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A B S T R A C T   

Background: Environmental noise has detrimental effects on various health outcomes. Although disparities in 
some environmental exposures (e.g., air pollution) are well-documented, there is still a limited and uncertain 
understanding of the extent to which specific populations are disproportionately burdened by noise. 
Aim: To assess whether environmental noise levels are associated with demographic and socioeconomic neigh-
borhood compositions. 
Methods: We cross-sectionally examined long-term noise levels for 9,372 neighborhoods in the Netherlands. We 
linked these noise levels with administrative data on neighborhood characteristics for the year 2021. Linear and 
non-linear spatial regression models were fitted to explore the associations between noise, demographic, and 
socioeconomic neighborhood characteristics. 
Results: Our results showed that 46 % of the neighborhoods exhibited noise levels surpassing the recommended 
threshold of 53 dB to prevent adverse health effects. The regressions uncovered positive and partially non-linear 
neighborhood-level associations between noise and non-Western migrants, employment rates, low-incomers, and 
address density. Conversely, we found negative associations with higher-educated neighborhoods and those with 
a greater proportion of younger residents. Neighborhoods with older populations displayed a U-shaped 
association. 
Conclusions: This national study showed an inequality in the noise burden, adversely affecting vulnerable, 
marginalized, and less privileged neighborhoods. Addressing the uneven distribution of noise and its root causes 
is an urgent policy imperative for sustainable Dutch cities.   

1. Introduction 

Growing research assesses the role of environmental exposures as a 
contributing factor to health inequalities (Brulle and Pellow, 2006; Van 
Horne et al., 2023). The environmental injustice literature suggests that 
exposures tend to be unevenly distributed with higher environmental 
noise levels in urbanized areas (Liu, 2001; Stansfeld et al., 2000) and 
that marginalized residential neighborhoods face a disproportionately 
high burden (Mohai et al., 2009; Mohai and Saha, 2015). Studies 
revealed, for example, that the burden of air pollution (Hajat et al., 
2015) and ambient light at night falls upon those most vulnerable, 
economically, and socially unprivileged (Nadybal et al., 2020). Like-
wise, meta-analyses substantiated that tree occurrences were tentatively 
related to race (Watkins and Gerrish, 2018) and more robustly associ-
ated with income (Gerrish and Watkins, 2018). 

Environmental noise emitted from, for example, transport and rail, 
constitutes another environmental stressor detrimental to human health 
(Basner et al., 2014; Welch et al., 2023). Annual European estimates 
place the number of premature deaths caused by long-term noise at 
approximately 12,000 (European Environment Agency, 2019), with an 
associated yearly loss of one million healthy life years from 
traffic-related noise in Western Europe (World Health Organization, 
2011). Several reviews and meta-analyses have suggested positive as-
sociations between traffic noise and, for example, depressive symptoms 
(van den Bosch and Meyer-Lindenberg, 2019), anxiety symptoms (Lan 
et al., 2020), and cardiovascular disease (Münzel et al., 2021). 

Despite its adverse health effects, noise is less acknowledged as an 
environmental justice subject (Preisendörfer et al., 2022). Pooling the 
piecewise findings from two reviews, both on the ecological level and 
personal level, crystallizes that results are mixed with partly opposing 
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associations (Dreger et al., 2019; Trudeau et al., 2023). For example, 
traffic noise burdened those earning the least in Montreal (Canada) 
(Carrier et al., 2016) and those living in deprived areas in Marseilles 
(France) (Bocquier et al., 2013). In Berlin (Germany), however, dis-
parities in noise were heterogeneous (Lakes et al., 2014), a trend that 
Barcelona (Spain) (Lagonigro et al., 2018) and London (UK) paralleled 
(Tonne et al., 2018). These results counter those from Paris (France), 
where those in advantaged neighborhoods faced higher traffic noise 
(Havard et al., 2011). 

