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A B S T R A C T   

The transmission rate per hour between hosts is a key parameter for simulating transmission dynamics of 
antibiotic-resistant bacteria, and might differ for antibiotic resistance genes, animal species, and antibiotic usage. 
We conducted a Bayesian meta-analysis of resistant Escherichia coli (E. coli) transmission in broilers and piglets to 
obtain insight in factors determining the transmission rate, infectious period, and reproduction ratio. We 
included blaCTX-M-1, blaCTX-M-2, blaOXA-162, catA1, mcr-1, and fluoroquinolone resistant E. coli. The Maximum 
a Posteriori (MAP) transmission rate in broilers without antibiotic treatment ranged from 0.4•10− 3 to 2.5•10− 3 

depending on type of broiler (SPF vs conventional) and inoculation strains. For piglets, the MAP in groups 
without antibiotic treatment were between 0.7•10− 3 and 0.8•10− 3, increasing to 0.9•10− 3 in the group with 
antibiotic treatment. In groups without antibiotic treatment, the transmission rate of resistant E. coli in broilers 
was almost twice the transmission rate in piglets. Amoxicillin increased the transmission rate of E. coli carrying 
blaCTX-M-2 by three-fold. The MAP infectious period of resistant E. coli in piglets with and without antibiotics is 
between 971 and 1065 hours (40 – 43 days). The MAP infectious period of resistant E. coli in broiler without 
antibiotics is between 475 and 2306 hours (20 – 96 days). The MAP infectious period of resistant E. coli in broiler 
with antibiotics is between 2702 and 3462 hours (113 – 144 days) which means a lifelong colonization. The MAP 
basic reproduction ratio in piglets of infection with resistant E. coli when using antibiotics is 27.70, which is 
higher than MAP in piglets without antibiotics between 15.65 and 18.19. The MAP basic reproduction ratio in 
broilers ranges between 3.46 and 92.38. We consider three possible explanations for our finding that in the 
absence of antibiotics the transmission rate is higher among broilers than among piglets: i) due to the gut 
microbiome of animals, ii) fitness costs of bacteria, and iii) differences in experimental set-up between the 
studies. Regarding infectious period and reproduction ratio, the effect of the resistance gene, antibiotic treat-
ment, and animal species are inconclusive due to limited data.   

1. Introduction 

Transmission dynamics of antibiotic-resistant bacteria between 
livestock hosts are widely unknown despite the damaging impact of 
therapeutic failure due to antibiotic resistance in all animal species 
including humans (Alekshun and Levy, 2007). Cases of resistant bacteria 
against important last resort antibiotics such as carbapenem-resistant 
E. coli (CPE) have been occurring worldwide in livestock since 2010 

(Köck et al., 2018). However up to now, CPE has not spread as exten-
sively among livestock as extended spectrum beta-lactamase E. coli 
(ESBL) (Dahms et al., 2015). 

Simulation modelling is a helpful tool to assess antibiotic resistant 
bacteria transmission dynamics and to evaluate intervention programs. 
While transmission simulations have traditionally been instrumental in 
comprehending the spread of infectious diseases within populations 
(Keeling and Rohani, 2008), their utility extends to the domain of 
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antibiotic-resistant bacteria dynamics. Numerous studies have utilized 
simulation method to detangle the intricacies of resistant bacteria 
dissemination and persistence within livestock populations, thereby 
providing essential insights for bolstering surveillance efforts (Lanzas 
et al., 2011; Sorenson et al., 2017; Schulz et al., 2018). With modeling, 
we can simulate transmission dynamics that would otherwise be difficult 
to study in real-world situations due to economical and ethical con-
straints. Still, these simulations require a wide range of parameters, 
including the transmission rate. The accurate determination of the 
transmission rate (β) hold great importantance, as it significantly de-
termines the model’s outcomes and subsequent predictions (Kirkeby 
et al., 2017). Furthermore, transmission rate (β) is essential for the 
calculation of another vital parameter -the basic reproduction ratio (R0). 
The basic reproduction ratio (R0) is a vital parameter in epidemiology 
due to its role in predicting the number of new infections originating 
from an infectious animal during its period of infectivity. Following the 
introduction of antibiotic-resistant bacteria, R0 is instrumental in 
gauging whether the bacteria will succeed in invading the susceptible 
population (Keeling and Rohani, 2008). A successful invasion becomes 
feasible when R0 exceeds the threshold of 1. R0 is calculated from the 
infectious period and the transmission rate, where the infectious period 
is the length of time that individual animal had been infectious until it 
returned to uncolonized state. 

Transmission rates and infectious periods are most precisely esti-
mated from transmission experiments in which animals are inoculated 
and the infection is allowed to spread to susceptible contact animals. To 
calculate the transmission rate, the infection status of individual animals 
is tracked over time. However, transmission experiments are restricted 
in size, treatment groups, housing and management conditions and 
limited sampling times due to costs (labor intensive), and ethical reasons 
(Hu et al., 2017). These restrictions often result in censored data for the 
infectious period because the moment that animal return to uncolonized 
state is beyond the end of experiment (Turkson et al., 2021). Conse-
quently, there are no transmission experiments for resistant E. coli that 
have observed the full infectious period or that test multiple relevant 
factors such as antibiotic treatment, resistance gene, and animal species. 
To quantify the impact of antibiotic treatment, resistance gene, and 
animal species on the transmission rate of resistant E. coli, we conducted 
Bayesian meta-analysis of available transmission experiments. 

Through the combination of multiple studies and incorporation of 
prior knowledge into the analysis, Bayesian meta-analysis can enhance 
the precision of the estimations of transmission rates and infectious 
period obtained from longitudinal experimental studies. The Bayesian 
hierarchical method, although well-established in various fields, is 
relatively uncommon in the veterinary domain (Gelman and Hill, 2006). 
However, its adoption here proves invaluable. The probabilistic pre-
diction produced by this method is informative of both the data and the 
model, providing a more accurate representation of the uncertainty 
surrounding the estimations (McElreath, 2020). Meta-analysis increases 
sampling power by joining small scale studies with partial pooling, 
while penalizing against overfitting by using regularizing priors 
(McElreath, 2020). Bayesian inference is flexible and intuitive due to its 
adjustable prior and likelihood components (McElreath, 2020). Also, 
Bayesian inference produces a prediction in the form of a posterior 
distribution which is more informative of the model and data than a 
confidence interval (Gelman et al., 2021; Hiura et al., 2021; Vilares and 
Kording, 2011). The posterior distribution reflects the variability of the 
data, likelihood model and prior information while the confidence in-
terval assumes that the entire range of the confidence interval of a 
uniform distribution has equal opportunity to be the true value. 

Here, Bayesian meta-analysis was employed to infer transmission 
rates and infectious periods of E. coli with different resistance genes in 
both piglets and broilers from transmission experiments. Environmental 
transmission was assumed, because bacteria such as E. coli are trans-
ferred between animal hosts through the faecal-oral route and can sur-
vive in the farm environment as long as 30 days (Lister and Barrow, 

2008; van Bunnik et al., 2014; van Elsas et al., 2011). We aimed to 
identify factors determining the transmission rate and whether these 
resistant bacteria will successfully invade livestock populations after 
their introduction. 

2. Materials and methods 

A systematic review was conducted following the PRISMA protocol 
(PRISMA, 2020). Transmission events and infectious periods were 
extracted from longitudinal experimental transmission studies. The raw 
individual animal data were extracted from all studies in order to 
conduct the Meta-analysis of individual participant data (Riley et al., 
2019). Transmission events were fitted to an SIS model with environ-
mental transmission (Gerhards et al., 2022) using a Bayesian hierar-
chical inference model to obtain transmission rates. Infectious periods 
were fitted with non-parametric survival analysis using a Bayesian hi-
erarchical inference. 

