate 
of 3%/year is used instead of the Ramsey discount rate to remove the effect of discounting 
when comparing mitigation costs.

A scenario for a single SSP-RCP combination is created in two steps. The first run calculates 
the cost-effective emission pathway and calculates the optimal adaptation level. The second 
run calculates the SSP and region specific reduced adaptation level by reducing the optimal 
adaptation level by the adaptation readiness factor, as well as the corresponding residual 
damages. This results in higher total damages, and represents the adaptation challenges in 
specific regions and SSPs.

Finally, for each SSP, a cost-benefit analysis (CBA) is performed with the same methodology 
of two runs: one with optimal adaptation, the second one with the reduced adaptation level. 

Code availability

The MIMOSA model is fully open source and available at https://github.com/kvanderwijst/
Project-MIMOSA/tree/rcp-ssp-damage-matrix (and will be published to Zenodo at publica-
tion). The code to calculate the matrix values will be made available at publication.

Data availability

All the socio-economic data of the default MIMOSA model is freely available at https://github.
com/kvanderwijst/Project-MIMOSA/tree/rcp-ssp-damage-matrix. The adaptation readiness 
index projections for each SSP are available at https://doi.org/10.1038/s41893-019-0405-0. 

https://github.com/kvanderwijst/Project-MIMOSA/tree/rcp-ssp-damage-matrix
https://github.com/kvanderwijst/Project-MIMOSA/tree/rcp-ssp-damage-matrix
https://github.com/kvanderwijst/Project-MIMOSA/tree/rcp-ssp-damage-matrix
https://github.com/kvanderwijst/Project-MIMOSA/tree/rcp-ssp-damage-matrix
https://doi.org/10.1038/s41893-019-0405-0
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Extended figures

Extended Figure 1. Regionally dependent input factors.
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Supplementary Information

The supplementary information is available online at:

https://doi.org/10.5281/zenodo.8332329 

https://doi.org/10.5281/zenodo.8332329
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Equity considerations are crucial for successful international climate change policy. In 
this paper, several ways of incorporating equity in evaluating national climate targets 
are examined by comparing reduction targets resulting from the traditional cost-mini-
misation approach with those based on effort-sharing regimes and welfare optimisation 
taking into account not only regional differences in income, emissions and mitigation 
costs but also the latest insights in damage costs.  We find that considering damage 
costs in effort-sharing regimes, leads to more stringent targets for developed regions 
like Europe and the USA compared to cost minimisation.  One way to implement such 
schemes is via the use of flexible instruments, possibly leading to financial flows from 
emission trading of over 400 billion US$/yr in 2035. A welfare-maximising approach 
without emission trading is an alternative option, which leads results that reduce 
emissions and global inequality, with no financial transfers. Te downside is that global 
mitigation costs are higher due to the lack of emission trading. The reduction targets 
presented in this research can serve as input for updating national climate targets 
and presents ways to directly incorporate equity into Integrated Assessment Models 
scenarios often used by the IPCC.
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6.1. Introduction

Determining fair and equitable climate targets for countries is crucial for informing the ratchet 
mechanism of the Paris climate agreement, through which countries submit increasingly 
ambitious Nationally Determined Contributions (Robiou Du Pont et al., 2016; Rubiano Ri-
vadeneira & Carton, 2022; van den Berg et al., 2020). Doing so is very complex given large 
differences between countries in current (per capita) greenhouse gas emissions, their his-
torical contribution to climate change, their capacity to reduce emissions, their vulnerability 
to climate change and their development levels. Model-based scenarios form an important 
tool to inform policymakers on complicated climate policy decisions. However, most of the 
scenarios currently submitted to the new IPCC AR6 scenario database (Byers et al., 2022) 
are based on Integrated Assessment Models (IAMs) operating under a cost-minimisation 
approach. This means that there is no explicit consideration of equity. This is based on the 
common assumption that the question of efficiency (lowest costs) can be separated from 
the question of fairness (who is paying for these costs), given the use of flexible instruments 
(like emission trading). Even so, it is important to note that cost optimisation itself does not 
lead to a just and equitable distribution: it typically leads to higher mitigation costs as a share 
of GDP for low-income countries, due to their higher emission intensity of the economy and 
the stronger reliance on coal (van den Berg et al., 2020). 

The issue of a fair allocation in climate mitigation has been studied extensively in the literature, 
mainly by assessment of different effort-sharing regimes (Bertsimas et al., 2012; Du Pont et al., 
2016; Höhne et al., 2014; Holz et al., 2018; Leimbach & Giannousakis, 2019; Okereke & Coventry, 
2016; Pan et al., 2023; Robiou Du Pont et al., 2017; van den Berg et al., 2020). This literature 
has mainly focussed on target setting at the national or regional scale. Some studies also 
look at the economic consequences of implementation, either domestically or via emission 
trading by assuming a fully functional global emission trading market (Höhne et al., 2014; 
Holz et al., 2018; Pan et al., 2023; Robiou Du Pont et al., 2017; van den Berg et al., 2020). Most 
of this, however, only takes mitigation costs into account. This means that it ignores that 
countries can also be significantly impacted by climate damages, also leading to fairness 
considerations (De Cian et al., 2016; Hof, den Elzen, et al., 2010). Moreover, the literature pays 
very little attention to the implications of costs to welfare: a gain (or loss) of 1 USD leads to a 
larger change in welfare in low-income countries than in high-income countries. Therefore, 
in cost-benefit analysis, welfare is commonly assumed to have a non-linear relationship to 
income. If the same relationship were applied to the welfare implications of regional income 
differences, global welfare maximisation would automatically lead to a preference to reduce 
emissions more strongly in high-income countries. 

This paper adds to the existing literature by examining fair regional reduction targets and 
corresponding mitigation costs based on 1) a full-costs approach (mitigation costs and dam-
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ages) and 2) an approach that maximises welfare. Earlier, it was argued that five key fairness 
principles can be identified in the literature(van den Berg et al., 2020): equity, responsibility, 
capability, cost-efficiency and continuity. These can subsequently be translated into specific 
allocation mechanisms. Here, we examine a total of five distinct scenarios (Table 1). The first (1) 
scenario is the cost-minimizing approach without further redistribution of costs. This scenario 
(that is generally applied in IAM scenarios) corresponds to the principle of cost-efficiency. The 
subsequent three scenarios are based on (2) per-capita convergence of emission allowances 
(responding to the equity and continuity principles), (3) equal mitigation costs, and (4) equal 
mitigation plus damage costs (both corresponding to the equity and capability principle) 
(see Methods). In all these three scenarios, a fully functional global emission trading scheme 
is assumed as the targets resulting from these approaches are not realistically achievable 
domestically. The comparison of scenario 4 to scenario 3 shows the impact of including 
climate damages in the allocation. The fifth scenario (5) is based on a welfare-maximizing 
approach. In this scenario, the lower value to income in high-income regions leads to more 
ambitious domestic reduction targets in these regions.

We use the recent, open-source, simple cost-benefit Integrated Assessment Model MIMOSA 
(see Methods) to analyse the results of these regimes in terms of global and regional costs, 
the distribution of mitigation efforts and economic impacts across regions and implications 
for emission trading. Specifically, we explore how welfare optimisation compares to more 
traditional schemes such as cost-optimisation and effort-sharing approaches. The damage 
estimates are obtained using the new state-of-the-art probabilistic bottom-up damage func-
tions from the COACCH project (Van Der Wijst et al., 2023). All calculations are done with a 
carbon budget of 500 GtCO2, which is consistent with a medium likelihood of limiting global 
mean temperature change to 1.5 °C or less.

However, in the literature, mitigation pathways can also be calculated without imposing 
a global carbon budget, but by performing a cost-benefit analysis without fixed target. 
In this paper, we also investigate the impact of the different effort-sharing schemes and 
welfare representations on the global temperature target and global timing of mitigation. 
We thereby bridge the gap between effort sharing, inequality aversion representation and 
cost-benefit analysis.

6.2. Results

6.2.1. Results for 2035 for a fixed carbon budget

Cost minimisation

As all scenarios stay within a global budget of 500 GtCO2, the only difference among the 
scenarios lies in the distribution of regional mitigation efforts or emission trading (Table 1). 
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Fig. 1 displays the regional emission reduction targets and costs (as a share of GDP) in 2035 
for each scenario. In the cost minimisation scenario, there is a wide range of regional emis-
sion reduction targets (Fig. 1a), with a global average of 57% reduction compared to 2020 
emissions and average mitigation costs of 1.7% of GDP (Fig. 1b). The regional differences in 
reduction targets compared to 2020 are influenced by two factors only in the cost minimi-
sation scenario: (a) the cost-effectiveness of reduction measures in each region (represented 
by the regional Marginal Abatement Cost curve), and (b) the evolution of baseline emissions 
from 2020 to 2035. Regions with relatively affordable mitigation options (see Suppl. Fig. 
1.1.1), such as South America (halting deforestation and increasing reforestation), have higher 
emission reduction targets (75% of 2020 emissions), while regions like the Middle East, Turkey 
and Central Asia have lower targets (around 40%). Mitigation costs vary significantly among 
regions: countries with a high carbon intensity are faced with higher costs. The mitigation 
costs of Sub-Saharan Africa are nearly three times higher than the global average, despite 
having a lower than average emission reduction target, due to the low GDP of the region. 
Conversely, Europe, with a low carbon intensity (Suppl. Fig. 1.1.1), incurs mitigation costs 
below 1% of GDP in 2035. Even so, in the long term income is distributed more equally than 
in the no-policy baseline because of the avoided climate change damages (Suppl. Fig. 1.2.3).

Name Optimisation
Equity 

principle
Emission 
trading

Effort sharing 
scheme

Carbon 
budget

1.
Cost 

minimisation

Cost- 
minimising 

No No No

500 
GtCO2

2.
Per capita 

convergence

Equality (in 
emission 

allowances)
Yes

Per-capita conver-
gence of emission 

allowances (conver-
gence in 2050)

3.
Equal mitig. 

costs

Equality (in 
mitigation 

cost)
Yes

Equal mitigation 
costs 

(as % GDP)

4.
Equal total 

costs
Equality (in 
total costs)

Yes
Equal mitigation + 

damage costs 
(as % GDP)

5. Welfare
Welfare 

maximising
Capacity No No

 Table 1. Overview of the five scenarios used in this study when using a fixed carbon budget.
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Effort-sharing regimes

The emission reduction targets resulting from the different effort-sharing approaches deviate 
strongly from those resulting from cost minimisation. In our model, for each effort-sharing 
regime there is at least one region for which it is infeasible to achieve the resulting targets 
domestically. Therefore, we have assumed a fully functional global emission trading scheme 
in all effort-sharing scenarios. 

A convergence towards equal per-capita allowances leads to higher reduction targets and 
subsequently mitigation costs for regions with high baseline per-capita emissions like Turkey, 
North and Central Asia and the Middle East. On the other hand, regions with low baseline 
per-capita emissions, like India and Sub-Saharan Africa, have much lower reduction targets. 
As a result, per-capita emission allocation leads to the lowest interregional income inequality 
by 2035 of all scenarios included in this study, but requires financial transactions of 730 billion 
USD in 2035 for emission trading.
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Figure 1a. Emission reductions per region in 2035. Solid filled bars are the domestic emission 
reductions, that a region needs to achieve in the region itself, and pay for. Open bars are the exported 
domestic reductions: reductions that happen in the region, but are paid for by other regions. Striped 
bars are imported emission reductions: a region pays for mitigation abroad.
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Equalizing mitigation costs leads to reduction targets that are similar to cost minimisation in 
many regions, with some exceptions in the regions with the lowest and the highest GDP. In 
these regions, the fixed percentage of GDP allocated for mitigation results in relatively lower 
and higher absolute mitigation costs respectively, which translates to respectively lower 
and higher mitigation targets. While this method reduces interregional inequality slightly 
compared to cost minimisation (Suppl. Fig. 1.2.3), this approach entails significant financial 
transactions of over 300 billion USD in 2035 for emission trading. This is less than the per-capita 
convergence regime, but still constitutes more than 10% of the total mitigation costs (Table 2). 

Equalizing mitigation costs overlooks incurred damage costs, which are notably unequally 
distributed over the world. When incorporating damage costs in the effort-sharing regime, 
the differences with cost-minimisation increase strongly. Regions like Indonesia, South-East 
Asia, and India benefit from this approach, while Europe has a large increase in mitigation 
effort compared to the cost-minimizing reference due to its relatively low climate damages 
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Figure 1b. Mitigation costs in 2035, for the domestic reductions (solid colour), exported reduc-
tions (open bars) and imported reductions (striped bars). For reference, the global average of the 
cost-minimisation scenario is shown (which is the same as the three effort sharing regimes) (dark 
blue dotted line) and for the welfare maximisation scenario (green dotted line).
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and carbon intensity. Notably, interregional differences in mitigation costs are larger than 
in reduction targets, resulting in lower income inequality between regions compared to 
equalising mitigation costs and even larger financial transactions from emission trading, at 
460 billion USD in 2035.

The per-capita convergence regime requires larger financial flows from emission trading than 
the equal mitigation costs and equal total costs regimes, as the former allocates allowances, 
independent of mitigation, while the latter two allocate reductions. When reductions are 
determined, every region has a minimum mitigation effort, based on its mitigation costs 
and incurred damages.

Combining mitigation costs, damages and capacity: welfare maximisation

The equal total cost regime yields an effort distribution that is significantly more equitable than 
cost-minimisation, since it considers both the costs of mitigation and the regional distribution 
of climate impacts. However, it leads to emission reduction targets that would very likely not 
be feasible to achieve domestically, leading to large financial flows due to emissions trading. 
Moreover, the method is focused on equalising costs and not on maximising welfare. The 
scenario based on welfare maximisation leads to a reduced mitigation effort in developing 
countries compared to cost minimisation, with targets that are feasible to achieve for all re-
gions in our model. The targets are based on the marginal costs of mitigation, damages and 
per-capita income. In comparison to the equal total cost scenario, the welfare maximising 
scenario leads to substantially lower mitigation efforts for Sub-Saharan Africa (3% reduction 
vs. 28%) and India (18% vs. 31%). To offset this, OECD countries and China implement 5-15% 
more stringent reductions, resulting in 20% to 50% higher mitigation costs for these regions. 
The lack of emission trading increases the global mitigation costs from 1.7% of GDP to 2.1% 
in 2035. Welfare maximisation leads to very similar interregional income inequality in 2035 
as for per-capita convergence. 

As a sensitivity analysis, the reduction targets can also be calculated for a well-below 2°C 
carbon budget of 1150 GtCO2 (SI 1.2.d). While all targets are slightly less stringent, the regional 
differences and differences between scenarios still remain. The financial flows from emission 
trading are slightly lower, but still large: 220 billion to 620 billion US$/yr in 2035 to over 1900 
billion US$/yr in 2035. While the regional mitigation costs are also slightly lower, the damage 
costs are higher, leading to similar total costs. A further sensitivity is the level of damages: 
while we assume medium damages in the main text, Suppl. Fig. 1.2.10 shows the effect of a 
low or high damage function. Only the equal total costs and welfare scenarios are affected 
by the change in damages, leading to substantially less stringent mitigation targets for India, 
Indonesia and South-East Asia when the high end of the damage functions are assumed.
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6.2.2. Results over time

Fig. 2 highlights the various perspectives on (in)equality over time: through mitigation costs 
only, total costs (including climate damages), and per-capita emission allowances. Per-capita 
convergence leads to equal per-capita allowances from 2050 onwards (or from 2025 onwards 
if immediate per capita convergence is used, see SI.1.2.e). While this leads in the short term 
to the lowest income inequality between regions, in the long term total costs are distributed 
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unequally as this regime ignores damage costs and differences in mitigation costs. 

Imposing equal mitigation costs still results in an inherently unequal distribution of total 
costs since damage costs are unevenly distributed across the world. However, richer regions 
generally have lower emission allowances per capita than regions with lower GDP, as wealthier 
countries tend to have lower baseline carbon intensity. These differences in per-capita allow-
ances become even more pronounced when equal total costs are enforced, with regions like 
Europe, China, and the USA going deeply into net-negative allowances (but not necessarily 
emissions, as allowances can be traded) in the second half of the century.

The welfare scenario exhibits the most significant variation in mitigation costs, mostly be-
cause of differentiated regional carbon prices due to the lack of a global emissions trading 
system. Throughout the century, countries with high GDP per capita bear much higher costs 
than those with low GDP per capita, especially when the latter region also experiences high 
climate damages. Even when the sum of mitigation and damage costs are considered, coun-
tries with a relatively high per-capita GDP, like the USA, China and Europe, face significantly 
higher costs compared to regions with lower GDP per capita, such as Sub-Saharan Africa and 
India. This disparity is reflected in the income distribution across regions (Suppl. Fig. 1.2.3): 
after 2035, income is distributed more equally compared to the cost-minimising reference 
scenario, shown by an almost 10% lower inter-regional Gini coefficient  by the end of the 
century compared to 2020. 

The overall effect of the different equity schemes becomes even more apparent when consid-
ering the regional carbon budgets (Suppl. Fig. 1.2.2b), While the magnitude of these budgets 
depends on the size of the region, the differences between the scenarios depend on the 
regional characteristics (mitigation costs, damages, GDP growth, etc.) throughout the whole 
century. Compared to the 2035 reduction targets (Fig. 1a), which are still affected by regional 
inertia of mitigation and by relatively low climate impacts, the effect of climate damages 
becomes much more pronounced for regions like Indonesia and South-East Asia (with a 
budget over twice as large in the welfare and equal cost scenarios than in the cost-minimising 
scenario). Sub-Saharan Africa, however, has a very stringent carbon budget even in the total 
cost scenario, due to the relatively cheap mitigation options and rapid economic development 
in the second half of the century. The effect of the welfare maximisation becomes also more 
pronounced compared to cost-minimisation: the USA, Canada and China have a carbon budget 
of almost zero, compared to 80-110 GtCO2 for these regions in cost-minimisation, whereas 
Sub-Saharan Africa has a carbon budget of 80 GtCO2 in the welfare scenario, compared to 
almost zero in the other scenarios. 

A summary of the equity implications of each scenario is shown in Table 2. The welfare scenario 
is the only scenario considering both capacity and regional differences in mitigation costs and 
climate impacts. In fact, the mitigation costs are 2 to 3 times larger in developed countries 
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than in developing countries, whereas the total costs are similar. The lack of emission trad-
ing, however, leads to a global increase in mitigation costs of 23% in 2035 and 14% in 2070.

In contrast, the equal total cost scenario follows a cost-efficient distribution of physical emission 
reductions, making it cheaper than the welfare scenario. Nevertheless, while this approach 
also results in substantially higher mitigation effort in developed than in developing regions, it 
necessitates financial flows of up to 2 trillion USD in 2070, or 0.6% of global GDP. OECD nations 
have to allocate around 1-2.5% of their GDP to emission trading abroad—significantly more 
than the 0.7% of Official Development Assistance (ODA) proposed in 1970. Additionally, this 
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Yes No

2900

(1.7%)

12 450

(3.7%)

0 0 1.2% 2.9% 3.0% 6.9%

Per cap 
conv.

No No
730

(0.4%)

2360

(0.7%)
1.5% 1.5% 4.8% 6.9%

Equal mitig. 
costs

Yes No
310

(0.2%)

1020

(0.3%)
2.0% 3.0% 4.2% 6.4%

Equal total 
costs

Yes Yes
460

(0.3%)

1960

(0.6%)
2.4% 5.4%

Welfare Yes Yes
3600

(2.1%)

14 050

(4.2%)
0 0 2.1% 1.9% 4.8% 5.4%

Table 2. Summary of equity principles and financial flows of each scenario.
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dependence on foreign emission reductions and trading might not align with the essence of 
the Nationally Determined Contributions (NDCs), which focus on domestic mitigation effort.

6.2.3. Equity and the optimal global target

While different representations of equity result in varying regional distributions of reduction 
efforts and costs, they can also impact the optimal global climate change target and timing 
of optimal global emission reductions. In this section, we analyse how strong this effect is 
by conducting a cost-benefit assessment. 

In cost-minimisation setting, the optimal temperature target purely depends on the total 
costs and how those costs are distributed over time. In welfare optimisation, however, the 
regional distribution of costs also becomes important: finding the optimal target then means 
finding a balance between lowering the total costs and decreasing the regional inequality.

Using welfare maximisation without effort sharing regime results in a cost-optimal tempera-
ture target for 2100 that is 0.1°C lower than the target derived from cost-minimisation (Suppl. 
Fig. 1.3.1). As there is no emission trading, reducing inequality can only be achieved through 
differentiated mitigation efforts up to a certain point: beyond that, the additional mitigation 
costs become too high (Suppl. Fig. 1.3.2). Inequality can then only be diminished by reducing 
damages, hence the lower temperature target. Including effort-sharing regimes only has a 
very small effect on the cost-optimal temperature target compared to cost-minimisation 
due to the inclusion of emission trading and pre-defined regional distributions of mitigation 
effort: this is discussed in detail in Supplementary Information 1.3a. 