While insightful, the evidence on noise inequalities has limitations. 
First, the few European studies are often restricted in their analytical 
coverage, limiting the generalization of the findings. Dutch-related noise 
pollution research specifically, where it does exist, has only focused on 
single emission sources, like Schiphol airport (Kruize et al., 2007). 
Second, besides between-country health inequalities (Mackenbach et al., 
2008), results on noise inequality assessments from North America 
(Casey et al., 2017) cannot easily be transferred to Europe, having 
distinctive socioeconomic profiles, urban morphologies, and trans-
portation patterns (van de Coevering and Schwanen, 2006). Third, 
methodological uncertainties may also play a role concerning a lack of 
universal findings (Trudeau et al., 2023). For example, though theo-
retically not justifiable, studies typically assume that the associations are 
linear. Another study suggested that the results may be sensitive to how 
socioeconomic indicators are used and are dependent on the noise 
source under investigation (Peris and Arguelles, 2023), highlighting the 
necessity for additional research. 

Due to the paucity of national noise inequality studies in Europe, in 
this paper, we fill these gaps in the state of research by conducting a 
small-area study in the Netherlands. We aimed to examine the possibly 
non-linear associations between environmental noise levels, de-
mographic, and socioeconomic neighborhood compositions. Based on 
the current knowledge base, we hypothesized that socioeconomically 
disadvantaged neighborhoods and those with a high proportion of 
ethnic minorities are associated with greater noise. Next, neighborhoods 
with pronounced younger or older people and higher employment rates 
might suffer less from noise pollution, as do less urbanized neighbor-
hoods. Despite social equity being a pillar of the Sustainable Develop-
ment Goals, noise is still absent from any of the 169 targets (United 
Nations, 2016); yet remains a barrier to sustainable development (King, 
2022). Along these lines, our timely analysis responds to calls to action 
and may guide policymakers to realize equitable planning efforts when 
framing future environmental justice targets so that no one is left behind 
(Ganzleben and Kazmierczak, 2020). 

2. Materials and methods 

2.1. Study area 

The Netherlands provided an excellent case for our cross-sectional 
study. A European country-wide comparison of environmental health 
inequalities showed that in the Netherlands, self-reported noise annoy-
ance follows an income gradient (World Health Organization, 2019). 
Those in the lowest quintile showed the highest prevalence of noise 
annoyance. Our study was conducted on the neighborhood level 
(‘buurten’) for 2021, the most fine-grained scale with rich demographic 
and socioeconomic data. Further, the neighborhood level reflects that 
some noise sources (e.g., road traffic noise) typically disseminate over 
small distances. 

There were 13,885 neighborhood units. Of those neighborhoods, we 
excluded units with incomplete covariate information, unpopulated, not 
on the mainland, and privacy-protected due to insufficient residents (N 
= 4,498). We did a complete case analysis relying on 9,372 neighbor-
hoods with a median size of 0.567 km2 (standard deviation [SD] 
±5.372) and a median population of 1,265 (SD ± 1,755). 

2.2. Modeled long-term environmental noise 

Estimates of environmental noise pollution were based on the Stan-
dard Model Instrumentation for Noise Assessments (STAMINA) for 
large-scale noise mapping developed by the Dutch National Institute for 
Public Health and the Environment (Schreurs et al., 2010). STAMINA 
extends the point-based standardized Dutch noise calculation to the area 
level nationally, implementing the European Environmental Noise 
Directive (i.e., END 2002/49/EC). The model incorporates roadway 
traffic, railway traffic, industrial noise, and wind turbines as sources to 
obtain average estimates of the day–evening–night noise levels (Lden) in 
decibels (dB(A)). In contrast to noise levels between 7:00 and 19:00 
(Lday), an additional penalty of 5 dB(A) is used for evening noise between 
19:00 and 23:00 (Levening), and a 10 dB(A) penalty for nighttime noise 
between 23:00 and 7:00 (Lnight). These penalties are assigned based on 
the assumption that noise during the evening and nighttime causes more 
of a disturbance. Lden is calculated as follows (Schreurs et al., 2010): 

Lden = 10 log
(

12
24

× 10
Lday

10 +
4
24

× 10
Levening+5

10 +
8
24

× 10
Lnight+10

10

)

(1) 

Estimated road and rail traffic noise (LE) emission levels are deter-
mined at the source location i. While traffic noise depends on the road 
surface, traffic speed, and the intensity of the vehicle type, rail traffic 
noise depends on the railway stock, speed, and superstructure. As shown 
in equation (2), the noise levels are then attenuated due to geometric 
spreading (AGeo), air absorption (AAir), ground impedance (e.g., grass vs. 
asphalted) (AGround), noise barriers (e.g., buildings) (ABarrier), and a 
meteorological correction (CMeteo) which considers varying wind di-
rections and temperature gradients. Finally, because noise diffuses 
spatially, a correction factor of 58.6 dB is subtracted from LE (Schreurs 
et al., 2010). 

