# Liquid biopsies in pediatric rhabdomyosarcoma and beyond

Nathalie S.M. Lak®

# Liquid biopsies in pediatric rhabdomyosarcoma and beyond

Nathalie Saskia Marguerite Lak

### Colofon

The research in this thesis was performed at the Princess Máxima Center for Pediatric Oncology (Utrecht, The Netherlands) and at the Department of Experimental Immunohematology of Sanquin Research (Amsterdam, The Netherlands).

The research was financially supported by KiKa (Children Cancer Free), grant number 312.

**ISBN:** 978-94-93353-58-9 **DOI:** 10.33540/2192

**Cover image:** Proefschrift-aio.nl | Guntra Laivacuma **Design and layout:** Proefschrift-aio.nl | Annelies Lips **Printing:** Proefschrift-aio.nl

Copyright © 2024 Nathalie S.M. Lak. All rights reserved. No parts of this thesis may be reproduced, sorted, or transmitted in any way or by any means without prior permission of the author, or when applicable, of the publishers of the publications.

## Liquid biopsies in pediatric rhabdomyosarcoma and beyond

### Vloeibare biopsieën bij het pediatrische rhabdomyosarcoom en daarbuiten

(met een samenvatting in het Nederlands)

### Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof. dr. H.R.B.M. Kummeling, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op dinsdag 19 maart 2024 des middags te 4.15 uur

door

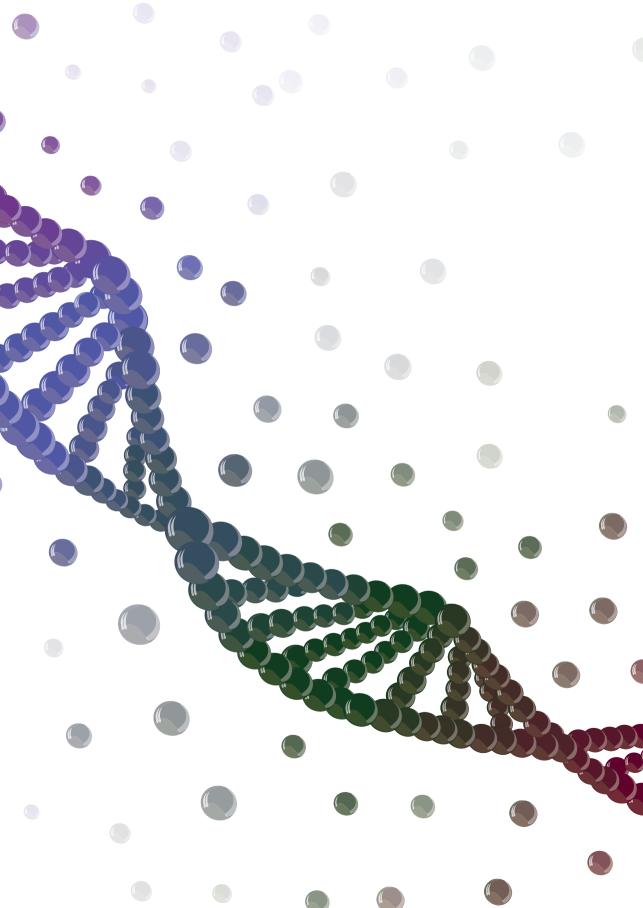
Nathalie Saskia Marguerite Lak geboren op 17 april 1985 te Parijs, Frankrijk

#### Promotoren:

Prof. dr. M.M. van Noesel Prof. dr. C.E. van der Schoot Prof. dr. G.A.M. Tytgat

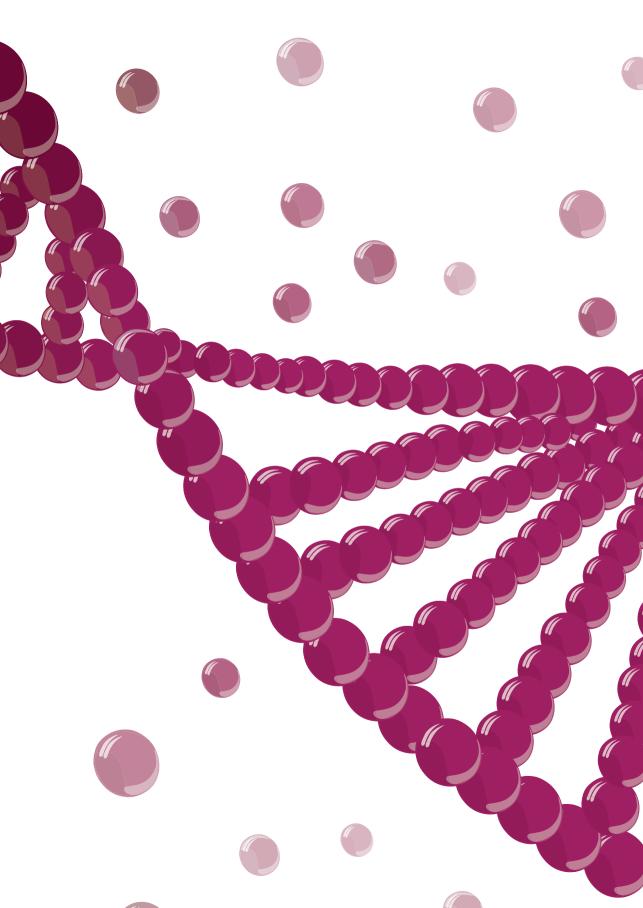
### Copromotoren:

Dr. J. Stutterheim


### Beoordelingscommissie:

Prof. dr. A. de Bruin Prof. dr. E.E.S. Nieuwenhuis (voorzitter) Prof. dr. ir. K. De Preter Prof. dr. H.J. Vormoor Prof. dr. E. van der Wall

Dit proefschrift werd mogelijk gemaakt met financiële steun van KiKa (Stichting Kinderen Kankervrij).


### Content

| Chapter 1        | Introduction and outline of this thesis                                                                                         |                          |  |  |
|------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------|--|--|
| Part I: Liquid b | iopsies in pediatric rhabdomyosarcoma                                                                                           |                          |  |  |
| Chapter 2        | Improving Risk Stratification for Pediatric Patients<br>with Rhabdomyosarcoma by Molecular Detection of<br>Disseminated Disease |                          |  |  |
| Chapter 3        | Novel Circulating Hypermethylated RASSF1A ddPCR for Liquid Biopsies in Patients With Pediatric Solid Tumors                     | 71                       |  |  |
| Chapter 4        | Cell-free DNA as a diagnostic and prognostic biomarker pediatric rhabdomyosarcoma                                               |                          |  |  |
| Chapter 5        | Molecular Characterization of Circulating Tumor DNA in<br>Pediatric Rhabdomyosarcoma: A Feasibility Study                       | 135                      |  |  |
| Chapter 6        | Targeted Locus Amplification to develop robust patient-<br>specific assays for liquid biopsies in pediatric solid tumors        | 189                      |  |  |
| Part II: Extrace | llular vesicles and cell-free RNA                                                                                               |                          |  |  |
| Chapter 7        | Extracellular Vesicles: A New Source of Biomarkers in<br>Pediatric Solid Tumors? A Systematic Review                            |                          |  |  |
| Chapter 8        | ter 8 Cell-free RNA from plasma in patients with neuroblaston exploring the technical and clinical potentia                     |                          |  |  |
| Chapter 9        | Discussion and future directions                                                                                                | 317                      |  |  |
| Appendices       | English summary<br>Nederlandse samenvatting<br>Curriculum Vitae<br>Acknowledgements                                             | 334<br>337<br>341<br>342 |  |  |



### PARTI

### Liquid biopsies in pediatric rhabdomyosarcoma



### Chapter 1 Introduction and outline of this thesis

### Liquid biopsies in pediatric oncology

In the Netherlands, more than 550 children are diagnosed each year with a pediatric malignancy, of which 33% with a solid tumor.<sup>1</sup> Current patient stratification is based on radiological and nuclear imaging and tumor sampling techniques. The diagnosis and treatment stratification is based on tumor biopsy, imaging and often bone marrow biopsies for the presence of tumor dissemination.<sup>2–6</sup> Once a patient is assigned to a treatment risk group, evaluation of therapy response is performed at standardized moments during treatment. Again, imaging and bone marrow punctures have a crucial role in this process. Liquid biopsies, e.g. novel techniques to sample tumor fragments in the blood or other liquids, are able to detect tumor potentially at a much higher sensitivity. This opens up a new area of diagnostic tools. It implies that the staging methods we currently use to investigate newly diagnosed or patients with relapse need to be revisited.

What can be the added value of liquid biopsies? Biopsy of the tumor itself allows for molecular analysis of the tissue. However, it represents only a fraction of the heterogeneous tumor and may not offer a comprehensive perspective of the complete genetic characteristics of the disease.<sup>7</sup> Imaging of a tumor provides information on the localization and relationship to other anatomical structures. Also, it offers valuable information on imaging characteristics, cell density (diffusion restriction), cystic components and many more aspects. However, there are also important limitations. A tumor is only detected if it is large enough, which is approximately 1 cm3, corresponding to 10<sup>9</sup> cells.<sup>8</sup> The actual diagnosis is not always clear from the imaging and a complete understanding of the treatment response can seldomly be drawn exclusively from imaging of the tumor.<sup>9,10</sup> In children, an important complicating factor is that imaging in patients up to 7 years often must be performed under anesthesia which has been under scrutiny during recent years for potential adverse effects on neurocognitive development.<sup>11–13</sup>

Liquid biopsies include all sampling and molecular analysis of fluids present in the human body. In patients with cancer, these fluids can contain tumor cells or tumor-derived cell components.<sup>14,15</sup> In this thesis, the focus lies on the liquid biopsies derived from peripheral blood and bone marrow. Blood circulates through the entire body and transports nutrients, but also cellular debris, ranging from metabolites, to nucleic acids (e.g. DNA and RNA) and circulating tumor cells (CTC).<sup>14–16</sup> This molecular information can assist at the initial diagnostic work-up for treatment stratification or for response evaluation during treatment. Since material from both the primary tumor and metastatic lesions can circulate, liquid biopsies can offer a comprehensive view on the genetic landscape of malignant disease.<sup>7,14</sup> In many pediatric solid tumors, e.g. neuroblastoma and rhabdomyosarcoma, bone marrow represents a site for metastatic disease, and is sampled routinely to evaluate treatment response in patients that present with bone marrow metastases at primary diagnosis.<sup>2,17</sup> Molecular analysis can be of added value to conventional morphological and immunohistochemical examination.<sup>2,17</sup>

To enhance sensitivity of liquid biopsies, the choice of molecular targets is crucial. Pediatric tumors have a low mutational burden and have a distinct genetic profile compared to adult tumors. If pathogenic mutations are present, these are often limited to a single mutation.<sup>18</sup> Some tumors contain a tumor-driving fusion gene. But in many patients, copy number alterations (CNAs) or aberrant methylation profiles can be the sole aberrations.<sup>18-20</sup>

### **Cell-free DNA analysis**

In a healthy state, cell-free DNA (cfDNA) is shed in peripheral blood plasma through apoptosis and necrosis from all cells in the body.<sup>21–23</sup> The majority of cfDNA originates from hematopoietic cells.<sup>24,25</sup> Tumor-derived genetic aberrations can be detected in cfDNA and to differentiate between normal and tumor cell-derived cfDNA, several techniques are available.

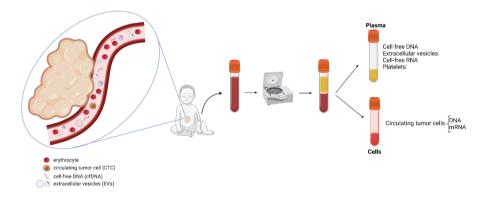
A common approach is the polymerase chain reaction (PCR) assay for the analysis of cfDNA. Over the last decades real-time quantitative PCR (RT-qPCR) has been used frequently. In RT-qPCR a specific genetic target is amplified during several cycles of PCR using targeted primers. A specific fluorescing probe anneals to this amplified target and the readout is quantified per PCR cycle. In RT-gPCR a sample is analyzed in bulk, but this can hamper sensitivity since only a small fraction of cfDNA is tumor-derived. To increase sensitivity, digital PCR (dPCR) has been developed. The general principle behind dPCR is partitioning of a sample into thousands of units with the aim for each unit to contain at least one target molecule. The PCR reaction is conducted within each individual unit and every unit is evaluated for positivity for the fluorescence signal of the target, thereby reducing the background noise that is often affecting analysis of low abundant targets.<sup>26-28</sup> This makes dPCR wellsuited for detection of tumor-derived cfDNA from plasma, since these targets need to be uncovered in an abundance of normal cfDNA. The disadvantage of dPCR is that the total input of DNA that can be tested is limited. However, this low input is not a problem in case of cfDNA, as the total amount of DNA that can be isolated (1

from plasma is also relatively low. Several dPCR platforms are currently available.<sup>28</sup> The dPCR platform used in this thesis is droplet digital PCR (ddPCR). In ddPCR, a sample is partitioned into more than twenty thousands of droplets using a water/ oil emulsion.<sup>28</sup>

An increasingly popular approach to the analysis of cfDNA in pediatric oncology is the analysis of the complete base pair sequence of the DNA fragments to detect genetic alterations, such as mutations, insertions and deletions but also copy number aberrations (CNA). The sequence can be analyzed for the presence of CNA by shallow whole genome sequencing (shWGS). Whole exome sequencing (WES) and whole genome sequencing (wGS) are used to discover single nucleotide variations (SNVs) or structural variations.<sup>29</sup> If performed repeatedly during the course of the disease, it can be used to evaluate treatment response, clonal evolution and resistance mechanisms of the tumor itself.<sup>7,29,30</sup> Furthermore, it can identify aberrations suited for use in targeted liquid biopsy assays, which might be more time and cost effective for frequent sampling during induction treatment. Lastly, tumor specific alterations potentially reveal targets for precision treatment. A limitation to sequencing platforms is the cost and the requirement for intricate bio-informatic pipelines. This can partly be avoided by the introduction of panel sequencing, where a limited number of genes is sequenced. However, this demands a careful choice of genes.

Epigenetic analysis of cfDNA is another approach that has shown its potential over the last decade. Within the genome, epigenetic modifications, e.g. methylation, histone modifications and positioning of nucleosomes on the DNA, play a pivotal role in silencing or activation of gene transcription.<sup>31</sup> Methylation is binding of a methyl group to a CpG island, a region in the DNA with a C nucleotide followed by a G.<sup>32</sup> The effect of methylation is dependent on where in the DNA it takes place.<sup>33</sup> Methylation of the promoter region of a gene can result in inhibition of transcription of this specific gene.<sup>33</sup> Hypo and hypermethylation of genes are dynamic processes, also essential for the development from embryo to adult.<sup>31,32</sup> A specific methylation profile, e.g. the pattern of hypo- and hypermethylation of the CpG islands in the DNA of a cell, is unique for a specific cell type.<sup>31–33</sup> Changes in gene methylation play a role in the development of cancer. This can lead to activation of oncogenes or, on the contrary, silencing of tumor suppressor genes.<sup>31,32,34</sup> A tumor also contains a specific methylation profile, which is different to healthy cells but comparable to similar tumors. Methylation profiling of tissue can thereby be used to differentiate between malignancy and cancer, and also assist in identifying tumor (sub)types. For central nervous tumors, methylation profiling is now implemented in clinical practice and essential for establishing a diagnosis.<sup>35</sup> In primary sarcoma tumor material, methylation profile analysis was established as a classification tool for different sarcoma types.<sup>36</sup> Van Paemel et al. have adapted this approach for the methylation analysis of cfDNA from plasma: cell-free reduced representation bisulphite sequencing (cfRRBS).<sup>37,38</sup> They have shown that cfRRBS on diagnostic cfDNA can classify pediatric solid tumors correctly.<sup>38</sup>

Tumor suppressor genes are at the center of the 'two hit'-theory, which is often proposed as a pivotal mechanism in tumorigenesis.<sup>39,40</sup> This entails that loss of both alleles of a tumor suppressor gene is necessary for a cell to acquire cancerous traits. Loss of each allele can be caused by an inactivating mutation or silencing through epigenetic modification.<sup>39–41</sup> An example is tumor suppressor gene RASSF1. At the beginning of this century, RASSF1 was identified as a protein that can associate to Ras and thereby affect the Ras pathway.<sup>42</sup> The RASSF1 locus lies in the 3p21.3 region and has different transcript variants, of which RASSF1A is most studied for its role in cancer, together with RASSF1C.<sup>41,43,44</sup> For RASSF1A, although inactivation through mutations has been described,<sup>45</sup> silencing through hypermethylation has been described most frequently in many tumors, adult as well as pediatric.<sup>41,43,46–50</sup>


Finally, an upcoming technique for cfDNA is based on the difference in size of the cfDNA fragments and therefore called 'fragmentomics'. cfDNA originating from healthy cells is about 167 bp, which corresponds to the size of chromatin wrapped around a nucleosome.<sup>21,51</sup> cfDNA fragments from malignant cells are shorter, around 90 to 150 bp. This difference in fragment length of cfDNA can be used as a method to enrich for tumor-derived cfDNA.<sup>23,52,53</sup> This enrichment step can be used by itself to quantify tumor-derived cfDNA or as an enrichment step before further molecular analysis of tumor-specific genetic and/or epigenetic aberrations.

### Circulating tumor cells: biology and analysis

Detection and analysis of CTC offer another application for liquid biopsy-based investigations. CTC have become detached from the surrounding tumor cells and extracellular matrix and have entered the blood stream. Whether this is an active or passive process, is still up for debate.<sup>54</sup> CTC face many challenges in the blood vessels, encountering immune cells and shear stress from the vessel walls.<sup>55</sup> Furthermore, detachment from surrounding cells and the extracellular matrix would induce anoikis and eventually apoptosis in normal cells.<sup>56</sup> Successful CTC use epithelial-to-mesenchymal transition (EMT) to evade these obstacles and eventually settle in their metastatic site, using a reversed process of mesenchymal-to-epithelial transition

(1

(MET).<sup>56,57</sup> Apart from increasing knowledge on the mechanisms behind EMT and MET, CTC also represent another biomarker for liquid biopsies. Various methods to enrich CTC from blood have been developed, using mechanical characteristics, e.g. cell size or density, or protein expression.<sup>56,58</sup> They contain genetic and proteomic information on the tumor and the number of CTC can reflect disease stage.<sup>59</sup> However, an important limitation is that the number of CTC in a blood sample can vary greatly and is often very low.<sup>60</sup> When aiming to detect a CTC-derived signal, DNA-based techniques might not be sensitive enough. However, since expression of one gene can lead to multiple mRNA copies within a cell, detection of tumor-derived mRNA offers a sensitive alternative.<sup>61</sup> In neuroblastoma, the use of an RNA-based approach to detect CTC in blood and disseminated tumor cells in bone marrow, has been shown to be sensitive and of clinical relevance.<sup>62-68</sup>



**Figure 1.** Illustration of the different particles present in peripheral blood (left) and preparation of peripheral blood by centrifugation (right).

Tumor-derived RNA can also circulate as cell-free RNA (cfRNA) in blood and form a potent biomarker. Due to the presence of RNAses in blood, large cfRNA molecules are dependent on protection from degradation by association to other particles, e.g. protein aggregates or lipid-encased structures, e.g. extracellular vesicles (EV). <sup>16,69-71</sup> During the last 20 years, EV have gained interest as biomarkers.<sup>72</sup> They are shed by every cell in the body and contain cargo that is encapsulated in a lipid bilayer, which is thereby protected from degradation by plasmatic enzymes.<sup>69,70,73,74</sup> EV cargo reflects their cell of origin, and can contain cfDNA, cfRNA or proteins.<sup>73,75</sup> Different RNA subtypes have been described as cargo in EV, from microRNA (miRNA) to mRNA or even long non-coding RNA (lncRNA).<sup>16,75-77</sup> EV are an extremely heterogeneous group of particles and many different approaches for their isolation from plasma and analysis of their content have been described.<sup>78-80</sup> Tumor cells have been described

to be greatly active in shedding EV.<sup>81-83</sup> These tumor-derived EV represent a great source of biomarkers and this potential has been explored increasingly during the last decade.

### Rhabdomyosarcoma: a genetic and clinical perspective

Twenty children are diagnosed with rhabdomyosarcoma every year in the Netherlands.<sup>1</sup> Rhabdomyosarcoma is considered a mesenchymal tumor of (muscle) stem cells that undergo aberrant differentiation and display muscle-like features.<sup>84,85</sup> It can arise in any part of the body, also in sites without apparent presence of muscle.<sup>84</sup> The exact cell-of-origin of rhabomyosarcoma has not been established yet. The most common rhabdomyosarcoma subtype has an embryonal morphology and often occurs in the head/neck area and genito-urinary tract.<sup>17</sup> On a genetic level, embryonal rhabdomyosarcoma often harbor CNA and occasionally single nucleotide variations.<sup>86,87</sup> In a subset of embryonal tumors, a recurring mutation in MYOD1, L122R, a transcription factor involved in muscle differentiation, has been reported.<sup>88,89</sup> Patients with this mutation have poor clinical outcome. Furthermore, several mutations in the RAS/PI3KCA pathway have been described as well as in TP53.<sup>86,87,89</sup>

Approximately 20% of patients with rhabdomyosarcoma have an alveolar morphology, resembling lung alveoli. This tumor frequently arises in the extremities and is associated with a higher frequency of metastatic disease at diagnosis, poor prognosis and typical translocations.<sup>17</sup> Many alveolar tumors have a tumor-driving translocation between the PAX3 gene on chromosome 2, in 55% of cases, or the PAX7 gene on chromosome 1 and FOXO1 on chromosome 13, in 22%.<sup>90-92</sup> PAX3 and FOXO1 are both transcription factors, and the fusion gene of PAX3-FOXO1 results in an alternative transcription factor that leads to increased cell proliferation, cell survival and suppression of differentiation, all essential to tumorigenesis.<sup>93</sup> Tumors with the PAX3-FOXO1 translocation are considered the most aggressive, whereas clinical behavior of tumors with the PAX7-FOXO1 translocation tends more towards the embryonal subtype.<sup>89,94</sup> Atypical fusions have also been identified, e.g. PAX3-NCOA1/2 or PAX3-FOXO4.<sup>95</sup>

Patients with pediatric rhabdomyosarcoma can present at any age, but two peaks have been reported: between 2 and 6 years for the embryonal subtype, and between 10 and 18 years for the alveolar subtype<sup>3,17</sup> Several predisposition syndromes have

been associated with rhabdomyosarcoma, amongst them Li Fraumeni syndrome (germline mutation in TP53), Beckwith Wiedeman, Neurofibromatosis type 1 (germline mutation in NF1), DICER1 syndrome (germline DICER1 mutation).<sup>17</sup> Survival depends on dissemination of the disease at initial diagnosis. Patients with localized disease have a 5 year overall survival of 75%.<sup>96-98</sup> Fifteen percent of patients present with metastatic disease.<sup>99</sup> Common metastatic sites are the bone marrow, lungs and bones.<sup>17</sup> Current investigations for metastatic disease consist of imaging (e.g. CT scan of the chest, MRI, FDG-PET scan) and bone marrow biopsy. Presence of metastasis in the bone marrow biopsy is assessed by morphology and immunohistochemistry. Overall survival of patients with metastatic disease is estimated between 30 and 50%, but patients with metastatic lesions in the bone marrow have a worse outcome.<sup>97,100,101</sup> Of all patients, with both localized and metastatic disease, up to 1 in 3 will suffer from relapsed disease.<sup>102-104</sup> Factors associated with poor outcome of relapsed disease are: metastatic recurrence, previous radiotherapy, large tumor size and unfavorable tumor site, nodal involvement and early relapse.<sup>103</sup>

In the Netherlands, patients have been treated according to study protocols established by the European Paediatric Soft tissue Sarcoma Group (EpSSG). Between 2005 and 2017, patients were treated within the EpSSG RMS2005 protocol. Within this protocol, patients with localized disease were stratified according to patient and tumor characteristics into low, standard, high and very high risk groups (Table 1).<sup>102,105</sup>

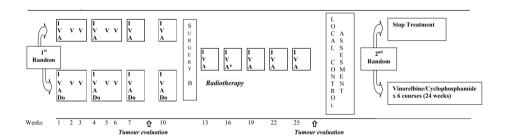



Figure 2. Treatment scheme for high risk group, as taken from the EpSSG RMS2005 protocol I= Ifosfamide V=Vincristin A=Actinomycin D Do=Doxorubicin

| Risk Group        | Subgroups | Pathology    | Post surgical<br>Stage<br>(IRS Group) | Site         | Node<br>Stage | Size & Age   |
|-------------------|-----------|--------------|---------------------------------------|--------------|---------------|--------------|
| Low Risk          | А         | Favourable   | Ι                                     | Any          | N0            | Favourable   |
| Standard<br>Risk  | В         | Favourable   | Ι                                     | Any          | N0            | Unfavourable |
|                   | С         | Favourable   | II, III                               | Favourable   | N0            | Any          |
|                   | D         | Favourable   | II, III                               | Unfavourable | N0            | Favourable   |
| High Risk         | E         | Favourable   | II, III                               | Unfavourable | N0            | Unfavourable |
|                   | F         | Favourable   | II, III                               | Any          | N1            | Any          |
|                   | G         | Unfavourable | I, II, III                            | Any          | N0            | Any          |
| Very High<br>Risk | Н         | Unfavourable | I, II, <mark>I</mark> II              | Any          | N1            | Any          |

Table 1. Risk stratification for localized rhabdomyosarcoma from the EpSSG RMS2005 protocol.

Pathology: favourable = all embryonal, spindle cells, botryoid RMS; unfavourable = all alveolar RMS (including the solid-alveolar variant)

Post surgical stage (according to the IRS grouping): Group I = primary complete resection (R0); Group II = microscopic residual (R1) or primary complete resection but N1; Group III = macroscopic residual (R2)

Site: Favourable = orbit, GU non bladder prostate (i.e. paratesticular and vagina/uterus) and non PM head & neck; unfavourable = all other sites (parameningeal, extremities, GU bladder-prostate and "other site") Node stage: N0 = no clinical or pathological node involvement; N1 = clinical or pathological node involvement

Size & Age: favourable = tumour size (maximum dimension) <5cm and Age <10 years; unfavourable = all others (i.e. Size >5 cm or Age  $\ge$ 10 years)

Except for patients with favorable characteristics and fully resectable disease, all patients were treated according to a 26 weeks regimen, consisting of 9 cycles of chemotherapy with response evaluation after 9 weeks (example shown in Figure 2). At this timepoint, a treatment plan for local control was determined, consisting of surgery and/or radiotherapy. Patients with high risk disease were randomized for maintenance chemotherapy after first line treatment. Introduction of maintenance therapy resulted in a significant increase of event-free survival (from 69.8% to 77.6%) and overall survival (from 73.7% to 86.5%).<sup>105</sup> Maintenance therapy is now standard of care in the current EpSSG treatment protocol (Frontline and relapsed rhabdomyosarcoma, FaR RMS) for this patient group.<sup>106</sup> In RMS2005, patients with high risk disease were randomized to the first line chemotherapy regimen, which was not the case.<sup>102</sup>

Metastatic patients were treated according to the MTS2008 protocol. Within this trial, patients received standard induction chemotherapy followed by 1 year maintenance chemotherapy. Concurrently, a subset of centers included patients with metastatic rhabdomyosarcoma in the BERNIE study. Within the BERNIE study, patients were treated according to MTS2008 but Bevacizumab, a VEGF inhibitor was added. First survival analyses of the BERNIE study showed no survival benefit for patients treated with Bevacizumab.<sup>107</sup> Recently, Schoot et al. published a pooled analysis of patients treated within the MTS2008 and BERNIE study.<sup>100</sup> In comparison to a previous pooled analysis of North American and European patients with metastatic rhabdomyosarcoma, both event-free survival (from 27% to 36%) and overall survival (from 34% to 49%) increased.<sup>97,100</sup> Including this more mature survival data, bevacizumab still did not demonstrate any improvement of clinical outcome.<sup>100</sup>

### Liquid biopsies and rhabdomyosarcoma

Literature on the use of liquid biopsy in pediatric rhabdomyosarcoma is guite scarce and there is a distinction between RNA-based and DNA-based analysis. Previous studies in small cohorts reported that PCR-based detection of rhabdomyosarcoma-derived transcripts could be more sensitive than conventional morphology for detection of bone marrow metastasis and that presence of these transcripts in bone marrow was associated to poor clinical outcome. The first study dates from 1996 and subsequently 4 studies were published in the early 2000's on the use of RNA-markers for the detection of circulating and disseminated tumor cells in blood and bone marrow of patients with rhabdomyosarcoma. These studies often included two genes encoding transcription factors involved in muscle differentiation MYOG and MYOD1, and the transcripts of the PAX3/7-FOXO1 fusion genes.<sup>108–111</sup> Overall, these 5 studies demonstrated that presence of rhabdomyosarcoma-specific transcripts in blood and/or BM at diagnosis was associated to poor clinical outcome and that detection of these transcripts in bone marrow could be of added value to conventional histology for the detection of BM metastasis.<sup>108,109,111</sup> However, the number of patients analyzed in these studies were rather low, ranging from 5 to 48. Then, until this current thesis no more RNA-based liquid biopsy studies in pediatric rhabdomyosarcoma were published. However, interest in the analysis of cfDNA from plasma for patients with solid tumors gradually increased during the last decade. For pediatric rhabdomyosarcoma, reports on the analysis of cfDNA were still scarce previous to this thesis and focused on fusion gene-positive tumors. These reports were limited to single patient case reports or small cohorts. <sup>112,113</sup> This thesis is the first to report on a large number of samples from patients with rhabdomyosarcoma and describes the analysis of liquid biopsies, both RNA- and DNA-based, from 99 patients.

### Scope of this thesis

In **Part I** of this thesis, we investigated the potential of liquid biopsies for patients with rhabdomyosarcoma to improve current treatment stratification and response monitoring. We performed the first prospective collection of blood and bone marrow samples from Dutch patients treated for rhabdomyosarcoma. In **Chapter 2** we report on the development of a panel of markers to detect rhabdomyosarcoma-specific RNA in the cellular compartment of blood and bone marrow and analyzed if positivity of this panel was associated to clinical outcome.

In **Chapter 3** we describe a novel ddPCR assay for the detection of RASSF1A-M and validate this in cfDNA from patients with different types of pediatric solid tumors.

In **Chapter 4**, we explored the feasibility of different approaches for the analysis of cfDNA from plasma of patients with rhabdomyosarcoma. We used cfRRBS and CNA analysis, but also ddPCR for the detection of RASSF1A-M. For the RASSF1A-M assay, we studied whether presence of RASSF1A-M in plasma was associated to clinical outcome.

In **Chapter 5**, we investigated whether it was feasible to use genetic data from primary rhabdomyosarcoma tumors to design patient-specific ddPCR assays to assess tumor burden longitudinally.

For **Chapter 6**, we studied the potential of patient-specific ddPCR assays further in different types of pediatric solid tumors. The breakpoints in translocations or regions with CNAs are perfect for the design of patient-specific designs, since they are not present in normal (cf)DNA. So we sought collaboration with Cergentis, a company specialized in determining the exact sequence of specific targets, using targeted locus amplification (TLA).<sup>114,115</sup>

In **Part II**, we explored novel cell-free markers from plasma. In **Chapter 7** we reviewed the literature on EV-derived biomarkers in different pediatric solid tumors. In **Chapter 8** we investigated the possibility to measure multiple cfRNA targets in a multiplex ddPCR assay and studied whether these targets are associated to EV.

In **Chapter 9** we discuss our findings and future directions for the implementation of liquid biopsies in pediatric rhabdomyosarcoma and beyond.

### References

- 1. Jaarverslag Zorg and Research Prinses Maxima Centrum 2021. https://www.prinsesmaximacentrum. nl/storage/configurations/prinsesmaximacentrumnl/files/hetmaxima\_jaarverslag\_cenr2021\_low\_ res.pdf.
- Matthay KK, Maris JM, Schleiermacher G, Nakagawara A, Mackall CL, Diller L, et al. Neuroblastoma. Nat Rev Dis Primers [Internet]. 2016;2:16078. Available from: https://www.ncbi.nlm.nih.gov/ pubmed/27830764
- 3. Dasgupta R, Fuchs J, Rodeberg D. Rhabdomyosarcoma. Semin Pediatr Surg [Internet]. 2016;25(5):276–83. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27955730
- 4. Grünewald TGP, Cidre-Aranaz F, Surdez D, Tomazou EM, de Álava E, Kovar H, et al. Ewing sarcoma. Nat Rev Dis Primers. 2018 Dec 5;4(1):5.
- 5. Cidre-Aranaz F, Watson S, Amatruda JF, Nakamura T, Delattre O, de Alava E, et al. Small round cell sarcomas. Nat Rev Dis Primers. 2022 Oct 6;8(1):66.
- Jones DTW, Banito A, Grünewald TGP, Haber M, Jäger N, Kool M, et al. Molecular characteristics and therapeutic vulnerabilities across paediatric solid tumours. Nat Rev Cancer. 2019 Aug 12;19(8):420–38.
- Chicard M, Colmet-Daage L, Clement N, Danzon A, Bohec M, Bernard V, et al. Whole-Exome Sequencing of Cell-Free DNA Reveals Temporo-spatial Heterogeneity and Identifies Treatment-Resistant Clones in Neuroblastoma. Clin Cancer Res [Internet]. 2018;24(4):939–49. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29191970
- Frangioni J v. New Technologies for Human Cancer Imaging. Journal of Clinical Oncology. 2008 Aug 20;26(24):4012–21.
- Vaarwerk B, van der Lee JH, Breunis WB, Orbach D, Chisholm JC, Cozic N, et al. Prognostic relevance of early radiologic response to induction chemotherapy in pediatric rhabdomyosarcoma: A report from the International Society of Pediatric Oncology Malignant Mesenchymal Tumor 95 study. Cancer [Internet]. 2018;124(5):1016–24. Available from: https://www.ncbi.nlm.nih.gov/ pubmed/29211298
- van Ewijk R, Vaarwerk B, Breunis WB, Schoot RA, ter Horst SAJ, van Rijn RR, et al. The Value of Early Tumor Size Response to Chemotherapy in Pediatric Rhabdomyosarcoma. Cancers (Basel). 2021 Jan 29;13(3):510.
- 11. Grabowski J, Goldin A, Arthur LG, Beres AL, Guner YS, Hu YY, et al. The effects of early anesthesia on neurodevelopment: A systematic review. J Pediatr Surg. 2021 May;56(5):851–61.
- 12. Wilder RT, Flick RP, Sprung J, Katusic SK, Barbaresi WJ, Mickelson C, et al. Early Exposure to Anesthesia and Learning Disabilities in a Population-based Birth Cohort. Anesthesiology. 2009 Apr 1;110(4):796–804.
- Jevtovic-Todorovic V, Hartman RE, Izumi Y, Benshoff ND, Dikranian K, Zorumski CF, et al. Early Exposure to Common Anesthetic Agents Causes Widespread Neurodegeneration in the Developing Rat Brain and Persistent Learning Deficits. The Journal of Neuroscience. 2003 Feb 1;23(3):876–82.
- 14. Pantel K, Alix-Panabières C. Liquid biopsy and minimal residual disease—latest advances and implications for cure. Nat Rev Clin Oncol. 2019;16(7):409–24.
- 15. Alix-Panabieres C, Pantel K. Clinical Applications of Circulating Tumor Cells and Circulating Tumor DNA as Liquid Biopsy. Cancer Discov [Internet]. 2016;6(5):479–91. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26969689

- Corvigno S, Johnson AM, Wong KK, Cho MS, Afshar-Kharghan V, Menter DG, et al. Novel Markers for Liquid Biopsies in Cancer Management: Circulating Platelets and Extracellular Vesicles. Mol Cancer Ther. 2022 Jul 5;21(7):1067–75.
- 17. Skapek SX, Ferrari A, Gupta AA, Lupo PJ, Butler E, Shipley J, et al. Rhabdomyosarcoma. Nat Rev Dis Primers [Internet]. 2019;5(1):1. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30617281
- Trubicka J, Grajkowska W, Dembowska-Bagińska B. Molecular Markers of Pediatric Solid Tumors— Diagnosis, Optimizing Treatments, and Determining Susceptibility: Current State and Future Directions. Cells. 2022 Apr 6;11(7):1238.
- 19. Lawlor ER, Thiele CJ. Epigenetic changes in pediatric solid tumors: promising new targets. AACR; 2012.
- 20. Andersson D, Fagman H, Dalin MG, Stahlberg A. Circulating cell-free tumor DNA analysis in pediatric cancers. Mol Aspects Med [Internet]. 2020;72:100819. Available from: https://www.ncbi. nlm.nih.gov/pubmed/31563277
- 21. Lo YMD, Han DSC, Jiang P, Chiu RWK. Epigenetics, fragmentomics, and topology of cell-free DNA in liquid biopsies. Science (1979). 2021 Apr 9;372(6538).
- 22. Rostami A, Lambie M, Yu CW, Stambolic V, Waldron JN, Bratman S v. Senescence, Necrosis, and Apoptosis Govern Circulating Cell-free DNA Release Kinetics. Cell Rep. 2020 Jun;31(13):107830.
- 23. Mouliere F. A hitchhiker's guide to cell-free DNA biology. Neurooncol Adv. 2022 Nov 11;4(Supplement\_2):ii6–14.
- 24. Lui YY, Chik KW, Chiu RW, Ho CY, Lam CW, Lo YD. Predominant Hematopoietic Origin of Cell-free DNA in Plasma and Serum after Sex-mismatched Bone Marrow Transplantation. Clin Chem. 2002 Mar 1;48(3):421–7.
- Zheng YWL, Chan KCA, Sun H, Jiang P, Su X, Chen EZ, et al. Nonhematopoietically Derived DNA Is Shorter than Hematopoietically Derived DNA in Plasma: A Transplantation Model. Clin Chem. 2012 Mar 1;58(3):549–58.
- 26. Galimberti S, Balducci S, Guerrini F, del Re M, Cacciola R. Digital Droplet PCR in Hematologic Malignancies: A New Useful Molecular Tool. Diagnostics. 2022 May 24;12(6):1305.
- 27. Basu AS. Digital Assays Part I: Partitioning Statistics and Digital PCR. SLAS Technol. 2017 Aug;22(4):369–86.
- 28. Tan LL, Loganathan N, Agarwalla S, Yang C, Yuan W, Zeng J, et al. Current commercial dPCR platforms: technology and market review. Crit Rev Biotechnol. 2023 Apr 3;43(3):433–64.
- Adalsteinsson VA, Ha G, Freeman SS, Choudhury AD, Stover DG, Parsons HA, et al. Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors. Nat Commun. 2017 Nov 6;8(1):1324.
- van Wezel EM, Zwijnenburg D, Zappeij-Kannegieter L, Bus E, van Noesel MM, Molenaar JJ, et al. Whole-Genome Sequencing Identifies Patient-Specific DNA Minimal Residual Disease Markers in Neuroblastoma. The Journal of Molecular Diagnostics. 2015 Jan;17(1):43–52.
- 31. Kulis M, Esteller M. DNA Methylation and Cancer. In 2010. p. 27–56.
- 32. Morgan AE, Davies TJ, Mc Auley MT. The role of DNA methylation in ageing and cancer. Proceedings of the Nutrition Society. 2018 Nov 30;77(4):412–22.
- Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012 Jul 29;13(7):484–92.
- 34. Ehrlich M. DNA hypermethylation in disease: mechanisms and clinical relevance. Epigenetics. 2019 Dec 2;14(12):1141–63.

- Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D, et al. DNA methylationbased classification of central nervous system tumours. Nature [Internet]. 2018/03/15. 2018;555(7697):469–74. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29539639
- Koelsche C, Schrimpf D, Stichel D, Sill M, Sahm F, Reuss DE, et al. Sarcoma classification by DNA methylation profiling. Nat Commun [Internet]. 2021;12(1):498. Available from: https://www.ncbi. nlm.nih.gov/pubmed/33479225
- 37. de Koker R.; De Wilde B.; de Preter K.; Callewaert N. A; van P. A versatile method for circulating cellfree DNA methylome profiling by reduced representation bisulfite sequencing. bioRxiv. 2019;
- Paemel R Van, Koker A De, Vandeputte C, Van L, Lammens T, Laureys G, et al. Minimally invasive classification of paediatric solid tumours using reduced representation bisulphite sequencing of cell-free DNA : a proof-of-principle study. Epigenetics [Internet]. 2020;00(00):1–13. Available from: https://doi.org/10.1080/15592294.2020.1790950
- 39. Knudson AG. Mutation and Cancer: Statistical Study of Retinoblastoma. Proceedings of the National Academy of Sciences. 1971 Apr;68(4):820–3.
- 40. Wang LH, Wu CF, Rajasekaran N, Shin YK. Loss of Tumor Suppressor Gene Function in Human Cancer: An Overview. Cellular Physiology and Biochemistry. 2018;51(6):2647–93.
- 41. Donninger H, Vos MD, Clark GJ. The RASSF1A tumor suppressor. J Cell Sci. 2007/09/20. 2007;120(Pt 18):3163–72.
- 42. Vos MD, Ellis CA, Bell A, Birrer MJ, Clark GJ. Ras uses the novel tumor suppressor RASSF1 as an effector to mediate apoptosis. J Biol Chem. 2000/09/22. 2000;275(46):35669–72.
- 43. Malpeli G, Innamorati G, Decimo I, Bencivenga M, Nwabo Kamdje AH, Perris R, et al. Methylation Dynamics of RASSF1A and Its Impact on Cancer. Cancers (Basel). 2019/07/22. 2019;11(7).
- 44. Malpeli G, Amato E, Dandrea M, Fumagalli C, Debattisti V, Boninsegna L, et al. Methylationassociated down-regulation of RASSF1A and up-regulation of RASSF1C in pancreatic endocrine tumors. BMC Cancer. 2011/08/16. 2011;11:351.
- 45. Pan ZG, Kashuba VI, Liu XQ, Shao JY, Zhang RH, Jiang JH, et al. High frequency somatic mutations in RASSF1A in nasopharyngeal carcinoma. Cancer Biol Ther. 2005 Oct 27;4(10):1116–22.
- Donninger H, Schmidt ML, Mezzanotte J, Barnoud T, Clark GJ. Ras signaling through RASSF proteins. Semin Cell Dev Biol [Internet]. 2016;58:86–95. Available from: https://dx.doi.org/10.1016/j. semcdb.2016.06.007
- Volodko N, Salla M, Zare A, Abulghasem EA, Vincent K, Benesch MGK, et al. RASSF1A site-specific methylation hotspots in cancer and correlation with RASSF1C and MOAP-1. Cancers (Basel). 2016;8(6).
- Bin Y, Ding Y, Xiao W, Liao A. RASSF1A: A promising target for the diagnosis and treatment of cancer. Clinica Chimica Acta [Internet]. 2020;504(January):98–108. Available from: https://doi. org/10.1016/j.cca.2020.01.014
- Hesson LB, Cooper WN, Latif F. The role of RASSF1A methylation in cancer. Dis Markers. 2007;23(1– 2):73–87.
- 50. Grawenda AM, O'Neill E. Clinical utility of RASSF1A methylation in human malignancies. Br J Cancer [Internet]. 2015;113(3):372–81. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26158424
- 51. Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD, et al. DNA Fragments in the Blood Plasma of Cancer Patients: Quantitations and Evidence for Their Origin from Apoptotic and Necrotic Cells. Cancer Res. 2001;61(4).
- 52. Mouliere F, Rosenfeld N. Circulating tumor-derived DNA is shorter than somatic DNA in plasma. Proceedings of the National Academy of Sciences. 2015;112(11):3178–9.

- 53. Mouliere F, Chandrananda D, Piskorz AM, Moore EK, Morris J, Ahlborn LB, et al. Enhanced detection of circulating tumor DNA by fragment size analysis. Sci Transl Med [Internet]. 2018;10(466). Available from: https://www.ncbi.nlm.nih.gov/pubmed/30404863
- 54. Bockhorn M, Jain RK, Munn LL. Active versus passive mechanisms in metastasis: do cancer cells crawl into vessels, or are they pushed? Lancet Oncol. 2007 May;8(5):444–8.
- 55. Krog BL, Henry MD. Biomechanics of the Circulating Tumor Cell Microenvironment. In 2018. p. 209–33.
- 56. Pereira-Veiga T, Schneegans S, Pantel K, Wikman H. Circulating tumor cell-blood cell crosstalk: Biology and clinical relevance. Cell Rep. 2022 Aug;40(9):111298.
- Noubissi Nzeteu GA, Geismann C, Arlt A, Hoogwater FJH, Nijkamp MW, Meyer NH, et al. Role of Epithelial-to-Mesenchymal Transition for the Generation of Circulating Tumors Cells and Cancer Cell Dissemination. Cancers (Basel). 2022 Nov 8;14(22):5483.
- Alix-Panabières C, Pantel K. Challenges in circulating tumour cell research. Nat Rev Cancer. 2014 Sep 31;14(9):623–31.
- Cristofanilli M, Pierga JY, Reuben J, Rademaker A, Davis AA, Peeters DJ, et al. The clinical use of circulating tumor cells (CTCs) enumeration for staging of metastatic breast cancer (MBC): International expert consensus paper. Crit Rev Oncol Hematol. 2019 Feb;134:39–45.
- 60. Miller MC, Doyle G v., Terstappen LWMM. Significance of Circulating Tumor Cells Detected by the CellSearch System in Patients with Metastatic Breast Colorectal and Prostate Cancer. J Oncol. 2010;2010:1–8.
- 61. Ghossein RA, Bhattacharaya S, Rosai J. Molecular detection of micrometastases and circulating tumor cells in solid tumors. Clin Cancer Res. 1999 Aug;5(8):195060.
- 62. Stutterheim J, Zappeij-Kannegieter L, Versteeg R, Caron HN, van der Schoot CE, Tytgat GA. The prognostic value of fast molecular response of marrow disease in patients aged over 1 year with stage 4 neuroblastoma. Eur J Cancer [Internet]. 2011;47(8):1193–202. Available from: https://www.ncbi.nlm.nih.gov/pubmed/21429738
- 63. Van Wezel EM, Stutterheim J, Vree F, Zappeij-Kannegieter L, Decarolis B, Hero B, et al. Minimal residual disease detection in autologous stem cell grafts from patients with high risk neuroblastoma. Pediatr Blood Cancer. 2015;62(8):1368–73.
- 64. van Zogchel L, de Carolis B, van Wezel E, Stutterheim J, Zappeij-Kannegieter L, van Doornum M, et al. Detection of Minimal Residual Disease (MRD) in High Risk Neuroblastoma Correlates with Outcome: Final Results of International GPOH-DCOG Prospective Validation Study. In: Pediatric Blood & Cancer. WILEY 111 RIVER ST, HOBOKEN 07030-5774, NJ USA; 2018. p. S38–S38.
- 65. van Wezel EM, Decarolis B, Stutterheim J, Zappeij-Kannegieter L, Berthold F, Schumacher-Kuckelkorn R, et al. Neuroblastoma messenger RNA is frequently detected in bone marrow at diagnosis of localised neuroblastoma patients. Eur J Cancer. 2016;54:149–58.
- 66. Stutterheim J, Gerritsen A, Zappeij-Kannegieter L, Yalcin B, Dee R, van Noesel MM, et al. Detecting minimal residual disease in neuroblastoma: the superiority of a panel of real-time quantitative PCR markers. Clin Chem [Internet]. 2009;55(7):1316–26. Available from: https://www.ncbi.nlm.nih.gov/ pubmed/19460840
- van Zogchel LMJ, Zappeij-Kannegieter L, Javadi A, Lugtigheid M, Gelineau NU, Lak NSM, et al. Specific and Sensitive Detection of Neuroblastoma mRNA Markers by Multiplex RT-qPCR. Cancers (Basel). 2021;13(1):150.
- Stutterheim J, Gerritsen A, Zappeij-Kannegieter L, Kleijn I, Dee R, Hooft L, et al. PHOX2B is a novel and specific marker for minimal residual disease testing in neuroblastoma. J Clin Oncol [Internet]. 2008;26(33):5443–9. Available from: https://www.ncbi.nlm.nih.gov/pubmed/18838715

- 69. HERRIOTT RM, CONNOLLY JH, GUPTA S. Blood Nucleases and Infectious Viral Nucleic Acids. Nature. 1961 Mar;189(4767):817–20.
- Sorber L, Zwaenepoel K, Jacobs J, de Winne K, Goethals S, Reclusa P, et al. Circulating Cell-Free DNA and RNA Analysis as Liquid Biopsy: Optimal Centrifugation Protocol. Cancers (Basel). 2019 Mar 30;11(4):458.
- 71. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proceedings of the National Academy of Sciences. 2011 Mar 22;108(12):5003–8.
- 72. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol [Internet]. 2013;200(4):373–83. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23420871
- 73. Zaborowski MP, Balaj L, Breakefield XO, Lai CP. Extracellular Vesicles: Composition, Biological Relevance, and Methods of Study. Bioscience. 2015 Aug 1;65(8):783–97.
- Akers JC, Gonda D, Kim R, Carter BS, Chen CC. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol [Internet]. 2013;113(1):1– 11. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23456661
- Simeone P, Bologna G, Lanuti P, Pierdomenico L, Guagnano MT, Pieragostino D, et al. Extracellular Vesicles as Signaling Mediators and Disease Biomarkers across Biological Barriers. Int J Mol Sci. 2020 Apr 4;21(7):2514.
- 76. Cammarata G, de Miguel-Perez D, Russo A, Peleg A, Dolo V, Rolfo C, et al. Emerging noncoding RNAs contained in extracellular vesicles: rising stars as biomarkers in lung cancer liquid biopsy. Ther Adv Med Oncol. 2022 Jan 4;14:175883592211312.
- 77. Suárez B, Solé C, Márquez M, Nanetti F, Lawrie CH. Circulating MicroRNAs as Cancer Biomarkers in Liquid Biopsies. In 2022. p. 23–73.
- Boing AN, van der Pol E, Grootemaat AE, Coumans FA, Sturk A, Nieuwland R. Single-step isolation of extracellular vesicles by size-exclusion chromatography. J Extracell Vesicles [Internet]. 2014;3. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25279113
- Clayton A, Boilard E, Buzas El, Cheng L, Falcon-Perez JM, Gardiner C, et al. Considerations towards a roadmap for collection, handling and storage of blood extracellular vesicles. J Extracell Vesicles [Internet]. 2019;8(1):1647027. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31489143
- Coumans FAW, Brisson AR, Buzas EI, Dignat-George F, Drees EEE, El-Andaloussi S, et al. Methodological Guidelines to Study Extracellular Vesicles. Circ Res [Internet]. 2017;120(10):1632– 48. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28495994
- Bebelman MP, Smit MJ, Pegtel DM, Baglio SR. Biogenesis and function of extracellular vesicles in cancer. Pharmacol Ther [Internet]. 2018;188:1–11. Available from: https://www.ncbi.nlm.nih.gov/ pubmed/29476772
- Nanou A, Coumans FAW, van Dalum G, Zeune LL, Dolling D, Onstenk W, et al. Circulating tumor cells, tumor-derived extracellular vesicles and plasma cytokeratins in castration-resistant prostate cancer patients. Oncotarget [Internet]. 2018;9(27):19283–93. Available from: https://www.ncbi. nlm.nih.gov/pubmed/29721202
- Nanou A, Miller MC, Zeune LL, de Wit S, Punt CJA, Groen HJM, et al. Tumour-derived extracellular vesicles in blood of metastatic cancer patients associate with overall survival. Br J Cancer [Internet]. 2020;122(6):801–11. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31937922
- Hettmer S, Wagers AJ. Muscling in: Uncovering the origins of rhabdomyosarcoma. Nat Med. 2010 Feb;16(2):171–3.
- 85. Yang J, Ren Z, Du X, Hao M, Zhou W. The role of mesenchymal stem/progenitor cells in sarcoma: update and dispute. Stem Cell Investig. 2014;1:18.

- 86. Seki M, Nishimura R, Yoshida K, Shimamura T, Shiraishi Y, Sato Y, et al. Integrated genetic and epigenetic analysis defines novel molecular subgroups in rhabdomyosarcoma. Nat Commun [Internet]. 2015;6:7557. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26138366
- 87. Shern JF, Chen L, Chmielecki J, Wei JS, Patidar R, Rosenberg M, et al. Comprehensive Genomic Analysis of Rhabdomyosarcoma Reveals a Landscape of Alterations Affecting a Common Genetic Axis in Fusion-Positive and Fusion-Negative Tumors. Cancer Discov. 2014 Feb 1;4(2):216–31.
- Kohsaka S, Shukla N, Ameur N, Ito T, Ng CKY, Wang L, et al. A recurrent neomorphic mutation in MYOD1 defines a clinically aggressive subset of embryonal rhabdomyosarcoma associated with PI3K-AKT pathway mutations. Nat Genet. 2014 Jun 4;46(6):595–600.
- 89. Arnold MA, Barr FG. Molecular diagnostics in the management of rhabdomyosarcoma. Expert Rev Mol Diagn. 2017 Feb 6;17(2):189–94.
- Skapek SX, Anderson J, Barr FG, Bridge JA, Gastier-Foster JM, Parham DM, et al. PAX-FOXO1 fusion status drives unfavorable outcome for children with rhabdomyosarcoma: a children's oncology group report. Pediatr Blood Cancer [Internet]. 2013;60(9):1411–7. Available from: https://www. ncbi.nlm.nih.gov/pubmed/23526739
- Barr FG. Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma. Oncogene [Internet]. 2001;20(40):5736–46. Available from: https://www.ncbi.nlm.nih.gov/ pubmed/11607823
- 92. Parham DM, Barr FG. Classification of rhabdomyosarcoma and its molecular basis. Adv Anat Pathol [Internet]. 2013;20(6):387–97. Available from: https://www.ncbi.nlm.nih.gov/pubmed/24113309
- 93. Linardic CM. PAX3-FOXO1 fusion gene in rhabdomyosarcoma. Cancer Lett. 2008 Oct;270(1):10-8.
- Sorensen PHB, Lynch JC, Qualman SJ, Tirabosco R, Lim JF, Maurer HM, et al. PAX3-FKHR and PAX7-FKHR Gene Fusions Are Prognostic Indicators in Alveolar Rhabdomyosarcoma: A Report From the Children's Oncology Group. Journal of Clinical Oncology. 2002 Jun 1;20(11):2672–9.
- 95. Hettmer S, Linardic CM, Kelsey A, Rudzinski ER, Vokuhl C, Selfe J, et al. Molecular testing of rhabdomyosarcoma in clinical trials to improve risk stratification and outcome: A consensus view from European paediatric Soft tissue sarcoma Study Group, Children's Oncology Group and Cooperative Weichteilsarkom-Studiengruppe. Eur J Cancer. 2022 Sep;172:367–86.
- 96. Oberlin O, Rey A, Sanchez de Toledo J, Martelli H, Jenney ME, Scopinaro M, et al. Randomized comparison of intensified six-drug versus standard three-drug chemotherapy for high-risk nonmetastatic rhabdomyosarcoma and other chemotherapy-sensitive childhood soft tissue sarcomas: long-term results from the International Society of Pediatric Oncology MMT95 study. J Clin Oncol [Internet]. 2012;30(20):2457–65. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22665534
- Oberlin O, Rey A, Lyden E, Bisogno G, Stevens MC, Meyer WH, et al. Prognostic factors in metastatic rhabdomyosarcomas: results of a pooled analysis from United States and European cooperative groups. J Clin Oncol [Internet]. 2008;26(14):2384–9. Available from: https://www.ncbi.nlm.nih.gov/ pubmed/18467730
- Arndt CAS, Bisogno G, Koscielniak E. Fifty years of rhabdomyosarcoma studies on both sides of the pond and lessons learned. Cancer Treat Rev [Internet]. 2018;68:94–101. Available from: https:// www.ncbi.nlm.nih.gov/pubmed/29940525
- 99. Weiss AR, Lyden ER, Anderson JR, Hawkins DS, Spunt SL, Walterhouse DO, et al. Histologic and clinical characteristics can guide staging evaluations for children and adolescents with rhabdomyosarcoma: a report from the Children's Oncology Group Soft Tissue Sarcoma Committee. J Clin Oncol [Internet]. 2013;31(26):3226–32. Available from: https://www.ncbi.nlm.nih.gov/ pubmed/23940218

(1

- Schoot RA, Chisholm JC, Casanova M, Minard-Colin V, Geoerger B, Cameron AL, et al. Metastatic Rhabdomyosarcoma: Results of the European Paediatric Soft Tissue Sarcoma Study Group MTS 2008 Study and Pooled Analysis With the Concurrent BERNIE Study. Journal of Clinical Oncology. 2022 Nov 10;40(32):3730–40.
- Bailey KA, Wexler LH. Pediatric rhabdomyosarcoma with bone marrow metastasis. Pediatr Blood Cancer [Internet]. 2020;67(5):e28219. Available from: https://www.ncbi.nlm.nih.gov/ pubmed/32100935
- Bisogno G, Jenney M, Bergeron C, Gallego Melcon S, Ferrari A, Oberlin O, et al. Addition of dose-intensified doxorubicin to standard chemotherapy for rhabdomyosarcoma (EpSSG RMS 2005): a multicentre, open-label, randomised controlled, phase 3 trial. Lancet Oncol [Internet]. 2018;19(8):1061–71. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29941280
- 103. Chisholm JC, Marandet J, Rey A, Scopinaro M, de Toledo JS, Merks JH, et al. Prognostic factors after relapse in nonmetastatic rhabdomyosarcoma: a nomogram to better define patients who can be salvaged with further therapy. J Clin Oncol [Internet]. 2011;29(10):1319–25. Available from: https:// www.ncbi.nlm.nih.gov/pubmed/21357778
- 104. Oberlin O, Rey A, Brown KL, Bisogno G, Koscielniak E, Stevens MC, et al. Prognostic Factors for Outcome in Localized Extremity Rhabdomyosarcoma. Pooled Analysis from Four International Cooperative Groups. Pediatr Blood Cancer [Internet]. 2015;62(12):2125–31. Available from: https:// www.ncbi.nlm.nih.gov/pubmed/26257045
- 105. Bisogno G, De Salvo GL, Bergeron C, Gallego Melcon S, Merks JH, Kelsey A, et al. Vinorelbine and continuous low-dose cyclophosphamide as maintenance chemotherapy in patients with high-risk rhabdomyosarcoma (RMS 2005): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol [Internet]. 2019;20(11):1566–75. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31562043
- 106. NCT04625907: FaR-RMS: An Overarching Study for Children and Adults With Frontline and Relapsed RhabdoMyoSarcoma (FaR-RMS).
- 107. Chisholm JC, Merks JHM, Casanova M, Bisogno G, Orbach D, Gentet JC, et al. Open-label, multicentre, randomised, phase II study of the EpSSG and the ITCC evaluating the addition of bevacizumab to chemotherapy in childhood and adolescent patients with metastatic soft tissue sarcoma (the BERNIE study). Eur J Cancer [Internet]. 2017;83:177–84. Available from: https://www. ncbi.nlm.nih.gov/pubmed/28738258
- 108. Sartori F, Alaggio R, Zanazzo G, Garaventa A, Di Cataldo A, Carli M, et al. Results of a prospective minimal disseminated disease study in human rhabdomyosarcoma using three different molecular markers. Cancer: Interdisciplinary International Journal of the American Cancer Society. 2006;106(8):1766–75.
- 109. Gallego S, Llort A, Roma J, Sabado C, Gros L, de Toledo JS. Detection of bone marrow micrometastasis and microcirculating disease in rhabdomyosarcoma by a real-time RT-PCR assay. J Cancer Res Clin Oncol [Internet]. 2006;132(6):356–62. Available from: https://www.ncbi.nlm.nih. gov/pubmed/16435141
- 110. Krsková L, Mrhalová M, Hilská I, Sumerauer D, Drahokoupilová E, Múdry P, et al. Detection and clinical significance of bone marrow involvement in patients with rhabdomyosarcoma. Virchows Archiv. 2010;456(5):463–72.
- Michelagnoli MP, Burchill SA, Cullinane C, Selby PJ, Lewis IJ. Myogenin--a more specific target for RT-PCR detection of rhabdomyosarcoma than MyoD1. Med Pediatr Oncol [Internet]. 2003;40(1):1– 8. Available from: https://www.ncbi.nlm.nih.gov/pubmed/12426678

- 112. Klega K, Imamovic-Tuco A, Ha G, Clapp AN, Meyer S, Ward A, et al. Detection of Somatic Structural Variants Enables Quantification and Characterization of Circulating Tumor DNA in Children With Solid Tumors. JCO Precis Oncol [Internet]. 2018;2018. Available from: https://www.ncbi.nlm.nih. gov/pubmed/30027144
- 113. Eguchi-Ishimae M, Tezuka M, Kokeguchi T, Nagai K, Moritani K, Yonezawa S, et al. Early detection of the PAX3-FOXO1 fusion gene in circulating tumor-derived DNA in a case of alveolar rhabdomyosarcoma. Genes Chromosomes Cancer [Internet]. 2019;58(8):521–9. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30739374
- 114. De Vree PJP, De Wit E, Yilmaz M, Van De Heijning M, Klous P, Verstegen MJAM, et al. Targeted sequencing by proximity ligation for comprehensive variant detection and local haplotyping. Nat Biotechnol. 2014;32(10):1019–25.
- 115. Allahyar A, Pieterse M, Swennenhuis J, Los-de Vries GT, Yilmaz M, Leguit R, et al. Robust detection of translocations in lymphoma FFPE samples using targeted locus capture-based sequencing. Nat Commun [Internet]. 2021/06/09. 2021;12(1):3361. Available from: https://www.ncbi.nlm.nih.gov/ pubmed/34099699



### Chapter 2

### Improving risk stratification for pediatric patients with rhabdomyosarcoma by molecular detection of disseminated disease

Clin Cancer Res. 2021 Oct 15;27(20):5576-5585. doi: 10.1158/1078-0432.CCR-21-1083.

Nathalie S.M. Lak<sup>1,2</sup>, Timon L. Voormanns<sup>2</sup>, Lily Zappeij-Kannegieter<sup>2</sup>, Lieke M.J. van Zogchel<sup>1,2</sup>, Marta Fiocco<sup>1,3,4</sup>, Max M. van Noesel<sup>1</sup>, Johannes H.M. Merks<sup>1</sup>, C. Ellen van der Schoot<sup>2</sup>, Godelieve A.M. Tytgat<sup>1,2\*</sup>, Janine Stutterheim<sup>1,2\*</sup>.

 <sup>1</sup> Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
 <sup>2</sup> Sanquin Research, Amsterdam, the Netherlands
 <sup>3</sup> Mathematical Institute, Leiden University, the Netherlands
 <sup>4</sup> University of Leiden, Department of Data Science, Medical Statistics section, Leiden University Medical Centre, the Netherlands
 \*Contributed equally

### Abstract

### Background

Survival of children with rhabdomyosarcoma that suffer from recurrent or progressive disease is poor. Identifying these patients upfront remains challenging, indicating a need for improvement of risk stratification. Detection of tumor-derived mRNA in bone marrow (BM) and peripheral blood (PB) using reverse-transcriptase quantitative PCR (RT-qPCR) is a more sensitive method to detect disseminated disease. We identified a panel of genes to optimize risk stratification by RT-qPCR.

#### Methods

Candidate genes were selected using gene expression data from rhabdomyosarcoma and healthy hematological tissues, and a multiplexed RT-qPCR was developed. Significance of molecular disease was determined in a cohort of 99 Dutch patients with rhabdomyosarcoma (72 localized and 27 metastasized) treated according to the EpSSG RMS2005 protocol.

#### Findings

We identified the following 11 rhabdomyosarcoma markers: *ZIC1, ACTC1, MEGF10, PDLIM3, SNAI2, CDH11, TMEM47, MYOD1, MYOG, PAX3/7-FOXO1*. RT-qPCR was performed for this 11-marker panel on BM and PB samples from the patient cohort. Five-year EFS was 35.5% (95%CI 17.5-53.5%) for the 33/99 RNA-positive patients, versus 88.0% (95%CI 78.9-97.2%) for the 66/99 RNA-negative patients (p<0.0001). Five-year OS was 54.8% (95%CI 36.2-73.4%) and 93.7% (95%CI 86.6-100.0%), respectively (p<0.0001). RNA panel-positivity was negatively associated with EFS (Hazard Ratio 9.52 95%CI (3.23-28.02), while the RMS2005 risk group stratification was not, in the multivariate Cox regression model.

#### Interpretation

This study shows a strong association between PCR-based detection of disseminated disease at diagnosis with clinical outcome in pediatric patients with rhabdomyosarcoma, also compared to conventional risk stratification. This warrants further validation in prospective trials as additional technique for risk stratification.

#### **Translational relevance**

This study investigated the clinical relevance of molecular detection of disseminated tumor cells in blood and bone marrow at diagnosis and during treatment in 99 children with rhabdomyosarcoma treated according to the EpSSG RMS2005 protocol.

For molecular detection of disseminated tumor cells in blood and bone marrow we developed an RT-qPCR-based, 11-marker RNA panel to detect tumor-derived RNA. RNA-panel positivity at diagnosis was of significant prognostic value in children with rhabdomyosarcoma, regardless of the risk group. In patients with metastatic as well as localized disease, RNA-positivity was associated with an increased risk of an event.

These data suggest that molecular detection of disseminated disease at diagnosis could be of additional value to risk stratification to improve risk stratification.

### Introduction

Each year, more than 200 children in Europe are diagnosed with rhabdomyosarcoma.<sup>(1)</sup> In the Netherlands, patients were stratified into risk groups and treated according to the European pediatric Soft tissue sarcoma Study Group (EpSSG) RMS2005 protocol with increasing therapy intensities per risk group. Risk stratification depends on several patient- and tumor-dependent factors, such as age, pathology, post-surgical stage (IRS group), nodal stage, tumor size and location.<sup>(2)</sup> Presence of metastases is a crucial prognostic factor. Patients with localized disease have a 5-year overall survival of 75%, and below 40% in patients who present with metastatic disease.<sup>(3-5)</sup> At diagnosis, 84% of patients have localized disease.<sup>(6)</sup> Still, one in three of these patients will suffer relapse.<sup>(2, 7, 8)</sup>

Metastases are detected by imaging and bone marrow (BM) immunohistochemistry and cytomorphology.<sup>(9)</sup> BM metastases are present in 6% of patients at diagnosis<sup>(10)</sup>, and 3-year event-free survival (EFS) is poorer for these patients than for patients with metastatic disease not involving the BM (3-year EFS 14% vs 34%, respectively).<sup>(5)</sup>

Two main histological subtypes are described in rhabdomyosarcoma: the most common embryonal, and the alveolar subtype. In 70-80% of alveolar rhabdomyosarcoma a typical fusion gene exists between the PAX3 or PAX7 and FOXO1 locus and its presence is associated with worse prognosis.<sup>(11-13)</sup> Apart from this translocation, the genetic landscape of rhabdomyosarcoma is heterogeneous. There is a scarcity of recurrent mutations, but various copy number variations and epigenetic modifications are prevalent. <sup>(14-16)</sup> It is possible to detect tumor-derived cell-free DNA in plasma using targeted or whole genome sequencing techniques.<sup>(17-19)</sup> However, these approaches often require knowledge on aberrations present in a specific patient and sophisticated equipment and data analysis pipelines. Consequently, we chose to focus on tumor cell-specific mRNA transcripts to detect

circulating tumor cells, aiming to devise a method to cover the entire spectrum of rhabdomyosarcoma. Reverse-transcriptase quantitative PCR (RT-qPCR) represents a cost-efficient and more sensitive approach than immunohistochemistry, with detection of up to 1 positive cell in 1,000,000 non-tumor cells.<sup>(20)</sup> *MYOD1*, *MYOG* and PAX3/7-FOXO1 fusion genes are known rhabdomyosarcoma markers and the feasibility to detect them with RT qPCR in peripheral blood (PB) and BM has been shown.<sup>(21-23)</sup> Several studies from smaller cohorts report that the presence of these markers in liquid biopsies at diagnosis and during follow-up might correlate with a poor prognosis.<sup>(22-24)</sup> As *MYOD1* and *MYOG* are heterogeneously expressed in rhabdomyosarcoma, with *MYOG* predominant in the alveolar subtype<sup>(25)</sup>, and the *PAX3/7-FOXO1* fusion gene occurring solely in alveolar rhabdomyosarcomas<sup>(11, 13, 21)</sup>, we sought additional rhabdomyosarcoma-specific mRNA markers.

We aimed to design an RNA panel with the potential to detect all pediatric rhabdomyosarcoma subtypes, and to evaluate whether minimal disseminated disease detection in liquid biopsies can improve risk stratification at diagnosis and response evaluation during treatment and follow-up in these pediatric rhabdomyosarcoma patients.

### **Material and methods**

### **Patients and Samples**

We included samples from all consecutive Dutch pediatric patients with rhabdomyosarcoma, enrolled in the EpSSG RMS2005 trial (EudraCT number 2005-000217-35) and treated at the Sophia Children's Hospital (Rotterdam, the Netherlands), Emma Children's Hospital (Amsterdam, the Netherlands) and the Princess Máxima Center for Pediatric Oncology (Utrecht, the Netherlands), were collected between 2006 and 2019. Patients included in the trial until 2017 gave informed consent for sample use in the EpSSG RMS2005 add-on study, *Minimal Disseminated Disease monitoring in children with rhabdomyosarcoma (MDD study)*. Samples from patients recruited between 2017 and July 2019 were included if consent was given for biobanking of stored sample residues following routine clinical testing. RNA from 10 primary rhabdomyosarcoma cell lines (RH30, RD, RMS-YM, RUCH2, RUCH3, RH18, RH41, TE617T, HS729T) for assay validation was kindly provided by the Human Genetics department at the Amsterdam UMC location AMC (Amsterdam, the Netherlands) and cDNA was generated. As healthy controls, PB from

47 healthy volunteers and 41 BM samples from children in molecular remission for acute lymphoblastic leukemia were used, as described previously.<sup>(26, 27)</sup>

### **RNA extraction and reverse transcription**

Up to 5ml of PB and BM, collected in EDTA tubes (BD, USA), were centrifuged at 1375 G for 10 minutes to separate the cellular fraction from the plasma. For PB, cells were isolated by hemolysis (NH4Cl). BM was run through a Ficoll gradient (Ficoll Paque, GE Healthcare, USA) according to manufacturer's protocol. Cells were counted, aliquoted per 5 to 10 million cells in TRIzol (Thermo Fisher Scientific, USA) and stored at -80°C. Isolation of total RNA was performed using Direct-Zol DNA/RNA Miniprep (Zymo Research, USA) following the manufacturer's protocol. For cDNA synthesis, High-Capacity RNA-to-cDNA<sup>™</sup> Kit (Thermo Fisher Scientific, USA) was used according to manufacturer's protocol.

#### **Candidate gene selection**

The Megasearch software in  $R2^{(28)}$ , was used to search for differentially expressed genes. Candidate genes with high expression in rhabdomyosarcomas and low expression in healthy PB and BM were selected, with at least 6 log difference in gene expression (Supplementary figure 1). Affymetrix expression data on RMS tumors from the Human Genome U133A (HG-U133A) microarray chip (n=162) and the Affymetrix Human Genome U133p2 (HG-U133p2) microarray chip (n=9) were compared to expression data on normal PB (n=108) and BM samples (n=5). The U133A contained data of 66 aRMS, 66 eRMS (xtstriche) and 30 other RMS (xtschafwell). It also contained data of 5 BM (xtnormal353) and 108 PB (perbloodbev). The U133p2 chip contained data of 9 RMS (versteeg), 9 PB controls (per blood), 12 PB from the general population (bloodasd56) and 5 BM (xtnormal353). The initial search was performed in May 2007 and resulted in 250 genes. Expression of these genes was compared to the HaemAtlas<sup>(29)</sup>, and 62 genes were selected as potential markers, which had low expression in healthy hematopoietic tissues. These 62 candidate markers were then tested in SYBRGreen-based RT-qPCR in the RD and RH30 rhabdomyosarcoma cell lines as previously described<sup>(27)</sup>, and healthy PB (n=3) and BM (n=3) (Supplemental table 4). Next, thirteen candidate markers were selected with low/no expression in control PB and BM samples and high expression in the rhabdomyosarcoma cell lines for further analysis with RT-qPCR with Tagman probes. After extensive testing on control BM (n=41) and control PB (n=47), RMS tumors (n=10) and RMS cell lines (n=9), 7 new genes on top of the established genes (MYOD1, Myogenin, PAX3-FOXO1 and PAX7-FOXO1) were selected for testing of clinical samples using multiplex RT-qPCR with Taqman probes; 7 for PB and 3 for BM (Supplementary figure 1).