2.1. Systematic literature review and data extraction 

This Bayesian meta-analysis was conducted following the PRISMA-P: 
Preferred Reporting Items for Systematic review and Meta-Analysis 
Protocols 2020 checklist. The extensive protocol is included in Supple-
mentary I. 

First author (ND) performed the literature search in 2022. Pubmed 
and Google Scholar were the online database in which the search are 
performed. The search strategy encompassed a combination of three 
distinct categories of search terms: those related to meat-producing 
livestock, antimicrobial-resistant bacteria, and longitudinal data. The 
initial search results were carefully screened to remove duplicate re-
cords. Subsequently, a set of specific selection criteria were applied to 
identify relevant studies, which included: 1) inclusion of longitudinal 
data 2) presence of distinct contact and challenge animals, with the 
challenge animals being inoculated with non-pathogenic resistant bac-
teria 3) restriction to studies involving non-pathogenic resistant bacteria 
and meat-producing animal as the host species. Throughout this process, 
we implemented a hierarchical screening approach. We began by thor-
oughly reviewing the titles of the identified records to identify relevant 
studies. Next, we proceeded to screen the abstracts of the remaining 
records, further narrowing down the selection. Finally, the smallest 
subset of records underwent a comprehensive review, with the entire 
manuscripts being scanned with the selection criteria. Furthermore, the 
selected records undergo a Risk of Bias assessment to evaluate and 
minimize potential biases arising from selection and analysis during the 
study’s design, conduct, reporting, and analysis phases (Higgins et al., 
2011). 

3. Outcome 

The excreting status (positive or negative for resistance markers) of 
individual animals was extracted at each sampling time point. For each 
individual animal, we extracted the pen information, the inoculation 
strain, any antibiotic treatments (yes/no), and the inoculation status 
(inoculated animal versus contact animal). Contact animals were clas-
sified as susceptible animals and could become cases, subsequently 
becoming infectious animals, whereas the inoculated animals could only 
become infectious but were not counted as cases. 

The number of hours that an animal (contact and inoculated) 
excreted E. coli carrying resistance was extracted as an input for the 
infectious period (D). Resistance is defined as either resistance gene or 
phenotypic resistance. We assumed that all individuals would stop 
excreting the E. coli carrying resistance at the end of their infectious 
period (return to uncolonized state). Hence, to extract the infectious 
period, we counted hours from the first sampling time point that an 
animal is excreting (positive for resistance marker) until the first sam-
pling time point that an animal stop excreting (negative for resistance 
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marker). Only animals that exhibit at least two consecutive negative 
samples were considered to have undergone loss of colonization and 
potentially became colonized again. Animals that showed a single 
negative sample following a positive result, and return to an uncolon-
ized state, were adjusted by reclassifying that negative sample as posi-
tive. Additionally, We run the analysis in the dataset that did not have 
reclassification of single negative sample. The result of the analysis is 
included in Supplementary material V. Animals that return to 
uncolonized state and became infectious again could have more than 
one infectious period. 

If the time that an animal’s return to an uncolonized state is 
censored, indicating that the animal continues to excrete E. coli carrying 
resistance genes until the end of the experiment, we calculate the in-
fectious period by measuring the time from the initial sampling time 
point, when the animal starts excreting (positive for the resistance 
marker) until the last observed sampling time point. In this context, we 
assume that the period of time during which an animal returns to an 
uncolonized state extends beyond the actual end of the experiment. This 
assumption about the time for an animal to return to an uncolonized 
state follows the gamma distribution, accounting for variations in return 
dynamics among the subjects. 

4. Data synthesis 

Before we apply the Bayesian hierarchical model, we adopted the 
Meta-analysis of Individual Participant Data technique to extract indi-
vidual animal outcomes, such as excretion status across time points. 
These data were subsequently organized into pen clusters, facilitating 
analysis. Subsequently, the Bayesian hierarchical model was applied, 
incorporating the complete individual dataset, and treating pen clusters 
as random effects. 

4.1. Transmission model 

We used an susceptible-infectious-susceptible (SIS) transmission 
model with environmental transmission (Gerhards et al., 2022). Within 
the same pen, susceptible animals (St) may become colonized (It) 
through infectious material deposited in the environment and can sub-
sequently return to uncolonized state and become susceptible again. 
Infectious material deposited in the environment determines the 
instantaneous environmental hazard (Et). The excreted bacteria and 
thus the hazard will decay with a constant rate (δ) per hour and the 
hazard due to viable bacteria results in colonization with rate (β) per 
hour of susceptible animals (Dankittipong et al., 2023). Because we do 
not know the exact number of bacteria excreted by a broiler chicken or 
pig, we scaled this excretion into one unit of excreted bacteria by one 
animal per hour (Gerhards et al., 2022) using scaling factor ω = δ2

δ+e− δ − 1. 
The R0 in this model is for an average infectious period (D): R0 =

βω
δ D =

β δ
δ+e− δ − 1 D. (Gerhards et al., 2022). 

4.2. Bayesian hierarchical inference for transmission rate per hour 

We applied Bayesian inference for the parameters of the transmission 
model for each pen i. The transmission rate (hour− 1) parameter of each 
pen (βi) was calculated in two steps. The number of new cases during a 
time interval is taken to be binomially distributed with logit link func-
tion comprised of the number of trials equalling the number of suscep-
tible animals in pen(Si) and the probability of transmission (pi). The 
probability of transmission during an interval is calculated given a pen- 
specific transmission rate per hour (βi). In the log likelihood function, 
the log transmission rate per hour is modeled with the mean log popu-
lation transmission rate per hour (log(β)) and the variation of trans-
mission rate between pens (zi). The exponent of the log transmission rate 
per hour is then multiplied by the instantaneous hazard of colonization 
(Et). This hazard is obtained by scaling the excretion to the total amount 

of bacteria excreted by an animal per unit of time, (Gerhards et al., 
2022). The decay rate per hour of E. coli carrying resistance genes in 
environment could not be estimated from our data. Therefore, we 
reviewed literature for estimated decay rates of E. coli in environment 
and applied these to the model (Supplementary table S1). We used 
weighted Akaike information criterion (WAIC) and the number of di-
vergences to select the decay rate thus based on the model’s 
goodness-of-fit to the observed data while considering its complexity. 
WAIC is particularly useful for comparing models with different pa-
rameters, while divergences can help diagnose issues with the Markov 
chain Monte Carlo (MCMC) algorithm’s convergence and posterior 
estimates. 

A weakly informative prior for the log mean transmission rate per 
hour (log(β)) follows a normal distribution with mean of − 10 and 
standard deviation of 10. The prior for variation of transmission rates 
per hour between pens (zi) follows a normal distribution with mean of 
0 and standard deviation of 1 (Supplementary table S2). We used a fixed 
decay rate per hour (δ) of 0.13 hour− 1. 

The posterior distribution of the transmission rate per hour in each 
pen (βi) was extracted and, for comparisons, grouped and averaged by 
the resistance gene in the inoculation, host species and antibiotic 
treatment. The posterior distributions are either presented in figures or 
by the Maximum A Posteriori (MAP) and 97% Highest Probability 
Density Interval (97% HDPI). 

To compare two transmission rates per hour for different factors such 
as animal species, we determined the entire posterior distribution of 
ratios between the transmission rates per hour of two factors by dividing 
the rates per hour in each sample of the posterior distribution. A ratio of 
one means the transmission rates per hour are equal for the two factors. 
Furthermore, we determined whether the transmission for one factor 
was lower than the other by calculating the probability that the ratio is 
lesser than one (P<1) by summing iterations that resulted in ratio lessor 
than one and dividing the sum with the total number of iterations. 

4.3. Bayesian parametric survival analysis for infectious period 

Bayesian parametric survival analysis was used to quantify the in-
fectious period (D) in each pen (i). The infectious period (D) refers to the 
duration (in hours) during which an animal is colonized before returning 
to an uncolonized state and becoming susceptible to the disease. We 
assumed that the observed infectious periods of all animals in each pen 
(Dobsi ) follows a gamma distribution with the pen-specific shape (ai) and 
a rate parameter which is same at each animal (b), where the shape 
parameter is normally distributed with the mean population shape (a) 
and variation of the shape for each pen (σi).For censored values of the 
infectious period, we characterized the distribution of the infectious 
period to be a cumulative gamma distribution of shape (ai) and rate (bi). 

