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Human behavior may be one of the most challenging phenomena to model and validate. 
This paper proposes a method for automatically extracting and compiling evidence on human 
behavior determinants into a knowledge graph. The method (1) extracts associations of behavior 
determinants and choice options in relation to study groups and moderators from published 
studies using Natural Language Processing and Deep Learning, (2) synthesizes the extracted 
evidence into a knowledge graph, and (3) sub-selects the model components and relationships 
that are relevant and robust. The method can be used to either (4a) construct a structurally 
valid simulation model before proceeding with calibration or (4b) to validate the structure of 
existing simulation models. To demonstrate the feasibility of the method, we discuss an example 
implementation with mode of transport as behavior choice. We find that including non-frequently 
studied significant behavior determinants drastically improves the model’s explanatory power in 
comparison to only including frequently studied variables. The paper serves as a proof-of-concept 
which can be reused, extended or adapted for various purposes.

1. Introduction

Many societal problems are closely intertwined with human behavior, such as public health, climate change and crime [20,58,52,

46]. To comprehend these complex problems and evaluate potential solutions, we need to model human behavior and how it changes 
in different intervention scenarios. For instance, one may inquire how an enhanced quality of biking infrastructure influences the 
decision of city residents to opt for bicycling as a means of commuting to work. Agent-based modeling (ABM) is an example of an 
explicit process-based simulation method that could be used to analyze such behavioral scenarios [9]. In ABM, agents (e.g., urban 
residents) interact with each other and their environment. These interactions alter the attributes of agents and the environment, 
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which both can be represented using geographic information [16]. A behavioral model in that context involves an agent gathering 
information about its environment (modeling human perception or communication) and making decisions based on their individual 
attributes and the environment. One of the most challenging aspects of such a simulation model is the validation of the behavioral 
component [6,8].

In simulation modeling, model validation means “substantiating that the behavior of the model represents the behavior of the 
system with sufficient accuracy” [8]. Many modelers concentrate their validation efforts solely on calibrating and cross-validating 
model parameters. However, this approach is not sufficient to ensure valid estimations as it might not accurately reflect the actual 
causal structure, potentially missing important confounding variables or interaction effects or including irrelevant variables that 
contaminate the model. Particularly when aiming to project behavioral changes following a hypothetical intervention or scenario 
[55], the validity of the model structure including the variable selection is crucial for producing trustworthy results that decision-

makers can build upon. Yet, there remains a lack of rigorous and efficient methodologies for performing structural model validation

[8]. In this paper, we propose leveraging existing knowledge of the causal structure of behavior to validate the model structure 
before calibration.

Utilizing decades of research in the behavioral sciences to generate a behavioral model is a challenging task. The evidence 
is often scattered, fragmented, occasionally conflicting, and lacks standardized variable names [35,39]. In this context, manually 
extracting evidence on behavior determinants related to specific types of behavior for specific social groups is extremely labor-

intensive. Furthermore, simulation models typically contain multiple modeled behaviors and model components, for which it could 
be challenging to manually collect and synthesize all knowledge. For this reason, we aim to automate a significant portion of this 
knowledge extraction process. One major challenge lies in how to represent this knowledge.

Recently, interest in using ontologies to formalize behavioral theories and synthesize empirical evidence has grown [41]. An 
ontology is a “formal specification of a shared conceptualization” [10], a form of structured knowledge representation using logic. In 
this sense, “computational ontologies are a means to formally model the structure of a system, i.e., the relevant entities and relations 
that emerge from its observation, and which are useful to our purposes” [25]. Populating an ontology with behavioral evidence 
enables us to apply reasoning to make inferences based on the knowledge, to validate the logical consistency of the evidence and 
to make use of the evidence to validate the structure of a behavioral model. Previous work has focused on understanding the value 
of ontologies for the behavioral sciences [27,35,39,50], developing domain-specific ontologies [1,40,29,51,15], and enhancing the 
methodology for behavioral ontology development [32,41–43,60]. Given the abundance of behavioral literature, automating the 
construction of ontologies of behavioral evidence could help validate the structure of behavioral models more efficiently. There 
are a few approaches that can automate parts of the processes of ontology construction from text with sufficient quality, such as 
term extraction or concept hierarchy discovery [3]. However, no method exists yet to automatically extract variables and statistical 
relations between those variables from scientific literature that together constitute a piece of evidence [3].

In this paper, we propose and test a method for automatically constructing and validating behavioral models for explicit sim-

ulations and prediction models based on natural language processing (NLP) and transformers-based deep learning. The method 
1) automatically extracts evidence of behavior determinants in relation to choice options, population subgroups and moderators 
from published studies, 2) synthesizers the extracted evidence in a knowledge graph, 3) sub-selects the model components and re-

lationships that are statistical robust and relevant for the specific model application. We suggest that the method can be used to 
either 4a) construct a valid model by translating the selected declarative knowledge into procedural code or 4b) validate an ex-

isting model by verifying the correspondence of the model to behavioral evidence. To test this validation strategy, we apply our 
method to the case of modeling urban transport behavior, in particular the choice of the mode of transport. Modal choice directly 
impacts both health and sustainability. Moreover, it is an ideal type of behavior for applying agent-based simulation as it often 
involves context-dependent, discrete decisions that require modeling the interaction between a changing environment and changing 
individual circumstances.

The subsequent section discusses structural model validation as a prerequisite for reliable prediction and simulation of behavior. 
Section 3 details the methodological steps, followed by the presentation of model performance results, the resulting knowledge graph 
when applying the method to the literature on modal choice behavior, and a set of example knowledge queries and responses in 
Section 4. In Section 5, we test the value of the knowledge graph for structural model validation, by showing how it reduces variable 
selection bias and thereby improves the quality of a transport behavior model. In Section 6, we discuss the benefits and limitations 
of our method and present directions for future research.