### RT-qPCR

Samples were analyzed using multiplexed RT-qPCR with Taqman probes. Primers and Taqman probes were ordered from Eurogentec (Belgium). Probes were designed using Oligo 7 (Molecular Biology Insights, USA) and Primer Express 3.0.1 (Thermo Fisher Scientific, USA). For *MYOD1* and *MYOG*, we initially used the sequences as published previously and listed in the EpSSG RMS 2005 MDD study.<sup>(23, 30)</sup> RT-qPCR was performed on a Viia7 Real-time PCR system using TaqMan<sup>™</sup> Multiplex Master Mix (Thermo Fisher Scientific, USA) for 50 cycles at 60°C. Primer concentration in the reaction was 300 nM and probe concentration 200 nM.

The gene *Glucuronidase-* $\beta$  (*GUSB*) was used as a reference gene and normalized against *GUSB*-plasmid DNA (ipsogen, Qiagen, Germany) dilutions.<sup>(31)</sup> All RT-qPCR experiments were carried out at least in duplicate and median values were used. An RH30 calibration curve was used as an exogenous positive control to ascertain the efficiency of each PCR reaction, except for the *PAX7-FOXO1* assay for which a CW9019 calibration curve was used (CW9019 cell line courtesy of Dr. F. Barr, National Cancer Institute, Bethesda, USA).

### Sanger sequencing

Sanger sequencing was performed on products amplified by PCR. Further processing and analysis as described previously, on BioEdit software version 7.2.5. <sup>(32)</sup>

### Determining a threshold for positivity in patient samples

For genes with expression in normal hematopoietic tissue, we defined thresholds for positivity using the guidelines for minimal residual disease detection in acute lymphatic leukemia, as defined by the European Study Group <sup>(33)</sup> and as was described previously by our group in neuroblastoma.<sup>(27)</sup> In short, to correct for differences in RNA input, the Ct value of a marker was normalized to reference gene *GUSB*. Then, the median  $\Delta$ Ct marker expression in healthy tissue ( $\Delta$ Ct= Ct of marker – Ct of *GUSB*), was calculated and the threshold for positivity was set 3 Ct above the median  $\Delta$ Ct (Supplemental figure 2). A patient sample was scored as positive if the  $\Delta$ Ct of at least one marker in the 11-marker panel was above its threshold.

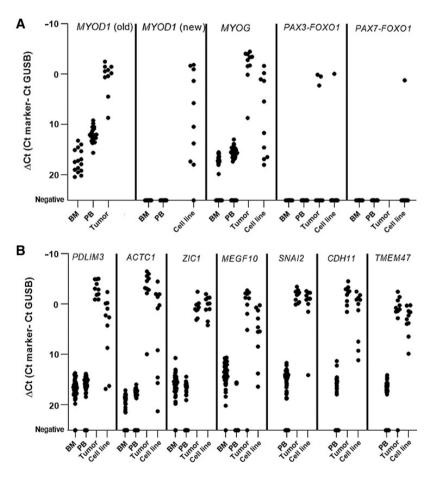
### **Statistical analysis**

Event-free survival (EFS) and overall survival (OS) from diagnosis were estimated using Kaplan-Meier's methodology; differences in survival outcomes were assessed with the log-rank test. Association between PCR positivity and EFS/OS was estimated using a multivariate Cox regression model with EpSSG risk group stratification as a prognostic factor.<sup>(34)</sup>

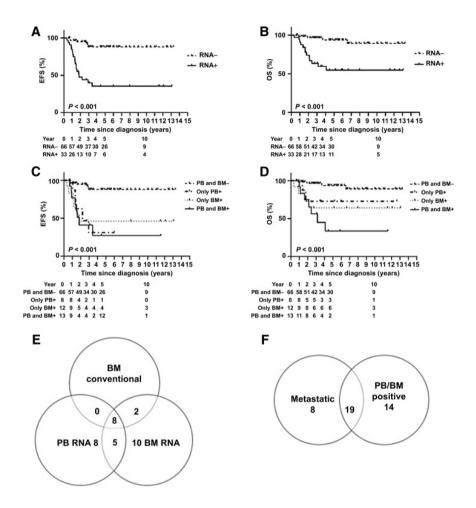
To estimate the cumulative incidence of relapse or progressive disease from diagnosis for RNA panel positivity/negativity, a competing risks model with death as competing event was employed.<sup>(35)</sup> Gray's test was used to assess statistical significance difference between the cumulative incidence for the RNA panel groups. <sup>(36)</sup> All analyses for the competing risk model were performed by using the mstate library<sup>(37)</sup> in the R environment version 4.4.<sup>(38)</sup> The other statistical analyses were performed in SPSS version 23 and figures were generated in Graphpad Prism version 8.

### Results

### Assay redesign for MYOD1 detection in liquid biopsies


Initial testing detected high background expression using the *MYOD1* assay as previously developed by Sartori et al<sup>(23)</sup> in PB and BM samples from healthy donors (Figure 1A). Using Sanger sequencing (Supplemental file 1) of the amplicons and RT-qPCR (Supplemental table 2), we demonstrated that this assay also detected unconverted RNA and genomic DNA. Consequently, we redesigned the forward primer to exclude genomic DNA amplification (Supplemental Table 3, new *MYOD1* sequence Supplemental Table 1). The newly designed *MYOD1* assay was shown to be completely tumor-specific with no background expression in BM and PB from healthy donors (Figure 1A) with similar sensitivity (Supplemental table 3).

### Developing the rhabdomyosarcoma-specific RNA marker panel for testing in liquid biopsies


Candidate markers were selected with high expression in rhabdomyosarcoma and low/no expression in normal PB/BM, as described in the methods (Supplemental figure 1 and 3). This selection process identified three new markers for testing in BM and PB (*PDLIM3, ACTC1* and *ZIC1*) in addition to the redesigned *MYOD1* and knownmarkers, *MYOG* and fusions of *PAX3* or *PAX7* genes with *FOXO1*.<sup>(30)</sup> Four new markers were selected for use in blood-based monitoring (*SNAI2, CDH11, TMEM47 MEGF10*), since background of these markers was high in BM (on SYBR green for *SNAI2, CDH11* and *TMEM47* and in the Taqman assay for *MEGF10* (shown in Supplemental table 4 and Figure 1, respectively)).

Thresholds for positivity were set for all markers (Figure 1), except for *MYOD1* and *PAX3/7-FOXO1* fusions since these markers were completely tumor-specific. Mean Ct values of the 11 markers and the reference gene in 10 primary tumors are shown in Supplemental table 5. To detect any occult alveolar subtype, since

immunohistochemistry of the primary tumor can be inconclusive and fusion gene status was not available for every patient, we also tested material from patients diagnosed with an embryonal subtype for the *PAX3/7-FOXO1* fusion genes. Expression of most selected marker genes in tumor samples was variable, justifying the use of the 11-marker panel to increase sensitivity. We performed a sensitivity assay of RH30 cells (an established rhabdomyosarcoma cell line) in healthy blood cells which showed a sensitivity of at least 1 tumor cell in 100 000 healthy blood cells (Supplemental table 6).



**Figure 1. A**, Background expression of known markers in control BM and PB, rhabdomyosarcoma (RMS) tumors, and established cell lines. "MYOD1 old design" and MYOG (BM n = 41, PB n = 47, RMS tumors n = 10), "MYOD1 new design" (BM n = 26, PB n = 26, RMS cell lines n = 10), PAX3-FOXO1 fusion gene (BM n = 17, PB n = 10, RMS tumor n = 10, RMS cell lines n = 10), and PAX7-FOXO1 (BM n = 17, PB n = 10, RMS cell lines n = 10). **B**, Background expression of PDLIM3, ACTC1, and ZIC1 in healthy control BM (n = 41), healthy control PB (n = 47), RMS tumors (n = 10), and RMS cell lines (n = 10). MEGF10, SNAI2, CHD11, and TMEM47 only measured in PB (n = 47), RMS tumors (n = 10), and RMS cell lines (n = 10).



**Figure 2.** RNA positivity (BM and PB) at diagnosis and clinical outcome **(A)** EFS and **(B)** OS for SR and RNA panel **(C)** EFS and **(D)** OS for patients stratified for PCR testing of BM and PB at diagnosis: negative in PB and BM (PB and BM–), PB positive only (only PB+), BM positive only (only BM+), and positive in PB and BM (PB and BM+). **E**, Venn diagram depicting number of patients that tested positive with the RNA panel in PB, BM, and by conventional IHC in BM at diagnosis. **F**, Venn diagram depicting patients that tested positive for PB and/or BM with the RNA panel and patients with metastatic disease, detected by conventional diagnostics at diagnosis.

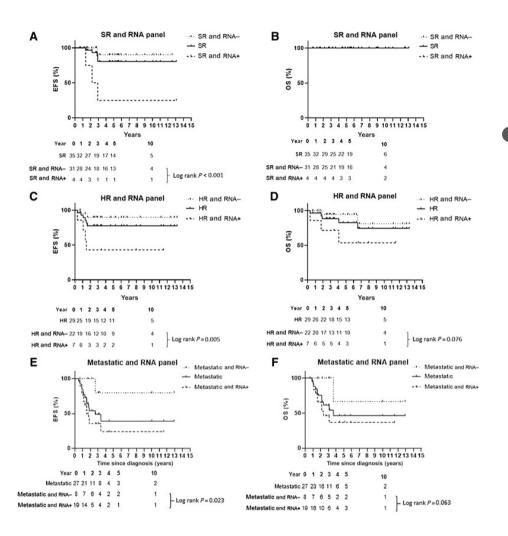
### **Prospective cohort description**

After having established the thresholds for positivity for the marker panel, we tested patient samples. We collected diagnostic BM and PB samples of 99 consecutive patients at diagnosis and follow-up samples from 25 patients (14 BM and 78 PB) treated according to the EpSSG RMS2005 protocol. Median follow-up was 3.5 years (minimum 0.34 – maximum 13.29 years). Patient age and the risk group assigned are

2

shown in table 1 and supplemental table 7. Twenty-seven patients had metastatic disease of which 10 had bone marrow invasion determined by conventional immunohistochemistry. Twenty-eight patients had the alveolar subtype, *PAX3/7-FOXO1* fusion gene status was not recorded in this study. Five-year EFS and OS was 69.7% (95% CI 59.5-79.9) and 79.9% (95% CI 70.9-89.9), respectively.

# Liquid biopsy-based 11-marker panel detection at diagnosis correlates with clinical outcome


At diagnosis, in 33 of 99 (33.3%) patients molecular disease was detected in PB and/ or BM with our 11-marker panel. Primary tumor material was available for 8 patients (Supplemental table 5). In the samples that tested positive in matched PB and/or BM at diagnosis, most of the markers with a high expression in the primary tumor were also scored as positive in PB and/or BM. Due to low numbers, no statistical analysis was performed. For the 33 RNA-positive patients, paired PB and BM samples were positive in 13 patients, only BM samples were positive in 12 patients and only PB samples were positive in 8 patients (Supplemental table 8).

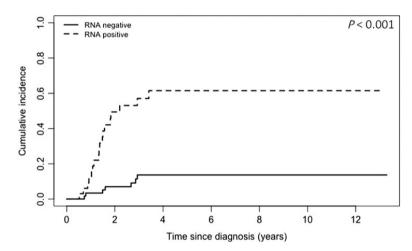
The 5-year EFS was 35.5% (95% CI 17.5-53.5%) for the RNA-positive patients, while this was 88.0% (95% CI 78.9-97.2%) for 66 RNA-negative patients (p< 0.001, figure 2A); the 5-year OS was 54.8% (95% CI 36.2-73.4%), and 93.7% (95% CI 86.6-100.0%), respectively (p< 0.001, figure 2B). Patient subgroups defined by molecular detection in BM, PB and paired BM-PB all show poor EFS and OS (Figure 2C and D) compared to RNA panel negative patients. In conclusion, molecular detection of minimal disseminated disease is correlated with outcome.

# Liquid biopsy-based molecular detection at diagnosis complements current risk stratification strategies

Our patient cohort included 10 patients with bone marrow disease, determined by immunohistochemistry and cytomorphology. In all 10 BM samples and 8 paired PB samples tumor-derived mRNA was detected (figure 2E). Tumor-derived mRNA in PB/ BM was furthermore detected in 23 additional patients (figure 2E), among 14 with localized disease and 9 with metastases detected in other sites than the BM (figure 2F). Eighteen of the 33 patients testing positive in PB and/or BM had an alveolar subtype.

The numbers of patients with low risk (LR) and very high risk (VHR) disease were too small to allow statistical analyses, so only the larger risk groups (standard risk (SR), high risk (HR) and metastatic disease) according to the risk stratification used in EpSSG RMS2005, were analyzed in relation to RNA panel positivity and survival.




**Figure 3.** RNA positivity at diagnosis and outcome for different risk groups, stratified according RMS2005. Outcome for different risk groups is given as treated (continuous line) and stratified for RNA positivity (RNA+) and RNA negativity (RNA-) at diagnosis. **A** and **B**, EFS and OS, respectively, for SR group; please note that no P value is reported since there is no mortality in the SR group. **C** and **D**, EFS and OS, respectively, for HR group. **E** and **F**, EFS and OS, respectively, for metastatic disease group.

There was an association between the risk groups and survival outcomes: within each risk group, RNA panel negative patients had better outcome than RNA panel positive patients (Figures 3 A-F).

Considering the entire cohort of 99 patients, 6 of 14 (42.9 %) patients with localized disease and RNA positivity suffered from relapse (3 localized relapses, 3 metastatic relapses) and 3 eventually died (2 after relapse, 1 due to sepsis during primary

2

treatment), compared to 5 events in the 58 (8.6%) patients with localized disease without RNA-panel positivity (Supplemental Figure 4). Molecular disseminated disease was detected in 19/27 (70.3%) patients diagnosed with metastatic disease in bone, BM, lung and/or distant lymph nodes. Seven of these 19 patients experienced relapse, 5 progressive disease and 10 eventually died of disease. In contrast, 1 of 8 patients with metastatic disease (6/8 pulmonary lesions and 8/8 distant lymph nodes) and negative for our 11-marker panel, suffered from recurrent disease and later died (Supplemental Figure 4). The cumulative incidence of the event of interest (relapse/progressive disease) for RNA panel positivity is significantly different (p<0.001, Figure 4).



**Figure 4.** Cumulative incidence for relapse for RNA-negative/positive patients, as defined at diagnosis. Gray's test was used to compute the P value

We evaluated the prognostic impact of liquid biopsy-based molecular minimal disease detection at diagnosis on EFS and OS in univariate and multivariate Cox regression models (respectively, Supplemental table 9 and Table 2) for the largest groups in this cohort (SR, HR and metastatic disease). Risk factors included in the analysis, that all have prognostic value in univariate analysis, were metastatic disease, positive BM immunohistochemistry, age above 10 years, alveolar subtype, tumor size and regional lymph node involvement (Supplemental table 9). Other clinical characteristics like tumor site and IRS group were not included in this analysis due to low number of patients and/or no events in the subgroups. RNA panel-positivity was a prognostic factor for EFS (Hazard Ratio 9.52 95% CI (3.23-28.02), while RMS2005 risk group stratification was not, in the multivariate model (Table 2). RNA positivity was also associated with EFS for the other risk factors in multivariate analyses. The

low number of events in the SR group in the 5-year follow-up prevented estimation of the effect on overall survival in multivariate analysis. However in multivariate analyses, the RNA panel was significantly associated with OS, where conventional BM immunohistochemistry and alveolar subtype was not (Table 2).

### CDH11 is an important novel marker

Molecular testing in liquid biopsies revealed differential impact for certain markers, although the number of markers contributing to the positive score in paired BM and PB samples did not correlate with outcome (Supplemental Table 10). *MYOD1*, *PAX3/7-FOXO1* and *MYOG* were the markers most often contributing to assay positivity in both PB and BM samples (Supplemental Figures 5 and 6). Interestingly, *MYOG* was also positive in 3 out of the 15 patients with non-alveolar subtype testing positive at diagnosis, all 3 suffered from an event. *CDH11* contributed as single marker to positive scoring in diagnostic blood samples from 6/21 patients (Supplemental figure 5), 5 of 6 were histologically diagnosed with an embryonal rhabdomyosarcoma subtype. One of these six CDH11 positive patients died of disease and two suffered relapses.

## The 11-marker panel does not adequately detect minimal residual disease following treatment

We evaluated the potential of the 11-marker panel to detect minimal residual disease in BM and PB samples collected during primary therapy and 5-year follow-up. We tested 42 PB and 4 BM samples from 20 patients during primary treatment (the first 24 weeks after primary diagnosis within the EpSSG RMS2005 trial) and 9 BM and 35 PB samples collected for 20 patients during follow-up after treatment (Supplemental table 11). For the 19 patients who suffered from an event (15 relapse, 4 progressive disease), blood samples were available at first clinical relapse diagnosis from 10, and tested positive in only 3 patients. BM was available for 5 patients and tested positive in one patient (Supplemental table 11). While longitudinal blood sampling was not complete for any of these patients, at least 2 samples were collected for 16 patients during treatment and for 9 patients during follow-up. However, blood samples from only 1 (RMS007) of these 25 patients tested positive for the 11-marker panel during therapy and follow-up. This patient had a complex course with the blood samples at diagnosis, after 3 chemotherapy cycles and shortly before death testing positive (Supplemental table 11). The blood sample following primary treatment was negative, three blood samples during follow-up remained negative even after diagnosis of progressive disease. When tested in a small patient cohort during therapy and follow-up, our 11-marker panel did only detect minimal residual disease in a small proportion of patients who experience an event, even though it clearly identifies patients with risk of an event when tested at diagnosis.

|                                             | Number of patients |
|---------------------------------------------|--------------------|
| Age at diagnosis (years)                    |                    |
| <1                                          | 1                  |
| 1-10                                        | 64                 |
| >10                                         | 34                 |
| Sex                                         |                    |
| Female                                      | 38                 |
| Male                                        | 61                 |
| Histology                                   |                    |
| Alveolar rhabdomyosarcoma                   | 28                 |
| Botryoid rhabdoyosarcoma                    | 2                  |
| Embryonal Rhabdomyosarcoma                  | 67                 |
| Rhabdomyosarcoma not otherwise specified    | 1                  |
| Spindle cell/leiomyomatous rhabdomyosarcoma | 1                  |
| Pathology                                   |                    |
| Favourable                                  | 71                 |
| Jnfavourable                                | 28                 |
| Post-surgical tumor staging (IRS grouping)  |                    |
|                                             | 6                  |
| I                                           | 13                 |
| II                                          | 53                 |
| V                                           | 27                 |
| umor size                                   |                    |
| 55 cm                                       | 43                 |
| -5 cm                                       | 56                 |
| egional lymph node involvement              |                    |
| lo evidence of lymph node involvement       | 69                 |
| Evidence of regional lymph node involvement | 29                 |
| lo information about lymph node involvement | 1                  |
| lisk group                                  |                    |
| ow risk                                     | 3                  |
| standard risk                               | 35                 |
| ligh risk                                   | 29                 |
| /ery high risk                              | 5                  |
| Metastatic                                  | 27                 |
| ite of origin of primary tumor              |                    |
| Drbit                                       | 17                 |
| lead neck                                   | 6                  |
| Parameningeal                               | 21                 |
| Bladder prostate                            | 9                  |
| Genitourinary non-bladder prostate          | 13                 |
| Extremities                                 | 18                 |
| Other sites                                 | 15                 |

**Table 1.** Patient and clinical characteristics with risk group stratification according to the EpSSG

 RMS2005 trial.

|                                     | Event-f      | ree survival               | Overa        | ll survival                    |
|-------------------------------------|--------------|----------------------------|--------------|--------------------------------|
|                                     | Hazard ratio | 95% Confidence<br>Interval | Hazard ratio | 95% Confidence<br>Interval     |
| RNA panel: PB and/or<br>BM positive | 9.52         | 3.23-28.02                 |              |                                |
| Standard Risk                       | 1            |                            |              | ble due to low<br>of events in |
| High Risk                           | 1.15         | 0.35-3.83                  | Standar      | d Risk group                   |
| Metastatic disease                  | 1.52         | 0.50-4.66                  |              |                                |
| RNA panel: PB and/or<br>BM positive | 8.83         | 3.38-23.10                 | 7.13         | 2.19-23.18                     |
| Positive BM<br>immunohistochemistry | 0.91         | 0.33-2.54                  | 1.22         | 0.37-3.98                      |
| RNA panel: PB and/or<br>BM positive | 6.98         | 2.58-18.85                 | 4.48         | 1.32-15.15                     |
| Metastatic disease                  | 1.69         | 0.72-3.98                  | 3.70         | 1.23-11.16                     |
| RNA panel: PB and/or<br>BM positive | 7.71         | 2.85-20.89                 | 5.91         | 1.71-20.45                     |
| Alveolar<br>rhabdomyosarcoma        | 1.29         | 0.55-3.02                  | 1.66         | 0.57-4.85                      |
| RNA panel: PB and/or<br>BM positive | 8.22         | 3.25-20.78                 | 6.21         | 2.00-19.28                     |
| Age > 10 years                      | 2.07         | 0.93-4.61                  | 5.65         | 1.92-16.59                     |
| RNA panel: PB and/or<br>BM positive | 7.80         | 2.89-21.01                 | 4.27         | 1.23-14.87                     |
| Regional lymph node<br>involvement  | 1.17         | 0.50-2.78                  | 3.29         | 1.06-10.18                     |
| RNA panel: PB and/or<br>BM positive | 6.63         | 2.53-17.38                 | 4.20         | 1.33-13.24                     |
| Tumor size >5cm                     | 2.33         | 0.83-6.54                  | 9.57         | 1.21-75.84                     |

**Table 2.** Hazard ratios (HR) with 95% confidence interval (CI) based on the Cox proportional hazard regression model for event-free survival.

### Discussion

We present results of the largest prospective study to date detecting minimal disseminated disease in liquid biopsies from pediatric patients with rhabdomyosarcoma, treated according to uniform guidelines. We identified and optimized new mRNA markers for the sensitive detection of tumor-derived mRNA in PB and BM samples and designed an 11-marker RT-qPCR panel assay. The presence of minimal disseminated disease in liquid biopsies at diagnosis correlates with poor outcome in our patient cohort, supporting inclusion of this assay in future studies to further improve risk stratification for children and adolescents diagnosed with rhabdomyosarcoma.

Our 11-marker panel detected bone marrow disease in all BM samples with positive histology, and in addition in 15 BM immunohistochemistry-negative samples (from 8 patients with localized disease and 7 with metastatic disease without known BM metastasis). Our data concur with findings from Gallego et al,<sup>(22)</sup> who conducted a study in 16 patients (14 localized, 2 metastatic) with the PAX-FOXO1 fusion gene, MYOD1 and acetylcholine receptor as targets for RT-gPCR in PB and BM samples. In their study, all BM samples with positive histology were positive with PCR as well, and 6 additional BM were only positive with PCR. This points out that PCR-based detection of minimal disseminated disease can help improve the diagnosis of BM metastasis since conventional diagnostics of BM metastasis can be inconclusive. In our cohort, two of 8 patients diagnosed with localized disease and molecular disease detected in BM suffered relapse (1 metastatic, 1 localized). An important question for a future validation study of the RNA panel is whether patients diagnosed with occult BM disease detected by PCR alone should be considered for upstaging of their treatment protocol at initial diagnosis. This might spare them additional morbidity due to further treatment for relapse and more importantly increase survival chance. since relapse is associated with lower survival.<sup>(7, 39, 40)</sup>

PCR-based detection of minimal disseminated disease in PB and/or BM has been associated with poor outcome in several smaller studies,<sup>(22-24)</sup> consistent with the very poor patient outcome previously correlated with documented BM metastases.<sup>(5, 10)</sup> We observed a striking decline in overall survival for patients diagnosed with metastatic disease by both conventional diagnostics and RNA-positivity in liquid biopsies. This suggests the existence of an RNA-positive subgroup within the metastatic risk group with an ultrahigh-risk profile, including patients with histologically documented BM metastases and/or alveolar subtype, who could be considered for further therapy intensification. RT-qPCR-based detection alone was not associated with the type

## of relapse (localized versus metastatic) in our study. Since metastatic relapse is associated with worse survival,<sup>(7)</sup> this is an interesting question for a follow-up study.

Overall, we observe that patients for whom liquid biopsies test positive for the 11-marker panel at diagnosis have a higher risk of suffering an event. This suggests that the use of the RNA panel in addition to conventional strategies at initial diagnosis could improve risk stratification, however this needs to be further investigated in a larger cohort. We made an effort to avoid selection bias, as we included all consecutive patients treated in the participating centers, regardless of risk groups. However, this also resulted in underrepresented subgroups (LR and VHR). A future study in an independent cohort to evaluate whether the use of the RNA panel improves current risk stratification for these risk groups and for patients that would potentially benefit most from improving risk stratification (patients with metastatic disease testing positive for the 11-marker panel) is crucial.

The 11-marker assay was positive in samples collected after start of treatment for only a small number of patients in our cohort. This is in contrast to data from earlier publications.<sup>(22-24)</sup> Sartori et al. reports MYOD1 expression in BM samples collected after the first therapy cycle in 5/10 patients.<sup>(23)</sup> Gallego et al. and Krskova et al. detected MYOD1 and PAX3/7-FOXO1 in proportionately more blood and BM samples collected during treatment and follow-up.<sup>(22, 24)</sup> The use of the MYOD1 assay that also detected genomic DNA complicates the comparison. Gallego et al confirmed the potential for false positive results by describing discrete but positive expression of MYOD1 in healthy PB.<sup>(22)</sup> Our redesigned MYOD1 assay eliminates false positive detection from DNA binding. Furthermore, in our study BM samples were important for RNA positivity at diagnosis, but unfortunately only a low number of BM samples after diagnosis was available. Comparison of our cohort, consisting of patients treated completely according to the EpSSG RMS2005 protocol, to these 3 older studies is further complicated by the distinct treatment protocols patients were subjected to more than a decade ago. The absence of circulating tumor cells in patients from our cohort during treatment or even a change in gene expression due to treatment-driven clonal evolution of the disease (41-43) can be another explanation. Although we already applied a panel of multiple markers, we cannot exclude that during relapse our panel of markers is less sensitive in relapse samples than at diagnosis. Analysis of RNA Seq data from pre-treated tumors might offer further insight into gene expression during treatment. Also, further investigation into the potential of DNA-based techniques to detect minimal residual disease, which have shown great promise in other solid tumors as well as rhabdomyosarcoma, should be pursued. (17-19, 44)

Most positively scored samples in our cohort detected the known markers, *MYOD1*, *PAX3/7-FOXO1* fusion and *MYOG*. Due to absence of background expression in healthy PB and BM, our redesigned *MYOD1* is completely tumor-specific which presents a major advantage compared to other markers. *CDH11* was the only marker in our panel that detected additional patients who suffered events later, especially in embryonal rhabdomyosarcoma which is in agreement with a report from 1999 which reports *CDH11* as being specific for fusion gene-negative rhabdomyosarcoma cells.<sup>(45)</sup> The majority of the patients with diagnostic liquid biopsies expressing *CDH11*, test negative for all the other markers. This makes *CDH11* an interesting novel marker for detection of minimal disseminated disease in fusion gene-negative tumors and further research should address its potential as a prognostic marker.

## Conclusion

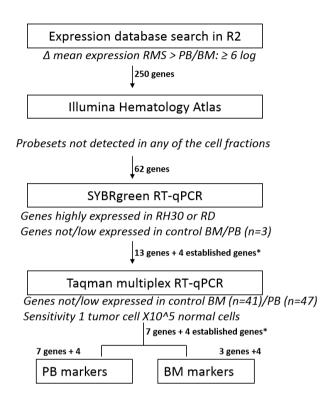
Here we demonstrate that RT-qPCR-based detection of minimal disseminated disease in blood and bone marrow samples collected at diagnosis in pediatric patients with rhabdomyosarcoma is associated with survival. We identify *CDH11* as an important novel blood-based marker for detection of minimal disseminated disease. The redesigned *MYOD1* assay supports highly sensitive rhabdomyosarcoma detection in liquid biopsies. The association between molecularly detected minimal disseminated disease at diagnosis and outcome warrants further investigations into the added value of this 11-marker panel at initial diagnosis on conventional diagnostic strategies to improve risk stratification for treatment of pediatric patients with rhabdomyosarcoma.

### Acknowledgements

N. Lak, L. Zappeij-Kannegieter and J. Stutterheim were supported by the Children Cancer-Free Foundation (KiKa), project number 312.

The cell line CW9019 was kindly provided by dr. F. Barr, National Cancer Institute, Bethesda, USA.

The authors would like to thank Marcel Kool for his contributions in the early phase of this project and Kathy Astrahantseff for her contribution in the editing of this manuscript.


## References

- 1. Gatta G, Botta L, Rossi S, Aareleid T, Bielska-Lasota M, Clavel J, et al.. Childhood cancer survival in Europe 1999–2007: results of EUROCARE-5—a population-based study. Lancet Oncol 2014;15:35–47.
- Bisogno G, Jenney M, Bergeron C, Gallego Melcon S, Ferrari A, Oberlin O, et al.. Addition of doseintensified doxorubicin to standard chemotherapy for rhabdomyosarcoma (EpSSG RMS 2005): a multicentre, open-label, randomised controlled, phase 3 trial. Lancet Oncol 2018;19:1061–71.
- Oberlin O, Rey A, Sanchez de Toledo J, Martelli H, Jenney ME, Scopinaro M, et al.. Randomized comparison of intensified six-drug versus standard three-drug chemotherapy for high-risk nonmetastatic rhabdomyosarcoma and other chemotherapy-sensitive childhood soft tissue sarcomas: long-term results from the International Society of Pediatric Oncology MMT95 study. J Clin Oncol 2012;30:2457–65.
- 4. Arndt CAS, Bisogno G, Koscielniak E. Fifty years of rhabdomyosarcoma studies on both sides of the pond and lessons learned. Cancer Treat Rev 2018;68:94–101.
- Oberlin O, Rey A, Lyden E, Bisogno G, Stevens MC, Meyer WH, et al.. Prognostic factors in metastatic rhabdomyosarcomas: results of a pooled analysis from United States and European cooperative groups. J Clin Oncol 2008;26:2384–9.
- Weiss AR, Lyden ER, Anderson JR, Hawkins DS, Spunt SL, Walterhouse DO, et al.. Histologic and clinical characteristics can guide staging evaluations for children and adolescents with rhabdomyosarcoma: a report from the Children's Oncology Group Soft Tissue Sarcoma Committee. J Clin Oncol 2013;31:3226–32.
- Chisholm JC, Marandet J, Rey A, Scopinaro M, de Toledo JS, Merks JH, et al.. Prognostic factors after relapse in nonmetastatic rhabdomyosarcoma: a nomogram to better define patients who can be salvaged with further therapy. J Clin Oncol 2011;29:1319–25.
- Oberlin O, Rey A, Brown KL, Bisogno G, Koscielniak E, Stevens MC, et al.. Prognostic factors for outcome in localized extremity rhabdomyosarcoma. Pooled analysis from four international cooperative groups. Pediatr Blood Cancer 2015;62:2125–31.
- 9. Dasgupta R, Fuchs J, Rodeberg D. Rhabdomyosarcoma. Semin Pediatr Surg 2016;25:276–83.
- 10. Bailey KA, Wexler LH. Pediatric rhabdomyosarcoma with bone marrow metastasis. Pediatr Blood Cancer 2020;67:e28219.
- 11. Barr FG. Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma. Oncogene 2001;20:5736–46.
- 12. Selfe J, Olmos D, Al-Saadi R, Thway K, Chisholm J, Kelsey A, et al.. Impact of fusion gene status versus histology on risk-stratification for rhabdomyosarcoma: Retrospective analyses of patients on UK trials. Pediatr Blood Cancer 2017;64.
- Anderson J, Gordon T, McManus A, Mapp T, Gould S, Kelsey A, et al.. Detection of the PAX3-FKHR fusion gene in paediatric rhabdomyosarcoma: a reproducible predictor of outcome? Br J Cancer 2001;85:831–5.
- 14. Seki M, Nishimura R, Yoshida K, Shimamura T, Shiraishi Y, Sato Y, et al.. Integrated genetic and epigenetic analysis defines novel molecular subgroups in rhabdomyosarcoma. Nat Commun 2015;6:7557.
- 15. Parham DM, Barr FG. Classification of rhabdomyosarcoma and its molecular basis. Adv Anat Pathol 2013;20:387–97.
- 16. Anderson J, Gordon A, Pritchard-Jones K, Shipley J. Genes, chromosomes, and rhabdomyosarcoma. Genes Chromosomes Cancer 1999;26:275–85.

- 17. Klega K, Imamovic-Tuco A, Ha G, Clapp AN, Meyer S, Ward A, et al.. Detection of somatic structural variants enables quantification and characterization of circulating tumor DNA in children with solid tumors. JCO Precis Oncol 2018;2018:PO.17.00285.
- Eguchi-Ishimae M, Tezuka M, Kokeguchi T, Nagai K, Moritani K, Yonezawa S, et al.. Early detection of the PAX3-FOXO1 fusion gene in circulating tumor-derived DNA in a case of alveolar rhabdomyosarcoma. Genes Chromosomes Cancer 2019;58:521–9.
- 19. Tombolan L, Zin A, Bisogno G. Cell-free DNA in pediatric rhabdomyosarcoma: potential and challenges. Methods Mol Biol 2019;1909:165–75.
- Hoon DS, Kuo CT, Wen S, Wang H, Metelitsa L, Reynolds CP, et al.. Ganglioside GM2/GD2 synthetase mRNA is a marker for detection of infrequent neuroblastoma cells in bone marrow. Am J Pathol 2001;159:493–500.
- 21. Michelagnoli MP, Burchill SA, Cullinane C, Selby PJ, Lewis IJ. Myogenin–a more specific target for RT-PCR detection of rhabdomyosarcoma than MyoD1. Med Pediatr Oncol 2003;40:1–8.
- 22. Gallego S, Llort A, Roma J, Sabado C, Gros L, de Toledo JS. Detection of bone marrow micrometastasis and microcirculating disease in rhabdomyosarcoma by a real-time RT-PCR assay. J Cancer Res Clin Oncol 2006;132:356–62.
- Sartori F, Alaggio R, Zanazzo G, Garaventa A, Di Cataldo A, Carli M, et al.. Results of a prospective minimal disseminated disease study in human rhabdomyosarcoma using three different molecular markers. Cancer 2006;106:1766–75.
- 24. Krskova L, Mrhalova M, Hilska I, Sumerauer D, Drahokoupilova E, Mudry P, et al.. Detection and clinical significance of bone marrow involvement in patients with rhabdomyosarcoma. Virchows Arch 2010;456:463–72.
- 25. Dias P, Chen B, Dilday B, Palmer H, Hosoi H, Singh S, et al.. Strong immunostaining for myogenin in rhabdomyosarcoma is significantly associated with tumors of the alveolar subclass. Am J Pathol 2000;156:399–408.
- Stutterheim J, Gerritsen A, Zappeij-Kannegieter L, Kleijn I, Dee R, Hooft L, et al.. PHOX2B is a novel and specific marker for minimal residual disease testing in neuroblastoma. J Clin Oncol 2008;26:5443–9.
- Stutterheim J, Gerritsen A, Zappeij-Kannegieter L, Yalcin B, Dee R, van Noesel MM, et al.. Detecting minimal residual disease in neuroblastoma: the superiority of a panel of real-time quantitative PCR markers. Clin Chem 2009;55:1316–26.
- 28. R2: Genomics Analysis and Visualization Platform. Available from: http://r2.amc.nl.
- 29. Watkins NA, Gusnanto A, de Bono B, De S, Miranda-Saavedra D, Hardie DL, et al.. A HaemAtlas: characterizing gene expression in differentiated human blood cells. Blood 2009;113:e1–9.
- 30. Carli M, Outcome of consortium meeting within EpSSG. Protocol for detection of minimal disease by quantitative real-time PCR in blood and bone marrow of children with RMS. Final version of the protocol with changes as agreed on Sept 1 (2009) conference call.
- Beillard E, Pallisgaard N, van der Velden VH, Bi W, Dee R, van der Schoot E, et al.. Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using 'real-time' quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR) - a Europe Against Cancer program. Leukemia 2003;17:2474–86.
- van Wezel EM, Zwijnenburg D, Zappeij-Kannegieter L, Bus E, van Noesel MM, Molenaar JJ, et al.. Whole-genome sequencing identifies patient-specific DNA minimal residual disease markers in neuroblastoma. J Mol Diagn 2015;17:43–52.

