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Abstract: We generalize Gopakumar’s microscopic derivation of Witten diagrams in large

N free quantum field theory [1] to interacting theories in perturbative expansion. For

simplicity we consider a matrix scalar field with Φh interaction in d dimensions. Using

Schwinger’s proper time formulation and organizing the sum over Feynman diagrams by

the number of loops `, we show that the two-point function in the massless case can

be expressed as a sum over boundary-to-boundary propagators of massive bulk scalars in

AdSd+1 with masses determined by `. The two-point function of the massive theory has the

same structure given by a sum over boundary-to-boundary propagators but on a geometry

different than AdS. The coefficients in the sum contain information on the putative string

geometry dual to the interacting QFT. We also consider the three-point function in the field

theory and show that it can again be given as an infinite sum, this time over the products

of three bulk-to-boundary propagators. The issue of divergences and renormalization is

discussed in detail.

We also notice an intriguing similarity between field theory and string amplitudes. In

particular we observe that, in the large-N limit, embedding function of string in the holo-

graphic direction corresponds to a continuum limit of Schwinger parameters of Feynman

diagrams in the limit where ` diverges. This provides an interpretation of the holographic

dimension emerging directly from field theory amplitudes.ar
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1 Introduction and summary

Gauge-string correspondence [2–4] lacks a satisfactory microscopic derivation directly from

quantum field theory, barring specific examples such as matrix quantum mechanics [5]

(see [6] for a review), minimal model CFTs [7–9], symmetric product CFTs [10], free field

theories [11, 12] and vector models [13]. One fundamental question is how to reformulate

holographic QFT correlation functions, in particular their expansion in terms of Feynman

diagrams, so that, for example, emergence of gravity becomes manifest. Various funda-

mental questions in this context are: how do propagators of dual gravitational space-time

arise from field theory amplitudes; how to determine which QFTs are holographic, which

are not?; given a holographic QFT and assuming a limit where the dual geometry is

semi-classical, is there an algorithm to determine this dual background directly from QFT

correlators?

Among all different approaches in the literature, duality between open and closed string

descriptions of D-branes [14], entanglement entropy [15], geometrization of RG flows [16–

18], bulk reconstruction [19], quantum error correction [20], tensor networks [21, 22], etc.,

there is one which stands out as the most elementary: deriving dual gravity propagators

directly from the QFT Feynman diagrams. For free field theories in d > 2 this approach

was pioneered by R. Gopakumar [1]. The author considered free matrix field theories and

studied n-point functions of composite single-trace operators in Schwinger’s proper time

formulation [23]. The key element, at least for the three-point function studied in [1],

is a change of variables involving the moduli (Schwinger (or Feynman) parameters of a

given graph) that is called the star-triangle duality1. The name derives from an analogous

relation that involves electric circuits2 which relates the total effective impedance of a

triangle shaped electric circuit to that of a tri-star circuit, see fig. 2. In Schwinger’s

formulation the total proper time of the graph is related to the holographic direction of

the dual gravity theory [1] (see also [25–27]) and the star-triangle relation becomes a clear

manifestation of the gauge-string duality, or open-closed duality in string theory where

the gauge theory three-point function is represented by the triangle and the corresponding

Witten diagram [3] in the dual theory is represented by the tri-star, see Fig. 2. See [13] for

a more recent work, based on a different approach, that also derives dual gravity theory

directly from field theory, in the case of vector models [28].

In this note we suggest that a generalization of the star-triangle type duality of Feyn-

man diagrams to interacting field theories might be a fundamental manifestation of the

gauge-string duality and a key to generalize it beyond the known specific cases3. In par-

ticular, we generalize Gopakumar’s derivation of Witten diagrams from free field theory to

interacting theories4. As a prototype, we take a real, massless N×N matrix-valued scalar

1Earlier work relating matrix quantum mechanics and 2D non-critical string theory [5] involves a similar

type of duality.
2See for example, [24] for a concise account of the map between Feynman diagrams and electric circuits.
3E.g. based on D-brane descriptions [14], lower dimensional examples [29, 30] and vector models [13, 28].
4See [31] for generalization to higher spin amplitudes and our proceedings paper [32] where some of the

earlier results are outlined.
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field Φ with Φh interaction, for integer h > 2, in d dimensions, and consider two and

three-point functions of both canonical fields Φ(x) and composite operators Tr Φ(x)J . The

two-point function is given by Feynman diagrams summed over the number of indepen-

dent quantum loops ` which, in the large N limit, can further be classified in terms of 2D

Euclidean Riemann surfaces embedded in d dimensions. We show that each term in the

sum over ` can be mapped onto a boundary-to-boundary propagator of a scalar field with

mass m related to `, in (d+ 1)-dimensional AdS space. We find a similar structure for the

three-point function which we express as a sum over products of three bulk-to-boundary

AdS propagators. This provides a dual “closed string” picture of the two and three-point

functions in terms of a generalized Witten diagram given by sum over AdS Witten diagrams.

Even though we perform our calculations in a simple scalar ungauged theory, we will be

assuming that our findings generalize to theories like N = 4 super-Yang-Mills without

conceptual difficulties.

We study this interacting star-triangle duality from different angles. After reviewing

Gopakumar’s construction in free field theory in the next section, in section 3 we first

review Schwinger’s proper time formulation for interacting field theories and then generalize

Gopakumar’s computation to finite coupling. Our main findings, for two-point function of

canonical fields in the massless field theory are given by Equations (3.23) and (3.35). We

reproduce the latter here:

Ω(x, y) = N2
∞∑
g=0

N−2g
∞∑
`=0

λ
2`
h−2

h v∆ β∆+2(x, y) , (1.1)

where g is the genus of the graphs, β∆+2(x, y) is the boundary-to-boundary propagator

of a scalar field in AdS, ∆ is a “scale dimension of the graph” given in terms of ` as

∆ =
(
d
2 −

h
h−2

)
` + d

2 − 1 and v∆ are coefficients that involve integrals over Schwinger

parameters of the Symanzik polynomials of contributing Feynman diagrams. We derive

similar expressions for the two-point function of composite operators in (3.47) and (3.48).

These are expressed as an infinite sum over ` of boundary-to-boundary propagators in

AdSd+1. We observe from the aforementioned relation between ∆ and ` that the space-

time (or momentum) dependence of the two-point function in (1.1) becomes independent

of `, hence factorizes from the ` sum when the field theory coupling is marginal i.e. h =

2d/(d − 2). Further assuming that reguralization of divergences does not generate a new

scale, then the entire dependence of the field theory correlator on N and λh is given by the

sum over ` and g of v∆ which becomes an overall coefficient.

In section 3.1.3 we consider massive field theories and again rewrite the two-point

function in terms of d+ 1-dimensional bulk propagators, albeit, in a non-AdS space-time.

Feynman diagrams involve several UV and IR divergences. An important role is played

by regulating and renormalizing these divergences. This is discussed in detail in sections

(3.2.1), (3.2.2) and (3.2.3). We find that regularization in Schwinger’s representation ren-

ders the coefficients v∆ in (1.1) finite but does not alter the general structure. On the other

hand imposing renormalization conditions at a finite RG scale µ makes n-point functions

depend on a new parameter k/µ hence breaks the AdS structure seen in (1.1).
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In section 3.3 we consider the three-point function (only for the massless case and with-

out renormalization) and show that it can also be rewritten in terms of bulk-to-boundary

AdS propagators. Our final expression for the three-point function is given by Equation

(3.80). This concludes our analysis of the map between field theory and target space of

the putative string dual.

Another way to look at the QFT/string map is to consider directly the correspondence

between field theory amplitudes and the world-sheet computation of the dual string am-

plitudes. This is discussed in section 4. This more direct link is suggested by an intriguing

similarity between the Schwinger representation of n-point amplitudes in terms of Symanzik

polynomials and the Polyakov path integral for the corresponding string amplitude. In

short, the first and second Symanzik polynomials become related to the determinant of the

Laplacian and the Green’s function on the world-sheet5. Furthermore, we argue that the

string field that embeds the holographic dimension in the string target space, R(σ), is dual

to a continuum limit of the set of all Schwinger parameters on Feynman diagrams. This

provides an interesting alternative description of emergence of the holographic dimension

directly from the field-theory amplitudes. We also study the continuum limit of Feynman

diagrams that is expected to arise in the limit `→∞. We show that this limit generically

corresponds to tuning ’t Hooft coupling to a critical value λh → λc. We then argue that

value of this critical coupling, λc, corresponds to curvature radius in the target space in

string units. For a 4D CFT this becomes the AdS radius in string units. In the same

section, we then focus on CFTs and show that the dual bulk space in the continuum limit

is indeed AdS using the aforementioned relation between Schwinger parameters and the

holographic direction. We finally discuss how to generalize this construction of the bulk

geometry from field theory amplitudes to non-CFTs.

While the continuum limit focuses on large ` part of the sum in (1.1), we argue that

finite ` contributions generalize the geometric, string limit of the duality to include non-

geometric contributions. In particular these non-geometric contributions give rise to a

new parameter λh/λc − 1 which measures deviation from the perturbative string limit.

Many open issues such as how to read off string amplitudes from field theory in the non-

perturbative string limit, S-duality, generalization to higher point functions and so on are

discussed in section 5 where we also provide an overlook.

Appendices A to I provide details of our calculations but they also introduce new

material. In particular in Appendix we show how to express the two-point functions in

terms of boundary-to-boundary AdS propagators, Appendix F introduces a novel method

— based on “creation/annihilation operators” that create vertices — to compute the num-

ber of Feynman diagrams at a given loop ` and Appendix G uses the same idea to provide

a compact expression for the full two-point function. Finally in Appendix I we devise a (as

far as we know) new method to compute the zeros of Symanzik polynomials.

5We only consider spherical world-sheets expected to be dual to planar field theory amplitudes.
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Figure 1: Equivalence between one-loop diagram of an open string and tree level propa-

gation of a closed string.

2 Open-closed and star-triangle dualities

The AdS/CFT correspondence originates from an equivalence between open and closed

string descriptions of a set of D3 branes in IIB string theory [2]. Loosely speaking, and

in the simplest case, this can be understood geometrically as in fig. 1 which depicts

an equivalence between one-loop partition function of open strings in d dimensions and

propagation of a closed string in d + 1 dimensions [33]. In the low energy limit where

the massive string states decouple, open strings on N coincident D3 branes are effectively

described by 4D U(N) Yang-Mills gauge theory. On the other hand the closed string in fig.

1 turns out to propagate in the AdS5×S5 geometry which is generated by the backreaction

of the brane system. More precisely, the n-point function of gauge invariant operators in

the Yang-Mills theory is given in terms of the closed string world-sheet path integral

〈O1(k1) · · · On(kn)〉g =

∫
Mg,n

〈V1(k1, z1) · · · Vn(kn, zn)〉w.s. , (2.1)

where the subscript g on the RHS denotes the genus-g contribution to the Feynman di-

agrams and Vs are the closed string vertex operators which correspond to gauge theory

operators on the LHS. The integral is over the moduli of Riemann surfaces with genus g

and n punctures. To demonstrate this equivalence at the level of Feynman diagrams, one

must show how the holes on the open string (gauge theory) side are glued together and

generate closed string world-sheets with n punctures. This mechanism was first proposed

by ’t Hooft [34] in the double scaling limit,

gYM → 0 , N →∞ , g2
YMN = λ , (2.2)

where gYM is the Yang-Mills coupling constant. Emergence of a dual description in this

limit can be made explicit in 2D string theory, where the quantum mechanics of N × N
hermitean matrices become dual to 2D non-critical string theory, see for example [29].

A strong indication that the same “gluing” happens in higher dimensional free field

theories was noted in [1] utilising the proper time formulation of n-point functions, which

we review below.
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Schwinger’s proper time formulation makes the point-like feature of QFT manifest6.

In particular, correlators of a quantum field are represented by propagation of a quantum

mechanical particle in proper time τ embedded in space-time as world-line xµ(τ). To see

this one exponentiates the denominator in the two-point function

〈Φ(x1)Φ(x2)〉 = i

∫
ddk

eik(x1−x2)

k2 +m2 − iε
=

∫ ∞
0

dτ〈x1|e−iτ(−∂2+m2)|x2〉 . (2.3)

The RHS is nothing else but the path integral of a particle propagating in τ with hamilto-

nian Hpp = k2+m2. The integral over τ is moduli — a consequence of the reparametization

invariance of the worldsheet 7. A generalization of this representation to n-point functions

in a free field theory involves introduction of vertex operators inside the path integral

〈φ(x1) · · ·φ(xn)〉 =

∫ ∞
0

dτ

τ

n∏
i=1

dτi〈eik1X̂(τ1) . . . eiknX̂(τn)〉q.m. (2.4)

where the RHS is the path integral with the point particle hamiltonian Hpp = k2 + m2.

The integral is over the moduli of the Feynman diagram given by the total proper time

for the process and proper times at insertions of the vertex operators. Note the structural

similarity between (2.1) and (2.4) which already implies the utility of the Schwinger’s

formulation to explore the basic mechanism behind the gauge-string duality.

As the path integral in (2.4) is Gaussian for free field theory, one can compute it

explicitly [36] and express the result solely in terms of moduli integrals. More interestingly,

one can find a judicious change of variables of moduli to reformulate the result in terms of

propagators of scalar fields in AdSd+1 [1, 27]. Consider N = 4 super-Yang-Mills at large N

and in the free limit λ = 0, see (2.2). For the purpose of demonstration let us consider the

simplest non-trivial case of the three-point function and the operator TrΦ2 where Φ is one

of the 6 scalars in the theory. There is a single diagram that contributes to the connected

three-point function 〈TrΦ2(k1)Φ2(k2)Φ2(k3)〉 that is shown on the left figure in fig. 2.

Introducing a change of variables [1] αi = εijk|τj−τk|/τ from the moduli τi to Schwinger

parameters one can rewrite the connected three-point function as follows

Ω(k1, k2, k3) ∝ δd(
∑

ki)

∫ ∞
0

dτ

∫ 1

0

3∏
i=1

dαi δ(
∑

αi − 1) e−τ(k2
1α2α3+k2

2α3α1+k2
3α1α2) (2.5)

This is precisely in the form given by product of three propagators with dual Schwinger

parameters α1α2, etc. as shown on the RHS of fig. 2. This procedure explicitly achieves

the “gluing” mentioned above in the sense that the hole on the “open string side” i.e. the

LHS of fig. 2 is closed up on the “closed string side” i.e. the RHS of fig. 2. The RHS also

resembles the Witten diagram for the three-point function in AdS and this resemblance

can be made precise by another change of variables αi = ρi/
∑3

j=1 ρj [1] and defining the

radial coordinate of the AdS space z0 in terms of these Schwinger moduli as

z2
0 = 4τ

(
3∑
i=1

ρi

)
3∏
i=1

αi . (2.6)

6See e.g. [35] and references therein for the current developments on the worldline formulation of QFT
7Which can be removed by introducing an auxiliary worldsheet einbein gττ in the path integral.
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k1

k3

k1

k2 k3k2
a1

a2a3
a1a3 a1a2

a2a3

Figure 2: Star-triangle duality in free field theory. LHS shows the only Feynman diagram

that contributes to the three-point function of TrΦ2 where ki are external momenta and

αi are the Schwinger parameters. RHS shows its equivalent under the duality.

This results in the final expression after Fourier transforming to space-time as

Ω(x1, x2, x3) ∝
∫ ∞

0

dz0

zd+1
0

∫
ddz

3∏
i=1

K∆i(xi; z, z0) (2.7)

where K∆(xi, y; z) are the boundary-to-bulk propagators for a scalar with mass m2 =

∆(d−∆), with ∆ = 2, corresponding to TrΦ2 operator in AdSd+1 on the Poincaré patch

ds2 =
1

z2
0

(
dz2

0 + ηab dz
adzb

)
. (2.8)

This computation can be generalized to an arbitrary string of Φ fields [25], presumably to

other N = 4 super-Yang-Mills operators and higher point functions [27].