Prior information of the infectious period was obtained from studies 
of E. coli O157 in one-day-old specific-pathogen free (SPF) layer 
chickens and extended-spectrum cephalosporin-resistant E. coli in 
commercial piglets and fattening pigs (Moor et al., 2021;Ragione et al., 
2005). In broiler, a regularizing weakly informative prior for the mean 
population shape (a) follows a normal distribution with mean of 0 and 
standard deviation of 1. The variation of the shape of gamma from each 
pen (σi)follows an exponential distribution with the rate of 1. The rate 
parameter (bi) follows a standard normal distribution with mean of 
0 and standard deviation of 1. In piglets, a regularizing weakly infor-
mative prior for the mean population shape (a) follows a normal dis-
tribution with mean of 0 and standard deviation of 2 and the same prior 
for other parameters. The entire posterior distributions of shape in each 
pen (ai) and rate (bi) were extracted. The estimated mean infectious 
period of each pen (Di) was calculated by dividing shape parameter in 
each pen (ai) with rate (bi).
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4.4. Bayesian hierarchical inference for reproduction ratio 

The posterior distribution for the basic reproduction ratio of each 
pen (R0i ) is derived from each sample of the posterior distribution of the 
transmission rate per hour in each pen (βi) combined by each sample 
from the posterior distribution of the infectious period of each pen (Di). 

R0i = (βi ⊗ Di)
δ

δ + e− δ − 1 

To illustrate, we take 20,000 samples from the posterior distribution 
of transmission rate per hour in each pen. We then perform a multipli-
cation process where each sample from this distribution is paired with 
the corresponding sample from the posterior distribution of the mean 
infectious period of each pen (Di). This element-by-element multiplica-
tion ensures that the posterior distribution of R0i encompass all potential 
combinations of transmission rates per hour and infectious periods 
(hours), thereby accurately accounting for their relationship. Conse-
quently, we obtain the posterior distribution of the basic reproduction 
ratio of each pen (R0i ) resulting in a total of 4× 108 derived from 
20,0002 samples. In the total, we obtained 6.4×1010 estimated for the 
basic reproduction ratio across 40 pens. 

Similary to transmission rate per hour, reproductive ratio (R0i ) and 
mean infectious period of each pen (Di) were grouped based on the 
resistance gene in the inoculation, the host species and the antibiotic 
treatment. We extracted and presented the average transmission rate per 
hour from multiple pens with the same variables and presented as 

Maximum A Posteriori (MAP) and 97% Highest Probability Density In-
terval (97% HDPI). 

All analysis were done in R version 4.1.2 (R development Core Team, 
2022) and Bayesian inference was done in RStan 2.21.5 (Stan Devel-
opment Team, n.d.) with 14 tree depth, 0.99 acceptance rate and 4 
chains, each chain with 10,000 iterations. 5000 iterations from each 
chain were excluded as warm-up samples resulting in a total of 20,000 
iterations from 4 chains. The codes will be provided as supplementary 
information 4. 

5. Results 

5.1. Literature search result 

The initial search across the Pubmed and Google Scholar databases 
was conducted in June 2022 and yielded a total of 2055 papers. 
Following a review, 3 duplicate papers were identified and subsequently 
excluded from the dataset. Among the remaining entries, 21 publica-
tions were found to be pertinent to the topic of resistant bacteria in 
livestock. After a screening process, 5 publications met the criteria for 
inclusion in the final analysis. 

5.2. Risk of bias 

Cochrane’s risk of bias assessment was applied to all included studies 
(Higgins et al., 2011). Overall, the studies share a similar experimental 

Fig. 1. PRISMA protocol for systematic literature review to collect longitudinal data of resistance genes transmission between meat-producing animals.  
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design, phenotypic resistance analysis, and individual resistance 
reporting. Consequently, the risk of biases in all studies is low, although 
there are minor concerns related to the absence of blinding the experi-
menters to the treatment and the lack of a pre-specified experiment plan 
in the records. We consider these concerns negligible since the out-
comes, including resistance and susceptible status of individual animals 
at each sampling time point, are objectively determined by the EU 
protocol (ECDC, 2023).Fig. 1 

5.3. Transmission experiment data 

We extracted three longitudinal experimental studies in broilers, 
with in total 170 one-day old conventional broilers and 36 five-day old 
SPF broilers. Cloacal samples were enriched overnight and then inocu-
lated onto selective MacConkey plates supplemented with antibiotics of 
interest. In broilers, the concentration of antibiotics and antibiotics of 
choice were consistent across all studies, comprising 1 mg/L of cefot-
amine, 0.5 mg/L of ertapenem, or 64 mg/L chloramphenicol. Dame- 
Korevaar et al. (2018) investigated the transmission rate of E. coli car-
rying blaCTX-M-1 resistance gene with 0.5•101 and 0.5•102 cfu/animal 
inoculation doses in one-day old conventional broilers (Table 1). Cec-
carelli et al. (2017) inoculated five-day old SPF broilers with E. coli 
carrying blaCTX-M-1 genes with doses of 0.5•106 and 0.5•108 cfu/animal. 
Dankittipong et al. (2023) evaluated the transmission of E. coli carrying 
blaOXA-162, E. coli carrying blaCTX-M-2, and E. coli carrying catA1, all of 
which were inoculated at 0.5•103 cfu/animal in five-day old conven-
tional broilers. In this study, half of the animals received amoxicillin 
treatment (20 mg/kg of broiler) for five days starting three days before 
inoculation (Dankittipong et al., 2023). Thus, half of the animal were 

inoculated during antibiotic treatment In all three studies, the inocu-
lated and susceptible chicks acquired E. coli carrying resistance genes, 
except for one pen of conventional broilers that were inoculated with 
0.5•101 cfu/animal of E. coli carrying blaCTX-M-1 in Dame-Korevaar et al. 
(2018). In this pen none of the inoculated animals started shedding and 
thus the transmission rates cannot be estimated. From five studies, we 
extracted a total of 204 infectious periods from 191 broilers, 13 of which 
returned to uncolonized state and were recolonizied. 

For piglets, we extracted three longitudinal experimental studies 
with in total 101 SPF piglets of seven to eight weeks old. Rectals samples 
from piglets were enriched overnight and cultured on Chromagar plates 
with relevant antibiotic supplements. Antibiotic concentrations varied 
slightly between studies. For the mcr-1 resistance study by Mourand 
et al. (2018), (2019), plates were supplemented with 250 mg/L rifam-
picin, while the fluoroquinolone resistant study by Andraud et al. (2011) 
employed 0.5 mg/L ciprofloxacin. Two experiments were conducted by 
Mourand et al. (2018), (2019) to test transmission rate of E. coli carrying 
mcr-1 resistance genes with 2.5•105 and 2.5•108 cfu/animal inoculation 
doses. In the study of Mourand et al. (2019), colistin was administered at 
a dosage of 12,500 IU/kg (which is 4 mg/kg) live weight for three days. 
This administration occurred through two separate protocols within two 
distinct groups of piglets. In the first group, colistin treatment was 
initiated seven days before the planned inoculation. In contrast, the 
second group received colistin administration just one hour before the 
planned inoculation on day 7. Subsequently on day 7, piglets of eight 
weeks old from both groups were inoculated with 2.5•108 cfu/animal 
inoculation doses. The two pens, previously treated with colistin seven 
days before inoculation, were excluded from the analysis because these 
results could not be compared between piglets and broilers (i.e., 

Table 1 
Transmission rate per hour from different host species, status, mode of transmission, resistance, and antibiotic treatment. MAP denotes Maximum a priori and 97% 
HPDI denotes 97% higest posterior density distribution. Resistance included the.  