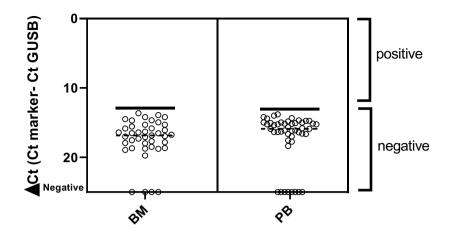
- 33. van der Velden VH, Cazzaniga G, Schrauder A, Hancock J, Bader P, Panzer-Grumayer ER, et al.. Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia 2007;21:604–11.
- 34. Group EpStsS. Combination chemotherapy in treating young patients with nonmetastatic rhabdomyosarcoma. 2006. Available from: https://clinicaltrials.gov/ct2/show/NCT00379457.
- 35. Putter H, Fiocco M, Geskus RB. Tutorial in biostatistics: competing risks and multi-state models. Stat Med 2007;26:2389–430.
- 36. Gray RJ. A class of K-sample tests for comparing the cumulative incidence of a competing risk. The Annals of Statistics 1988;16:1141–54.
- 37. de Wreede LC, Fiocco M, Putter H. An R package for the analysis of competing risks and multi-state models. Journal of Statistical Software 2011;38.
- 38. Team RC. R: A language and environment for statistical computing. 2017
- 39. Winter S, Fasola S, Brisse H, Mosseri V, Orbach D. Relapse after localized rhabdomyosarcoma: evaluation of the efficacy of second-line chemotherapy. Pediatr Blood Cancer 2015;62:1935–41.
- 40. Mascarenhas L, Lyden ER, Breitfeld PP, Walterhouse DO, Donaldson SS, Rodeberg DA, et al.. Riskbased treatment for patients with first relapse or progression of rhabdomyosarcoma: a report from the Children's Oncology Group. Cancer 2019;125:2602–9.
- 41. Meacham CE, Morrison SJ. Tumour heterogeneity and cancer cell plasticity. Nature 2013;501:328–37.
- 42. Roerink SF, Sasaki N, Lee-Six H, Young MD, Alexandrov LB, Behjati S, et al.. Intra-tumour diversification in colorectal cancer at the single-cell level. Nature 2018;556:457–62.
- 43. Schulte M, Koster J, Rahmann S, Schramm A. Cancer evolution, mutations, and clonal selection in relapse neuroblastoma. Cell Tissue Res 2018;372:263–8.
- 44. Chicard M, Colmet-Daage L, Clement N, Danzon A, Bohec M, Bernard V, et al.. Whole-exome sequencing of cell-free DNA reveals temporo-spatial heterogeneity and identifies treatment-resistant clones in neuroblastoma. Clin Cancer Res 2018;24:939–49.
- 45. Markus MA, Reichmuth C, Atkinson MJ, Reich U, Hoffmann I, Balling R, et al.. Cadherin-11 is highly expressed in rhabdomyosarcomas and during differentiation of myoblasts in vitro. J Pathol 1999;187:164–72.

## Supplemental data



**Supplemental figure 1.** Flowchart of the selection of the RNA markers. RMS=rhabdomyosarcoma, PB=peripheral blood, BM=bone marrow, RH30 and RD= two established RMS cell lines.

\* 4 established genes: MYOD1, MYOG, PAX3-FOXO1 and PAX7-FOXO1.


| Gene name                                                                                       |                        | Sequence                    | 5'modification      | 3'modification | Multiplex   |
|-------------------------------------------------------------------------------------------------|------------------------|-----------------------------|---------------------|----------------|-------------|
| Lunchon                                                                                         |                        |                             |                     |                |             |
| Myogenic differentiation 1 (MYOD1)                                                              | Forward primer (EpSSG) | AGGCGCCTACTACAACGAGG        |                     |                | 1 multiplex |
| Iranscription factor of muscle-specific target<br>aenes and imnortant in muscle differentiation | Forward primer (new)   | CAACTGCTCCGACGGCAT          |                     |                | assay       |
|                                                                                                 | Reverse primer         | CAGGCAGTCTAGGCTCGACAC       |                     |                |             |
|                                                                                                 | Probe                  | GCCCAGCGAACCCAGGCCCGGGAA    | Dragonfly<br>Orange | BHQ-2          |             |
| Myogenic factor 4 (MYOG)                                                                        | Forward primer         | TGCACTGGAGTTCAGCGC          |                     |                |             |
| Transcription factor of muscle-specific target                                                  | Reverse primer         | GGAGTGCAGGTTGTGGGC          |                     |                |             |
|                                                                                                 | Probe                  | AACCCAGGGGATCATCTGCTC       | 6-FAM               | BHQ-1          |             |
| PDZ and LIM domain 3 (PDLIM3)                                                                   | Forward primer         | ACTTCAACCAGCCTTTGGTCA       |                     |                |             |
| Organization of actin filament arrays within<br>muscle cells                                    | Reverse primer         | ATCCTGTCCTGCGCATCAG         |                     |                |             |
|                                                                                                 | Probe                  | CAGCTGCCAACCTGTGTCCTGGAGA   | Yakima Yellow       | BHQ-1          |             |
| Actin Alpha Cardiac muscle 1 (ACTC1)                                                            | Forward primer         | CCAGGCAGTGCTATCCCTGTAT      |                     |                | 1 multiplex |
| Found in muscle tissues and major constituent<br>of the contractile annaratus                   | Reverse primer         | GTGAGTTACACCATCCCCAGAGT     |                     |                | assay       |
|                                                                                                 | Probe                  | TCTGGCCGTACCACAGGCATTGTTC   | Yakima Yellow       | BHQ-1          |             |
| Multiple EGF-like domains 10 (MEGF10)*                                                          | Forward primer         | CGCGTTGATTGGAACAGATTT       |                     |                |             |
| Plays role in muscle cell proliferation,<br>adhesion and motility, essential factor in          | Reverse primer         | TGCTTCTCCTTCTTTAATGGATTTG   |                     |                |             |
| myogenesis regulation                                                                           | Probe                  | CGCTGCGATTCTCAAGATCTCTGGACC | 6-FAM               | BHQ-1          |             |
| ZIC family member 1 (ZIC1)                                                                      | Forward primer         | TCCACAAAAGGACGCACACA        |                     |                | 1 single    |
| Transcription activator of multiple genes, incl<br>PAX3_SNAI2                                   | Reverse primer         | TGCACGTGCATGTGCTTCTT        |                     |                | assay       |
|                                                                                                 | Probe                  | CTGTGACCGGCGCGTTCGCTAACA    | Dragonfly<br>Orange | BHQ-2          |             |

Supplemental table 1. Sequences of primers and probe.

2

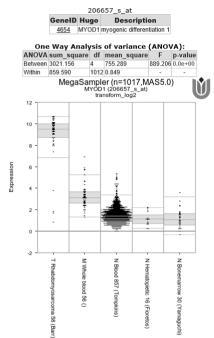
| Gene name<br>Function                                                                                    |                | Sequence                     | 5'modification      | 3'modification           | Multiplex           |
|----------------------------------------------------------------------------------------------------------|----------------|------------------------------|---------------------|--------------------------|---------------------|
| Snail family zinc finger (SNA12)*                                                                        | Forward primer | GACCCTGGTTGCTTCAAGGA         |                     |                          | 1 multiplex         |
| Transcription repressor modulating activator-<br>dependent and based transcription                       | Reverse primer | GAGCCTCAGATTTGACCTGTCT       |                     |                          | assay               |
| מבליבו אמנים ממממי המנים בי                                                                              | Probe          | AGAAGCCTTTTTCTTGCCCTCACTGCAA | Dragonfly<br>Orange | BHQ-2                    |                     |
| Cadherin 11 (CDH11)*                                                                                     | Forward primer | TGGAACCAGTTCTTCGTGATAGAG     |                     |                          | 1                   |
| Calcium-dependent cell adhesion protein,<br>involvad in mvorenecis <sup>(1)</sup>                        | Reverse primer | TCCCATCACCAGAGTCAATATCTG     |                     |                          |                     |
|                                                                                                          | Probe          | CCTGACCCCGTGCTTGTGGGC        | 6-FAM               | BHQ-1                    |                     |
| Transmembrane protein 47 (TMEM47)*                                                                       | Forward primer | CAGCTGACCAGCAGTACTACCTGT     |                     |                          | I                   |
| Regulates cell junction organization                                                                     | Reverse primer | AGGAGTAAAGCCAGAGTAGCAATCT    |                     |                          |                     |
|                                                                                                          | Probe          | TCTGGCACTGCGAGTCCACGCT       | Yakima Yellow       | BHQ-1                    |                     |
| Paired box 3 (PAX3)                                                                                      | Forward primer | TGAACCCCACCATTGGCAAT         |                     |                          | 1 single            |
| Transcription factor regulating cell proliferatio,<br>migration, apoptosis and myogenesis                | Probe          | TCTCACCTCAGAATTC             | FAM                 | MGB-Eclipse <sup>®</sup> | assay with<br>FOXO1 |
| Paired box 7 (PAX7)                                                                                      | Forward primer | ACATGAACCCGGTCAGCAA          |                     |                          | 1 single            |
| Transcription factor regulating muscle<br>stem cell proliferation, myogenesis and<br>muscle regeneration | Probe          | CTGTCTCCTCAGAATTC            | FAM                 | MGB-Eclipse <sup>®</sup> | assay with<br>FOXO1 |
| Forkhead box O1 (FOXO1)<br>Transcription factor involved in<br>glucose metabolism                        | Reverse primer | CTGTGTAGGGACAGATTATGACGAA    |                     |                          |                     |

\* Only measured in peripheral blood due to high background in healthy bone marrow. Gene function is summarized from entry per gene from www.uniprot.org, as searched on 3<sup>rd</sup> of May 2021.

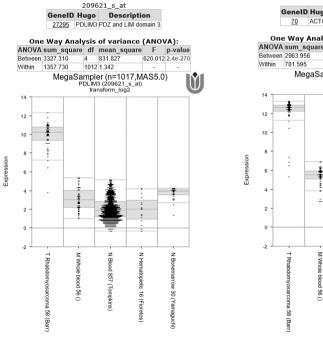


**Supplemental figure 2.** Example of determining the threshold for positivity using the median background expression (dotted line) of *PDLIM3* in healthy bone marrow (BM) and peripheral blood (PB). Threshold (continuous line) is set 3 Ct above the median.

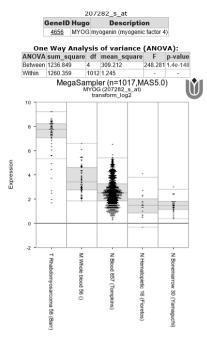
**Supplemental table 2.** Mean Ct values of RT-qPCR assay of *MYOD1* assay with the forward primer from the EpSSG protocol.


|          | Normal | DNAse + | Unconverted | DNA  |
|----------|--------|---------|-------------|------|
|          |        | cDNA    | RNA         |      |
| RH30 10° | 15.7   | 19.2    | 27.5        | 23.2 |

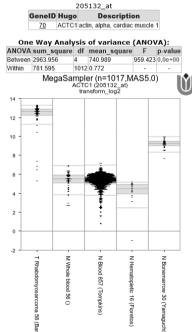
Conditions: normal preparation of cDNA, DNAse treated RNA then converted into cDNA, unconverted RNA and DNA from RH30 cells.


**Supplemental table 3.** Mean Ct values of RT-qPCR assay of *MYOD1* assay with forward primer from EpSSG protocol and new design on a dilution of RH30 cells.

|                       | EpSSG FWD     | New FWD       |
|-----------------------|---------------|---------------|
|                       | Mean Ct value | Mean Ct value |
| RH30 10 <sup>-2</sup> | 22.1          | 23.2          |
| RH30 10 <sup>-3</sup> | 24.9          | 25.7          |
| RH30 10 <sup>-4</sup> | 28.2          | 28.9          |
| RH30 10 <sup>-5</sup> | 30.6          | 31.6          |





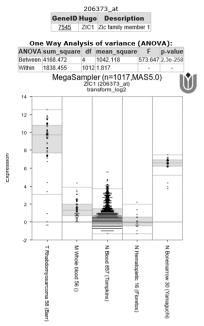


#### PDLIM3:

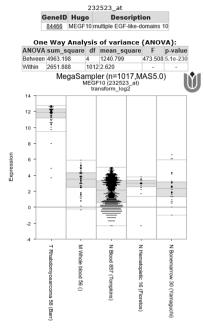


MYOG:



ACTC1:





Supplemental figure 3. Expression of selected markers in healthy tissue and rhabdomyosarcoma tumors.

MEGF10:

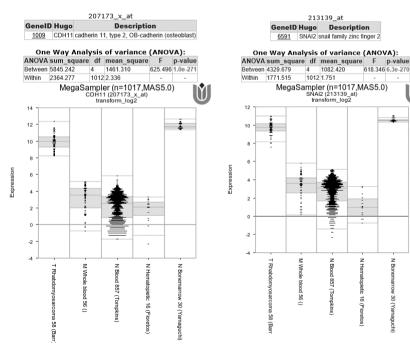
SNAI2:





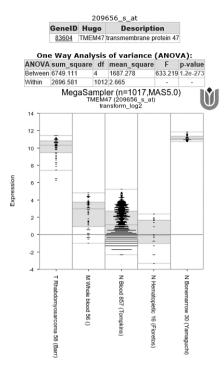


M


z

Bonemarrow

30 (Yamaguchi)


2

CDH11:



Supplemental figure 3. Expression of selected markers in healthy tissue and rhabdomyosarcoma tumors.

#### *TMEM47*:



**Supplemental figure 3.** Expression of selected markers in healthy tissue and rhabdomyosarcoma tumors. Data as analyzed on 10<sup>th</sup> of January 2021 on R2: Genomics Analysis and Visualization Platform (http://r2.amc.nl).

Included datasets: Tumor Rhabdomyosarcoma - Barr - 58 - MAS5.0 - u133p2 gse66533 Mixed Whole blood - 56 - MAS5.0 - u133p2 gse6575 Normal Blood (Trauma Patients) - Tompkins - 857 - MAS5.0 - u133p2 gse36809 Normal Hematopietic Subgroups - Fioretos - 16 - MAS5.0 - u133p2 gse19599 Normal Bonemarrow Mesenchymal stem cells - Yamaguchi - 30 - MAS5.0 - u133p2 gse7637

| ote       |                 |
|-----------|-----------------|
| ase no    |                 |
| 1. Plea   |                 |
| and BN    |                 |
| PB ar     |                 |
| althy     |                 |
| ad be     |                 |
| 80), ani  |                 |
| d RH3     |                 |
| (D and    |                 |
| nes (F    |                 |
| cell lii  |                 |
| oma       |                 |
| osarc     |                 |
| domy      |                 |
| rhab      |                 |
| ished     |                 |
| establish |                 |
| on 2 (    | arker           |
| ested     | or a m          |
| nes te    | tive fo         |
| he 62 ger | nega            |
| f the (   | were            |
| ults o    | Il samples were |
| en res    | all san         |
| -gree     | ed if a         |
| SYBF      | Iclude          |
| ble 4.    | not ir          |
| al tal    | s are i         |
| ment      | values          |
| pple      | at Ct /         |
| ň         | ĥ               |

| Supplemental table 4. SYBR-gre<br>that Ct values are not included if | <b>table 4.</b> SYBR<br>re not include |        | en results of the 62 genes tested on 2 e<br>all samples were negative for a marker | een results of the 62 genes tested on 2 established rhabdomyosarcoma cell lines (RD and RH30), and healthy PB and BM. Please note<br>f all samples were negative for a marker. | blished rhabdo | myosarcoma c | ell lines (RD an | d RH30), and he | althy PB and B | .M. Please note |
|----------------------------------------------------------------------|----------------------------------------|--------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|------------------|-----------------|----------------|-----------------|
|                                                                      |                                        |        |                                                                                    | PB                                                                                                                                                                             | ~              |              |                  | BM              | V              |                 |
| Gene                                                                 | RD-1                                   | RH30-1 | PB pos                                                                             | Mean Ct                                                                                                                                                                        | Min Ct         | Max Ct       | BM pos           | Mean Ct         | Min Ct         | Max Ct          |
| A2M                                                                  | 33,05                                  | 34,97  | (4/4)                                                                              | 29,94                                                                                                                                                                          | 28,35          | 34,47        | (3/3)            | 26,37           | 25,67          | 27,15           |
| ACTC1                                                                | 20,80                                  | 19,22  | (3/4)                                                                              | 34,54                                                                                                                                                                          | 34,18          | 35,21        | (3/3)            | 33,50           | 32,25          | 34,49           |
| AMOTL1                                                               | 24,20                                  | 22,17  | (4/4)                                                                              | 26,97                                                                                                                                                                          | 26,16          | 28,19        | (3/3)            | 30,94           | 23,84          | 31,51           |
| ASPN                                                                 | 35,43                                  | 23,06  | (4/4)                                                                              | 35,08                                                                                                                                                                          | 33,36          | 34,68        | (3/3)            | 34,03           | 33,20          | 34,84           |
| C1S                                                                  | 30,09                                  | 31,10  | (4/4)                                                                              | 32,76                                                                                                                                                                          | 30,13          | 35,19        | (3/3)            | 28,33           | 26,22          | 30,53           |
| CAPN6                                                                | 24,37                                  | 27,53  | (2/5)                                                                              | 35,84                                                                                                                                                                          | 35,26          | 36,41        | (2/3)            | 34,38           | 33,19          | 35,57           |
| CDH11                                                                | 22,29                                  | 23,90  | (2/5)                                                                              | 36,26                                                                                                                                                                          | 36,26          | 37,00        | (3/3)            | 27,30           | 24,30          | 30,50           |
| CSRP2                                                                | 22,40                                  | 23,26  | (3/3)                                                                              | 26,16                                                                                                                                                                          | 25,32          | 26,69        | (3/3)            | 26,12           | 25,62          | 29,96           |
| CTGF                                                                 | 21,67                                  | 24,61  | (3/3)                                                                              | 29,73                                                                                                                                                                          | 29,01          | 31,03        | (3/3)            | 24,29           | 21,12          | 26,56           |
| CTHRC1                                                               | 22,18                                  | 26,07  | (3/3)                                                                              | 29,86                                                                                                                                                                          | 32,99          | 34,42        | (3/3)            | 30,98           | 29,82          | 32,34           |
| COL3A1                                                               | 19,70                                  | 25,70  | (4/5)                                                                              | 34,38                                                                                                                                                                          | 27,46          | 37,79        | (3/3)            | 26,14           | 25,90          | 26,40           |
| COL5A2                                                               | 18,58                                  | 17,82  | (3/3)                                                                              | 28,46                                                                                                                                                                          | 28,27          | 28,81        | (3/3)            | 26,98           | 26,12          | 22,06           |
| DCLK1                                                                | 36,02                                  | 31,00  | (1/4)                                                                              | 39,40                                                                                                                                                                          | 39,40          | 39,40        | (2/3)            | 38,55           | 37,59          | 39,52           |
| DCN                                                                  | 23,55                                  | 32,08  | (5/5)                                                                              | 32,81                                                                                                                                                                          | 31,90          | 33,80        | (3/3)            | 27,17           | 26,40          | 35,10           |
| DLK1                                                                 | 30,01                                  | 28,68  | (3/3)                                                                              | 32,89                                                                                                                                                                          | 31,44          | 34,62        | (3/3)            | 31,12           | 29,69          | 32,78           |
| DNAPTP6                                                              | 18,80                                  | 18,37  | (3/3)                                                                              | 24,69                                                                                                                                                                          | 24,37          | 24,90        | (3/3)            | 22,94           | 22,06          | 23,95           |
| FBN1                                                                 | 25,22                                  | 23,06  | (4/4)                                                                              | 27,84                                                                                                                                                                          | 25,85          | 30,16        | (3/3)            | 29,48           | 25,07          | 33,89           |
| FGFR4                                                                | 21,76                                  | 19,20  | (4/4)                                                                              | 31,18                                                                                                                                                                          | 28,21          | 33,64        | (3/3)            | 26,67           | 24,31          | 29,72           |
| FNDC5                                                                | 21,81                                  | 22,70  | (3/3)                                                                              | 29,71                                                                                                                                                                          | 29,54          | 30,33        | (3/3)            | 28,94           | 25,56          | 30,75           |
| GJA1                                                                 | 22,32                                  | 26,17  | (3/3)                                                                              | 24,09                                                                                                                                                                          | 23,50          | 24,40        | (3/3)            | 25,77           | 25,30          | 26,20           |
| GJC1                                                                 | 28,36                                  | 25,42  | (4/4)                                                                              | 35,98                                                                                                                                                                          | 34,41          | 37,67        | (4/4)            | 32,92           | 30,78          | 35,07           |

Improving risk stratification for patients with rhabdomyosarcoma my molecular analysis of liquid biopsies | 57

2

| Supplemental table 4. Continued | table 4. Conti | inued  |        |         |        |        |        |         |        |        |
|---------------------------------|----------------|--------|--------|---------|--------|--------|--------|---------|--------|--------|
|                                 |                |        |        | PB      | 8      |        |        | BM      | S.     |        |
| Gene                            | RD-1           | RH30-1 | PB pos | Mean Ct | Min Ct | Max Ct | BM pos | Mean Ct | Min Ct | Max Ct |
| GLT8D4                          | 36,02          | 24,60  | (2/4)  | 34,26   | 33,47  | 35,05  | (3/3)  | 26,10   | 25,28  | 26,76  |
| HS6ST2                          | 33,85          | 34,48  | (0/4)  | ı       | ı      | ı      | (1/3)  | 36,01   | 36,01  | 36,01  |
| IGF2                            | 17,49          | 17,46  | (4/4)  | 35,61   | 33,69  | 37,64  | (3/3)  | 25,77   | 24,73  | 26,29  |
| KBTBD10                         | 21,93          | 24,18  | (3/5)  | 36,61   | 35,18  | 37,99  | (3/3)  | 32,32   | 31,13  | 33,99  |
| LAMB1                           | 24,42          | 26,44  | (4/4)  | 30,66   | 28,60  | 31,80  | (3/3)  | 28,23   | 27,80  | 28,50  |
| LOXL1                           | 27,42          | 26,55  | (1/1)  | 26,54   | 23,93  | 31,47  | (3/3)  | 27,66   | 26,82  | 27,70  |
| LOXL2                           | 29,28          | 27,93  | (3/3)  | 23,85   | 22,73  | 25,04  | (3/3)  | 27,26   | 26,27  | 28,99  |
| LPHN2                           | 29,96          | 28,70  | (1/4)  | 39,47   | 39,47  | 39,47  | (3/3)  | 38,15   | 35,59  | 38,30  |
| LUM                             | 27,56          | 33,65  | (4/4)  | 32,81   | 30,88  | 33,65  | (3/3)  | 28,54   | 27,19  | 29,36  |
| MDK                             | 20,84          | 20,56  | (4/4)  | 25,23   | 24,11  | 26,40  | (3/3)  | 24,72   | 24,38  | 25,67  |
| MEGF10                          | 23,25          | 23,40  | (0/3)  | ı       | ı      | ı      | (3/3)  | 31,90   | 31,06  | 33,33  |
| MEST                            | 16,63          | 21,57  | (3/3)  | 24,01   | 23,65  | 24,19  | (3/3)  | 22,13   | 21,82  | 22,71  |
| MGP                             | 36,82          | 26,25  | (3/3)  | 25,39   | 24,50  | 26,30  | (3/3)  | 27,08   | 26,10  | 28,00  |
| МҮНЗ                            | 36,48          | 38,99  | (4/4)  | 26,72   | 24,00  | 26,67  | (3/3)  | 26,81   | 23,37  | 29,83  |
| MYL1                            | 21,03          | 27,20  | (0/2)  | ı       | ı      | ı      | (9/0)  | ·       |        |        |
| <b>MXRA5</b>                    | 31,89          | 27,72  | (1/5)  | 35,42   | 35,42  | 35,42  | (3/3)  | 27,77   | 26,70  | 29,20  |
| NES                             | 22,12          | 22,29  | (2/3)  | 39,54   | 39,24  | 39,84  | (2/7)  | 38,05   | 36,35  | 39,07  |
| PCDH7                           | 33,89          | 41,20  | (0/3)  | ı       | ı      | ı      | (0/3)  |         |        |        |
| PDGFRA                          | 33,81          | 28,09  | (4/4)  | 36,22   | 33,91  | 37,58  | (3/3)  | 29,82   | 28,67  | 31,93  |
| PDLIM3                          | 20,54          | 22,70  | (3/5)  | 38,77   | 38,27  | 39,15  | (3/3)  | 35,80   | 35,10  | 36,70  |
| PEG10                           | 24,27          | 23,11  | (1/1)  | 23,65   | 23,65  | 23,65  |        | ı       |        | ı      |
| PLK2                            | 29,21          | 31,14  | (4/4)  | 24,52   | 23,27  | 26,00  | (3/3)  | 23,86   | 23,09  | 24,89  |

|              |       |        |        | PB      |        |        |        | BM      |        |        |
|--------------|-------|--------|--------|---------|--------|--------|--------|---------|--------|--------|
| Gene         | RD-1  | RH30-1 | PB pos | Mean Ct | Min Ct | Max Ct | BM pos | Mean Ct | Min Ct | Max Ct |
| PLS3         | 20,82 | 18,75  | (3/3)  | 29,44   | 28,48  | 30,39  | (3/3)  | 26,72   | 26,56  | 26,98  |
| POSTN        | 24,82 | 31,50  | (2/3)  | 34,75   | 34,60  | 34,90  | (3/3)  | 30,14   | 29,64  | 30,84  |
| PTPRD        | 23,41 | 24,33  | (4/4)  | 35,73   | 33,30  | 39,89  | (3/3)  | 29,56   | 28,85  | 30,10  |
| RBM24        | 22,93 | 23,13  | (3/3)  | 29,37   | 28,19  | 30,45  | (3/3)  | 29,31   | 27,54  | 30,40  |
| RBP1         | 27,78 | 23,12  | (5/5)  | 34,21   | 33,70  | 34,60  | (3/3)  | 32,32   | 30,00  | 32,50  |
| RGS5         | 27,44 | 32,72  | (2/3)  | 36,92   | 33,60  | 37,00  | (3/3)  | 30,35   | 27,40  | 32,30  |
| RND3         | 25,92 | 26,94  | (2/2)  | 33,60   | 32,32  | 34,88  | ı      | ,       | ,      | ı      |
| RUNX1T1      | 33,99 | 24,51  | (4/4)  | 34,57   | 33,91  | 35,25  | (3/3)  | 31,12   | 29,59  | 32,30  |
| SIX1         | 22,83 | 21,74  | (3/3)  | 35,10   | 34,22  | 36,16  | (2/2)  | 32,48   | 30,03  | 36,78  |
| <b>SNAI2</b> | 22,76 | 21,59  | (3/3)  | 35,89   | 34,00  | 37,50  | (3/3)  | 28,24   | 27,30  | 29,40  |
| SPARCL1      | 29,54 | 31,96  | (5/5)  | 35,40   | 34,50  | 38,10  | (3/3)  | 32,26   | 29,90  | 32,50  |
| TEAD1        | 23,08 | 22,30  | (3/3)  | 31,06   | 23,10  | 32,30  | (3/3)  | 30,09   | 28,70  | 32,20  |
| TMEM47       | 26,71 | 23,08  | (2/5)  | 36,18   | 36,20  | 36,40  | (3/3)  | 32,38   | 30,50  | 34,90  |
| TNNi1        | 24,01 | 21,22  | (2/6)  | 36,19   | 34,63  | 37,75  | (3/3)  | 35,78   | 33,71  | 38,05  |
| TSPAN12      | 22,45 | 22,85  | (4/4)  | 35,08   | 31,56  | 36,21  | (3/3)  | 30,55   | 30,14  | 30,95  |
| TUSC3        | 22,53 | 22,40  | (3/3)  | 30,77   | 29,80  | 31,60  | (3/3)  | 29,55   | 29,30  | 29,70  |
| VASH2        | 23,37 | 20,68  | (3/4)  | 35,44   | 31,08  | 38,64  | (3/3)  | 30,33   | 29,57  | 31,38  |
| YAP1         | 22,22 | 23,45  | (3/3)  | 29,17   | 28,80  | 29,90  | (3/3)  | 29,18   | 26,90  | 30,60  |
| ZIC1         | 22,54 | 23,14  | (4/6)  | 34,81   | 32,12  | 36,25  | (3/7)  | 35,52   | 33,86  | 37,18  |
|              |       |        |        |         |        |        |        |         |        |        |

Supplemental table 4. Continued

Improving risk stratification for patients with rhabdomyosarcoma my molecular analysis of liquid biopsies | 59

BM pos = number of control BM testing positive for a marker, per number of BM tested. PB pos = number of control PB testing positive for a marker, per number of PB tested.

2

| kers in PB and                                                                                                                                                                                                              | e<br>old)                                    | BM at Dx                  | MYOD1, MYOG,<br>PDLIM3, ACTC1, ZIC1,<br>PAX3-FOXO1         | MYOD1  | NA     | NA     | MYOD1, PAX7-<br>FOXO1 | NA     | neg    | neg    | neg    | neg    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------|------------------------------------------------------------|--------|--------|--------|-----------------------|--------|--------|--------|--------|--------|
| vailable). Marl                                                                                                                                                                                                             | Markers positive<br>(according to threshold) |                           |                                                            |        |        |        | ΜY                    |        |        |        |        |        |
| Supplemental table 5. Expression of the 11 markers in 10 rhabdomyosarcoma tumors and their matching results in PB and BM (when available). Markers in PB and BM are scored as positive according to the defined thresholds. | Ma<br>(accore                                | Pb at Dx                  | MYOD1, MYOG,<br>PDLIM3, ACTC1, ZIC1,<br>PAX3-FOXO1, MEGF10 | neg    | NA     | neg    | neg                   | NA     | neg    | neg    | neg    | neg    |
| ults in PB                                                                                                                                                                                                                  |                                              | TMEM47                    | 22.05                                                      | 29.74  | 29.21  | 27.79  | 20.67                 | 34.68  | 31.97  | 24.29  | 29.63  | Und    |
| ching res                                                                                                                                                                                                                   |                                              | SNAI2                     | 21.94                                                      | 26.72  | 28.55  | 25.75  | 20.35                 | 30.91  | 28.79  | 21.57  | 28.15  | 33.49  |
| their mat                                                                                                                                                                                                                   |                                              | PDLIM3                    | 19.91                                                      | 24.68  | 27.55  | 24.26  | 18.18                 | 28.16  | 26.11  | 22.06  | 27.37  | 33.49  |
| umors and                                                                                                                                                                                                                   |                                              | ACTC1 CDH11 MEGF10 PDLIM3 | 20.5                                                       | 30.61  | 27.32  | 27.05  | 21.86                 | 30.48  | 29.3   | 22.04  | 33.4   | Und    |
| arcoma t                                                                                                                                                                                                                    |                                              | CDH11                     | 22.2                                                       | 30.22  | 26.17  | 29.46  | 21.27                 | 28.65  | 25.86  | 21.02  | 25.32  | 32.75  |
| odomyos                                                                                                                                                                                                                     |                                              | ACTC1                     | 16.33                                                      | 25.86  | 22.9   | 24.13  | 17.13                 | 29.99  | 26.15  | 19.44  | 38.22  | 33.15  |
| n 10 rhak<br>sholds.                                                                                                                                                                                                        |                                              | ZIC1                      | 22.64 16.33                                                | 29.9   | 31.28  | 30.18  | 24.19                 | 33.23  | 29.82  | 21.58  | 28.42  | 38.43  |
| arkers ir<br>ined thre                                                                                                                                                                                                      |                                              | PAX3-<br>FOXO1            | 23.26                                                      | Und    | 30.71  | Und    | Und                   | Und    | Und    | Und    | Und    | Und    |
| the 11 m<br>o the def                                                                                                                                                                                                       | kers in tumor<br>an Ct values)               | MYOG                      | 18.82                                                      | 24.62  | 25.03  | 25.85  | 18.64                 | 31.62  | 27.48  | 21.22  | 36.97  | 35.43  |
| ression of<br>cording to                                                                                                                                                                                                    | Markers in tumo<br>(mean Ct values)          | муорт муод                | 21.98                                                      | 28.52  | 27.01  | 26.71  | 21.64                 | 33.8   | 29.56  | 23.49  | 36.94  | 39.75  |
| <b>e 5.</b> Expr<br>sitive acc                                                                                                                                                                                              |                                              | GUS                       | 22.83                                                      | 28.72  | 28.5   | 29.23  | 23.15                 | 33.22  | 29.22  | 24.07  | 28.31  | 35.34  |
| ental tabl                                                                                                                                                                                                                  |                                              | Subtype                   |                                                            | ARMS   | ARMS   | ARMS   | ARMS                  | ERMS   | ERMS   | ERMS   | ERMS   | ERMS   |
| <b>Supplemental table 5.</b> Expression of the 11 markers in 10 rha BM are scored as positive according to the defined thresholds.                                                                                          |                                              | RMS ID                    | RMS075 ARMS                                                | RMS099 | RMS038 | RMS105 | RMS045                | RMS059 | RMS069 | RMS078 | RMS003 | RMS095 |

Please note: PAX7-FOX01 RT-gPCR was tested in the clinical diagnostic lab, exact Ct values are not available. Und=undetermined, sample is negative for target. Neg=negative. NA=not available

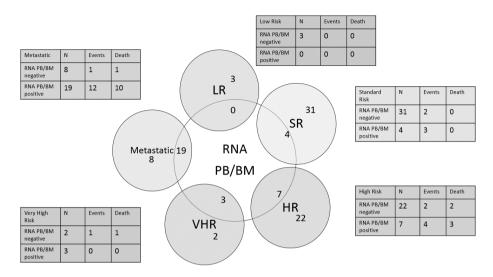
|        |         |         | / /     |         |         |         | ,       |         |
|--------|---------|---------|---------|---------|---------|---------|---------|---------|
|        | MYOD1   | MYOG    | ACTC1   | CDH11   | MEGF10  | PDLIM3  | SNAI2   | TMEM47  |
|        | Mean Ct |
| RH30   | 16,3    | 16,2    | 13,4    | 17,8    | 19,7    | 18,7    | 16,7    | 20,6    |
| RH30-1 | 19,6    | 19,5    | 17,0    | 21,4    | 23,2    | 22,1    | 19,9    | 23,7    |
| RH30-2 | 23,1    | 22,8    | 21,0    | 24,7    | 26,5    | 25,4    | 23,3    | 27,1    |
| RH30-3 | 26,4    | 26,1    | 24,6    | 28,1    | 29,8    | 28,9    | 26,6    | 29,9    |
| RH30-4 | 29,7    | 29,3    | 28,5    | 31,4    | 33,1    | 32,4    | 30,2    | 33,2    |
| RH30-5 | 33,5    | 32,4    | 32,2    | 33,8    | 36,1    | 35,8    | 33,1    | 36,0    |
| RH30-6 | 35,6    | 35,0    | 36,1    | Und     | Und     | 38,4    | 35,7    | 37,4    |
| PbCo   | Und     | 35,2    | 40,7    | Und     | Und     | 44,7    | Und     | Und     |

#### Supplemental table 6. Sensitivity assay of RH30 cells diluted in PB cells from a healthy controls.

Und= undetermined, sample is negative for target

PbCo= healthy PB cells without mixed in RH30.