3 Generalization to interacting theories

In this section we demonstrate that the derivation of AdS propagators from Feynman

diagrams carries over to interacting QFTs. For simplicity, we consider a matrix scalar field

Φ in d dimensions with an interaction potential Φh. We consider a generic QFT action in

Euclidean signature

S =

∫
ddxTr

(
−1

2
(∂Φ)2 − M2

2
Φ2 +

∑
h

gh
h!

Φh

)
, (3.1)

where h > 2 is the coordination number of the vertex associated with the interaction term

Φh, gh is the associated coupling constant and Φ is a N ×N real matrix with mass M . We
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consider the general case d ≥ 2 in this paper. Now we rescale Φ→
√
NΦ:

S = N

∫
ddxTr

(
−1

2
(∂Φ)2 − M2

2
Φ2 +

∑
h

λh
h!

Φh

)
, (3.2)

where λh ≡ N (h−2)/2gh. The theory is renormralizable for h ≤ 2d/(d− 2).

We are interested in computing correlation functions of the scalar fields in (3.2). We

consider a Feynman diagram F of genus g, with I internal lines, V vertices and ` = I−V +1

loops. Using Euler’s formula, V − I + f = 2− 2g, we can also relate the number of loops `

to the number of faces f via

` = f − 1 + 2g , (3.3)

which will be useful in the following sections.

If we remove ` internal lines from F such that there is no loop left, the remaining

graph can be shown to be a simply-connected subgraph of F , which we call tree, T1. Its

complement, i.e. the set of removed lines, is called a co-tree. If ` + 1 lines are removed

from G such that we are left with two disconnected components (trees) with no loops, we

call it a 2-tree or 2-forest, T2. Its complement is called a co-2-tree.

Given an amplitude with a Feynman diagram F with ne external momenta, such that
~k = (k1, . . . , kne), V vertices, I internal legs and ` independent loop momenta, one can

express the amplitude in terms of the Schwinger parameters ar associated to each internal

leg of the diagram, see e.g. [37], [24]:

Ω(~k) = δ(d) (k1 + · · ·+ kne)

∫ ∞
0

(
I∏
r=1

dar

)
U(ar)

−d/2 e−(
∑I
r=1 arm

2
r+P(ar;~k))S(ar;~k) ,

(3.4)

where U and A are called Symanzik polynomials and they are non-negative homogeneous

functions of the Schwinger parameters ar’s of degree ` and ` + 1 respectively. They are

defined by the graph theoretic input

U(a) ≡
∑
T1∈T1

∏̀
r 6∈T1

ar ,

P (ar;~k) ≡ A(ar;~k)

U(ar)
=

1

U(ar)

∑
T2∈T2

 `+1∏
r 6∈T2

ar

(∑
b∈J

kb

)2

,

(3.5)

with T1, T2 being the sets of trees and 2-trees respectively, and J is one of the two discon-

nected components of a 2-tree; ar is the Feynman parameter associated with branch r in

the graph and mr is the mass of the particle propagating along line r. Finally, S(ar;~k) is

in general a complicated function of Schwinger parameters and external momenta, which

is non-trivial when the action contains vector and fermion fields. Here we consider a

scalar theory without derivative interactions, so that this function is given simply by the

numerator of the usual Feynman rules in momentum space i.e. S(ar;~k) ∝ λVh and the

proportionality constant is a tensor depending on the indices of the matrix Φ and a power

of N . We will suppress this dependence on the indices in what follows and we will not

show the coupling constant dependence λVh in the amplitudes until we sum over all graphs.
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3.1 Two-point function

We first consider equation (3.4) and compute it for a given diagram F with two external

legs and a fixed number ` of independent loop momenta. In particular, we will first consider

a graph where the external legs are8 Φij and Φkl.

3.1.1 Two-point function for the massless theory

We demonstrate the computation first in the simpler case where the QFT fields are massless.

We suppress the tensor structure of the correlator and the external propagators, but one

should remember to reinstate the function S when needed. Specializing eq. (3.4) to a

graph F with ne = 2 and mr = 0, we have for the amputated two-point amplitude:

ΩF (k1, k2) = δ (k1 + k2)

∫ ∞
0

I∏
r=1

dar U−d/2F exp

(
−AF
UF

k2
1

)
, (3.6)

where we defined with a slight abuse of notation

AF ≡ AF (ar; k1, k2)/k2
1 =

∑
T2∈T2

`+1∏
r 6∈T2

ar , (3.7)

where we have used, due to the delta function, that k2
1 = k2

2. First consider the tree-level

contribution i.e V = 0, ` = 0 and I = 1. The two-point function is given by the free

propagator9. In this case AF (ar; k1, k2) = ak2
1, UF (ar) = 1 and the two point function

becomes

Ω0(k1, k2) = δ(k1 + k2)

∫ ∞
0

da e−ak
2
1 =

δ(k1 + k2)

k2
1

. (3.8)

In the position space it becomes

Ω0(x, y) = 4
d
2−1πd/2

Γ(d2 − 1)

|x− y|d−2
. (3.9)

Let’s now move on to the non-trivial case with interactions V > 0 and with multiple

loop momenta ` ≥ 1. We consider (3.6) and use the following identity∫ ∞
0

dτ δ(τ ` − UF ) =
1

`U
`−1
`

F

. (3.10)

The quantity τ will play an important role throughout our analysis. Essentially, it will

correspond to the holographic coordinate in the dual geometry. We continue by the change

of variable ar = τbr, under which AF (ar) = τ `+1AF (br) and UF (ar) = τ `UF (br) and the

two-point amplitude now becomes

ΩF (k1, k2) = ` δ (k1 + k2)

∫ ∞
0

(
I∏
r=1

dbr

)
δ (1− UF )

∫ ∞
0

dτ τ I−1−d`/2 e−τAF k
2
1 . (3.11)

8We will generalize this to composite operators later in Section 3.1.2.
9We drop inessential constants.
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A final change of variable, τ → τ/AF , results in the following compact expression

ΩF (k1, k2) = VF δ (k1 + k2)

∫ ∞
0

dτ

τ
τ−2−∆+d/2 e−τk

2
1 , (3.12)

where all the dependence on the Schwinger parameters br are hidden in the coefficient

VF ≡ `
∫ ∞

0

(
I∏
r=1

dbr

)
δ (1− UF )A∆+2−d/2

F . (3.13)

We provide two alternative expressions for this coefficient in Appendix B. Apart from the

overall coefficient, the only dependence on the Feynman diagram is given by the power ∆,

∆ ≡ d

2
(1 + `)− I − 2 . (3.14)

This power can be understood as a scaling dimension associated to the particular Feynman

diagram. The integral in equation (3.12) can already be solved exactly without the need

to make further manipulations. After solving the integral and going to real-space, we find

ΩF (x, y) = 4∆+2πd/2Γ(∆ + 2)
VF

|x− y|2∆+4
. (3.15)

We observe that for the two-point function of the free theory the tree level propagator

(with I = 1 and ` = 0) is indeed of the right form with ΩF (x, y) ∝ |x − y|2−d given by

(3.9).

Now, we can immediately express (3.15) in terms of product of two bulk-to-boundary

propagators in AdS. We will do this in two ways. First, we know from the standard

AdS/CFT relation, see for example [38], that

1

|x− y|2∆
∝ lim

ε→0

∫
ddzε1−dK∆(ε, z, x)

∂

∂z0
K∆(z0, z, y)

∣∣∣∣
z0=ε

(3.16)

= −
∫
ddzdz0

zd+1
0

(
z2

0∂µK∆(z0, z, x)∂µK∆(z0, z, y) +m2K∆(z0, z, x)K∆(z0, z, y)
)
,

where the mass of the bulk field is related to the scale dimension ∆ as

m2 = ∆(∆− d) , (3.17)

and we assumed standard quantization where ∆ is the power of the leading term of the bulk

field near the boundary z0 = 0. Here K∆ is the standard bulk-to-boundary propagator for

a scalar field where we introduced the AdS bulk-to-boundary propagator10

K∆(z0, x, z) =
Γ(∆)

πd/2Γ(∆− d/2)

z∆
0(

z2
0 + (x− z)2

)∆ . (3.18)

10See Appendix C for properties and our conventions of AdS propagators.
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Putting all the proportionality factors together we see that the contribution to the two-

point function from Feynman diagram F can be expressed as

ΩF (x, y) = −V ′F
∫
ddzdz0

zd+1
0

(
z2

0∂µK∆+2(z0, z, x)∂µK∆+2(z0, z, y)

+m2K∆+2(z0, z, x)K∆+2(z0, z, y)
)
, (3.19)

where z0 is the radial direction in AdSd+1 with boundary located at z0 = 0. The modified

coefficient is given by

V ′F ≡ VFπd4∆+2 Γ(∆ + 2− d/2)

∆ + 2
. (3.20)

We will assume a single type of vertex λh with coordination number h > 2 from now

on. Then, for ` > 0 the power ∆ can be expressed solely in terms of ` as

∆ =

(
d

2
− h

h− 2

)
`+

d

2
− 1 . (3.21)

This expression is derived in Appendix D. We observe that, the coefficient of ` in (3.21) is

in general negative for a super-renormalizable theory for which h ≤ 2d/(d− 1) and λh has

positive mass dimension. Then the AdS mass in (3.17) can become arbitrarily negative

for large ` and the particles in AdS become unstable. This is, perhaps, an indication that

the two-point function in super-renormalizable theories cannot be expressed in terms of

gravitational propagators in AdS. From a formal point of view, this is not worrisome as the

expression (3.15) is well-defined. In any case, we will mostly be interested in the marginal

case h = 2d/(d− 2) for which ∆ does not depend on `.

Our result (3.15) for a particular contribution from diagram F to the two-point func-

tion, can easily be generalized to the full perturbative answer by summing over all Feynman

diagrams as follows. A generic graph F can be completely characterized by the number

of genii g, the number of independent loop momenta ` and the set of trees and two-trees

T1, T2. To see this first note that the number of vertices in the diagram F can also be

expressed in terms of only ` as V = 2`/(h − 2) for a generic genus g, see appendix D.

Second, the power of N multiplying a generic contribution follows directly from (3.2) as

V − I+f where f is the number of faces. Euler theorem relates this power to 2−2g. Then

the full answer is given by

Ω(x, y) = N2
∞∑
g=0

N−2g
∞∑
`=0

λ
2`
h−2

h

∑
F∈F`

1

σF
ΩF (x, y) , (3.22)

where the sum over ` runs over all graphs with genus g and the final sum is over all

Feynman diagrams with ` independent loop momenta and σF is the associated symmetry

factor. This sum can be absorbed into the overall coefficient and one finds

Ω(x, y) = N2π
d
2

∞∑
g=0

N−2g
∞∑
`=0

λ
2`
h−2

h V∆ |x− y|−2∆−4 , (3.23)

where we defined

V∆ ≡ 4∆+2 Γ(∆ + 2)
∑
F∈F`

VF
σF

. (3.24)
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In these expressions we use ∆0 = d/2−3 and V0
F = 1 for the ` = 0 contribution. Note that

the coefficient V∆ depends both on the number of independent momenta ` and genus g

because the sum over Feynman diagrams in (3.24) involve all possible genii of graphs with

` loops. The maximum genus for a given ` is finite. Recalling the identity ` = f − 1 + 2g,

with f being the number of faces, the maximum number of genus g∗` is determined by

the minimum number of faces in a graph which is 2. Therefore g∗` = b `−1
2 c. Therefore,

performing the genus sum in (3.23) one can write

Ω(x, y) = N2π
d
2

∞∑
`=0

λ
2`
h−2

h V̄∆ |x− y|−2∆−4 , (3.25)

where

V̄∆ =

b `−1
2
c∑

g=0

N−2g
∑

F∈F`,g

VF
σF

, (3.26)

with F`,g denoting the set of all genus-g diagrams with ` independent internal momenta.

Following (3.16) then, the full perturbative two-point function can be expressed in a

form suggesting a holographic interpretation as

Ω(x, y) =
δ2

δϕ0(x)δϕ0(y)
Sgr , Sgr =

∫
ddzdz0

zd+1
0

∑
∆

λ
2`
h−2

h V ′∆
(
z2

0∂µϕ∆+2∂µϕ∆+2 +m2
∆+2ϕ

2
∆+2

)
(3.27)

where V ′∆ =
∑

F∈F`
V ′F
σF

, ` is given in terms of ∆ as in (3.21) and the bulk fields are evaluated

on-shell with the same boundary condition ϕ∆(z0, z)→ ϕ0(x) as z0 → 0, that is,

ϕ∆(z0, z) =

∫
ddxK∆(z0, z, x)ϕ0(x) . (3.28)

Note that (3.12) generically involve divergences. In particular, this happens when τ → 0

and when b → 0 or b → ∞. Divergence structure will depend on the value of ∆ and the

particular Feynman diagram F . These divergences can be regularized and the standard

renormalization procedure can be carried out in different ways as we discuss this in detail

below. Here we assume for simplicity that these divergences are taken care of in the

appropriate way.

We demonstrated that the standard AdS/CFT prescription for the two-point function

generalizes to interacting (massless) quantum field theories where one has to sum over

infinitely many Witten diagrams where mass of the bulk fields are determined by the

conformal dimension ∆ of the field theory graphs. While this result is similar to the

standard AdS/CFT prescription, it is somewhat different than generic expectation for an

n-point function with n > 2 which involves only a product of n bulk-to-boundary AdS

propagators, as reviewed for the free three-point function in section 2. Our result above is

different because it involves derivatives of AdS propagators. We can indeed put the two-

point function above also in this more generic form and rewrite it as sum over products of

two AdS bulk-to-boundary propagators. This alternative expression is derived in Appendix

A and it will be useful to re-express the final result for the two-point function in terms
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AdS boundary-to-boundary propagators. The techniques introduced in this appendix will

be generalized to higher-point functions below.

In Appendix A we show that (3.12) can equivalently be rewritten as

ΩF (x, y) = lim
ε→0

vF,ε

∫
dz0d

dz

z1+d
0

z2ε
0 K∆+2+ε(z0, z, x)K∆+2+ε(z0, z, y) . (3.29)

where K∆+2+ε(z0, z, x) is the AdS bulk-to-boundary propagator and we defined

vF,ε = 2πd4∆+2 Γ(ν + 2 + ε)2Γ(2ε)

Γ(ν + 2 + 2ε)Γ(ε)2
`

∫ ∞
0

(
I∏
r=1

dbr

)
δ (1− UF )Aν+2

F . (3.30)

Here ν is defined as ν ≡ ∆−d/2. The subscript F reminds us that this quantity depends on

the specific Feynman diagram F , not only on the number of loops. This dependence only

enters in the Symanzik polynomials, see Appendix I for some examples. It is straightforward

to show that (3.29) is finite in the limit ε→ 0.

Taking our derivation one step further, we use identity (C.8) to rewrite the integral of

two bulk-to-boundary propagators as the boundary limit of one bulk-to-bulk propagator.