Species Status Resistance Antibiotic Number of 
animals 

Inoculated dose (cfu/ 
animal) 

MAP (h− 1) 97% HPDI Reference  

Broilers Specific pathogen free 
animals 

blaCTX-M-1 No  20 0.5•106 2.5 • 10− 3 1.2 • 10− 3,

9.4 • 10− 3 Ceccarelli et al., 
(2017)   

blaCTX-M-1 No  16 0.5 • 108 1.6 • 10− 3 0.9 • 10− 3,

3.3 • 10− 3 Ceccarelli et al., 
(2017)  

Conventional blaCTX-M-1 No  10 0.5 • 101 0.4 • 10− 3 0.1 • 10− 3,

2.4 • 10− 3 Dame-Korevaar 
et al., (2020)   

blaCTX-M-1 No  30 0.5 • 102 2.2 • 10− 3 1.4 • 10− 3,

4.6 • 10− 3 Dame-Korevaar 
et al., (2020)   

blaCTX-M-2 No  20 0.5 • 103 0.7 • 10− 3 0.4 • 10− 3,

1.1 • 10− 3 Dankittipong 
et al., (2023)   

blaOXA-162 No  20 0.5 • 103 0.4 • 10− 3 0.3 • 10− 3,

0.8 • 10− 3 Dankittipong 
et al., (2023)   

catA1 No  20 0.5 • 103 1.0 • 10− 3 0.6 • 10− 3,

1.6 • 10− 3 Dankittipong 
et al., (2023)   

blaCTX-M-2 Amoxicillin  20 0.5 • 103 2.6 • 10− 3 1.4 • 10− 3,

4.3 • 10− 3 Dankittipong 
et al., (2023)   

blaOXA-162 Amoxicillin  20 0.5 • 103 0.6 • 10− 3 0.3 • 10− 3,

1.3 • 10− 3 Dankittipong 
et al., (2023)   

catA1 Amoxicillin  20 0.5 • 103 0.8 • 10− 3 0.3 • 10− 3,

3.3 • 10− 3 Dankittipong 
et al., (2023) 

Piglets Specific pathogen free 
animals 

mcr-1 No  10 2.5 − 9 • 108 0.8 • 10− 3 0.5 • 10− 3,

1.4 • 10− 3 Mourand et al., 
(2019)   

Fluoroquinolone No  51 1.0 • 1010 0.7 • 10− 3 0.5 • 10− 3,

1.1 • 10− 3 Andraud et al., 
(2011)   

mcr-1 Colistin  20 2.5 − 9 • 108 0.9 • 10− 3 0.4 • 10− 3,

2.5 • 10− 3 Mourand et al., 
(2019)  
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inoculation during antibiotic treatment). In the study of Mourand et al. 
(2018), E. coli carrying mcr-1 resistance genes with 2.5•105 and 2.5•108 

cfu/animal inoculation doses were inoculated to seven-week old piglets. 
Two pens inoculated with 2.5•105 cfu/animal did not result in any 
shedding in the inoculated animals and thus were excluded from the 
analysis. Point-mutated fluoroquinolone resistant E. coli transmission 
between seven weeks old piglets was studied by Andraud et al. (2011) 
with an inoculation dose of 1010 cfu/animal. All piglets in seven pens 
became colonized with E. coli carrying fluoroquinolone resistance. A 
total count of 81 piglets were obtained from three separate studies. Out 
of these, 18 piglets experienced a return to uncolonized state and 
recolonization. As a result, a cumulative total of 99 instances of infec-
tious periods were considered for the estimation of the infectious period. 
Overall, 27 pens of broilers and 13 pens of piglets were included in the 
inference of transmission rate per hour. 

5.4. Transmission rate of resistant bacteria within same host species 

Overall transmission rates per hour of E. coli carrying resistance in 
piglets ranged from 0.4•10− 3 h− 1 to 2.5•10− 3 h− 1, according to the 
lowest to highest value of 97% highest posterior density interval (97% 
HPDI). Among piglets, the highest Maximum a Posteriori (MAP) trans-
mission rate (0.9•10− 3 h− 1) is from E. coli carrying mcr-1 in piglets 
treated with colistin. In the piglet group without antibiotic treatment, 
the MAP transmission rate of E. coli carrying fluoroquinolone resistance 
and mcr-1 are 0.7•10− 3 h− 1 and 0.8•10− 3 h− 1 respectively. 

In broilers, the transmission rates of E. coli carrying resistance genes 
ranged from 0.1•10− 3 h− 1 to 9.4•10− 3 h− 1(97% HPDI). The highest 
MAP transmission rate among E. coli carrying resistance genes in broilers 
without antibiotic treatment was observed for E. coli carrying blaCTX-M-1 
(2.5•10− 3 h− 1). In the broiler group with antibiotic treatment, E. coli 
carrying blaCTX-M-2 had the highest MAP transmission rate (2.6•10− 3 

h− 1). 
Furthermore, the studies with E. coli carrying blaCTX-M-1 involved 

multiple inoculation doses ranging from 0.5•101 cfu/animal to 0.5•108 

cfu/animal. The low inoculation dose of 0.5•101 cfu/animal resulted in 
a lower transmission rate per hour compared to the transmission rate per 
hour of other inoculation dosages. This lower dosage even prevented 
transmission in one pen. Despite the use of this lower inoculation dosage 
of E. coli carrying blaCTX-M-1, the transmission rate per hour surpasses the 
rates observed for the other resistance genes at higher dosages under no 
antibiotic treatment (Table 1) 

5.5. Comparing the transmission rate between groups with and without 
antibiotic treatment 

Amoxicillin accelerated the transmission of E. coli carrying blaCTX-M-2 
resistance genes but had no effect on the transmission rate per hour of 

the other resistance genes. Fig. 2 shows the 3.34 fold higher transmission 
rate per hour for E. coli carrying blaCTX-M-2 in the group treated with 
amoxicillin than the untreated group. Amoxicillin and colistin seemed to 
slightly increase the transmission rate per hour of E. coli carrying blaOXA- 

162 and E. coli carrying mcr-1. However, the ratio range of 0.42–3.55 
(97% HPDI) cannot decisively establish the influence of antibiotics on 
the transmission of E. coli carrying blaOXA-162 and E. coli carrying mcr-1. 
This range encompasses values from 0.42 (suggesting no significant ef-
fect from colistin and amoxicillin) up to 3.55 (indicating a potential 
tripling of the transmission rate per hour under colistin and amoxicillin 
treatment). For E. coli carrying catA1 genes, our observations indicate a 
generally reduced transmission rate per hour when subjected to amox-
icillin treatment. However, this finding was even less conclusive due to 
the fact that nearly half (0.46) of the posterior distribution indicates 
lower transmission rates per hour(Fig. 2). 

5.6. Comparing the transmission rate in broilers versus piglets 

Without antibiotics, the transmission rate per hour between broilers 
was higher (probability of 0.99) than between piglets, and this was on 
average two-fold higher. In contrast, under antibiotic treatment the 
same transmission rate per hour was found for piglets and broilers 
(Fig. 3). 

5.7. Infectious period and reproduction ratio 

The 97% HPDI of infectious periods of E. coli carrying resistance 
genes in broiler without antibiotic treatment are between 227 and 
46,007 hours (9 – 1917 days) (Table 2). In the group with antibiotic 
treatment, the HPDI of infectious periods for E. coli carrying resistance 
genes in broiler are between 868 and 56,678 hours (36 – 2362 days) 
(Table 2). E. coli carrying blaOXA-162 showed the highest MAP infectious 
period in broiler with antibiotic treatment, at 3462 hours (144 days), 
compared to the lowest MAP infectious period of 475 hours (20 days) 
without antibiotic treatment. Antibiotic treatment increased the infec-
tious period of E. coli carrying blaOXA-162 by 6-fold (Table 3). Antibiotic 
treatment seemed to increase the infectious period of E. coli carrying 
blaCTX-M-2 although with 0.25 probability of no effect. The 97% HPDI of 
the infectious periods is extremely wide for most treatment groups in 
broilers due to the limited number of animals that stopped excreting the 
bacteria during the experiment. 