2. Approach to structural model validation

In many studies, the notion of validation is reduced to calibrating parameter settings based on ground truth data and by measuring 
the fitness of the resulting model on a different data set [16,48]. Aumann [8] calls this replicative validity. The validation of the causal 
model structure, i.e., the representation of variables and relationships, is often neglected. In many cases of predictive behavioral 
simulations, researchers choose one of the behavioral frameworks that do not inform variable selection1 and consequently feed it 
with a set of behavior determinants that can be found in the literature. However, the latter step of variable selection based on 
literature is most often not done in a systematic way (e.g. [36,4,61,57]), most likely because systematic literature reviews are labor-

1 (e.g. theory of planned behavior [2], cognitive dissonance theory [21], rational choice theory [38], the beliefs desires intentions model [23] or the PECS 
2

framework [47]).
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intensive. Some take a qualitative approach by interviewing experts or stakeholders to validate the variable selection [56,54]. While 
this approach might be the only option when there is a lack of prior evidence and data, it is prone to subjective bias.

However, without a systematic overview of significant behavior determinants and interactions, one could miss important con-

founding variables, interactions, or moderation effects. In that case, even if the parameters are calibrated with local data, the model 
would not be able to reliably predict future behavior in which some of the behavioral determinants change in a way that was never 
observed before, and the model is likely to suffer from low generalizability to other settings. Aumann [8] calls this validation of 
the model structure, the variable selection, and the types of relationships that are represented, structural validity. “Structural validity 
ensures that the model is generating the correct [input-output] behavior for the right reasons, and not because incorrect behavior 
of one model component is compensated for by incorrect behaviors of other components.” [8]. However, how can one validate a 
selection of represented variables and relationships?

We know whether a claim is valid (i.e., we come to know the truth) primarily by way of two types of procedures [31]: (1) 
tests or experiments to justify a claim, (i.e. either by a controlled experiment or observational data), (2) reasoning with pre-existing 
sources of valid knowledge [30]. In the context of variable selection, the first data-driven approach is paradoxical, since it requires 
a constrained set of variables for which ground truth data will be collected before applying a variable selection method (e.g. LASSO, 
ridge, or stepwise regression). It is unclear how one can generate an unbiased set of variables for this purpose. Moreover, it is highly 
inefficient and challenging if not impossible to collect data on all possible behavior determinants, certainly if some of them turn out 
to be insignificant. It is therefore more reasonable to assess validity by way of reasoning with existing valid knowledge (i.e. scientific 
evidence). Yet, there are differences in the methodological rigor that scientific studies use, which influences the quality of the 
resulting scientific evidence. Robust evidence should be reproducible, address statistical biases and endogeneity, reduce measurement 
error, perform significance threshold correction for multiple hypothesis testing or a false discovery rate controlling procedure, and 
take account of causal inference. Due to their methodological inclusion criteria, systematic reviews and meta-analyses may provide 
a good source of robust evidence.

To validate a structural model based on existing knowledge, one has to answer the following questions for a specific modeled 
phenomenon and evaluate whether the model represents these relationships:

• What are the possible outcomes of the modeled behavior?

• What are the determinants of the behavior and how does each of them relate to the specific outcomes?

• Are there moderating variables that change the relationship between determinants and behavioral outcomes?

• For which social groups/samples are the different relationships between determinants and behavioral outcomes valid?

Modeling is often a circular process of model construction, calibration, and validation. Our approach rearranges that process for 
the case of explicit simulation models by using an evidence base to simultaneously construct and validate the structure of the model 
(selection of represented variables and relationships). Subsequently, the parameters can be calibrated and cross-validated based on 
local data. Ideally, one should test the model on interventional data by calibrating it based on data from before an intervention and 
testing whether it can predict the observed changes in behaviors.

3. Methods

In this section, we present (1) an ontology design pattern [22] that may be used to build our evidence knowledge graph, (2) a 
method to automatically extract evidence from scientific articles on the specified behavior choice and populate the ontology, (3) our 
method application to modal choice behavior, (4) a discussion on methods for using the knowledge graph for model construction 
and validation and (5) our method for model implementation and evaluation.

3.1. Generic design-pattern of a behavior determinants evidence ontology

Our Behavior Choice Determinants Ontology (BCDO)2 functions as a model for the variables and relationships that determine a 
specific human choice. The classes and relations of the BCDO are modeled in the web ontology language (OWL)3 and capture the 
relationships between behavior choice options, determinants and study groups and moderators as well as the statistical significance 
of the relationships. An illustration of the ontology design pattern showing its class taxonomy and the object and data properties 
linking instances of these classes can be found in Fig. 1. We designed the ontology in a bottom-up fashion, by encoding the relevant 
information of three representative behavioral review studies [28,18,7] into a common pattern. Information is considered relevant 
when it informs the structure of the behavioral model or allows us to discriminate the quality of the evidence. The design pattern is 
fairly parsimonious but could be extended if needed.

Class concept definitions as used in Fig. 1 are:

• Behavior Choice Options are kinds of activities from which an individual can choose for the specified behavioral choice. They 
are the values of the dependent variables in the explanatory studies from which knowledge is extracted. (e.g. walking, biking for 
modal choice)

2 https://knowledgesynth .github .io /ontologies /BehaviorChoiceDeterminantsOntology .ttl.
3

3 https://www .w3 .org /TR /owl2 -primer/.

https://knowledgesynth.github.io/ontologies/BehaviorChoiceDeterminantsOntology.ttl
https://www.w3.org/TR/owl2-primer/
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Fig. 1. BCDO Ontology Design Pattern modeled using OWL classes and properties.

• Behavior Determinants are factors and constraints that influence the behavioral decision of an individual. These are the 
determinants or independent variables in the evidence provided. (e.g. pedestrian pathway width, gasoline price)

• Study Group is the specific population group or sample used in the analysis. (e.g. elderly, females)

• Behavior Moderators are variables that moderate the relationship between a behavior determinant and a behavior choice option. 
(e.g. household income as a moderator of the importance of gasoline prices for choosing the car)

• Studies are scientific articles studying a particular kind of behavior.

Except for the studies themselves, the instances (= elements) of the ontology classes are supposed to be variables which can be 
measured. Particular values of the variables are represented in the study data. The variables instantiated in our ontology are by 
definition measurable because they were extracted from quantitative studies. In the simulation model, corresponding variables will 
store values that are modified during simulation, for example, infrastructural variables that will be changed during a hypothetical 
infrastructure intervention or health variables that will be changing depending on air pollution exposure.