Lden,i =LE,i − AGeo,i − AAir,i − AGround,i − ABarrier,i − CMeteo − 58.6 (2) 

Industrial sources follow a similar calculation but represent point- 
based emission sources rather than line-based ones (i.e., streets, rail-
roads). Different noise propagation levels are assigned depending on the 
use of the site. For instance, a shipyard has an emission estimate of 70 dB 
(A)/m2, while a warehouse only emits an estimated 55 dB(A)/m2 

(Schreurs et al., 2010). Wind turbine noise emissions are estimated by 
fitting a logarithmic curve to the noise levels obtained from the Dutch 
wind turbine models used at certain wind speeds and average wind 
speeds, lower at night and higher during the day (Schreurs et al., 2010). 

Since our study centers on overall environmental noise pollution, we 
used the estimated cumulative noise levels for 2021 obatined from the 
Environmental Health Atlas (Dutch National Institute for Public Health 
and the Environment). The gridded noise surface has a spatially varying 
resolution depending on the distance to the noise emission sources. The 
lowest spatial resolution is 80 × 80 m, the highest is 10 × 10 m. We 
averaged the grid cell values onto each neighborhood representing our 
outcome variable. We used the R software 4.2.2 (R Core Team, 2023) 
and the packages ‘terra’ (Hijmans, 2023) and ‘sf’ (Pebesma, 2018) for the 
data processing. 

2.3. Independent variables 

Socioeconomic and demographic area-level data were uniformly 
aggregated to each neighborhood. Informed by previous environmental 
justice studies (Nega et al., 2013; van Velzen and Helbich, 2023), we 
included seven routinely collected independent variables. Unless stated 
otherwise, these variables were acquired from Statistics Netherlands 
referring to the year 2021. 

First, we obtained proxy measures representing area-level socio-
economic status (Hajat et al., 2015). Because socioeconomic status 
typically comprises multiple dimensions (Berkman et al., 2014), we 
included the percentage of low-income residents (i.e., residents who are 
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in the lowest 20 % of earners compared to the Dutch average), the 
percentage of highly educated residents (i.e., those with a bachelor’s 
degree or higher), and the percentage of employed people. Second, 
because some studies indicated that migrants tend to experience higher 
levels of noise pollution (Casey et al., 2017; Chakraborty and Aun, 2023; 
Tonne et al., 2018), we adjusted for the percentage of residents with a 
non-Western migration background (i.e., primarily from Morocco, 
Antilles, Aruba, Surinam, and Turkey). Third, as an additional de-
mographic factor, we controlled for two physiologically vulnerable age 
groups put at risk due to environmental stressors, namely the proportion 
of children and adolescents (i.e., those aged ≤15) (Stansfeld and Clark, 
2015) and elderly people (i.e., people aged 65+) (Van Kamp et al., 
2013). Fourth, the degree of urbanicity is often associated with higher 
noise pollution (Stansfeld et al., 2000). We included the number of ad-
dresses per km2 to include such geographic noise variations. 

2.4. Statistical analysis 

2.4.1. Descriptive and exploratory analysis 
Mean and SD were produced to summarize the data. To assess 

possible exposure differences, we stratified the demographic and so-
cioeconomic variables by the noise quintiles. Additionally, we quanti-
fied the neighborhood-level noise inequalities using the spatial 
decomposition of the Gini coefficient available in the R package ‘lctools’ 
(Rey and Smith, 2013). The Gini index ranges between 0 and 1 as a 
descriptive summary measure and is determined based on the Lorenz 
curve representing the cumulative noise distribution. While zero ex-
presses perfect equality, higher Gini values refer to greater inequality (i. 
e., a smaller portion of neighborhoods face a larger share of noise 
exposure) (Farris, 2010). We used the global and local Moran’s I to 
assess neighborhood-level noise patterns. Statistical significance was 
tested with 999 Monte Carlo simulations. We assessed the bivariate 
correlations across the variables using Spearman’s correlation 
coefficients. 