6.3. Discussion and conclusion

Scenarios created by Integrated Assessment Models used by the IPCC are mostly based 
cost-minimising strategies without explicit consideration of equity. The research of this paper 
shows that regional emission reduction targets based on global cost-minimisation without 
trade lead to disproportionately high mitigation costs as share of GDP for developing coun-
tries, since regional targets are mainly determined by the cost-effectiveness of reduction 
measures in each region ignoring income differences. As developing regions also have higher 
climate change damage costs, cost-minimising strategies lead to total climate change costs 
of Sub-Saharan Africa which are 5 times higher than those of Europe by 2035, and for India 
this is 2.5 times higher.

Initial allocation of emission targets based on effort-sharing regimes leads to substantially 
different reduction targets and, if combined with emission trading, to more equal distributions 
of income across regions. Such regimes, however, also lead to large global financial flows 
from emission trading. A well-functioning global emission trading system is currently not in 
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place. An alternative option to address equality in climate policy is incorporating damage 
costs and welfare considerations in target-setting, leading to less mitigation effort in regions 
with the highest impacts of climate change. This leads to a reduction of 3% compared to 
2020 emissions for Sub-Saharan Africa, 18% for India, 68% for Europe and 75% for the USA. 
The trade-off is that, while this leads to higher global welfare, total mitigation costs are 10-
25% higher than cost-minimisation. 

The reduction targets presented in this research can serve as input for updated regional NDC 
targets that take into account equity, especially when using the equal total cost regime or the 
welfare-maximising approach. The current NDC targets for 2030, however, are still far below 
the ambition level required to meet the carbon budget of 500 GtCO2 for all of the scenarios 
assessed in this paper (den Elzen et al., 2022) (see Suppl. Fig. 1.2.8)—with the exception of 
Europe. When strengthening ambitions, a broad perspective of mitigation costs, losses and 
damages, and regional capacity should be taken into account, which can be achieved by 
focusing on welfare maximisation.

6.4. Methods

6.4.1. MIMOSA

MIMOSA is a recent (Van Der Wijst et al., 2023; Van der Wijst, Hof, van Vuuren, 2021) open-
source cost-benefit Integrated Assessment Model based on FAIR(Den Elzen & Lucas, 2005), 
written in the optimisation modelling language Pyomo (Bynum et al., 2021; Hart et al., 2011). 
It uses a Cobb-Douglas production function and has baseline emissions, total factor pro-
ductivity and population calibrated on the Shared Socio-Economic Pathways (SSPs) (Riahi 
et al., 2017a). Mitigation occurs through a Marginal Abatement Cost (MAC) curve, which has 
been calibrated to reproduce the mitigation costs from the IPCC 6th Assessment Report 
WGIII scenario database. Each region uses the same global Marginal Abatement Cost (MAC) 
curve, but with a region-specific scaling factor calibrated using SSP2 MAC curves from the 
TIMER energy model, using the same methodology as in Ref. (Van Der Wijst et al., 2023). This 
scaling factor is obtained by comparing the carbon price per region required to reach 75% 
CO2 reduction in 2050 compared to baseline, relative to the world average. The regional 
differences in marginal abatement costs stay constant over time: a region that has relatively 
cheap mitigation options now is assumed to keep relative cheap marginal mitigation costs 
throughout the century.

Temperature is calculated as linear function of cumulative CO2 emissions using the TCRE 
relation, which has been shown to accurately reproduce temperature response (Dietz & 
Venmans, 2019). MIMOSA uses the DICE sea-level rise module (Nordhaus, 2014).
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Damages are calculated using state-of-the-art COACCH damage functions (Van Der Wijst et 
al., 2023) for both sea-level rise and temperature related damages separately. These damage 
functions were through bottom-up sectoral impact modelling. While a wide range of sectors 
are covered (agriculture, forestry, fishery, energy demand and supply, labour supply, riverine 
floods, transportation and sea-level rise), important sectors like impacts on human health, 
biodiversity and tipping points are not included, leading to an underestimation of the damages.

While MIMOSA uses the 26 IMAGE regions (Van Vuuren et al., 2021), this paper opts to ag-
gregate the results into 12 macroregions, in order to make the results more easily readable. 
See SI 1.1.b for the full definition of each macroregion.

6.4.2. Welfare-maximisation vs cost-minimisation

Most economic Integrated Assessment Models maximise discounted utility, where utility is a 
concave increasing function of per capita consumption. In a global model, without regional 
disaggregation, the standard welfare function is used, which gives the utility of year  as 
function of the elasticity of marginal utility :

utility =
1

1
1, (1)

where  is the consumption in year  and  the population. When  approaches 1, the 
utility function converges to the logarithm of . The model then maximises the Net Present 
Value (NPV) of the utility: the sum of the discounted utility.

Since MIMOSA has regional disaggregation, the welfare function needs to reflect the different 
regions. In literature, there multiple ways to calculate this. The default method calculates the 
NPV of the utility of the global average per capita consumption:

NPVcost-min. = utility ,

,
, , (2)

with  the pure rate of time preference (also called utility discount rate). This form is equivalent 
to using an inequality aversion parameter of 0, as commonly used in literature (Anthoff & 
Emmerling, 2019; Anthoff & Tol, 2010b; Berger & Emmerling, 2020; Gazzotti et al., 2021; Stan-
ton, 2010; Tol, 2012), and quantitatively similar to using Negishi weights (Berger & Emmerling, 
2020; Stanton, 2010). Since only the global average per capita consumption is considered, it 
does not matter in which region mitigation or damage costs occur: this leads automatically 
to a distribution of mitigation effort that minimises the costs.
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However, this welfare representation clearly does not consider interregional consumption 
differences. An alternative formulation, presented in literature as having full inequality aver-
sion, becomes:

NPVwelfare max. = utility ,

,
, . (3)

The main difference with the cost-minimisation approach is that the utility is calculated per 
region. Therefore, costs incurred in a less affluent region affect the welfare more than costs 
incurred in a rich region. Because of the concavity of the utility function, shifting money 
between regions to equalise per capita consumption simultaneously maximises the utility. 
However, as shown in this paper, if no emission trading is allowed, this means higher total 
mitigation costs, which in turn reduces the welfare.

In both welfare representations, we use a medium value of the pure rate of time preference of 
= 1.5%/yr , and a default elasticity of marginal utility of = 1.001, in line with default 

values of recent literature (Drupp et al., 2018; Gazzotti et al., 2021).

6.4.3. Emission trade

An emission trade module has been added to MIMOSA. The costs of domestic emission 
reductions are still calculated by the area under the MAC, as function of a regional carbon 
price. This determines the actual emissions of each region. When emission trading is allowed, 
or when the cost-minimising welfare function is used, the mitigation costs are minimised by 
implementing a global carbon price. This is not fixed exogenously in MIMOSA, but is a result 
of the optimisation process.

Emission reductions can be traded between regions. The price of imported or exported 
emission reductions on the global emission market is determined by the global carbon price. 
The change in mitigation costs is then determined by:

mitig. costs( , ) = area under MAC( , ) + import/export cost balance( , ),

where the import/export cost balance is positive if a region imports emission reductions (or, 
in other words, pays for mitigation abroad), and negative when a country receives funding 
for domestic mitigation. The sum of the import/export cost balance globally is zero. For 
numerical stability, this constraint is implemented in MIMOSA as:

mitig. costs( , ) = area under MAC( , ).
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Finally, the cost balance can also be expressed in terms of emission reductions by dividing 
by the global carbon price:

paid for emission reduct.( , )
= domestic reduct.( , )
+ import/export cost balance( , )/global carbon price( ).

6.4.4. Effort sharing

This paper considers three effort sharing regimes: equal mitigation costs (as % of GDP), 
equal total costs (sum of mitigation costs and climate damages, as % of GDP) and per capita 
convergence of emission allowances. To quantify the latter regime, following van den Berg 
et al. (2020) (van den Berg et al., 2020), first the share of allowances per region is determined:

share( , ) =

2020
2050 2020

pop ,

POP
+ 1

2020
2050 2020

emissions ,

EMISSIONS
if 2050

pop ,

POP
                                                       if > 2050

where POP  and EMISSIONS  are the global population and emissions respectively. Then, 
the allowances per region are calculated using:

share( , ) EMISSIONS = BASELINE paid for emission reduct.( , )



119

Equity principles, mitigation and climate impacts: balancing welfare and costs

6

Supplementary Information

The supplementary information is available online at:

https://doi.org/10.5281/zenodo.8332333 

https://doi.org/10.5281/zenodo.8332333
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7.1. Introduction

Since the start of the Industrial Revolution, humanity has increasingly emitted carbon dioxide 
(CO2) and other greenhouse gases into the atmosphere through the combustion of fossil 
fuels, other industrial activity, and land use and land-use change (especially deforestation). As 
a result, the global mean temperature has increased by 1.1°C (the 2011-2020 period average) 
compared to pre-industrial levels (IPCC, 2023). Changes to the global mean temperature coin-
cide with changes in extreme weather and lead to a range of wide-spread impacts on society, 
ecosystems and the economy across the world (IPCC, 2022a). Without climate policies, the 
global mean temperature could increase to over 3.4°C by the end of this century compared 
to pre-industrial times as a result of further greenhouse gas emissions (Riahi et al., 2022). 
This would lead to unprecedented, widespread and devastating impacts of climate change. 
The emission of greenhouse gases needs to be reduced drastically to limit these impacts. 
However, determining optimal climate (including the level of ambition) is very challenging, 
mainly because climate change is a long-term problem with many uncertainties and because 
damages are expected to occur unequally over regions and generations. 

Model-based scenario analysis forms one way to help decision-makers to better understand 
the climate problem and possible response strategies. One specific form, cost-benefit anal-
ysis (CBA), focuses on the economic aspect of climate change by comparing the costs of 
mitigation (the costs involved to reduce greenhouse gas emissions) to the avoided climate 
impacts. The scenarios in this thesis are created using a so-called Integrated Assessment 
Model (IAM) of climate change. IAMs are computer models that aim to link the human as-
pects of climate change to the environmental aspects. IAMs vary in their technological and 
economic detail, the complexity of the represented geophysical processes, their regional 
scope and their methodological approach (e.g. simulation vs optimisation). In general, they 
can be classified into two main types: detailed process-IAMs and cost-benefit-IAMs (CB-IAMs). 
Detailed process-IAMs are typically large-scale, complex models with a high level of detail of 
the socio-economic and technological processes relevant to climate policy. These models 
typically only include some incomplete representation of impacts and damages of climate 
change. In contrast, CB-IAMs aim for a wider, more holistic approach: instead of only focus-
ing on mitigation, these models focus on the interactions between climate policy, climate 
damages and adaptation, mainly from an economic perspective. In view of their broad focus, 
CB-IAMs typically have a less detailed representation of technological processes and a more 
stylized representation of the climate feedbacks. The first and most extensively researched 
CB-IAM is DICE, developed by Nordhaus in 1992 (Nordhaus, 1992a). Due to its transparency, 
accessibility and ease of extension, DICE continues to play a fundamental role in the literature 
on cost-benefit analysis of climate policy.
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A key application of CB-IAMs is the calculation of cost-optimal global temperature targets 
and the social cost of carbon (an indicator for the optimal tax level for emitting greenhouse 
gases), or, at the very least, to understand what factors and uncertainties play a role in de-
termining these quantities. The optimal target can be calculated by equalizing the marginal 
mitigation costs to the marginal damages: in other words, by finding the point at which a 
small additional amount of mitigation starts to cost more than the extra benefits of reduced 
climate damages (accounting possibly for adaptation). This analysis is highly dependent on 
estimates of mitigation costs, and of climate damages. Especially the latter is notably difficult 
to estimate. Partly for this reason, there has been strong variation in published cost-optimal 
temperature targets: from 3.1°C using the original DICE version in 1992, 3.5°C with the latest 
default version of DICE2016R2, all the way to 1.4°C when using different assumptions on 
discounting and the climate module (Hänsel et al., 2020). 

Despite the extensive body of literature on costs and benefits of climate policy, several 
substantial knowledge gaps can be noted. First, limited attention is given to comprehensive 
uncertainty analyses. With some exceptions (Gillingham et al., 2018; Pycroft et al., 2011), 
comparing the relative uncertainty of the mitigation aspects, the climate impact aspects 
and the socio-economic developments in cost-benefit analysis is still missing. Second, no 
studies exist that have compared cost-minimising pathways with cost-benefit pathways using 
the same model framework—except for Nordhaus (2008), who did this for a few selected 
assumptions regarding discounting and climate targets. Third, both the data on mitigation 
costs and the data on climate impacts used by the main CBA-studies do often not reflect 
the latest scientific insights, which can lead to outdated results. Fourth, most current studies 
focus on economically optimal outcomes, which does not always lead to equitable outcomes. 
Most of the scenarios currently submitted to the new IPCC AR6 scenario database (Byers et 
al., 2022) are based on IAMs operating under a cost-minimisation approach. This means that 
there is no explicit consideration of equity.

7.2. Research aim and questions

As discussions and choices related to climate policies become increasingly important within 
society, there is a clear demand for science-based insights into the intricate interplays be-
tween mitigation policies and the effects of climate change. This research aims to address 
some critical policy questions and respond to the knowledge gap identified in the previous 
section by examining various aspects of cost-optimal climate policy. To that end, the main 
research question of this thesis is: “How could climate policy be effectively designed 
on the basis of cost-benefit analysis, taking into account new insights in the costs 
of climate policy, the damages of climate change, and key uncertainties?”
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Given the broad scope of this topic, the main research question is divided into four sub-re-
search questions:

1.	 What are the most relevant sources of uncertainty in cost-benefit analysis of climate 
change?

2.	 To what extent do new insights in climate damages alter the outcome of cost-benefit 
analysis, in particular the cost-optimal temperature target?

3.	 How do decisions regarding negative emissions and uncertainties in socio-economic 
development and related adaptive capacities, influence the cost-optimal emission 
trajectory?

4.	 How can equity and welfare considerations be combined with cost-optimality in de-
termining regional emission reduction targets?

These research questions have been tackled using five research chapters. The relation between 
the chapters and the research questions is shown in Table 7.1. 

 Chapter 2

Uncertainty

Chapter 3

New damage 
estimates

Chapter 4

Overshoot

Chapter 5

Adaptation

Chapter 6

Equity

RQ 1: uncertainty

RQ 2: new damage 
estimates

RQ 3: negative emis-
sions and adaptation

RQ 4: equity

Table 7.1. Overview of the research questions and their relation with the research chapters.

Main focus of chapter.     Addresses the RQ, but not the main focus.

4

3

2

1
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7.3. Main findings

What are the most relevant sources of uncertainty in cost-benefit analysis of 
climate change?

In the literature, there are two main methods to look at optimal emission pathways. The first looks 
at a given temperature target or carbon budget and identifies the most cost-effective way to meet 
this target. These cost-effective, or cost-minimising, scenarios, typically only minimise mitigation 
costs (e.g., optimal pathway to meet the 1.5°C target) (Table 7.2). The second method does not 
choose a target but derives it using cost-optimisation. This method, cost-benefit analysis (CBA), 
optimises the balance between mitigation costs and damages. Most of this thesis is focused on 
CBA outcomes. When we present outcomes using the first method (cost-effective scenarios), here, 
compared to most existing literature, we present a major innovation: we also consider damages 
in the optimisation process, even if the target is given—unless explicitly stated otherwise. 

 
Cost-effectiveness analysis Cost-benefit analysis

Target
Set as part of analysis (e.g. temperature 

goal or carbon budget)
Outcome

Objective
Optimisation of costs (or welfare) 

under given target
Optimisation of welfare

Mitigation costs Included Included

Damages and 
adaptation costs

Most literature: 
Not included

Here: 
Included, unless 
stated otherwise

Included

Table 7.2. Overview  of the two main methods to look at optimal emission pathways.

1
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Box 7.1. Key concepts when determining the uncertainty in optimal climate policy

When designing optimal climate policy, several key factors need to be assessed. Five im-
portant ones are (1) mitigation costs, (2) damages from climate change, (3) discounting, (4) 
climate sensitivity, and (5) future socio-economic developments. They all have associated 
uncertainties that are relevant for optimal climate policy.

1.	 The mitigation costs indicate the costs of reducing emissions. The values and uncertainty 
range can be calibrated on the wide range of scenarios created by detailed-process 
Integrated Assessment Models used in IPCC AR6 Working Group 3 report, and is the 
result of varying assumptions on technology costs, efficiency of mitigation policies and 
many other underlying model assumptions.

2.	 The damage costs give an economic valuation of the impacts of climate change. This 
includes a wide range of positive and negative impacts, from sea-level rise to changes 
in agricultural yields. Since climate change impacts such a large amount of economic 
and non-economic aspects of our society, estimating its monetary impact is challeng-
ing, which results in large uncertainty. The ranges can be based on various estimates 
published in the literature.

3.	 The discount rates weigh the appreciation of costs over time. This is necessary as cli-
mate impacts happen over a large time-scale. Costs in the future can be seen as less 
important due to expected economic growth, the future is inherently more uncertain 
than the present, and an intrinsic preference for consumption now. This last factor is 
called the Pure Rate of Time Preference. Choosing a value for especially the latter factor 
is a long-lasting debate in economics and will always be a normative choice, based on 
judgement value and ethical considerations.

4.	 The climate sensitivity is a measure of how much the Earth warms up given a doubling 
of CO2 concentration in the atmosphere. Its uncertainty, contrary to the discount rate, 
is purely geophysical. In this research, it is calibrated on the full uncertainty range of the 
IPCC AR6 Working Group 1.

5.	 Different socio-economic future developments (such as population and economic 
growth and political stability) also determine the outcomes of cost-optimisation. These 
are quantified by the Shared Socioeconomic Pathways: a set of five socioeconomic 
scenarios with diverging storylines that cover a wide range of assumptions (see Box 1.1).

Besides these five main aspects, this thesis considers various other sources of uncertainty: 
various assumptions on the amount of net-negative emissions, assumptions on effectiveness 
of adaptation, assumptions on equity, and model uncertainty.
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When determining the cost-optimal temperature, the uncertainty is dominated by 
uncertainty in the damage function, followed by uncertainty in the discount rate and 
mitigation costs. The optimal temperature target depends on uncertainties in the damage 
function, mitigation costs, discounting, climate sensitivity and socio-economic development 
(see Box 7.1). The cost-optimal target ranges from 1.1°C to 4.4°C for all parameter combi-
nations. In the literature, there has been a long debate on the importance of the discount 
rate. Interestingly, however, of these uncertainties, the damage function uncertainty is by far 
responsible for the highest variance in outcomes (58%, with temperature target ranging from 
1.5°C to 2.9°C, all other aspects being medium), followed by the discount rate (15%) and the 
mitigation cost level (14%) (Figure 7.1a). Our analysis considers the full literature ranges for 
each parameter, contrary to many existing analyses which only perform a sensitivity analy-
sis. When the high end of the damage function is assumed, the mitigation costs dominate 
the remaining uncertainty, since mitigation is highly necessary to reduce the damages. In 
contrast, the choice in the discount rate mainly determines the cost-optimal temperature 
target when the low end of damages is assumed, since discounting determines how much 
the far future—when the damages become significant even when assuming the low end 
of damage estimates—is valued. {Figure 7.1a, 2.2.2}
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Figure 7.1. (a) Uncertainty decomposition of the optimal end-of-century temperature using the 
same method, but in cost-benefit setting. The central node represents the decomposition using 
all parameters. The outer nodes are the result of a conditional variance decomposition, where the 
damage function is kept constant at a low, medium and high value. The parameter with highest 
variance is highlighted as the border of each node. (b) Uncertainty decomposition of the carbon 
price pathway required to reach a well-below 2°C carbon budget.  {Figure 2.3, Figure 2.6}
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It is important to also accounting for damages in cost-minimising scenarios (e.g. 
with a carbon budget) as this determines the optimal emission trajectory. Typically, 
mitigation scenarios focus on minimum-cost pathways achieving the Paris Agreement without 
accounting for damages. This research shows that if damages were to be considered, this 
could double the required initial carbon price, shifting more of the mitigation effort towards 
the beginning of the century. The reason is that it is attractive to avoid unnecessary climate 
damages in the near future. Moreover, decreasing the pure rate of time preference from a 
medium value of 1.5% to a 0.1% also doubles the initial carbon price. This finding is also im-
portant for the analysis of cost-effective scenarios using detailed-process IAMs as normally 
looked at in IPCC assessments. {2.2.1, Figure 2.2}

The role of different uncertainties is somewhat different in cost-effective scenarios. 
Here, initially the discount rate, the mitigation costs, and the damage function are 
critically important. If damages are accounted for, the uncertainty in the carbon price is 
initially determined by the discount rate, the mitigation cost level and the damage function 
equally, while towards the end of the century, the uncertainty in the mitigation cost level 
dominates the total uncertainty. Consequently, the choice of discount rate and how climate 
damages are valued have a substantial effect on the carbon price in a cost-minimising setting. 
To reduce the uncertainty in current climate policy, the value of time preference needs to be 
chosen quickly, and our understanding of economic climate impacts needs to be improved. 
{Figure 7.1b, 2.2.1}

To what extent do new insights in climate damages alter the outcome of cost-ben-
efit analysis, in particular the cost-optimal temperature target?