In particular, we used the following property relations: StudiedChoiceOption links the specific studied choice option to the evidence 
instance, while DeterminantFor does the same for the behavior determinant studied in the evidence instance. GroupStudiedIn captures 
the information on whether the evidence about the statistical association is restricted to a specific social group (i.e. the study group). 
Moderates means that the moderator variable moderates the relation between the behavior determinant and behavior choice option 
that is part of the same evidence instance. Finally, the statistical association qualifiers have been separated into multiple property 
relations. Pairs of variable and evidence instances can be connected by more than one relation. FindsSignificance, means that a study 
has found a significant effect of a behavioral determinant, while FindsInsignificance indicates the opposite. FindsConsistency is a sub-

property of FindsSignificance and means that a study has found a consistent significant effect of a behavioral determinant across 
studies. FindsInconsistency indicates the opposite and is not a sub-property of FindsSignificance. FindsPositiveAss, means that a study 
has found a positive significant effect, while FindsNegativeAss indicates that a study has found a negative significant effect. Opposite 
property relations have been formalized using inverse axioms. This means they are mutually exclusive but not jointly exhaustive.

3.2. Automated extraction and synthesis of prior evidence to populate the BCDO

3.2.1. Justification for method selection

We employ a combination of natural language processing (NLP), bibliometrics, and deep learning to automatically and systemat-

ically extract knowledge from previous studies and populate the BCDO. As depicted in Fig. 1, the information that we aim to extract 
from articles consists of evidence instances, which are composed of variables and qualifiers that describe their statistical relation. 
In other words, our first main task is to extract the phrases of the articles that correspond to the type of information encoded in 
our BCDO design pattern. The second main task is to accurately identify the relationships between phrases to form an evidence 
instance.

Addressing the first task, manual annotation of the entire text data is very time-consuming and hence not scalable. Therefore, 
4

we opt for a more efficient automatic approach: training a deep learning model with a small set of labeled documents that will 
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Fig. 2. Knowledge Extraction and Synthesis for Behavior Model Construction and Validation.

subsequently label the rest of the text automatically. For this purpose, we utilize BERT, (Bidirectional Encoder Representations 
from Transformers) [17], a well-established pretrained NLP model. BERT is trained to understand language context using a masked 
language model and a next sentence prediction model. It is readily available online in a pretrained format for English (and many 
other languages) and only requires fine-tuning to a particular NLP task. To classify words with labels, we need to fine-tune BERT to 
our Named Entity Recognition (NER) task. NER seeks to classify words in a text into predefined categories or tags, which in our case 
is the assignment of the BCDO tags.

The second task was inferring the relationships between the variables, i.e. determining which phrases form an evidence instance 
with which other phrases within the sentence. Evidence relations between labeled phrases are expressed with syntactic regularity 
and can thus be inferred using syntactic features of the sentences. We generated a set of syntactical and keyword-based features of 
all possible combinations of labeled phrases within the sentences and then trained a machine learning model to predict whether this 
phrase combination applies or not. In this section, we detail each step as indicated in Fig. 2. We have grouped the steps into: (1) Data 
Acquisition and Preparation, (2) Named Entity Recognition using BERT, and (3) Evidence Instance Extraction and Synthesis. The 
Python scripts to perform all of the method steps from step 2 (downloading and preparing the article text data) to step 9 (populating 
the ontology with the extracted evidence instances), along with complete documentation, can be found on GitHub.4 From here on 
we will use quotation marks to indicate extracted text phrases.
5

4 https://github .com /KnowledgeSynth /NLP -Knowledge -Extraction -and -Synthesis.

https://github.com/KnowledgeSynth/NLP-Knowledge-Extraction-and-Synthesis
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Table 1

Sentence Labeling Examples.

EXAMPLE 1 EXAMPLE 2

Sen. Word POS BCDO Tag Sen. Word POS BCDO Tag

1870 Two CD O 1009 For IN O

1870 articles NNS O 1009 example NN O

1870 from IN O 1009 , , O

1870 the DT O 1009 most JJS I-assocType

1870 same JJ O 1009 studies NNS O

1870 Belgian NNP O 1009 have VBP O

1870 study NN O 1009 reported VBN O

1870 estimated VBD O 1009 that IN O

1870 the DT O 1009 a DT O

1870 moderating VBG I-assocType 1009 positive JJ I-assocType

1870 effect NN I-assocType 1009 association NN I-assocType

1870 of IN O 1009 exists VBZ O

1870 area NN I-moderator 1009 between IN O

1870 level JJ I-moderator 1009 well RB I-behavDeterm

1870 income NN I-moderator 1009 connected VBN I-behavDeterm

1870 on IN O 1009 street NN I-behavDeterm

1870 walkability NN I-behavDeterm 1009 networks NNS I-behavDeterm

1870 and CC O 1009 and CC O

1870 total JJ I-behavOption 1009 Children’s NNP I-studygroup

1870 walking NN I-behavOption 1009 independent JJ I-behavOption

1870 for IN I-behavOption 1009 mobility JJ I-behavOption

1870 transport NN I-behavOption 1009 . . O

1870 and CC O

1870 found VBD O

1870 none NN I-assocType

1870 . . O

1. Sen. = Sentence ID; POS = Part of Speech Tag; Citation references have been removed from sentences.

2. Example 1 stems from Cerin et al. [12] and Example 2 from Sharmin & Kamruzzaman [49]

3.2.2. Data acquisition and preparation

Our process begins by defining the specific behavioral choice we aim to model, whether it be modal choice, diet selection, or any 
other behavior choice (STEP 1). The next step involves finding the relevant articles (STEP 2) by querying existing scientific databases 
(e.g. scopus, web of science) with terms related to the behavior choice and screening the results for relevance. To restrict evidence 
to scientific studies of quality, we recommend selecting only systematic reviews and meta-analyses when possible. Moreover, one 
can add other quality criteria such as a minimum publication year or relevance criteria that depend on the model goal, for example, 
a specific studied geographic region or population group. Next, in STEP 3 one needs to download and prepare the text data of the 
relevant articles. The output data format should be a data frame of the sequence of words of the text, nested in unique sentence 
IDs. Additionally, part-of-speech (POS) tags have to be added. POS classify words into categories of words or lexical items that have 
similar grammatical properties [14]. Examples of such categories are noun plural (NNS), determiner (DT), verb past tense (VBD), 
verb present tense with 3rd person singular (VBZ), preposition (IN), ect. Downloading the text of the articles has varying levels of 
difficulty depending on whether it is open access and what format the text is available in. Certain publishers provide full-text XML 
data of articles, while other articles are only available in PDF format. Our scripts first download XML and PDF documents from a list 
of DOIs using crossref5 and Elsevier API.6 Consequently, they extract and process the text from the documents and apply the POS 
tagger of python’s nltk package [37].