According to Table 2, the 97% HPDI infectious period of E. coli 
carrying resistance genes in piglets without antibiotic treatment is be-
tween 617 and 4299 hours (26 – 145 days). In the group with antibiotic 
treatment, the HPDI infectious periods of E. coli carrying resistance 
genes in piglets was similar, ranging from 622 to 4694 hours (26 – 196 
days) (Table 2). E. coli carrying fluoroquinolone resistance had the 
shortest MAP infectious period. The infectious period of E. coli carrying 
mcr-1 was not affected by antibiotic treatment. 

Fig. 2. Posterior distributions of the ratio of transmission between antibiotic 
treatments (no antibiotic treatment vs. with antibiotic treatment) for different 
resistance genes in broilers and piglets. 

Fig. 3. Posterior distributions of transmission rate ratio of broilers and piglets 
when treated and not treated with antibiotics. 
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The basic reproduction ratio (R0) in broilers varies greatly between 
resistance and antibiotic treatments (Table 2). The 97% HPDI repro-
duction ratio in broiler is between 1.7 and 2560 depending on the 
resistance and treatment. In broilers, the MAP R0 (i.e. the reproduction 
without antibiotic treatment) is highest with 92.38 for E. coli carrying 
blaCTX-M-1. E. coli carrying blaOXA-162 with 3.46, has the lowest MAP R0 
among the groups without antibiotic treatment. However, both values 
are well above the threshold value 1. Conversely, E. coli carrying blaOXA- 

162 with antibiotic treatment has the highest MAP reproduction ratio 
among the group with antibiotic treatment. Antibiotic use increased the 
reproduction ratio of E. coli carrying blaCTX-M-2 and E. coli carrying 
blaOXA-162 by three-fold, but had inconclusive effect on the reproduction 
ratio of E. coli carrying catA1 (Table 3). 

The 97% HPDI R0 of piglet is between 8.40 and 384. The 97% HPDI 
R0 of all inoculations are overlapping. E. coli carrying fluoroquinolone 
resistance has with 15.65 the lowest MAP R0. The effect of resistance 
genes and antibiotic treatment for piglets toward the R0 is inconclusive, 
because of the large overlap in posterior distributions. The overall 
reproduction ratio in broilers without antibiotic treatment is two-fold of 
that of piglets without antibiotic treatment. 

6. Discussion 

In our study we found a rapid transmission of E. coli carrying blaCTX- 

M-1 and blaCTX-M-2 compared to strains with other resistance genes. 
Notably, we found that amoxicillin increases the transmission of blaCTX- 

M-2 by three-fold. Furthermore, we predict that E. coli carrying resistance 
genes in broilers may have a wide range of infectious periods, poten-
tially lasting a lifetime. Additionally, we observed that transmission of 
E. coli carrying resistance genes is faster between broilers than piglets in 

the absence of antibiotic treatment. 
Our study indicates that in the absence of antibiotics the trans-

mission rate of E. coli carrying resistance genes is higher among broilers 
than among piglets. We consider three possible explanations for this 
finding: the gut microbiome of animals, fitness costs of bacteria, and 
differences in experimental set-up between the studies. 

First, the piglets were older than the broilers. The stability of the gut 
microbiome of piglets and broilers increases with the age of the animals 
(Guevarra et al., 2019; Ranjitkar et al., 2016). A stable gut microbiome 
has a preventive effect against resistant bacteria invasion (Lozupone 
et al., 2012; Sorbara and Pamer, 2019). Exogenous and potentially 
resistant bacteria will readily colonize an unstable gut microbiome (Kim 
et al., 2017; Rochegüe et al., 2021). Diverse bacteria species in a stable 
gut microbiome establish complex interactions to achieve homeostasis 
within the gut which results in a preventive effect against invasion of 
exogeneous bacteria (Awad et al., 2016; Lozupone et al., 2012; Roche-
güe et al., 2021). In our meta-analysis, broilers were one to five day olds 
at the start of the experiment while piglets were at least seven weeks old. 
Young broilers of less than one week old typically have a volatile gut 
microbiome and are most vulnerable to E. coli colonization (Ranjitkar 
et al., 2016; Zhu and Joerger, 2003)(Chen et al., 2017; Guevarra et al., 
2019; Zhou et al., 2021). 

Secondly, specific resistance genes or the mobile elements with 
which these are associated could impose different fitness cost to E. coli 
thereby determining the transmission rate (Melnyk et al., 2015). Some 
genes are even associated with an improved fitness of bacteria without 
antibiotic treatement (Andersson, 2006; Borrell et al., 2013; Luo et al., 
2005; Melnyk et al., 2015; Dionisio et al., 2005). Betalactamase pro-
ducing genes (in our study blaCTX-M-1 and blaCTX-M-2) are known to 
rapidly colonize host populations and diversify worldwide due to their 
highly mobilized genetic characters which suggests low fitness cost of 
these genes for the E. coli bacteria (Cantón et al., 2012; Palmeira et al., 
2020; Conway and Cohen., 2015). Transmission rates per hour of E. coli 
carrying blaCTX-M-1 and blaCTX-M-2 genes in broilers were highest in our 
meta-analysis (Table 1). This indicates low fitness cost of blaCTX-M-1 and 
blaCTX-M-2 genes incurred to E. coli. While direct transmission experiment 
data involving E. coli carrying blaCTX-M-1 among piglets is lacking, it is 
important to consider the consistently high prevalence of blaCTX-M-1 
E. coli in Dutch pigs (MARAN, 2020). This prevalence of E. coli carrying 
blaCTX-M-1 among pigs suggests the potential for rapid transmission of 
E. coli carrying blaCTX-M-1 exists between piglets as well. This observa-
tion, highlighted in national surveillance (2020), raises the possibility 
that piglet-to-piglet transmission of E. coli carrying blaCTX-M-1 could 
occur at an accelerated rate. Although we did not have transmission 
experiment data of E. coli carrying blaCTX-M-1 between piglets, we expect 
that E. coli carrying blaCTX-M-1 would have a fast transmission rate in 
piglets as well. This would be in line with consistently high detection of 
blaCTX-M-1 E. coli in Dutch pigs (MARAN, 2020). 

Thirdly, variation of experimental settings, specifically housing, af-
fects transmissibility of bacteria from the environment to the animal. In 
this meta-analysis, piglets were all housed in pens in a stable. Piglets 
inoculated with E. coli carrying fluoroquinolone resistance were housed 
on a slatted floor. Slatted floors may reduce transmission rate as part of 
excreted feces contaminated with resistant bacteria is sieved through 
these floors (Andraud et al., 2011). Though the type of floor was not 

Table 2 
Posterior distribution of infectious periods (hours) and reproduction ratio in 
different host species, resistance, and antibiotic treatment.  

Species Resistance Antibiotics Infectious period (in 
hours); MAP [97% 
HPDI] 

Reproduction 
ratio; 
MAP [97% 
HPDI] 

Broiler blaCTX-M-1  2306 [1329,46007] 92.38 
[47,2049]  

blaCTX-M-2  1096 [586,24905] 11.33 [5.4, 
298]  

blaOXA-162  475 [277,1254] 3.46 [1.7, 
11.92]  

catA1  1157 [462,33248] 16.89 [7.64, 
883]  

blaCTX-M-2 Amoxicillin 2901 [950,55906] 74.80 
[35,2560]  

blaOXA-162 Amoxicillin 3462 [868,50724] 16.71 [7.2, 
717]  

catA1 Amoxicillin 2702 [893,56678] 23.03 [10.4, 
1270] 

Piglet Fluoroquinolone resistance 971 [617,3468] 15.65 [8.40, 
115.31]  

mcr-1  1065 [687,4299] 18.19 [8.87, 
206.98]  

mcr-1 Colistin 1043 [622,4694] 27.70 [9.06, 
383.53]  

Table 3 
Posterior distribution of the ratio of infectious period between antibiotic treatments (no antibiotic treatment vs. with antibiotic treatment) for different resistance in 
broilers and piglets.  