**Supplemental table 7.** Patient and clinical characteristics distributed according to the RMS2005 risk groups.


|                    |    |      | Age at d | iagnosi | s (years) |     |     | Tumor     |
|--------------------|----|------|----------|---------|-----------|-----|-----|-----------|
| Risk group         | Ν  | Male | ARMS     | <1      | 1-10      | >10 | N1  | size >5cm |
| Low risk           | 3  | 3    | 0        | 0       | 3         | 0   | 0   | 0         |
| Standard risk      | 35 | 22   | 0        | 1       | 27        | 7   | 0   | 6         |
| High risk          | 29 | 16   | 9        | 0       | 19        | 10  | 5   | 23        |
| Very high risk     | 5  | 3    | 5        | 0       | 3         | 2   | 5   | 5         |
| Metastatic disease | 27 | 17   | 14       | 0       | 12        | 15  | 17* | 22        |
| Total              | 99 | 61   | 28       | 1       | 64        | 34  | 27  | 56        |

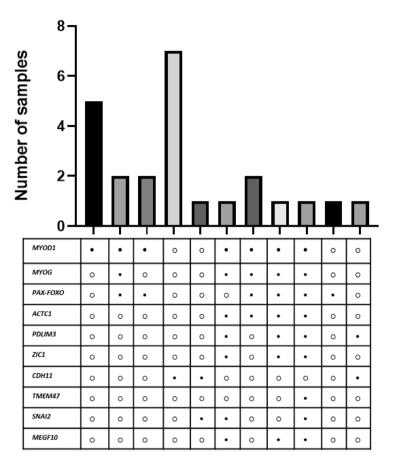
N= total number of patients, ARMS= alveolar rhabdomyosarcoma, N1= regional lymph node involvement \* lymph node status missing for 1 patient

**Supplemental table 8.** Number of patients distributed according to the RMS 2005 risk group stratification and patients testing positive in peripheral blood only, bone marrow only or positive in both.

| Risk group     | Number of patients | Only PB+ | Only BM+ | PB and BM + |
|----------------|--------------------|----------|----------|-------------|
| Low risk       | 3                  | 0        | 0        | 0           |
| Standard risk  | 35                 | 3        | 1        | 0           |
| High risk      | 29                 | 2        | 4        | 1           |
| Very high risk | 5                  | 1        | 2        | 0           |
| Metastatic     | 27                 | 2        | 5        | 12          |

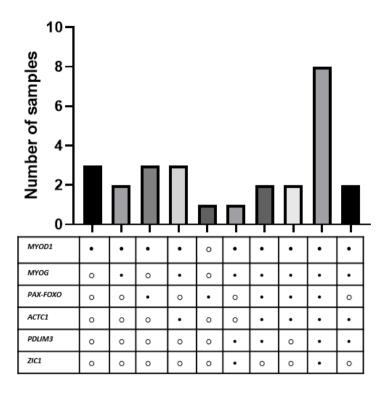
PB = peripheral blood; BM = bone marrow; ARMS = alveolar rhabdomyosarcoma




**Supplemental figure 4.** Distribution of RNA positivity, events (=relapse, progressive disease or death) and death of disease among conventional risk groups according to the RMS 2005 risk stratification.

PB=peripheral blood, BM=bone marrow, LR=low risk, SR=standard risk, HR=high risk, VHR=very high risk, N= total number of patients.

|                                     | Event           | -free survival                | Overal       | l survival                          |
|-------------------------------------|-----------------|-------------------------------|--------------|-------------------------------------|
|                                     | Hazard<br>ratio | 95%<br>Confidence<br>Interval | Hazard ratio | 95% Confidence<br>Interval          |
| RNA panel: PB and/or<br>BM positive | 8.62            | 3.43-21.69                    | 7.54         | 2.46-23.17                          |
| Risk group: Standard Risk           | 1               |                               |              |                                     |
| Risk group:<br>High Risk            | 1.58            | 0.48-5.17                     | •            | ie to low events in<br>I Risk group |
| Risk group:<br>Metastatic           | 4.73            | 1.68-13.35                    | Standard     | глізк дібар                         |
| Metastatic disease                  | 3.81            | 1.72-8.40                     | 6.83         | 2.49-18.75                          |
| Alveolar rhabdomyosarcoma           | 3.06            | 1.39-6.70                     | 3.81         | 1.44-10.07                          |
| Positive BM<br>immunohistochemistry | 3.02            | 1.13-8.06                     | 3.50         | 1.13-10.80                          |
| Age >10 years                       | 2.41            | 1.09-5.30                     | 6.88         | 2.38-19.86                          |
| Tumor size >5 cm                    | 4.33            | 1.62-11.58                    | 16.53        | 2.19-124.84                         |
| Regional node involvement           | 2.72            | 1.21-6.10                     | 6.29         | 2.24-17.64                          |


**Supplemental table 9.** Univariate analysis of RNA panel positivity in peripheral blood and/or bone marrow and conventional risk factors.

PB = peripheral blood; BM = bone marrow



**Supplemental figure 5.** Distribution of RNA markers positive in peripheral blood (PB) at diagnosis (21 samples) and during follow up (4 samples).

•=positive sample, o= negative sample



**Supplemental figure 6.** Distribution of RNA markers positive in bone marrow (BM) at diagnosis (25 samples) and during follow up (1 sample).

•=positive sample, o= negative sample

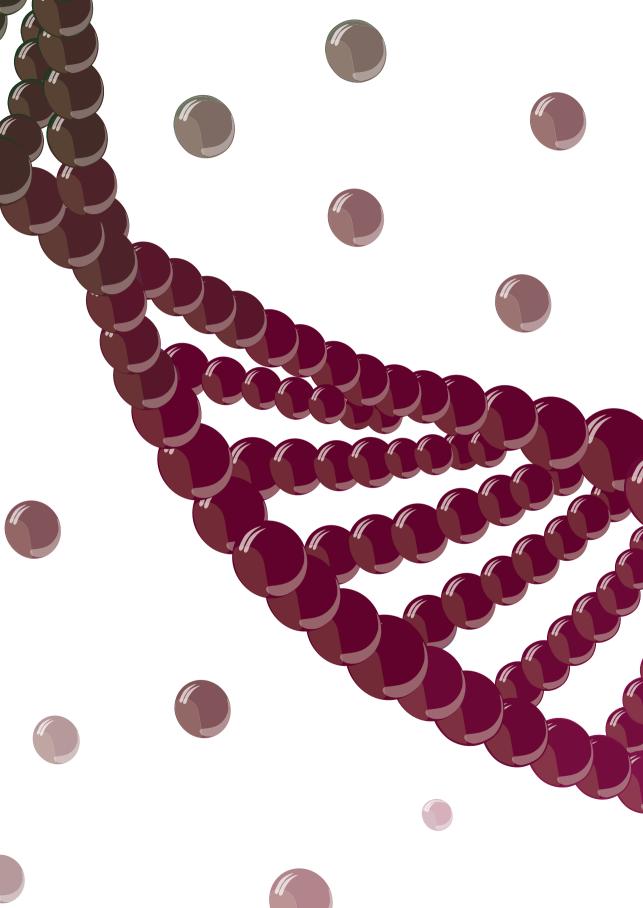
|                        |            |           | ents (number of ev<br>larkers positive in l |            |
|------------------------|------------|-----------|---------------------------------------------|------------|
|                        |            | 0 markers | ≤2 markers                                  | ≥3 markers |
| Markers positive in BM | 0 markers  | 66 (6)    | 8 (5)                                       | 0 (0)      |
|                        | ≤2 markers | 6 (1)     | 1 (1)                                       | 1 (1)      |
|                        | ≥3 markers | 6 (5)     | 4 (3)                                       | 7 (3)      |

**Supplemental table 10.** Number of positive markers in peripheral blood (PB) and bone marrow (BM) at diagnosis correlating with events (=relapse, progressive disease or death).

| (following page)     |
|----------------------|
| es of 25 patients.   |
| 11. Follow-samples   |
| Supplemental table 1 |

|        |            | • | ·   |     | •   |     |           |         |         |                     |                                      |                           |
|--------|------------|---|-----|-----|-----|-----|-----------|---------|---------|---------------------|--------------------------------------|---------------------------|
| RMSnr  | Risk group | ð | PB2 | PB3 | PB4 | PB5 | Follow up | 1st rel | PD      | 2 <sup>nd</sup> rel | Outcome                              | Follow up<br>time (years) |
| RMS002 | meta       |   | I   | 0   | 0   | ı   | ı         |         |         | ı                   | DOD (after 3 <sup>rd</sup> rel)      | 3.14                      |
| RMS007 | meta       | • | ı   | •   | ı   | 0   | ı         |         | •-0-0-0 |                     | DOD (ongoing PD)                     | 2.13                      |
| RMS010 | meta       |   | 0   | 0   | ı   | 0   | ,         | 0-0-0-0 |         |                     | DOD (after 1 <sup>st</sup> rel)      | 1.62                      |
| RMS011 | meta       | 0 | 0   | 0   | ı   | 0   | ı         | 0       |         |                     | DOD (after 1 <sup>st</sup> rel)      | 3.67                      |
| RMS022 | meta       | • | 0   | 0   | ı   | 0   | ı         |         | 0       |                     | DOD (PD)                             | 06:                       |
| RMS024 | HR         | • | 0   | ı   | ı   | ı   | ı         | 0       |         | 0                   | DOD (after 4 <sup>th</sup> rel)      | 4.09                      |
| RMS025 | SR         | 0 | 0   | 0   | ,   | ı   | ı         | ı       | ı       | 0-0-0               | Alive (CR after 2 <sup>nd</sup> rel) | 9.11                      |
| RMS026 | meta       | • | I   | 0   | 0   | ī   | 0-0       | 0       |         | I                   | Alive (SD after 2 <sup>nd</sup> rel) | 5.86                      |
| RMS037 | meta       | • | 0   | 0   | ı   | ī   | 0-0       |         |         |                     | Alive (CR)                           | 3.06                      |
| RMS043 | VHR        | • | 0   | 0   | ı   | ı   | ı         |         |         |                     | Alive (CR)                           | 5.99                      |
| RMS048 | SR         | 0 | I   | I   | ı   | ī   | ı         | 0       |         |                     | Alive (CR after 1 <sup>st</sup> rel) | 6.99                      |
| RMS050 | HR         | 0 | ī   | ī   | ,   | ,   |           | 0       |         |                     | DOD (after 1 <sup>st</sup> rel)      | 1.91                      |
| RMS055 | meta       | • | I   | 0   | ı   | 0   | ı         |         | I       |                     | DOD (PD)                             | 1.11                      |
| RMS067 | meta       | • | 0   | 0   | 0   | ı   | 0-0       |         |         |                     | Alive (CR)                           | 4.45                      |
| RMS073 | HR         | • | ı   | ı   | ı   | ī   | ı         |         |         | I                   | Alive (CR after 2 <sup>nd</sup> rel) | 6.65                      |
| RMS074 | HR         | 0 | 0   | 0   | ı   | ·   | 0         | ı       | I       |                     | DOD (PD after 1 <sup>st</sup> rel)   | 6.55                      |
| RMS075 | meta       |   | ı   | ,   | ,   | 0   | 0         |         |         |                     | Alive (CR)                           | 11.55                     |
| RMS080 | meta       | • | ı   | ı   | ī   | ı   |           | 0       |         |                     | Alive (after 1st rel)                | 5.13                      |
| RMS084 | HR         | • | 0   | ı   | ı   | ī   | ı         |         |         |                     | Alive (CR)                           | 7.97                      |
| RMS089 | meta       |   | 0   | 0   | ,   | 0   |           |         | ī       |                     | DOD (relapse)                        | 66.                       |
| RMS091 | meta       | • | 0   | 0   | ,   | ı   |           | ı       |         |                     | DOD (after 1 <sup>st</sup> rel)      | 1.61                      |
|        |            |   |     |     |     |     |           |         |         |                     |                                      |                           |

|                   | PD         |
|-------------------|------------|
|                   | 1st rel    |
|                   | Follow up  |
|                   | PB5        |
|                   | PB4        |
|                   | PB3        |
|                   | PB2        |
| ntinued           | Ď          |
| tal table 11. Cor | Risk group |
| Supplemen         | RMSnr      |


| RMSnr         | Risk group | ă | PB2 | PB3 | PB4 | PB5         | PB4 PB5 Follow up 1st rel | 1st rel | PD 2 <sup>nd</sup> rel | 2 <sup>nd</sup> rel | Outcome                                    | Follow up<br>time (years) |
|---------------|------------|---|-----|-----|-----|-------------|---------------------------|---------|------------------------|---------------------|--------------------------------------------|---------------------------|
| RMS092        | meta       | • | 0   | 0   |     |             | 0                         |         |                        |                     | DOD (PD)                                   | 2.40                      |
| RMS106        | meta       | • | ı   | 0   | ı   |             |                           |         |                        |                     | Alive (CR)                                 | 2.71                      |
| RMS110        | SR         | • | 0   | 0   | 0   |             |                           | 0-0-•   |                        |                     | Alive (CR after 1 <sup>st</sup> rel)       | 3.58                      |
| <b>RMS114</b> | SR         | 0 |     |     |     |             |                           | ,       |                        | 0 - 0               | o - o Alive (CR after 2 <sup>nd</sup> rel) | 8.87                      |
| -             |            | - |     |     |     | -<br>-<br>- | .                         | -       | :                      | -                   |                                            | -                         |

PB=peripheral blood, SR= Standard Risk, HR= High Risk, VHR=Very High Risk, meta=metastatic disease, •=positive sample, o = negative sample, - = no sample available, Dx=diagnosis, PB2= after 1<sup>st</sup> cycle of chemotherapy, PB3= after 3<sup>rd</sup> cycle of chemotherapy, PB4= after 4<sup>th</sup> cycle of chemotherapy, PB5= at the end of primary treatment after 9th cycle of chemotherapy, 1st rela first relapse, DOD-dead of disease, CR=complete remission, PD=progressive disease.

## **References for supplemental data**

1. Markus MA, Reichmuth C, Atkinson MJ, Reich U, Hoffmann I, Balling R, et al. Cadherin-11 is highly expressed in rhabdomyosarcomas and during differentiation of myoblasts in vitro. J Pathol. 1999;187(2):164-72.

2



# Chapter 3 Novel circulating hypermethylated RASSF1A ddPCR for liquid biopsies in patients with pediatric solid tumors

JCO Precis Oncol . 2021 Nov 17;5:PO.21.00130. doi: 10.1200/PO.21.00130.

Lieke M.J. van Zogchel<sup>1,2</sup>, Nathalie S.M. Lak<sup>1,2</sup>, Onno J.H.M. Verhagen<sup>3</sup>, Ahmed Tissoudali<sup>4</sup>, Mohammed Gussmalla Nuru<sup>2</sup>, Nina U. Gelineau<sup>1,2</sup>, Lily Zappeij-Kannengieter<sup>2,3</sup>, Ahmad Javadi<sup>2</sup>, Eline A.M. Zijtregtop<sup>1,5</sup>, Johannes H.M. Merks<sup>1</sup>, Marry van den Heuvel-Eibrink<sup>1</sup>, Antoinette.Y.N. Schouten-van Meeteren<sup>1</sup>, Janine Stutterheim<sup>1</sup>, C. Ellen van der Schoot<sup>2</sup>, Godelieve A.M. Tytgat<sup>1</sup>

- 1. Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- 2. Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, Amsterdam, the Netherlands
- 3. Department of Immunocytology, Sanquin Diagnostic Services, Amsterdam, the Netherlands.
- 4. Department of Immunohematology Diagnostics, Sanquin Diagnostic Services, Amsterdam, the Netherlands.
- 5. Department of pediatric oncology, Erasmus Medical Center– Sophia Children's Hospital, the Netherlands

## Abstract

*Purpose:* Liquid biopsies can be used to investigate tumor-derived DNA, circulating in the cell-free DNA (cfDNA) pool in blood. We aimed to develop a droplet digital PCR (ddPCR) assay detecting hypermethylation of tumor suppressor gene RASSF1A as a simple standard test to detect various pediatric tumor types in small volume blood samples, and to evaluate this test for monitoring treatment response of high risk neuroblastoma patients.

Patients and methods: We developed a ddPCR assay to sensitively detect tumorderived hypermethylated RASSF1A DNA in liquid biopsies. We tested this assay in plasma of 96 patients with neuroblastoma, renal tumors, rhabdomyosarcoma or Hodgkin lymphoma at diagnosis, and in cerebrospinal fluid of 4 patients with brain tumors. We evaluated presence of hypermethylated RASSF1A in plasma samples during treatment and follow-up in 47 patients with neuroblastoma treated according to high-risk protocol and correlated results to blood and bone marrow mRNAbased minimal residual disease detection and clinical outcome.

*Results:* The total cfDNA level was significantly higher in patients with metastatic neuroblastoma and nephroblastoma compared to healthy adult and pediatric controls. Hypermethylated RASSF1A was present in 41/42 patients with metastatic neuroblastoma and in all nephroblastoma, with a median percentage of 69% and 21% of total RASSF1A respectively. Hypermethylated RASSF1A levels decreased during therapy and recurred at relapse.

*Conclusion:* Our findings demonstrate the value of ddPCR-based detection of hypermethylated RASSF1A as circulating molecular tumor marker in neuroblastoma. Our preliminary investigation of RASSF1A hypermethylation detection in circulating cfDNA of other pediatric tumor entities demonstrates potential as a pan-tumor marker, but requires investigation in larger cohorts to evaluate its use and limitations.

#### **Context summary**

*Key objective:* Molecular testing of circulating tumor DNA (ctDNA) has the potential to improve pediatric solid tumor diagnosis and discrimination of subtypes as well as monitoring of treatment response. Our aim was to develop a RASSF1A hypermethylation ddPCR as a standard test to detect ctDNA in several pediatric tumor types using small blood volumes, and as a test to monitor treatment response of neuroblastoma patients.

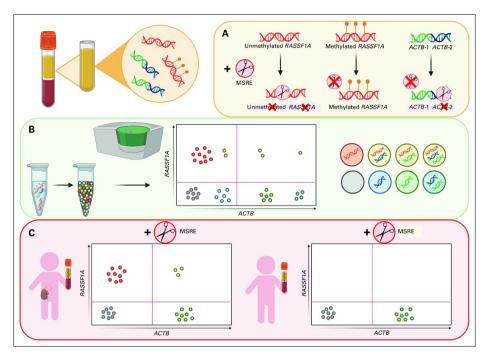
*Knowledge generated:* We developed a sensitive and quantitative ddPCR-based assay for hypermethylated RASSF1A detection. Our findings demonstrate the value of hypermethylated RASSF1A as molecular circulating tumor marker in neuroblastoma. RASSF1A was frequently hypermethylated in plasma samples from patients with nephroblastoma, rhabdomyosarcoma and Hodgkin lymphoma.

*Relevance:* Our study supports the use of ctDNA to assist in the monitoring of therapy response in patients with neuroblastoma and show the potential of ctDNA in assisting in the diagnosis of other pediatric solid tumor entities

### Introduction

Cancer remains one of the most common causes of childhood death in highincome countries.<sup>1</sup> Although the combination of intensive chemotherapy, surgery, radiation therapy, and immunotherapy has improved outcomes in children with solid tumors, disease still recurs in 50% of patients with neuroblastomas;<sup>2,3</sup> 46% of patients with Ewing sarcomas;<sup>4</sup> and approximately 30% of patients with localized rhabdomyosarcomas,<sup>5</sup> osteosarcomas,<sup>6</sup> and renal tumors.<sup>7</sup> Response to treatment is primarily based on imaging. In patients with neuroblastoma, bone marrow (BM) histology or (immuno)cytology assesses the extent of disease.<sup>8</sup> In neuroblastoma and rhabdomyosarcoma, reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR) for the detection of minimal residual disease (MRD) in peripheral blood or BM is shown to be more sensitive<sup>9-13</sup> and predictive of outcomes, but even patients with low or negative MRD results can suffer from recurrent disease,<sup>9,14</sup> or mRNA markers can be downregulated upon epithelial-to-mesenchymal transition.<sup>15</sup>

Liquid biopsies, for example, peripheral blood, can also be a source for tumor-derived cell-free DNA (cfDNA). As the genomic view is not limited to the boundaries of a tissue biopsy, liquid biopsies better represent spatial and intratumor heterogeneity. Liquid biopsies have shown promise in assisting diagnosis and monitoring therapy response in adult oncology.<sup>16-18</sup> Pediatric tumors have lower mutational burdens with few recurrent mutations<sup>19</sup> but a variety of copy number alterations<sup>20</sup> and epigenetic changes.<sup>21</sup> The tumor suppressor gene *RASSF1A* is silenced in nearly all adult cancers and associated with poor prognosis and high-risk disease.<sup>22-24</sup> Promotor hypermethylation<sup>23,25,26</sup> or, less frequently, a combination of hypermethylation and 3p21.3 allelic loss<sup>22,23,27</sup> causes inactivation. *RASSF1A* is hypermethylated in neuroblastoma,<sup>22,28-35</sup> hepatoblastoma,<sup>29,36</sup> nephroblastoma,<sup>29,37,38</sup> medulloblastoma and primitive neuroectodermaltumors,<sup>29,39</sup> and osteosarcoma and Ewing sarcoma.<sup>29,40-42</sup>These


accumulating data suggest *RASSF1A* hypermethylation to be as common in pediatric tumor entities as in adult tumor entities. *RASSF1A* hypermethylation is rare in normal tissues,<sup>23</sup> but present in placenta, and therefore is also suited for fetal DNA detection in maternal plasma.<sup>43,44</sup> We previously investigated hypermethylated *RASSF1A* in cfDNA from patients with neuroblastoma by performing qPCR.<sup>33</sup> We demonstrated the promise of this marker, but observed loss of cfDNA because of bisulfite conversion, and were unable to quantify the low amounts of circulating tumor DNA (ctDNA).<sup>33</sup> In this study, we harnessed the sensitivity and accuracy of droplet digital PCR (ddPCR) and developed a ddPCR method with methylation-sensitive restriction enzymes (MSREs) to overcome these limitations. We furthermore investigated the feasibility of our hypermethylated *RASSF1A* ddPCR assay in detecting different pediatric tumor types in small volume patient plasma samples.

## Methods

Methods on patient inclusion, sample collection, cfDNA isolation, and RT-qPCR for mRNA markers<sup>45</sup> and single nucleotide polymorphism array can be found in the Data Supplement.

#### Hypermethylated RASSF1A ddPCR

To discriminate between methylated and unmethylated *RASSF1A*, every sample was subjected to two different ddPCR reactions (Fig 1): one with MSRE and the other without; all remaining conditions were identical. ACTB-1 primer-probe set was added to control for cfDNA input, and this amplicon is unaffected by the MSRE. ACTB-2 primer-probe set was added to control for MSRE performance since this amplicon is digested by the enzymes. *RASSF1A*, ACTB-1, and ACTB-2 primer and probe sets are listed in the Data Supplement. Primer and probe sequences for *RASSF1A* and ACTB-2 have been described before by O'Brien et al.<sup>44</sup> A detailed protocol can be found in the Data Supplement. To avoid false positivity, a threshold was based on healthy donors for both the single- and double-digest reactions (see the Results) and a minimum of four positive droplets per duplicate. If a sample was scored positive, the percentage of hypermethylated *RASSF1A* ddPCR performance was compared with that of *RASSF1A* qPCR by testing 16 rhabdomyosarcoma and renal tumor cfDNA samples. *RASSF1A* qPCR was performed as described previously.<sup>33</sup>



**Figure 1.** Concept of quantifying methylated *RASSF1A* using MSRE and ddPCR. **(A)** An MSRE incubation of a cfDNA sample results in the digestion of unmethylated *RASSF1A*, whereas methylated *RASSF1A* remains intact. Two amplicons of *ACTB* are added, and ACTB-1 is unaffected by the MSRE, whereas ACTB-2 is digested by the MSRE, as a control for MSRE performance. Every sample is subjected to two different ddPCR reactions, **(B)** one without the MSRE and **(C)** the other with the MSRE. ACTB-2 primers and probe are added in a lower concentration, resulting in a lower amplitude to discriminate between the ACTB-1 and ACTB-2 clusters. **(C)** Only in cfDNA from patients with circulating tumor DNA present, *RASSF1A* will be detected after digestion with the MSRE, as the absence of *RASSF1A* allele by ddPCR. cfDNA, cell-free DNA; ddPCR, droplet digital polymerase chain reaction; MSRE, methylation-sensitive restriction enzymes.

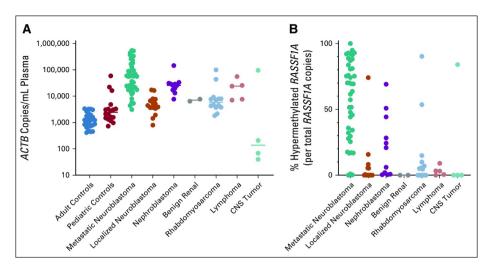
#### **Statistical Analysis**

As cfDNA and ctDNA levels were not normally distributed, they are presented as median (interquartile range) and statistical significance was determined by the Kruskal–Wallis test. Fisher's exact test was used to analyze the correlation between ctDNA and/or mRNA positivity and outcomes. Correlation analysis between cfDNA, ctDNA, and mRNA levels was performed using Spearman's test. Events were defined as relapse, progressive,<sup>8</sup> or refractory disease, when the progression was not according to the International Neuroblastoma Response Criteria but resulted in change of treatment protocol. Receiver operating characteristic analysis was used to identify a cutoff for hypermethylated *RASSF1A* copies/mL. This cutoff was used to

identify two subgroups for the comparison of event-free survival using Kaplan-Meier method. All statistical analyses were performed using GraphPad Prism 8 (GraphPad Software, La Jolla, CA) software. Results were considered significant if  $P \le .05$ .

## Results

Limit of Detection and Limit of Blank: Single and Double MSRE Digest The dilution series of neuroblastoma cell line IMR32 DNA (100%) hypermethylated RASSF1A) in DNA from blood from a healthy male and in H<sub>2</sub>O showed a good linearity (a detailed description is given in the Data Supplement). The limit of detection, however, is defined by the level of positivity in the control samples, also called the limit of blank. For the limit of blank, we evaluated RASSF1A positivity in 22 samples stored at room temperature from adult male controls from which plasma was separated after 24, 48, 72, or 144 hours and 18 pediatric control samples (plasma separation within 24 hours). To test the efficacy of single-digest MSRE (BstUI-only), both hypermethylated RASSF1A and ACTB were measured in these control samples after digestion. We observed a correlation between the number of hypermethylated RASSF1A copies and ACTB copies in the adult controls (Spearman  $r_c = 0.91$ , P < .0001) and to a lesser extent in the pediatric controls (Spearman  $r_{2} = 0.69$ , P = .002), with a maximum of 0.039 RASSF1A copies per ACTB copies/mL plasma (Data Supplement). Although we cannot formally exclude that hypermethylated RASSF1A is derived from necrotic cells during storage of the samples, these data suggest that, although the ACTB-2 cluster was not clearly present, BstUI-only was not able to digest all cfDNA in our samples. A threshold on the basis of this ratio would greatly reduce the sensitivity of the assay and result in many inconclusive samples, and therefore, we investigated the use of two MSREs in a double-digest reaction. Double digestion by MSREs Hhal and Bsh1236l instead of BstUI in 43 adult and 18 pediatric control samples resulted in a more efficient digestion of RASSF1A. The number of hypermethylated RASSF1A copies was no longer dependent on the cfDNA concentration (Data Supplement). A prolonged time to plasma separation did not result in a significant increase in RASSF1A copies/ mL, neither for the single-digest nor double-digest method (Data Supplement). On the basis of mean  $+ 3 \times$  standard deviation in hypermethylated RASSF1A copies/mL plasma of these controls, we set the threshold on 14 copies/mL plasma. As a large number of patient samples were already tested using the single-digest method, all patient samples with  $\geq$  4 positive droplets and a ratio  $\leq$  0.039 RASSF1A/ACTB copies/ µL were also tested using the double-digest method and scored according to the new double-digest threshold. To compare RASSF1A ddPCR performance with that


of *RASSF1A* qPCR,<sup>33</sup> we tested 16 diagnostic rhabdomyosarcoma and renal tumor plasma samples using both techniques. All 11 samples that were positive by qPCR, of which three were positive-not-quantifiable, tested positive by ddPCR, and 1 in 5 qPCR-negative samples were tested positive by ddPCR.

## Total cfDNA Is Increased in Patients With Neuroblastoma and Nephroblastoma

We investigated plasma samples from patients with high-risk neuroblastoma (47) at diagnosis and during therapy and diagnostic plasma samples from pediatric patients with non-high-risk neuroblastoma (17), rhabdomyosarcoma (14), renal tumor (13), Hodgkin lymphoma (five), and cerebrospinal fluid (CSF) from CNS tumors (four). For clinical details, see the Data Supplement. We isolated cfDNA from 200 to 1,000 uL plasma or CSF and compared diagnostic plasma cfDNA levels (ACTB) with 24 healthy adult and 18 healthy pediatric plasma control samples, processed within 24 hours (Fig 2A, Table 1). Total cfDNA levels were significantly higher in patients with metastatic neuroblastoma and nephroblastoma compared with adult and pediatric controls (P < .0001, P < .0001, P < .0001, and P = .0117, respectively). Patients with localized neuroblastoma had significantly lower cfDNA levels compared with metastatic neuroblastoma (P = .0004) and were not significantly different from the adult and pediatric controls (P = .4 and P > .99, respectively). There was a trend to higher cfDNA levels in patients with rhabdomyosarcoma and Hodgkin lymphoma, which was only significant compared with adult controls (P = .015 and P = .013, respectively; Table 1).

## Hypermethylated RASSF1A Is Detected in Diagnostic Plasma of Patients With Different Tumor Entities

At diagnosis, *RASSF1A* hypermethylation was detected in 41 of 42 patients with metastatic neuroblastoma (Fig 2B and Table 1). The one negative patient was stage MS and upstaged to stage M because of two new bone lesions. Hypermethylated *RASSF1A* was detected in all diagnostic plasma samples from patients with nephroblastoma and absent in plasma from two patients with Cystic Partially Differentiated Nephroblastoma and bilateral differentiated nephroblastomatosis, providing the possibility that only malignant tumors are detected by this marker. Eight of 14 plasma samples from patients with rhabdomyosarcoma were positive, as were 4 of 5 Hodgkin lymphoma plasma samples. Only one CSF sample from a patient with medulloblastoma was positive, and this was the sample with the highest cfDNA concentration.



**Figure 2.** Amount of cfDNA and circulating hypermethylated *RASSF1A*. (A) Level of cfDNA at diagnosis in patients with various pediatric solid tumor entities, compared with healthy adult and pediatric controls. cfDNA was quantified by  $\beta$ -actin (*ACTB*), in copies/mL plasma or CSF (cerebrospinal fluid). Lines indicate the median. (B) The percentage of hypermethylated *RASSF1A* of total *RASSF1A* copies at diagnosis in patients with metastatic neuroblastoma (n = 42), localized neuroblastoma (n = 15), nephroblastoma (n = 11), rhabdomyosarcoma (n = 14), lymphoma (n = 5), and CNS tumors (n = 4). Adult and pediatric controls were used to establish a threshold for positivity. In 41 of 42 patients with metastatic neuroblastoma, 8 of 14 patients with rhabdomyosarcoma, 4 of 5 patients with localized neuroblastoma, hypermethylated *RASSF1A* was detected. In all 11 patients with nephroblastoma, 8 of 14 patients with rhabdomyosarcoma, 4 of 5 patients with lymphoma, and 1 of 4 patients with CNS tumor, hypermethylated *RASSF1A* was detected. Two plasma samples of patients with benign renal tumors (a Cystic Partially Differentiated Nephroblastoma and a bilateral differentiated nephroblastomatosis) were negative for hypermethylated *RASSF1A*. cfDNA, cell-free DNA; CFS, cerebrospinal fluid.

| Tumor                       | Total cfDNA (copies/mL) <sup>a</sup> | Hypermethylated<br>RASSF1A–Positive<br>Samples (No.) | Hypermethylated<br>RASSF1A of Total<br>RASSF1Aª (%) | Hypermethylated RASSF1A<br>(copies/mL) <sup>a</sup> |
|-----------------------------|--------------------------------------|------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| Metastatic<br>neuroblastoma | 56,996 (17,694-138,639)              | 41 of 42                                             | 69.4 (34.1-83.7)                                    | 19,281 (5,170-55,196)                               |
| Localized neuroblastoma     | 4,431 (3,441-7,669)                  | 6 of 15                                              | 6.8 (5.4-13.9)                                      | 440 (273-546)                                       |
| Nephroblastoma              | 26,023 (17,390-31,177) <sup>b</sup>  | 11 of 11                                             | 20.9 (1.4-36.3)                                     | 2,250 (421-6,946)                                   |
| Benign renal                | 6,462 and 7,731                      | 0 of 2                                               |                                                     |                                                     |
| Rhabdomyosarcoma            | 5,893 (3,791-8,319)                  | 8 of 14                                              | 8.5 (5.4-24.6)                                      | 263 (172-1,905)                                     |
| Lymphoma                    | 23,949 (7,406-40,873)                | 4 of 5                                               | 3.2 (2.5-4.7)                                       | 926 (220-1,638)                                     |
| Medulloblastoma             | 138 (47-72,711)                      | 1 of 4                                               | 84.1                                                | 89,336                                              |
| Adult controls              | 1,232 (748-2,143)                    |                                                      |                                                     |                                                     |
| Pediatric controls          | 2,445 (1,446-3,694)                  |                                                      |                                                     |                                                     |

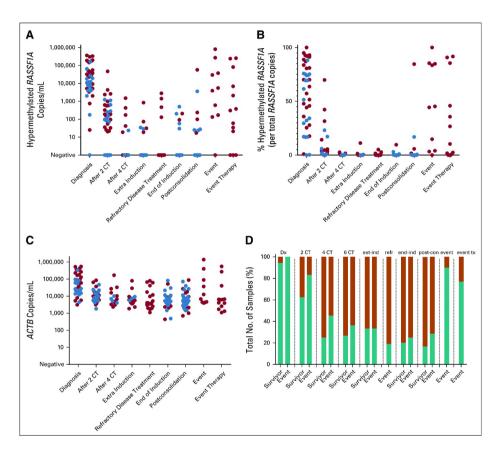
**Table 1.** Levels of cfDNA and Circulating Hypermethylated *RASSF1A* in Various Pediatric Solid Tumor

 Entities and Adult and Pediatric Controls.

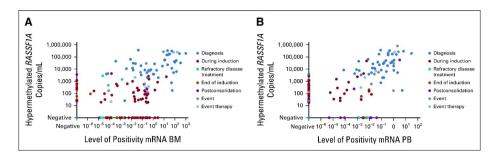
Abbreviations: cfDNA, cell-free DNA; IQR, interquartile range.

<sup>a</sup>Median and IQR are given.

<sup>b</sup>Total cfDNA is significantly increased in patients with metastatic neuroblastoma compared with adult and pediatric controls, with P < .0001 and P < .0001, respectively, and in patients with nephroblastoma.


## Cell-Free Detection of Hypermethylated RASSF1A at Diagnosis and During Therapy

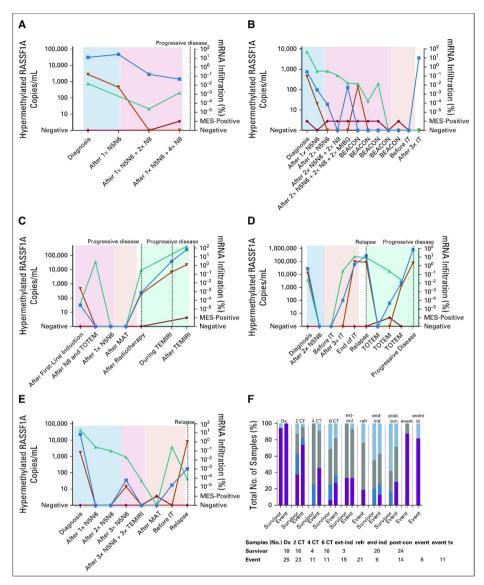
Plasma was available from 47 patients with high-risk neuroblastoma during the course of treatment. Clinical details, time of sampling, and ctDNA and mRNA results per sample can be found in the Data Supplement. Single nucleotide polymorphism array data confirmed 3p loss in 9 of 32 tumor samples, and in all nine patients, hypermethylated RASSF1A was detected in plasma, indicating that *RASSF1A* hypermethylation can still be identified in neuroblastoma with only one RASSF1A allele. At diagnosis, the absolute and relative levels of hypermethylated RASSF1A were significantly higher in the group of patients who will experience an event, although with a substantial overlap (median 37,243 copies/mL [interguartile range: 6.749-174.727 v 8.221 copies/mL [3.951-18.339], P = .012, 70.2% [45.0-91.7] v 56.5% [17.1-74.5], P = .030, respectively; Figs 3A and 3B). Receiver operating characteristic analysis revealed a cutoff of 27,681 hypermethylated RASSF1A copies/ mL with a sensitivity of 64% and a specificity of 89% (Data Supplement) that identifies a group that has a significantly poorer event-free survival (Data Supplement, logrank P = .0007). As the majority of the total cfDNA was tumor-derived, this led to a significant increase in cfDNA at diagnosis for patients who will experience an event (59,714 copies/mL [27,547-246,149] v 21,450 copies/mL [16,107-63,446], P = .023; Fig 3C). For other time points, there was no significant difference in total cfDNA levels between the patients with and without an event. At relapse, ctDNA levels were comparable with levels at diagnosis. Hypermethylated RASSF1A positivity did not correlate with an event for any of the time points (Fig 3D).