This results in

ΩF (x, y) = 2(ν + 2) vF lim
(x0,y0)→(0,0)

(x0y0)−∆−2G∆+2(x0, x; y0, y)

=
vFΓ(∆ + 2)

πd/2Γ(ν + 2)

1

|x− y|2∆+4

= 4∆+2πd/2Γ(∆ + 2)
VF

|x− y|2∆+4
,

(3.31)

where G is the AdS bulk-to-bulk propagator (see Appendix C) and we defined

vF ≡ 4∆+2πdΓ(ν + 2)`

∫ ∞
0

(
I∏
r=1

dbr

)
δ (1− UF )Aν+2

F = 4∆+2πdΓ(ν + 2)VF . (3.32)

It is easy to see that (3.31) is equal to (3.15). Note that this correlator can compactly be

rewritten as

ΩF (x, y) = vFβ∆+2(x, y) , (3.33)

where we introduced the AdS boundary-to-boundary propagator β∆(x, y) via

lim
(x0,y0)→(0,0)

(x0y0)−∆G∆(x0, x; y0, y) =
1

2ν
β∆(x, y) =

Γ(∆)

2ν πd/2Γ(ν)

1

(x− y)2∆
. (3.34)

The final expression for the two-point function is then given by summing over all Feynman

diagrams as in (3.22). It is expressed completely in terms of boundary-to-boundary AdS

propagators as

Ω(x, y) = N2
∞∑
g=0

N−2g
∞∑
`=0

λ
2`
h−2

h v∆ β∆+2(x, y) , (3.35)

where we defined

v∆ =
∑
F∈F`

1

σF
vF . (3.36)
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For the tree level contribution we use the convention above with ∆0 = d/2 − 3 and VF =

1. Our result (3.35) means that each contribution to the full two point function of the

massless field theory is proportional to a boundary-to-boundary AdS propagator, with the

proportionality constant given by vF .

We can also rewrite this result as an integral over ∆ using (3.21), which provides

an interesting Kallen-Lehmann representation for the two-point function in the massless

theory:

Ω(x, y) = NΩ0(x, y) +Nλ
−2 d−2

d(h−2)−2h

∫
d∆n(∆)v∆ λ

4∆
d(h−2)−2hβ∆+2(x, y) , (3.37)

where Ω0 is the free propagator, we defined the density

n(∆) ≡
∞∑
`=1

δ

(
∆− d

2
+ 1− `

(
d

2
− h

h− 2

))
, (3.38)

and we only considered planar graphs with g = 0 for simplicity.

Finally, one can also invert (3.35) to express the AdS boundary-to-boundary propa-

gators in terms of the field theory two-point function as follows. We can write (3.35) (for

g = 0) as

Ω(λ) =
∞∑
`=0

λ2`/(h−2)f` =
∞∑
`=0

z−`f` , (3.39)

where we defined z ≡ λ−2/(h−2) and

f` ≡ v∆β∆+2(x, y) . (3.40)

The full propagator is then precisely in the form of a unilateral Z-transform (which is

usually regarded as the discrete version of a Laplace transform). Its inverse reads

f` =
1

2πi

∮
C
dzΩ(z)z`−1 , (3.41)

where the countour C is chosen such that that it encircles the origin and is entirely in the

region of convergence of the integrand. Therefore we found that the boundary-to-boundary

AdS propagator can be written as

β∆+2(x, y) =
1

v` 2πi

∮
C
dzΩ(z)z`−1 . (3.42)

The integrand on the right-hand side is essentially a weighted average of field theory prop-

agators with measure λ−2`/(h−2)−1dλ.

Special interactions: d
2 = h

h−2 . In this case we have h = 2d/(d− 2) and ∆ = d
2 − 1 for

all ` ≥ 1, such that equation (3.23) reduces to

Ω(x, y) = 4
d
2 +1πd/2

Γ(d2 + 1)

|x− y|d+2

1 +

∞∑
`=1

λ`
d−2

2 `
∑
F∈F`

1

σF

∫ ∞
0


d
2 `−1∏
r=1

dbr

 δ (1− UF )AF

 ,
(3.43)
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where we used that ` = (h − 2)(I + 1)/h = 2(I + 1)/d, equation (D.4), as well as the

expression forΩ0 (3.9). Using (B.3) we can also rewrite this as

Ω(x, y) =
πd/2

|x− y|d+2

∞∑
`=0

λ`
d−2

2
∑
F∈F`

1

σF

∫ ∞
0


d
2 `−1∏
r=1

dar

A−d/2F exp

(
− UF

4AF

)
. (3.44)

In this case the propagator manifestly exhibits conformal symmetry (i.e. it’s invariant

under Poincaré and covariant under rescaling). Note that, for integer d and h, the condition

d = 2h/(h− 2) can only satisfied by (d, h) = (3, 6), (4, 4), (6, 3) for d > 2.

3.1.2 Two-point function of composite operators

Let us now consider the two-point function of composite operators 〈TrΦJ(x)TrΦJ(y)〉. The

computation of the `-loop contribution to this correlator follows the same steps above, the

main difference is that the minimum number of independent loop momenta is ` = J − 1

for the free diagram. This is because only the total momentum of the operator TrΦJ(k)

is known, which leaves J − 1 undetermined. Representation of the two-point amplitude in

terms of Schwinger parameters are all the same and for the `-loop contribution one arrives

at the expression (3.12) with (3.13) and (3.14). ∆ is now expressed in terms of ` using

(D.5) and (D.6):

∆J =
d

2
(1 + `)− I =

(
d

2
− h

h− 2

)
`+

2J − h
h− 2

+
d

2
− 2 . (3.45)

In the massless case one finds

ΩJ
F (x, y) = 4∆J+2πd/2Γ(∆ + 2)

VF
|x− y|2∆J+4

. (3.46)

In the free case (` = J − 1, h = 0), this yields ∆ + 2 = d
2(J − 1) − J + d

2 = J(d−2)
2 as

expected. One can again sum over the loops as in (3.23) with the replacement ∆ → ∆J

and the power of λh is now given by 2(` + 1 − J)/(h − 2). Then the analog of (3.23) for

the composite operators are given by

ΩJ(x, y) = N2π
d
2

∞∑
g=0

N−2g
∞∑
`=0

λ
2(`+1−J)
h−2

h V∆J
|x− y|−2∆J−4 . (3.47)

Now, as in the end of the previous section, consider a theory with marginal interactions

for which h/(h − 2) = d/2 as in the case of N = 4 super Yang-Mills. Then ∆J in (3.45)

becomes independent of `: ∆J = 2J/(h− 2)− 2. From (3.46) we observe that this agrees

with the fact that, in a conformal field theory with h = 4 the two point function ΩJ should

scale as |x− y|2J . Interactions can only change the proportionality factor. In fact we find

the full answer

ΩJ(x, y) =
CJ

|x− y|2J
, CJ = N2π

d
2

∞∑
g=0

N−2g
∞∑
`=0

λ
2(`+1−J)
h−2

h 4JΓ(J)
∑
F∈F`

VF
σF

. (3.48)
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with

VF ≡ `
∫ ∞

0

(
I∏
r=1

dbr

)
δ (1− UF )AJ−d/2F . (3.49)

Rest of the computations in section 3.1.1, in particular expressions of the two point function

as a sum over AdS propagators, remain valid with the aforementioned replacements. Having

demonstrated that our results for n-point functions of Φ apply to n-point functions of

composite operators with little change, we will not consider composites further below.

3.1.3 Two-point function in massive theory

Following the same steps in Appendix A, it is not hard to derive (for ` 6= 0) the following

expression for the two-point amplitude that arises from a particular graph F .

ΩF (k1, k2) = ` δ (k1 + k2)

∫ ∞
0

(
I∏
r=1

dbr

)
δ (1− UF )Aν+2

F

∫ ∞
0

dτ τ−3−ν e−τ(k2
1+M2

F ) ,

(3.50)

where we defined an effective mass parameter

M2
F ≡ AF (br)

−1
I∑
r=1

brm
2
r . (3.51)

Now we see that it is not possible to decouple the τ integral from the br integrals. Therefore

the integral over the Schwinger parameters does not decouple and become an overall factor.

A natural question is whether we can still write the two point function as a sum of products

of two bulk propagators in a putative higher dimensional background. The answer is in the

affirmative and is instructive. We decompose the τ integral into two using equation (A.2)

and arrive at the following result using the same manipulations explained in the appendix

and Fourier transforming to position space:

ΩF (x1, x2) =
2−d`Γ(2 + 2c)

Γ(ν + 4 + 2c)Γ(1 + c)2

∫
ddzdt

∫ ∞
0

(
I∏
r=1

dbr

)
δ (1− UF )Aν+2

F tν+3+2c

×
2∏
i=1

∫
dαi

α
d/2−c
i

e
−αi(t+M2

F )− |xi−z|
2

4αi , (3.52)

where c is an arbitrary real number as before. The second line above is almost in the same

form as the product of two AdS propagators except that the mass term depends on the

Schwinger parameters hence they do not completely decompose in two parts. They can

be formally decomposed however by defining a generalized propagator that depends on

the Schwinger parameters. Let us first carry out one of the b integrals, say bI , taking into

account the delta function in the first line of (3.52) which then gives a Jacobian |∂U∗F /∂bI |−1

where quantities with a star denote its value under the substitution bI = b∗I which solves

UF = 1. Now we define the measure

dµ(b) ≡
I−1∏
r=1

dbr

∣∣∣∣∂U∗F∂bI

∣∣∣∣− 1
2

(A∗F )1+ ν
2 , (3.53)
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and introduce a product of delta functions over the Schwinger parameters
∏I−1
r=1 δ(br−b′r) =∏I−1

r=1

∫∞
−∞ dwr exp(iwr(br − b′r)) to glue two propagators with different Schwinger moduli

at the junction z, t:

ΩF (x1, x2) =
2−d`Γ(2 + 2c)

Γ(ν + 4 + 2c)Γ(1 + c)2

∫
ddzdt

I−1∏
r=1

∫ ∞
−∞

dwr K̃(x1, z, t;w)K̃(x2, z, t;−w) ,

(3.54)

where we defined the bulk propagator

K̃(x, z, t;w) =

∫
dµ(b) eiw·b t

ν+3+2c
2

∫ ∞
0

dα

αd/2−c
e−α(t+M2

F )− |x−z|
2

4α . (3.55)

We note that there is no obvious choice for the arbitrary coefficient c in this case — it

was fixed to obtain the standard AdS propagator form in the massless case — however,

the final answer should not depend on it. Dependence of the propagator on the Schwinger

parameters in the massive case suggests non-criticality of the dual string. Indeed the mass

term in the propagator in equation (3.4) is reminiscent of worldsheet cosmological constant:

m2
∑
r

ar ↔
∫
µ
√
g . (3.56)

It is natural to believe that the sum over r — which runs through all internal lines of the

graph — becomes, in a putative continuum limit I → ∞, an integral over the worldsheet

and the mass term m becomes related to a cosmological constant. Whether such a con-

tinuum limit exists is of course non-trivial and this connection can be made rigorous in

special cases, see for example [29] in the case of 2D string theory. We will return to this

question in section 4. We conjecture that massive field theories can at most be dual to

non-critical string theories where Weyl invariance is broken, hence the worldsheet metric

can be gauge-fixed up to a conformal factor gab = exp(2w(σ))δab which should then be

integrated. It is then tempting to conjecture that the integral over the parameters wr in

(3.54) are related to this conformal mode. Put differently, the propagator K̃(x1, z, t;w) of

a particular string mode above — which corresponds to the particular field theory graph

F — is specified not only by the embedding coordinates zm(σ) and t(σ) but, in the case

of non-critical string, also by the Liouville mode w(σ).

In passing, let us also provide a compact expression for the two-point amplitude of the

massive theory. We can Fourier transform to position space directly in (3.50) and perform

the τ integral to obtain

ΩF (x, y;mr) =
2∆+3πd/2

|x− y|∆+2
`

∫ ∞
0

(
I∏
r=1

dbr

)
δ (1− UF )Aν+2

F M∆+2
F K∆+2 (MF |x− y|) ,

(3.57)

where we introduced the modified Bessel function of the second kind Kn via its integral

representation ∫ ∞
0

dρ ρn−1e−ρRe−T/ρ = 2

(
T

R

)n/2
Kn
(

2
√
RT
)
, (3.58)
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valid for arbitrary R > 0 and T > 0. Note that

Kn(w) ∼ w−n2n−1Γ(n) + wn2−n−1Γ(−n) , (3.59)

when w ∼ 0, so that we obtain the massless two-point function (3.15) by expanding (3.57)

around mr ∼ 0.

3.2 Regularization of loop integrals

3.2.1 Divergences

So far we have ignored potential divergences contained in the two-point amplitudes. Strictly

speaking the series of change of variables that we performed to express the two-point

function in terms of bulk propagators are not justified unless one can regularize these

potential divergences. In this section we will list the potential divergences, focusing only

on the two-point function for simplicity, show how to regularize them and discuss the

subsequent step of renormalization. We assume that the field theory is renormalizable.

Let us consider a particular graph with I internal lines and ` independent loop momenta

with ` ≥ 1. The superficial degree of divergence of the graph is given by the power of loop

momenta in the integrand, that is

∆div = d`− 2I =

(
d− 2h

h− 2

)
`+ 1 ,

where we used (D.4). The first term is non-positive for renormalizable theories i.e. for

h ≤ 2d/(d − 2), hence the diagram is naively expected to be less divergent for higher `,

therefore one would in general only worry about a finite number of graphs with small `.

Even though this naive expectation fails when the graph has sub-divergences, it still means

that once a finite number of such sub-divergences are regularized, then the expression will

be finite as there will be no new type of divergences arising for higher `.

Classification of divergences can most easily be done by considering the Chisholm

representation of the amplitude — see e.g. [39] and [40] for a recent modern perspective

on the nature of divergences in amplitudes with multiple loops:

ΩF (k2) ∝ Γ(
d

2
−∆− 2)

∫ ( I∏
r=1

ar

)
δ(1−

I∑
j=1

aj)
U−∆−2
F

(AFk2 + UFm2)
d
2
−∆−2

, (3.60)

where ∆ is given by (3.21). It is easier to classify the divergences in this representation

because the range of ar integrals are bounded from above thanks to the condition
∑I

r=1 ar =

1. First of all, there is an overall UV divergence coming from the factor of Γ(d2 −∆ − 2),

which, in dimensional regularization d → 2 − 2ε could give rise to a single pole as 1/ε

when d
2 − ∆ − 2 = −n for a non-negative integer n. In a renormalizable but non-super-

renormalizable theory i.e. when 11 h = 2d/(d− 2), we have n = 1 for all ` and the overall

coefficient is expanded as 1/`ε. For a super-renormalizable theory, i.e. for h < 2d/(d− 2),

this divergence arises only for first few `. For example for the Φ3 theory in 4D, n = −`+ 1

11For example a Φ4 theory in 4D or Φ3 theory in 6D.
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hence there is a divergence only for ` = 1. From (3.60) one finds the overall divergence,

for d
2 −∆− 2 = `ε− n with n ≥ 0 an integer. Denoting K = AFk2 + UFm2 the integrand

becomes

Γ (−ν − 2)
U−∆−2

K−ν−2
= Γ (`ε− n)

U ε(1+`)−n−d/2

Kn−`ε

=
(−)n

`n!
U−d/2

(
K
U

)n [1

ε
+ log

U1+`

K`
+ `

Γ′(1 + n)

Γ(1 + n)

]
+O(ε) .

(3.61)

This is fixed e.g. by adding a counterterm determined by the coefficient multiplying 1/ε

above.

Apart from this overall UV divergence, there may be UV sub-divergencies that arise

from the poles of UF . Recalling that all the coefficients in the polynomial UF are +1, this

can only arise at the lower boundary of integrations when some ar = 0. For h = 2d/(d−2)

this can happen for all ` > 0 but this divergence generically does not show up for a super-

renormalizable theory, e.g. for Φ3 in 4D for which −∆− 2 = `− 1.

Finally, there are potential IR divergences that arise from the poles of the polynomial

AFk2 + UFm2. To see them one typically considers the Euclidean region where k2 is non-

negative and m2 > 0. The physical region can be obtained by analytic continuation. In

the Euclidean region, divergences can arise again only on the boundary of the integrals i.e.

when UF = AF = 0 for m2 6= 0 and for AF = 0 for m2 = 0. For m2 = 0 this may happen

for all ` in a renormalizable theory but only for the first few ` in a super-renormalizable

theory. On the other hand such IR divergences are known to be absent in special theories

e.g. Φ4 in 4D. For m2 6= 0 IR divergences will generically be absent in the Euclidean region.