5 https://pypi .org /project /crossrefapi /1 .0 .3/. https://www .crossref .org /about/
6

6 https://dev .elsevier .com/.

https://pypi.org/project/crossrefapi/1.0.3/
https://www.crossref.org/about/
https://dev.elsevier.com/
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3.2.3. Named-entity recognition using BERT

Subsequently, in STEP 4 one needs to annotate the words of a subset of scientific articles with the concepts from the BCDO. These 
annotations will be used to train the BERT model. The labels for annotation include: behavior choice option, behavior determinant, 
study group, moderator, and association type. Additional data related to the studies themselves (title, journal, year, and DOI, which 
is the study instance name) can be taken from the bibliometric data provided by the scientific database. Given that a concept may 
span multiple words, a text chunking strategy is required. We opt for IO-labeling (inside-outside), because it is simple, maximizes

the sample size of each tag, reduces computational load, and can capture multi-word phrases [5]. Labels are prefixed with I- and 
all words that do not suit our labels are tagged with O. See Table 1 for an example application of IO tagging and Appendix A.1. for 
our labeling manual. Upon creating the manually labeled training and validation data, the BERT named entity recognition model is 
trained with it (STEP 5). BERT utilizes not only the words and sentence structure but also the POS tags for classifying words into our 
labels. Concluding the NER task, the unlabeled remaining article’s text data processed through the model to predict its labels (STEP 
6).

The output is the text of the articles, in which each word is listed with its corresponding label (see Table 1). This can be 
rearranged into a table of sentences with lists of phrases for each label. One can then extract only those sentences that have at least 
one association-type phrase and at least one behavior determinant, which is the minimum requirement for evidence instances. The 
other minimum requirement is the behavior choice option to which the behavior determinant has a statistical relation, but these are 
not necessarily mentioned in the same sentence. Missing behavior choice options can be extracted from the title. Articles focusing 
on a single behavior choice option or a specific study group typically specify this in the title or abstract. We leverage this pattern to 
fill in some of the empty study group and behavior choice option slots. Specifically, we check whether any labeled study group or 
behavior choice option of the article appears in the title and if so, which is the longest string of the respective label that appears in the 
title. The resulting all-article study group or behavior choice option is consequently assigned to all empty phrase slots of sentences 
containing evidence instances in the specific article.

3.2.4. Evidence instance extraction and synthesis

After having labeled and processed all the text data, we proceed to STEP 7, where we generate evidence instances by establishing 
the relations between the labeled phrases. These evidence instances will later be used to populate the open slots (classes and property 
instantiations) of the BCDO. The objective is to construct a table of evidence instances that affirm or refute the significance of a 
relationship between a behavior choice option, behavior determinant, and optionally, a study group or a moderator. The table also 
retains the source sentence from which this evidence instance was extracted. To establish the interdependency or relation between 
phrases within a sentence, we use the syntactical properties of the sentence. For this purpose, we create a table of all possible 
combinations of association types, behavior options, behavior determinants, study groups and moderators within each sentence. This 
captures all possible evidence instances of which only a small set actually occurs. We then generate syntactical features at various 
levels: features pertaining to entire sentences, attributes of elements of the specific instance combinations, and relational attributes 
of the specific instance combinations. The complete set of 71 features used in this study, along with their construction method, is 
detailed in Appendix A.2. These features can be used to estimate the veracity of the possible evidence instances using a supervised 
classification model, such as gradient boosting, support vector machines, a multi-layer perceptron neural net or random forest. The 
framework allows for the incorporation of additional syntactic features in the future.

Next, in STEP 8 the variable names need to be harmonized, which is a critical step in the knowledge synthesis. We implement 
a preliminary approach that utilizes semantic and string similarity metrics and synonym/antonym analysis. To compute string 
similarity, we decompose variable names into sub-words and evaluate how many sub-words are shared or contained. Moreover, we 
use the string similarity metric Jaro-Winkler-similarity [59] for harmonizing small spelling variations. For the synonym/antonym 
identification we use the Python-based nltk wordnet package. Wordnet is an open-source network of semantic relations between 
words [19]. We start by analyzing how many shared sub-words the different variable names have. If a multi-word variable name 
is fully contained by another variable, we classify them as synonymous. If one or two sub-words are not contained in the other 
variable name, but synonyms of these sub-words are present, then they are also classified as synonymous. For single-word variable 
names contained in another variable name, we filter for variables that are contained in less than 5 other variable names, so that 
more generic terms (e.g. “density” or “diversity”) do not cause noise by linking non-synonymous variables. Moreover, we filter for 
candidate synonymous variables that are maximum two words long, assuming that any additional words would exceed the possible 
expressiveness of single-word variable names. For single-word variables, we also check for direct single-word synonyms among the 
other variable names. Finally, we cast variable name pairs with a Jaro-Winkler similarity above 90 as synonyms.

After generating the synonymity matrix for all variable names relating to all other variable names, we group the variable names 
into synonymity clusters. All variable names that are synonymous with at least one of the variables of a cluster are joined together. 
Thereby we assume the transitory property of synonymity. We then identify the optimal variable names for the harmonized variable 
name clusters by calculating a composite metric of relevance for each variable name within a cluster. This metric is calculated by 
multiplying (1) the number of directly synonymous variable names to the respective variable name with (2) its number of sub-words 
and adding (3) its frequency of mentions across scientific articles.7 We then check if there is a frequently mentioned (four or more 
mentions) variable name that sticks out, which we choose as the cluster variable name. If there are multiple variable names with 

7 The number of directly synonymous variables decreases with the number of sub-words, which is why we counter that bias by multiplying it by the sub-word 
7

length.
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the maximum frequency of mentioning in the cluster, we pick the one with the highest composite metric. If there are no frequently 
mentioned variable names (all below four mentions), we select the one with the highest composite metric. If there are multiple 
variable names with the highest composite metric value, we choose among them the variable name with the shortest string length. 
We also incorporate a manual check of the variable harmonization before joining new variable names to the evidence table.