2.4.2. Regression analysis 
We regressed neighborhood-level noise onto the complete set of in-

dependent variables using ordinary least squares (OLS) (Model 1). The 
variables entered the model log-transformed, and 0.1 was added to those 
variables with a minimum of zero. Possible multicollinearity was 
inspected through variance inflation factors (VIFs). A VIF threshold 
value of five was set to identify multicollinearity issues (Kim, 2019). 
Because OLS regression assumes residual independence, we used the 
Moran’s I with a k-nearest neighbor weight matrix specification to test 
for residual spatial dependency. The range is typically between − 1 and 
+1. Positive values indicate positive spatial autocorrelation, and nega-
tive values indicate negative spatial autocorrelation (Bivand, 2022). 
Statistical significance was tested through 999 Monte Carlo simulations. 
The k-nearest neighbor approach was deemed suitable because of the 
irregularly distributed neighborhood units of differing sizes, and some 
areas had no data due to privacy protection or were not inhabited. Since 
there is no one-size-fits-all solution for the user-specified parameter k 
(Arbia, 2014), we tested values between 3 and 15, but the Moran’s I of 
all specifications pointed to residual spatial dependency necessitating 
spatial econometrics (Anselin and Bera, 1998). 

We used the (robust) Lagrange Multiplier (LM) test to determine 
whether the spatial lag or spatial error model was more suitable for our 
data (Anselin and Bera, 1998). The robust LM test suggested using a 
spatial lag rather than an error model. The lag model (Model 2) extends 
the OLS model by considering the influence of neighboring observations 
on the response. A spatial weights matrix determines how neighboring 
observations are weighted in calculating the lagged variable. As for the 
Moran’s I, we tested 3 to 15 nearest neighbors, while k = 4 resulted in 
the best model fit assessed through the Akaike information criterion 
(AIC). Lower AIC scores are favored. Due to the spatially lagged nature 
of the response, the estimated parameters cannot be understood as per 

standard practice (Arbia, 2014). Thus, we report the average total 
impact, capturing the sum of direct and indirect impacts of an inde-
pendent variable on the response. The ‘spatialreg’ package was used for 
model fitting (Bivand, 2022). 

Because the spatial lag model is less capable of modeling complex 
non-linearities in the associations (e.g., polynomials may cause multi-
collinearity issues), we opted to fit a generalized additive model with a 
Gaussian link function in our secondary analysis (Model 3) (Wood, 
2017). The independent variables were incorporated 
non-parametrically using thin-plate regression splines. We assessed 
collinearity among the smoothers using measures of concurvity. To ac-
count for the spatial dependence structure in our data, we modeled 
spatial correlations by a Markov random field smoother based on 
k-nearest neighbor (k = 4). The degree of nonlinearity of each variable 
was measured by the effective degrees of freedom. A value close to 1 
represents a linear association. We used the ‘bam’ function in the ‘mgcv’ 
R package designed for large datasets (Wood et al., 2017). 

3. Results 

3.1. Univariate statistics 

On average, the noise level of the neighborhoods was 52.1 dB (SD ±
5.8 dB). The interquartile range was 8.9 dB (1st quartile: 48.7, 3rd 

quartile: 55.9). Fig. 1 shows the variation of the annual average noise 
levels. Noise varied by region, which appeared to be higher in the 
Randstad area, including Amsterdam, Rotterdam, Utrecht, and The 
Hague. As anticipated, rural areas in the northeast and south of the 
Netherlands have relatively low noise levels. Neighborhoods with the 
highest noise pollution were next to major roads and highways, near 
airports (i.e., Schiphol airport), and industrial sites (Fig. 1). Table 1 
reports some summary statistics of the variables. Independent variables 
are mapped in Supplementary Fig. S1. 