#### Comparison of ctDNA With the Detection of mRNA in BM and Blood

We previously showed that qPCR-based *RASSF1A* hypermethylation correlated with mRNA marker panel positivity or negativity in BM cells in patients when tumor burden was high or no tumor was detected.<sup>33</sup> Marker discrepancies indicated either low-level BM infiltration (ctDNA<sup>-</sup>&mRNA panel<sup>+</sup>) or primary tumor or soft tissue lesions without BM involvement (ctDNA<sup>+</sup>&mRNA panel<sup>-</sup>). To confirm these results in the current cohort, we tested cell fractions of corresponding blood (227) and BM (224) samples for mRNA markers<sup>45</sup> and compared them with hypermethylated *RASSF1A* in plasma by ddPCR. We again observe a strong correlation when the tumor load is to be expected high (at time of diagnosis or event) or absent (Fig 4), but see both ctDNA<sup>-</sup>&mRNA<sup>+</sup> and vice versa when the tumor load is expected to be lower, for example, during therapy. In 227 matched blood samples, ctDNA was concordant with blood mRNA in 73% (75 ctDNA<sup>+</sup>&mRNA<sup>+</sup> and 91 ctDNA<sup>-</sup>&mRNA<sup>-</sup>), 47 samples were ctDNA-positive only, and 14 samples mRNA-positive only. Spearman correlation of those 75 ctDNA<sup>+</sup>&mRNA<sup>+</sup> indicated an association between ctDNA and mRNA results

( $r_s = 0.65$ , P > .001). In 224 matched BM mRNA and ctDNA blood samples, paired positive or negative results were found in 65% (103 and 43 samples, respectively). In contrast to the blood samples, BM mRNA–only identified more positive samples (62) compared with ctDNA-only (16). Twenty-seven of those 62 samples were taken during induction chemotherapy. In 103 ctDNA+&mRNA+ samples, Spearman correlation indicated a moderate association between ctDNA and mRNA results ( $r_s = 0.49$ , P > .001).




**Figure 3.** Positivity and levels of circulating hypermethylated *RASSF1A* and total cfDNA during therapy in patients with high-risk neuroblastoma. Red circles indicate samples from a patient who will suffer from an event, and blue circles indicate samples from patients who remain in complete remission (survivor). (A) Amount of hypermethylated *RASSF1A* in copies/mL plasma during therapy. (B) Relative levels of hypermethylated *RASSF1A* per total *RASSF1A* copies during therapy. (C) Levels of cfDNA, measured by  $\beta$ -actin (*ACTB*), in copies/mL plasma during therapy. (D) Fraction of total number of samples tested that were positive for circulating hypermethylated *RASSF1A*. Green bar represents positive samples, and orange bar represents negative samples. cfDNA, cell-free DNA; CT, cycles of chemotherapy; Dx, diagnosis; end-ind, end of induction; event tx, event therapy; ext-ind, extra induction therapy (not for refractory disease); post-con, postconsolidation; refr, refractory disease treatment.



**Figure 4. (A)** Association between mRNA in BM samples and circulating hypermethylated *RASSF1A* and **(B)** association between mRNA in blood samples and circulating hypermethylated *RASSF1A*. BM, bone marrow; PB, peripheral blood.

#### **Combined ctDNA and mRNA Detection Correlates With Outcomes**

We next studied the kinetics of circulating hypermethylated RASSF1A and the mRNA markers from the corresponding BM and blood samples. Representative examples from five patients are depicted in Figures 5A-5E, and the combined outcome of circulating hypermethylated RASSF1A and BM mRNA for different time points is shown in Figure 5F. We showed that during therapy, the presence of hypermethylated RASSF1A in plasma was not associated with poorer prognosis at any of the time points in this patient cohort (Fig 3D). However, when circulating hypermethylated RASSF1A results were combined with BM mRNA, positivity with both techniques after two cycles of chemotherapy was associated with unfavorable clinical outcomes of these patients (P = .046; Fig 5F), with the sensitivity and specificity of the ctDNA<sup>+</sup>&mRNA<sup>+</sup> profile being 74% and 63%, respectively. BM mRNA positivity alone at this time point was not predictive of the outcome in this cohort (P = .12). The trend that ctDNA<sup>+</sup>&mRNA<sup>+</sup> positivity at other time points also correlates with an event was not significant in this small cohort. Remarkably, BM mRNA positivity alone during post consolidation was associated with unfavorable outcomes (P = .077). In summary, the level of hypermethylated RASSF1A at diagnosis was correlated with unfavorable outcomes. Moreover, the combination of ctDNA with BM mRNA improved the predictive value after two cycles of chemotherapy in this cohort.



**Figure 5. (A-E)** For patients with refractory, relapse, or progressive disease, all sequential samples, if available, were analyzed for hypermethylated RASSF1A (blue squares; N2063, N2071, N2099, N2101, and N2123, respectively). Corresponding blood (orange triangles) and BM (green triangles for adrenergic markers and red diamonds for MES markers) samples were tested for mRNA. Colored blocks indicate the treatment: light blue, induction therapy; light red, extra induction therapy; light orange, post consolidation therapy; light green, relapse or progressive disease treatment. **(F)** Fraction of total number of tested samples, which were positive for circulating hypermethylated *RASSF1A* and/or BM mRNA, of patients who will suffer an event compared with those who remain in complete remission (survivor). Purple bar represents hypermethylated *RASSF1A*<sup>+</sup> and mRNA panel<sup>+</sup> samples, dark blue bar represents hypermethylated *RASSF1A* ctDNA<sup>+</sup> and mRNA panel<sup>-</sup> samples, gray bar represents hypermethylated *RASSF1A* ctDNA<sup>-</sup>/

mRNA panel<sup>-</sup> samples. BEACON, TEMIRI, and TOTEM are treatment for refractory or relapsed disease. BEACON, BEACON-Neuroblastoma Trial: bevacizumab, temozolomide ± irinotecan; BM, bone marrow; CT, cycles of chemotherapy; ctDNA; circulating tumor DNA; Dx, diagnosis; end-ind, end of induction; event tx, event therapy; ext-ind, extra induction therapy (not for refractory disease); IT, immunotherapy; MAT, myeloablative therapy; MES, mesenchymal; MIBG, iodine-131-meta-iodobenzylguanidine; N5, N6, and N8; courses of induction chemotherapy; post-con, postconsolidation; refr, refractory disease treatment; TEMIRI, temozolomide and irinotecan; TOTEM, temozolomide and topotecan.

### Discussion

Molecular testing of cfDNA has the potential to improve pediatric solid tumor diagnosis, discrimination of subtypes, and MRD monitoring. Our aim was to complete a first step in this evolution of diagnostic modalities by evaluating our *RASSF1A* hypermethylation ddPCR as a standard test to detect ctDNA in several pediatric tumor types using small blood volumes and as a test to monitor treatment response of patients with neuroblastoma.

We previously described gPCR-based detection of circulating hypermethylated RASSF1A in patients with neuroblastoma.<sup>33</sup> In our previous study, the majority of positive samples could not be quantified reliably by gPCR, whereas ddPCR technology is adept for precise quantification of low abundant targets.<sup>46</sup> Furthermore, like in many other widely used methods to analyze DNA methylation, cfDNA samples in the gPCR study were bisulfite converted, which is known to degrade the majority of DNA.<sup>47</sup> As cfDNA is often present in low quantities, we investigated the use of an MSRE, previously described by Chan et al and O'Brien et al, as an alternative to bisulfite conversion.<sup>43,44</sup> We noticed higher hypermethylated *RASSF1A* levels in control samples with high total cfDNA levels, also reported by O'Brien et al.<sup>44</sup> We successfully introduced a combination of two MSREs, which resulted in better digestion of unmethylated RASSF1A. cfDNA may not always be present as double-stranded DNA. but can also appear as (partially) single-stranded DNA fragments.<sup>48,49</sup> Although the enzyme BstUI performed well in genomic DNA experiments, it is reported to be less active on single-stranded DNA.<sup>50</sup> The addition of Hhal overcomes this, as this enzyme is capable of digesting single-stranded DNA. The use of two different MSRE, and thus an increase in digestion sites, may result in digestion of DNA that is only partially methylated,<sup>51</sup> potentially underestimating present hypermethylated RASSF1A. However, as BstUI-only was clearly unable to digest all unmethylated RASSF1A, we proceeded with the use of two MSREs. The frequency of low-level positive results detected in healthy adult and pediatric controls defined the limit of detection. Since lack of remnants precluded the retesting of our qPCR study samples,<sup>33</sup> we showed in 16 rhabdomyosarcoma and renal tumor samples the slight superiority of the ddPCR method. In summary, the ddPCR is our preferred method to use for hypermethylated *RASSF1A* detection in plasma samples because the MSRE-ddPCR can reliably quantify ctDNA and saves time and sample.

We corroborate the potential of hypermethylated RASSF1A as a ctDNA marker for neuroblastoma, for monitoring treatment response and early relapse detection. This study confirms that cell-free hypermethylated RASSF1A correlates with mRNA marker panel positivity in BM and blood in patients at the opposite ends of the disease spectrum, when tumor burden was high or no tumor was detected.<sup>32,33</sup> The difference in kinetics of ctDNA and BM mRNA is illustrated by the prolonged presence of BM mRNA during induction therapy, whereas ctDNA rapidly declines during therapy, but is present again at relapse. The results of this study further support the finding. in an independent cohort, that both ctDNA and mRNA complement each other for the detection of MRD, with the combination showing a correlation with the outcome after two cycles of chemotherapy. Although the detection of ctDNA was shown to be very promising for future MRD studies in neuroblastoma, no definitive conclusions can be made as samples for this study were not prospectively collected, resulting in missing samples. Future research should be undertaken to investigate whether hypermethylated RASSF1A can be used as a marker during follow-up for early relapse detection and whether a cutoff can be used to predict event-free survival. As inactivation of RASSF1A, for example, by hypermethylation, is advantageous for many tumor entities, in melanoma, demethylation agents lead to apoptosis and cell death<sup>52</sup>; we think that this marker is not lost in time. We will test this hypothesis in prospective collaborative studies on the use of ctDNA in the new SIOPEN HR-2 (NCT04221035) patient cohort, which are being initiated within the SIOPEN liquid biopsy group.

Comparison of the total cfDNA levels in pediatric solid tumors with those of other studies confirms higher levels in patients with neuroblastoma and nephroblastoma tumors.<sup>53-57</sup> Consistent with literature, a high tumor-derived fraction of total cfDNA was found in patients with neuroblastoma and nephroblastoma, demonstrating the potential of liquid biopsies in these tumor entities.<sup>54,56,58</sup> Plasma samples from patients with other tumor entities in this study were less conclusive, which may indicate differences in the extent that different tumor types shed tumor DNA into circulation, a lower frequency of *RASSF1A* hypermethylation in other tumor entities,<sup>29</sup> or may just be artifacts of low sample numbers in the preliminary sample collection evaluated.

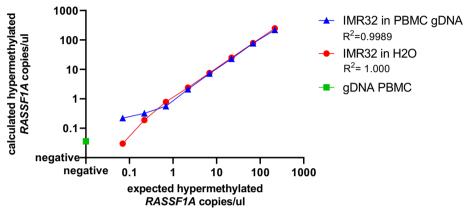
In this study, we developed a sensitive and quantitative ddPCR-based assay for hypermethylated *RASSF1A* detection and determined threshold values for positive results. Our findings demonstrate the value of hypermethylated *RASSF1A* as a molecular circulating tumor marker in neuroblastoma. Furthermore, our preliminary investigation of *RASSF1A* hypermethylation detection in circulating cfDNA demonstrates potential as a pan-tumor marker, but requires further investigation to evaluate its use and limitations.

#### Support

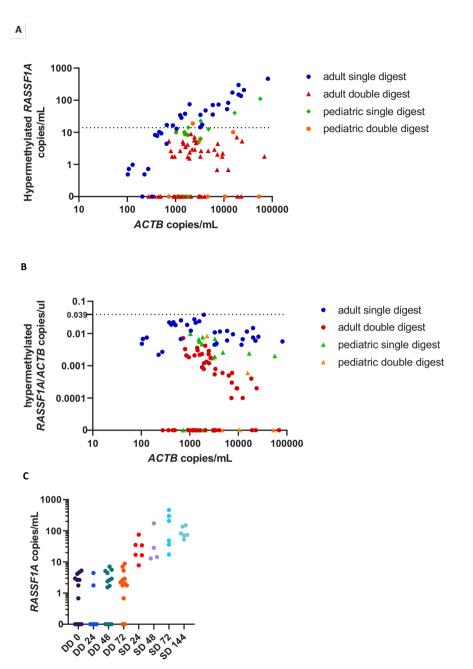
Supported by Liquidhope, a TranScan-2 project by Koningin Wilhelmina Fund, KWF Kankerbestrijding TRANSCAN 8352/TRS-2018-00000715 (L.M.J.v.Z. and N.U.G.), Foundation AMeesing Mees, and Foundation Koppie Au.

## References

- 1. Siegel RL, Miller KD, Jemal A: Cancer statistics, 2019. CA Cancer J Clin 69:7-34, 2019
- 2. Park JR, Kreissman SG, London WB, et al.: Effect of tandem autologous stem cell transplant vs single transplant on event-free survival in patients with high-risk neuroblastoma. *JAMA* 322:746, 2019
- 3. Van Wezel EM, Zwijnenburg D, Zappeij-Kannegieter L, et al.: Whole-genome sequencing identifies patient-specific DNA minimal residual disease markers in neuroblastoma. *J Mol Diagn* 17:43-52, 2015
- 4. Stahl M, Ranft A, Paulussen M, et al.: Risk of recurrence and survival after relapse in patients with Ewing sarcoma. *Pediatr Blood Cancer* 57:549-553, 2011
- Malempati S, Hawkins DS: Rhabdomyosarcoma: review of the Children's Oncology Group (COG) Soft-Tissue Sarcoma Committee experience and rationale for current COG studies. *Pediatr Blood Cancer* 59:5-10, 2012
- 6. Whelan JS, Davis LE: Osteosarcoma, chondrosarcoma, and chordoma. J Clin Oncol 36:188-193, 2018
- Brok J, Lopez-Yurda M, Tinteren HV, et al.: Relapse of Wilms' tumour and detection methods: A retrospective analysis of the 2001 Renal Tumour Study Group–International Society of Paediatric Oncology Wilms' tumour protocol database. *Lancet Oncol* 19:1072-1081, 2018
- Park JR, Bagatell R, Cohn SL, et al.: Revisions to the International Neuroblastoma Response Criteria: A consensus statement from the National Cancer Institute clinical trials planning meeting. J Clin Oncol 35:2580-2587, 2017
- 9. Viprey VF, Gregory WM, Corrias MV, et al.: Neuroblastoma mRNAs predict outcome in children with stage 4 neuroblastoma: A European HR-NBL1/SIOPEN study. *J Clin Oncol* 32:1074-1083, 2014
- Cheung NK, Ostrovnaya I, Kuk D, et al.: Bone marrow minimal residual disease was an early response marker and a consistent independent predictor of survival after anti-GD2 immunotherapy. J Clin Oncol 33:755-763, 2015
- 11. Kreissman SG, Seeger RC, Matthay KK, et al.: Purged versus non-purged peripheral blood stemcell transplantation for high-risk neuroblastoma (COG A3973): A randomised phase 3 trial. *Lancet Oncol* 14:999-1008, 2013
- 12. Burchill SA, Beiske K, Shimada H, et al.: Recommendations for the standardization of bone marrow disease assessment and reporting in children with neuroblastoma on behalf of the International Neuroblastoma Response Criteria Bone Marrow Working Group. *Cancer* 123:1095-1105, 2017
- Lak NS, Voormanns TL, Zappeij-Kannegieter L, et al.: Improving risk stratification for pediatric patients with rhabdomyosarcoma by molecular detection of disseminated disease. *Clin Cancer Res* 10.1158/1078-0432.CCR-21-1083 [epub ahead of print on July 20, 2021]
- 14. Stutterheim J, Zappeij-Kannegieter L, Versteeg R, et al.: The prognostic value of fast molecular response of marrow disease in patients aged over 1 year with stage 4 neuroblastoma. *Eur J Cancer* 47:1193-1202, 2011
- 15. van Wezel EM, van Zogchel LM, van Wijk J, et al.: Mesenchymal neuroblastoma cells are undetected by current mRNA marker panels: The development of a specific neuroblastoma mesenchymal minimal residual disease panel. *JCO Precis Oncol* 3:1-11, 2019
- 16. Wan JCM, Massie C, Garcia-Corbacho J, et al.: Liquid biopsies come of age: Towards implementation of circulating tumour DNA. *Nat Rev Cancer* 17:223-238, 2017
- 17. Siravegna G, Marsoni S, Siena S, et al.: Integrating liquid biopsies into the management of cancer. *Nat Rev Clin Oncol* 14:531-548, 2017


- Rolfo C, Cardona AF, Cristofanilli M, et al.: Challenges and opportunities of cfDNA analysis implementation in clinical practice: Perspective of the International Society of Liquid Biopsy (ISLB). *Crit Rev Oncol Hematol* 151:102978, 2020
- 19. Lawrence MS, Stojanov P, Polak P, et al.: Mutational heterogeneity in cancer and the search for new cancer-associated genes. *Nature* 499:214-218, 2013
- Klega K, Imamovic-Tuco A, Ha G, et al.: Detection of somatic structural variants enables quantification and characterization of circulating tumor DNA in children with solid tumors. JCO Precis Oncol 10.1200/PO.17.00285
- 21. Lawlor ER, Thiele CJ: Epigenetic changes in pediatric solid tumors: Promising new targets. *Clin Cancer Res* 18:2768-2779, 2012
- 22. Hesson LB, Cooper WN, Latif F: The role of RASSF1A methylation in cancer. *Dis Markers* 23:73-87, 2007
- 23. Donninger H, Vos MD, Clark GJ: The RASSF1A tumor suppressor. J Cell Sci 120:3163-3172, 2007
- 24. Grawenda AM, O'Neill E: Clinical utility of RASSF1A methylation in human malignancies. *Br J Cancer* 113:372-381, 2015
- 25. Dubois F, Bergot E, Zalcman G, et al.: RASSF1A, puppeteer of cellular homeostasis, fights tumorigenesis, and metastasis—An updated review. *Cell Death Dis* 10:928, 2019
- 26. Malpeli G, Innamorati G, Decimo I, et al.: Methylation dynamics of RASSF1A and its impact on cancer. *Cancers (Basel)* 11:959, 2019
- 27. Hogg RP, Honorio S, Martinez A, et al.: Frequent 3p allele loss and epigenetic inactivation of the RASSF1A tumour suppressor gene from region 3p21.3 in head and neck squamous cell carcinoma. *Eur J Cancer* 38:1585-1592, 2002
- 28. Abe M, Ohira M, Kaneda A, et al.: CpG island methylator phenotype is a strong determinant of poor prognosis in neuroblastomas. *Cancer Res* 65:828-834, 2005
- 29. Harada K, Toyooka S, Maitra A, et al.: Aberrant promoter methylation and silencing of the RASSF1A gene in pediatric tumors and cell lines. *Oncogene* 21:4345-4349, 2002
- 30. Hoebeeck J, Michels E, Pattyn F, et al.: Aberrant methylation of candidate tumor suppressor genes in neuroblastoma. *Cancer Lett* 273:336-346, 2009
- 31. Misawa a, Tanaka S, Yagyu S, et al.: RASSF1A hypermethylation in pretreatment serum DNA of neuroblastoma patients: A prognostic marker. *Br J Cancer* 100:399-404, 2009
- 32. Stutterheim J, Ichou FA, Den Ouden E, et al.: Methylated RASSF1a is the first specific DNA marker for minimal residual disease testing in neuroblastoma. *Clin Cancer Res* 18:808-814, 2012
- 33. Van Zogchel LMJ, Van Wezel EM, Van Wijk J, et al.: Hypermethylated RASSF1A as circulating tumor DNA marker for disease monitoring in neuroblastoma. *JCO Precis Oncol* 4:291-306, 2020
- Wong IHN, Chan J, Wong J, et al.: Ubiquitous aberrant RASSF1A promoter methylation in childhood neoplasia. *Clin Cancer Res* 10:994-1002, 2004
- 35. Kiss NB, Kogner P, Johnsen JI, et al.: Quantitative global and gene-specific promoter methylation in relation to biological properties of neuroblastomas. *BMC Med Genet* 13:1-12, 2012
- 36. Honda S, Miyagi H, Suzuki H, et al.: RASSF1A methylation indicates a poor prognosis in hepatoblastoma patients. *Pediatr Surg Int* 29:1147-1152, 2013
- 37. Wagner KJ, Cooper WN, Grundy RG, et al.: Frequent RASSF1A tumour suppressor gene promoter methylation in Wilms' tumour and colorectal cancer. *Oncogene* 21:7277-7282, 2002
- Ehrlich M, Jiang G, Fiala E, et al.: Hypomethylation and hypermethylation of DNA in Wilms tumors. Oncogene 21:6694-6702, 2002

- Mühlisch J, Schwering A, Grotzer M, et al.: Epigenetic repression of RASSF1A but not CASP8 in supratentorial PNET (sPNET) and atypical teratoid/rhabdoid tumors (AT/RT) of childhood. Oncogene 25:1111-1117, 2006
- 40. Lim S, Yang MH, Park JH, et al.: Inactivation of the RASSF1A in osteosarcoma. *Oncol Rep* 10:897-901, 2003
- 41. Wang WG, Chen SJ, He JS, et al.: The tumor suppressive role of RASSF1A in osteosarcoma through the Wnt signaling pathway. *Tumour Biol* 37:8869-8877, 2016
- 42. Avigad S, Shukla S, Naumov I, et al.: Aberrant methylation and reduced expression of RASSF1A in Ewing sarcoma. *Pediatr Blood Cancer* 53:1023-1028, 2009
- 43. Chan KC, Ding C, Gerovassili A, et al.: Hypermethylated RASSF1A in maternal plasma: A universal fetal DNA marker that improves the reliability of noninvasive prenatal diagnosis. *Clin Chem* 52:2211-2218, 2006
- 44. O'Brien H, Hyland C, Schoeman E, et al.: Non-invasive prenatal testing (NIPT) for fetal Kell, Duffy and Rh blood group antigen prediction in alloimmunised pregnant women: Power of droplet digital PCR. Br J Haematol 189:e90-e94, 202
- 45. van Zogchel LM, Zappeij-Kannegieter L, Javadi A, et al.: Specific and sensitive detection of neuroblastoma mRNA markers by multiplex RT-qPCR. *Cancers (Basel)* 13:150, 2021
- 46. Taylor SC, Laperriere G, Germain H: Droplet digital PCR versus qPCR for gene expression analysis with low abundant targets: From variable nonsense to publication quality data. *Scientific Rep* 7:1-8, 2017
- 47. Grunau C, Clark S, Rosenthal A: Bisulfite genomic sequencing: Systematic investigation of critical experimental parameters. *Nucleic Acids Res* 29:e65, 2001
- 48. Sanchez C, Snyder MW, Tanos R, et al.: New insights into structural features and optimal detection of circulating tumor DNA determined by single-strand DNA analysis. *NPJ Genom Med* 3:31, 2018
- 49. Burnham P, Kim MS, Agbor-Enoh S, et al.: Single-stranded DNA library preparation uncovers the origin and diversity of ultrashort cell-free DNA in plasma. *Scientific Rep* 6:1-9, 2016
- 50. The Restriction Enzyme Database (REBASE). http://rebase.neb.com/rebase/rebase.html
- 51. Mikeska T, Candiloro IL, Dobrovic A: The implications of heterogeneous DNA methylation for the accurate quantification of methylation. *Epigenomics* 2:561-573, 2010
- 52. McKenna S, García-Gutiérrez L: Resistance to targeted therapy and RASSF1A loss in melanoma: What are we missing? *Int J Mol Sci* 22:5115, 2021
- 53. Bettegowda C, Sausen M, Leary RJ, et al.: Detection of circulating tumor DNA in early- and latestage human malignancies. *Sci Transl Med* 6:224ra24, 2014
- 54. Chicard M, Boyault S, Daage LC, et al.: Genomic copy number profiling using circulating free tumor DNA highlights heterogeneity in neuroblastoma. *Clin Cancer Res* 22:5564-5573, 2016
- 55. Chicard M, Colmet-Daage L, Clement N, et al.: Whole-exome sequencing of cell-free DNA reveals temporo-spatial heterogeneity and identifies treatment-resistant clones in neuroblastoma. *Clin Cancer Res* 24:939-949, 2018
- 56. Jiménez I, Chicard M, Colmet-Daage L, et al.: Circulating tumor DNA analysis enables molecular characterization of pediatric renal tumors at diagnosis. *Int J Cancer* 144:68-79, 2019
- 57. Su Y, Wang L, Jiang C, et al.: Increased plasma concentration of cell-free DNA precedes disease recurrence in children with high-risk neuroblastoma. *BMC Cancer* 20:102, 2020
- Paemel RV, Koker AD, Vandeputte C, et al.: Minimally invasive classification of paediatric solid tumours using reduced representation bisulphite sequencing of cell-free DNA: A proof-of-principle study. *Epigenetics* 16:196-208, 2020


### **Supplemental Data**

Supplemental table 1. Primer and probe sequences.

| target  | forward primer       | reverse primer      | probe                                             | amplicon size |
|---------|----------------------|---------------------|---------------------------------------------------|---------------|
| RASSF1A | AGCCTGAGCTCATTGAGCTG | ACCAGCTGCCGTGTGG    | /5FAM/CCAACGCGCTGCGCAT/3MGBEc/                    | 129           |
| ACTB-1  | GTAAGGACAAGTTGGCCCCC | TGACTTTGTGGTGTGGCTG | /5HEX/TGCAGGGTT /ZEN/CACCCTCTGCTGCCCCCA /3IABkFQ/ | 101           |
| ACTB-2  | GCGCCGTTCCGAAAGTT    | CGGCGGATCGGCAAA     | /5HEX/ACCGCCGAGACCGCGTC/3MGBEc/                   | 137           |

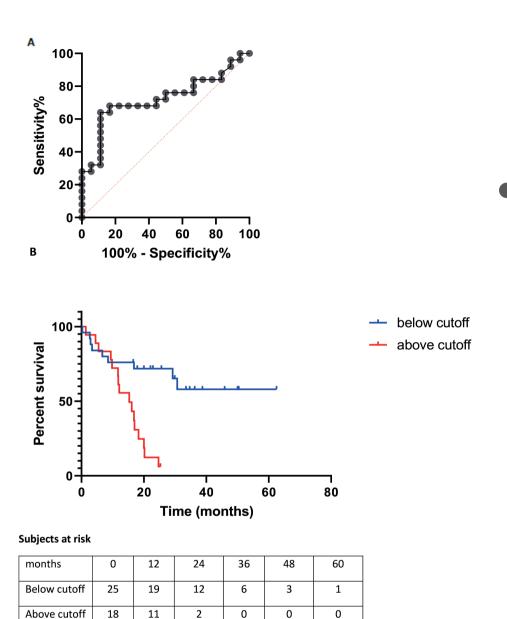


**Supplemental figure 1.** Dilution series of neuroblastoma cell line IMR32 in DNA of blood mononuclear cells (gDNA PBMC) of a healthy male and in  $H_2O$ . While both dilution series showed as expected a good linearity, the PBMC gDNA showed a false positivity of 0.036 copies/ul hypermethylated RASSF1A, explaining why the calculated copies/ul of the lower dilutions of IMR32 in PBMC gDNA is slightly higher than IMR32 in H2O.



**Supplemental figure 2. (A)** Association between the number of hypermethylated *RASSF1A* copies/ mL plasma and the number of total *ACTB* copies/mL plasma. **(B)** Association between the ratio of hypermethylated *RASSF1A* copies/*ACTB* copies per  $\mu$ L in the ddPCR reaction and the number of total *ACTB* copies/mL plasma. **(C)** *RASSF1A* copies/mL analyzed in EDTA samples, analyzed separately per time to plasma separation, for both double digestion (DD) and single digestion (SD). Numbers indicate the hours from collection to plasma separation.