Finally, in STEP 9 the association type information has to be classified into significant versus insignificant, consistent versus 
inconsistent, and positive versus negative. Given that academic language used to describe statistical associations is fairly standardized, 
a keyword-based approach is sufficient and performs well. The resulting relational data of behavior choice option variables, behavior 
determinant variables, and statistical association qualifiers (as well as study groups and moderators in some cases) can be used to 
populate the ontology using, for example, the python packages owlready28 or rdflib.9

3.3. Application to mode of transport choice

For identifying relevant meta-analyses or systematic review articles, we have used a web of science query using keywords related 
to transport choice (see Appendix A.3.). We received 582 results, which after screening resulted in 34 relevant papers. We excluded 
articles in the screening phase if they did not study modal choice determinants or if they did not report on a meta-analysis or system-

atic review. From these articles, we picked five representative studies, one systematic review, two meta-analyses, and two studies 
that did both [28,18,7,12,49], which we labeled manually using our BCDO labels: behavior choice option (I-behavOption), behavior 
determinant (I-behavDeterm), moderator (I-moderator) and study group (I-studygroup). To capture the statistical association, we use 
(I-assocType). Two labeled example sentences can be found in Table 1.

We subsequently trained our BERT NER model using the labeled data. For this purpose, we used the BERT pretrained cased base 
model for token classification from Python’s transformers package10 and trained the model using 100 epochs with a batch size of 32 
and a learning rate of 0.00003. Since the cased BERT model performed better than the uncased one, it was chosen as the pre-trained 
model. The five articles that were manually labeled contained 52444 words and 2350 sentences. 20% of the labeled data (i.e. 470 
sentences) was used for validation. We used cross-entropy loss to calculate loss and evaluated the model using the F1 score, an 
evaluation metric to assess the performance of the classification model [24].

For the evidence relation inference, we used the 71 syntactical features listed in Appendix A.2. We manually labeled 4000 of 
the 151969 possible evidence instances (combinations of phrases) and fed it into multiple supervised classification models (gradient 
boosting, support vector machines, and random forest) of which the latter performed best. To assess the quality of the evidence 
relation random forest model, we used repeated stratified 10-fold cross-validation with 3 repeats.

3.4. Using the BCDO for structural model validation

Once the BCDO is populated with evidence instances and hence an evidence base is available, one can make use of it for model 
construction and validation. Most likely, the knowledge graph contains more factors than one can represent. Hence, STEP 10 requires 
querying the knowledge graph for evidence relevant to the specific model one wants to inform. For this purpose, one needs to define 
criteria for evidence quality and relevance, which can be more or less exclusive. For example, as a quality criterion, one can set a 
minimum number of studies that have proven the significance of a variable and require that there are no studies with conflicting 
evidence. To subselect evidence of relevance, one can exclude components if the behavior choice options that one wants to represent 
are not related to the exogenous variable one is interested in. For example, one may want to only model factors that can be influenced 
by a specific intervention. Or one may only be interested in a subset of behavior choice options due to their specific relation to, e.g. 
health.

Once the relevant ontology components are sub-selected, one can either (STEP 11a) validate an existing behavioral model by 
mapping it to the evidence in the BCDO knowledge graph or (STEP 11b) construct the behavioral model from scratch using the 
evidence on significant variables and relationships. For STEP 11a one can use queries in the BCDO to determine whether required 
concepts and object properties are represented. For example, for each modeled behavior choice option, one can query the significant 
behavior determinants, moderators, or study group heterogeneities and assess whether they are represented in the model. If a 
deficiency is identified, the model can be improved by including the new variable, interaction, moderation, or heterogeneity. If one 
is unable to represent factors due to a lack of data, then one can either explicitly acknowledge this as a limitation or use a proxy 
variable. Moreover, it is possible to perform a sensitivity analysis to quantify the uncertainty introduced when excluding a variable 
(e.g. [53]).

For STEP 11b, more research is needed to identify the best ways to translate the declarative knowledge into procedural code. An 
agent-based simulation model requires a decision algorithm for, agents [16]. There are a variety of model types, from logic-based 
architectures, such as beliefs-desires-intentions [38], to ones based on production rules, such as if-then conditions, to probabilistic 
models, such as probabilistic graphic models [33], to linear multi-criteria decision models, such as utility maximization frameworks. 
Any of these model types could be fed with the significant behavior determinants and interactions identified in the BCDO knowledge 
graph.

8 https://owlready2 .readthedocs .io /en /v0 .37/.
9 https://rdflib .readthedocs .io /en /stable/.
8

10 https://huggingface .co /docs /transformers /index.

https://owlready2.readthedocs.io/en/v0.37/
https://rdflib.readthedocs.io/en/stable/
https://huggingface.co/docs/transformers/index
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To realize this step, first, one should consider the variable’s measurement level and type when deciding on how to represent the 
variable. For example, one could classify behavior determinants into behavior constraints and behavior factors. Behavior constraints 
are a boolean type of behavior determinant that limit the choice of an activity and can be represented using if-then conditions. On 
the other hand, behavior factors are attributes of an individual, their situation, the environment, or the choice option, which make 
a specific behavior more or less attractive and thus more or less likely to be chosen. Behavior factors (continuous variables) can be 
transformed into Boolean behavior constraints, but not the other way around.

Secondly, the order of importance of the variables needs to be determined. For predicate logic or production-rule-based models, 
one can collect data for the significant variables and make use of statistical methods to identify a suitable order of variables and 
interaction effects (e.g. Bayesian kernel machine regression, importance ranking using decision trees). For Probabilistic Graphic 
Models or decision tree models, one can use the data to train the model itself. On the other hand, for multi-criteria decision models, 
one can use the data to calibrate weights for the different variables. Evidence about the heterogeneity of statistical importance of 
specific behavior determinants between social groups can be represented by using different determinant weights for different social 
groups. For example, evidence shows that street safety is a more important behavior determinant for women than for men. These 
heterogeneous weights can also be calibrated using data of the specific social group.