We computed the Lorenz curve and the Gini index to quantify 
possible distributive noise inequalities, as displayed in Supplementary 
Fig. S2. The Lorenz curve is close to the line of equality (dashed line), 
and the spatial Gini index decomposition reveals that the main source of 
inequality is from neighborhoods that are not adjacent (Gini = 0.062, p 
< 0.01), as opposed to neighboring neighborhoods where the Gini index 
is close to zero. 

As shown in Fig. 2, we grouped the area-based noise levels into 
quintiles (i.e., the 1st quintile refers to the lowest noise levels) and 
assessed how the independent variables vary accordingly. Some differ-
ences were noticeable. While the employment rate and the population 
under 15 remained relatively constant across the noise quintiles, other 
socioeconomic characteristics varied greatly. For example, neighbor-
hoods with a high proportion of non-Western migrants were dis-
proportionally exposed to high noise levels. In contrast, neighborhoods 
with higher rates of low-incomers and those with more academically 
educated people faced more noise. Denser populated areas showed a 
more pronounced exposure to noise. 

Noise levels were significantly autocorrelated (Moran’s I = 0.599, p 
= 0.001), suggesting the possible need to incorporate spatial depen-
dence in the regression. Results of the local Moran’s I supported these 
impressions and indicated significant (p < 0.05) noise hotspots (i.e., 
neighborhoods with high noise levels are surrounded by ones with high 
noise levels) (Supplementary Fig. S3). 

3.2. Correlation analyses 

Supplementary Fig. S4 summarizes the results of the correlation 
coefficients. Noise levels (NOI) were significantly associated with the 
other independent variables (p < 0.05). The highest correlation of 0.57 
was between noise and non-Western migrants (NWES). We observed a 
moderately strong correlation of 0.72 among the independent variables 
between non-Western migrants (NWES) and address density (DENS). A 

M. Hayward and M. Helbich                                                                                                                                                                                                                 



Environmental Research 248 (2024) 118294

4

moderate negative correlation (− 0.59) was seen between the proportion 
of low-income residents and employment rate (EMPL), while a positive 
one (0.58) was observed between the proportion of non-Western mi-
grants and low-income residents (INC). 

3.3. Regression results 

We fitted an OLS regression to further quantify the descriptively 
found inequalities. The highest VIF value was 2.598 (NWES), falling 
below the cut-off value of five. The assessment of the OLS residuals 
indicated significant residual autocorrelation (Moran’s I = 0.383, p <

0.001), rendering inference likely biased. The robust LM test suggested a 
spatial lag model as an alternative. As indicated by the AIC, the lag 
model (− 22,183) performed better than the OLS model (− 18,609). The 
lag model’s Nagelkerke R2 was 0.592. Since Moran’s I has become 
insignificant, the lag model appropriately incorporates residual auto-
correlation (Moran’s I = − 0.012, p = 0.952). This is further supported 
by the statistically significant spatial autoregressive parameter of 0.613 
(p < 0.001). 

Fig. 3 and Supplementary Table S1 summarize the corresponding 
total impact effects of the lag model. Logged address density and logged 
employment rate were positively associated with logged neighborhood- 
based noise levels. In contrast, the logged population with a bachelor’s 
degree showed an inverse association, as did low-income neighbor-
hoods, but it did not reach statistical significance (p = 0.080). While 
non-Western migrants were positively associated with noise, the logged 
population aged under 15 was inversely associated. A null association 
was observed for the population aged 65+ (p = 0.273). Our regression 
results were robust to a different number of nearest neighbors for model 
fitting and refitting the model without address density, which is corre-
lated with noise. 

In our secondary analysis (Model 3), we fitted a generalized additive 
model, resulting in a lower AIC score (− 33,006) than the linear models. 
No significant positive residual spatial autocorrelation was present. We 
observed no issues of collinearity among the smoothers. Fig. 4 and 

Fig. 1. Gridded annual average noise estimates for the Dutch mainland based on the STAMINA model (data source: Environmental Health Atlas).  