Current economic damage estimates cover a large range, with damage functions on the high end 
of the literature range (Burke et al.) being a factor 10 higher than the low end of the range (DICE). 
Moreover, a large part of the current cost-benefit literature still uses these outdated estimates of 
climate damages. In this thesis, we use for the first time a set of state-of-the-art damage estimates: 
the COACCH damage functions, named after the project in which they were developed. This section 
first compares these functions to those in existing literature, and, subsequently, applies them in 
cost-benefit analysis.

2
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Box 7.2. Damage curves of climate change

In current literature, the economic impacts of climate change are typically modelled by either 
a bottom-up or a top-down approach. The top-down approach combines observed historical 
fluctuations in weather and (regional) economic output, to obtain empirical, data-driven 
damage estimates. While this approach is based on observed data, the associated uncertain-
ty is still large as it is questionable if these relations hold far into the future. The bottom-up 
approach, on the other hand, considers the outcomes of physical impact models and/or 
expert judgement to quantify and aggregate the economic damages into a reduced-form 
damage function. However, these damage estimates are often incomplete, as they cannot 
cover all sectors where climate change might have an economic impact. Moreover, some 
impacts, such as on human health, biodiversity or ecosystems are by nature notoriously 
difficult to monetise. The damage functions of this type currently used by the literature are 
typically outdated and do not fully incorporate the current scientific knowledge of future 
climate impacts.

This thesis uses a set of new bottom-up damage functions that provide a higher level of 
regional detail than previous estimates. They provide internally consistent uncertainty ranges 
and are based on physical impacts derived from last-generation impact models.

These damage functions are created in three steps (Figure 7.3).

(i)	 Physical impacts are estimated by sectoral impact models. The impact sectors considered 
are agriculture, forestry, fishery, energy demand, energy supply, labour supply, riverine 
floods, transportation and sea-level rise. Some sectoral impacts are still lacking, like bi-
odiversity losses, human health impacts and tipping points.

(ii)	 The physical damages are then translated to economic losses using the Computable 
General Equilibrium model ICES. This improves the transparency of how each type of 
physical is implemented in the economical assessment.

(iii)	 Finally, the economic losses from the CGE are combined and fitted with a closed-form 
relation for each region (typically quadratic). The COACCH damage functions allow de-
composing the total GDP losses into (a) direct impacts from sea level rise, (b) direct 
temperature-related impacts and (c) indirect impacts from cumulated dynamic effects, 
e.g. through investment.
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The COACCH damage functions are produced by monetising sectoral damages,
have internally consistent uncertainty ranges and quantify regional SLR and
non-SLR damages 
Creation of the COACCH damage function and comparison to literature:
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 Figure 7.2. Creation of the new COACCH damage functions: output from sectoral impact models 
using a wide range of input variables are used as input for the economic valuation through the CGE 
model, which yields GDP losses. For each region, a quadratic function is fitted using quantile regres-
sion through the 5th, 50th and 95th percentiles. These damage functions are then used in the Integrated 
Assessment Models. {Figure 3.1, Extended Data Table 3.1, 3.2}
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The range in the new, internally consistent, COACCH damage curves are, when ag-
gregated globally for the low, medium and high damage end representation, close 
to, respectively the DICE (2016), Howard et al. (2017), and Burke et al. (2015) dam-
age functions. For 2°C warming above pre-industrial, the DICE, Howard and Burke damage 
functions, that previously spanned the literature range in damage function uncertainty, give 
damages of respectively 0.9%, 4.0% and 7.3% of GDP. The COACCH damage functions, when 
evaluated at their 5th, 50th and 95th quantile, yield 0.9%, 3.7% and 6.5% respectively (Figure 
7.2). However, the methodology for creating the damage functions is completely different. 
While DICE also relies on bottom-up sectoral physical impacts, criticisms about these damage 
functions are the lack of empirical foundation, the relative simple monetisation method used, 
and that they are based on relatively old and scarce impact data. Top-down estimates, like 
the empirical Burke et al. damage functions, on the other hand, are criticised for their black 
box nature: the underlying impact drivers are unknown. The COACCH damage functions 
rely less on semi-qualitative expert assessment and use state-of-the-art physical impacts 
translated into economic damages. {Figure 7.2, 3.4}

Economic impacts of climate change vary strongly by region.

Regional economic impacts of climate change in 2100 at 3°C warming (RCP 6.0, medium damage estimates),  
when assuming optimal adaptation for sea-level rise:
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Figure 7.3. Economic climate impacts resulting from the damage functions by region and 
IAM, for a fixed emission trajectory (RCP 6.0) and when using the medium damage function. Results 
are aggregated to IPCC R5 macroregions: OECD, Eastern Europe and Northern Asia (EENA), Latin 
America (LAM), Middle East and Africa (MAF), Asia. {Figure 3.2.a}
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On a global level, the GDP loss in the baseline RCP 6.0 scenario ranges from 10 to 
12% at the end of the century when using medium damage (50th damage quantile) 
estimates, with substantial regional differences. The damages are significantly re-
duced in the mitigation scenario RCP 2.6 to 3.1-3.6% GDP loss in 2100. There are large 
differences in impact magnitude between regions (Figure 7.3). In RCP 6.0, the damages are 
the highest in the Middle East and Africa region, with total losses between 13% and 18% 
of GDP, followed by 12% to 14% for Asia. The other three macroregions have lower total 
damages. When disaggregating the macroregions further into model-native regions (12 to 
26 world regions), the differences become even larger. Sea-level rise damages, even with 
optimal adaptation, make up a significant part (10-13% of total direct damages) in Asia and 
the OECD. Without adaptation to sea-level rise, the global total damages increase by over 
30%, with substantially higher increases in the OECD—confirming the benefits of adaptation 
to sea-level rise. In a well-below 2°C scenario (RCP 2.6), the global GDP losses drop to 3.1-3.6% 
in 2100, with sea-level rise damages making up a much larger share of the total damages, 
especially in Asia and the OECD. The total damages become substantially higher when using 
the 95th percentile of the damage functions, with global damages of 18-22% of GDP in 2100 
under RCP 6.0 and 5.7-6.6% of GDP under RCP 2.6. {Figure 7.3, 3.2}

These new estimates of climate damages lead to optimal temperatures below 2°C 
with central estimates of damages and discount rates, substantially lower than many 
previous cost-benefit studies. While assuming the high end of the damage function 
(estimated at the 95th percentile), the optimal temperature increase is close to 1.5°C in all 

Cost-optimal temperature target is mostly below 2°C for medium and high damage
estimates, even without considering biodiversity, health, tipping points and more.
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three IAMs considered in this research (MIMOSA, REMIND and WITCH). Since the COACCH 
damage functions do not include all impacts (e.g., biodiversity loss, health impacts and tipping 
points), the resulting temperature outcomes are likely to be conservative. This could provide 
justification to focus on the high end of the damage uncertainty (95th percentile as used in 
Chapter 3), especially when applying the precautionary principle. Therefore, this study gives 
strong economic validation of the Paris Agreement. {Figure 7.4, 3.3.1, 3.3.2, 3.4} 

From a purely economic perspective, the benefits of reduced climate damages sig-
nificantly outweigh the costs of climate policy. This is true even when some climate 
change damages, including those on biodiversity and health, and co-benefits from 
reduced air pollution, are not accounted for. Under medium assumptions of damages 
and discount rate, the Benefit-Cost Ratio is 1.5-3.9 for the three IAMs of this study. This presents 
an important case to improve societal acceptance of climate policy. The benefits, however, 
occur mostly in the second half of the century and beyond, while the mitigation costs mostly 
happen upfront, earlier in the 21st century. {3.3.3, Figure 3.6}

Uncertainty due to the use of different models is an important factor to consider in 
cost-benefit analysis. The analysis of Chapter 3 highlights that different models can lead to 
different results (Figure 7.4). While model uncertainty has a small impact on the cost-optimal 
end-of-century temperature target, it does impact the Benefit Cost Ratio significantly (1.5 
for WITCH to 3.9 for REMIND), indicating the importance of including multiple models in a 
cost-benefit analysis. This means that the use of multiple models can highlight important 
differences and thus lead to more robust outcomes in the case of model agreement. {3.4}

How do decisions regarding negative emissions and uncertainties in socio-eco-
nomic development and related adaptive capacities, influence the cost-optimal 
emission trajectory?

In the general literature on climate policy, there are several issues highlighted that so-far have not 
been studied well. This is important as these issues can have important policy implications. Here, 
we highlight two such topics: (1) negative emissions, and (2) socio-economic development and 
adaptive capacity.

First, we address assumptions on (net) negative emissions. Temperature targets can be interpreted 
as targets never to be exceeded, or as end-of-century targets that allow for a temperature overshoot 
mid-century that is compensated by net negative emissions later in the century. Given current soci-
etal and political debates on net-zero emission targets, but also the current lack of policy response, 

3
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this topic becomes increasingly relevant. Detailed-process IAMs have addressed this topic in more 
detail from a mitigation cost and (technological) feasibility perspective. However, the overall strat-
egy on negative emissions while also accounting for damage costs has been given less attention.

Some form of temperature overshoot (with net negative emissions later in the cen-
tury) can be economically attractive, even when considering the extra damages due 
to additional climate change. The option to (temporarily) overshoot a climate target leads 
to increased flexibility and allows to shift some mitigation action (for some limited time) into 
the future, which lowers mitigation costs. However, it also creates some extra damages from 
climate change incurred during the period that the temperature target is exceeded. Under 
medium assumptions of damage function and discounting, the choice to avoid overshoot 
(and thus net negative emissions), and thereby interpreting the Paris Agreement target as 
a “no overshoot” target, leads to a sum of mitigation and damage costs that is around 13% 
higher than without the restriction. The outcome, however, depends on assumptions on 
mitigation costs, damages and discount rates. The cost differences are much smaller if miti-
gation costs are assumed to be relative small (compared to the literature median), damages 
high, or when a low discount rate is used. {4.2, Figure 4.1}

However, if a large part of the damage is not fully reversible, the attractiveness of 
negative emissions is much lower. The assumption that climate damages are not fully 
reversible significantly reduces the attractiveness of net negative emissions. Some climate 
impacts are likely reversible if global mean temperature goes down, such as reduced labour 
productivity or extra costs for cooling. Other impacts are not easily reversible, such as species 
loss or sea-level rise. Assuming that 50% of damages are irreversible leads to 50% lower total 
net negative emissions, since extra mitigation effort is required to reach the same maximum 
damage target when using net negative emissions. {4.3, 4.4}

All-in-all, this means that negative emissions are slightly less attractive if damages 
are taken into account, but they could still play some role in the overall mitigation 
strategy. Under a wide range of assumptions on damages, mitigation costs, time preference, 
reversibility of damages, we find that the attractiveness of negative emissions is much lower 
than often shown in scenarios based on optimisation of mitigation costs only. However, fully 
avoiding negative emissions leads to substantially higher costs, also when damages are 
accounted for. The required additional mitigation effort could also lead to feasibility issues. 
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Second, we address assumptions on different socio-economic trajectories and adaptive capacity. 
Given the current increased geopolitical tensions (through, for example, the Russian invasion of 
Ukraine), assessing a wide range of socio-economic developments becomes more and more impor-
tant. The SSP-RCP matrix was developed specifically for this purpose (see Box 1.1 in the Introduction 
of this thesis). While the SSP-RCP framework has been used in the context of determining mitigation 
costs, it has never been used to do a comprehensive analysis of mitigation costs, adaptation and 
residual damage. Such analysis is presented here. This, in fact, requires a better understanding of 
adaptation. Also, adaptation is still poorly addressed in IAMs. It is known that adaptive capacity is 
highly dependent on socio-economic developments. In this research, we, therefore, first expanded 
the MIMOSA model to address adaptation and related this to factors that determine adaptive 
capacity. This allows us to systematically disentangle the effect of socio-economic developments 
on mitigation costs, adaptation effectiveness and adaptation costs, and residual damage costs. 
As such, we introduce “shared policy assumptions” (SPAs) for adaptation. 

It is possible to improve the representation of adaptation in cost-benefit IAMs based 
on assumptions on adaptive capacity. Adaptation to climate change impact can lead 
to a decrease in (residual) damages, but leads to adaptation costs. The latter are normally 
considerably smaller than the avoided damages. Previous studies typically looked at two 
cases: an optimal adaptation case, where the costs of adaptation were weighed against 
the benefits of reduced residual damages, and a no-adaptation case. However, the level of 
adaptation is also highly dependent on the level at which countries are able to implement 
adaptation policies. In this research, this is quantified by a reduction factor that lowers the 
actual adaptation level below the optimal level. This factor is based on a time-dependent, 
SSP-specific, and regional adaptation readiness index recently published. The factor takes 
into account different governance levels for each SSP and country and is therefore a useful 
proxy for the different challenges to adaptation of each SSP. {5.1}

Assumptions on future socio-economic developments play a crucial role in deter-
mining optimal climate policy. The SSP-RCP matrix systematically shows high mitigation 
costs in the bottom rows (for the low RCPs) (Figure 7.5a) and high damage costs (including 
adaptation costs) in the top rows (for the high RCPs) (Figure 7.5b). The impact of socio-eco-
nomic development (the columns for the SSPs) also substantially influences the costs, with 
SSP3 being the most costly on all aspects. By systematically comparing the costs of mitigation, 
adaptation, and residual damages for different socio-economic and climate scenarios, this 
research shows that the role of the SSPs (Shared Socio-economic Pathways) substantially 
impacts both the mitigation costs and damage costs, and is therefore important to consider 
when designing climate policy. {Table 7.3, Figure 7.5, 5.2}
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SSP1 SSP2 SSP3 SSP4 SSP5
Increases or 

decreases 
the costs?

Mitigation costs:

Baseline emissions Low Medium High Low Very high Increases

Marginal abatement costs Low Medium Very high Medium High Increases

Reginonally differentiated 
carbon prices

Low Medium High High Medium Increases

Absolute mitigation costs Low Medium High Medium High

GDP path High High Low Low Very high Decreases

Mitigation costs 
(as % of GDP)

Low Medium
Very 
high

High Medium

Damage costs:

Extra costs due to sub-op-
timal adaptation

Low Medium High High Low Increases

GDP growth Medium Medium Low Low High Increases*

Timing of mitigation Early Medium Medium Early Late
Decreases 

when earlier**

Damage costs 
(as % of GDP)

Low Medium High High Medium

* Using Ramsey discounting slightly attentuates this affect

** Only has a very small effect on NPV (≤0.2% of GDP)

Table 7.3. Overview describing the main drivers of variation of mitigation/damage costs be-
tween the SSPs, given a common climate target. {Table 5.1}
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The socio-economic assumptions included in the SSPs impact the mitigation costs 
through differences in (a) baseline emissions, (b) marginal abatement costs, (c) levels 
of regional differentiation in carbon prices, and (d) the GDP path. Mitigation costs 
can be an order of magnitude larger in SSP3 than SSP1. The absolute mitigation costs 
are determined by several factors that determine the challenges to mitigate, as also reflected in 
the SSP storylines (a, b and c) (see Table 7.3). The economic development (d) then determines 
the mitigation costs relative to GDP, shown in Figure 7.5a. The low baseline emissions, low 
marginal abatement costs and high level of global cooperation lead to mitigation costs of 
only 0.3% of GDP in SSP1 to limit forcing to RCP 3.4 (Net Present Value 2020-2150). The same 
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cost-optimal temperature target for each SSP is shown in (c), where the position in the y-axis 
corresponds to the translated radiative forcing target of that scenario. {Figure 5.1.a-c}
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target requires mitigation costs of 4.1% for SSP3 due to its high challenges to mitigation, 
combined with a low GDP path. Even though SSP5 is also associated with high challenges 
to mitigation—and therefore high absolute mitigation costs—the very high GDP path atten-
uates the relative costs of mitigation, with 1.6% of GDP for RCP 3.4. {Table 7.3 Figure 7.5, 5.2}

Introducing limits to adaptation as function of socio-economic development leads 
to are substantially higher damage costs than the optimal case. Damage costs, in-
cluding adaptation costs, can be over 22% higher in SSP3 than SSP1. In this thesis, 
we introduce a notion of adaptive capacity as function of socio-economic development. In 
SSP1 and SSP5, with assumed low challenges to adaptation, the sum of residual damages 
and adaptation costs are 15% to 20% higher due to the assumed lack of adaptive capacity 
in some low-income countries than if optimal adaptation had been possible. For SSP3 and 
SSP4, with high challenges to adaptation, these costs are 50% to 60% higher than if optimal 
adaptation had been possible. The GDP path also affect the costs, even though damages 
are calculated as percentage of GDP: damages incurred when GDP is highest have a higher 
weight when calculating the NPV. This has a slightly attenuating effect on the total damage 
costs, since the SSPs with high challenges to adaptation also have a low GDP growth. The 
resulting total damage costs, including adaptation costs, for RCP 3.4 are 3.6% for SSP1, 4.4% 
for SSP3 and 4.0% for SSP5. {Table 7.3, Figure 7.5, 5.2}

A systematic use of the SSP-RCP matrix (as proposed by van Vuuren et al., 2012) 
can identify the optimal temperature, but also its dependence on the ambition of 
climate policy and socio-economic conditions. Using the SSP-RCP matrix, it is possible 
to compare for each combination of SSP and RCP the mitigation costs (Figure 7.5a) to the 
damage costs (Figure 7.5b) to obtain the total costs (Figure 7.5c). For each SSP, the RCP with 
lowest total costs gives an indication of the cost-optimal level of climate policy. A more 
precise way to calculate optimal climate policy is by performing a cost-benefit analysis for 
each SSP. The cost-optimal temperature targets found here vary from 1.8°C (SSP1) to 1.9-2.0°C 
(SSP2, SSP4, SSP5) and 2.2°C (SSP3) (for the damages included in the new damage functions). 
{Figure 7.5, 5.2.4}

Doing too much mitigation only leads to slightly higher mitigation costs, while doing 
too little can lead to much higher damage costs. The SSP-RCP matrix gives an indication 
of the economic risks of having a higher or lower target than the cost-optimal target. This risk 
is highly asymmetrical: more stringent targets than cost-optimal only lead to slightly higher 
mitigation costs, while less stringent targets can lead to much higher damage costs. For SSP2, 
the total costs (sum of mitigation, damage and adaptation costs) are only 5% higher for RCP 
1.9 compared to the cost-optimal target, but up to 80% higher for RCP 6.0. {Figure 7.5, 5.2.4} 
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How can equity considerations be combined with cost-optimal climate policy 
in determining regional emission reduction targets?

So far, the research presented here has focused on global costs and temperature targets. Yet, climate 
policy is implemented at the national level, making it essential to determine the regional distribu-
tion of mitigation costs and damage costs. National implementation of climate policy depends 
on its perceived fairness. In the literature, there are different ways to deal with fairness. This thesis 
goes beyond that work by (a) systematically including the damages, and (b) focusing on welfare 
optimisation as an alternative method for determining regional reduction targets. 

Box 7.2. The five different regional scenarios used in this research

The scenarios currently used by the IPCC have been criticised for the fact that they do not 
explicitly deal with equity but instead apply mainly cost-minimising strategies. The focus on 
global cost-minimisation is based on the common assumption that the question of efficiency 
(lowest costs) can be separated from the question of fairness (who is paying for these costs). 
The use of flexible instruments allows for financial transfers (like emission trading and effort 
sharing schemes). Most of the literature, however, only takes mitigation costs into account. 
This means that it ignores that countries can also be significantly impacted by climate dam-
ages – also leading to fairness considerations. There is also little attention to the implications 
of costs to welfare: a gain (or loss) of 1 USD leads to a larger change in welfare in low-income 
countries than in high-income countries.

Chapter 6, therefore, addresses these considerations by 1) taking a full costs approach (mit-
igation costs and damages) and 2) focusing on an approach that maximises welfare. To do 
this, we examine a total of five distinct scenarios. The first scenario is the cost-minimising 
approach without further redistribution of costs. This scenario (that is generally applied in IAM 
scenarios) corresponds to the principle of cost-efficiency. In the subsequent three scenarios, 
we add an explicit effort allocation. These principles are per capita convergence of emission 
allowances (responding to the equity and continuity principles), equal mitigation costs, and 
equal mitigation plus damage costs (both corresponding to the equity and capability prin-
ciple). The fifth scenario is based on a welfare-maximizing approach, taking both mitigation 
costs and damages into account.

In the three scenarios with initial allocation (Scenario 2, 3, and 4) regions can either sell 
or import emission reductions for the existing carbon price. We do not combine the wel-
fare-maximising scenario with emission trading (as this would automatically lead to a very 
large emission trading flow in order to equate per capita income in all regions). Scenarios with 
emission trading lead to a universal carbon prices, while restrictions on emissions trading result 
in differentiated regional carbon prices, reflecting regional differences in mitigation effort. 