3.5. Implementing and testing the modal choice model based on extracted evidence

To test the impact of the extracted knowledge on behavior prediction, we trained a mode of transport model based on the 
extracted evidence. We assessed its performance in predicting mode choice using all versus only the most frequently studied variables 
as suggested by extracted evidence. The model implementation depends on the purpose of the model. For our example, we were 
interested in an explicit behavior model of the 4 most common modes of transport - biking, walking, driving a car, and public 
transport use - for scenario simulations of transport interventions in the city of Amsterdam. Hence, we selected evidences that relate 
to these behavior choice options. We used those evidences where the combination of behavior determinant, studygroup, behavior 
choice option and a moderator has proven significant more often than it has been proven insignificant. We did not use information 
on the direction of the statistical association, because that information is lost in the variable harmonization step since variables 
that might have been encoded differently were grouped into a single variable name. We included studygroups as variables because 
they can indirectly capture other moderating variables. Then we used the list of unique behavior determinants, studygroups, and 
moderator variables from our evidence selection to collect data for training a transport behavior model. To train and evaluate 
this model, we used the ODIN microdata [11] provided in a secured data analysis environment by Statistics Netherlands. ODIN 
is a representative transport survey from the Netherlands with 179000 trips, of which 6043 trips are made with both origin and 
destination in Amsterdam, Diemen or Ouder-Amstel. We include the latter two municipalities in the study extent because they have 
to be traveled through when traveling from the Amsterdam center to Amsterdam Zuidoost. ODIN data includes individual attributes 
as well as trip origin and destination information on street block level (Postcode 6), which can be used to estimate spatial tracks and 
to link environmental behavior determinants.

In the extracted evidence we find 123 unique variables that have been identified as linking significantly to at least one of the four 
behavior choice options of interest. These variables mostly capture attributes related to the built environment, transport network, 
individual, their social network and social environment. From these variables, we found data to implement 76 of them. We did 
not find data for psychosocial variables, for aesthetics, littering and vandalism variables as well as for very specific amenities, like 
easy access building entrances, benches, and cyclist showers in the workspace. We excluded variables that regard “interventions” 
as a behavior determinant since we are interested in a status quo model that can be used for scenario analysis. An overview of the 
extracted variables and our measurements of them can be found in Appendix A.4. We linked the environmental variables to the 
trip survey data, by averaging the raster values along the Euclidean line between the origin and destination. For some variables, 
we joined the environmental data to only the origin or destination location of the trip (e.g. public transport access, distance to the 
central business district).

Regarding the implementation of the behavior model, we chose to train decision trees, since they capture various variable 
interactions well and can be easily interpreted. Since some behavior determinants are correlated, we tested a principal component 
analysis (PCA) approach on top of using the original set of variables. For this purpose, we calibrated a correlation threshold, such that 
variables whose correlation with at least one other variable is above the threshold are included in the PCA. The optimal correlation 
threshold was 0.7. We subsequently included all variables that do not fall above the threshold, plus the resulting principal components 
as features of the decision tree model. We used 10-fold cross-validation and calibrated all decision tree hyperparameters using grid 
search. The optimal tree depth was 8, the minimum bucket size 16, and the minimum split size 20. See Appendix A.5 for more 
information on the hyperparameter and correlation threshold calibration.

To evaluate the added value of the knowledge extraction, we grouped the significant variables into 3 groups: Frequently studied 
variables (3 or more meta-analyses, now referred to as FreqVars), semi-frequently studied variables (2 meta-analyses, now referred to 
as SemFreqVars) and sparsely studied variables (maximum 1 meta-analysis, now referred to as SparsVars). We analyzed the additional 
variance that is captured in the sparsely studied variables by analyzing how much the SparsVars correlate with the SemFreqVars and 
FreqVars using a correlation matrix. We then tested the model performance (weighted F1 score in predicting validation sample), 
when including 1) only the FreqVars, 2) only FreqVars and SemFreqVars, and 3) all variables (including the SparsVars). Finally, we 
compared the ranking of variables according to their study frequency with the ranking of variable importance measured by the 
9

decision tree method.
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Fig. 3. BERT Learning Curve.

4. Results

In this section, we discuss and evaluate intermediary and final results of our knowledge extraction method when applied to mode 
of transport choice.

4.1. Knowledge extraction model performance

For the labeling of the training sample, we tested inter-annotator agreement by having three researchers annotate a single 
article using the labeling manual (Appendix A.1). The result was a Cohen’s Kappa of 0.88 and 0.93% overlap, indicating substantial 
agreement. This suggests that the labeling manual provided clear instructions and was effectively used by the researchers. The model 
performance (F1-score, training loss, validation loss, and validation accuracy) of the BERT NER model across epochs can be found 
in Fig. 3. The best weighted F1 score was 0.88, indicating a good balance of precision and recall. The random forest model for 
extracting evidence relations in an article also performed well. The F1 score for predicting true evidence relations was 0.82 and the 
weighted F1 score was 0.96 (since most of the possible evidence instances are false). It is interesting to note that for both sub-models 
of our extraction method, namely NER and syntactical feature-based relation classification, precision outperformed recall, likely due 
to these models’ propensity to overfit. This is not necessarily a bad thing, especially because correctness and reliability are arguably 
more crucial as one can rely on the results obtained from this method. Completeness is harder to achieve, but also less relevant for 
our task. Despite that, future research should focus on improving recall without compromising precision.

4.2. Results of knowledge synthesis

Through the process of knowledge extraction, we compiled a table encompassing studies, behavior determinants, behavior choice 
options, reported study groups, and discovered association types. Prior to implementing our variable harmonization method, we 
identified 395 unique behavior determinants, 91 unique behavior choice options, 27 unique study groups, and 10 unique moderator 
variables. These variable combinations manifested in 652 unique evidence instances. The scarcity of moderator and study group 
variables suggests that these aspects receive less focus or reporting in studies. This could also imply that a larger sample of articles 
might have been beneficial for training due to the relatively small amount of label occurrences in the training dataset.