Species Resistance Antibiotics Ratio of Infectious period; MAP 
[97% HPDI] 

Ratio of Infectious period; 
P<1 

Ratio of reproduction ratio; MAP [97% 
HPDI] 

Ratio of Infectious period; 
P<1 

Broiler blaCTX-M-2 Amoxicillin 2.18 [0.16, 27.49]  0.26 3.08 [0.74, 82.75]  0.04  
blaOXA-162 Amoxicillin 7.28 [1.60, 102.9]  0 3.72 [1.7, 123.2]  0.01  
catA1 Amoxicillin 1.05 [0.14, 30.45]  0.23 0.39 [0.11, 23.12]  0.37 

Piglet mcr-1 Colistin 0.91 [0.33, 2.93]  0.51 0.52 [0.20, 11.16]  0.34  
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mentioned in Mourand et al. (2018) and, (2019), it is possible that their 
piglets were housed in a similar setting given both teams complied to 
same French regulation on animal welfare in experimentation (Mourand 
et al., 2019, 2018). This removal of feces through housing was not 
present in the experimental setting for broilers in isolators or pens 
without slatted floors (Ceccarelli et al., 2017; Dame-Korevaar et al., 
2020) and could contribute to faster transmission rate between broilers 
than between piglets. Moreover, considering the distinction between 
SPF and conventional broiler chickens could further elucidate the 
observed transmission dynamics. The uncertainty highlighted by the 
wide-ranging probability distribution, resulting from evaluating the 
posterior distribution of transmission rate ratio of SPF broiler chickens 
and of conventional broiler chickens (ranging from 0.5 to 2.7), sug-
gesting inconclusiveness in the effect of SPF and conventional bird to the 
transmission rates (Supplementary material VI). 

Based on the estimates for the infectious period, we conclude that 
E. coli carrying resistance genes can colonize broiler chickens for a 
lifelong period. However, the observations of the infectious period with 
an observed return to uncolonized state in our dataset were limited (7%) 
due to censoring of 187 out of 204 excreting periods. In spite of the 
limited data, our parameteric survival model utilized both the observed 
data and prior information from literature to estimate the probable in-
fectious period (Ragione et al., 2005; Fong and Lehmann, 2022; Kalb-
fleisch, 1978). While the estimated infectious period of 56,678 hours (6 
years) for E. coli carrying resistance genes is biologically implausible for 
broiler chickens, this estimate could be interpreted as lifelong coloni-
zation that broiler chickens typically experience, which lasts for only 
40–56 days until they are slaughtered. This conclusion is consistent with 
Ragione et al. (2005), which showed an extended colonization period of 
35–156 days for nalidixic-resistant pathogenic E. coli in layer chickens. 
Moreover, studies by Conway, Cohen (2015) and Stromberg et al. (2018) 
have demonstrated the superior adaptability of commensal E. coli to 
colonize animal guts compared to pathogenic E. coli, which supports our 
estimated longer infectious period. Despite the wide range of uncer-
tainty in our analysis, inclusion of weakly informative priors in our 
model still has benefits. By incorporating prior knowledge from litera-
ture, the model was able to make more informed estimates even in the 
presence of limited data and high censoring rates. The prior provides a 
regularization effect that helps to stabilize the estimates and prevent 
overfitting, which can lead to erroneous conclusions. Overall, the use of 
weakly informative priors can improve the accuracy and reliability of 
model estimates, even in situations where data are limited and uncer-
tainty is high. 

Our study estimated the infectious period of piglets to be between 25 
and 195 days, which we believe is reflective of real-life situations. The 
HPDI credible interval surrounding this estimate was narrower 
compared to that of broilers due to the greater number of observed re-
turn to uncolonized state. Although only 19% of the observed infectious 
periods had an observed return to uncolonized state (18 out of 93), the 
fact that there were any observed return to uncolonized states at all 
suggests that return to uncolonized state may occur after the end of the 
transmission experiment, and this knowledge provided more weight to 
our estimate of the infectious period. Furthermore, our estimate of the 
infectious period in piglets was consistent with previous colonization 
studies of E. coli in pigs, which reported colonization periods ranging 
from 1 to 5 months (Belloc et al., 2005; Johnson et al., 2015; Randall 
et al., 2018). However, animals in Belloc et al. (2005), Johnson et al. 
(2015), and Randall et al. (2018) were excreting beyond the end of the 
experiment; meaning that the reported colonization period was the same 
length as the experiment itself. In contrast, our estimate narrowed down 
the infectious period in piglets to a more specific timeframe of up to 7 
months. This duration which institutes an entire growth cycle in certain 
pig population, such as finisher pigs. Overall, our results suggest that our 
approach was able to produce a realistic estimate of the infectious period 
of piglets that can be useful for future research and control strategies. 

The estimation of the R0 is important in understanding the dynamics 

of infectious diseases. In our study, we estimated the R0 for different 
resistance genes, antibiotic treatments, and animal species. To calculate 
R0, we combined the estimates of the infectious period and transmission 
rate from our hierarchical models. We assumed that these parameters 
are completely independent, which might cause our estimates to be 
overdispersed. While the wide intervals for R0 migth represent over-
dispersion, we still believe our estimates provide valuable insights into 
the dynamics of E. coli carrying resistance genes in broilers and piglets. 

Our Bayesian meta-analysis effectively identified factors related to 
the transmission rate of E. coli carrying resistance gene with greater 
precision, despite the limited number of studies and small sample sizes. 
To mitigate uncertainties stemming from small datasets, we harnessed 
raw longitudinal data from each study (Individual Participant Data) and 
implemented a Bayesian probabilistic framework that is capable of 
incorporating both prior knowledge and data. Instead of relying on 
summarized statistics across various studies, we employed a subgroup 
(pen-level) within the hierarchical model to curtail between-study het-
erogeneity. This tactic enabled us to focus on a common analytical unit 
resulting in more informed and accurate estimates of the factors driving 
the transmission (Riley et al., 2010). 

It is important to note that with a limited number of studies, tradi-
tional frequentist assume large sample sizes (asymptotic), and can result 
in underestimation of between-study variance and overconfident con-
fidence intervals (Mcneish, 2016). In contrast, Markov chain Monte 
Carlo (MCMC) in Bayesian approach explores the entire posterior dis-
tribution of the parameter and does not rely on asymptotic standard 
errors (Williams et al., 2018). As a result, Bayesian methods can provide 
more accurate estimates of between-study variance and are often rec-
ommended when dealing with meta-analyses of limited studies (Ver-
oniki et al., 2014). Using this approach, we identified key factors 
contributing to the transmission dynamic of E. coli carrying resistance 
genes, including antibiotic treatment, resistance strain, and host species. 
The importance of each factor in determining the transmission dynamics 
of E. coli carrying resistance genes can vary depending on the specific 
resistance strain, animal species, and antibiotic treatment. For example, 
E. coli carrying resistance genes transfer faster in broiler chickens than in 
piglets, but only under no antibiotic treatment. Overall, our study 
highlights the complexity of the transmission dynamics of antibiotic 
resistant E. coli and emphasizes the need for comprehensive approach to 
mitigate the spread of antibiotic resistance. This multifaceted strategy 
could encompass interventions such as leveraging the animal’s micro-
biome through probiotics to reduce transmission, implementing anti-
biotic stewardship to curtail antibiotic use, and exploring other variables 
that warrant further assessment. These combined efforts would work 
effectively toward controlling the propagation of antibiotic resistance. 