4
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Regional emission reduction targets based on global cost-minimisation without trade 
lead to disproportionately high mitigation costs for developing countries. This ine-
quality is even exacerbated if damage costs are taken into account. In cost-minimisation 
setting, regional targets for 2035, as percentage of 2020 emissions, are mainly determined 
by (a) the cost-effectiveness of reduction measures in each region, and (b) the evolution of 
baseline emissions from 2020 to 2035. Regions with relatively affordable mitigation options, 
such as South America (halting deforestation and increasing reforestation) and Europe, have 
higher emission reduction targets (75% reduction in 2035 relative to 2020 emissions for a 
pathway limiting warming to 1.5°C), while regions like the Middle East, Turkey and Central 
Asia have lower targets (around 40%). The resulting mitigation costs, as percentage of GDP, 
partly depend on the region’s GDP: countries with relatively low GDP tend to have high mit-
igation costs. When combined with the damage costs in those regions, Sub-Saharan Africa 
have total costs (mitigation plus damages) in 2035 that are 5 times higher than Europe, and 
India 2.5 times higher than Europe. {Figure 7.6, Table 7.4, 6.2.1}

The regional reduction target for 2035 strongly depends on the equity representation.
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Figure 7.6. Regional emission reduction targets for 2035, relative to 2020 emission levels, for the 
5 equity representations of Chapter 6. The common global pathway used for each scenario is the 
cost-minimising pathway reaching a carbon budget of 500 GtCO2.
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Introducing an initial allocation based on effort sharing regimes combined with 
emission trading leads to substantially different reduction targets and a more fair 
distribution of costs. Mitigation effort can be allocated following fixed principles to address 
fairness, while subsequently using flexible instruments like emission trading to enhance effi-
ciency. The resulting distribution depends on the regime and equity principle. The per-capita 
convergence effort sharing regime leads to less stringent targets for regions with low per-capita 
emissions, like Sub-Saharan Africa and India (reduction of 17-25% relative to 2020 emissions). 
Equalizing mitigation costs leads to reduction targets that are similar to cost-minimisation 
in many regions, with some exceptions in the regions with the lowest and the highest GDP. 

Scheme

Takes into 
account 

regional…

Global mitiga-
tion costs

(in billion US$/
yr, and % GDP)

Global finan-
cial flows 

from emis-
sion trading

(in billion 
US$/yr, and 

% GDP)

Regional mitigation 
+ damage costs

(% of regional GDP)
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…
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2035 2070 2035 2070
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Eu
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Cost mini-
misation

Yes No

2900

(1.7%)

12 450

(3.7%)

0 0 1.2% 2.9% 3.0% 6.9%

Per cap 
conv.

No No
730

(0.4%)

2360

(0.7%)
1.5% 1.5% 4.8% 6.9%

Equal mitig. 
costs

Yes No
310

(0.2%)

1020

(0.3%)
2.0% 3.0% 4.2% 6.4%

Equal total 
costs

Yes Yes
460

(0.3%)

1960

(0.6%)
2.4% 5.4%

Welfare Yes Yes
3600

(2.1%)

14 050

(4.2%)
0 0 2.1% 1.9% 4.8% 5.4%

Table 7.4. Summary of equity principles and financial flows of each scenario.
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Incorporating damage costs in the effort-sharing regime leads to substantial differences 
with cost-minimization based on mitigation costs only. Regions like Indonesia, South-East 
Asia, and India benefit from this approach (reduction of 27-34% relative to 2020 emissions), 
while Europe has a large increase in mitigation effort compared to the cost-minimizing 
reference due to its relatively low climate damages and carbon intensity (77% reduction of 
2020 emissions). The Gini index—measuring inequality between regions—for this scenario 
is also lower than that of equal mitigation costs only, highlighting the reduced inequality of 
the equal total cost effort sharing regime. {Figure 7.6, 6.2.1}

The scenarios with emission trading can lead to large global financial flows between 
regions. Directly implementing targets from the effort-sharing regimes would lead to con-
cerns about regional sovereignty with potential feasibility risks, as achieving these targets 
requires substantial financial flows from emission trading, ranging from 730 billion US$/yr in 
2035 to 2360 billion US$/yr in 2070 for the per capita convergence scenario, 310 billion US$/
yr to 1020 US$/yr for the equal mitigation scenario, and 460 billion US$/yr to 1960 billion 
US$/yr for the equal total cost scenario. This dependence on foreign emission reductions 
and trading might not align with the essence of the Nationally Determined Contributions 
(NDCs), which focus on domestic mitigation effort.

The welfare-maximising scenario is the scenario considered here that takes into 
account differences in damage costs, in marginal mitigation costs, and in regional 
income levels. The non-linear, concave relation between costs and welfare that is commonly 
applied globally in cost-benefit analysis can also be applied regionally. This function repre-
sents the fact that a gain (or loss) of 1 US$ leads to a larger change in welfare in low-income 
countries than in high-income countries. The welfare of a country depends on its income 
level, but also on how much the regional GDP is reduced by mitigation costs and damage 
costs. This scenario cannot easily be combined with emission trading without additional 
effort sharing schemes, as this would automatically increase the amount of traded emissions 
in order to reach equal per capita consumption in every world region. As this is considered 
to be an unrealistic result, that scenario is not explored here.  

The welfare-maximising scenario leads to lower mitigation efforts for regions with 
low income and high climate damages, and more mitigation effort for high-income 
regions with low damages. However, it also leads to slightly higher global mitigation 
costs. When maximising welfare, the mitigation effort in developing countries is further 
reduced. Compared to the equal total cost scenario, the welfare maximising scenario leads 
to substantially lower mitigation efforts for Sub-Saharan Africa (3% reduction relative to 2020 
vs. 28%), India (18% vs. 31%) and Indonesia/South-East Asia (32% vs. 34%). To offset this, the 
targets for OECD countries and China are 5-15%-points more stringent, resulting in 20% to 
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50% higher mitigation costs for these regions. However, due to the differentiated carbon 
prices and absence of emission trading, the welfare scenario has 10-25% higher mitigation 
costs than cost-minimisation. {Figure 7.6, Table 7.4, 6.3.1}

Equity assumptions on regional distributions of reduction efforts do not only impact 
regional costs, but can also have consequences for the timing and global target of 
mitigation. If an equity regime influences global costs and how regional inequalities are 
weighed, the comparison of costs and damages at the global scale is also influenced—and 
thus the cost-optimal temperature target. In the welfare-maximising regime, the final op-
timal target is 0.1°C lower than the target derived from cost-minimisation without equity 
considerations. This mainly results from the inequality aversion of the welfare-maximising 
scenario: as there is no emission trading, reducing inequality can only be achieved through 
differentiated mitigation efforts up to a certain point. Beyond that, the additional mitigation 
costs become too high. Inequality can then only be diminished by reducing damages, hence 
the lower temperature target in this scenario. {Figure 6.3, 6.3.2}

7.4. Main conclusions

The goal of this thesis is to address the question: “How could climate policy be effectively 
designed on the basis of cost-benefit analysis, taking into account new insights in 
the costs of climate policy, the damages of climate change, and key uncertainties?” 
Answering the sub-research questions in the previous section allows to answer the main 
research question.

The uncertainty in climate change damage estimates is found to have a large impact 
on the optimal design of climate policy. This includes the optimal target, the optimal 
emission pathway over time, and the distribution of regional mitigation effort in a 
fair and equitable way. The uncertainty in climate damages was found to constitute the 
main source of uncertainty when determining the cost-optimal temperature target. This 
uncertainty is typically underestimated in the literature. After selecting a target, accounting 
for damages when calculating the emission pathway leads to a shift in mitigation effort 
towards the present to avoid damages incurred throughout the century, combined with a 
smaller temperature overshoot compared to an approach that does not account for damages. 
Once the global emission pathway is chosen, damages play a key role in determining how 
the regional mitigation efforts are distributed in a fair and equitable way, thereby reducing 
inequality caused by climate change.
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Effective climate policy should consider key uncertainties when basing decisions 
on cost-benefit analyses. The uncertainty in climate damage estimates accounts for 50% 
of the uncertainty in determining the optimal temperature target, while the uncertainty 
in mitigation costs, the discount rate and the damage function account in equal parts for 
uncertainty in the initial carbon price in cost-effectiveness setting. Some of these uncertain-
ties can be reduced by making normative choices (like the discount rate), or by applying 
decision making strategies that deal with uncertainty (like the precautionary principle in the 
case of climate damages), but designing policies should somehow take into account large 
remaining uncertainties. 

The benefits from avoided damages outweigh the mitigation costs required to stay 
well below 2°C for almost all uncertainty estimates, except when damages turn out 
to be very low. In this thesis, we represented the uncertainty space for the key parameters 
determining the optimal temperature in the CBA calculations. If either medium or high 
damages are assumed, avoided damages exceed mitigation costs for well below 2°C for 
95% of the cases looked at (Figure 7.7). The remaining 5% consists mostly of high mitigation 
cost scenarios. For a low damage function (such as the ones used in DICE), only 40% of all 
parameter combinations lead to higher benefits than costs for well below 2°C. Assumptions 
on the magnitude of the damages thus largely determines whether the benefits of well 
below 2°C outweigh the costs (much more than assumptions on the mitigation costs or 
the discount rate). These conclusions remain valid for the new COACCH damages functions: 
under medium assumptions of damages and discount rate, the Benefit-Cost Ratio is 1.5-3.9 
for the same temperature target. The benefits, however, occur mostly in the second half of 
the century and beyond, while the mitigation costs mostly happen upfront, earlier in the 
21st century. For the high end of the damage uncertainty, the cost-optimal temperature 
becomes 1.5°C, with a Benefit-Cost Ratio of 1.8-5.

This research provides strong economic validation of the Paris Agreement. Under 
medium assumptions of damages and discounting, the cost-optimal temperature 
is below 2°C, and for low discount rates or high damages, this drops to 1.5°C. The 
discount rate is a political choice on how to weigh damages and risks in the future. Regard-
ing the uncertainty in damage estimates, the conclusion on the economic attractiveness of 
the Paris Agreement holds for a very large part of the uncertainty (range) (medium or high 
values). Since the damage functions used in this research do not account for sectors like 
biodiversity losses, human health impacts and tipping points, the cost-optimal temperature 
target is likely to be substantially lower than the medium estimates. Moreover, co-benefits of 
mitigation, like reduced air pollution from fossil fuel combustion, make the more stringent 
targets even more economically attractive. 
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Cost-benefit analysis is a useful tool to support climate policy assessment, but requires 
up-to-date estimates of climate damages and mitigation costs, needs a clear and 
transparent incorporation of key uncertainties, and should be complemented with 
more specialised and detailed tools to design effective climate policies. Designing 
effective climate policy requires a careful balance of the key aspects of climate change and 
policy. Climate damages are key in most aspects around climate policy: from target setting 
to distributional issues. Cost-benefit analysis and CB-IAMs provide transparent insights into 
the interactions between these aspects. However, to be policy-relevant, the models should 
be calibrated to the latest scientific insights and have a clear incorporation of the relevant 
uncertainties. 

The benefits from avoided damages outweigh the mitigation costs required to reach a 2°C target 
for almost all parameter combinations, except when damages are low.
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Figure 7.7. Benefits of avoided damages (y-axis) compared to mitigation costs (x-axis) for each 
combination of the parameters used in Chapter 2. Scenarios above the y=x axis have higher ben-
efits than costs. Both costs and benefits are expressed as net present value (2020-2100), relative to 
GDP. Note that the benefits would increase if the time horizon would be extended to 2150 due to 
the nonlinear increase in damages in the baseline scenario. {Figure 2.4}
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7.5. Research recommendations

The climate change damages are found to play a significant role for the optimal 
outcome of many aspects of climate policy. Therefore, climate damages should be 
taken into account also in detailed-process Integrated Assessment Models when 
constructing scenarios. Moreover, narrowing the range of damage estimates will 
help to narrow the outcomes of cost-benefit analysis. Most current detailed-process 
IAMs do not consider climate damages when creating global emission pathways. However, 
incorporating these damages directly into the model leads to a shift in mitigation effort to-
wards the present, and less reliance on large-scale net negative emissions at the end of the 
century. More research into the economic costs of climate change, including the costs and 
effectiveness of adaptation, should be performed to reduce the current uncertainty ranges.

Equity considerations should be directly addressed in mitigation scenarios. Wel-
fare-maximisation provides a promising way to derive targets compared to cost-mini-
misation, especially since climate impacts are distributed so unevenly over the world. 
Scenarios produced by IAMs have been criticised for their lack of equity representation. A shift 
towards welfare-maximisation instead of purely minimising mitigation costs is an effective 
way to address equity in climate policy. Other ways are through effort sharing regimes. These 
regimes, however, should also consider climate damages if aiming to provide a full overview 
of the regional costs and benefits.

Using the full literature uncertainty ranges in cost-benefit analysis provides more 
robust analysis of policy-relevant outcomes than traditional sensitivity analyses. 
Sensitivity analyses typically give an underestimation of the total uncertainty, since they 
don’t use the full literature range on key aspects of climate policy. A useful tool to provide 
robust analysis of large ensembles of IAM scenarios is through a Sobol decomposition of 
the variance in relevant variables: the total variance is split in partial variances attributed to 
each parameter, along with interactions between them. Since sampling from a continuous 
distribution would require thousands or millions of runs—which is computationally infea-
sible—the distribution can be approximated by discrete distributions. Then, using a Monte 
Carlo approach, the Sobol indices can be calculated efficiently. 

More sectoral impacts should be integrated in current damage functions. The COACCH 
damage functions still lack many sectoral impacts, like biodiversity losses, human health 
impacts and tipping points. Therefore, the resulting damages are likely to be an underesti-
mation of the actual damages. 
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The transparency of damage functions can be further improved by incorporating 
sectoral damages directly into Integrated Assessment Models. The COACCH damage 
functions are created through an intermediate step of monetisation through a Computable 
General Equilibrium model. While this accounts for some interactions between sectors and 
implicit market-driven adaptation, the sectoral disaggregation gets lost when using the re-
sulting damage functions in an IAM. Using the physical climate impacts directly in IAMs could 
lead to more transparent results, and to more interactions with the mitigation technologies 
already modelled by the IAMs.

Adaptation needs to be better modelled to design effective climate policy that 
combines mitigation, impacts and adaptation. While there are many case-studies on 
local adaptation projects, the research on adaptation costs and effectiveness with a global 
coverage are mostly outdated. 

Modelling equity considerations in international climate policy requires a high res-
olution in the number of countries/regions that are represented. In fact, it would 
be important to also incorporate differences between income groups within a re-
gion. A high regional granularity is important when modelling climate policy, since climate 
damages and mitigation costs vary widely by region. Various equity aspects disappear when 
the regions are too large: country-level analyses would be necessary to be the most policy 
relevant. However, even with high regional detail, differences between income groups within 
regions can be important.

Box 7.3. Ongoing research with the MIMOSA model

The MIMOSA model has seen several major development steps throughout this thesis. But the 
work doesn’t stop here. Currently, several extensions are under development in the context 
of other research projects and collaborations, aiming to make MIMOSA more complete and 
policy-relevant. A first project involves extending the representation of emissions from only 
CO2 to a representation of also other greenhouse gases (first of all methane) to research the 
effect of different reduction strategies for different gases (e.g. in relation to the estimate of 
the Global Warming Potentials). In a second project, the co-benefits of mitigation through 
reduced outdoor air pollution from fossil fuel emissions is being researched, as well as its 
impact on cost-benefit analysis. A third project is developing a circular economy module 
for MIMOSA, to analyse the various choices in material (re)use and efficiency improvements. 
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7.6. Policy recommendations

Ambitious climate policy is economically attractive. The thesis shows that for ambitious 
goals the avoided climate damages far outweigh the mitigation expenses. The cost-optimal 
temperature target is close to 1.5°C or lower. The benefit-cost ratio in a cost-optimal scenario 
is 1.5 to 3.9 for medium assumptions on discounting and damages, which would be even 
higher if missing sectors were taken into account (like human health, biodiversity, reduced 
air pollution). Most of the benefits, however, happen later in the century, with a break-even 
point around 2050 where the yearly benefits start to surpass the mitigation costs.

Given the large uncertainties in key aspects of climate policy and climate change, 
a risk-minimising strategy is preferrable over a middle-of-the-road cost-optimal 
target. The level of climate damages is the main source of uncertainty when determining a 
temperature target in cost-benefit setting. The risk that damages are higher than the current, 
conservative, middle-of-the-road estimates warrants more stringent climate action. Moreover, 
the extra mitigation costs of too stringent climate action are small, especially compared to 
the extra damage costs when too little climate policy is implemented.

Climate impacts are not equally distributed across regions. It is therefore impor-
tant to also take damages into account when considering equitable distributions 
of mitigation effort. While many current effort sharing regimes focus on mitigation costs, 
the aspect of climate impacts should also be taken into account.

Using a welfare-maximising approach instead of cost-minimisation leads to higher 
mitigation effort for developed regions, and less strict targets for developing re-
gions. Welfare-maximisation results in less inequality, since it considers regional differences 
in income, in marginal mitigation costs, and in climate damages. 

In conclusion, we have shown that climate mitigation is more than worth it economically. The 
tools to reduce emissions exist, the technology exists. It is now time to act on it. Every action matters 
and is important to reduce the impacts of climate change. Acting today is better than tomorrow, 
and tomorrow better than the day after.
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8.1. Introductie

Sinds het begin van de industriële revolutie heeft de mensheid steeds grotere hoeveelheden 
koolstofdioxide (CO2) en andere broeikasgassen uitgestoten in de atmosfeer. Het verbranden 
van fossiele brandstoffen en veranderingen in landgebruik (waaronder ontbossing) zijn de 
belangrijkste oorzaken hiervan. Hierdoor is de gemiddelde temperatuur van de atmosfeer 
gestegen met 1,1°C ten opzichte van het pre-industriële tijdperk. Deze temperatuurstijging 
heeft nu al gezorgd voor extremer weer en heeft over de hele wereld grootschalige gevol-
gen voor onze maatschappij, de ecosystemen en de economie. Zonder klimaatbeleid zou 
de mondiale temperatuurstijging tegen het eind van deze eeuw kunnen oplopen tot boven 
de 3,4°C. Dit zou leiden tot ongekende, verwoestende, en wijdverspreide gevolgen door kli-
maatverandering (IPCC, 2022b). De uitstoot van broeikasgassen moet drastisch verminderd 
worden om deze gevolgen te beperken. In welke mate en hoe snel dit precies gedaan moet 
worden is echter ingewikkeld te bepalen, omdat klimaatverandering een langetermijnpro-
ces is met veel onzekerheden, en omdat de kosten van klimaatbeleid en de gevolgen van 
klimaatverandering ongelijk verdeeld zijn over regio’s en generaties.

Scenario-analyses kunnen beleidsmakers helpen met het beter begrijpen van het klimaat-
probleem en het in kaart te brengen van mogelijke oplossingsstrategieën. Een specifieke 
vorm hiervan is de kosten-batenanalyse. Hierbij ligt de focus op de economische aspecten 
van klimaatverandering door de kosten van klimaatbeleid te vergelijken met de baten van 
verminderde klimaatschade als gevolg van dat beleid. Dit proefschrift concentreert zich op 
dergelijke analyses, gebruik makend van Integrated Assessment Models: computermodellen 
die de socio-economische aspecten van klimaatverandering koppelen aan de geofysische 
aspecten. Dit soort modellen worden al sinds de jaren ‘90 ontwikkeld (waaronder het bekende 
DICE-model van Nordhaus uit 1992), en spelen nog steeds een belangrijke rol in de literatuur 
over de kosten en baten van klimaatbeleid.

Box 8.1. Kosten van klimaatschade en kosten van klimaatbeleid

In dit proefschrift behandelen we meerdere soorten kosten die te maken hebben met kli-
maatverandering. Allereerst de kosten van klimaatschade, ook klimaatimpacts genoemd. 
Klimaatverandering zorgt voor schade aan de maatschappij, het milieu en de economie. 
Een deel hiervan kan worden uitgedrukt in monetaire schade: kosten door overstromingen, 
verloren oogsten door droogte, verlaagde visopbrengsten, schade door bosbranden, ver-
minderde arbeidsproductiviteit tijdens hittegolven, enzovoorts. In de literatuur worden deze 
kosten vaak gegeven als schadefuncties: economische kosten (als percentage van het bruto 
nationaal product) als functie van mondiale temperatuurstijging. Een ander deel is lastiger uit 
te drukken in geld: verlies van biodiversiteit, mensen die moeten vluchten door langdurige 
droogte, opkomst van ziektes als malaria, enzovoorts.
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Klimaatbeleid kan deze effecten verminderen. Klimaatbeleid bestaat uit zowel klimaat-
adaptatie (het aanpassen aan klimaatverandering) als klimaatmitigatie (het verminderen 
van de uitstoot van broeikasgassen). Voorbeelden van klimaatmitigatie zijn het plaatsen van 
windmolens en zonnepanelen, het isoleren van huizen, efficiënter maken van de landbouw 
en het tegengaan van ontbossing. Voorbeelden van klimaatadaptatie, daarentegen, zijn het 
bouwen van hogere dijken tegen zeespiegelstijging, landbouw met gewassen die beter tegen 
droogte kunnen, of het plaatsen van airconditioning. Zowel klimaatadaptatie- als klimaatmi-
tigatiemaatregelen brengen kosten met zich mee; er moet dus een afweging plaatsvinden 
tussen de kosten van klimaatbeleid en het verminderen van klimaatschade door dit beleid. 
Een groot deel van dit proefschrift gaat precies over deze afweging.