3.2.2 Regularization

One can regularize all the UV divergences following a powerful generic method in the

Schwinger parametric representation of amplitudes as discussed in [37]. The idea is to

subtract all possible divergences contained in different possible parts of a graph F by

subtracting a series of derivatives of the integrand with respect to rescaled Schwinger

parameters. The fully regularized graph is given by the following expression

ΩF (ki) =

∫ ∞
0

∏
r

(
dare

−m2
rar
)
R(ar; ki) , (3.62)

where

R(ar; ki) = lim
γ→1

∏
σ

(
1− T −2Iσ

γσ

) [
U(ar)

−d/2 e−P (ar,ki)
]
. (3.63)

Here the product is over all (2I−1) non-empty subsets of {a1, a2, · · · aI} and the differential

operator T k is defined as

T kf(ρ) = γ−p1

k+p1∑
s=0

γs

s!

ds

dγs
[γp1f(γ)]γ=0 , (3.64)

for all p1 ≥ p and p is an integer such that γpf(γ) is differentiable at γ = 0. In (3.63)

Iσ is the length of subset σ of {a1, a2, · · · aI} and the subscript γσ indicates that only the
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elements of σ are scaled by γ while the other elements of {a1, a2, · · · aI} are left untouched.

One can show that (3.62) is independent of the choice of p1. The regularized expression

(3.62) is finite at all ar = 0, hence contains no UV divergences.

One can explicitly check in the case of two-point function, that the regularized inte-

grand R(ar; ki) is of the following generic form:

R(ar; k) = U(ar)
−d/2 e−P (ar,k) −

iF∑
i=1

(k2)niFi(a) , (3.65)

where iF ≥ 0 is some integer that depends on the particular graph F and ni is a set of

integers which again depend on the graph F . The non-trivial fact is that the functions Fi
satisfy the following scaling relation

(k2)niFi(a/k
2) = (k2)d`/2Fi(a) . (3.66)

As a result the regularized two-point amplitude can be written as

ΩF (k1) = δ(k1 + k2)

∫ ∞
0

I∏
r=1

(
dare

−m
2
r

k2
1
ar

)
(k2

1)
d`
2
−IR(a; 1) . (3.67)

We first consider the simpler case of massless theory. Using integral representation of the

Gamma function one has,

ΩF (k1) = δ(k1 + k2)VRF
∫ ∞

0

dτ

τ
τ−2−∆+ d

2 e−τk
2
1 , (3.68)

which is of the same form as equation (3.12), now with the regularized coefficient

VRF =
1

Γ(d2 − 2−∆)

∫ ∞
0

I∏
r=1

darR(a; 1) . (3.69)

The overall Gamma function should still be regularized for renormalizable theories with

dimensionless coupling which can easily be done by dimensional regularization as explained

above. As equation (3.68) is of the same form as (3.12), the same manipulations in Ap-

pendix A go through and one obtains the same representations of the two-point function

in terms of AdS bulk-to-boundary and boundary-to-boundary propagators as above where

only the coefficients are now regularized and finite.

One may be surprised that in the marginal case h = 2d/(d− 2) the two-point function

is still in the AdS form Ω(x, y) ∼ |x− y|−2∆−4 with ∆ independent of `. This means that

only the overall coefficient is modified by regularization and the full sum over ` is still pro-

portional to Ω(k) ∼ (k2)∆−d/2−2. This will not be the case after proper renormalization,

see below, where one determines the two-point function by imposing renormalization con-

ditions at a given RG scale µ. As we exemplified in Appendix E, renormalization renders

the two-point function dependent on the ratio k2/µ2, hence it will generically have the

form Ω(k) ∼ (k2)∆−d/2−2R(k2/µ2) where R is some complicated function. It is however

true that if one takes the renormalization scale to UV then the additional dependence on

k2/µ2 disappears and one obtains the AdS form. Therefore the regularization above, in

general, yields the UV limit of the theory which is expected to be conformal indeed.
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3.2.3 Renormalization

So far we only discussed how to subtract the divergences. The method above in fact

corresponds to a particular renormalization scheme where the renormalization conditions

are defined at k2 = 0, see e.g. [37]. One can also renormalize at a fixed scale k2 = µ2 in the

usual fashion. To see the general structure it is easiest to use dimensional regularization,

introduce counterterms in the Lagrangian and carry out the computation in the Schwinger

representation. Consider Φ4 theory at the two-loop level. For simplicity of presentation we

consider the massless theory. The Lagrangian with counterterms is

L = −1

2
(1 + δZ) (∂Φ)2 +

1

2
(m2 + δm)Φ2 +

1

4!
(λ+ δλ)Φ4 . (3.70)

where the counterterms are of the form

δλ ∝
λ2

ε
+O(λ3) , δZ ∝

λ2

ε
+O(λ3) , δm ∝ λ

ε
+O(λ2) (3.71)

and they generally are expanded in powers of λ. This means that we can renormalize the

n-point functions in the Schwinger representation (3.4) by redefining the field strength,

mass and coupling constant as

k2 → (1 + δZ)k2 , m2 → m2 + δm , λ→ λ+ δλ . (3.72)

Therefore the generic form of our expressions for the amplitudes at fixed order in λ, e.g.

(3.19) and (3.29) remain unchanged and only the coefficients will be modified. Note however

that the full n-point functions with a sum over ` will look different as each amplitude for a

given graph F now contains an infinite expansion in λ, as do δZ , δm and δλ. One, in general

also needs to evaluate the h-point — where h is the degree of interaction — function to

be able to implement the renormalization conditions. We provide an example for how to

carry out renormalization in the Schwinger representation in appendix E.

3.3 Three-point function

The formula (3.4) with U and P defined below this equation apply directly also to higher

point functions. The main difference from the two-point function is that now there are

different families of two-trees with each side coupling to a different combination of momenta.

In the simplest case of the three-point function these momenta will be k1, k2 and k3 as the

two-trees by definition divide the graph into two parts and in the case of the three-point

function one part will always be connected to a single external leg. In the case of the

four-point function these momenta will be k1, k2, k3, k4, k1 + k2, k1 + k3 and k1 + k4. For

simplicity we consider only the three-point function and set the mass of the field to zero.

Then we write the function P as

P (a,K) =
1

U(a)

3∑
i=1

A(i)k2
i , (3.73)

where A(i) are sum over two-trees with `+ 1 Schwinger parameters ar that isolate external

momentum ki on one part of the two-three. One can easily Fourier transform to the position
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space as the integrals are Gaussian:

ΩF (xi) = π3d/2

∫ ∞
0

I∏
r=1

dar U−d/2
∫
ddz

3∏
i=1

(A(i)

U

)−d/2
e
−U (xi−z)

2

4A(i)

 (3.74)

Defining Pi = U/A(i) we can rewrite this as

ΩF (xi) = π3d/2

∫ ∞
0

I∏
r=1

dar U−d/2
∫
ddz

3∏
i=1

[∫ ∞
0

dρi ρ
d/2
i δ(ρi − Pi)e−ρi(xi−z)

2/4

]

= π3d/2

∫ I∏
r=1

dar U−d/2
∏
i

P−ci ddz
3∏
i=1

[
dρidαi

2π
ρ
d/2+c
i e−

ρi
4

(xi−z)2+iαi(ρi−Pi)
]

(3.75)

where we introduced delta functions δ(ρi−Pi) which are then represented as integrals over

αi from −∞ to ∞ and also set P
d/2
i = ρ

d/2+c
i P−ci with c arbitrary. This is allowed because

of the delta function that sets ρi = Pi. We also combined all the integrals under a single

integral sign to reduce cluttering. We hope that range of these integrals are clear to the

reader. Now change variable ar = (
∑

i ρi)
−1br so that Pi → (

∑
j ρj)Pi

12:

ΩF (xi) = π3d/2

∫ ∏
r,i

dbrd
dzdρidαi
2π

U−d/2P−ci ρ
d/2+c
i e−

ρi
4

(xi−z)2+iξ(
∑
i

ρi)
−I+d`/2−3c

(3.76)

where

ξ =
3∑
i=1

αi

ρi − (
∑
j

ρj)Pi

 =
3∑
i=1

ρi

αi(1− Pi)−∑
j 6=i

αjPj

 ≡ 3∑
i=1

ρiQi . (3.77)

Now shift ρi → 4ρi, and use the standard integral representation of the Gamma function

to move the last term in (3.76) into the exponential by introducing a new variable τ :

ΩF (xi) =
π3d/243d/2+3−I+d`/2

Γ(I + 3c− d`/2)

∫
U−d/2τ I−d`/2+3c−1

∏
i

P−ci ρ
d/2+c
i e−ρi[τ+(xi−z)2]eiξ .

(3.78)

We now expand the exponential of ξ as

eiξ =
3∏
i=1

∞∑
ji=0

(iρiQi)
ji

ji!
, (3.79)

change variable τ = z2
0 , and use the integral representations of the AdS bulk-to-boundary

propagators, see (A.11), to write this expression succinctly as

ΩF (x1, x2, x3) =

∞∑
j1,j2,j3=0

vFj1,j2,j3

∫
d1+dz

z1+d
0

3∏
i=1

Kji+∆+2 (z0, z, xi) , (3.80)

12Note that to do this change of variable we must assume that we can interchange the ρ and a integrals.

This is allowed as long as the divergences are regulated as discussed in the previous section. We simply

assume that these operations commute with the regularization procedure. Since we work in arbitrary

dimension d, one can at least do dimensional regularization.
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where, using the relation (D.4) between then number of internal legs I and the number

independent loop momenta ` we defined the “scale dimension of the graph”

∆ =
d

3
(`+ 2)− 2

3
I =

2

3

(
d

2
− h

h− 2

)
`+

2

3

(
d+

h− 3

h− 2

)
. (3.81)

We also used the freedom in choosing the constant d and set c = ∆ − d/2 + 1. Equation

(3.80) looks deceptively simple because all the complication is absorbed in the definition

of the structure constants vj1,j2,j3 :

vFj1,j2,j3 ≡
2π3d4(3∆+d)/2

Γ(3(∆
2 + 1)− d/2)

∏
r,i

∫
dbrdai
ji!
U−d/2Γ(ji + ∆− d/2 + 2)P

d/2−∆−1
i (iQi)

ji ,

(3.82)

where Qi is given in terms of Pi and αi as in (3.77) and Pi = U/Ai. Equation (3.80)

is of course one of the infinitely many contributions to the three-point function that are

characterized by the choice of the Feynman diagram F . The full three-point function is

obtained by summing (3.80) over ` and over all Feynman diagrams F` with ` loops including

the symmetry factors.

4 Relation to string amplitudes

Our final goal is to express n-point functions we consider in interacting holographic theories

in d dimensions in terms of string amplitudes in a putative d+1-dimensional string theory.

More precisely, we would like to read off properties of the d+ 1-dimensional bulk geometry

directly from these n-point functions. This will be beyond the scope of this paper but, in

this section, we would like to draw similarities between the two quantities and make some

conjectures for a more detailed comparison between the two theories. For simplicity we

consider planar contributions to the n-point functions in bosonic string that are expected

to correspond to string amplitudes on the two-sphere S2 with n punctures.

4.1 Flat target space as warm-up

To set the stage we start with string theory on a flat (d + 1)-dimensional background13,

which we will generalize to a curved background later. Consider a string n-point function

on the sphere embedded in flat (d+ 1)-dimensional space-time

AnS2
(ki, σi) = 〈

[
eik1·X(σ1)

]
r
· · ·
[
eikn·X(σn)

]
r
〉 , (4.1)

where the subscript r denotes renormalized vertex operators and the quantum average is

given by the path integral over the world-sheet metric gαβ(σ) and the embedding functions

XM (σ). We take the momenta ki to lie in the d-dimensional subspace of the full bulk

geometry. The result can be found for example in [41], ch. 6, which we follow closely below.

For the critical string one can fix the world-sheet metric completely to the conformal gauge

gαβ = e2w(σ)δαβ . (4.2)

13Strictly speaking d should be 25 for the bosonic string to cancel the Weyl anomaly but we will keep it

arbitrary for later convenience.
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Using Poincaré invariance of the (d+ 1)-dimensional space, one can also expand the string

embedding functions XM in string modes as

XM (σ) =
∑
I

xMI XI(σ) , (4.3)

where xMI are constants to be integrated over and the string modes XI satisfy the world-

sheet equation of motion and the orthogonality relation

∇2XI = −ω2
IXI ,

∫
g1/2XIXJ = δIJ . (4.4)

Decomposition (4.3) with (4.4) reduces the path integral over M to ordinary integrals over

xMI which are all Gaussian. One should recall, however, that there is a constant zero-mode

X0 =
(∫
d2σg1/2

)−1/2
, hence the corresponding xM0 integral produces a d-dimensional delta

function δd(
∑

i ki) (d instead of d+ 1 because we take ki along the d directions). The final

result of the Gaussian integrals is

AnS2
(ki, σi) = iX−d0

(
det ′ − ∇2

4π2α′

)− d
2

S2

(2π)dδ(
∑
i

ki)

exp

− n∑
i<j

ki · kjG′(σi, σj)−
1

2

n∑
i=1

k2
iG
′
r(σi, σj)

 , (4.5)

where the determinant excludes the zero-mode

det ′
(
−∇2

)
=
∏
I 6=0

ω2
I . (4.6)

World-sheet Green’s functions are given by

G′(σ1, σ2) =
∑
I 6=0

2πα′

ω2
I

XI(σ1)XI(σ2) , (4.7)

and they satisfy

− 1

2πα′
∇2G′(σ1, σ2) = g−1/2δ2(σ1 − σ2)−X2

0 . (4.8)

The renormalized Green’s function Gr includes a subtraction of geodesic distance between

the points σ1 and σ2:

Gr(σ1, σ2) = G′(σ1, σ2) +
α′

2
log d2(σ1, σ2) , d2(σ1, σ2) ≈ (σ1 − σ2)2e2w(σ1) . (4.9)

We will not need the full detailed expression for the geodesic distance as it cancels in the

final expression.

Let us now focus on the two-point amplitude for simplicity. Equation (4.5) reduces in

this case to

AnS2
(ki, σi) = iX−d0

(
det ′ − ∇2

4π2α′

)− d
2

S2

(2π)dδd(k1 + k2) exp
[
k2

1Ḡ(σ1, σ2)
]
, (4.10)
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where we defined a new Green’s function

Ḡ(σ1, σ2) = G′(σ1, σ2)− 1

2
Gr(σ1, σ1)− 1

2
Gr(σ2, σ2) . (4.11)

This is the expression that we want to compare with the field theory two-point function.

We consider the massless theory for simplicity. The field theory two-point function is then

given by

Ω(k1, k2) = δd(k1 + k2)
∑
`

∑
F∈F`

1

σF
λ

`
h−2

h

I∏
r=1

∫ ∞
0

dar UF (a)−d/2e
−AF (a)

UF (a)
k2

1 , (4.12)

which can be rewritten in terms of graph structures M , Q and J defined in Appendix H,

see equation (H.5), as follows

Ω(k1, k2) = δd(k1 + k2)
∑
`

∑
F∈F`

1

σF

I∏
r=1

∫ ∞
0

dar detM(a)−d/2eQ(a)M(a)−1Q(a)+J(a) , (4.13)

using equation (H.7). This can further be simplified, using (H.8) as

Ω(k1, k2) = δd(k1+k2)
∑
`

∑
F∈F`

1

σF

I∏
r=1

∫ ∞
0

dar detM(a)−d/2ek
2
1(G(1,2)− 1

2
G(1,1)− 1

2
G(2,2)−∆(1,1)−∆(2,2)) ,

(4.14)

where we defined

G(i, j) = −σ̄i ·M−1 · σ̄j , (σ̄i)m =
∑
r

λrmσriar , ∆(i, j) =
∑
r

σriσrjar . (4.15)

We note that, as in Appendix H, one can define the total proper time by inserting δ(τ −∑
r ar) in this expression and the rescaling Schwinger parameters as ar = τbr which are

then constrained as
∑

r br = 1. Ignoring for the moment the sums over ` and F` in (4.12)

we observe the following similarities between (4.10) and (4.14):

∇2 ↔Mmn , G′(σi, σj)↔ G(i, j) ,
α′

4
log d2(σi, σj)↔ ∆(i, j) . (4.16)

These identifications are further supported by the fact that, from (4.8), one has G′(σi, σj) ∼
1
∇2 and indeed M−1, appears in G(i, j). Finally we note that the constraint on G′ and

det ′∇2 which we denote by a prime, arise from excluding the string zero mode in these

quantities, and there is a similar constraint in the field theory computation that arises from

the condition
∑

r br = 1. Thus the string zero mode is expected to be related to τ .