The parameters identified in our study, such as the transmission rates 
and infectious periods of resistant E. coli, could be incorporated into 
more extensive simulation models. These models could aid in evaluating 
potential interventions to mitigate the spread of antibiotic resistance in 
livestock populations. Our study highlights the importance of rigorous 
analytical methods for small and limited data sets, which are necessary 
for accurately estimating these parameters and informing simulations. 

The variation of transmission rate between resistance gene inocula-
tion, antibiotic treatment, and animal species, highlighting the need for 
inclusion for additional transmission data. The uncertainty around in-
fectious period estimates is also driven by unobserved return to 
uncolonized state due to short experimentation time. However, the 
Bayesian framework is flexible and can incorporate a wide range of data 
types and structure including data from field experiments and obser-
vational studies, enabling estimation of differences between experi-
mental and field settings. To illustrate, our Bayesian-meta analysis 
model can incorporate field data through the use of priors. By incor-
porating field data into the priors, we can adjust our estimates to better 
reflect the actual values in the field. Additionally, our hierarchical 
modeling approach can account for differences between experimental 
and field settings by including additional levels in the model, such as 
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location or time, to capture the variability in the data. This allows for a 
more comprehensive and accurate representation of the transmission 
dynamics in real-world scenarios. 

7. Conclusion 

We believe our results are useful for simulation modelling of trans-
mission dynamics of resistant bacteria in piglets (7–8 weeks old) and 
broilers (less than one week old), especially because in the Bayesian 
framework we have obtained a posterior distribution that can be used to 
include the uncertainty of the parameter estimates in such simulation 
models. 
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Köck, R., Daniels-Haardt, I., Becker, K., Mellmann, A., Friedrich, A.W., Mevius, D., 
Schwarz, S., Jurke, A., 2018. Carbapenem-resistant Enterobacteriaceae in wildlife, 
food-producing, and companion animals: a systematic review. Clin. Microbiol. 
Infect. https://doi.org/10.1016/j.cmi.2018.04.004. 

Lister, S.A., Barrow, P., 2008. In: M., Pattison, P.F., McMullin, J.M., Bradbury, D. 
J., Alexander (Eds.), Poultry Diseases. Elsevier Ltd, pp. 110–145. 

Lozupone, C.A., Stombaugh, J.I., Gordon, J.I., Jansson, J.K., Knight, R., 2012. Diversity, 
stability and resilience of the human gut microbiota. Nature. https://doi.org/ 
10.1038/nature11550. 

Luo, N., Pereira, S., Sahin, O., Lin, J., Huanq, S., Michel, L., Zhanq, Q., 2005. Enhanced in 
vivo fitness of fluoroquinolone-resistant Campylobacter jejuni in the absence of 
antibiotic selection pressure. Proc. Natl. Acad. Sci. USA 102, 541–546. https://doi. 
org/10.1073/pnas.0408966102. 

MARAN, 2020. Monitoring of Antimicrobial Resistance and Antibiotic Usage in Animals 
in the Netherlands in 2019. 

McElreath, R., 2020. Statistical Rethinking, 2nd ed. CRC Press, Florida. 
Mcneish, D., 2016. On using bayesian methods to address small sample problems. 

tructural Equ. Model.: A Multidiscip. J. 1–24. https://doi.org/10.1080/ 
10705511.2016.1186549. 

Melnyk, A.H., Wong, A., Kassen, R., 2015. The fitness costs of antibiotic resistance 
mutations. Evol. Appl. 8, 273–283. https://doi.org/10.1111/eva.12196. 

N. Dankittipong et al.                                                                                                                                                                                                                          

https://doi.org/10.1016/j.prevetmed.2024.106156
https://doi.org/10.1016/j.cell.2007.03.004
https://doi.org/10.1016/j.mib.2006.07.002
https://doi.org/10.1016/j.mib.2006.07.002
https://doi.org/10.1186/1297-9716-42-44
https://doi.org/10.1186/1297-9716-42-44
https://doi.org/10.3389/fcimb.2016.00154
https://doi.org/10.1111/j.1365-2672.2005.02667.x
https://doi.org/10.1111/j.1365-2672.2005.02667.x
https://doi.org/10.1093/emph/eot003
https://doi.org/10.3389/fmicb.2012.00110
http://refhub.elsevier.com/S0167-5877(24)00042-4/sbref8
http://refhub.elsevier.com/S0167-5877(24)00042-4/sbref8
http://refhub.elsevier.com/S0167-5877(24)00042-4/sbref8
https://doi.org/10.3389/fmicb.2017.01688
https://doi.org/10.1128/microbiolspec.MBP-0006-2014
https://doi.org/10.1128/microbiolspec.MBP-0006-2014
https://doi.org/10.1371/journal.pone.0143326
https://doi.org/10.1371/journal.pone.0143326
https://doi.org/10.1016/j.psj.2020.04.025
https://doi.org/10.1016/j.psj.2020.04.025
https://doi.org/10.1101/2023.02.21.529369
https://doi.org/10.1101/2023.02.21.529369
https://doi.org/10.1098/rsbl.2004.0275
https://doi.org/10.1016/j.vetmic.2005.01.005
https://doi.org/10.1101/2022.06.17.496600
https://doi.org/10.1101/2022.06.17.496600
https://doi.org/10.1186/s40104-018-0308-3
https://doi.org/10.1136/bmj.d5928
https://doi.org/10.3389/fmicb.2021.674364
http://refhub.elsevier.com/S0167-5877(24)00042-4/sbref20
http://refhub.elsevier.com/S0167-5877(24)00042-4/sbref20
http://refhub.elsevier.com/S0167-5877(24)00042-4/sbref20
https://doi.org/10.1128/AEM.04193-14
http://refhub.elsevier.com/S0167-5877(24)00042-4/sbref22
http://refhub.elsevier.com/S0167-5877(24)00042-4/sbref22
http://refhub.elsevier.com/S0167-5877(24)00042-4/sbref23
http://refhub.elsevier.com/S0167-5877(24)00042-4/sbref23
https://doi.org/10.1111/imr.12563
https://doi.org/10.1111/imr.12563
https://doi.org/10.1038/s41598-017-09209-x
https://doi.org/10.1016/j.cmi.2018.04.004
http://refhub.elsevier.com/S0167-5877(24)00042-4/sbref27
http://refhub.elsevier.com/S0167-5877(24)00042-4/sbref27
https://doi.org/10.1038/nature11550
https://doi.org/10.1038/nature11550
https://doi.org/10.1073/pnas.0408966102
https://doi.org/10.1073/pnas.0408966102
https://doi.org/10.1080/10705511.2016.1186549
https://doi.org/10.1080/10705511.2016.1186549
https://doi.org/10.1111/eva.12196


Preventive Veterinary Medicine 225 (2024) 106156

10

Moor, J., Aebi, S., Rickli, S., Mostacci, N., Overesch, G., Oppliger, A., Hilty, M., 2021. 
Dynamics of extended-spectrum cephalosporin-resistant Escherichia coli in pig farms: 
a longitudinal study. Int. J. Antimicrob. Agents 58. https://doi.org/10.1016/j. 
ijantimicag.2021.106382. 

Mourand, G., Andraud, M., Jouy, E., Chauvin, C., le Devendec, L., Paboeuf, F., Kempf, I., 
2019. Impact of colistin administered before or after inoculation on the transmission 
of a mcr-1 colistin-resistant Escherichia coli strain between pigs. Vet. Microbiol 230, 
164–170. https://doi.org/10.1016/j.vetmic.2019.02.002. 

Mourand, G., Jouya, E., Chauvina, C., Devendeca, L. le, Paboeufa, F., Kempfa, I., 2018. 
Dissemination of the mcr-1 colistin resistance gene among pigs: an experimental 
study. Vet. Microbiol 221, 122–128. https://doi.org/10.1016/j.vetmic.2018.06.006. 