Een belangrijke toepassing van Integrated Assessment Models is het uitrekenen van econo-
misch optimale mondiale temperatuurdoelen en van de social cost of carbon (een indicator 
voor een optimale prijs die zou moeten worden geheven op de uitstoot van broeikasgassen), 
of, op zijn minst, om te begrijpen wat de belangrijkste factoren en onzekerheden zijn bij het 
uitrekenen van deze eenheden. Een economisch optimaal temperatuurdoel kan worden uit-
gerekend door te kijken op welk punt de extra kosten van klimaatbeleid niet meer opwegen 
tegen de extra baten van verminderde klimaatschade. Om die reden spelen de inschattingen 
van de kosten van klimaatbeleid en de kosten van klimaatschade een belangrijke rol. Voor-
al het inschatten van de economische kosten van klimaatschade is ingewikkeld. Dit heeft 
gezorgd voor een grote variatie in gepubliceerde kosten-optimale temperatuurdoelen: van 
3,1°C met het oorspronkelijke DICE-model in 1992, 3,5°C met de laatste versie van DICE uit 
2016, tot aan 1,4°C als er andere aannames worden gemaakt over het klimaat en de econo-
mie (Hänsel et al., 2020).

Ondanks de grote hoeveelheid wetenschappelijke publicaties over dit onderwerp zijn een 
aantal belangrijke aspecten nog onderbelicht in de literatuur. Ten eerste is er nog weinig 
inzicht in de relevante onzekerheden. Ten tweede worden er bij studies die bepalen hoe 
klimaatdoelen behaald kunnen worden geen rekening gehouden met klimaatschade; deze 
studies proberen namelijk alleen de kosten van het klimaatbeleid te minimaliseren zonder 
rekening te houden met de kosten van klimaatverandering zelf. Ten derde zijn zowel de 
kosten van klimaatbeleid als de kosten van klimaatschade vaak gebaseerd op oude data die 
geen goede weergave zijn van de huidige wetenschappelijke kennis op dit gebied. Ten vier-
de hebben de meeste studies tot nu toe een sterke focus op het minimaliseren van kosten, 
zonder daarbij expliciet rekening te houden met eerlijkheid en ongelijkheid.
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8.2. Doel van dit onderzoek

Nu de discussies en keuzes ten opzichte van klimaatbeleid van steeds groter maatschappelijk 
belang zijn, is er een duidelijke behoefte aan wetenschappelijke inzichten in de ingewikkelde 
wisselwerkingen tussen klimaatbeleid en de effecten van klimaatverandering. Dit onderzoek 
behandelt de verschillende aspecten van kosten-optimaal klimaatbeleid door de volgende 
onderzoeksvraag te beantwoorden: “Hoe kan effectief klimaatbeleid worden vorm-
gegeven op basis van kosten-batenanalyse, rekening houdende met de nieuwste 
wetenschappelijke inzichten in de kosten van klimaatbeleid, de schade van kli-
maatverandering, en de grote onderliggende onzekerheden?”

Omdat dit nog steeds een breed onderwerp is, is de onderzoeksvraag opgedeeld in vier 
sub-onderzoeksvragen:

1.	 Wat zijn de belangrijkste bronnen van onzekerheid in kosten-batenanalyses van kli-
maatbeleid?

2.	 Hoe beïnvloeden nieuwe inzichten over klimaatschade de uitkomsten van kosten-ba-
tenanalyses, in het bijzonder het economisch optimale temperatuurdoel?

3.	 Hoe wordt het kosten-optimale emissiepad beïnvloed door keuzes over negatieve 
emissies en door onzekerheid in socio-economische ontwikkelingen en bijbehorende 
mogelijkheden voor adaptatie?

4.	 Hoe kunnen aspecten van eerlijkheid en welvaart worden gecombineerd met kosten-op-
timaliteit bij het bepalen van regionale klimaatdoelen?

Dit proefschrift probeert deze onderzoeksvragen te beantwoorden aan de hand van vijf 
onderzoekshoofdstukken. Dit leidt tot de volgende hoofdresultaten.

8.3. Hoofdresultaten

De onzekerheid in het inschatten van de kosten van klimaatschade heeft een grote 
impact op optimaal klimaatbeleid, waaronder het optimale doel, de timing van het 
beleid, en de eerlijke verdeling van regionale klimaatdoelen. De onzekerheid in kli-
maatschade blijkt de grootste bron van onzekerheid te zijn bij het bepalen van een optimaal 
temperatuurdoel. Deze onzekerheid wordt veel onderschat in de huidige literatuur. Als de 
schade van klimaatverandering ook mee wordt genomen bij het bepalen hoe een tempe-
ratuurdoel het best bereikt kan worden, leidt dit tot ambitieuzer klimaatbeleid op de korte 
termijn, zodat er gedurende de komende eeuw al meer schade wordt vermeden. Dit zorgt 
tegelijkertijd voor minder overshoot: een tijdelijke overschrijding van het temperatuurdoel. 
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Hierdoor is er minder afhankelijkheid van technologieën die koolstofdioxide uit de atmosfeer 
verwijderen (ook wel aangeduid als negatieve emissies). Als eenmaal is bepaald wanneer de 
mondiale emissies gereduceerd moeten worden om het doel te bereiken, spelen de impacts 
van klimaatverandering ook een grote rol in het eerlijk verdelen van de regionale kosten van 
klimaatbeleid en klimaatschade.

Effectief klimaatbeleid moet rekening houden met belangrijke onzekerheden wan-
neer kostenbaten-analyses worden gebruikt. Een deel van de onzekerheid kan worden 
verminderd door normatieve keuzes te maken (zoals de keuze van discontovoet, die aangeeft 
in welke mate we kosten in de toekomst wegen ten opzichte van huidige kosten). Een andere 
manier van omgaan met onzekerheid is het maken van beleidskeuzes die expliciet rekening 
houden met onzekerheid (zoals het voorzorgsprincipe als het gaat om klimaatschade). Ef-
fectief klimaatbeleid zal in ieder geval rekening moeten houden met de grote overblijvende 
bronnen van onzekerheid.

De baten van vermeden klimaatschade wegen ruimschoots op tegen de kosten 
van klimaatbeleid om ruim onder de 2°C te blijven voor vrijwel alle combinaties 
van onzekerheden, behalve wanneer de klimaatschade zeer laag blijkt te zijn. In dit 
proefschrift is de onzekerheid van de kosten en baten systematisch onderzocht. Bij medium 
of hoge klimaatschade zijn de baten van vermeden schade in 95% van de gevallen hoger dan 
de kosten van klimaatbeleid om de temperatuurstijging ruim onder de 2°C te houden. De 
overige 5% zijn veelal scenario’s met (zeer) hoge mitigatiekosten. Als de klimaatschade laag 
uitvalt, zijn de baten slechts in 40% van de gevallen hoger dan de kosten. In dit proefschrift 
hebben we ook nieuwe inschattingen gemaakt van de klimaatschade, waarbij alle nieuw-
ste inzichten in impacts van klimaatverandering zijn samengevoegd. Ook hierbij blijven de 
conclusies geldig: voor gemiddelde aannames van schade en discontovoet zijn de baten 
van klimaatbeleid 1,5 tot 3,9 keer groter dan de kosten. De baten treden echter veelal op 
in het tweede deel van de eeuw terwijl de mitigatiekosten voornamelijk vroeg in de 21ste 
eeuw optreden. Als de klimaatschade hoog uitvalt, zijn de baten zelfs 1,8 tot 5 keer hoger 
dan de kosten.

Dit onderzoek geeft sterke economische argumenten voor het Parijsakkoord. Onder 
gemiddelde aannames van schade en discontovoet is het kosten-optimale tempera-
tuurdoel ruim onder 2°C, en voor lage discontovoet of hoge schade is het optimale 
temperatuurdoel zelfs 1,5°C. De conclusie dat het Parijsakkoord ook economisch aan-
trekkelijk is geldt voor een zeer groot deel van de onzekerheidsrange van de klimaatschade. 
Bovendien houden de schadefuncties die gebruikt zijn in dit onderzoek geen rekening met 
aspecten als biodiversiteitsverlies, gezondheidsimpacts, en onvoorziene kantelpunten in het 
klimaat (tipping points). Daarom is het werkelijke kosten-optimale temperatuurdoel waar-
schijnlijk nog een stuk lager dan de gemiddelde schattingen. Bovendien zijn er bijkomende 
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voordelen van klimaatbeleid, zoals verminderde luchtvervuiling, waardoor ambitieuze doelen 
nog aantrekkelijker worden.

Kosten-batenanalyses zijn nuttige tools voor de vormgeving van klimaatbeleid, 
maar vereisen wel actuele inschattingen van klimaatschade en mitigatiekosten. 
Verder moeten belangrijke onzekerheden op een transparante manier behandeld 
worden. Kosten-batenanalyses en de daarvoor gebruikte Integrated Assessment Modellen 
geven inzicht in de interacties tussen klimaatverandering en beleid. Deze modellen moeten 
echter wel de laatste wetenschappelijke inzichten gebruiken om beleidsrelevant te blijven.

8.4. Beleidsaanbevelingen

De hoofdresultaten uit dit promotieonderzoek, zoals samengevat in 8.3, leiden tot een aantal 
beleidsaanbevelingen die hieronder worden besproken.

Ambitieus klimaatbeleid is economisch aantrekkelijk. Dit proefschrift laat zien dat 
voor ambitieuze klimaatdoelen de baten van vermeden schade substantieel hoger zijn dan 
de mitigatiekosten. De kosten-optimale temperatuurstijging is dicht bij 1,5°C. De baten in 
een kosten-optimaal scenario zijn 1,5 tot 3,9 keer hoger dan de kosten van klimaatbeleid 
(voor gemiddelde aannames van de discontovoet en klimaatschade). Deze baten zouden 
nog hoger zijn als ontbrekende aspecten mee zouden worden genomen (zoals gezond-
heidsimpacts, biodiversiteitverlies, en verminderde luchtvervuiling). Het grootste deel van 
de baten zal echter pas later in de eeuw komen, met een kantelpunt rond 2050 waarin de 
baten groter worden dan de kosten.

Door de grote onzekerheden in belangrijke aspecten van klimaatbeleid en kli-
maatschade, is een risico-vermijdende strategie wenselijker dan een gemiddeld 
kosten-optimaal doel. Hoe groot de schade van klimaatverandering zal zijn is de grootste 
bron van onzekerheid bij het berekenen van een temperatuurdoel met een kosten-bate-
nanalyse. Het risico dat de schade hoger uitvalt dan gedacht maakt het wenselijker om 
ambitieuzer klimaatbeleid uit te voeren dan een puur kosten-optimaal klimaatbeleid. De 
extra mitigatiekosten van te ambitieus klimaatbeleid zijn klein, zeker ten opzichte van de 
extra klimaatschade als het klimaatbeleid niet ambitieus genoeg is.

De impacts van klimaatverandering zijn niet gelijk verdeeld over de wereld. Het 
is belangrijk om deze regionale verschillen in klimaatschade ook mee te nemen 
bij het bepalen van een eerlijke verdeling van mondiaal klimaatbeleid. Momenteel 
zijn de meeste vormen van mondiale lastenverdeling gebaseerd op mitigatiekosten, terwijl 
regionale verschillen in klimaatschade daar een grotere rol in zouden moeten spelen.
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Welvaart-maximalisering leidt tot strengere beleidsdoelen voor ontwikkelde landen 
en minder strengere doelen voor ontwikkelingslanden ten opzichte van kosten-mi-
nimalisering. Het focussen op welvaart zorgt voor minder ongelijkheid, omdat er hierbij 
naast mitigatiekosten ook rekening wordt gehouden met regionale verschillen in inkomen 
en klimaatschade.

Samenvattend hebben we laten zien dat ambitieus klimaatbeleid het economisch meer dan waard 
is. De instrumenten om emissies te reduceren bestaan, de technologie bestaat. De tijd is gekomen 
om er nu naar te handelen. Elke stap is belangrijk om de impacts van klimaatverandering te ver-
minderen. Nu iets doen is beter dan morgen, en morgen beter dan overmorgen.



159

Samenvatting

8





9
References,  

List of Publications,  

Acknowledgements



162

Chapter 9



163

References, List of Publications, Acknowledgements

9

9.1. References

Agrawala, S., Bosello, F., Carraro, C., De Bruin, K. C., De Cian, E., Dellink, R. O. B., & Lanzi, E. 
(2011). Plan or React? Analysis of Adaptation Costs and Benefits Using Integrated As-
sessment Models. Climate Change Economics, 2(3), 175–208. https://doi.org/10.1142/
S2010007811000267

Andrijevic, M., Crespo Cuaresma, J., Muttarak, R., & Schleussner, C. F. (2020). Governance in 
socioeconomic pathways and its role for future adaptive capacity. Nature Sustainability, 
3(1), 35–41. https://doi.org/10.1038/s41893-019-0405-0

Anthoff, D., & Emmerling, J. (2019). Inequality and the social cost of carbon. Journal of the 
Association of Environmental and Resource Economists, 6(2), 243–273. https://doi.
org/10.1086/701900/ASSET/IMAGES/LARGE/FG5_ONLINE.JPEG

Anthoff, D., & Tol, R. S. J. (2010a). On international equity weights and national decision making 
on climate change. Journal of Environmental Economics and Management, 60(1), 14–20. 
https://doi.org/10.1016/j.jeem.2010.04.002

Anthoff, D., & Tol, R. S. J. (2010b). On international equity weights and national decision making 
on climate change. Journal of Environmental Economics and Management, 60(1), 14–20. 
https://doi.org/10.1016/J.JEEM.2010.04.002

Anthoff, D., & Tol, R. S. J. (2014). The Climate Framework for Uncertainty, Negotiation and Distri-
bution (FUND) - Technical Description - Version 3.9. http://www.fund-model.org

Arrow, K., Cropper, M., Gollier, C., Groom, B., Heal, G., Newell, R., Nordhaus, W., Pindyck, R., Pizer, 
W., Portney, P., Tol, R. S. J., & Weitzman, M. (2013). Determining benefits and costs for 
future generations. Science, 341(6144), 349–350. https://doi.org/10.1126/science.1235665

Bastien-Olvera, B. A., & Moore, F. C. (2020). Use and non-use value of nature and the social 
cost of carbon. Nature Sustainability, 1–8. https://doi.org/10.1038/s41893-020-00615-0

Bauer, N., Bertram, C., Schultes, A., Klein, D., Luderer, G., Kriegler, E., Popp, A., & Edenhofer, O. 
(2020). Quantification of an efficiency–sovereignty trade-off  in climate policy. Nature 
2020 588:7837, 588(7837), 261–266. https://doi.org/10.1038/s41586-020-2982-5

Baumstark, L., Bauer, N., Benke, F., Bertram, C., Bi, S., Gong, C. C., Dietrich, J. P., Dirnaichner, A., 
Giannousakis, A., Hilaire, J., Klein, D., Koch, J., Leimbach, M., Levesque, A., Madeddu, S., 
Malik, A., Merfort, A., Merfort, L., Odenweller, A., … Luderer, G. (2021). REMIND2.1: trans-
formation and innovation dynamics of the energy-economic system within climate 
and sustainability limits. Geoscientific Model Development, 14(10), 6571–6603. https://
doi.org/10.5194/GMD-14-6571-2021



164

Chapter 9

Berger, L., & Emmerling, J. (2020). Welfare as Equity Equivalents. Journal of Economic Surveys, 
34(4), 727–752. https://doi.org/10.1111/JOES.12368

Bertsimas, D., Farias, V. F., & Trichakis, N. (2012). On the efficiency-fairness trade-off. Management 
Science, 58(12), 2234–2250. https://doi.org/10.1287/MNSC.1120.1549

Bosello, F., Carraro, C., & De Cian, E. (2010). Climate policy and the optimal balance between 
mitigation, adaptation and unavoided damage. Climate Change Economics, 1(2), 71–92. 
https://doi.org/10.1142/S201000781000008X

Bosello, F., Carraro, C., & De Cian, E. (2013). Adaptation can help mitigation: An integrated 
approach to post-2012 climate policy. Environment and Development Economics, 18(3), 
270–290. https://doi.org/10.1017/S1355770X13000132

Bosello, F., Dasgupta, S., Parrado, R., Standardi, G., & Van der Wijst, K.-I. (2021, July 30). Revisiting 
the concept of damage functions - Deliverable for the COACCH project - D4.3 Macroeconomic 
assessment of policy effectiveness. https://www.coacch.eu/wp-content/uploads/2018/03/
COACCH-Deliverable-4.3-to-upload.pdf

Bosello, F., De Cian, E., & Ferranna, L. (2014). Advancement Report on Adaptation and Dam-
age Functions in the WITCH Model and Test Runs. SSRN Electronic Journal. https://doi.
org/10.2139/ssrn.2491627

Bosello, F., & Parrado, R. (2020). Macro-economic assessment of climate change impacts: 
methods and findings. EKONOMIAZ. Revista Vasca de Economía, 97(01), 45–61. https://
ideas.repec.org/a/ekz/ekonoz/2020102.html

Botzen, W. J. W., Gowdy, J. M., & Van den Bergh, J. C. J. M. (2008). Cumulative CO<inf>2</inf> 
emissions: Shifting international responsibilities for climate debt. Climate Policy, 8(6), 
569–576. https://doi.org/10.3763/cpol.2008.0539

Boysen, L. R., Lucht, W., Gerten, D., Heck, V., Lenton, T. M., & Schellnhuber, H. J. (2017). The 
limits to global-warming mitigation by terrestrial carbon removal. Earth’s Future, 5(5), 
463–474. https://doi.org/10.1002/2016EF000469

Burke, M., Hsiang, S. M., & Miguel, E. (2015). Global non-linear effect of temperature on eco-
nomic production. Nature, 527(7577), 235–239. https://doi.org/10.1038/nature15725

Byers, E., Krey, V., Kriegler, E., Riahi, K., Schaeffer, R., Kikstra, J., Lamboll, R., Nicholls, Z., Sandstad, 
M., Smith, C., Van der Wijst, K.-I., Al Khourdajie, A., Lecocq, F., Portugal-Pereira, J., Saheb, Y., 
Stromann, A., Winkler, H., Auer, C., Brutschin, E., … Van Vuuren, D. P. (2022). AR6 Scenarios 
Database. Zenodo. https://doi.org/10.5281/zenodo.5886911



165

References, List of Publications, Acknowledgements

9

Bynum, M. L., Hackebeil, G. A., Hart, W. E., Laird, C. D., Nicholson, B. L., Siirola, J. D., Watson, J.-
P., & Woodruff, D. L. (2021). Pyomo — Optimization Modeling in Python. 67. https://doi.
org/10.1007/978-3-030-68928-5

Cai, Y., Judd, K. L., & Lontzek, T. S. (2012). DSICE: A Dynamic Stochastic Integrated Model of 
Climate and Economy. SSRN Electronic Journal. https://doi.org/10.2139/SSRN.1992674

Calvin, K., Clarke, L., Edmonds, J., Eom, J., Hejazi, M., Kim, S., Kyle, P., Link, R., Luckow, P., & Patel, 
P. (2011). GCAM Wiki Documentation.

Caney, S. (2014). Climate change, intergenerational equity and the social discount 
rate. Http://Dx.Doi.Org/10.1177/1470594X14542566, 13(4), 320–342. https://doi.
org/10.1177/1470594X14542566

CD-LINKS project: Linking Climate and Development Policies - Leveraging International Networks 
and Knowledge Sharing. (n.d.). Retrieved 16 February 2022, from http://www.cd-links.org/

Chapagain, D., Baarsch, F., Schaeffer, M., & D’haen, S. (2020). Climate change adaptation costs 
in developing countries: insights from existing estimates. In Climate and Development 
(Vol. 12, Issue 10, pp. 934–942). Taylor and Francis Ltd. https://doi.org/10.1080/17565
529.2020.1711698

Creedy, J., & Guest, R. (2008). Discounting and the Time Preference Rate. Economic Record, 
84(264), 109–127. https://doi.org/10.1111/j.1475-4932.2008.00450.x

Dasgupta, P. (2008). Discounting climate change. Journal of Risk and Uncertainty, 37(2–3), 
141–169. https://doi.org/10.1007/s11166-008-9049-6

De Bruin, K. C. (2014). Calibration of the AD-RICE 2012 model (3). https://doi.org/http://dx.doi.
org/10.2139/ssrn.2600006

De Bruin, K. C., Dellink, R., & Agrawala, S. (2009). Economic aspects of adaptation to climate change: 
integrated modelling of adaptation costs and benefits. www.oecd.org/env/workingpapers

De Bruin, K. C., Dellink, R. B., & Tol, R. S. J. (2009). AD-DICE: An implementation of adaptation 
in the DICE model. Climatic Change, 95(1–2), 63–81. https://doi.org/10.1007/s10584-
008-9535-5

De Cian, E., Hof, A. F., Marangoni, G., Tavoni, M., & Van Vuuren, D. P. (2016). Alleviating inequality 
in climate policy costs: An integrated perspective on mitigation, damage and adaptation. 
Environmental Research Letters, 11(7). https://doi.org/10.1088/1748-9326/11/7/074015

Dell, Jones, B., & Olken, B. (2012). Temperature Shocks and Economic Growth: Evidence from 
the Last Half Century. American Economic Journal: Macroeconomics, 4(3).