Our comparison is incomplete for several reasons. First, we compared string amplitude

in flat d+1-dimensional space with the field theory amplitude which is, in general, expected

to be dual to a curved d + 1-dimensional space. Second, we ignored the sum over ` and

F` in (4.12). Finally, it is unclear what the integrals over br in (4.12) correspond14. In

the discussion below — which will be unavoidably speculative — we will improve on our

comparison by taking these points into account one by one.

14In the large N limit, a dictionary between the Schwinger parameters br and the Strebel parametrization

of moduli space was proposed in [26], giving a definite prescription in which the open-closed string duality

is realized. This prescription was refined in [42] and an explicit realization was shown in [43].
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4.2 Curved target space

The putative d + 1-dimensional bulk spacetime should involve Poincaré invariance in its

d-dimensional subspace. Hence we consider the following bulk metric:

ds2 = e2A(r)
(
dr2 + ηµνdx

µdxν
)
, (4.17)

where ηµν is the d-dimensional Minkowski metric. Using diffeomorphism invariance to

fix the world-sheet metric in the conformal form (4.2) one can write the corresponding

Polyakov path integral in (4.1) as

AnS2
(ki, σi) =

∫
DXµ(σ)DR(σ)Dw(σ) e−SP ei

∫
d2g1/2σJ(σ)·X(σ) (4.18)

where Xµ and R denote the embedding coordinates in the Minkowski and the “holo-

graphic” r directions, w denotes the conformal factor and the source is given by J(σ) =∑n
i=1 kiδ

2(σ − σi). We can expand the embedding coordinates in string modes as in the

flat case as

Xµ(σ) =
∑
I

xMI XI(σ) , R(σ) =
∑
I

rIYI(σ) . (4.19)

Therefore the source term in (4.18) can be written as
∫
d2σJ(σ) ·X(σ) =

∑
I xI,µJ

µ
I where

JµI =
∑

i k
µ
i XI(σi). It is clear that the integral over the zero-mode xµ0 will still yield a

d-dimensional delta function δd(
∑

i ki). On the other hand, the Polyakov action reads

SP =

∫
d2σδαβ

(
∂αX

µ∂βX
νηµνe

2A(R) + ∂αR∂βRe
2A(R)

)
. (4.20)

The string modes XI in (4.19) satisfy ∇2XI = ωIXI for the metric (4.2) with the conformal

factor w. Then the Xµ kinetic term in the Polyakov action (4.20) can be written as∫
d2σ

(
−xµI xJ,µXIe

2(w(σ)+A(σ))∇2XJ − 2∂βXJXIx
µ
I xJ,µ∂βRA

′(R)e2A
)
. (4.21)

The second term above is a cubic interaction term and complicates the path integral. We

will ignore it for the sake of the general discussion here by assuming, for example, that

an orthogonality condition15 X∂αX∂
αR = 0 can be imposed. This condition will hold,

for our discussion around equation (4.32) below, which concerns the saddle point of the R

path integral. More generally it can be achieved for example by gauge fixing the residual

conformal symmetry on the worldsheet. We will not discuss gauge fixing of the conformal

symmetry here in detail.

We then make a change of variables in the w(σ) path integral w(σ)→ w(σ)−A(R(σ))

for every curve R(σ) in the path integral over R. This would normally introduce a ki-

netic term for w with the proportionality constant given by the conformal anomaly. Here

we simply assume that the Weyl anomaly cancels16. Then the first term reduces to

15One can also include it in the Gaussian integrals over xµI , then it would modify the determinant and

the Green’s function in (4.5).
16This can be assured by including ghosts that arise from gauge-fixing but, again, we will not worry about

them for the heuristic discussion here.
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−
∫
d2σ

∑
I xI · xIω2

I . On the other hand the source term in (4.18) can also be written

as
∑

I x
µ
I ·JI,µ =

∑
I xI · k. Therefore the path integral over XI again becomes Gaussian17

and the calculation for the flat bulk metric above almost goes through with the replacement

∇2 → e2A(σ)∇2 .

We can still identify M ↔ e2A(σ)∇2 as in (4.16) but this will now relate the Schwinger

parameters with the function A(σ). Indeed, from (H.6) one finds that the non-trivial

eigenvalues of M are given by18 for m = 1, · · · `. Then it becomes tempting to identify

am ↔ e2A(σ) . (4.22)

In passing we note that, in principle, the worldsheet cosmological constant in (3.56) can also

be included in our analysis. This would correspond to the QFT mass term in (3.4) which is

hidden in the J-term in (4.13), see (H.6). Indeed the mass term in (3.4) is proportional to

m2
∑

r br = m2
∑

r 1/I →
∫ √

gd2σ on the worldsheet in the continuum limit as we expect

all br approach the same value in this continuum limit19 and because the sum
∑

r br is

restricted to be 1.

The identification (4.22) requires the existence of a continuum limit `→∞ upon which

a continuous worldsheet arises from the dominant Feynman diagrams. We argue below for

the existence of such a continuum limit in holographic QFTs. Furthermore, it is natural

to assume that the large N limit of the QFT corresponds to a classical saddle A(R) in

the target space (4.17). Therefore the function A(σ) amounts to the knowledge of R(σ)20,

and, through the identification (4.22), integrals over br’s in (4.12) in the continuum limit

is expected to approach to the path integral over the holographic coordinate R(σ)! That

is ∏
r

∫ ∞
0

dbr ↔ DR(σ) . (4.23)

Here we note that the precise identification will involve non-trivial factors in the R path

integral, e.g. the second term in (4.20). We leave a detailed study of the correspondence be-

tween the Schwinger parameters and the holographic coordinate to future work and discuss

below only some generic, interesting observations that follow from this identification.

The identification (4.22) gives an interesting meaning to the Schwinger parameters,

namely that they correspond to A(σ). Suppose that in the continuum limit a particular

solution {a∗m} extremizes these integrals. Using (4.23) this would correspond to the classical

solution R(σ) = Rcl(σ) which solves the R equation of motion in (4.20). Reversing the

17This is of course not true in general, for example when the second term in (4.21) is not ignored. In

that case the xµI integrals are still Gaussian but one is still left with path integrals over XI .
18Here we denote the eigenvalues of the matrix M by am with a slight abuse of notation. Rank of M is

` and its elements comprise of linear combinations of the Schwinger parameters ar, with r = 1, · · · I where

I is the number of internal lines.
19We expect this because of an emergent permutation symmetry of the dominant graphs in the large `

limit which permutes all br’s and leads to an emergent reparametrization symmetry on the worldsheet, see

below.
20We assume thatR(σ) can be determined uniquely fromA(σ) andA(R). Our discussion easily generalizes

to the non-unique case.
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logic, then, one would first obtain the function A(σ) from {a∗m} in the continuum limit.

Second, as one also knows R = Rcl in this limit, one would be able to construct the function

target space A(R) in the large-N limit. This would then determine the dual background

function from the spherical QFT two-point function!

4.3 Continuum limit

How can we make this proposed duality between the sum over QFT Feynman diagrams

and string amplitudes more precise? We consider planar (genus-0) graphs for simplicity.

One idea, motivated by the old correspondence between matrix quantum mechanics and

2D string theory [6], is taking a continuum limit of Feynman diagrams where the number

of vertices is sent to infinity, such that the graphs approximate the continuous world-sheets

of a dual string theory. For example, in case of Φ3 theory, Feynman diagrams can be

dualized and a graph with a large number of vertices can be viewed as the triangulation

of a 2D surface which then becomes the world-sheet. This idea can be generalized to a

Φh theory and to higher dimensions [34]. In this limit one takes the number of loops to

infinity and the area of triangles atr → 0. Existence of this limit typically also requires

tuning the coupling to a critical value λ→ λc. In our case as well, we would like to explore

the existence of such a continuum limit.

The two-point function is given by

Ω(k1, k2) = δd(k1 + k2)
∑
`

(k2
1)∆+2− d

2λ
2`
h−2

h v` ≡ δd(k1 + k2), Ω̄(z, k1) (4.24)

where z = λ
−2/(h−2)
h and

v` =
∑
F∈F`

1

σF

I∏
r=1

∫ ∞
0

dar
e
−AF (a)

UF (a)

UF (a)d/2
. (4.25)

Here Ω(z, k1) has precisely the form of a unilateral Z transform, which we discussed above

equation (3.41). Therefore one can invert this relation and write

(k2
1)∆+2− d

2 =
1

v` 2πi

∮
C
dz Ω̄(z, k1)z`−1 . (4.26)

We want to know how the coefficient v` scales with `. This is hard to figure out for an

arbitrary theory. However, recall that we expect the string dual to be a critical string only

when there is no explicit breaking of scale invariance in the theory, which means λh is

dimensionless, that is h = 2d/(d − 2). Then, using (3.21) we see that ∆ = d/2 − 1 — or

∆ = 2J/(h− 2)− 2 for composite operators, see equation (3.45) — and the LHS of (4.26)

becomes independent of `! For the RHS also to be independent, we need to have

v` = lim
z→0

Ω̄(z, k1)

(k2
1)∆+2− d

2

z`, or v` = z`c lim
z→zc

Ω̄(z, k1)

(k2
1)∆+2− d

2

z − zc
zc

(4.27)

when the integrand has a single pole at the origin z = 0 or when it has a single pole21 at

zc, respectively. In either case we find that v` ∝ λ
−2`/(h−2)
c , where in the first case λc =∞.

21We assume a single pole for simplicity.
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This means that the expression (4.24) could indeed allow for a continuum limit. To see

this, consider dividing the sum over loops in (4.24) into two parts ` < `cut and ` > `cut for

`cut � 1:

Ω̄(z, k1) = Ωng + Ωg ≡ (k2
1)∆+2− d

2

 ∑
`<`cut

+
∑
`≥`cut

λ
2`
h−2

h v` , (4.28)

where the subscripts “g” and “ng” refer to geometric and non-geometric and the reason

for this nomenclature will become clear below. It is clear that if there exists a continuum

limit which will then be identified with a string world sheet, this would then emerge from

Ωg. We therefore focus on Ωg and take the limit `cut →∞. Then Ωg will have a finite limit

`cut →∞ for z → zc (or λh → λc) precisely because of the scaling in (4.27). Obviously the

converse is also true and we conclude that the continuum limit `cut →∞ implies criticality

λ→ λc.

Let us analyze this limit in more detail. In general v` in (4.27) will be given by

v` = v0(zc)z
`
c where v0 has no dependence on `. Then Ωg in the continuum limit will

become lim`cut→∞Ωg = (k2
1)∆+2− d

2 lim`→∞(λh/λc)
2`/(h−2). For a generic λh ≤ λc this

is non-vanishing only at λh → λc and existence of the continuum limit of Ωg neces-

sitates this critical coupling. For example when zc = 0 one obtains the result Ωg →
(k2

1)∆+2− d
2 limzc→0 v0(zc). One can, however, sum the full series over ` and obtain

Ω = (k2
1)∆+2− d

2
v0(zc)

1−
(
λh
λc

) 2
h−2

. (4.29)

In the most interesting case of h = 4, d = 4 we find a single pole22 at λh = λc, Ω =

(k2
1)∆+2− d

2 v0(zc)λc(λc − λh)−1. Here is an interesting observation. When λc =∞ this full

series become identical to the critical limit of Ωg. Therefore, in this case the full two-point

function is given by its `cut → ∞ limit and dependence on λh disappears. Below, we will

see that the parameter λc is related to AdS radius in string units. In the more general case

however, while `cut → ∞ limit of Ωg is independent of λh, the full series over ` generates

this dependence, as in (4.29). We conclude that the two-point function generically has a

pole, its residue at this pole yields the continuum “geometric” limit, and the non-geometric

contributions in (4.28) generates dependence on an additional parameter λh with λh − λc
measuring proximity to the geometric limit.

4.4 Extrema of Schwinger parameters and criticality

We will now argue that the critical limit we found above is related to extrema of the

Schwinger parameters ar. One expects from (4.22) that a classical string R = Rcl contribu-

tion to the string path integral will correspond to extremization of the field theory two-point

function over the Schwinger parameters ar. Let’s try to get an idea about the dependence

of Ωg on `cut by assuming that all Schwinger parameters are the same, i.e. ar = a, on the

22This is not surprising, of course, as we assumed this above equation (4.27). What is surprising is that

we do not find the full Laurent series, i.e. there are no terms that go like (λh − λc)n for some positive

integer n.
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dominant saddle. Even though we will not attempt to prove it, this is not unreasonable to

expect in the continuum limit because of the following argument. The saddle configura-

tion {a∗r} is obtained by extremizing the exponent in (4.25) AF (a)/UF (a)− d/2 logUF (a)

with respect to all ar. In the continuum limit ` → ∞ we expect the path integral to be

dominated by “symmetric graphs” which we define as the graphs that are not n-particle

reducible where n � I (recall that I is the total number of internal lines) when one cuts

the graph at an arbitrary place23, see figure 3 as an example. Even though such “finitely-

reducible” graphs contribute to the amplitude, their contribution will be negligible in the

continuum limit. Now, in the continuum limit — which we expect to be dominated by such

symmetric graphs — one also expects an emergent permutation symmetry under all per-

mutations of {a∗r}: consider a symmetric graph, Symanzik polynomials of which are fixed

in terms of the characteristic matrices λrm and σri, see Appendix H. For a (large) fixed

value of `, one should sum over many of such symmetric graphs with the same `. Given

any symmetric graph, it is natural to assume in the limit `→∞ that all permutations of

ars will yield another symmetric graph that should be contained in the sum, which then

gives rise to a large permutation symmetry that permutes the labels r24. Our assumption

that ar = a on a saddle of Schwinger integrals in the continuum limit then follows from

this argument.

In this case the Symanzik polynomials simplify and are given by UF (a) = N1a
` and

AF (a) = N2a
`+1 where N1 and N2 are the number of one-trees and two-trees for a given

graph F . It is in general hard to figure out the ` dependence of the exponent AF /UF in

(4.24) but we can make the following estimate in the continuum limit ` → ∞. Consider

a planar graph which we can draw on a sphere. For the two point function we have two

punctures on this sphere where vertex operators are inserted. Take them to be located at

the left and right poles of the sphere, see figure 3. The number N1 of one-trees is given by

counting the number of curves that connect the left and the right poles (green curves on

left figure 3) together with all possible cuts of the loops on the sphere that do not intersect

this curve (orange curves in left figure 3)25. The area of the sphere scales as the number

of loops. Therefore the radius, hence a typical size of the left/right curve scales as
√
`.

All other such curves are obtained by fluctuations of this curve embedded on the sphere.

Suppose that the number of such fluctuations — labelled by m on figure 3 — is Nf . Call

the total number of possible cuts of all the loops that are not intersecting the curve m,

which is counted by the orange curves in (left) figure 3 and labelled by α — as Nc(m).