Palmeira, J.D., Haenni, M., Metayer, V., Madec, J.Y., Ferreira, H.M.N., 2020. Epidemic 
spread of IncI1/pST113 plasmid carrying the Extended-Spectrum Beta-Lactamase 
(ESBL) blaCTX-M-8 gene in Escherichia coli of Brazilian cattle. Vet. Microbiol 243. 
https://doi.org/10.1016/j.vetmic.2020.108629. 

R development Core Team, 2022. R. 
Ragione, R.M., Best, A., Sprigings, K., Liebana, E., Woodward, G.R., Sayers, A.R., 

Woodward, M.J., 2005. Variable and strain dependent colonisation of chickens by 
Escherichia coli O157. Vet. Microbiol. 107, 103–113. https://doi.org/10.1016/j. 
vetmic.2005.01.005. 

Randall, L.P. Horton, R.A., Lemma, F., Martelli, F., Duggett, N.A.D., Smith, R.P., 
Kirchner, M.J., Ellis, R.J., Rogers, J.P., Williamson, S.M., Simons, R.R.L., Brena, C. 
M., Evans, S.J., Anjum, M.F., Teale, C.J. (2018) Longitudinal study on the occurrence 
in pigs of colistin-resistant Escherichia coli carrying mcr-1 following the cessation of 
use of colistin. Journal of Applied Microbiology 125, 596-608. doi:10.1111/ 
jam.13907. 

Ranjitkar, S., Lawley, B., Tannock, G., Engberg, R.M., 2016. Bacterial succession in the 
broiler gastrointestinal tract. Appl. Environ. Microbiol 82, 2399–2410. https://doi. 
org/10.1128/AEM.02549-15. 

Rochegüe, T., Haenni, M., Mondot, S., Astruc, C., Cazeau, G., Ferry, T., Madec, J.Y., 
Lupo, A., 2021. Impact of antibiotic therapies on resistance genes dynamic and 
composition of the animal gut microbiota. Animals. https://doi.org/10.3390/ 
ani11113280. 

Sorbara, M.T., Pamer, E.G., 2019. Interbacterial mechanisms of colonization resistance 
and the strategies pathogens use to overcome them. Mucosal Immunol. https://doi. 
org/10.1038/s41385-018-0053-0. 

Stan Development Team, n.d. Rstan. 
Stromberg, Z., Van Goor, A., Redweik, G.A.J., Wymore Brand, M.J., Wannemuehler, M. 

J., Mellata, M., 2018. Pathogenic and non-pathogenic Escherichia coli colonization 
and host inflammatory response in a defined microbiota mouse model. Dis. Model. 
Models Mech. 11 https://doi.org/10.1242/dmm.035063Disease. 

Turkson, A.J., Ayiah-Mensah, F., Nimoh, V., 2021. Handling censoring and censored data 
in survival analysis: A standalone systematic literature review. Int. J. Math. Math. 
Sci. https://doi.org/10.1155/2021/9307475. Hindawi.  

van Bunnik, B.A.D., Sematimba, A., Hagenaars, T.J., Nodelijk, G., Haverkate, M.R., 
Marc, M.J., Hayden, M.K., Weinstein, R.A., Bootsma, M.C.J., de Jong, M.C.M., 2014. 
Small distances can keep bacteria at bay for days. Proc. Natl. Acad. Sci. USA 111, 
3556–3560. https://doi.org/10.1073/pnas.1310043111. 

van Elsas, J.D., Semenov, A. v, Costa, R., Trevors, J.T., 2011. 2011. Erratum: survival of 
escherichia coli in the environment: fundamental and public health aspects. ISME J. 
5, 173–183. https://doi.org/10.1038/ismej.2010.80. 〈https://doi.org/10.1038/i 
smej.2010.187〉 (ISME Journal).  

Veroniki, A.A., Jackson, D., Viechtbauer, W., Bender, R., Bowden, J., Knapp, G., Kuss, O., 
Higgins, J.P., Langa, D., Salantij, G., 2014. Methods to estimate the between-study 
variance and its uncertainty in meta-analysis. Res. Synth. Methods 7, 55–79. https:// 
doi.org/10.1002/jrsm.1164. 

Vilares, I., Kording, K., 2011. Bayesian models: the structure of the world, uncertainty, 
behavior, and the brain. Ann. N. Y Acad. Sci. https://doi.org/10.1111/j.1749- 
6632.2011.05965.x. 

Williams, D.R., Rast, P., Bürkner, P., 2018. Bayesian meta-analysis with weakly 
informative prior distributions. PsyArXiv. https://doi.org/10.31234/osf.io/7tbrm. 

Zhou, Q., Lan, F., Li, X., Yan, W., Sun, C., Li, J., Yang, N., Wen, C., 2021. The spatial and 
temporal characterization of gut microbiota in broilers. Front Vet. Sci. 8 https://doi. 
org/10.3389/fvets.2021.712226. 

Zhu, X.Y., Joerger, R.D., 2003. Composition of microbiota in content and mucus from 
cecae of broiler chickens as measured by fluorescent in situ hybridization with 
group-specific, 16S rRNA-targeted oligonucleotide probes. Poult. Sci. 1. 

N. Dankittipong et al.                                                                                                                                                                                                                          

https://doi.org/10.1016/j.ijantimicag.2021.106382
https://doi.org/10.1016/j.ijantimicag.2021.106382
https://doi.org/10.1016/j.vetmic.2019.02.002
https://doi.org/10.1016/j.vetmic.2018.06.006
https://doi.org/10.1016/j.vetmic.2020.108629
https://doi.org/10.1016/j.vetmic.2005.01.005
https://doi.org/10.1016/j.vetmic.2005.01.005
https://doi.org/10.1111/jam.13907
https://doi.org/10.1111/jam.13907
https://doi.org/10.1128/AEM.02549-15
https://doi.org/10.1128/AEM.02549-15
https://doi.org/10.3390/ani11113280
https://doi.org/10.3390/ani11113280
https://doi.org/10.1038/s41385-018-0053-0
https://doi.org/10.1038/s41385-018-0053-0
https://doi.org/10.1242/dmm.035063Disease
https://doi.org/10.1155/2021/9307475
https://doi.org/10.1073/pnas.1310043111
https://doi.org/10.1038/ismej.2010.80
https://doi.org/10.1038/ismej.2010.187
https://doi.org/10.1038/ismej.2010.187
https://doi.org/10.1002/jrsm.1164
https://doi.org/10.1002/jrsm.1164
https://doi.org/10.1111/j.1749-6632.2011.05965.x
https://doi.org/10.1111/j.1749-6632.2011.05965.x
https://doi.org/10.31234/osf.io/7tbrm
https://doi.org/10.3389/fvets.2021.712226
https://doi.org/10.3389/fvets.2021.712226
http://refhub.elsevier.com/S0167-5877(24)00042-4/sbref48
http://refhub.elsevier.com/S0167-5877(24)00042-4/sbref48
http://refhub.elsevier.com/S0167-5877(24)00042-4/sbref48

	Transmission rates of veterinary and clinically important antibiotic resistant Escherichia coli: A meta- ANALYSIS
	1 Introduction
	2 Materials and methods
	2.1 Systematic literature review and data extraction

	3 Outcome
	4 Data synthesis
	4.1 Transmission model
	4.2 Bayesian hierarchical inference for transmission rate per hour
	4.3 Bayesian parametric survival analysis for infectious period
	4.4 Bayesian hierarchical inference for reproduction ratio

	5 Results
	5.1 Literature search result
	5.2 Risk of bias
	5.3 Transmission experiment data
	5.4 Transmission rate of resistant bacteria within same host species
	5.5 Comparing the transmission rate between groups with and without antibiotic treatment
	5.6 Comparing the transmission rate in broilers versus piglets
	5.7 Infectious period and reproduction ratio

	6 Discussion
	7 Conclusion
	Funding
	CRediT authorship contribution statement
	Declaration of Competing Interest
	ACKNOWLEDGEMENTS
	Appendix A Supporting information
	References