166

Chapter 9

Dellink, R., Lanzi, E., & Chateau, J. (2019). The Sectoral and Regional Economic Consequences 
of Climate Change to 2060. Environmental and Resource Economics, 72(2), 309–363. 
https://doi.org/10.1007/S10640-017-0197-5/TABLES/7

den Elzen, M. G. J., Dafnomilis, I., Forsell, N., Fragkos, P., Fragkiadakis, K., Höhne, N., Kuramochi, 
T., Nascimento, L., Roelfsema, M., van Soest, H., & Sperling, F. (2022). Updated nationally 
determined contributions collectively raise ambition levels but need strengthening 
further to keep Paris goals within reach. Mitigation and Adaptation Strategies for Global 
Change, 27(6), 1–29. https://doi.org/10.1007/S11027-022-10008-7/TABLES/3

Den Elzen, M. G. J., & Lucas, P. L. (2005). The FAIR model: A tool to analyse environmental and 
costs implications of regimes of future commitments. Environmental Modeling and 
Assessment, 10(2), 115–134. https://doi.org/10.1007/s10666-005-4647-z

Dennig, F. (2018). Climate change and the re-evaluation of cost-benefit analysis. Climatic 
Change, 151(1), 43–54. https://doi.org/10.1007/s10584-017-2047-4

Dennig, F., Budolfson, M. B., Fleurbaey, M., Siebert, A., & Socolow, R. H. (2015). Inequality, climate 
impacts on the future poor, and carbon prices. PNAS, 112(52), 15827–15832. https://
doi.org/10.1073/pnas.1513967112

Diaz, D., & Moore, F. (2017). Quantifying the economic risks of climate change. Nature Climate 
Change 2017 7:11, 7(11), 774–782. https://doi.org/10.1038/nclimate3411

Dietz, S. (2011). High impact, low probability? An empirical analysis of risk in the economics 
of climate change. Climatic Change, 108(3), 519–541. https://doi.org/10.1007/S10584-
010-9993-4/METRICS

Dietz, S., & Venmans, F. (2019). Cumulative carbon emissions and economic policy: In search of 
general principles. Journal of Environmental Economics and Management, 96, 108–129. 
https://doi.org/10.1016/j.jeem.2019.04.003

Drouet, L., Bosetti, V., & Tavoni, M. (2015). Selection of climate policies under the uncertainties 
in the Fifth Assessment Report of the IPCC. Nature Climate Change, 5(10), 937–943. 
https://doi.org/10.1038/nclimate2721

Drupp, M. A., Freeman, M. C., Groom, B., & Nesje, F. (2018). Discounting disentangled. American 
Economic Journal: Economic Policy, 10(4), 109–134. https://doi.org/10.1257/pol.20160240

Du Pont, Y. R., Jeffery, M. L., Gütschow, J., Christoff, P., & Meinshausen, M. (2016). National 
contributions for decarbonizing the world economy in line with the G7 agreement. 
Environmental Research Letters, 11(5). https://doi.org/10.1088/1748-9326/11/5/054005



167

References, List of Publications, Acknowledgements

9

Eboli, F., Parrado, R., & Roson, R. (2010). Climate-change feedback on economic growth: ex-
plorations with a dynamic general equilibrium model. Environment and Development 
Economics, 15(5), 515–533. https://doi.org/10.1017/S1355770X10000252

EMF (Energy Modeling Forum) 33 Bio-Energy and Land Use. (n.d.). Retrieved 16 February 2022, 
from https://emf.stanford.edu/projects/emf-33-bio-energy-and-land-use

Emmerling, J., Drouet, L., Reis, L. A., Bevione, M., Berger, L., Bosetti, V., Carrara, S., Cian, E. De, 
D’Aertrycke, G. D. M., Longden, T., Malpede, M., Marangoni, G., Sferra, F., Tavoni, M., 
Witajewski-Baltvilks, J., & Havlik, P. (2016). The WITCH 2016 Model - Documentation and 
Implementation of the Shared Socioeconomic Pathways. Working Papers.

Emmerling, J., Drouet, L., Van der Wijst, K.-I., Van Vuuren, D. P., Bosetti, V., & Tavoni, M. (2019). The 
role of the discount rate for emission pathways and negative emissions. Environmental 
Research Letters. https://doi.org/10.1088/1748-9326/ab3cc9

Estrada, F., Tol, R. S. J., & Gay-García, C. (2015). The persistence of shocks in GDP and the esti-
mation of the potential economic costs of climate change. Environmental Modelling 
and Software, 69, 155–165. https://doi.org/10.1016/j.envsoft.2015.03.010

Fankhauser, S., & Tol, R. S. J. (2005). On climate change and economic growth. Resource and 
Energy Economics, 27(1), 1–17. https://doi.org/10.1016/J.RESENEECO.2004.03.003

Field, C. B., & Mach, K. J. (2017). Climate: Rightsizing carbon dioxide removal. Science, 356(6339), 
706–707. https://doi.org/10.1126/science.aam9726

Frölicher, T. L., & Joos, F. (2010). Reversible and irreversible impacts of greenhouse gas emis-
sions in multi-century projections with the NCAR global coupled carbon cycle-climate 
model. Climate Dynamics, 35(7), 1439–1459. https://doi.org/10.1007/s00382-009-0727-0

Fujimori, S., Masui, T., & Matsuoka, Y. (2014). Development of a global computable general 
equilibrium model coupled with detailed energy end-use technology. Applied Energy, 
128, 296–306. https://doi.org/10.1016/j.apenergy.2014.04.074

Funk, C., Hoell, A., Nicholson, S., Korecha, D., Galu, G., Artan, G., Teshome, F., Hailermariam, K., 
Segele, Z., Harrison, L., Tadege, A., Atheru, Z., Pomposi, C., & Pedreros, D. (2019). Exam-
ining the Potential Contributions of Extreme “Western V” Sea Surface Temperatures 
to the 2017 March–June East African Drought. Bulletin of the American Meteorological 
Society, 100(1), S55–S60. https://doi.org/10.1175/BAMS-D-18-0108.1

Fuss, S., Lamb, W. F., Callaghan, M. W., Hilaire, J., Creutzig, F., Amann, T., Beringer, T., de Oliviera 
Garcia, W., Hartmann, J., Khanna, T., Luderer, G., Nemet, G. F., Rogelj, J., Smith, P., Vicente, J. 
L. V., Wilcox, J., del Mar Zamora Dominguez, M., & Minx, J. C. (2018). Negative emissions 



168

Chapter 9

— Part 2 : Costs , potentials and side effects OPEN ACCESS Negative emissions — Part 
2 : Costs , potentials and side effects. Environmental Research Letters, 13.

Gazzotti, P., Emmerling, J., Marangoni, G., Castelletti, A., Van der Wijst, K.-I., Hof, A., & Tavoni, M. 
(2021). Persistent inequality in economically optimal climate policies. Nature Commu-
nications 2021 12:1, 12(1), 1–10. https://doi.org/10.1038/s41467-021-23613-y

Gillingham, K., Nordhaus, W., Anthoff, D., Blanford, G., Bosetti, V., Christensen, P., McJeon, H., 
& Reilly, J. (2018). Modeling Uncertainty in Integrated Assessment of Climate Change: 
A Multimodel Comparison. Https://Doi.Org/10.1086/698910, 5(4), 791–826. https://doi.
org/10.1086/698910

Glanemann, N., Willner, S. N., & Levermann, A. (2020). Paris Climate Agreement passes the 
cost-benefit test. Nature Communications, 11(1). https://doi.org/10.1038/s41467-019-
13961-1

Goulder, L. H., & Mathai, K. (2000). Optimal CO2 abatement in the presence of induced tech-
nological change. Journal of Environmental Economics and Management, 39(1), 1–38. 
https://doi.org/10.1006/jeem.1999.1089

Guo, J., Hepburn, C. J., Tol, R. S. J., & Anthoff, D. (2006). Discounting and the social cost of car-
bon: a closer look at uncertainty. Environmental Science & Policy, 9(3), 205–216. https://
doi.org/10.1016/J.ENVSCI.2005.11.010

Hänsel, M. C., Drupp, M. A., Johansson, D. J. A., Nesje, F., Azar, C., Freeman, M. C., Groom, B., & 
Sterner, T. (2020). Climate economics support for the UN climate targets. Nature Climate 
Change, 10(8), 781–789. https://doi.org/10.1038/s41558-020-0833-x

Hanssen, S. V., Daioglou, V., Steinmann, Z. J. N., Doelman, J. C., Van Vuuren, D. P., & Huijbregts, 
M. A. J. (2020). The climate change mitigation potential of bioenergy with carbon cap-
ture and storage. Nature Climate Change, 10(11), 1023–1029. https://doi.org/10.1038/
s41558-020-0885-y

Harmsen, M., Kriegler, E., Van Vuuren, D. P., Van der Wijst, K.-I., Luderer, G., Cui, R., Dessens, O., 
Drouet, L., Emmerling, J., Morris, J. F., Fosse, F., Fragkiadakis, D., Fragkiadakis, K., Fragkos, 
P., Fricko, O., Fujimori, S., Gernaat, D., Guivarch, C., Iyer, G., … Zakeri, B. (2021). Integrated 
assessment model diagnostics: key indicators and model evolution. Environmental 
Research Letters, 16(5), 054046. https://doi.org/10.1088/1748-9326/ABF964

Hart, W. E., Watson, J. P., & Woodruff, D. L. (2011). Pyomo: Modeling and solving mathematical 
programs in Python. Mathematical Programming Computation, 3(3), 219–260. https://
doi.org/10.1007/S12532-011-0026-8/METRICS



169

References, List of Publications, Acknowledgements

9

Hausfather, Z., & Peters, G. P. (2020). Emissions – the ‘business as usual’ story is misleading. 
Nature 2021 577:7792, 577(7792), 618–620. https://doi.org/10.1038/d41586-020-00177-3

Helwegen, K. G., Wieners, C. E., Frank, J. E., & Dijkstra, H. A. (2019). Complementing CO2 emission 
reduction by solar radiation management might strongly enhance future welfare. Earth 
System Dynamics, 10(3), 453–472. https://doi.org/10.5194/esd-10-453-2019

Hilaire, J., Minx, J. C., Callaghan, M. W., Edmonds, J., Luderer, G., Nemet, G. F., Rogelj, J., & del 
Mar Zamora, M. (2019). Negative emissions and international climate goals—learning 
from and about mitigation scenarios. In Climatic Change (Vol. 157, Issue 2, pp. 189–219). 
Springer. https://doi.org/10.1007/s10584-019-02516-4

Hinkel, J., Lincke, D., Vafeidis, A. T., Perrette, M., Nicholls, R. J., Tol, R. S. J., Marzeion, B., Fettweis, 
X., Ionescu, C., & Levermann, A. (2014). Coastal flood damage and adaptation costs 
under 21st century sea-level rise. Proceedings of the National Academy of Sciences of the 
United States of America, 111(9), 3292–3297. https://doi.org/10.1073/pnas.1222469111

Ho, E., Budescu, D. V., Bosetti, V., van Vuuren, D. P., & Keller, K. (2019). Not all carbon dioxide 
emission scenarios are equally likely: a subjective expert assessment. Climat. Change, 
155(4), 545–561. https://doi.org/10.1007/s10584-019-02500-y

Hof, A. F., De Bruin, K. C., Dellink, R. B., den Elzen, M. G. J., & Van Vuuren, D. P. (2009). The effect of 
different mitigation strategies on international financing of adaptation. Environmental 
Science and Policy, 12(7), 832–843. https://doi.org/10.1016/j.envsci.2009.08.007

Hof, A. F., den Elzen, M. G. J., & Mendoza Beltran, A. (2011). Predictability, equitability and ad-
equacy of post-2012 international climate financing proposals. Environmental Science 
& Policy, 14(6), 615–627. https://doi.org/10.1016/J.ENVSCI.2011.05.006

Hof, A. F., den Elzen, M. G. J., & van Vuuren, D. P. (2008). Analysing the costs and benefits of 
climate policy: Value judgements and scientific uncertainties. Global Environmental 
Change, 18(3), 412–424. https://doi.org/10.1016/j.gloenvcha.2008.04.004

Hof, A. F., den Elzen, M. G. J., & van Vuuren, D. P. (2010). Including adaptation costs and cli-
mate change damages in evaluating post-2012 burden-sharing regimes. Mitigation and 
Adaptation Strategies for Global Change, 15(1), 19–40. https://doi.org/10.1007/S11027-
009-9201-X/FIGURES/7

Hof, A. F., van Vuuren, D. P., & den Elzen, M. G. J. (2010). A quantitative minimax regret approach 
to climate change: Does discounting still matter? Ecological Economics, 70(1), 43–51. 
https://doi.org/10.1016/J.ECOLECON.2010.03.023



170

Chapter 9

Höhne, N., den Elzen, M., & Escalante, D. (2013). Regional GHG reduction targets based on 
effort sharing: a comparison of studies. Https://Doi.Org/10.1080/14693062.2014.84945
2, 14(1), 122–147. https://doi.org/10.1080/14693062.2014.849452

Höhne, N., den Elzen, M., & Escalante, D. (2014). Regional GHG reduction targets based on 
effort sharing: a comparison of studies. Climate Policy, 14(1), 122–147. https://doi.org
/10.1080/14693062.2014.849452

Holz, C., Kartha, S., & Athanasiou, T. (2018). Fairly sharing 1.5: National fair shares of a 1.5 
°c-compliant global mitigation effort. International Environmental Agreements: Politics, 
Law and Economics, 18(1), 117–134. https://doi.org/10.1007/S10784-017-9371-Z

Hope, C. (2006). The social cost of carbon: What does it actually depend on? In Climate Policy 
(Vol. 6, Issue 5, pp. 565–572). https://doi.org/10.1080/14693062.2006.9685621

Hope, C. (2013). Critical issues for the calculation of the social cost of CO2: Why the estimates 
from PAGE09 are higher than those from PAGE2002. In Climatic Change (Vol. 117, Issue 
3, pp. 531–543). Springer Netherlands. https://doi.org/10.1007/s10584-012-0633-z

Horizon-2020 ENGAGE project. (n.d.). Retrieved 16 February 2022, from https://www.engage-cli-
mate.org/

Horizon-2020 NAVIGATE project. (n.d.). Retrieved 16 February 2022, from https://www.navi-
gate-h2020.eu/

Horizon-2020 REINVENT project. (n.d.). Retrieved 16 February 2022, from https://www.rein-
vent-project.eu/

Horowitz, J., & Lange, A. (2014). Cost–benefit analysis under uncertainty — A note on Weitz-
man’s dismal theorem. Energy Economics, 42, 201–203. https://doi.org/10.1016/j.ene-
co.2013.12.013

Howard, P. H., & Sterner, T. (2017). Few and Not So Far Between: A Meta-analysis of Climate 
Damage Estimates. Environmental and Resource Economics, 68(1), 197–225. https://doi.
org/10.1007/s10640-017-0166-z

Howard, P. H., & Sylvan, D. (2020). Wisdom of the experts: Using survey responses to address 
positive and normative uncertainties in climate-economic models. Climatic Change, 
162(2), 213–232. https://doi.org/10.1007/s10584-020-02771-w

Hsiang, S., Kopp, R., Jina, A., Rising, J., Delgado, M., Mohan, S., Rasmussen, D. J., Muir-Wood, 
R., Wilson, P., Oppenheimer, M., Larsen, K., & Houser, T. (2017). Estimating economic 
damage from climate change in the United States. Science, 356(6345), 1362–1369. 
https://doi.org/10.1126/SCIENCE.AAL4369/SUPPL_FILE/AAL4369_HSIANG_SM.PDF



171

References, List of Publications, Acknowledgements

9

Huppmann, Daniel and Kriegler, Elmar and Krey, Volker and Riahi, Keywan and Rogelj, Joeri 
and Rose, Steven K. and Weyant, John and Bauer, Nico and Bertram, Christoph and 
Bosetti, Valentina and Calvin, Katherine and Doelman, Jonathan and Drouet, Laurent an, 
R. (2018). IAMC 1.5°C Scenario Explorer and Data hosted by IIASA. Integrated Assessment 
Modeling Consortium & International Institute for Applied Systems Analysis. https://
doi.org/10.22022/SR15/08-2018.15429

IAWG. (2010). Interagency Working Group on Social Cost of Carbon. Social Cost of Carbon for 
Regulatory Impact Analysis under Executive Order 12866.

IPCC. (2013). Climate change 2013: The physical science basis. (Eds. Stocker, Thomas F and Qin, 
Dahe and Plattner, Gian-Kasper and Tignor, Melinda and Allen, Simon K and Boschung, 
Judith and Nauels, Alexander and Xia, Yu and Bex, Vincent and Midgley, Pauline M and 
Others) Contribution of Working Group I to the Fifth , 1535.

IPCC. (2014). IPCC, 2014: Climate Change 2014: Mitigation of Climate Change. Contribution of 
Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Cli-
mate Change. In Cambridge University Press. https://doi.org/10.1017/CBO9781107415416

IPCC. (2021). Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. 
Contribution of Working Group I to the Sixth Assessment Report of the Intergovern-
mental Panel on Climate Change. In Climate Change 2021 – The Physical Science Basis 
(pp. 3–32). Cambridge University Press. https://doi.org/10.1017/9781009157896.001

IPCC. (2022a). Summary for Policymakers. In: Climate Change 2022: Impacts, Adaptation 
and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report 
of the Intergovernmental Panel on Climate Change. In Climate Change 2022 – Im-
pacts, Adaptation and Vulnerability (pp. 3–34). Cambridge University Press. https://doi.
org/10.1017/9781009325844.001

IPCC. (2022b). Summary for Policymakers. In: Climate Change 2022: Mitigation of Cli-
mate Change. Contribution of Working Group III to the Sixth Assessment Re-
port of the Intergovernmental Panel on Climate Change. In Climate Change 2022 
- Mitigation of Climate Change (pp. 3–48). Cambridge University Press. https://doi.
org/10.1017/9781009157926.001

IPCC. (2023). Summary for Policymakers. In: Climate Change 2023: Synthesis Report. Contribution 
of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel 
on Climate Change  [Core Writing Team, H. Lee, J. Romero (eds.)].

Juhola, S., Glaas, E., Linnér, B. O., & Neset, T. S. (2016). Redefining maladaptation. Environmental 
Science & Policy, 55, 135–140. https://doi.org/10.1016/J.ENVSCI.2015.09.014



172

Chapter 9

Kahn, M. E., Mohaddes, K., C Ng, R. N., Hashem Pesaran, M., Raissi, M., & Yang, J.-C. (2019). Long-
Term Macroeconomic Effects of Climate Change: A Cross-Country Analysis. Federal Reserve 
Bank of Dallas, Globalization Institute Working Papers. https://doi.org/10.24149/gwp365

Kahn, M. E., Mohaddes, K., Ng, R. N. C., Pesaran, M. H., Raissi, M., Yang, J.-C., Batini, N., Cashin, 
P., Dybczak, K., Eble, S., Garcia-Macia, D., Hallegatte, S., Hasna, Z., Hassler, J., Jajko, B., 
Jaumotte, F., Kpodar, R., Moses, A. L., Phillips, P., … Tol, R. (2019). Long-Term Macroe-
conomic Effects of Climate Change: A Cross-Country Analysis IMF Working Paper Fiscal 
Affairs Department Long-Term Macroeconomic Effects of Climate Change: A Cross-Country 
Analysis * We are grateful to.