Table 1 
Descriptive statistics.  

Variable Abbreviation Mean SD 

Annual average noise levels NOI 52.14 5.83 
Population aged under 15 ( %) YOUN 15.15 4.72 
Population aged 65+ ( %) OLD 20.78 8.71 
Population of non-Western migrants ( %) NWES 10.14 11.97 
Employment rate ( %) EMPL 70.23 7.57 
Population in the lowest 20 % of earners ( %) INC 5.55 4.38 
Population with a bachelor’s degree or higher ( 

%) 
HEDU 23.70 11.36 

Address density (per km2) DENS 4283 4079  
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Supplementary Table S2 summarize the results for the smoothing 
splines. Each smoother was statistically significant. The effective de-
grees of freedom were between 3.6 and 7.7, indicating (partly sub-
stantial) non-linearities (e.g., address density). While low-income 

neighborhoods showed null associations in the lag model, the smoother 
indicated that beyond a threshold value, the association turned positive. 
Similarly, the association for the population aged 65+ was U-shaped. 
Despite some deviation from linearity, the other smoothers roughly 
resembled the results of the lag model. 

4. Discussion 

Environmental noise is gaining recognition as a threat to human 
health, with certain populations disproportionally affected. In this 
nationwide study, we assessed the associations between noise levels and 
those demographic and socio-economic population groups that suffer 
the most, with the goal of suggesting actions to mitigate inequality in 
noise exposure. 

4.1. Main findings and interpretation 

Consistent with our hypothesis, our results indicated socioeconomic 
disparities in noise levels across the Netherlands. Despite the European 
Environmental Noise Guidelines advising average road traffic noise 
levels below 53 dB to mitigate health effects (World Health Organiza-
tion, 2018), our descriptive statistics revealed that 46 % of the neigh-
borhoods exceeded this limit, posing potential health risks to residents. 

Our results also indicated that neighborhoods with higher employ-
ment rates are positively associated with noise levels. Such a finding 
contradicts, for example, Lagonigro et al. (2018) for Barcelona, where 
areas with higher unemployment rates were overexposed. Similar 
ecological results were reported for Ghent, Belgium (Verbeek, 2019). 
However, a person-level study in Greater London concluded the opposite 
by reporting a null relation between neighborhood noise levels and 
employment rates (Xie and Kang, 2010). 

Unlike Trudeau et al. (2023), who reported that education is 

Fig. 2. Mean socioeconomic neighborhood characteristics per noise quintile. The 1st quintile refers to the lowest noise levels and the 5th quintile to the highest 
noise levels. 

Fig. 3. Estimated associations based on the OLS model (Model 1) and the 
spatial lag model (Model 2). The estimates for the lag model refer to the total 
impacts. Estimates are reported with two times the standard error. Significant 
independent variables at the 5 % level are labeled with ‘*‘. We log-transformed 
the variables before model estimation. 
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infrequently related to noise exposure, our area-level indicator on edu-
cation reached statistical significance. Confirming our hypothesis, we 
observed a negative association between noise and the proportion of 
academics. Our finding may be attributed to reduced social capital in 
less-educated neighborhoods, limiting their capacity for political inter-
vention to address noise issues (Dreger et al., 2019). This result cor-
roborates another ecological US-based analysis where those with at least 
a high school education were underexposed (Casey et al., 2017). In 
Europe, the findings varied (Dreger et al., 2019), possibly due to various 
analytical scales and ways to capture the high/low-educated (Peris and 
Arguelles, 2023). 

Counter expectation, we found a null association between low- 
income neighborhoods and noise in the lag model. It turned out, how-
ever, that the association was significant in neighborhoods with a sub-
stantial proportion of low-income residents, echoing a US study (Casey 
et al., 2017). Other studies also reported inverse associations with in-
come, regardless of the study design, as a review revealed (Trudeau 
et al., 2023). It is commonly assumed that low-income neighborhoods 
are more vulnerable due to limited resources and fewer coping strate-
gies, as a population-based German study among adults reported 
(Kohlhuber et al., 2006). 