Their number, i.e. the range of α, will depend on the choice of curve m in general. However

23By arbitrary we mean not next to the punctures where the external momenta are inserted. These will

necessarily be (h− 1)-particle reducible where h is the coordination number of the vertex.
24In passing we note that it is tempting to identify the continuum limit of this large permutation sym-

metry with reparametrization invariance of the emerging world-sheet because the permutation symmetry of

Schwinger parameters will be inherited by elements of M which are made of am where m labels loops. In

the continuum limit `→∞, am → a(σ) and we expect the symmetry that permutes m to turn into general

coordinate transformations σa → σ̃a(σ) on the world-sheet. See [29] for the same phenomenon in the old

matrix models.
25Note that in this picture we are classifying one-trees by their “dual one-trees”, see [24], i.e. the collection

of lines in the Feynman diagram that are left over after removing a one-tree.
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m
n

βα

Figure 3: Example of a “symmetric” Feynman diagram with a fixed number of loops ` for

the two-point function in Φ3 theory. (Left) Characterization of one-tree contributions to

the first Symanzik polynomial U in terms of curves (green) that connect the two punctures

i.e. external vertices (shown by red dots) — we label different choices of this left-right

curve by integer m — and the leftover uncut lines (orange) transverse to this curve —

we label different choices of a collection of orange lines by α. A one-tree is given by all

un-highlighted (thin/black) lines. (Right) Characterization of two-tree contributions to

the second Symanzik polynomial A in terms of non-contractible loops (green solid/dashed

for front/back) that divide the graph into two parts (labelled by n) each containing one

puncture (red dot) and cuts transverse to this loop (orange), labelled by β.

in the large ` limit one expects this dependence to be negligible, hence Nc(m) ∼ Nc for all

m in this limit. All in all we have N1 ∼ NfNc in the large ` limit.

Now, apply the same counting to the number of two-trees shown on the right figure

3. Two-trees are given by all possible overall cuts of the lines on the sphere, such that the

graph is divided in two parts which respectively contain the left and the right poles. This

can also be classified by the number of non-contractible loops inserted between the left and

the right poles, see right figure 3. One can estimate their number by inserting rigid loops,

multiplicity of which scales as
√
`26 accounting for possible embedding of the mid-point

of the one-loop on the sphere, times all possible fluctuations times all possible cuts of the

remaining quantum loops on the sphere. In the continuum limit, the latter are expected

to be proportional to respectively Nf and Nc ,which we defined above when counting one-

trees. Hence we learn that N2/N1 =
√
` κ, where κ is some exponent that characterizes the

continuum limit of the Feynman diagrams and depends on the properties of the underlying

QFT, e.g. the coordination number of the interaction h, number of dimensions d, etc.

26To see this imagine inserting a rigid (non-wiggling) and non-contractible circle on the two-punctured

sphere. For simplicity think of inserting them vertically i.e. the line connecting the north pole and the

south pole would be perpendicular to the line connecting the left and the right poles i.e. the two punctures.

Their number is then proportional to the radius of the sphere hence
√
`. There are of course also tilted rigid

circles that can be inserted, but they will be accounted for by the fluctuations of the vertical rigid ones.
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Therefore the exponential in (4.25) scales as
√
`aκ− d/2` log a and all in all we found

that

lim
`→∞

v` ∼ NF (`) a−d`/2e−aκ
√
` . (4.30)

Here NF (`) is the number of all possible Feynman diagrams including their symmetry

factors, which diverges in the limit but luckily it factors out. Comparison of this with

(4.27) yields the value of the critical coupling constant

zc = λ
− 2
h−2

c ∼ a−d/2 . (4.31)

The value of a should further be obtained by extremizing the full expression (4.25). Note

that determining the precise relation between a and λc requires obtaining the dependence

of a on ` and of Ωg on zc as proportionality constants depend on these relations. We will

not do this here. On the other hand we argue below that in the case of a conformal field

theory the value of a is given in terms of the AdS radius in string units.

4.5 AdS/CFT and beyond

A check of the identification (4.22) and our arguments on the continuum limit above follows

from considering a conformal field theory. If the field theory is conformal, one expects the

target space scale factor in (4.17) to be given by A(r) = − log r. Let us see how this arises

from the field theoretic n-point function. Conformality of the two-point amplitude implies

homogeneity under the transformation kµ → kµΛ, xµ → xµ/Λ. From (4.12) this implies

homogeneity under ar → arΛ
2. We argued that in the continuum limit the saddle point

of the am integrals should be given by ar = a. Therefore conformality in the continuum

limit implies symmetry of the two-point amplitude under a → aΛ2. On the other hand,

this permutation symmetry of {ar} that arises in the continuum limit should be equivalent

to the diffeomorphism symmetry of the worldsheet that we identify with the continuum

limit of the Feynman diagrams. Using the diffeomorphism symmetry we can then write the

worldsheet metric as ds2
ws = e2w(τ)(dτ2+τ2dθ2). One can think of τ as defining a radius and

θ as an angle on the stereographic projection of the Feynman diagrams drawn on a sphere.

In terms of the original worldsheet coordinates one has σ1 = τ cos θ and σ2 = τ sin θ. τ

should be charged under scale transformation of the QFT as the line element on the world

sheet is identified with the line element of the target space. Then dimensional analysis

dictates τ → τ/Λ under the scalings above. Scale invariance of the world-sheet, which

is inherited from the scale invariance of the QFT in the continuum limit, then requires

exp(2w(τ)) ∝ τ−2. Embedding this string in the bulk target space

ds2
ws ∝

1

τ2

(
dτ2 + τ2dθ2

)
= e2A(R)

(
dR2 + δµνdX

µdXν
)

(4.32)

and using the identification (4.22) — which implies exp(2A)→ Λ2 exp(2A) under a→ aΛ2

— then scale invariance of the RHS fixes τ ∝ R and A(R) = − log(R/lAdS) where lAdS is

the AdS radius. Note that this argument is only valid when the field theory is conformal

at the full quantum level. For example the scaling symmetry of (4.12) will be broken by

the counterterms in (3.69).
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For a CFT the critical value of a in fact becomes a moduli that can be related to the

AdS radius in string units in the dual string theory. As a specific example consider d = 4,

h = 4. From (4.31) we find that λc = (aΛ2
UV /E

2)2 where we inserted an energy scale E of

the process in units of some UV cut-off energy ΛUV . The energy scales as E → EΛ and

accounts for invariance of λc under a → aΛ2 rendering the ’t Hooft coupling a moduli of

the CFT. It is clear from the discussion above that this energy scale should be identified

with the radial coordinate R as27 R ∝ 1/E. Then using the identification in the previous

paragraph we find aΛ2
UV /E

2 ∝ (lAdS/R)2(ΛUV /E)2 ∝ (lAdSΛUV )2. Identification of the

UV cut-off with the string length then yields

λc ∝ (lAdS/ls)
4 . (4.33)

This is indeed the correct identification in the usual AdS5/CFT4 correspondence and the

limit of Einstein gravity corresponds to λc →∞.

This argument can be generalized to QFTs that are classically scale invariant but

possessing a non-trivial beta-function quantum mechanically. We expect the identification

(4.22) and the fact that the world-sheet metric arises from the continuum limit of the

Feynman diagrams, i.e. ds2
ws = e2w(τ)(dτ2 + τ2dθ2), still to hold in this case. However the

continuum saddle of Schwinger parameters a will have a generic dependence a = τ−2F [τµ]

where µ is the RG scale and F is to be determined from the RG equations. For example

one can choose µ as the dynamically generated energy scale ΛQCD in QCD. Assuming that

we determine this function from Callan-Symanzik equations, then inverting the relation

between a and τ as τ = G[a/µ2], and using a = exp 2A we find τ = H[A− logµ] where G

and H are some functions. Then embedding of the world-sheet in bulk space would yield

A = w[H[A − logµ]], hence w = H−1 from which one can determine w(τ) hence A as a

function of R upon using the same identification τ ∝ R as above.

5 Discussion

Our main results for canonical fields Equations (3.23) and (3.35), and for composite fields,

(3.47) and (3.48), constitute novel forms of Kallen-Lehmann representations for the two-

point function. These equations, generically, include the genus summation. In particular

one can carry out the genus summation as in (3.25). Therefore our expressions are valid

for a large but finite N . Let us consider a CFT in 4D. Then the string coupling will be

gs ∝ g2
YM = λh/N . Assuming S-duality of string theory, under gs → 1/gs this corresponds

to λh → N2/λh. Therefore an S-duality in the ’t Hooft coupling λh only arises for N finite,

except for λh = ∞. In the latter case S-duality does not place any restrictions on the

theory. When N is finite however, one can then use the S-duality of the field theory under

λh → N2/λh to obtain the non-perturbative limit gs ≥ 1 of string theory. Performing

both the sum over ` and g in the two-point function, one would arrive at an expres-

sion Ω ∝ F1(1/N2, λh) = F2(gs, λh). S-duality then implies F2(gs, λh) = F2(1/gs, λh/g
2
s).

27This follows from the scaling property x → x/Λ which leads to R → R/Λ by (4.32), and that energy

should obey E → EΛ by dimensional analysis.
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Therefore one finds F2(1/gs, λh) = F2(gs, λhg
2
s). This means that the strong coupling limit

of string theory amplitude is determined by both the weak string and weak ’t Hooft cou-

pling. Knowledge of function F2 as a function of λh allows one to find an expression for the

string amplitude at inverse string coupling. Note that the string amplitude becomes self

S-dual for λh = 0 and λh = ∞. In both cases therefore one expects the dual background

to be AdS with constant dilaton. This is consistent with both Gopakumar’s finding in free

field theory [1] and the AdS/CFT duality in Einstein’s gravity limit. On the other hand,

for finite λh S-duality of the string amplitude also modifies the AdS length scale lAdS/ls to

lAdS/(lsg
1
2
s ). This is, of course, long known, see for example [44] for a review.

In section 4 we separated small and large ` contributions to field theory amplitudes,

called them “non-geometric” and “geometric” respectively, and argued that the latter, in

the weak string coupling limit, leads to perturbative string amplitudes where Feynman

diagrams become smooth string worldsheets à la ’t Hooft [34]. We also argued that this

continuum limit necessitates criticality of ‘t Hooft coupling λh → λc. In this limit there

are only two parameters in the dual theory, string coupling 1/N2 ∼ gs � 1 and λc that is

related to lAdS in string units. On the other hand, we found that inclusion of non-geometric

contributions yields an additional parameter λh which characterizes the non-geometric

contributions and is different than λc away from the geometric string limit. What does

this parameter correspond to in string theory? It is tempting to conjecture that these

non-geometric contributions generate a new scale which characterize collective excitations

of strings that become the weakly coupled when gs ∼ 1. We can determine this “Planck

scale” as follows. Consider computing free energy of the field theory from the path integral.

This will be proportional to N2 ∝ λ2
h/g

2
s . The corresponding quantity is the 5D gravity

action that is proportional to (lAdS/l5)3/gs ∝ (lAdS/l10)8/gs where l5 and l10 are the 5 and

10 dimensional Planck scales respectively. Recalling Equation (4.33) from previous section,

we arrive at the following relation for the ratio,

λh
λc
∝ g

1
2
s

(
ls
l5

)4( l5
lAds

) 5
2

= g
1
2
s

(
ls
l10

)4

. (5.1)

Therefore we can understand the new parameter λh/λc as the Planck scale in string units

which is not necessarily 1.

Our results can be extended in many new directions. Perhaps the most interesting

will be deriving the dual gravitational background, in particular the scale factor A(r) from

field theory n-point amplitudes. We outlined one possible route in the previous section, by

extremizing the integrals over the Schwinger parameters and extracting the function A(r)

from this extremum configuration in the continuum limit. Whether this can indeed be

done reliably in examples beyond AdS remains to be seen. Another possible route would

be reading off the dual geometry from the field theory two-point function, i.e. equation

(3.35), given as a sum over boundary-to-boundary AdS propagators. Perhaps, one can

extract the scale factor A(r) from the coefficients in this sum, regarding AdS propagators

with different masses as a complete set of solutions in which one can expand the solution

to Green’s function equation in the full geometry. This is likely to work at least near the

asymptotically AdS boundary.
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Figure 4: A discrete analog of the open-closed duality in spherical Feynman diagrams in

the example of Φ3 theory. Red dots denote punctures i.e. insertions of external momenta.

Left sum is over paths connected to punctures, right sum over non-contractible closed

paths. Duality arises in the limit where the number of loops diverge, assuming that such

a continuum limit exists.

Another possible extension involves our result in Appendix G for the closed-form ex-

pression for the two-point function. As discussed this appendix, we believe our result can

be extended to an arbitrary interaction Φh, to arbitrary n-point function and arbitrarily

large genus. Whether this can indeed be done, and if so, whether this new method could

lead to new advances in perturbative quantum field theory remains to be seen.

Finally, consider the symmetry of the two-point function under exchanging Symanzik

polynomials AF ↔ UF which we noted at the end of Appendix B. As we discussed in the

previous section, we expect that different contributions to the two-point amplitude with a

given (large) ` will approximate in the continuum limit to the symmetric type Feynman

diagrams. Then the aforementioned symmerty under exchange of Symanzik polynomials

acquires a geometric meaning: Consider a large ` graph contributing to the two-point

function. For example this can be a graph dual to a possible triangulation with ` triangles

of a world-sheet in the case of Φ3 theory, as in Fig. 4. As we discussed in the previous

section, first Symanzik polynomial UF can be formulated as a sum over all possible curves

between the external end-points of the diagram (which correspond to the two punctures of

the worldsheet in the continuum limit) modulo the extra transverse cuts (that are shown

by the orange curves in figure 3). Note that in the continuum limit this sum resembles

all possible open string configurations that can be drawn on a sphere extending between

the two punctures. Similarly, the second Symanzik polynomial can also be formulated as

a sum, but this time, over all possible cuts that divide the discretization of the sphere into

two parts each containing one external point (again modulo the extra transverse cuts).

This then resembles a sum over all possible non-contractible closed string configurations

that can be drawn on a sphere with two punctures. Therefore, it is tempting to propose

that this symmetry exchanging the first and the second Symanzik polynomials, see Fig.

4, is a primitive, discrete version of the open-closed duality in string theory, see Fig. 1.

Examining this relation and making it more precise seems to be of fundamental importance

to uncover origins of holographic duality in general.
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A Rewriting field theory propagator as AdS propagator

We start with equation (3.12):

ΩF (k1, k2) = VF δ (k1 + k2)

∫ ∞
0

dτ τ−3−ν e−τk
2
1 , (A.1)

and recall the definition ν = ∆−d/2. We then rewrite this by using the following identity:∫ ∞
0

dτ τAe−τk
2

=
Γ(2 + 2c)

Γ(1 + c)2

∫ ∞
0

dα1dα2 (α1α2)c(α1 + α2)A−1−2c e−(α1+α2)k2
, (A.2)

with A = −3−ν and c ≥ −128. To prove this identity one performs two changes of variables

α1 → α1α2 and α2 → α2/(α1 + 1) respectively. This allows us rewrite (3.12) as

ΩF (k1, k2) = V̄F δ (k1 + k2)

∫ ∞
0

dα1dα2 (α1α2)c(α1 + α2)−ν−4−2c e−α1k2
1−α2k2

2 , (A.3)

since k2
1 = k2

2 and we defined V̄F ≡ Γ(2+2c)
Γ(1+c)2VF . Using the definition of the Γ function29

Γ(ν + 4 + 2c) = (α1 + α2)ν+4+2c

∫ ∞
0

dt tν+3+2c e−(α1+α2)t , (A.4)

we find

ΩF (k1, k2) =
V̄F δ (k1 + k2)

Γ(ν + 4 + 2c)

∫ ∞
0

dt dα1dα2 (α1α2)c tν+3+2ce−(α1+α2)t e−α1k2
1−α2k2

2 . (A.5)

After Fourier transforming to real space, the correlator becomes

ΩF (x1, x2) = v̄F

∫
ddz dt

dα1dα2

α
d/2−c
1 α

d/2−c
2

tν+3+2ce
−α1t− (x1−z)

2

4α1 e
−α2t− (x2−z)

2

4α2 (A.6)

where we introduced z as a Lagrange multiplier for the delta function, i.e.