| to to the                                                                                                                           | Г                                                                                                                                                                                                         |                                              | 1                                   |                                      |                                          |                                       |                                                                 |                                                                                   | <b>–</b>                                                                                               |                                                                                    |                                                                                  |                                       |                                         |                                          |                                                | 1                                       |                                            |                                          | 1                                           | 1                                          | 1                                                      | T                                                                              |                                                                                                |                                         |                                               |                                                   | _                                         | *                                             |                                           |                                           | 1                                                                                         | 1                                          |                                                       |                                                                                                | 1                                                                                                  | T                                       | 1                                        | T                                                                                                               | 1                                        | Т                                                                                                             | Т                                                        |                                          |                                        |                                     |          |                                                                                                                |                                                               |                                             |                          |                                               |                               |                    |               |   |
|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------|--------------------------------------|------------------------------------------|---------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|------------------------------------------|------------------------------------------------|-----------------------------------------|--------------------------------------------|------------------------------------------|---------------------------------------------|--------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------|---------------------------------------------------|-------------------------------------------|-----------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------|----------------------------------------|-------------------------------------|----------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------|-------------------------------|--------------------|---------------|---|
| ALLIAN PARTY                                                                                                                        | _                                                                                                                                                                                                         | •                                            |                                     |                                      |                                          |                                       |                                                                 |                                                                                   |                                                                                                        |                                                                                    |                                                                                  |                                       |                                         |                                          |                                                |                                         |                                            |                                          |                                             |                                            | •                                                      |                                                                                |                                                                                                |                                         |                                               |                                                   |                                           | •                                             |                                           |                                           |                                                                                           |                                            |                                                       |                                                                                                |                                                                                                    |                                         |                                          |                                                                                                                 |                                          |                                                                                                               |                                                          |                                          |                                        | 0                                   |          |                                                                                                                |                                                               |                                             |                          |                                               |                               |                    |               |   |
| Cal steres                                                                                                                          | _                                                                                                                                                                                                         | •                                            |                                     |                                      |                                          |                                       |                                                                 | •                                                                                 | •                                                                                                      |                                                                                    |                                                                                  |                                       |                                         |                                          | •                                              |                                         |                                            | 1                                        |                                             |                                            | •                                                      | 1                                                                              | L                                                                                              |                                         |                                               | •                                                 |                                           | *0                                            |                                           |                                           | t                                                                                         |                                            |                                                       | •                                                                                              | •                                                                                                  |                                         |                                          |                                                                                                                 |                                          | t                                                                                                             |                                                          |                                          |                                        | 0                                   |          |                                                                                                                |                                                               |                                             |                          |                                               |                               |                    |               |   |
| ALCID RU.                                                                                                                           |                                                                                                                                                                                                           |                                              |                                     |                                      |                                          |                                       | 0                                                               |                                                                                   | +                                                                                                      |                                                                                    |                                                                                  |                                       |                                         |                                          | •                                              |                                         |                                            | +                                        |                                             |                                            | •                                                      |                                                                                |                                                                                                |                                         |                                               | *                                                 | 0                                         | •                                             |                                           | +                                         | +                                                                                         |                                            |                                                       | •                                                                                              |                                                                                                    | +                                       | +                                        |                                                                                                                 | +                                        |                                                                                                               | •                                                        |                                          |                                        | •                                   |          |                                                                                                                |                                                               |                                             |                          |                                               |                               |                    |               |   |
| LI ARA                                                                                                                              |                                                                                                                                                                                                           |                                              |                                     |                                      | 0                                        | 0                                     | _                                                               | 0                                                                                 | <                                                                                                      | 2                                                                                  | 0                                                                                |                                       |                                         |                                          |                                                |                                         |                                            |                                          |                                             |                                            |                                                        |                                                                                |                                                                                                |                                         |                                               |                                                   |                                           |                                               |                                           |                                           |                                                                                           |                                            |                                                       |                                                                                                |                                                                                                    |                                         |                                          |                                                                                                                 |                                          |                                                                                                               |                                                          |                                          |                                        |                                     |          |                                                                                                                |                                                               |                                             |                          |                                               |                               |                    |               |   |
| . \4.84                                                                                                                             | 0                                                                                                                                                                                                         |                                              |                                     |                                      | 0                                        | 0                                     | _                                                               | 0                                                                                 |                                                                                                        | 2                                                                                  | 0                                                                                | _                                     | •                                       |                                          |                                                |                                         |                                            |                                          |                                             |                                            |                                                        |                                                                                |                                                                                                |                                         |                                               |                                                   |                                           | •                                             |                                           |                                           |                                                                                           |                                            |                                                       |                                                                                                |                                                                                                    |                                         |                                          |                                                                                                                 |                                          |                                                                                                               |                                                          |                                          |                                        |                                     |          |                                                                                                                |                                                               |                                             |                          |                                               |                               |                    |               |   |
| 1210 000 000<br>1210 000 000<br>1210 000 000<br>1210 000 000                                                                        | •                                                                                                                                                                                                         |                                              |                                     |                                      | 0                                        | -                                     | 0                                                               | •                                                                                 | _                                                                                                      | •                                                                                  | 0                                                                                | >                                     | 0                                       |                                          |                                                | _                                       | +                                          | +                                        |                                             |                                            | +                                                      | +                                                                              | +                                                                                              |                                         |                                               | •                                                 |                                           | 0                                             | -                                         | •                                         | +                                                                                         |                                            |                                                       | C                                                                                              | >                                                                                                  | +                                       |                                          | +                                                                                                               |                                          | •                                                                                                             | •                                                        | _                                        |                                        |                                     |          |                                                                                                                |                                                               |                                             |                          |                                               |                               |                    |               |   |
| 43                                                                                                                                  | c                                                                                                                                                                                                         |                                              | 0                                   |                                      |                                          |                                       | 4                                                               | 0                                                                                 | <                                                                                                      | _                                                                                  |                                                                                  |                                       |                                         |                                          |                                                |                                         |                                            | 0                                        | •                                           |                                            |                                                        | T                                                                              | T                                                                                              |                                         |                                               | 0                                                 |                                           |                                               |                                           |                                           | T                                                                                         |                                            |                                                       | ¢                                                                                              | >                                                                                                  |                                         |                                          | T                                                                                                               |                                          |                                                                                                               |                                                          |                                          |                                        |                                     |          |                                                                                                                |                                                               |                                             |                          |                                               |                               |                    |               |   |
|                                                                                                                                     | -                                                                                                                                                                                                         |                                              |                                     |                                      |                                          |                                       | +                                                               |                                                                                   | +                                                                                                      |                                                                                    |                                                                                  |                                       | 0<br>0                                  |                                          |                                                |                                         |                                            | +                                        |                                             |                                            |                                                        | +                                                                              | +                                                                                              |                                         |                                               |                                                   |                                           |                                               |                                           |                                           | +                                                                                         |                                            |                                                       |                                                                                                | +                                                                                                  | ╞                                       |                                          |                                                                                                                 |                                          | +                                                                                                             | +                                                        | -                                        |                                        |                                     |          |                                                                                                                |                                                               |                                             |                          |                                               |                               |                    |               |   |
| AND LORDAL                                                                                                                          |                                                                                                                                                                                                           |                                              |                                     |                                      |                                          |                                       |                                                                 | •                                                                                 | 0                                                                                                      |                                                                                    |                                                                                  |                                       | 0<br>0                                  |                                          |                                                |                                         |                                            |                                          |                                             |                                            |                                                        |                                                                                |                                                                                                |                                         |                                               |                                                   |                                           |                                               |                                           |                                           |                                                                                           |                                            |                                                       |                                                                                                |                                                                                                    |                                         |                                          |                                                                                                                 |                                          |                                                                                                               |                                                          |                                          |                                        |                                     |          |                                                                                                                |                                                               |                                             |                          |                                               |                               |                    |               |   |
|                                                                                                                                     |                                                                                                                                                                                                           | 0                                            |                                     |                                      |                                          |                                       |                                                                 | -                                                                                 | 0                                                                                                      |                                                                                    |                                                                                  |                                       | 0                                       |                                          |                                                |                                         |                                            |                                          |                                             |                                            |                                                        |                                                                                |                                                                                                |                                         |                                               |                                                   |                                           |                                               |                                           |                                           |                                                                                           |                                            |                                                       |                                                                                                |                                                                                                    |                                         |                                          |                                                                                                                 |                                          |                                                                                                               |                                                          |                                          |                                        |                                     |          |                                                                                                                |                                                               |                                             |                          |                                               |                               |                    |               |   |
| SALE LOUGHT                                                                                                                         | +                                                                                                                                                                                                         | 0                                            |                                     |                                      | $\left  \right $                         |                                       | •                                                               |                                                                                   | 0                                                                                                      | •                                                                                  |                                                                                  | -                                     | •                                       | -                                        |                                                | +                                       | +                                          | +                                        |                                             | 0                                          | +                                                      | +                                                                              |                                                                                                |                                         |                                               | $\parallel$                                       |                                           |                                               |                                           | +                                         | +                                                                                         |                                            | $\left  \right $                                      | 0                                                                                              | >                                                                                                  | +                                       | +                                        | (                                                                                                               | >                                        | +                                                                                                             | ╀                                                        | +                                        |                                        |                                     | -        |                                                                                                                |                                                               |                                             |                          |                                               |                               |                    |               |   |
| L'INU                                                                                                                               |                                                                                                                                                                                                           | ſ                                            |                                     |                                      |                                          |                                       |                                                                 |                                                                                   |                                                                                                        | ſ                                                                                  |                                                                                  |                                       |                                         |                                          |                                                | ļ                                       | 1                                          | 1                                        | 1                                           |                                            | 1                                                      | +                                                                              | ſ                                                                                              |                                         | L                                             | 0                                                 |                                           |                                               |                                           |                                           | t                                                                                         |                                            | t                                                     | ſ                                                                                              |                                                                                                    | 1                                       |                                          | ļ                                                                                                               | ļ                                        |                                                                                                               | t                                                        |                                          |                                        |                                     |          |                                                                                                                |                                                               |                                             |                          |                                               | + N2                          |                    |               |   |
| 2294954<br>224954<br>224954                                                                                                         | •                                                                                                                                                                                                         | •                                            | 0                                   | 0                                    | 0                                        | 0                                     | +                                                               | +                                                                                 | <                                                                                                      | 2                                                                                  | 0                                                                                | •                                     | ╞                                       | 0                                        | 0                                              | 0                                       | 0                                          | +                                        | +                                           | +                                          | +                                                      |                                                                                | •                                                                                              | -                                       | •                                             | •                                                 | •                                         |                                               | 0                                         | 0                                         | >                                                                                         | +                                          | с                                                     | >                                                                                              | •                                                                                                  |                                         | 0                                        | o                                                                                                               |                                          | 0<br>0                                                                                                        | •                                                        | 0                                        | -                                      | 0                                   |          |                                                                                                                |                                                               |                                             |                          |                                               | BM ADRN & MES & PB ADRN +     | +                  |               |   |
| 10,84                                                                                                                               |                                                                                                                                                                                                           |                                              | 0                                   | 0                                    |                                          |                                       |                                                                 |                                                                                   |                                                                                                        |                                                                                    | 0                                                                                |                                       |                                         |                                          |                                                |                                         |                                            |                                          |                                             |                                            |                                                        |                                                                                |                                                                                                |                                         |                                               |                                                   |                                           | 0                                             |                                           | 0                                         |                                                                                           |                                            |                                                       |                                                                                                |                                                                                                    |                                         |                                          |                                                                                                                 |                                          |                                                                                                               |                                                          |                                          |                                        |                                     |          |                                                                                                                |                                                               | MES +                                       |                          | + N2                                          | MES &                         | PB ADRN & BM MES 4 |               |   |
|                                                                                                                                     |                                                                                                                                                                                                           |                                              | •                                   | •                                    | •                                        | 0                                     | •                                                               | 0 0                                                                               |                                                                                                        | *                                                                                  | • •                                                                              | _                                     | •                                       | 0                                        | •                                              | 0                                       | •                                          |                                          | 0                                           | •                                          |                                                        | •                                                                              | • •                                                                                            | •                                       |                                               |                                                   |                                           | Ŭ                                             | •                                         | •                                         | •                                                                                         | •                                          | • c                                                   | > •                                                                                            |                                                                                                    | •                                       | 0                                        | •                                                                                                               | •                                        | _                                                                                                             | о<br>о                                                   | •                                        | •                                      | •                                   | RMADRN + |                                                                                                                | +                                                             | BM ADRN & MES +                             | RN +                     | BM & PB ADRN +                                | <b>DRN &amp;</b>              | RN & E             | + S           |   |
| 440 440 440 440 440 440 440 440 440 440                                                                                             | ••                                                                                                                                                                                                        | •                                            | •                                   | •                                    | •                                        | •                                     | •                                                               | •                                                                                 | •                                                                                                      | •                                                                                  | • •                                                                              | •                                     | •                                       | •                                        | •                                              | _                                       | •                                          | •                                        | •                                           | _                                          | ľ                                                      | •                                                                              | • •                                                                                            | •                                       | •                                             |                                                   | •                                         | •                                             | •                                         | •                                         | •                                                                                         | •                                          | •                                                     |                                                                                                |                                                                                                    | •                                       | •                                        | •                                                                                                               | •                                        | •                                                                                                             | •                                                        | •                                        | •                                      | •                                   | RMAT     |                                                                                                                |                                                               | BMA                                         | PB ADRN +                | BM &                                          | BMA                           | PBAD               | PB MES +      | 1 |
|                                                                                                                                     |                                                                                                                                                                                                           |                                              |                                     |                                      |                                          |                                       |                                                                 |                                                                                   |                                                                                                        |                                                                                    |                                                                                  |                                       |                                         |                                          |                                                |                                         |                                            |                                          |                                             |                                            |                                                        |                                                                                |                                                                                                |                                         |                                               |                                                   |                                           |                                               |                                           |                                           | T                                                                                         |                                            |                                                       |                                                                                                | t                                                                                                  | t                                       |                                          |                                                                                                                 |                                          | T                                                                                                             | T                                                        |                                          |                                        |                                     |          |                                                                                                                |                                                               |                                             |                          |                                               |                               |                    |               |   |
| Induction the rapy                                                                                                                  | NSN6III<br>NSN6III + N81                                                                                                                                                                                  | NSN611 + N811 + MIBG11 + BEACON IX           | N5N6111+N81V                        | 611                                  | N5N6 III                                 | NSN6111                               | NSN6II N8II MIBG II                                             | NSN611 N51 N81V<br>NEMETI N811 BEACON VIL TOTEM                                   |                                                                                                        | III ONCH<br>NSNEI N 817 TM7 III                                                    | NSN6111                                                                          | NSN6 III                              | NSN611 N811, MIBG 11, BEACON X11, TOTEM | =                                        | N5N6III + N8III + crizotinib                   |                                         |                                            | + N8IV                                   | 48IV                                        | N5N6111+N811+M18G1                         | Induction with IPOG –NBL-2009                          | NSN61+ N811+ COJEC                                                             | III ONON                                                                                       |                                         |                                               | HR-therapy elsewhere + vit A + N8I + TOTEM + N5N6 |                                           |                                               |                                           | RITAS                                     |                                                                                           |                                            |                                                       | VEDITAS                                                                                        | V LIUTAS                                                                                           |                                         |                                          | NSN 5 III 6 NSN 5 II 6 NSN 5 NSN 5 NSN 5 NSN 5 NSN 5 NSN | YO I T VENING                            | VERITAS<br>NOT AVEDITAS                                                                                       | NDND111 + ND11 + VENIAS                                  | ERITAS                                   |                                        | N5N6111+N71V                        |          |                                                                                                                | stem.                                                         | re image-defined risk factors               |                          | months with metastases confine                |                               |                    |               |   |
| +                                                                                                                                   |                                                                                                                                                                                                           | 5 5                                          | 45M                                 | <b>VSN</b>                           | 5                                        |                                       |                                                                 |                                                                                   |                                                                                                        |                                                                                    |                                                                                  | 19                                    | 15                                      | N5N6                                     | N5N6III                                        | N5N6III                                 | V5N6III                                    | V5N6III                                  | V5N6111+1                                   |                                            | nduction                                               |                                                                                | III ONCA                                                                                       | V5N6III+N8                              | V5N6III                                       | HR-therapy else                                   | N5N6III                                   | N5N6III                                       | N5N6III                                   | V5N6III+VE                                | III SINGN                                                                                 | ILIANA                                     | III 9 NSN                                             | TIPNEN                                                                                         | III 9 NSN                                                                                          | III DAICA                               | III Q NSN                                | 11 Q NGN                                                                                                        | + II DAICA                               | + 111 O NIGN                                                                                                  | + 111 O NICA                                             | V5N6III + V                              | N5N6III                                | N5N6II                              |          |                                                                                                                | ()<br>2010                                                    |                                             |                          |                                               |                               |                    |               |   |
| MAT                                                                                                                                 | yes                                                                                                                                                                                                       |                                              |                                     | yes N5N6II                           |                                          |                                       | yes                                                             |                                                                                   |                                                                                                        | s o                                                                                |                                                                                  |                                       |                                         |                                          | no N5N6III                                     |                                         |                                            | yes N5N6III+N8IV                         |                                             |                                            |                                                        | T                                                                              | vex N5N611 Ar                                                                                  |                                         |                                               |                                                   |                                           |                                               |                                           | yes N5N6III+VERITAS                       | NENE SAV                                                                                  | Τ                                          |                                                       |                                                                                                |                                                                                                    |                                         |                                          | Yes N5N511                                                                                                      |                                          |                                                                                                               |                                                          |                                          | yes N5N6III                            |                                     |          |                                                                                                                | (c guigetc ettic                                              | one or mo                                   |                          | r than 18                                     |                               |                    |               |   |
| ×                                                                                                                                   | NA YES<br>NA VES                                                                                                                                                                                          | a o                                          | yes                                 | yes                                  | yes                                      | yes                                   | +                                                               |                                                                                   | 0                                                                                                      | \$ S                                                                               | ves                                                                              |                                       | yes                                     | yes                                      |                                                | yes                                     | yes                                        | yes                                      | yes                                         | Q                                          | yes                                                    | 2                                                                              |                                                                                                | 2 2                                     | yes                                           | yes                                               | yes                                       | yes                                           | yes                                       | yes                                       |                                                                                           | 201                                        | C A                                                   | , vec                                                                                          |                                                                                                    | 8                                       | yes                                      |                                                                                                                 | 8                                        | yes                                                                                                           | Yes                                                      | yes                                      |                                        | ou                                  |          | ter of the second s | lrouidstomma stagnigo                                         | ence of one or mo                           |                          | vounger than 18                               | , MO                          |                    |               |   |
| 3p loss                                                                                                                             |                                                                                                                                                                                                           | NA NG NG                                     | NA yes                              | NA yes                               | NA yes                                   | NA yes                                | AN                                                              | yes<br>a                                                                          | NA NO                                                                                                  | NA YES                                                                             | NA Ves                                                                           | ves<br>Ves                            | yes yes                                 | no yes                                   | no                                             | yes yes                                 | yes yes                                    | no yes                                   | no yes                                      | ou                                         | no yes                                                 | 2                                                                              | VPS VPS                                                                                        | 00 00                                   | no yes                                        | NA yes                                            | no yes                                    | no yes                                        | yes yes                                   | yes yes                                   | 20                                                                                        | no vec                                     |                                                       | 100 A00                                                                                        | 100 V05                                                                                            |                                         | no yes                                   | 10 Yes                                                                                                          | a ha                                     | yes yes                                                                                                       | 10 YE                                                    | no yes                                   | no yes                                 | yes no                              |          |                                                                                                                | Ve angene emotion astorna staging of                          | ith presence of one or mo                   | ease                     | children vounger than 18                      | e marrow                      |                    |               |   |
| 17q gain 3p loss                                                                                                                    | NA NA<br>NA NA                                                                                                                                                                                            | NA NA NA NA                                  | NA NA Yes                           | NA NA yes                            | NA NA yes                                | NA NA Yes                             | NA NA                                                           | NA NA Yes                                                                         | NA NA NO NA NO                                                                                         | NA NA YES                                                                          | NA NA Ves                                                                        | NA NA Yes                             | yes yes yes                             | yes no yes                               | yes gain no                                    | yes yes yes                             | yes yes yes                                | yes no yes                               | yes no yes                                  | yes no no                                  | no no yes                                              | 01 01                                                                          | ves ves ves                                                                                    | ves no no                               | yes no yes                                    | NA NA yes                                         | yes no yes                                | yes no yes                                    | yes yes yes                               | yes yes yes                               | vec no vec                                                                                |                                            |                                                       | yes 110 yes                                                                                    | yes yes yes                                                                                        | yes 110 yes                             | no no ves                                | yes no yes                                                                                                      | yes IIO yes                              | und yes yes                                                                                                   | yes IIO yes                                              | yes no yes                               | yes no yes                             | yes yes no                          |          |                                                                                                                | ernational ineuroplastoma staging y                           | imor with presence of one or mo             | ntic disease             | ase in children vounger than 18               | or bone marrow                |                    |               |   |
| 11q loss 17q gain 3p loss                                                                                                           | NA                                                                                                                                                                                                        | NA NA NA NA                                  | NA NA Yes                           | NA NA yes                            | NA NA yes                                | NA NA Yes                             | AN                                                              | NA NA Yes                                                                         | NA NA NO NA NO                                                                                         | NA NA YES                                                                          | NA NA Ves                                                                        | NA Yes                                | yes yes yes                             | yes no yes                               | no yes gain no                                 | yes yes yes                             | yes yes yes                                | yes yes no yes                           | no yes no yes                               | yes yes no no                              | yes no no yes                                          | on on                                                                          | VPS VPS                                                                                        | ves no no                               | yes no yes                                    | NA NA yes                                         | no yes no yes                             | no yes no yes                                 | yes yes yes                               | yes yes yes yes                           | 7e3 7e3 110 7e3                                                                           |                                            |                                                       | yes 110 yes                                                                                    | yes yes yes                                                                                        | yes 110 yes                             | no no ves                                | 10 Yes                                                                                                          | yes IIO yes                              | yes no yes yes                                                                                                | yes yes no yes                                           | yes no yes                               | yes no yes                             | yes yes no                          |          |                                                                                                                | the International Neuropidstoma staging sy                    | onal tumor with presence of one or mc       | netastatic di sease      | tic disease in children vounger than 18       | r, and/or bone marrow         |                    | Risk          |   |
| 17q gain 3p loss                                                                                                                    | NA NA<br>NA NA                                                                                                                                                                                            | NA NA NA NA NA                               | NA NA Yes                           | NA NA NA yes                         | NA NA NA yes                             | NA NA NA Yes                          | NA NA NA                                                        | NA NA Yes                                                                         | NA NA NA NO                                                                                            | NA NA NA YES                                                                       | NA NA Ves                                                                        | NA NA Ves                             | yes yes yes                             | no yes no yes                            | yes gain no                                    | yes yes yes yes                         | no yes yes yes                             | yes yes no yes                           | in no yes no yes                            | yes yes no no                              | yes no no yes                                          |                                                                                | ves ves ves                                                                                    | ves ves no no                           | gain yes no yes                               | NA NA yes                                         | no yes no yes                             | n no yes no yes                               | yes yes yes yes                           | yes yes yes yes                           | vec no vec                                                                                |                                            |                                                       | yes yes 10 yes<br>vec vec vec vec                                                              | yes yes yes                                                                                        | yes yes 110 yes                         | no no yes                                | yes no yes                                                                                                      | Aes IIO Aes                              | yes no yes yes                                                                                                | in yes hes no yes                                        | yes yes no yes                           | yes yes no yes                         | yes yes yes no                      |          |                                                                                                                | Ing to the international Neuropiastoma staging                | coregional tumor with presence of one or mc | stant metastatic disease | etastatic disease in children vounger than 18 | in, liver, and/or bone marrow | w Risk             | edium Risk    |   |
| LOH 1p 11q loss 17q gain 3p loss                                                                                                    | NA NA NA<br>NA NA NA                                                                                                                                                                                      | DO NA NA NA 755                              | no NA NA yes                        | NA NA NA yes                         | yes NA NA NA yes                         | yes NA NA NA yes                      | no NA NA NA                                                     | yes NA NA NA Yes                                                                  | YES NA NA NA NO                                                                                        | NA NA NA YES                                                                       | TO NA NA VES                                                                     | NA NA NA Ves                          | no yes yes yes yes                      | yes no yes no yes                        | no yes gain no                                 | no yes yes yes yes                      | yes no yes yes yes                         | no yes yes no yes                        | no, gain no yes no yes                      | yes yes no no                              | yes no no yes                                          | yes no no no no                                                                | ves ves ves ves                                                                                | ves ves ves no no                       | yes gain yes no yes                           | NA NA NA NA Yes                                   | yes no yes no yes                         | no, gain no yes no yes                        | yes yes yes yes                           | no yes yes yes yes                        | III yes yes IIO yes                                                                       |                                            |                                                       | yes yes yes 110 yes<br>vise vise vise vise                                                     | tes tes tes tes tes                                                                                | 10 Acs Acs 10 Acs                       | no no ves                                | no yes no yes                                                                                                   | Ass Ass IIO Ass                          | no yes no yes yes                                                                                             | ID, gdii yes yes ID yes                                  | yes yes no yes                           | yes yes no yes                         | no yes yes no                       |          |                                                                                                                | according to the international Neuroplastoma staging sy       |                                             |                          |                                               |                               |                    | R Medium Risk |   |
| MVCVA IOH1p 114 loss 174 gain 3p loss                                                                                               | yes NA NA NA<br>DO NA NA NA                                                                                                                                                                               | no no na na na no                            | no NA NA yes                        | no no NA NA VA yes                   | yes yes NA NA Yes                        | yes yes NA NA NA yes                  | gain no NA NA NA                                                | yes yes NA NA NA yes                                                              | DO YES NA NA NA NO                                                                                     | azin ves NA NA NA yes                                                              | gain no NA NA NA VES                                                             | gain NA NA NA VA Ves                  | no no yes yes yes yes                   | yes yes no yes no yes                    | no, gain no yes gain no                        | no no yes yes yes yes                   | yes no yes yes yes                         | gain no yes yes no yes                   | no no, gain no yes no yes                   | gain yes yes no no                         | yes yes no no yes                                      | gain yes no no no no                                                           | yes no yes no yes no yes                                                                       | ves ves ves ves no no                   | gain yes gain yes no yes                      | NA NA NA NA NA Yes                                | yes yes no yes no yes                     | yes no, gain no yes no yes                    | no yes yes yes yes                        | no yes yes yes yes                        | Vac vac no vac no vac                                                                     |                                            |                                                       | rain vac vac vac vac vac                                                                       | tes tes tes tes tes                                                                                | 5dii 110 yes yes 110 yes                |                                          | yes yes no yes no yes                                                                                           | Ass Ass IIO Ass                          | gain no yes no yes yes                                                                                        | 10 10, gain yes yes 10 yes                               | no yes yes no yes                        | yes yes no yes                         | no no yes yes yes no                |          | 7 to 5 to 1                                                                      | 0005                                                          |                                             |                          |                                               |                               | LR Low Risk        |               |   |
| risk<br>Broup MYCNA LOH 1p 11q loss 17q gain 3p loss                                                                                | HR no yes NA NA NA<br>HR no no no NA NA NA                                                                                                                                                                | HR DO DO NA NA YES                           | HR no no NA NA Yes                  | HR no no NA NA VA yes                | HR yes yes NA NA NA yes                  | HR yes yes NA NA NA yes               | HR gain no NA NA NA<br>In In I | HK yes yes NA NA NA yes<br>IB-UD                                                  | LK2HK NO YES NA NA NA NO<br>LID 20 NA NA NA NA VO                                                      | HR FIO FIO NA NA YES HR Call YES                                                   | HR gain no NA NA Ves NO                                                          | HR gain NA NA NA Ves                  | HR no no yes yes yes yes                | HR yes no yes no yes                     | HR yes no, gain no yes gain no                 | HR no no yes yes yes yes                | HR yes no yes yes yes                      | HR gain no yes yes no yes                | HR no no, gain no yes no yes                | HK gain yes yes no no                      | HK yes yes no no yes                                   | HK gain yes no no no no                                                        | HR no no ves ves ves ves                                                                       | HR ves ves ves no no                    | LR>HR gain yes gain yes no yes                | HR NA NA NA NA NA Yes                             | HR yes yes no yes no yes                  | HR yes no, gain no yes no yes                 | HR no yes yes yes yes yes                 | HR no no yes yes yes yes                  | HP vec vec no vec no vec                                                                  |                                            | HR Vec Vec Vec 01 0 Vec                               | HD rain vac vac vac vac vac                                                                    | HR sain no vec vec no vec                                                                          | In Ball 110 yes yes 110 yes             | HK NO NO NO VES                          | HK yes yes no yes no yes                                                                                        | The gain yes yes yes no yes              | LID no no yes no yes yes yes                                                                                  | III IIO IIO YES YES IIO YES                              | HR no yes yes no yes                     | HR yes yes yes no yes                  | HR no no yes yes no                 |          |                                                                                                                | Stage according to the International Neuropiastoma Staging S  |                                             |                          |                                               |                               | L                  | MR            |   |
| risk<br>stage group MVCVA LOH 1p 11q loss 17q gain 3p loss                                                                          | M HR no yes NA NA NA<br>M HB no no no na Na NA                                                                                                                                                            | M HR NO NA NA NA NA NA                       | M HR no no NA NA Yes                | M HR no no NA NA NA yes              | M HR yes yes NA NA yes                   | M HR yes yes NA NA NA yes             | M HR gain no NA NA NA                                           | M HK Yes Yes NA NA NA Yes<br>Are id-ud on the NA NA On                            | M3 LK2HK NO YES NA NA NA NA NO NO NA                               | M HR rain vos NA NA NA YES                                                         | M HR gain yes who who who ito                                                    | M HR gain NA NA NA Ves                | M HR no no yes yes yes yes              | L2 HR yes yes no yes no yes              | M HR yes no, gain no yes gain no               | M HR no no yes yes yes yes              | M HR yes yes no yes yes yes                | M HR gain no yes yes no yes              | M HR no no, gain no yes no yes              | M HK gain yes yes no no                    | LZ HK yes yes no no yes                                | M HK gain yes no no no no                                                      | M HR DO DO VPS VPS 10 YES 10 YES                                                               | M HR ves ves ves no no                  | MS LR>HR gain yes gain yes no yes             | M HR NA NA NA NA NA Yes                           | M HR yes yes no yes no yes                | M HR yes no, gain no yes no yes               | M HR no yes yes yes yes                   | M HR no no yes yes yes yes                | M HB vec vec no vec no vec                                                                |                                            |                                                       | M HD rain vec vec vec vec vec                                                                  | M HP sain no vec vec no vec                                                                        |                                         |                                          | M HK yes yes no yes no yes                                                                                      | IN The gain yes yes in yes               | MI IVIK Balit no yes no yes yes yes                                                                           | MI TR 110 110, 8din yes yes 110 yes                      | M HR no yes yes yes no yes               | M HR yes yes yes yes no yes            | M HR no no yes yes no               |          | 7                                                                                                              | stage according to the international neuroplastoma stagings   |                                             |                          |                                               |                               | L                  | MR            |   |
| age at<br>diagrosis<br>(months) stage group MYCNA LOH Ip 11q loss 17q gain 3p loss                                                  | 59.5 M HR no yes NA NA NA<br>50.5 M HR no no na NA NA                                                                                                                                                     | 20.3 M HR no no NA NA NA NA NA NA            | 49.6 M HR no no NA NA yes           | 17.8 M HR no no NA NA NA yes         | 21.9 M HR yes yes NA NA NA yes           | 8.0 M HR yes yes NA NA NA yes         | 38.0 M HR gain no NA NA NA                                      | 42.8 M HK yes yes NA NA NA yes<br>c.3 Mac ib-up voc NA NA NA                      | 207 M LID CYPES NA NA NA NO 207 M LID CO 20 NA                     | 20.7 M HR 110 110 144 NA NA NA 955                                                 | 21.6 M HR gain no NA NA VA ves                                                   | 29.5 M HR gain NA NA NA Ves           | 72.5 M HR no no yes yes yes             | 52.4 L2 HR yes yes no yes no yes         | 22.5 M HR yes no, gain no yes gain no          | 41.0 M HR no no yes yes yes yes         | 36.4 M HR yes yes no yes yes yes           | 51.8 M HR gain no yes yes no yes         | 47.8 M HR no no, gain no yes no yes         | 34.7 M HR gain yes yes yes no no           | 24.0 L2 HK yes yes no no yes<br>23.4 m                 | 4/1 M HK gain yes no no no no<br>rao a in                                      | 75.9 M HR no no ves ves ves ves                                                                | 12.1 M HR ves ves ves no no             | 3.5 MS LR>HR gain yes gain yes no yes         | 27.3 M HR NA NA NA NA NA Yes                      | 29.0 M HR yes yes no yes no yes           | 56.3 M HR yes no, gain no yes no yes          | 27.1 M HR no yes yes yes yes yes          | 25.7 M HR no no yes yes yes yes           | 2.0 W WR Ball 10, Ball yes yes 10 yes<br>41.4 M HP vec vec no vec no vec                  | 219 M HR no no no no no ve                 | 21.2 M HR Ves Ves Ves Ves DO Ves                      | 5.6 M HD rain vac vac vac vac vac                                                              | 53.0 M HP #31 743 743 743 743 743 743 743 743 743 743                                              |                                         | 13.5 M HK N0 N0 N0 N0 N0 Y es            | AGE MA LIP and up to yes no yes no yes                                                                          | -0:0 IVI TIN Bdill yes yes yes IIU yes   | 247 M LE COLOUR VES NO YES YES                                                                                | 42.7 IVI TIX 110 10, gali yes yes 110 yes<br>43.6 ivi iu | 13.6 M HR no yes yes no yes              | 17.6 M HR yes yes yes no yes           | 30.2 M HR no no yes yes no          |          |                                                                                                                | Stage accortaing to the international Neuropiastoma Staging S | []                                          | Σ                        | A MS                                          |                               | L                  | MR            |   |
| age at<br>Iive dagnosis<br>status (months) stage group MYCNA LOH-19 11q loss 17q gain 3p loss                                       | dead         59.5         M         HR         no         yes         NA         NA         NA           alive         \$0.5         M         HR         no         yes         NA         NA         NA | alive 303 M HR no no NA NA NA no             | alive 49.6 M HR no no NA NA Ves     | dead 17.8 M HR no no NA NA NA yes    | alive 21.9 M HR yes yes NA NA NA yes     | dead 8.0 M HR yes yes NA NA NA yes    | dead 38.0 M HR gain no NA NA NA                                 | OBAID 42.8 M HK YES YES NA NA NA YES<br>Jivo E3 ME IB-UD 50 voc NA NA NA 50       | douct 5.3 MIS LIKSHK NO YES NA NA NA NA NO<br>douct 20.7 Na LID MA NA NA NA                            | dedu 30.7 IVI TIK 110 110 NA IVA YES<br>alive 70.1 M HR sain ves NA NA NA no       | dead 21.6 M HR gain no NA NA Ves                                                 | alive 29.5 M HR gain NA NA NA Yes     | dead 72.5 M HR no no yes yes yes        | dead 52.4 L2 HR yes yes no yes no yes    | alive 22.5 M HR yes no, gain no yes gain no    | dead 41.0 M HR no no yes yes yes yes    | alive 36.4 M HR yes yes no yes yes yes     | dead 51.8 M HR gain no yes yes no yes    | dead 47.8 M HR no no, gain no yes no yes    | alive 34.7 M HK gain yes yes no no         | alive 24.0 L2 HK yes yes no no yes                     | alive 4/.1 M HK gain yes no no no no no                                        | dead 34.9 Mi mi yes yes il0 yes il0 yes<br>dead 75.9 M HR n0 n0 ves ves ves ves                | dead 12.1 M HR ves ves ves no no no     | dead 3.5 MS LR>HR gain yes gain yes no yes    | alive 27.3 M HR NA NA NA NA NA yes                | alive 29.0 M HR yes yes no yes no yes     | alive 56.3 M HR yes no.gain no yes no yes     | dead 27.1 M HR no yes yes yes yes yes     | alive 25.7 M HR no no yes yes yes yes     | dead 310 IVI IVIN Ball IN, Ball yes yes II0 yes<br>dead 41.4 M HP vec vec no vec no vec   | alive 21.9 M HR no no no no no vec         | dead 30.0 M HR ves ves ves ves ves                    | aliva 65.6 M HD rain vac vac vac vac vac vac                                                   | dand 55.3 M HP and no vec vec no vec                                                               | 4-2-1 40 M M M 2011 110 YES YES 110 YES | 0680 18.5 M HK N0 N0 N0 N0 V65           | dood 13.4 MI HK Yes Yes NO Yes NO Yes NO Yes                                                                    | Ureau eo.0 ivi rin gairi yes yes itu yes | oead U.U MI MIK gain no yes no yes yes<br>alivo 24.7 M UB no no no voc no voc                                 | alive 24.7 NV TIA 110 110, 8alit yes yes 110 yes         | dead 13.6 M HR no yes yes no yes         | alive 17.6 M HR yes yes yes yes no yes | dead 30.2 M HR no no yes yes yes no |          |                                                                                                                |                                                               | []                                          | Σ                        | A MS                                          |                               | L                  | MR            | - |
| age at live diagnosis fisk novin 10H1p 11qloss 17qgain 3ploss beent status (monthis) stage group MYCNA 10H1p 11qloss 17qgain 3ploss | 59.5 M HR no yes NA NA NA<br>50.5 M HR no no na Na NA                                                                                                                                                     | ves alive 30.3 M HR no no NA NA NA no no ves | yes alive 49.6 M HR no no NA NA yes | no dead 17.8 M HR no no NA NA NA yes | yes alive 21.9 M HR yes yes NA NA NA yes | no dead 8.0 M HR yes yes NA NA NA yes | yes*** dead 38.0 M HR gain no NA NA NA                          | yes**** dead 42.8 M HK yes yes NA NA NA yes<br>diun E3 Me IB-UB no un NA NA NA na | yes alive 5.3 Mis LKPHK no yes NA NA NA no o dose so dose so to no | 10 0Edu 36./ M HR 10 110 WA WA WA YES<br>vice alive 20.1 M HB gain vice NA NA NA O | 7c3 airve /0.1 m -in Bain 7c3 MA MA 10 -in 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 | ves alive 29.5 M HR gain NA NA NA Ves | yes*** dead 72.5 M HR no no yes yes yes | no dead 52.4 L2 HR yes yes no yes no yes | yes alive 22.5 M HR yes no,gain no yes gain no | no dead 41.0 M HR no no yes yes yes yes | yes alive 36.4 M HR yes yes no yes yes yes | no dead 51.8 M HR gain no yes yes no yes | no dead 47.8 M HR no no, gain no yes no yes | yes alive 34.7 M HR gain yes yes no no<br> | yes alive 24.0 L2 HK yes yes no no yes<br>ii 27.1 M in | yes alive 4/.1 Mi HK gain yes no no no no no<br>11 rio iii iii iii iii iii iii | 10 0E80 34,9 IM TR YES YES 10 YES 10 YES 10 YES 0<br>ves deart 75,9 M HR no no ves ves ves ves | ves dead 12.1 M HR ves ves ves no no no | no dead 3.5 MS LR>HR gain yes gain yes no yes | yes alive 27.3 M HR NA NA NA NA VA yes            | yes alive 29.0 M HR yes yes no yes no yes | yes alive 56.3 M HR yes no,gain no yes no yes | yes dead 27.1 M HR no yes yes yes yes yes | yes alive 25.7 M HR no no yes yes yes yes | 10 0000 3.0 M1 M1 Ball 10, 8011 YES YES 10 YES<br>no dead 41.4 M HP vec vec no vec no vec | voc alive 21.0 M HR no no no no no voc vec | 753 alive 2.1.3 M III III III III III III III III III | 10 0000 30.3 MI III 703 903 903 903 10 903<br>vas aliva 65,6 M HD rain vas vas vas vas vas vas | yes anve out in gan yes yes yes yes yes yes yes yes yes on dead teta. Mi HD asin no vet vet no vet |                                         | no olead 135.6 M HK no no no no no no no | The dead 15.4 M HK yes yes no yes no yes no yes                                                                 | yes ueau +0.0 ivi m. Bani yes yes iu yes | un dead un Mik gain no yes no yes no yes yes yes un the second of the no no not not not not not not not not n | yes drive 24.7 NV TTK TO TO, gain yes yes TO yes         | yes dead 13.6 M HR no yes yes yes no yes | 17.6 M HR yes yes yes no yes           | yes dead 30.2 M HR no no yes yes no |          |                                                                                                                |                                                               | []                                          | only PB available M      | A MS                                          | fractory during               | L                  | MR            |   |


Supplemental table 2. Clinical and sample data of neuroblastoma patients treated according to high-risk protocol

**Supplemental table 3.** Clinical data of patients with non-high risk neuroblastoma and other tumor entities (following page)

|                  |                                       |          |                   | age at<br>diagnois | Hypermethylated<br>RASSF1A |
|------------------|---------------------------------------|----------|-------------------|--------------------|----------------------------|
| Sample ID        | Tumor                                 | stage    | <b>Risk group</b> | (months)           | copies/mL                  |
| 2059             | neuroblastoma                         | L2       | MR                | 33                 | 346                        |
| 2060             | neuroblastoma                         | L2       | MR                | 41                 | 0                          |
| 2061             | neuroblastoma                         | MS       | LR                | 5                  | 1659                       |
| 2064             | neuroblastoma                         | L1       | LR                | 36                 | 27                         |
| 2065             | neuroblastoma                         | L2       | LR                | 16                 | 0                          |
| 2073             | neuroblastoma                         | L2       | MR                | 129                | 0                          |
| 2076             | neuroblastoma                         | L2       | LR                | 3                  | 0                          |
| 2077             | neuroblastoma                         | L1       | LR                | 69                 | 0                          |
| 2079             | neuroblastoma                         | L1       | LR                | 29                 | 0                          |
| 2080             | neuroblastoma                         | L2       | LR                | 2                  | 534                        |
| 2091             | neuroblastoma                         | L2       | LR                | 162                | 550                        |
| 2094             | neuroblastoma                         | MS       | LR                | 3                  | 157                        |
| 2097             | neuroblastoma                         | L1       | LR                | 6                  | 0                          |
| 2098             | neuroblastoma                         | MS       | LR                | 3                  | 35                         |
| 2115             | neuroblastoma                         | L1       | LR                | 4                  | 0                          |
| 2126             | neuroblastoma                         | L1       | LR                | 13                 | 0                          |
| 2129             | neuroblastoma                         | L2       | MR                | 13                 | 248                        |
| K002             | nephroblastoma                        | IV       | IR                | 29                 | 49                         |
| K003             | nephroblastoma                        | 11       | HR                | 68                 | 7857                       |
| K004             | nephroblastoma                        | П        | IR                | 20                 | 15890                      |
| K008             | nephroblastoma                        | П        | IR                | 21                 | 7757                       |
| K009             | nephroblastoma                        | I        | IR                | 16                 | 117                        |
| K010             | nephroblastoma                        | Ш        | IR                | 39                 | 515                        |
| K014             | nephroblastoma                        | Ш        | IR                | 30                 | 6135                       |
| K015             | nephroblastoma                        | П        | IR                | 43                 | 5720                       |
| K018             | nephroblastoma                        | Ш        | IR                | 7                  | 327                        |
| K019             | nephroblastoma                        | 111      | IR                | 11                 | 2250                       |
| K006             | nephroblastoma                        | Ш        | IR                | 40                 | 1544                       |
| K005             | CPDN                                  | Ш        | LR                | 6                  | 0                          |
| K017             | Diffuse bilateral nephroblastomatosis |          |                   | 13                 | 0                          |
| NL-03-105        | Lymphoma                              | IVB      | TL-3              | 186                | 1603                       |
| NL-03-106        | Lymphoma                              | IVB      | TL-3              | 142                | 0                          |
| NL-03-107        | Lymphoma                              | IV       | TL-3              | 197                | 250                        |
| NL-03-111        | Lymphoma                              | IVB      | TL-3              | 144                | 1744                       |
| NL-03-112        | Lymphoma                              | IIA      | TL-2              | 193                | 132                        |
| 14-1662          | ATRT                                  | 11       |                   | 9                  | 89336                      |
| 14-1881          | intracranial germ cell tumor          | IV       |                   | 109                | 0                          |
| 15-0485          | Medulloblastoma                       | M1<br>M0 |                   | 21                 | 0                          |
| 15-3756          | Medulloblastoma                       | IVIU     | 1/1/10            | 19                 |                            |
| RMS030<br>RMS026 | aRMS<br>aRMS                          |          | VHR<br>M          | 193<br>105         | 267<br>163821              |
|                  |                                       |          | M                 | 63                 | 163821                     |
| RMS080<br>RMS037 | aRMS<br>aRMS                          |          | M                 | 63<br>126          | 0                          |
| RMS007           | aRMS                                  |          | M                 | 206                | 0                          |
| RMS061           | aRMS                                  |          | M                 | 206                | 4086                       |
| RMS039           | eRMS                                  |          | SR                | 33                 | 4086<br>0                  |
| RMS010           | eRMS                                  |          | SR<br>M           | 33<br>195          | 0                          |
| RMS010           | eRMS                                  |          | M                 | 195                | 259                        |
| RMS017<br>RMS051 | eRMS                                  |          | SR                | 121                | 0                          |
| RMS032           | eRMS                                  |          | SR                | 86                 | 63                         |
| RMS004           | eRMS                                  |          | SK<br>M           | 86<br>170          | 193                        |
| RMS022           | eRMS                                  |          | M                 | 37                 | 193                        |
|                  | erivis                                |          | ١٧I               | 5/                 | 110                        |

Abbreviations: CPDN, Cystic Partially Differentiated Nephroblastoma; ATRT, Atypical Teratoid Rhabdoid Tumor; aRMS, alveolar rhabdomyosarcoma; eRMS, embryonal rhabdomyosarcoma, L1, L2 and MS, stage according to the International Neuroblastoma Risk Group (INRG) Staging System; LR, low risk; MR, medium risk; IR, intermediate risk; TL, treatment level; VHR, very high risk; HR, high risk; M, medium risk; SR, standard risk

3



**Supplemental figure 3. (A)** Receiver operating characteristic analysis with the hypermethylated RASSF1A copies/mL at diagnosis versus events at a later stage. The datapoint with the optimal sensitivity and specificity was chosen as a cutoff. This cutoff was used in the Kaplan Meier-analysis (**B**).