The automated harmonization process reduced the 91 behavior choice options variable names to 44 categories. Each cluster was 
manually verified and deemed valid. We further manually aggregated the variable names into 9 categories: walking, active school 
travel, biking, physical activity, carpooling, independent mobility, active travel, driving, and public transport use. The largest group 
of variable names, the 395 Behavior determinants, was reduced to 259 variable names by our automated method. This included 
57 clusters (synonymous variables) and 202 variable names without identified synonyms. Only two variables have been wrongly 
assigned to a cluster (“Employment” to “employment density” and “Employment status” to “employment density”). Two pairs of 
the 57 variable clusters could be fused. One pair that could be fused is related to “public transport access” because Wordnet11

(a synonymity network) does not render “transit” as a synonym of “transport” or vice versa. The other one is “street intersection 
density” and “street connectivity”, which are computed in the same way, but are not composed of synonymous words. Further, 45 of 
the 202 single variables could have been assigned to a cluster or matched together. After a manual revision, we ended up with 212 
unique variable names. See Appendix A.6. for an overview of the variable harmonization of behavior determinants after automatic 
10

11 https://wordnet .princeton .edu/.

https://wordnet.princeton.edu/
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* See https://knowledgesynth .github .io /HarmonisedChoiceOptionsGraph /index .html for an interactive graph visualization

Fig. 4. Simplified Graph of Modal Choice Evidence.

grouping and manual revision. Subsequently, we harmonized the studygroup variable names. The automatic algorithm condensed 
the 27 variable names to 14, where one cluster was incorrectly formed (men and women, as well as males and females were joined 
because one was contained in the other). We ended up with 18 variable names after the manual revision. There were a few cases 
where evidence of synonymous variable names from the same study had been listed twice before variable harmonization. As a result, 
the variable harmonization step reduced the number of unique evidence instances to 623.

4.3. Resulting knowledge graph

Fig. 4 depicts a simplified version of the resulting knowledge graph. The image does not show the data on study groups, modera-

tors, and study details. The edge width shows the number of articles that have stated the specific association between the harmonized

behavior option (center nodes) and behavior determinant (outside nodes). Green edges represent significant and consistent associa-

tions across articles while orange means the association is insignificant or inconsistent across articles. It can be seen that walking has 
been studied most and has the most associated evidence instances (250), followed by physical activity (106) and active travel (56). 
Moreover, only a few variables have been studied by multiple articles, as can be seen by the small amount of thick and large amount 
of thin edges. The five most frequently studied variables for modal choice are in that order: land use mix, street connectivity, access 
to destinations, walkability, and aesthetics. Additionally, a publication bias of significant results can be observed.

Zooming in, Fig. 5 shows the behavior choice options related to walking and their statistical associations to behavior determinants 
and study groups. We depict the harmonized variable names of the behavior determinants and studied groups. However, the behavior 
choice option variables are the original verbatim variable names as found in the articles. This is to illustrate the challenge of variable 
harmonization which we address and to show that there is another layer of nuance that distinguishes behavior choice options apart 
11

from the 9 grouped modes of transport. One can see that certain study groups have been more predominantly studied than others. 

https://knowledgesynth.github.io/HarmonisedChoiceOptionsGraph/index.html
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* See https://knowledgesynth .github .io /WalkingGraph /index .html for an interactive graph visualization
12

Fig. 5. Sub-graph of walking-related Behavior Evidence.

https://knowledgesynth.github.io/WalkingGraph/index.html
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Fig. 6. Ontology Excerpts.

Strikingly, studies on the determinants of walking have often focused on older adults and disadvantaged groups. As far as our 
extracted knowledge graph shows, men have been studied more than women. See Appendix A.7. for equivalent knowledge graphs 
for other behavior choices (biking, driving, public transport, and active travel).

4.4. Knowledge queries

Knowledge graph visualizations are only comprehensible to a limited extent and do not capture all of the extracted knowledge. 
We have populated a knowledge graph with the modal choice evidence using the BCDO, which overcomes these drawbacks and can 
be queried and processed. The populated graph (and the upper-level ontology) can be downloaded here.12 It presents the evidence 
and study information comprehensively (see Fig. 6).

The knowledge graph can be consequently used to query relevant information for model validation and construction. For example, 
“Find all significant behavior determinants for biking?” can be expressed in SPARQL with:

SELECT DISTINCT ?determinant
WHERE {

?a a bmo:biking; bmo:studiedChoiceOption ?evidence.
?evidence bmo:foundSignificantBy ?study.
?evidence bmo:regardsDeterminant ?determinant.

}

As a response, we obtain 24 behavior determinants of the extracted evidence that are significantly linked to biking behavior 
options, such as “bicycle parking”, “sloping terrain” and “street connectivity”.

We can also formulate more complex questions, such as “What are the 5 most relevant behavioral determinants, measured in 
terms of how many classes of behavioral choice options they significantly influence?”. The formatted response is: “street connec-

tivity” influences 7: independent mobility, public transport use, active travel, biking, driving, physical activity, walking; “access to 
destinations” influences 6: independent mobility, active travel, biking, driving, physical activity, walking’; “land use mix” influences 
6: independent mobility, public transport use, active travel, biking, physical activity, walking; “population density” influences 5: 
public transport use, active travel, biking, physical activity, walking; “residential density” influences 4: independent mobility, active 
travel, physical activity, walking. More examples of SPARQL queries and results can be found in Appendix A.8.

5. Evaluation: impact of the extracted evidence on behavior model performance

We plot all three variable groups (defined by their frequency of study) together in a correlation matrix to analyze whether the 
sparsely studied variables capture new variance or if they are instead highly correlated with frequently studied variables. As Fig. 7

shows, the sparsely studied variables largely do not correlate with the frequently and medium frequently studied variables. The 
percentage of non-western residents correlates with the distance to the central business district (CBD) (coefficient of 0.58/0.59), 
13

12 https://knowledgesynth .github .io /ontologies /bcdo .html.

https://knowledgesynth.github.io/ontologies/bcdo.html
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Fig. 7. Correlation Matrix of Behavior Determinants.

hinting at underlying spatial segregation, as well as retail diversity (coefficient of -0.56), which highly correlates with distance 
to CBD itself. Moreover, maximum and minimum speed limits along the route correlate with mean speed limits along the route 
(coefficients of 0.8 and 0.7 respectively). Other than that there are only correlations between sparsely studied variables. In other 
words, there is indeed added information in the sparsely studied variables.