Kalkuhl, M., & Wenz, L. (2020). The impact of climate conditions on economic production. 
Evidence from a global panel of regions. Journal of Environmental Economics and Man-
agement, 103, 102360. https://doi.org/10.1016/J.JEEM.2020.102360

Keen, S. (2020). The appallingly bad neoclassical economics of climate change. Https://Doi.
Org/10.1080/14747731.2020.1807856, 18(7), 1149–1177. https://doi.org/10.1080/1474
7731.2020.1807856

Kikstra, J. S., & Waidelich, P. (2023). Strong climate action is worth it. Nature Climate Change 
2023 13:5, 13(5), 419–420. https://doi.org/10.1038/s41558-023-01635-2

Kikstra, J. S., Waidelich, P., Rising, J., Yumashev, D., Hope, C., & Brierley, C. M. (2021). The social 
cost of carbon dioxide under climate-economy feedbacks and temperature variability. 
Environmental Research Letters, 16(9), 094037. https://doi.org/10.1088/1748-9326/AC1D0B

Köberle, A. C., Vandyck, T., Guivarch, C., Macaluso, N., Bosetti, V., Gambhir, A., Tavoni, M., & 
Rogelj, J. (2021). The cost of mitigation revisited. Nature Climate Change 2021 11:12, 
11(12), 1035–1045. https://doi.org/10.1038/s41558-021-01203-6

Krey, V. (2014). Global energy-climate scenarios and models: a review. Wiley Interdisciplinary 
Reviews: Energy and Environment, 3(4), 363–383. https://doi.org/10.1002/WENE.98

Kriegler, E., Edmonds, J., Hallegatte, S., Ebi, K. L., Kram, T., Riahi, K., Winkler, H., & van Vuuren, D. P. 
(2014). A new scenario framework for climate change research: The concept of shared 
climate policy assumptions. Climatic Change, 122(3), 401–414. https://doi.org/10.1007/
S10584-013-0971-5/FIGURES/2

Kypreos, S. (2007). A MERGE model with endogenous technological change and the cost 
of carbon stabilization. Energy Policy, 35(11), 5327–5336. https://doi.org/10.1016/j.en-
pol.2006.01.029



173

References, List of Publications, Acknowledgements

9

Lamontagne, J. R., Reed, P. M., Marangoni, G., Keller, K., & Garner, G. G. (2019). Robust abate-
ment pathways to tolerable climate futures require immediate global action. In Nature 
Climate Change (Vol. 9, Issue 4, pp. 290–294). Nature Publishing Group. https://doi.
org/10.1038/s41558-019-0426-8

Leimbach, M., & Bauer, N. (2021). Capital markets and the costs of climate policies. Environmen-
tal Economics and Policy Studies, 1–24. https://doi.org/10.1007/S10018-021-00327-5/
FIGURES/9

Leimbach, M., & Giannousakis, A. (2019). Burden sharing of climate change mitigation: global 
and regional challenges under shared socio-economic pathways. Climatic Change, 
155(2), 273–291. https://doi.org/10.1007/S10584-019-02469-8

Letta, M., & Tol, R. S. J. (2019). Weather, Climate and Total Factor Productivity. Environmental 
and Resource Economics, 73(1), 283–305. https://doi.org/10.1007/S10640-018-0262-8/
TABLES/6

Li, C., Held, H., Hokamp, S., & Marotzke, J. (2020). Optimal temperature overshoot profile found 
by limiting global sea level rise as a lower-cost climate target. Science Advances, 6(2). 
https://doi.org/10.1126/SCIADV.AAW9490/SUPPL_FILE/AAW9490_SM.PDF

Lincke, D., & Hinkel, J. (2018). Economically robust protection against 21st century sea-lev-
el rise. Global Environmental Change, 51, 67–73. https://doi.org/10.1016/J.GLOENV-
CHA.2018.05.003

Lontzek, T. S., Cai, Y., Judd, K. L., & Lenton, T. M. (2015a). Stochastic integrated assessment 
of climate tipping points indicates the need for strict climate policy. Nature Climate 
Change, 5(5), 441–444. https://doi.org/10.1038/nclimate2570

Lontzek, T. S., Cai, Y., Judd, K. L., & Lenton, T. M. (2015b). Stochastic integrated assessment of 
climate tipping points indicates the need for strict climate policy. Nature Climate Change 
2014 5:5, 5(5), 441–444. https://doi.org/10.1038/nclimate2570

Magnan, A. K., Schipper, E. L. F., Burkett, M., Bharwani, S., Burton, I., Eriksen, S., Gemenne, F., 
Schaar, J., & Ziervogel, G. (2016). Addressing the risk of maladaptation to climate change. 
Wiley Interdisciplinary Reviews: Climate Change, 7(5), 646–665. https://doi.org/10.1002/
WCC.409

Manne, A., & Richels, R. (1995). The Greenhouse Debate: Economic Efficiency, Burden Sharing 
and Hedging Strategies. The Energy Journal, 16(4), 1–37.



174

Chapter 9

Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Mou-
fouma-Okia, W., Péan, C., Pidcock, R., & others. (2018). Global Warming of 1.5 OC: An IPCC 
Special Report on the Impacts of Global Warming of 1.5° C Above Pre-industrial Levels and 
Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the 
Global Response to the Threat of Climate Chang. World Meteorological Organization 
Geneva, Switzerland.

Meinshausen, M., Wigley, T. M. L., & Raper, S. C. B. (2011). Emulating atmosphere-ocean and 
carbon cycle models with a simpler model, MAGICC6 – Part 2: Applications. Atmospheric 
Chemistry and Physics, 11(4), 1457–1471. https://doi.org/10.5194/ACP-11-1457-2011

Mercure, J. F., Sharpe, S., Vinuales, J. E., Ives, M., Grubb, M., Lam, A., Drummond, P., Pollitt, H., 
Knobloch, F., & Nijsse, F. J. M. M. (2021). Risk-opportunity analysis for transformative 
policy design and appraisal. Global Environmental Change, 70, 102359. https://doi.
org/10.1016/J.GLOENVCHA.2021.102359

Moore, F. C., & Diaz, D. B. (2015). Temperature impacts on economic growth warrant stringent 
mitigation policy. Nature Climate Change 2014 5:2, 5(2), 127–131. https://doi.org/10.1038/
nclimate2481

Narayanan, G., Badri, A. A., & McDougall, R. (2012). Global Trade, Assistance, and Production: The 
GTAP 8 Data Base. Center for Global Trade Analysis, Purdue University.

Nauels, A., Gütschow, J., Mengel, M., Meinshausen, M., Clark, P. U., & Schleussner, C. F. (2019). 
Attributing long-term sea-level rise to Paris Agreement emission pledges. Proceedings 
of the National Academy of Sciences of the United States of America, 116(47), 23487–23492. 
https://doi.org/10.1073/pnas.1907461116

Nordhaus, W. (2014). Estimates of the Social Cost of Carbon: Concepts and Results from the 
DICE-2013R Model and Alternative Approaches. Journal of the Association of Environ-
mental and Resource Economists, 1(1/2), 273–312. https://doi.org/10.1086/676035

Nordhaus, W. D. (1992a). Rolling the ‘DICE’: An optimal transition path for controlling green-
house gases. Resource and Energy Economics, 15, 27–50.

Nordhaus, W. D. (1992b). The ‘DICE’ Model: Background and Structure of a Dynamic Integrated 
Climate-Economy Model of the Economics of Global Warming. In Cowles Foundation 
Discussion Paper.

Nordhaus, W. D. (2008). A question of balance: Weighing the options on global warming 
policies. In Yale University Press.



175

References, List of Publications, Acknowledgements

9

Nordhaus, W. D. (2010a). Economic aspects of global warming in a post-Copenhagen envi-
ronment. Proceedings of the National Academy of Sciences of the United States of Amer-
ica, 107(26), 11721–11726. https://doi.org/10.1073/PNAS.1005985107/SUPPL_FILE/
SAPP01.PDF

Nordhaus, W. D. (2010b). Economic aspects of global warming in a post-Copenhagen envi-
ronment. Proceedings of the National Academy of Sciences of the United States of America, 
107(26), 11721–11726. https://doi.org/10.1073/pnas.1005985107

Nordhaus, W. D. (2017). Revisiting the social cost of carbon. Proceedings of the National Academy 
of Sciences of the United States of America, 114(7), 1518–1523. https://doi.org/10.1073/
PNAS.1609244114/SUPPL_FILE/PNAS.201609244SI.PDF

Nordhaus, W. D., & Boyer, J. (2000). Warming the world: economic models of global warming. 
In MIT press.

Nordhaus, W. D., & Moffat, A. (2017). A survey of global impacts of climate change: replication, 
survey methods and a statistical analysis.

Okereke, C., & Coventry, P. (2016). Climate justice and the international regime: before, during, 
and after Paris. Wiley Interdisciplinary Reviews: Climate Change, 7(6), 834–851. https://
doi.org/10.1002/WCC.419

O’Neill, B. C., Carter, T. R., Ebi, K., Harrison, P. A., Kemp-Benedict, E., Kok, K., Kriegler, E., Preston, B. 
L., Riahi, K., Sillmann, J., van Ruijven, B. J., van Vuuren, D. P., Carlisle, D., Conde, C., Fuglest-
vedt, J., Green, C., Hasegawa, T., Leininger, J., Monteith, S., & Pichs-Madruga, R. (2020). 
Achievements and needs for the climate change scenario framework. Nature Climate 
Change 2020 10:12, 10(12), 1074–1084. https://doi.org/10.1038/s41558-020-00952-0

Pan, X., Teng, F., & Wang, G. (2014). Sharing emission space at an equitable basis: Allocation 
scheme based on the equal cumulative emission per capita principle. Applied Energy, 
113, 1810–1818. https://doi.org/10.1016/J.APENERGY.2013.07.021

Pan, X. Z., Teng, F., Robiou du Pont, Y., & Wang, H. L. (2023). Understanding equity–efficiency 
interaction in the distribution of global carbon budgets. Advances in Climate Change 
Research, 14(1), 13–22. https://doi.org/10.1016/J.ACCRE.2022.08.002

Parrado, R., & De Cian, E. (2014). Technology spillovers embodied in international trade: Inter-
temporal, regional and sectoral effects in a global CGE framework. Energy Economics, 
41, 76–89. https://doi.org/10.1016/J.ENECO.2013.10.016

Parrado, R., & de Cian, E. (2014). Technology spillovers embodied in international trade: Inter-
temporal, regional and sectoral effects in a global CGE framework. Energy Economics, 
41, 76–89. https://doi.org/10.1016/J.ENECO.2013.10.016



176

Chapter 9

Patt, A. G., van Vuuren, D. P., Berkhout, F., Aaheim, A., Hof, A. F., Isaac, M., & Mechler, R. (2010). 
Adaptation in integrated assessment modeling: Where do we stand? Climatic Change, 
99(3), 383–402. https://doi.org/10.1007/S10584-009-9687-Y/METRICS

Pezzey, J. C. (2019). Why the social cost of carbon will always be disputed. Wiley Interdisciplinary 
Reviews: Climate Change, 10(1), e558. https://doi.org/10.1002/WCC.558

Pindyck, R. S. (2013a). Climate Change Policy: What Do the Models Tell Us? Journal of Economic 
Literature, 51(3), 860–872. https://doi.org/10.1257/jel.51.3.860

Pindyck, R. S. (2013b). Climate Change Policy: What Do the Models Tell Us? Journal of Economic 
Literature. http://www.nber.org/papers/w19244

Pindyck, R. S. (2019). The social cost of carbon revisited. Journal of Environmental Economics 
and Management, 94, 140–160. https://doi.org/10.1016/J.JEEM.2019.02.003

Pindyck, R. S. (2020). The Use and Misuse of Models for Climate Policy. Https://Doi-Org.Proxy.
Library.Uu.Nl/10.1093/Reep/Rew012, 11(1), 100–114. https://doi.org/10.1093/REEP/REW012

Piontek, F., Drouet, L., Emmerling, J., Kompas, T., Méjean, A., Otto, C., Rising, J., Soergel, B., 
Taconet, N., & Tavoni, M. (2021). Integrated perspective on translating biophysical to 
economic impacts of climate change. Nature Climate Change 2021 11:7, 11(7), 563–572. 
https://doi.org/10.1038/S41558-021-01065-Y

Piontek, F., Kalkuhl, M., Kriegler, E., Schultes, A., Leimbach, M., Edenhofer, O., & Bauer, N. (2019). 
Economic Growth Effects of Alternative Climate Change Impact Channels in Econom-
ic Modeling. Environmental and Resource Economics, 73(4), 1357–1385. https://doi.
org/10.1007/s10640-018-00306-7

Portney, P. R., & Weyant, J. P. (2013). Discounting and intergenerational equity. Discounting and 
Intergenerational Equity, 1–186. https://doi.org/10.4324/9781315060712/DISCOUNT-
ING-INTERGENERATIONAL-EQUITY-JOHN-WEYANT-PAUL-PORTNEY

Pycroft, J., Vergano, L., Hope, C., Paci, D., & Ciscar, J. C. (2011). A Tale of Tails: Uncertainty and 
the Social Cost of Carbon Dioxide. SSRN Electronic Journal. https://doi.org/10.2139/
SSRN.1973860

Raupach, M. R., Davis, S. J., Peters, G. P., Andrew, R. M., Canadell, J. G., Ciais, P., Friedlingstein, P., 
Jotzo, F., van Vuuren, D. P., & le Quéré, C. (2014). Sharing a quota on cumulative carbon 
emissions. Nature Climate Change 2014 4:10, 4(10), 873–879. https://doi.org/10.1038/
nclimate2384

Rennert, K., Errickson, F., Prest, B. C., Rennels, L., Newell, R. G., Pizer, W., Kingdon, C., Wingenroth, 
J., Cooke, R., Parthum, B., Smith, D., Cromar, K., Diaz, D., Moore, F. C., Müller, U. K., Plevin, R. 



177

References, List of Publications, Acknowledgements

9

J., Raftery, A. E., Ševčíková, H., Sheets, H., … Anthoff, D. (2022). Comprehensive evidence 
implies a higher social cost of CO2. Nature 2022 610:7933, 610(7933), 687–692. https://
doi.org/10.1038/s41586-022-05224-9

Riahi, K., Bertram, C., Huppmann, D., Rogelj, J., Bosetti, V., Cabardos, A. M., Deppermann, A., 
Drouet, L., Frank, S., Fricko, O., Fujimori, S., Harmsen, M., Hasegawa, T., Krey, V., Luderer, 
G., Paroussos, L., Schaeffer, R., Weitzel, M., van der Zwaan, B., … Zakeri, B. (2021). Cost 
and attainability of meeting stringent climate targets without overshoot. Nature Climate 
Change 2021 11:12, 11(12), 1063–1069. https://doi.org/10.1038/s41558-021-01215-2

Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann, G., Nakicenovic, N., & 
Rafaj, P. (2011a). RCP 8.5-A scenario of comparatively high greenhouse gas emissions. 
Climatic Change, 109(1), 33–57. https://doi.org/10.1007/s10584-011-0149-y

Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann, G., Nakicenovic, N., & Rafaj, 
P. (2011b). RCP 8.5-A scenario of comparatively high greenhouse gas emissions. Climat. 
Change, 109(1), 33. https://doi.org/10.1007/s10584-011-0149-y

Riahi, K., Schaeffer, R., Calvin, K., Guivarch, C., Hasegawa, T., Jiang, K., Kriegler, E., Matthews, R., 
Peters, G. P., Rao, A., Robertson, S., Sebbit, A. M., Steinberger, J., Tavoni, M., & Van Vuuren, 
D. P. (2022). Mitigation Pathways Compatible with Long-term Goals. In Climate Change 
2022 - Mitigation of Climate Change (pp. 295–408). Cambridge University Press. https://
doi.org/10.1017/9781009157926.005

Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill, B. C., Fujimori, S., Bauer, N., Calvin, 
K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., KC, S., Leimbach, M., Jiang, 
L., Kram, T., Rao, S., Emmerling, J., … Tavoni, M. (2017a). The Shared Socioeconomic 
Pathways and their energy, land use, and greenhouse gas emissions implications: An 
overview. Global Environmental Change, 42, 153–168. https://doi.org/10.1016/j.gloen-
vcha.2016.05.009

Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill, B. C., Fujimori, S., Bauer, N., Calvin, 
K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., KC, S., Leimbach, M., Jiang, 
L., Kram, T., Rao, S., Emmerling, J., … Tavoni, M. (2017b). The Shared Socioeconomic 
Pathways and their energy, land use, and greenhouse gas emissions implications: An 
overview. Global Environmental Change, 42, 153–168. https://doi.org/10.1016/j.gloen-
vcha.2016.05.009

Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill, B. C., Fujimori, S., Bauer, N., Calvin, 
K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., KC, S., Leimbach, M., Jiang, 
L., Kram, T., Rao, S., Emmerling, J., … Tavoni, M. (2017c). The Shared Socioeconomic 



178

Chapter 9

Pathways and their energy, land use, and greenhouse gas emissions implications: An 
overview. Global Environmental Change, 42, 153–168. https://doi.org/10.1016/j.gloen-
vcha.2016.05.009

Rimi, R. H., Haustein, K., Barbour, E. J., & Allen, M. R. (2019). Risks of Pre-Monsoon Extreme 
Rainfall Events of Bangladesh: Is Anthropogenic Climate Change Playing a Role? Bul-
letin of the American Meteorological Society, 100(1), S61–S65. https://doi.org/10.1175/
BAMS-D-18-0152.1

Robiou Du Pont, Y., Jeffery, M. L., Gütschow, J., Rogelj, J., Christoff, P., & Meinshausen, M. (2016). 
Equitable mitigation to achieve the Paris Agreement goals. Nature Climate Change 2017 
7:1, 7(1), 38–43. https://doi.org/10.1038/nclimate3186

Robiou Du Pont, Y., Jeffery, M. L., Gütschow, J., Rogelj, J., Christoff, P., & Meinshausen, M. (2017). 
Equitable mitigation to achieve the Paris Agreement goals. Nature Climate Change, 7(1), 
38–43. https://doi.org/10.1038/NCLIMATE3186

Rogelj, J., Huppmann, D., Krey, V., Riahi, K., Clarke, L., Gidden, M., Nicholls, Z., & Meinshausen, 
M. (2019). A new scenario logic for the Paris Agreement long-term temperature goal. 
Nature, 573(7774), 357–363. https://doi.org/10.1038/s41586-019-1541-4

Rogelj, J., McCollum, D. L., Reisinger, A., Meinshausen, M., & Riahi, K. (2013). Probabilistic cost 
estimates for climate change mitigation. Nature 2013 493:7430, 493(7430), 79–83. https://
doi.org/10.1038/nature11787

Rubiano Rivadeneira, N., & Carton, W. (2022). (In)justice in modelled climate futures: A review 
of integrated assessment modelling critiques through a justice lens. Energy Research & 
Social Science, 92, 102781. https://doi.org/10.1016/J.ERSS.2022.102781

Saltelli, A. (2002). Making best use of model evaluations to compute sensitivity indices. Computer 
Physics Communications, 145(2), 280–297. https://doi.org/10.1016/S0010-4655(02)00280-1

Schinko, T., Drouet, L., Vrontisi, Z., Hof, A., Hinkel, J., Mochizuki, J., Bosetti, V., Fragkiadakis, K., 
van Vuuren, D. P., & Lincke, D. (2020). Economy-wide effects of coastal flooding due to 
sea level rise: a multi-model simultaneous treatment of mitigation, adaptation, and 
residual impacts. Environmental Research Communications, 2(1), 015002. https://doi.
org/10.1088/2515-7620/AB6368

Schinko, T., Drouet, L., Vrontisi, Z., Hof, A., Hinkel, J., Mochizuki, J., Bosetti, V., Fragkiadakis, K., 
Van Vuuren, D. P., & Lincke, D. (2020). Economy-wide effects of coastal flooding due to 
sea level rise: a multi-model simultaneous treatment of mitigation, adaptation, and 
residual impacts. Environmental Research Communications, 2(1), 015002. https://doi.
org/10.1088/2515-7620/AB6368



179

References, List of Publications, Acknowledgements

9

Schipper, E. L. F. (2020). Maladaptation: When Adaptation to Climate Change Goes Very Wrong. 
One Earth, 3(4), 409–414. https://doi.org/10.1016/J.ONEEAR.2020.09.014

Schultes, A., Piontek, F., Soergel, B., Rogelj, J., Baumstark, L., Kriegler, E., Edenhofer, O., & Lu-
derer, G. (2021). Economic damages from on-going climate change imply deeper 
near-term emission cuts. Environmental Research Letters, 16(10), 104053. https://doi.
org/10.1088/1748-9326/AC27CE

Shue, H. (2017). Climate dreaming: Negative emissions, risk transfer, and irreversibility. Journal of 
Human Rights and the Environment, 8(2), 203–216. https://doi.org/10.4337/jhre.2017.02.02

Sinden, A. (2019). The Problem of Unquantified Benefits. Envtl. L., 73. https://doi.org/10.2139/
SSRN.3087370

Smith, P., Davis, S. J., Creutzig, F., Fuss, S., Minx, J., Gabrielle, B., Kato, E., Jackson, R. B., Cowie, 
A., Kriegler, E., Van Vuuren, D. P., Rogelj, J., Ciais, P., Milne, J., Canadell, J. G., McCollum, 
D., Peters, G., Andrew, R., Krey, V., … Yongsung, C. (2016). Biophysical and economic 
limits to negative CO2 emissions. In Nature Climate Change (Vol. 6, Issue 1, pp. 42–50). 
Nature Publishing Group. https://doi.org/10.1038/nclimate2870

Sobol’, I. M. (1993). Sensitivity Estimates for Nonlinear Mathematical Models. In Mathematical 
Modeling and Computational experiment. https://doi.org/1061-7590/93/04407-008

Solomon, S., Plattner, G. K., Knutti, R., & Friedlingstein, P. (2009). Irreversible climate change 
due to carbon dioxide emissions. Proceedings of the National Academy of Sciences of the 
United States of America, 106(6), 1704–1709. https://doi.org/10.1073/pnas.0812721106

Spash, C. L. (2007). The economics of climate change impacts à la Stern: Novel and nuanced or 
rhetorically restricted? Ecological Economics, 63(4), 706–713. https://doi.org/10.1016/J.
ECOLECON.2007.05.017

Stanton, E. A. (2010). Negishi welfare weights in integrated assessment models: the mathe-
matics of global inequality. Climatic Change 2010 107:3, 107(3), 417–432. https://doi.
org/10.1007/S10584-010-9967-6

Stehfest, E., Van Vuuren, D. P., Bouwman, L., & Kram, T. (2014). Integrated assessment of global 
environmental change with IMAGE 3.0: Model description and policy applications. Neth-
erlands Environmental Assessment Agency (PBL).