Our findings revealed a significantly positive association between 
communities with more migrants and higher noise levels. Such over-
exposure of noise is well-documented; for example, in a person-level 
study in London (Tonne et al., 2018) and an area-level US study 
(Casey et al., 2017). The former found that the odds of living within a 50 
dB contour of rail noise were significantly higher for Afro-Americans 
than for white people, while in the latter, higher census block-based 
noise levels were associated with more non-white residents. Two ex-
planations could support our findings. Native and Western residents may 
have higher geographic mobility to avoid environmental hazards, while 
non-Western migrants cannot do the same, leaving them in more 
polluted areas (Downey and Hawkins, 2008). Further, it could be that 
ethnic neighborhoods predominantly feature more sources emitting 
environmental noise (Trudeau et al., 2023). 

Concerning vulnerable communities, our association of the propor-
tion of children and adolescents with noise was, as anticipated, negative 
and consistent with prior studies (Lagonigro et al., 2018). It appears 
plausible that healthy neighborhoods act as an attractive force (Liu, 
2001). Consequently, households may disproportionately gravitate to-
wards less noisy neighborhoods, particularly when raising children. The 
association associations between elderly people and noise followed a 

Fig. 4. Estimated non-linear associations (Model 3). Smoothers were obtained through a generalized additive model with a Markov random field. The associated 
shaded regions around the smoothers represent the 95 % confidence intervals. The corresponding effective degrees of freedom are given in brackets on the y-axis. We 
log-transformed the variables before model estimation. 
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U-shape, which was not captured in the linear model. The evidence base 
considering elderly people is heterogeneous, and associations usually 
assumed to be linear remain inconclusive (Trudeau et al., 2023). For 
example, an area-level study in Birmingham (UK) yielded similar results 
to ours, showing no differences (Brainard et al., 2004). However, noise 
levels in Barcelona were positively associated with old age (Lagonigro 
et al., 2018). The latter may be due to limited mobility and restricted 
freedom to choose residential neighborhoods, often influenced by 
financial constraints and accessibility considerations. 

Finally, as expected, we found that the higher the urbanization level, 
the higher the noise pollution; a finding is well-supported by the liter-
ature (Dreger et al., 2019; European Environment Agency, 2018). This 
observation is likely due to more vehicular and human activities 
(Stansfeld et al., 2000), while noise-absorbing features such as green 
spaces are scarcer. The movement of vehicles (e.g., buses) on roads 
generates significant noise, especially during peak hours. 

4.2. Strategies to achieve an equitable noise distribution 

The European Commission has recognized environmental noise as a 
pollutant requiring reduction. As part of its Zero Pollution Action Plan, it 
has proposed a policy target to decrease the proportion of individuals 
chronically disturbed by transport noise by 30 % by 2030 (European 
Commission, 2023). Achieving this goal necessitates pinpointing the 

population most affected by noise exposure as a priority (European 
Environment Agency, 2018). Research endeavors like ours are crucial 
for identifying such unequal distribution of noise exposure, which goes 
unnoticed by policymakers to continue progressing towards a more 
sustainable, equitable future. 

Reducing engine, exhaust, and rolling noise is generally crucial in 
tackling urban noise pollution, regardless of population strata. This can 
be achieved by addressing sources directly and environmental in-
terventions (Van Renterghem et al., 2015). The former can be achieved 
by imposing lower speed limits (e.g., 30 km/h) for motorized traffic in 
urban areas where noise-reducing infrastructure is difficult to realize 
(Brink et al., 2022; Nieuwenhuijsen, 2020). While such strategies are not 
explicitly tailored to address environmental inequalities, actionable 
policy lessons are also needed to protect the most exposed. For instance, 
enhancing green spaces, particularly in priority areas, including less 
affluent neighborhoods, can be a cost-effective nature-based solution. 
Besides health benefits (Twohig-Bennett and Jones, 2018), vegetation 
enhances living conditions and can buffer noise between 9 dB and 11 dB, 
depending on the tree’s leaf surface area (Ow and Ghosh, 2017). 