δ(k1 + k2) =
1

(2π)d

∫
ddz eiz(k1+k2) , (A.7)

28For the special case c = −1 one needs to take the limit c = ε− 1:∫
dt tae−tk

2

= lim
ε→0

ε

2

∫
dα1dα2(α1α2)ε−1(α1 + α2)A+1−2εe−(α1+α2)k2 ,

as the decoupled integral will yield a factor of 2/ε.
29Note that this is only true if ν + 4 + 2c > 0. When this condition is not satisfied we can use the

definition of the incomplete gamma function instead, by substituting the lower limit of integration with ε,

which is effectively a UV cutoff.
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and then we performed the Gaussian integrals. We also defined

v̄F = 2−d
V̄F

Γ(ν + 4 + 2c)
. (A.8)

Now we make the change of variables α1,2 = 1
4ρ1,2

,

ΩF (x1, x2) = v̄F 4d−2c−2

∫
ddz dt dρ1 dρ2 (ρ1ρ2)d/2−c−2 tν+3+2c e

−t
(

1
4ρ1

+ 1
4ρ1

)
e−ρ1(x1−z)2

e−ρ2(x2−z)2
,

(A.9)

followed by a final change of variables t = 4z2
0ρ1ρ2, which yields

GF (x1, x2) = 2v̄ 4∆+2+d/2

∫
ddz dz0

z1+d
0

z2∆+8+4c
0

2∏
i=1

dρi ρ
∆+2+c
i e−ρi(z

2
0+(xi−z)2) . (A.10)

We can now introduce the AdS bulk-to-boundary propagator (see also Appendix C),

K∆+2(x; z0, z) =
z∆+2

0

πd/2Γ(ν + 2)

∫ ∞
0

dρ ρ(∆+2)−1 e−ρ(z
2
0+(x2−z)2)

=
Γ(∆ + 2)

πd/2Γ(ν + 2)

z∆+2
0(

z2
0 + (x− z)2

)∆+2
, (A.11)

and, after setting c = −1 + ε, we finally arrive at

ΩF (x1, x2) = lim
ε→0

vF,ε

∫
dz0d

dz

z1+d
0

z2ε
0 K∆+2+ε(x1; z0, z)K∆+2+ε(x2; z0, z) , (A.12)

with

vF,ε ≡ 2πdΓ(ν + 2 + ε)24∆+2+d/2v̄F

= 2πd4∆+2 Γ(ν + 2 + ε)2Γ(2ε)

Γ(ν + 2 + 2ε)Γ(ε)2
`

∫ ∞
0

(
I∏
r=1

dbr

)
δ (1− UF )A∆+2−d/2

F .
(A.13)

This quantity is defined for a specific Feynman diagram F with ` loops. If we had two

diagrams F1 and F2 both with ` loops, we would need to compute two different quantities,

vF1,ε and vF2,ε, since two different diagrams with the same number of loops can have

different Symanzik polynomials, see Appendix I for simple examples.

B Alternatyive expressions for VF

In Equation (3.13) we gave an expression for the coefficient VF . Here we provide two more

alternative expressions for this coefficient in the massless case and observe an interesting

symmetry between these expressions. Start with the two-point amplitude in real space

ΩF (x− y) =

∫
ddk e−ik·(x−y)

∫ ∏
r

dar U−d/2F e
−AFUF k

2

. (B.1)
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Carrying out the Gaussian momentum integrals we arrive at

ΩF (x− y) = πd/2
∫ ∏

r

darA−d/2F e
− UF

4AF
(x−y)2

. (B.2)

Rescaling ar → ar(x− y)2 yields

ΩF (x− y) = πd/2
(
(x− y)2

)−∆−2
∫ ∏

r

darA−d/2F e
− UF

4AF , (B.3)

where we used Equation (3.14).

Now again start with (B.1) but instead of carrying out the momentum integrals rescale

ar → ar/k
2. Then one finds

ΩF (x− y) =

∫
ddk

(
k2
)d`/2−I

e−ik·(x−y)

∫ ∏
r

dar U−d/2F e
−AFUF . (B.4)

Now use the definition of Gamma function to write(
k2
)d`/2−I

=
1

Γ(I − d`/2)

∫ ∞
0

dt tI−d`/2−1e−k
2t

and to rewrite (B.4) as

ΩF (x− y) =
1

Γ(I − d`/2)

∫
ddk

∫ ∞
0

dt tI−d`/2−1e−k
2t−ik·(x−y)

∫ ∏
r

dar U−d/2F e
−AFUF .

(B.5)

Now carry out the Gaussian k integrals and rescale t→ t(x− y)2 to obtain

ΩF (x− y) =
πd/2

(
(x− y)2

)−∆−2

Γ(I − d`/2)

∫ ∞
0

dt tI−d(`+1)/2−1e−
1
4t

∫ ∏
r

dar U−d/2F e
−AFUF . (B.6)

The integral over t is generically divergent for h ≤ 2d/(d − 2). However in the marginal

case, that is the main interest in this paper, it is convergent and one obtains the formal

result

ΩF (x− y) =
πd/22d+2Γ(d/2 + 1)

(
(x− y)2

)−∆−2

Γ(−1)

∫ ∏
r

dar U−d/2F e
−AFUF . (B.7)

where the divergence from Γ(−1) can be regulated by d→ d− 2ε. Ignoring the numerical

coefficients, comparison of (B.3) and (B.7) yields an interesting symmetry under AF ↔ UF .

Let us finally derive an alternative expression for the coefficient VF . We can rewrite

(3.6) in real-space as

ΩF (x, y) =

∫
ddke−ik·(x−y)

∫ ∞
0

I∏
r=1

dar U−d/2F exp

(
−AF
UF

k2

)
= 4∆+2πd/2Γ(∆+2)

VF
|x− y|2∆+4

,

(B.8)

where

VF =
4−∆−2

Γ(∆ + 2)

∫ ∞
0

(
I∏
r=1

dar

)
A−d/2F exp

(
− UF

4AF

)
. (B.9)

We note that this expression for the two-point amplitude is also valid when ` = 0.
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C Some properties of AdS propagator

We define the bulk-to-bulk propagator in Euclidean AdS via (see for example [38])

D
(∆)
X G(X,Y ) ≡ (−∇2

X +m2
∆)G(X,Y ) =

1
√
g
δd+1(X − Y ) , (C.1)

where X = (x0, x) and Y = (y0, y) are points in AdS with radial components x0 and y0.

Note that

∇2
X = x2

0

(
∂2
x0
− d− 1

x0
∂x0 + ∂2

x

)
. (C.2)

The solution to (C.1) can be found as

G(X,Y ) =
Γ(∆)

2ν πd/2Γ(ν)

(
ξ
2

)∆
F
(

∆
2 ,

∆
2 + 1

2 ; ν + 1, ξ2
)
, (C.3)

with

ξ ≡ 2x0y0

x2
0 + y0

2 + (x− y)2
, ν ≡

√
d2

4 +m2
∆L

2 ≡ ∆− d
2 , C∆ ≡

Γ(∆)

πd/2Γ(ν)
. (C.4)

This is related to the bulk-to-boundary propagator via

K∆(x0, x; y) = lim
y0→0

2ν

y∆
0

G(x0, x; y0, y) = C∆
x∆

0[
x2

0 + (x− y)2
]∆ . (C.5)

Similarly we can define the boundary-to-boundary propagator as

β∆(x, y) ≡ lim
(x0,y0)→(0,0)

2ν

(x0y0)∆
G(x0, x; y0, y) = lim

x0→0

1

x∆
0

K(x0, x; y) = C∆(x− y)−2∆ .

(C.6)

Using (C.5) we can then rewrite (3.29) as

ΩF (x, y) = lim
ε→0

vF,ε lim
(x0,y0)→(0,0)

∫
AdS

z2ε
0

(2(νε + 2))2

(x0y0)∆+2
G∆+2+ε(x0, x; z0, z)G∆+2+ε(z0, z; y0, y)

= lim
ε→0

4(νε + 2)2 vF,ε lim
(x0,y0)→(0,0)

(x0y0)−∆−2

∫
AdS

z2ε
0 G∆+2+ε(X,Z)G∆+2+ε(Z, Y ) ,

(C.7)

where we set νε ≡ ∆ + ε− d/2.

At this point we would like to use an identity to rewrite the integral of two bulk-to-bulk

propagators as a single bulk-to-bulk propagator. However, we already know that the final

result of this calculation is (3.31), which means that the identity we are looking for is∫
Z∈AdS

z2ε
0 G∆+2+ε(X,Z)G∆+2+ε(Z, Y ) ∼ G∆+2(X,Y )

2(ν + 2)ε
, (C.8)

where the ” ∼ ” means that this identity is only valid for small ε, x0, and y0. Using this in

(C.7) we find

ΩF (x, y) = lim
ε→0

4(νε + 2)2 vF,ε lim
(x0,y0)→(0,0)

(x0y0)−∆−2G∆+2(X,Y )

2(νε + 2)ε
, (C.9)

which indeed reduces to the expression we showed in the main text, (3.31), after substituting

the definition (3.30).
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D Identities relating number of loops, lines and vertices

The following relation holds in a connected graph with ` number of independent loop

momenta, V vertices and I internal lines:

` = I − V + 1 . (D.1)

This is easy to obtain, as there are I total momentum running in the graph subject to

momentum conservation at V vertices and one such constraint is not independent due to

overall momentum conservation.

There is an additional equation that relates V and I. To derive this consider a ne-

point function of the canonical field Φ. Start from a fully connected diagram with ne
external lines. The number of vertices and internal lines for this diagram are V0 = ne
and I0 = ne(h − 1)/2 where h is the coordination number of the vertex30. Each time

one attaches a new internal vertex to this diagram one has h − 2 free lines to connect

somewhere. The minimum number of new vertices ∆V in general will be more than 1 if

we want ne to stay the same. Assuming no tadpoles (which indeed can be removed by a

renormalization condition), then after connecting ends of these lines to other parts of the

diagram, one finds that the number of internal lines increase by ∆I = ∆V + ∆V (h− 2)/2.

The first term here arises from the fact that an internal vertex divides the original line the

vertex is introduced to, into two lines. The second arises from connecting the rest of the

lines emanating from the new internal vertices either with each other or with the rest of the

diagram. This also determines the increase in the number of independent loop momenta

as ∆` = ∆V (h− 2)/2. Note that this is consistent with (D.1) as ∆` = ∆I −∆V . Writing

I = I0 + ∆I and V = V0 + ∆V and rearranging, we find

I =
V h

2
− ne

2
. (D.2)

Now we use (D.1) to express ` in terms of V

` = V
h− 2

2
+ 1− ne

2
. (D.3)

This shows that the Feynman diagrams contributing to a ne-point function can be labelled

by V only. Also note that we can combine (D.2) and (D.3) to find a relation between the

number of loop momenta and number of internal lines:

` = I
h− 2

h
+ 1− ne

h
. (D.4)

A word of caution when using these formulas for the free propagators. A free two-point

function should be thought of as two external lines connected to the ends of an internal

line. Hence the number of internal lines should be counted as I = 1, the number of vertices

V = 2 and the coordination number is h = 2 consistent with (D.2) and (D.3)31. Note also

30We assume a single type of vertex for simplicity. The analysis can be generalized.
31One might think that the derivation relies on the initial graph with V0 = ne hence the formulas above

only apply to certain type of graphs but this is not so. One can derive the same formulas e.g. starting with

an initial tree graph with `0 = 0, V0 = (ne − 2)/(h− 2) and I0 = V0 − 1.
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that nowhere in these derivations we used the number of genii g. Addition of vertices in

principle can increase the number of genii but the formulas still apply. What depends on

the number of genii is the number of faces of a graph that is related to ` as f = `+ 1− 2g.

Indeed, depending on how one connects the internal lines one may change the genus of the

graph, hence ∆f need not be the same as ∆`.

This calculation can easily be generalized to n-point functions of composite operators

e.g. 〈TrΦJ1(x1) · · ·TrΦJn(xn)〉 as follows. The basic diagram we start with, see for instance

the figure below, has V0 = ne vertices and I0 =
∑

i Ji/2 internal lines. The number of

independent loop momenta is determined by (D.1) as `0 =
∑

i Ji/2−ne+ 1. When we add

V −ne internal vertices (so that V is the total number of vertices of the diagram, including

the ne ’external’ vertices), we also have to add (V − ne)h/2 internal lines. Then

I =
(V − ne)h

2
+

∑
i Ji
2

. (D.5)

Using (D.1) we also determine

` =
V (h− 2)

2
+

1

2

∑
i

Ji −
neh

2
+ 1 . (D.6)

These identities reduce (formally) to the case of non-composite operators when J =

h− 1 and b = 1. They also apply to the tree level contribution with only external vertices

when h is set to 0.

Let’s check for example the case ne = 3, J = 4 with the following diagram:

k1 k2

k3

The number of internal lines and loops are correctly given by I = 6 and ` = 4 using the

formula above with h = 0.

E Renormalization of massless Φ4

We consider Φ4 theory, with vanishing mass for simplicity of discussion and demonstrate

renormalization of the two-point function in the Schwinger representation up to two-loop

level. At this order, there are only two diagrams contributing, i.e. the free propagator and

the sunset diagram:

(1+δZ)k2+Ω2(k) = (1+δZ)k2+2(λ+δλ)2

∫
db1db2db3δ(1−U)Γ(ε−1)

[
(1 + δZ)k2

]1−εA1−ε .

(E.1)
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1 2 3 4 5 6 7 8

+ + + - - -

Step i: 

Edges: 1 2 3 4 3 2 1

Figure 5: Example of a 3-loop planar graph with Φ3 interaction. Construction is from

left to right with a single vertex appearing in each step. The signs above denote the type

of vertices, bifurcation (+) and recombination (-). We also show the number of edges in

the graph crossed by the dashed lines at the end of each step.

Generally we can write δZ =
∑∞

i=1 λ
iδ

(i)
Z . Expanding around λ ∼ 0, ε ∼ 0 and keeping only

the terms of order λ2 we find (notice that δλ drops out)

λ2k2

[
δ

(2)
Z −

I1

ε
+ I1 log k2 + I1(γ − 1) + I2

]
(E.2)

with

I1 ≡ 2

∫
db1db2db3δ(1−U)A = 1/2 , I2 ≡ 2

∫
db1db2db3δ(1−U)A logA = −9/8 .

(E.3)

Then it is easy to see that we can set

δZ = I1

(
1

ε
λ2 − logµ2

)
+O(λ3) (E.4)

to obtain a finite expression for the two-point function up to two loops:

λ2k2

[
1

2
log

k2

µ2
+

1

2
(γ − 1)− 9

8

]
. (E.5)

This procedure can of course be generalized to higher orders, although it is definitely more

cumbersome than the usual method of adding new vertices to the theory.

F Counting the number of Feynman diagrams

In this appendix we devise a method to count the number of planar Φ3 Feynman diagrams

with ` loops that contribute to the scalar two-point function. For simplicity we focus only
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(i) Bifurcation vertex (+) (ii) Recombination vertex (-)

Figure 6: The two type of vertices that appear in Φ3 theory in a left-to-right construction.

on the planar graphs but the arguments below can be generalized to higher genus. Our

main idea is to construct the diagram with V vertices sequentially with V steps drawn from

left to right such that at every step one and only one vertex appears. Number of vertices

are fixed in terms of the number of loops, coordination number of the vertex and genus.