Stern, N. (2007). The economics of climate change: The stern review. In The Economics of 
Climate Change: The Stern Review (Vol. 9780521877251). Cambridge University Press. 
https://doi.org/10.1017/CBO9780511817434



180

Chapter 9

Stern, N., Stiglitz, J. E., & Stiglitz, J. (2021). The Social Cost of Carbon, Risk, Distribution, Market 
Failures: An alternative approach. http://www.nber.org/papers/w28472

Stern, N., Stiglitz, J. E., & Taylor, C. (2021). The Economics of Immense Risk, Urgent Action and 
Radical Change: Towards New Approaches to the Economics of Climate Change. NBER 
Working Paper No. 28472.

Szewczyk, W., Feyen, L., Matei, A., Ciscar, J. C., Mulholland, E., & Soria, A. (2020). Economic anal-
ysis of selected climate impacts. JRC PESETA IV project –Task 14. JRC Working Papers. 
https://ideas.repec.org/p/ipt/iptwpa/jrc120452.html

Tol, R. S. J. (2005). The marginal damage costs of carbon dioxide emissions: An assessment 
of the uncertainties. Energy Policy, 33(16), 2064–2074. https://doi.org/10.1016/j.en-
pol.2004.04.002

Tol, R. S. J. (2009). The economic effects of climate change. Journal of Economic Perspectives, 
23(2), 29–51. https://doi.org/10.1257/jep.23.2.29

Tol, R. S. J. (2012). International Inequity Aversion and the Social Cost of Carbon. Https://
Doi.Org/10.1142/S2010007810000029, 1(1), 21–32. https://doi.org/10.1142/
S2010007810000029

Tol, R. S. J. (2018). The economic impacts of climate change. Review of Environmental Economics 
and Policy, 12(1), 4–25. https://doi.org/10.1093/reep/rex027

Tol, R. S. J. (2019). A social cost of carbon for (almost) every country. Energy Economics, 83, 
555–566. https://doi.org/10.1016/J.ENECO.2019.07.006

Tol, R. S. J. (2023). Social cost of carbon estimates have increased over time. Nature Climate 
Change 2023 13:6, 13(6), 532–536. https://doi.org/10.1038/s41558-023-01680-x

Tol, R. S. J., Downing, T. E., Kuik, O. J., & Smith, J. B. (2004). Distributional aspects of climate 
change impacts. Global Environmental Change, 14(3), 259–272. https://doi.org/10.1016/j.
gloenvcha.2004.04.007

Traeger, C. P. (2014). Why uncertainty matters: Discounting under intertemporal risk aversion and 
ambiguity. Economic Theory, 56(3), 627–664. https://doi.org/10.1007/s00199-014-0800-8

Tsigas, M., Frisvold, G., & Kuhn, B. (1997). Global climate change and agriculture. In Hertel T. Global 
trade analysis: modeling and applications (pp. 280–304). Cambridge University Press.

Ueckerdt, F., Frieler, K., Lange, S., Wenz, L., Luderer, G., & Levermann, A. (2019). The economically 
optimal warming limit of the planet. Earth System Dynamics, 10(4), 741–763. https://
doi.org/10.5194/esd-10-741-2019



181

References, List of Publications, Acknowledgements

9

UNFCCC. (1992). United Nations Framework Convention On Climate Change.

UNFCCC. (1997). Kyoto Protocol to the United Nations Framework Convention on Climate Change.

UNFCCC. (2015). Paris Agreement to the United Nations Framework Convention on Climate Change.

van den Berg, N. J., van Soest, H. L., Hof, A. F., den Elzen, M. G. J., van Vuuren, D. P., Chen, W., 
Drouet, L., Emmerling, J., Fujimori, S., Höhne, N., Kõberle, A. C., McCollum, D., Schaeffer, 
R., Shekhar, S., Vishwanathan, S. S., Vrontisi, Z., & Blok, K. (2020). Implications of various 
effort-sharing approaches for national carbon budgets and emission pathways. Climatic 
Change, 162(4), 1805–1822. https://doi.org/10.1007/S10584-019-02368-Y/FIGURES/4

Van Den Bergh, J. C. J. M. (2004). Optimal climate policy is a utopia: From quantitative to 
qualitative cost-benefit analysis. Ecological Economics, 48(4), 385–393. https://doi.
org/10.1016/j.ecolecon.2003.10.011

van den Bergh, J. C. J. M., & Botzen, W. J. W. (2015). Monetary valuation of the social cost of 
CO<inf>2</inf> emissions: A critical survey. Ecological Economics, 114, 33–46. https://
doi.org/10.1016/j.ecolecon.2015.03.015

Van Der Wijst, K.-I., Bosello, F., Dasgupta, S., Drouet, L., Emmerling, J., Hof, A., Leimbach, M., 
Parrado, R., Piontek, F., Standardi, G., & Detlef Van Vuuren, &. (2023). New damage curves 
and multimodel analysis suggest lower optimal temperature. Nature Climate Change. 
https://doi.org/10.1038/s41558-023-01636-1

Van der Wijst, K.-I., Hof, A. F., & Van Vuuren, D. P. (2021). Costs of avoiding net negative emis-
sions under a carbon budget. Environmental Research Letters, 16(6), 064071. https://
doi.org/10.1088/1748-9326/AC03D9

Van der Wijst, K.-I., Hof, A. F., & van Vuuren, D. P. (2021). On the optimality of 2°C targets and a 
decomposition of uncertainty. Nature Communications, 1–11. https://doi.org/10.1038/
s41467-021-22826-5

Van Ginkel, K. C. H., Botzen, W. J. W., Haasnoot, M., Bachner, G., Steininger, K. W., Hinkel, J., 
Watkiss, P., Boere, E., Jeuken, A., De Murieta, E. S., & Bosello, F. (2020). Climate change 
induced socio-economic tipping points: Review and stakeholder consultation for policy 
relevant research. In Environmental Research Letters (Vol. 15, Issue 2, p. 023001). Institute 
of Physics Publishing. https://doi.org/10.1088/1748-9326/ab6395

van Maanen, N., Lissner, T., Harmsen, M., Piontek, F., Andrijevic, M., & van Vuuren, D. P. (2023). 
Representation of adaptation in quantitative climate assessments. Nature Climate Change 
2023 13:4, 13(4), 309–311. https://doi.org/10.1038/s41558-023-01644-1



182

Chapter 9

Van Oldenborgh, G.-J., Krikken, F., Lewis, S., Leach, N. J., Lehner, F., Saunders, K. R., Van Weele, 
M., Haustein, K., Li, S., Wallom, D., Sparrow, S., Arrighi, J., Singh, R. K., Van Aalst, M. K., 
Philip, S. Y., Vautard, R., & Otto, F. E. L. (2021). Attribution of the Australian bushfire risk 
to anthropogenic climate change. Natural Hazards and Earth System Sciences, 21(3), 
941–960. https://doi.org/10.5194/NHESS-21-941-2021

van Ruijven, B. J., O’Neill, B. C., & Chateau, J. (2015). Methods for including income distribution 
in global CGE models for long-term climate change research. Energy Economics, 51, 
530–543. https://doi.org/10.1016/J.ENECO.2015.08.017

Van Vuuren, D. P., Deetman, S., van Vliet, J., van den Berg, M., van Ruijven, B. J., & Koelbl, B. (2013). 
The role of negative CO2 emissions for reaching 2 °C-insights from integrated assessment 
modelling. Climatic Change, 118(1), 15–27. https://doi.org/10.1007/s10584-012-0680-5

Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., 
Kram, T., Krey, V., Lamarque, J. F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., 
& Rose, S. K. (2011). The representative concentration pathways: An overview. Climatic 
Change, 109(1), 5–31. https://doi.org/10.1007/S10584-011-0148-Z/TABLES/4

Van Vuuren, D. P., Hof, A. F., Van Sluisveld, M. A. E., & Riahi, K. (2017). Open discussion of negative 
emissions is urgently needed. In Nature Energy (Vol. 2, Issue 12, pp. 902–904). Nature 
Publishing Group. https://doi.org/10.1038/s41560-017-0055-2

Van Vuuren, D. P., Kriegler, E., O’Neill, B. C., Ebi, K. L., Riahi, K., Carter, T. R., Edmonds, J., Hallegatte, 
S., Kram, T., Mathur, R., & Winkler, H. (2014). A new scenario framework for Climate Change 
Research: Scenario matrix architecture. Climatic Change, 122(3), 373–386. https://doi.
org/10.1007/s10584-013-0906-1

Van Vuuren, D. P., Riahi, K., Moss, R., Edmonds, J., Thomson, A., Nakicenovic, N., Kram, T., Berk-
hout, F., Swart, R., Janetos, A., Rose, S. K., & Arnell, N. (2012). A proposal for a new 
scenario framework to support research and assessment in different climate research 
communities. Global Environmental Change, 22(1), 21–35. https://doi.org/10.1016/J.
GLOENVCHA.2011.08.002

Van Vuuren, D. P., Stehfest, E., & Gernaat, D. (2021). The 2021 SSP scenarios of the IMAGE 3.2 
model. https://doi.org/10.31223/X5CG92

Van Vuuren, D. P., Van der Wijst, K.-I., Marsman, S., van den Berg, M., Hof, A. F., & Jones, C. D. 
(2020). The costs of achieving climate targets and the sources of uncertainty. Nature 
Climate Change.



183

References, List of Publications, Acknowledgements

9

Van Vuuren, D. P., van Ruijven, B., Girod, B., Daioglou, V., Edelenbosch, O., & Deetman, S. (2014). 
Energy Supply and Demand, in: Stehfest, E., Van Vuuren, D., Kram, T., Bouwman, L. 
(Eds.). In Integrated Assessment of Global Environmental Change with IMAGE 3.0 - Model 
description and policy applications (pp. 71–152). PBL.

Visser, H., Dangendorf, S., Van Vuuren, D. P., Bregman, B., & Petersen, A. C. (2018). Signal detec-
tion in global mean temperatures after ‘Paris’: An uncertainty and sensitivity analysis. 
Climate of the Past, 14(2), 139–155. https://doi.org/10.5194/cp-14-139-2018

Wächter, A., & Biegler, L. T. (2006). On the implementation of an interior-point filter line-search 
algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1), 
25–57. https://doi.org/10.1007/S10107-004-0559-Y/METRICS

Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., & Schewe, J. (2014). The In-
ter-Sectoral Impact Model Intercomparison Project (ISI–MIP): Project framework. Pro-
ceedings of the National Academy of Sciences, 111(9), 3228–3232. https://doi.org/10.1073/
PNAS.1312330110

Weitzman, M. L. (2009). On Modeling and Interpreting the Economics of Catastrophic Climate 
Change. The Review of Economics and Statistics, 91(1), 1–19. https://doi.org/10.1162/
REST.91.1.1

Weyant, J. (2017). Some Contributions of Integrated Assessment Models of Global Climate          
Change. Https://Doi.Org/10.1093/Reep/Rew018, 11(1), 115–137. https://doi.org/10.1093/
REEP/REW018

Wu, P., Ridley, J., Pardaens, A., Levine, R., & Lowe, J. (2015). The reversibility of CO2 induced 
climate change. Climate Dynamics, 45(3–4), 745–754. https://doi.org/10.1007/s00382-
014-2302-6

Ybema, J. R., & Bos, A. J. M. (1998). ‘Hedging’ strategies for CO2 abatement. Studies in Environ-
mental Science, 72(C), 661–675. https://doi.org/10.1016/S0166-1116(98)80039-3

Yiou, P., Cattiaux, J., Faranda, D., Kadygrov, N., Jézéquel, A., Naveau, P., Ribes, A., Robin, Y., Thao, 
S., van Oldenborgh, G. J., & Vrac, M. (2020). Analyses of the Northern European Sum-
mer Heatwave of 2018. Bulletin of the American Meteorological Society, 101(1), S35–S40. 
https://doi.org/10.1175/BAMS-D-19-0170.1

Zickfeld, K., Macdougall, A. H., & Matthews, H. D. (2016). On the proportionality between 
global temperature change and cumulative CO 2 emissions during periods of net 
negative CO 2 emissions On the proportionality between global temperature change 
and cumulative CO2 emissions during periods of net negative CO 2. Environmental 
Research Letters, 11(5).



184

Chapter 9



185

References, List of Publications, Acknowledgements

9

9.2. List of publications

Published chapters of this thesis:

•	 Chapter 2: van der Wijst, K., Hof A., van Vuuren, D. On the optimality of 2°C targets 
and a decomposition of uncertainty. Nature Communications 12 2575 (2021). https://
www.nature.com/articles/s41467-021-22826-5 

•	 Chapter 3: van der Wijst, K., Bosello, F., Dasgupta, S. et al. New damage curves and 
multimodel analysis suggest lower optimal temperature. Nature Climate Change 13, 
434–441 (2023). https://www.nature.com/articles/s41558-023-01636-1 

•	 Chapter 4: van der Wijst, K., Hof A., van Vuuren, D. Costs of avoiding net negative 
emissions under a carbon budget. Environmental Research Letters 16 6 (2021). https://
iopscience.iop.org/article/10.1088/1748-9326/ac03d9 

Other scientific publications:

•	 Hof A.* van der Wijst, K.*, van Vuuren, D. The Impact of Socio-Economic Inertia and 
Restrictions on Net-Negative Emissions on Cost-Effective Carbon Price Pathways. Fron-
tiers in Climate 3 (2021) (* shared first authorship).  
https://doi.org/10.3389/fclim.2021.785577  

•	 Kikstra, J., Nicholls, Z., …, van der Wijst, K. et al. The IPCC Sixth Assessment Report 
WGIII climate assessment of mitigation pathways: from emissions to global tempera-
tures. Geoscientific Model Development 15-24 (2022).  
https://doi.org/10.5194/gmd-15-9075-2022 

•	 Chen, H., Hof, A., …, van der Wijst, K. et al. Using decomposition analysis to deter-
mine the main contributing factors to carbon neutrality across sectors. Energies 15 1 
(2022) https://doi.org/10.3390/en15010132 

•	 Drouet, L., Bosetti, V., …, van der Wijst, K. et al. Net zero-emission pathways reduce 
the physical and economic risks of climate change. Nature Climate Change 11 12 
(2021) https://www.nature.com/articles/s41558-021-01218-z 

•	 Gazzotti, P., Emmerling, J., Marangoni, G., Castelletti, A., van der Wijst, K., Hof, A., Tavo-
ni, M. Persistent inequality in economically optimal climate policies. Nature Communi-
cations 12 3421 (2021) https://www.nature.com/articles/s41467-021-23613-y 

•	 Harmsen, M., Kriegler, E., van Vuuren, D., van der Wijst, K. et al. Integrated assessment 
model diagnostics: key indicators and model evolution. Environmental Research Letters 
16 5 (2021) https://iopscience.iop.org/article/10.1088/1748-9326/abf964/ 

•	 van den Berg, N., Hof. A, van der Wijst, K. et al. Decomposition analysis of per capita 
emissions: a tool for assessing consumption changes and technology changes within 
scenarios. Environmental Research Communications 3 (2021) https://iopscience.iop.
org/article/10.1088/2515-7620/abdd99/

https://www.nature.com/articles/s41467-021-22826-5
https://www.nature.com/articles/s41467-021-22826-5
https://www.nature.com/articles/s41558-023-01636-1
https://iopscience.iop.org/article/10.1088/1748-9326/ac03d9
https://iopscience.iop.org/article/10.1088/1748-9326/ac03d9
https://doi.org/10.3389/fclim.2021.785577
https://doi.org/10.5194/gmd-15-9075-2022
https://doi.org/10.3390/en15010132
https://www.nature.com/articles/s41558-021-01218-z
https://www.nature.com/articles/s41467-021-23613-y
https://iopscience.iop.org/article/10.1088/1748-9326/abf964/
https://iopscience.iop.org/article/10.1088/2515-7620/abdd99/
https://iopscience.iop.org/article/10.1088/2515-7620/abdd99/


186

Chapter 9



187

References, List of Publications, Acknowledgements

9

9.3. Acknowledgements

When I first started my master thesis on the topic of optimal climate policy for my Mathematics 
degree, I still had very little knowledge of climate change. Detlef and Andries were my thesis 
supervisors and would later become my promotors of this PhD thesis. It is really thanks to 
them that I work in this field, that I have learned so much, and that I have developed myself 
to the person I am today.

Detlef, I don’t know how to express how much you have done for me throughout the last 
five years. You are my mentor and my example, you taught me what I needed to learn in the 
field of climate change, but also way beyond that. Thank you for bringing me along in many 
other projects, and in the whole IPCC world. Thank you for pushing me and motivating me 
when needed. It is always fun working together.

Andries, the same holds for you. Thank you for all your help during my PhD, thank you for 
all the time and patience you have always shown when I did not understand something or 
when things were difficult. Especially thank you also for being a wonderful example for me, 
in both my professional and personal life.

I would also like to thank my PBL-buddies Nicole and Lotte, and all my other amazing col-
leagues, both at PBL and at the Copernicus Institute. We always had a lot of fun working 
together in Den Haag and in Utrecht, to have drinks at Mingle Mush, play table tennis in the 
basement or go running together in Amelisweerd. And of course, a special thanks to Flavia 
and Hsing-Hsuan, my paranymphs, for helping me organise the defence of this thesis.

Finally, Nienke, thank you for always being there for me. Thank you for letting me finalise my 
PhD even though you wanted to spend every day with me looking for cute clothes for our 
baby. Now that the chapter of my PhD is closed, I feel extremely lucky to have directly started 
a new chapter in life with you and our wonderful baby Milo.

Figure 9.1. Working together on new projects.



188

Chapter 9






	Cover single page front.pdf
	Empty page.pdf
	Thesis - book.pdf
	Units and abbreviations
	Introduction
	1.1. Context
	1.2. Scenarios and Integrated Assessment Models
	1.3. Previous studies of the costs and benefits of climate policy 
	1.4. Limitations of current research
	1.5. Research questions and structure of this thesis
	1.6. MIMOSA
	On the optimality of 2°C targets and a decomposition of uncertainty
	2.1. Introduction
	2.2. Results
	2.2.1. Optimal carbon price paths with a fixed carbon budget
	2.2.2. Cost-benefit paths (without a carbon budget)

	2.3. Discussion
	2.4. Methods
	2.4.1. The model
	2.4.2. Model parameters
	2.4.3. Analysing the variance using Sobol decomposition

	Supplementary Information
	New damage curves and multi-model analysis suggest lower optimal temperature
	3.1. Introduction
	3.2. Multi-model comparison of economic damages 
	3.2.1. Impact of damage curve uncertainty

	3.3. Cost-benefit analysis
	3.3.1. Model uncertainty
	3.3.2. The role of discounting
	3.3.3. Comparing costs to avoided damages using the Benefit-Cost Ratio

	3.4. Discussion
	3.5. Methods
	3.5.1. Damage functions
	3.5.2. Direct vs. indirect costs
	3.5.3. Integrated Assessment Models
	3.5.4. The Computable General Equilibrium model
	3.5.5. Harmonisation

	Supplementary Information
	Costs of avoiding net negative emissions under a carbon budget
	4.1. Introduction
	4.2. Economic impact of avoiding net negative emissions  
	4.3. Partially irreversible climate damages
	4.4. Discussion
	4.5. Conclusions and implications
	4.6. Methods
	4.6.1. Calibration
	4.6.2. Cost comparison

	Supplementary Information
	Comparing mitigation, adaptation and residual damage costs under different socio-economic and climate scenarios
	5.1. Introduction
	5.2. Results
	5.2.1. Mitigation costs
	5.2.2. Damage costs
	5.2.3. Adaptation costs
	5.2.4. Total costs

	5.3. Discussion
	5.4. Methods
	5.4.1. The MIMOSA model
	5.4.2. RCP targets
	5.4.3. Damages and adaptation
	5.4.4. SSPs
	5.4.5. Cost matrices

	Code availability
	Data availability
	Extended figures
	Supplementary Information
	Equity principles, mitigation and climate impacts: balancing welfare and costs
	6.1. Introduction
	6.2. Results
	6.2.1. Results for 2035 for a fixed carbon budget
	6.2.2. Results over time
	6.2.3. Equity and the optimal global target

	6.3. Discussion and conclusion
	6.4. Methods
	6.4.1. MIMOSA
	6.4.2. Welfare-maximisation vs cost-minimisation
	6.4.3. Emission trade
	6.4.4. Effort sharing

	Supplementary Information
	Conclusions
	7.1. Introduction
	7.2. Research aim and questions
	7.3. Main findings
	7.4. Main conclusions
	7.5. Research recommendations
	7.6. Policy recommendations
	Samenvatting
	8.1. Introductie
	8.2. Doel van dit onderzoek
	8.3. Hoofdresultaten
	8.4. Beleidsaanbevelingen
	References, List of Publications, Acknowledgements
	9.1. References
	9.2. List of publications
	9.3. Acknowledgements
	_Int_LOwCJci1
	_Int_kZxahGzj
	_Int_WYBmbUZx
	_Int_PTrHgyRZ
	_Hlk141709851
	_Hlk141687589
	_Hlk144370275
	_Hlk144370371
	_Hlk144370423
	_Hlk144370509

	Empty page.pdf
	Cover single page back.pdf