We consequently trained decision trees to model mode choice behavior using the different variable subsets. Fig. 8 displays the 
performance results across 10 model runs for the three subsets for the decision tree (a) including the intermediate step of PCA 
reduction of variables with at least one correlation above 0.7 and (b) without the PCA step. One can see that the semi-frequently 
studied variables do not add very much to the predictive power of the decision tree, since the average weighted-average F1-score 
across multiple runs in the validation sample only increases by 0.01 in the PCA implementation and by 0.00 in the implementation 
without PCA reduction. In contrast to that, the sparsely studied variables improve the model significantly. The weighted-average F1 
on the validation sample increases by 0.22 in the PCA methodology and by 0.19 in the methodology without PCA. Fig. 8 shows the 
F1 score for each mode of transport category when including all variables and using the PCA approach. One can see that biking is 
best predicted (see validation sample result), followed by walking, then public transit and finally driving.

Finally, Fig. 9 shows that the top four most important variables are sparsely studied variables, while many of the most studied 
variables are not actually that relevant.13 The thickness of the edges is determined by the variable importance. One can see an 
upward trend of thick edges from the left bottom (sparsely studied variables) to the right top (most important variables), and a 
downward trend of thin edges from the left up (most studied variables) ending up in the right bottom part of the ranking. Strikingly, 
the most studied variable (Road Intersection Density/Street Connectivity) is only ranked 25th of 43 variables in terms of variable 

13 It is important to note that these results are based only on the extracted meta-analyses and systematic reviews and only on the evidence subset that relates to 
walking, biking, driving or public transit. Trip distance is a very common variable in transport mode choice models. Trip distance was significant in more than one 
study for behavior choice options that we did not model, e.g. “home-to-work distance” has been significantly related to active travel in general, and “distance to 
14

school” to “active school transport”.
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Fig. 8. Variable Subset Decision Tree Performance.

importance. This demonstrates that, as a matter of fact, most relevant variables are studied most seldom. The reason may lie in biased 
variable choices made by the authors of these studies.

6. Discussion and conclusion

We have presented a method for automated knowledge extraction of evidence on behavior determinants and interactions for 
different study groups and tested it using an example implementation for transport mode choice. The suggested method has several 
benefits for structural model validation. Our method is scaleable, saving the time needed to read and understand all the literature. 
There is also a gain in reproducibility, since knowledge extraction and synthesis happen in a standardized manner, reducing the risk 
of subjectivity bias. Moreover, the efficiency gain allows for new strategies and workflows in the scientific process. The automation 
of knowledge extraction and synthesis removes barriers to using existing empirical evidence and hence has the potential to improve 
the reuse of knowledge and improve the validity of new scientific work.

The potential of the knowledge graph extraction method for structural model validation was tested by applying the contained 
knowledge to a transport behavior prediction task. Our model implementation shows that sparsely studied significant variables can 
be of major importance to obtaining valid behavioral models. Less complete and conservative modeling approaches therefore are 
risking a severe variable selection bias. It is therefore crucial to have a comprehensive overview of all the literature. By extracting, 
synthesizing, and utilizing evidence on the determinants of a behavior, we can effectively reduce this bias: Moreover, we can better 
understand what the known unknowns and limitations of our models are if we do not have data to incorporate all significant 
variables.

However, this paper only presents a proof of concept of the suggested method. There is room for expanding on and improving 
the method. To channel future research efforts, below are a few suggestions:

• The training data for the BERT model can be improved by including more and more diverse articles. It is theoretically possible 
to train a generic BERT model that extracts independent and dependent variables, moderators, and study samples or objects for 
15

all kinds of disciplines. The availability of such a pretrained model would have the advantage that researchers don’t have to 
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Fig. 9. Frequency of Study versus Variable Importance.

train their own algorithms to use this method. This requireslabeling a large set of articles from a diversity of disciplines with 
corresponding tags. To build a specific knowledge graph, a researcher would subsequently have to feed a subset of articles on a 
topic into the BERT model.

• The relation inference model proposed in this paper can be improved by incorporating other syntactical features. It was currently 
based on particular syntactical features, such as the Stanford dependency parser, which in itself involves occasional errors [92.2% 
accuracy [13]]. Despite the inclusion of 71 features, more work needs to be done to understand which other syntactical features 
could be relevant.

• As was pointed out in our modal choice method application, a major challenge is the semantic diversity of variable names, 
specifically identifying and processing synonymy, hyponymy, and polysemy. We implemented a preliminary solution by using 
semantic and string similarity measures as well as synonym/antonym analysis. As the performance metrics show, our approach 
works well, but more research may improve the variable harmonization method. This could be done e.g. based on transformer-

based word embeddings (e.g. GPT-4 or BERT) to measure the semantic distance between entire phrases.

• Large Language Models (LLMs), such as GPT-4, Falcon, or LLAMA-2, may improve the NER task, the relation inference task and 
the variable harmonization task of our method framework. Future research should try and apply these newer models to these 
subtasks.

• Our proof of concept method only used meta-analyses and systematic reviews as evidence sources based on the rationale that 
they applied quality criteria themselves. However, a more inclusive approach would be to extent the BCDO with evidence 
attributes such as attributes of the methods used, the sample sizes, the reported uncertainty and the control variables, and then 
decide based on methodological criteria whether to include evidence instances in the knowledge graph. One can also add a more 
16

nuanced quality criterion to the BCDO that is computed based on these methodological attributes.
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• The knowledge used to populate the BCDO allows us to make use of the reasoning abilities of the ontology [25]. For example, 
one could infer that if multiple study groups that are identified by different classes of the same variable (e.g. men, women) have 
different directions of statistical association or diverging significance levels of a specific behavior determinant, then the variable 
defining the social group is a moderator for the behavior determinant. More research is required to understand the value and 
potential of using reasoning to create new knowledge and implement causal theory to make causal inferences based on the 
collected knowledge [45].

Despite room for technical improvement, our method shows that it is feasible to automatically extract evidence instances from 
literature using NLP-based deep learning on a high level of quality, which can be used to validate the structure of simulation and 
projection models. We trust that our method could be used to validate the model structure of other phenomena or disciplines as well, 
provided that there is a large enough evidence base and manually extracting knowledge would be difficult to achieve and inefficient.

We hope that more research will follow and that the openly provided tools published alongside this paper can be used and 
improved to lead to a reliable, open-access method for automated knowledge extraction and model validation. With many societal 
challenges to be solved, the importance of reusing evidence for scenario modeling and explicit simulations remains critical. While 
the number of simulation methods is growing [e.g., [34], and so is their use [26], it is time for validation methods to catch up.
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