For planar Φ3 graphs we have V = 2` See Fig. 5 for an example of a 3-loop diagram. In

this left-to-right sequential construction there exist two type of vertices, a bifurcation and

a recombination which we denote by + and - type respectively, see Fig. 6. Now, in order to

create an `-loop diagram one needs to use ` recombination type vertices. Using the relation

between the number of vertices and loops V = 2` above, this means we need to construct

arrays of 2` + and - signs with exactly ` + and ` -. There are a few rules. First, in this

left-to-right construction, clearly, the first vertex should be of + type and the last one -

type. Then, we need to insert (` − 1) + and (` − 1) - vertices in between. Also clearly,

when read from left to right the number of - vertices should not exceed the number of +

vertices. An iterative way of constructing the set of arrays would then be starting with the

“fat graph” array + + · · · + −− · · ·− with ` + and - each and move the +’s towards the

right one by one. This problem can be mapped to the spectrum of free fermions where the

“fat graph” array corresponding to the ground state with ` fermions. However we still need

to respect the rule that the number of - vertices (empty fermion sites) should not exceed

the + vertices (filled fermion sites) as read from bottom up in energy. This can be imposed

on the free fermion spectrum as an external restriction and one can indeed compute the

“partition function of the Feynman diagrams” in this manner.

We will however, use a simpler trick, and describe the +/- arrays in terms of creation

annihilation operators for the number of edges n(i) in a given step i, see Fig. 5 as an

example. Introduce a state with n edges by |n〉. A bifurcation vertex acts on this as

a creation operator that we denote by a+. Similarly a recombination vertex acts as an

annihilation operator, a+|n〉 ∝ |n + 1〉, a−|n〉 ∝ |n − 1〉. We will fix the proportionality

constants in these expressions by counting the number of all possible edges the vertices

can be attached to. Clearly a bifurcation in step i can be placed on n(i) edges and a

recombination in a planar graph can be attached to n(i) pairs of adjacent edges. Therefore
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we introduce the following operations

a+|n〉 = n|n+ 1〉 a−|n〉 = (n− 1)|n− 1〉 a−|1〉 = 0 . (F.1)

It is easy to check that these operators satisfy [a+, a−] = −1. This defines the “algebra of

vertices” on this hypothetical Hilbert space of Feynman diagrams.

We now arrive at our final result. Denote the set of all permutations of (`− 1) + and

(`− 1) - signs by SΠ and let Π(n) ∈ +,− be the nth element in a particular permutation

Π ∈ SΠ. Then the total number of Feynman diagrams with ` loops is given by

N(`) ≈ 〈1|a−

 ∑
Π∈SΠ

aΠ(1) · · · aΠ(2`−2)

 a+|1〉 . (F.2)

Note that the algebra of annihilation/creation operators assures that there is never more -

type vertices than the + types when a graph is read from left to right or when the expression

above is read from right to left. This counting is imprecise for two reasons: (1) it ignores

special graphs where our counting should be corrected by accounting for the symmetry

factors. For instance a sub array of the form a−a+ when bifurcating and recombining the

same edge then there is an additional factor of 1/2 from symmetry. For large values of `

these symmetric graphs will be measure 0 and we can safely ignore associated symmetry

factors in the generic counting. (2) There may be an overcounting due to the fact that one

can obtain the same diagram in different ways in this construction by acting on with a+ on

different legs. For example the same graph shown in (5) obtained by the construction there

can also be obtained by acting with a+ on the lower legs. But this happens also because

there is a symmetry factor of 2 in this graph. Hence, also this miscounting can be safely

ignored when we consider a contribution with large `. We can therefore consider (F.2) as

exact for a generic graph with large enough `.

Let’s work out the example of ` = 2. In this case the only series of creation/annihilation

operators allowed are a−a−a+a+ and a−a+a−a+. The first one gives a multiplicity factor 4

whereas the second one gives 1 with a total of 5 diagrams. The correct number of distinct

diagrams is 4 on the other hand. This is because the same diagram is obtained in the first

array by acting the middle a−a+ on two separate legs.

G Full expression for the two point function in Φ3 theory

Interestingly, the same method that we devised above to count the number of diagrams can

be generalized to obtain the full expression for the loop-` contribution to the two-point func-

tion. For this we need to assign Schwinger parameters αi and momentum ki on the edges

and define the creation/annihilation operators to reproduce momentum conservation at the

junctions. Consider step i as above with ni edges. This defines a state |j1, j2 · · · , jn(i)〉 with

the Schwinger parameters and leg momenta αjm and kjm with m = 1, 2 · · · , n(i). Denote

by J the maximum value of jm in the set {j1, j2 · · · jn(i)}. Then define the bifurcation and

recombination operators acting on the state as

a+|j1, j2, · · · jn〉 = δ(kj1 − kJ+1 − kJ+2)|J + 1, J + 2, j2, · · · jn〉+ · · · (G.1)

· · ·+ δ(kjn − kJ+1 − kJ+2)|j1, · · · jn−1, J, J + 1〉
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a−|j1, j2, · · · jn〉 = δ(kj1 + kj+2 − kJ+1)|J + 1, j3, · · · jn〉+ · · · (G.2)

· · ·+ δ(kjn−1 + kjn − kJ+1)|j1, · · · jn−2, J + 1〉 .

The series of creation/annihilation operators acting on the state |1〉 in the end produces a

state |I + 2〉 where I = 3` − 1. One should then impose the normalization 〈I + 2|1〉 = 1.

Then the loop `, genus-0 contribution to the two-point function is given by

Ω`(k1, kI+2) ≈
I+1∏
r=2

∫ ∞
−∞

ddkr

∫ ∞
0

dαre
−αr(m2+k2

r)〈1|a−

 ∑
Π∈SΠ

aΠ(1) · · · aΠ(2`−2)

 a+|1〉 ,

(G.3)

One can easily check that this is proportional to δ(k1 − kI+2). The full answer for the

two-point function is then given by the sum over `. Note that the expectation value of

the series of a± above is a sum over product of 2` delta functions of momenta ki. Integral

over the internal momenta can be carried out as described in the text and gives the same

dependence on external momentum k1 for all the terms in the expectation value with α

dependence is factored out completely. What the expression above provides is a systematic

construction of all Feynman diagrams contributing at loop `. That is, each specific product

of delta functions corresponds to and can be used to label a graph F with independent

loop momenta `.

This construction can be generalized to the two-point function of an arbitrary theory

Φh where the definition of a± should be modified such that a+ produces h−1 adjacent legs

from a single one and a− joins h− 1 adjacent legs into one. It is also possible to generalize

to n-point functions by taking the difference of number of a+ and a− to be n− 2. Finally,

the same construction can be applied to contributions with arbitrary genus by allowing a−
act on non-adjacent legs.

H Basic properties of Symanzik polynomials

We review some of the useful properties of the Symanzik polynomials that appear in the

n-point amplitudes. For a more extensive review, see for example [39]. We have used two

equivalent expressions for the n-point amplitudes in throughout the paper, the Schwinger

representation (3.4) and the Chrisholm (or Feynman) representation (3.60). Let us first

show how the two can be obtained from one another. We demonstrate this in the case

of the two-point amplitude. Start from the Schwinger representation, which we reproduce

here,

ΩF (k1, k2) = δd(k1 + k2)

∫ ∞
0

I∏
r=1

dar U−d/2F e
−AFUF k

2
1+m2ar , (H.1)

and introduce the delta-function 1 =
∫∞

0 dτδ(τ −
∑

r ar) inside the integral. Then rescale

ar = τbr and perform the τ integral. One immediately obtains

ΩF (k1, k2) = δd(k1 + k2)Γ(−∆− 2 + d/2)

∫ ∞
0

I∏
r=1

dbr δ(1−
∑
r

br)
U−∆−2
F(

AFk2
1 +m2UF

) d
2
−∆−2

,

(H.2)
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where I − d`/2 = d/2−∆− 2.

There are various different expressions for the Symanzik polynomials. First of all they

are given in terms of trees and two-trees as follows

U(a) =
∑
T∈T1

∏̀
r 6∈T1

ar, A(a, k) =
∑
T2∈T2

`+1∏
r 6∈T2

ark
T (H.3)

where T1 is the set of trees of a graph G, T2 is the set of 2-trees (or 2-forests) of G and kT

is the sum of the external momenta flowing into one of the two disconnected components

of T2 ∈ T2. For clarity, note that the set of trees of G has the form T1 = (T1, T2, . . . ), so

that the dummy variable T can be T = T1, T2, . . . ; on the other hand the set of 2-forests

of G is T2 =
(

(T
(1)
1 , T

(2)
1 ), (T

(1)
2 , T

(2)
2 ), . . .

)
so that the dummy variable T2 is now a vector

with two components. From these definitions one immediately observes the following useful

properties:

• They are homogeneous functions of the Feynman parameters ar, U has degree ` and

A has degree `+ 1.

• They are linear in each Feynman parameter.

• Each monomial of U has coefficient +1.

One can represent the Symanzik polynomials also using the structure matrices of the

Feynman diagram which we define now. Denote the momenta on each edge r of the graph

as qr, loop momenta on loop m as pm and the external momenta as ki. r runs from 1 to I,

m from 1 to ` and for an n-point function i runs from 1 to n. Now the structure matrices

λ and σ are defined as follows

qr =
∑̀
m=1

λrm pm +

n∑
i=1

σri ki λrm, σri ∈ {−1, 0, 1} . (H.4)

Now define the following matrices

I∑
r=1

ar(q
2
r +m2) =

∑̀
m,n=1

pmMmnpn +
∑̀
m=1

2pm ·Qm + J , (H.5)

where each Qm are d-vectors given by combinations of the external momenta ki. One can

express M(a), Q(a) and J(a) in terms of the structure matrices λ and σ:

Mmn =

I∑
r=1

arλrmλrn , Qm =

I∑
r=1

n∑
i=1

arλrmσriki , J =

I∑
r=1

n∑
i,j=1

ar
(
σriσrjki · kj +m2

)
.

(H.6)

Now we can write down another representation of the Symanzik polynomials are now given

in terms of M , Q and J as

UF (a) = detM A(a, ki) +m2UF (a) = detM
(
J +QM−1Q

)
, (H.7)
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where A is defined in (3.5). Specifying to the two-point function it is easy to see, using

k2
2 = k2

1 and k1 · k2 = −k2
1 that QM−1Q+ J can be written in this case as

QM−1Q+ J = −k2
1

2∑
i,j=1

(−1)δij

(
σ̄i ·M−1 · σ̄j +

∑
r

σriσrjar

)
+m2 , (H.8)

where we defined

(σ̄i)m ≡
∑
r

λrmσriar . (H.9)

We provide yet another representation of the n-point amplitude in terms of creation/annihilation

operators in (G.3) for n = 2.

Finally we define the Kirchoff polynomial of a graph:

K(a1, . . . aN ) =
∑
T∈T1

∏̀
r∈T

ar (H.10)

This is very similar to the definition of the first Symanzik polynomial U , but now the

product is over the Feynman parameters contained in the tree T . Also note that K is an

homogeneous function of the a’s of order (I − `), while U is of order `. This function is

related to U via

U(a1, . . . aN ) = a1 . . . aN K(a−1
1 , . . . a−1

N ), K(a1, . . . aN ) = a1 . . . aN U(a−1
1 , . . . a−1

N )

(H.11)

Now define the Laplacian of a graph:

Lij =

{∑
k ak if i = j and edge ek is attached to Vi and is not a self-loop

−
∑

k ak if i 6= j and edge ek conects Vi and Vj
(H.12)

If two vertices are connected by e.g. two edges ex and ey then the Laplacian only depends

on the sum ax + ay. If an edge is a self-loop (i.e. a tadpole) then it does not contribute to

the Laplacian. Using these definitions we can now state the matrix-tree theorem:

K = detL[i] (H.13)

where L[i] is the minor of the Laplacian obtained by removing row i and column i, where

1 ≤ i ≤ ` is arbitrary. We can also count the number of trees of a given graph, by setting

all the Feynman parameters to one (a1 = · · · = aN = 1):

|T1| = K(1, . . . 1) = U(1, . . . 1). (H.14)

There are similar formulas for the second Symanzik polynomial, A which we will not review

here, see for example [39].
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I Some examples of Symanzik polynomials and their zeros

Here we provide first some examples of Symanzik polynomials, which we use later to

exemplify a method to compute their zeros. Consider first the following diagram F1:

k1

a2 a4

k2

a3

a1

a5

The two Symanzik polynomials corresponding to this diagram are

UF1(ar) = a1(a2 + a3 + a4 + a5) + (a2 + a3)(a4 + a5) ,

AF1(ar) = a1(a2a3 + a2a5 + a3a4 + a4a5) + a2(a3a4 + a3a5 + a4a5) + a3a4a5 .
(I.1)

Now, another two-loop diagram is given by

k1

a2

a1

a4
k2

a3 a5

In this case the graph polynomials are

UF2(ar) = (a2 + a3)(a4 + a5) ,

AF2(ar) = a1(a2 + a3)(a4 + a5) .
(I.2)

A third diagram we can draw is

k1

a2

a3

a5

k2

a1

a4

Its polynomials are

UF3(ar) = (a3 + a4)(a1 + a2 + a5) + a3a4 ,

AF3(ar) = a1(a2 + a5)(a3 + a4) + a1a3a4 .
(I.3)

The examples above allow us determine the zeros of Symanzik polynomials. Consider

first the second Symanzik polynomial. What are the zeros of AF? Recall that AF is
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obtained by removing internal lines from a diagram F so that we are left with two dis-

connected components; this means that AF will vanish if we set to zero those parameters

that form a path from the incoming particle to the outgoing one. This is because the

contributions to AF i.e. two-trees can be classified by all possible single “long cuts” that

divides the graph into two. In the first example in Appendix I these long cuts are given by

{a2, a3}, {a4, a5}, {a2, a1, a5} and {a4, a1, a3}. Every term in AF should involve a product

of the elements of these long cuts. Then AF will clearly vanish if we set one element per

long cut to zero. This defines nothing else but a path between the two external end points

of the graph. In other words, we can characterize the zeros of AF by looking at all possible

connected paths in our diagram F .

For example the paths connecting the two external insertions in the first example in

Appendix I are given by {a2, a4}, {a3, a5}, {a2, a1, a5} and {a3, a1, a4}. Hence the zeros

of AF in this case are given by a2 = a4 = 0, a3 = a5 = 0, a2 = a1 = a5 = 0 and

a3 = a1 = a4 = 0. The same procedure determines the zeros of AF in the second and third

examples in Appendix I as a2 = a1 = a4 = 0, a3 = a1 = a4 = 0, a2 = a1 = a5 = 0 and

a3 = a1 = a5 = 0 and a1 = 0, a2 = a4 = a5 = 0 and a2 = a3 = a5 = 0 respectively. One

can ask whether this procedure gives the full set of zeros. For example, one can generally

try to solve the equation AF = 0 for one of the ais in favor of others. But this will

generally lead to ai < 0 as Symanzik polynomials only involve positive coefficients and ais

are non-negative by definition.

Similarly one can devise a method to obtain the zeros of the first Symanzik polynomial.

This polynomial is obtained by removing ` internal lines such that all loops are broken

and one is left with a tree graph. The zeros are then obtained by setting the Schwinger

parameters in each independent loop of the graph to zero. This is because each element in

UF should involve at least one Schwinger parameter from an individual loop. If it does not

then it would not correspond to a tree. Therefore setting all Schwinger parameters of a loop

corresponds to a zero of UF . In the first example in Appendix I these loops are given by

a2 = a1 = a3 = 0, a4 = a1 = a5 = 0 and a2 = a4 = a3 = a5 = 0. Investigating the loops in

the second example yield the zeros a2 = a3 = 0 and a4 = a5 = 0. Similarly the zeros of the

third example are again determined from the loops as a3 = a4 = 0, a1 = a2 = a5 = a3 = 0

and a1 = a2 = a5 = a4 = 0.

We do not know whether this geometric determination of the zeros of Symanzik poly-

nomials have been discussed elsewhere in the literature. It also remains to be seen whether

this procedure can be extended to higher n-point functions or genus.
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