It seems vital to prioritize vulnerable neighborhoods for financial 
subsidies to improve the effectiveness of soundproofing homes and 
warrant affordable housing options in quieter neighborhoods. To 
counter widening population inequalities, we plea for inclusive urban 
planning (Pineo, 2022) to ensure that noise exposure is fairly 

Fig. 4. (continued). 
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distributed, regardless of the socio-economic status of a neighborhood, 
to create more equitable living conditions for all residents (Nieu-
wenhuijsen, 2020). 

4.3. Strengths and limitations 

This study possessed various strengths. Diverging from most schol-
arship focused on individual cities (Clark et al., 2022; Huang et al., 
2021), our study was one of the few national analyses. While previous 
studies investigated environmental disparities, primarily concentrating 
on air pollution (Jbaily et al., 2022; Liu et al., 2021), our focus centered 
on noise pollution, a less well-explored environmental factor. Addi-
tionally, incorporating diverse neighborhoods along the urban-rural 
gradient enriched our findings, offering more nuanced results than 
exclusively focusing on individual cities. Our non-linear and spatially 
explicit modeling approach successfully overcame the methodological 
challenges of geographically correlated neighborhoods, a deficiency 
that likely biased the estimates in previous studies (Brainard et al., 
2004). Another notable strength was the aggregation of noise levels on a 
small scale, allowing us to depict noise variations accurately while 
minimizing the risk of aggregation errors. Nonetheless, future studies 
are advised to model noise exposure disparities on an individual’s 
address over the residential history (Hagedoorn and Helbich, 2021) and 
along their daily mobility (Kim and Kwan, 2021) rather than assessing 
ecological associations. 

Despite these strengths, certain limitations need to be emphasized. 
Our noise metric did not distinguish between various noise types, 
leaving us uncertain about whether a particular type of noise is 
accountable for the observed inequalities. We used mean environmental 
noise levels as the response variable, but this operationalization over-
looks potential within-neighborhood heterogeneity. As the observed 
associations were on the neighborhood level, we cannot rule out that 
employing different analytical granularities may yield slightly different 
effect estimates (Tian et al., 2024), as indicated by the Modifiable Areal 
Unit Problem (Openshaw, 1981). Correspondingly, inherent in the 
ecological study design, drawing inference about individuals is inap-
propriate (Freedman, 1999). Another limitation pertained to the model 
adjustment. While we adhere to the literature in selecting our area-level 
variables, it is possible that certain variables were not included in the 
analysis. For example, as done elsewhere (Casey et al., 2017), we did not 
include a population-based segregation measure. Finally, due to the 
cross-sectional nature of the data, the reported associations do not 
enable causal interpretations, as is the case for most similar studies 
(Clark et al., 2022). For more robust longitudinal associations and to 
ascertain whether the observed inequalities persisted or exacerbated 
over time, future research should employ panel models that can account 
for time lags and unobserved confounders. 

5. Conclusions 

The pervasive environmental noise emitted from anthropogenic ac-
tivities has become a concern for human health. This burden is, how-
ever, not shared equitably geographically or socioeconomically. 
Accompanying the environmental inequality in city-specific studies, our 
national findings from the Netherlands support the notion that neigh-
borhoods with more non-Western migrants, employment rates, and 
address density were positively associated with noise pollution. Low- 
income neighborhoods were only associated with noise beyond a 
threshold value. We observed negative neighborhood-level associations 
with a higher proportion of academics and neighborhoods with more 
younger residents. Neighborhoods with a higher share of older people 
showed a U-shaped association with noise. Our results further revealed 
that such discrimination may be exacerbated through the geographic 
context; more urbanized neighborhoods were especially associated with 
increased noise pollution. The models emphasized the significance of 
considering spatial effects between neighborhoods and non-linearities in 

the associations. 
To address environmental injustice, our study underscores the ne-

cessity of implementing policy measures that extend beyond generic 
one-size-fits-all noise mitigation strategies. We advocate for place-based 
noise interventions that are socially tailored to efficiently tackle the root 
causes of environmental stressors; otherwise, we pose the risk of certain 
vulnerable and less privileged population groups being disproportion-
ately affected by noise, leading to multiple jeopardy in terms of envi-
ronmental burdens, and possibly widening the health disparities. 
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