## Chapter 4

## Cell-free DNA as a diagnostic and prognostic biomarker in pediatric rhabdomyosarcoma

JCO Precis Oncol. 2023 Jan;7:e2200113. doi: 10.1200/PO.22.00113.

Nathalie S.M. Lak<sup>1,2</sup>, Lieke M.J. van Zogchel<sup>1,2</sup>, Lily Zappeij-Kannegieter<sup>2</sup>, Ahmad Javadi<sup>2</sup>, Ruben van Paemel<sup>3</sup>, Charlotte Vandeputte<sup>3</sup>, Katleen De Preter<sup>3</sup>, Bram De Wilde<sup>3</sup>, M. Chicard<sup>4</sup>, Y. Iddir<sup>4</sup>, G. Schleiermacher<sup>5</sup>, O. Ruhen<sup>6</sup>, J. Shipley<sup>6</sup>, Marta Fiocco<sup>7,8</sup>, Johannes H.M. Merks<sup>1</sup>, Max M. van Noesel<sup>1,9</sup>, C. Ellen van der Schoot<sup>2</sup>, Godelieve A.M. Tytgat<sup>1,2\*</sup>, Janine Stutterheim<sup>1,2\*</sup>

- <sup>1</sup> Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- <sup>2</sup> Sanguin Research Department, Amsterdam, the Netherlands
- <sup>3</sup> Translational Oncogenomics and Bioinformatics Lab, Department of Biomolecular Medicine & Cancer Research Institute Ghent, Ghent University Hospital, Ghent, Belgium
- <sup>4</sup> Equipe SiRIC RTOP Recherche Translationelle en Oncologie Pédiatrique, and INSERM U830,
- Laboratoire de Génétique et Biologie des Cancers, Institut Curie, Paris, France
- <sup>5</sup> SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
- <sup>6</sup> Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK.
- <sup>7</sup> Mathematical Institute, Leiden University, the Netherlands
- <sup>8</sup>Department of Data Science, Medical Statistics section, Leiden University Medical Center, the Netherlands
- <sup>9</sup>UMC Utrecht, Division Oncology & Cancer, Utrecht, the Netherlands
- \* Authors contributed equally

## Abstract

*Background and aims:* Total cell-free DNA (cfDNA) and tumor-derived cfDNA (ctDNA) can be used to study tumor-derived genetic aberrations. We analyzed the diagnostic and prognostic potential of cfDNA and ctDNA, obtained from pediatric patients with rhabdomyosarcoma.

*Methods*: cfDNA was isolated from diagnostic plasma samples from 57 patients enrolled in the EpSSG RMS2005 study. To study the diagnostic potential, shallow whole-genome sequencing (shWGS) and cell-free reduced representation bisulphite sequencing (cfRRBS) were performed in a subset of samples and all samples were tested using droplet digital PCR (ddPCR) to detect methylated *RASSF1A* (*RASSF1A-M*). Correlation with outcome was studied by combining cfDNA *RASSF1A-M* detection with analysis of our rhabdomyosarcoma-specific RNA panel in paired cellular blood and bone marrow fractions, and survival analysis in 56 patients.

*Findings*: At diagnosis, ctDNA was detected in 16/30 and 24/26 patients using shWGS and cfRRBS, respectively. Furthermore, 21/25 samples were correctly classified as embryonal by cfRRBS. *RASSF1A*-M was detected in 21/57 patients. The presence of RASSF1A-M was significantly correlated with poor outcome (the 5-year event-free survival rate was 46.2% for 21 *RASSF1A*-M-positive patients, compared to 84.9% for 36 *RASSF1A*-M-negative patients (p<0.001)). *RASSF1A*-M positivity had the highest prognostic effect among patients with metastatic disease. Patients both negative for *RASSF1A*-M and the rhabdomyosarcoma-specific RNA panel (28/56 patients) had excellent outcome (5-year event-free survival 92.9%), while double-positive patients (11/56) had poor outcome (5-year event-free survival 13.6%, p<0.001).

Interpretation: Analyzing ctDNA at diagnosis using various techniques is feasible in pediatric rhabdomyosarcoma and has potential for clinical use. Measuring RASSF1A-M in plasma at initial diagnosis correlated significantly with outcome, particularly when combined with paired analysis of blood and bone marrow using a rhabdomyosarcoma-specific RNA panel.

#### **Context Summary**

*Key objective:* In pediatric rhabdomyosarcoma, the use of liquid biopsies can assist in generating a more comprehensive view of the molecular landscape of the tumor. We explore different methods for analysis of cell-free DNA (cfDNA) from plasma by cell-free reduced representation bisulphite sequencing (cfRRBS), shallow whole genome sequencing (shWGS) and ddPCR for RASSF1A methylation (RASSF1-M). Furthermore, we study whether combining cfDNA analyses with detection of rhabdomyosarcoma-specific RNA in the cellular fraction of blood and bone marrow has a complementary value.

*Knowledge generated:* Both cfRRBS and shWGS have diagnostic potential, whereas the presence of RASSF1A-M at diagnosis correlates to poor survival, especially in patients testing positive for rhabdomyosarcoma-specific RNA in cells from blood and bone marrow.

*Relevance:* Analysis of cfDNA through different molecular approaches can be of additional value to current clinical risk stratification, especially the detection of RASSF1A-M in cfDNA and rhabdomyosarcoma-specific RNA in paired blood and bone marrow.

### Introduction

Rhabdomyosarcoma, the most common sarcoma among children and adolescents, accounts for approximately 3% of pediatric tumors<sup>1</sup>. Despite considerable research regarding treatment and risk stratification, 1/3 patients will experience relapse <sup>2-6</sup>. The use of liquid biopsies in pediatric patients is drawing growing interest <sup>7,8</sup>. Our group reported that the presence of rhabdomyosarcoma-derived mRNA in the cellular fraction of peripheral blood (PB) and bone marrow (BM) at initial diagnosis is correlated with poor outcome, and could potentially improve current risk stratification <sup>9</sup>. Studies on other pediatric solid tumors demonstrated cell-free DNA (cfDNA) analysis from plasma to provide added value for diagnostics, prognostics, and response monitoring <sup>10-16</sup>. In rhabdomyosarcoma, the presence of tumor-derived cfDNA (ctDNA) has been shown to correlate to tumor burden throughout treatment in a few small case series <sup>17,18</sup>. ctDNA can be studied using various techniques, using genetic aberrations present in rhabdomyosarcoma. The alveolar subtype has a tumor-driving fusion between the PAX3 or PAX7 gene and the FOXO1 gene. Epigenetic analyses revealed distinct methylation profiles in alveolar and embryonal rhabdomyosarcoma, allowing for the classification of cases into fusion-positive vs. fusion-negative tumors <sup>19,20</sup>. Van Paemel et al. showed that these distinct methylation patterns can be detected in ctDNA from diagnostic plasma, using cell-free reduced representation bisulphite sequencing (cfRRBS) to correctly classify rhabdomyosarcoma as either the embryonal or alveolar subtype <sup>21</sup>. Copy number aberrations (CNAs) have been found to occur in several chromosomes <sup>3,22</sup>. These can be analyzed in cfDNA by shallow whole-genome sequencing (shWGS) <sup>23</sup>. Recently, Van Paemel et al. <sup>16</sup>showed that shWGS data from cfDNA can be complementary to CNA analysis on the primary tumor.

However, cfDNA typically contains a relatively small amount of ctDNA; the remaining cfDNA is derived from healthy cells, which can cause high background noise and limit the ability to detect a tumor-derived signal <sup>24</sup>. To overcome this, a tumor-specific assay can be used, such as droplet digital PCR (ddPCR) which is highly sensitive and less expensive <sup>25</sup>. A target suited for analysis by ddPCR is methylation of the tumor-suppressor gene *RASSF1A*; this gene has been shown to be silenced by methylation in several adult <sup>26</sup> and pediatric <sup>27-30</sup> tumors. Moreover, methylated *RASSF1A* (*RASSF1A*-M) has been detected in cfDNA in patients with neuroblastoma <sup>31,32</sup>. Recently, we developed a methylation-specific enzyme-based approach involving ddPCR to detect *RASSF1A*-M in several pediatric solid tumors, including rhabdomyosarcoma <sup>14</sup>.

Here, we report the detection of ctDNA in plasma of patients with rhabdomyosarcoma for diagnostic purposes, such as cfRBBS and shWGS. Furthermore, we study the prognostic potential of *RASSF1A*-M detection in cfDNA and measure the added value of combining *RASSF1A*-M ctDNA detection with our rhabdomyosarcoma-specific mRNA panel in paired BM and PB samples.

## Methods

#### Patients and sample collection

Plasma samples were collected prospectively from the same cohort described in our previous paper<sup>9</sup>, consisting of all patients included in the Dutch Minimal Residual Disease add-on study within the EpSSG RMS2005 trial (EudraCT number: 2005-000217-35) from 2013 through July 2019. Informed consent was given via the EpSSG RMS2005 trial until 2017. From 2017, consent was provided if the patients/caretakers consented to the collection of samples for biobanking. PB was collected in EDTA tubes (Becton-Dickinson) and processed within 24 hours. Plasma was obtained by centrifuging the blood samples at 1,375xg for 10 minutes and stored at -20°C until further processing. Matched tumor material was not available.

#### **CfRRBS and shWGS**

We performed cfRRBS <sup>33</sup> and shWGS <sup>16,34</sup> on cfDNA as described and validated previously. In brief, cfDNA was isolated from 200 µl of plasma as described previously <sup>16,33,34</sup>. For shWGS, the modified copy number profile abnormality (CPAm) score was calculated in order to quantify the copy number tumor burden present in the cfDNA <sup>16</sup>. Based on 80 healthy volunteers, the level corresponding to a 1% false discovery rate (FDR) was set at 0.355 for shWGS.

#### ddPCR assay for measuring RASSF1A-M

For ddPCR, cfDNA was isolated from plasma samples using the Quick-cfDNA Serum & Plasma kit (Zymo Research). The *RASSF1A*-M ddPCR assay was performed using double digestion with the methylation-sensitive restriction enzymes *Hha*l and *Bsh*1236I (*Bst*UI) (Thermo-Fisher Scientific) using a thermocycler T100 and QX200 reader (Bio-Rad) as described previously<sup>14</sup>. The sequences and concentrations of the primers and probes, cycling conditions, and analyses were performed as described previously, with the threshold for RASSF1A-M positivity per sample set at >/= 14 copies/ml and >/= 4 RASSF1A-M positive droplets, as determined in 18 healthy pediatric and 22 adult control plasmas<sup>14</sup>. The percentage of *RASSF1A*-M was calculated relative to total *RASSF1A*. Based on the plasma volume available (ranging from 150 µl to 1 ml), different amounts of plasma were used to isolate cfDNA. To correct for variations in the amount of input plasma, cfDNA is reported in ng/ml plasma. In all ddPCR assays, total cfDNA was determined using the reference gene *ACTB*.

Since there was no matched tumor material available, we used data on *RASSF1A*-M in rhabdomyosarcoma tumors from published datasets from Clay *et al*<sup>35</sup>, Koelsche et al<sup>36</sup> and specifically requested data from Seki *et al*<sup>20</sup>. Data from Clay and Koelsche were analyzed in R2<sup>37</sup>. We focused on hypermethylation of the promotor region of *RASSF1A* as this is typically hypermethylated in cancer<sup>38</sup>. We calculated the mean beta-value and report the range of the beta values <sup>39,40</sup>.

#### Detection of rhabdomyosarcoma-specific mRNA using an RNA panel

Rhabdomyosarcoma-specific mRNA was detected in the cellular fractions of matched diagnostic patient PB and BM samples using our previously reported 11-marker RNA panel <sup>9,10</sup>. The RNA panel was considered positive if either PB or BM was positive.

#### Statistical analysis

Statistical analyses were performed using SPSS version 23. Figures were generated using GraphPad Prism version 8. The correlation between continuous variables was determined using Pearson's test. Continuous variables were analyzed using the non-parametric Mann-Whitney *U* test, and 2 or more groups were analyzed using the Kruskal-Wallis test. Independence between 2 categorical variables was determined using the non-parametric Pearson chi-square test.Event-free survival and overall survival were estimated using the Kaplan-Meier approach, and differences in survival were analyzed using the log-rank test. Differences were considered significant at p<0.05.

## Results

#### Patient and sample characteristics

We collected a total of 152 plasma samples from 65 patients, treated according to the EpSSG RMS2005 protocol; diagnostic plasma samples were available for 57 patients. The patient characteristics, assigned risk group and tumor histology, are summarized in Table 1. The median follow-up was 4.21 years (range: 0.34–10.60 years).

# Diagnostic potential of various molecular techniques for detecting ctDNA

First, total cfDNA levels at diagnosis were determined by measuring *ACTB* using ddPCR for all samples. No significant differences in total cfDNA levels were observed between patients with respect to tumor histology, risk group, localized versus metastatic disease, tumor size or event-free survival (Supplemental Figure S1A-E). Next, we examined the feasibility to detect ctDNA using cfRRBS, shWGS and ddPCR (Table 2, Supplemental Tables S1, S2, S3 and Supplemental Figure S2). Overall, in 39 out of 57 patients (68.4%), at least one of these techniques detected ctDNA in diagnostic plasma samples. Please note that cfRRBS and shWGS were tested on a subset of samples.

#### Methylation profiling for diagnostic classification

As negative control, cfRRBS was performed on 31 samples from healthy controls, all classified correctly as normal (Supplemental figure S3). We applied cfRRBS to diagnostic samples from 24 patients with the embryonal subtype, 1 with botryoid subtype, and 1 with alveolar subtype, successfully detecting rhabdomyosarcoma DNA in 24 of these 26 samples (92.3% of cases). Twenty of these samples were correctly identified as embryonal tumors. Three cases with embryonal histology were classified as alveolar, one case of botryoid rhabdomyosarcoma was classified as embryonal, and no tumor DNA was detected in 2 samples (one alveolar and one embryonal).

#### **Copy number aberrations**

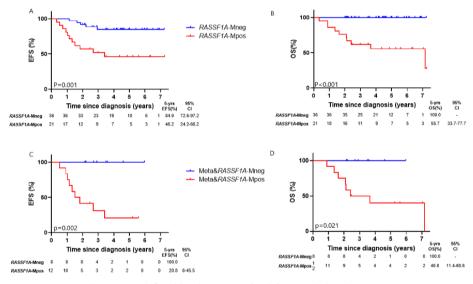
We performed shWGS on 30 plasma samples and obtained a median CPAm score of 0.35 (range: 0.27-3.94), (Supplemental Figure S4). In three cases (2 embryonal and 1 alveolar), the analysis failed (Table 2, Supplemental Table S2). Twelve embryonal cases (7/12 metastatic) and 4 alveolar (all metastatic) cases had CNAs, while 10 embryonal cases and 1 botryoid case had no CNA. Most CNAs were detected in patients with metastatic disease and 7/16 (43.8%) patients with detectable CNAs suffered from an event.

|                                             | N (%)     |  |
|---------------------------------------------|-----------|--|
| Age at diagnosis                            |           |  |
| <1 year                                     | 1 (1.5)   |  |
| 1-10 years                                  | 38 (58.5) |  |
| >10 years                                   | 26 (40.0) |  |
| Sex                                         |           |  |
| Female                                      | 23 (35.4) |  |
| Male                                        | 42 (64.6) |  |
| Histology                                   |           |  |
| Alveolar rhabdomyosarcoma                   | 22 (33.8) |  |
| Embryonal rhabdomyosarcoma                  | 40 (61.5) |  |
| Botryoid rhabdomyosarcoma                   | 1 (1.5)   |  |
| Spindle cell/leiomyomatous rhabdomyosarcoma | 1 (1.5)   |  |
| Rhabdomyosarcoma not otherwise specified    | 1 (1.5)   |  |
| Post-surgical tumor staging (IRS grouping)  |           |  |
| I                                           | 4 (6.3)   |  |
| II                                          | 11 (16.9) |  |
| III                                         | 27 (41.5) |  |
| IV                                          | 23 (35.4) |  |
| Tumor size                                  |           |  |
| ≤5 cm                                       | 29 (44.6) |  |
| >5 cm                                       | 36 (55.4) |  |
| Regional lymph node involvement             |           |  |
| No evidence of lymph node involvement       | 42 (64.6) |  |
| Evidence of regional lymph node involvement | 22 (33.8) |  |
| No information about lymph node involvement | 1 (1.5)   |  |
| Risk group                                  |           |  |
| Low risk                                    | 1 (1.5)   |  |
| Standard risk                               | 24 (36.9) |  |
| High risk                                   | 14 (21.5) |  |
| Very high risk                              | 3 (4.6)   |  |
| Metastatic                                  | 23 (35.4) |  |
| Site of origin of primary tumor             |           |  |
| Orbit                                       | 10 (15.4) |  |
| Head neck non-parameningeal                 | 5 (7.7)   |  |
| Parameningeal                               | 10 (15.4) |  |
| Bladder prostate                            | 8 (12.3)  |  |
| Genitourinary non-bladder prostate          | 10 (15.4) |  |
| Extremities                                 | 14 (21.5) |  |
| Other sites                                 | 8 (12.3)  |  |

 Table 1. Patient characteristics of the patients with rhabdomyosarcoma (n=65)

#### Methylated RASSF1A

Using data from Clay et al<sup>35</sup>, Koelsche et al<sup>36</sup> and Seki et al<sup>20</sup>, the mean beta-value of RASSF1A-M was 0.550 (range 0.032-0.933) (Supplemental Figures S5 A-D). We next examined the presence of RASSF1A-M in plasma using ddPCR. Methylated RASSF1A was detectable in 21/57 diagnostic plasma samples; 9/37 embryonal cases, 10/17 alveolar cases, 1/1 spindle case, 0 botryoid case, and 1 not-otherwise-specified case, with a median RASSF1A-Mconcentration of 2.46 ng/ml (range: 0.22-273.11 ng/ml). In patients with alveolar tumors and metastatic disease, methylated RASSF1A was more frequently detected, compared to embryonal histology (p=0.014) and localized disease (RASSF1A-M positive in 9/37 patients with localized, 12/20 patients with metastatic disease p = 0.008). The total level of *RASSF1A*-M varied widely within the RASSF1A-M-positive samples and was correlated with tumor histology (Supplemental Figure S6A). To correct for variations in total cfDNA, we calculated the percentage of RASSF1A-Mrelative to total RASSF1A for each patient, yielding a median percentage of 15.1% (range: 2.0-92.7%) for the RASSF1A-M-positive samples. Although metastatic and alveolar tumors more often show the presence of RASSF1A-M in cfDNA, the RASSF1A-M percentage in positive samples was similar in alveolar and embryonal tumors (p=0.55) and in localized and metastatic cases (p=0.35). We found no correlation between tumor size at diagnosis and either total RASSF1A-M (r=0.132 and p=0.64; Supplemental Figure S6B) or the percentage of RASSF1A-M (r=-0.229) and p=0.41; Figure 2C). Finally, we found no difference in total cfDNA levels (ACTB) between *RASSF1A*-M-positive and *RASSF1A*-M-negative cases (*p*=0.96; Figure 1D).


#### Cell-free RASSF1A-M correlates with poor outcome

We examined whether the detection of ctDNA in 57 diagnostic plasma samples was associated with patient outcome. Eleven out of 21 (52,3%) RASSF1A-M positive patients suffered from an event.

The 5-year EFS rate was 46.2% for the *RASSF1A*-M-positive patients, compared to 84.9% for the *RASSF1A*-M-negative patients (p=0.001; Figure 2A); and, the 5-year overall survival (OS) rate was 55.7% for the *RASSF1A*-M-positive patients compared to 100% for the *RASSF1A*-M-negative patients (p<0.001; Figure 2B). The prognostic value of detecting *RASSF1A*-M at diagnosis was attributed almost exclusively to patients with metastasized disease (Figure 2B-C, Supplemental Figure S7).

In 27 samples both shWGS and RASSF1A-M was performed (Supplemental table S4). In 6 patients shWGS was positive while RASSF1A-M was negative, and only one patient suffered from an event, while 6/10 double positive patients suffered from an event, suggesting that the presence of both RASSF1A-M and ctDNA by shWGS may be more prognostic than detection of ctDNA by shWGS alone.

We next examined whether combining *RASSF1A*-M detection with detection of rhabdomyosarcoma-specific mRNA (based on our previously published mRNA panel<sup>9</sup>) tested in 56 matched diagnostic PB and BM samples, could improve the predictive value. Rhabdomyosarcoma-specific mRNA was detected in 18/56 PB and/or BM samples (8/18 tested positive on conventional BM histology, Supplemental Table S5). Five-year EFS ranged from 92.9% to 13.6% for *RASSF1A*-M<sup>neg</sup>/mRNA panel<sup>neg</sup> and *RASSF1A*-M<sup>pos</sup>/mRNA panel<sup>pos</sup>. (*p*=0.006) and 5 years OS from 100% to 36.4% for *RASSF1A*-M<sup>neg</sup>/mRNA panel<sup>neg</sup> and *RASSF1A*-M<sup>pos</sup>/mRNA panel<sup>pos</sup>, respectively (*p*<0.001) (Figure 3A and 3B).



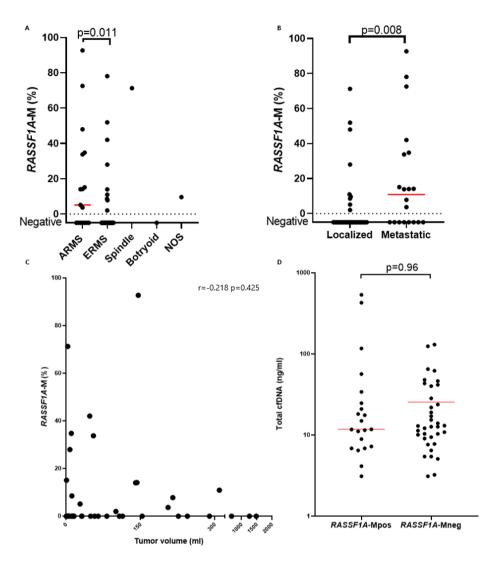
**Figure 2.** Survival outcome defined by detection of cell-free methylated RASSF1A (RASSF1A-M) at diagnosis. **A** and **B**. Event-free survival (EFS) and overall survival (OS), respectively, of patients with no detectable methylated *RASSF1A* in the diagnostic plasma (*RASSF1A*-Mneg) (n=36) and patients with detectable methylated *RASSF1A* in the diagnostic plasma (*RASSF1A*-Mneg) (n=21). **C** and **D**. EFS and OS of *RASSF1A*-M-negative patients (n=8) and *RASSF1A*-M-positive patients (n=12) with metastatic disease. Shown below each plot are the number of patients at each time point, and 5-years survival with the 95% confidence interval.

To validate the association of *RASSF1A*-M to clinical outcome, we performed univariate and multivariable Cox regression analyses for EFS (Supplemental Tables S6 and Table 3, respectively). In the multivariable model, only *RASSF1A*-M, RNA panel, and tumor size larger than 5 cm had a significant effect on outcome. The known EpSSG RMS2005 risk group classification, metastatic disease, alveolar subtype, over

10 years of age, and lymph node involvement were not significantly associated with outcome in our multivariable model. Lastly, OS could not be analyzed due to the low number of events in this cohort.

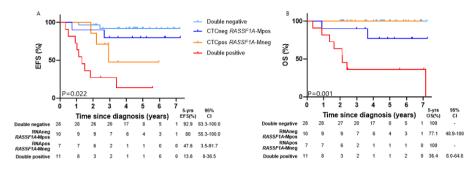
|                        |                   | ÷                      |
|------------------------|-------------------|------------------------|
| Technique              | Result            | N (%)                  |
| RASSF1A-M ddPCR (n=57) | Positive          | 21 (36.8)              |
|                        | Negative          | 36 (63.2)              |
| cfRRBS (n=26)          | Embryonal subtype | 21 (80.8) <sup>a</sup> |
|                        | Alveolar subtype  | 3 (11.5) <sup>b</sup>  |
|                        | No tumor DNA      | 2 (7.7)                |
| shWGS (n=30)           | CNA present       | 16 (53.3)              |
|                        | Flat              | 11 (36.7)              |
|                        | Fail              | 3 (10.0)               |

**Table 2.** Overview of the results of different approaches on cfDNA of n= 57 diagnostic plasma samples.


RASSF1A-M, methylated RASSF1A; cfRRBS, cell-free reduced representation bisulphite sequencing; shWGS, shallow whole genome sequencing;

<sup>a</sup> 1 case was originally classified as botryoid based on the clinical diagnosis.

<sup>b</sup> All 3 of these cases were originally classified as embryonal based on the clinical diagnosis.


#### **RASSF1A-M during treatment and clinical follow-up**

For 33 patients, a total of 95 samples drawn during primary treatment and/or subsequent clinical follow-up were available. *RASSF1A*-M was measured in the follow-up samples only if the patient was *RASSF1A*-M-positive at diagnosis or—if a diagnostic sample was not available—at relapse. Among the 23 patients for whom samples were collected during primary treatment, only 2 patients (Supplemental Table S7/S8) were *RASSF1A*-M-positive after two cycles of chemotherapy, but *RASSF1A*-M-negative in all subsequent samples. In 8 patients, *RASSF1A*-M was measured in a sample taken during a clinical event (5 at first relapse, 2 at second relapse, and 1 at progressive disease during primary treatment). Five of these 8 samples were *RASSF1A*-M-positive (3 at first relapse and 2 at second relapse); no samples at initial diagnosis were available for these 5 patients. After initiating relapse therapy, all subsequent samples from these patients were *RASSF1A*-M-negative. The sample taken from the patient at progressive disease (patient RMS133) was *RASSF1A*-M-negative, and no previous plasma samples were available for this patient.



**Figure 1.** Methylated *RASSF1A* (*RASSF1A*-M) in diagnostic plasma samples of patients with rhabdomyosarcoma. The percentage of cell-free methylated-RASSF1A (*RASSF1A*-M) is calculated according to total *RASSF1A* copies at diagnosis in patients: **A**. with different subtypes; **B**. with localized and metastatic disease and **C**. plotted against tumor volume at diagnosis. **D**. Level of cfDNA (quantified by *beta-Actin* (*ACTB*)) at diagnosis in plasma samples with detectable *RASSF1A*-M and with no detectable *RASSF1A*-M; note that the *y*-axis is plotted on a log scale.

In this figure, each symbol represents an individual patient, and the red horizontal lines represent the median values. Tumor size was determined by MRI, CT-scan or ultrasonography.



**Figure 3.** Survival outcome defined by detection of cell-free methylated *RASSF1A* (*RASSF1A*-M) from plasma and rhabdomyosarcoma-specific RNA in blood and bone marrow at diagnosis. **A** and **B**. Event-free survival (EFS) and overall survival (OS) of 56 patients based on the absence or presence of rhabdomyosarcoma-specific RNA (RNA-negative and RNA-positive, respectively) combined with *RASSF1A*-M status. Shown below each plot are the number of patients at each time point, and 5-years survival with the 95% confidence interval.

|                                 | Hazard ratio (95% CI) |
|---------------------------------|-----------------------|
| RASSF1A-M-positive              | 4.52 (1.34-15.27)*    |
| Standard Risk                   | 1                     |
| High Risk                       | 1.29 (0.22-7.74)      |
| Metastatic disease              | 2.69 (0.69-10.47)     |
| RASSF1A-M-positive              | 4.15 (1.38-12.49)*    |
| Localized vs metastatic disease | 1.99 (0.70-5.61)      |
| RASSF1A-M-positive              | 3.38 (1.14-9.97)*     |
| RNA panel                       | 7.60 (2.37-24.36)*    |
| RASSF1A-M-positive              | 4.82 (1.60-14.51)*    |
| Alveolar rhabdomyosarcoma       | 1.16 (0.42-3.25)      |
| RASSF1A-M-positive              | 5.72 (1.96-16.69)*    |
| Age at diagnosis >10 years      | 2.14 (0.99-7.44)      |
| RASSF1A-M-positive              | 5.87 (2.02-17.07)*    |
| Tumor size >5cm                 | 8.05 (1.81-35.81)*    |
| RASSF1A-M-positive              | 4.27 (1.39-13.13)*    |
| Lymph node involvement          | 1.34 (0.46-3.88)      |

 Table 3. Hazard ratios with 95% CI estimated with a multivariable Cox proportional hazard regression model for event-free survival.

\* indicates significance at p< 0.05

### Discussion

Based on our findings, we propose that each cfDNA-based technique can address a specific clinical need, ranging from assisting at initial tumor diagnosis to fine-tuning of risk stratification. In our cohort, cfRRBS proved its potential as a highly sensitive method for identifying rhabdomyosarcoma-derived cfDNA at initial diagnosis, and the majority was classified correctly as embryonal. Van Paemel *et al.* <sup>21</sup> found that cfRRBS was also able to correctly identify alveolar ctDNA. Thus, cfRRBS can provide added value at initial diagnosis, particularly if the ability to perform a tumor biopsy is restricted by clinical features such as tumor location or the patient's condition, and when the ability to distinguish between other types of pediatric solid tumors is important <sup>21</sup>.

We detected CNAs in 53.3% of samples analyzed by shWGS, mostly metastatic cases. Based on literature, CNAs are present in nearly all fusion-negative rhabdomyosarcomas <sup>20,41</sup> and in approximately one-third of all fusion-positive rhabdomyosarcomas <sup>41,42</sup>. We detected CNAs in the cfDNA of only half of the patients with fusion-negative tumors. This relatively low rate may have been due in part to contamination of the cfDNA with genomic DNA, as the protocol for drawing and storing blood was not standardized, which can lower the sensitivity to detect CNA <sup>16</sup>. Van Paemel et al. noted that performing shWGS on cfDNA can provide additional value with respect to analyzing CNAs in the primary tumor, resulting in a more complete overview of the patient's genetic landscape and bypassing any potential heterogeneity within the tumor and/or metastatic lesions. This is important to consider when designing further studies.

Based on the previous reports, demonstrating feasibility to use *RASSF1A*-M ddPCR as a tumor-specific marker with a high specificity due to extremely low background in plasma from healthy controls<sup>14,15</sup>, we studied *RASSF1A*-M ddPCR in cfDNA of rhabdomyosarcoma patients. One of the limitations of this study, was the absence of paired primary tumor samples. However, the presence of *RASSF1A*-M, as extracted from data published by several groups<sup>20,35,36</sup>, indicated the potential to detect *RASSF1A*-M in primary tumors, with admittedly a large variation in the level of *RASSF1A*-M. Still, for the patients in our cohort who were RASSF1A-M-negative, based on cfDNA obtained at diagnosis, we were unable to determine whether this was due to absence of RASSF1A methylation or no detectable ctDNA. This is underlined by the 18 samples testing negative for RASSF1A-M, in which ctDNA was detected by cfRRBS and/or shWGS. Future studies should include matching tumor material to establish the contribution of different approaches for cfDNA analysis. Nonetheless, we were

able to detect *RASSF1A*-M in cfDNA in 36% of diagnostic samples, and found a strong correlation between *RASSF1A*-M positivity and event-free and overall survival. Importantly, this predictive value was obtained almost exclusively in the group of patients with metastatic disease. This finding might suggest that more aggressive tumors contain methylated RASSF1A and deserves further investigations in a follow-up study, including matching primary tumor material. Interestingly, in the samples that were tested by both shWGS and RASSF1A-M, results suggest that detection of ctDNA by both methods may be more prognostic than detection of ctDNA by shWGS alone. This should be studied further in a larger cohort.

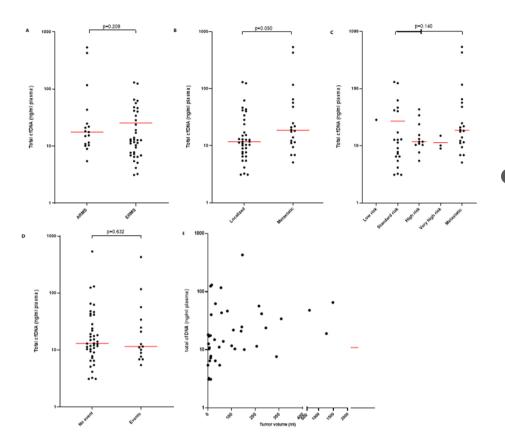
As we previously showed rhabdomyosarcoma-specific RNA detection in PB and/ or BM at diagnosis to detect additional disseminated disease and to correlate with outcome<sup>9</sup>, we now showed that combining mRNA and ctDNA (*RASSF1A-M*) in paired diagnostic samples identifies patients with very good and very poor outcome. Our multivariable analysis revealed that combining the cfDNA *RASSF1A-M* assay with rhabdomyosarcoma-specific RNA detection in PB and BM samples provides an even better tool for discriminating between low-risk patients and patients with a poor prognosis. Given the relatively small number of patients in our cohort, however, we were unable to investigate the effect of adding both *RASSF1A-M* and the RNA panel to established prognostic factors, particularly in the EpSSG RMS2005 risk group; nevertheless, our results can form a starting point for future studies involving a prospective cohort.

An interesting finding from our study is the dynamics of ctDNA. Prior to our study, we hypothesized that ctDNA would still be present during primary treatment and decrease slowly, tracking the decrease in tumor burden. However, in our rhabdomyosarcoma cohort, we found that most of the samples were negative for ctDNA after the first course of chemotherapy. This rapid transition to a ctDNA-negative state is consistent with results reported by Klega *et al.* <sup>18</sup>, who found that most samples were negative for ctDNA prior to the second course of chemotherapy. Thus, an interesting question is whether performing earlier sampling and obtaining multiple samples during the first 2 weeks after the start of treatment would reveal the presence of ctDNA, and—if so—would lead to the development of a prognostic marker, similar to the marker for minimal residual disease developed for use in leukemia <sup>43,44</sup>.

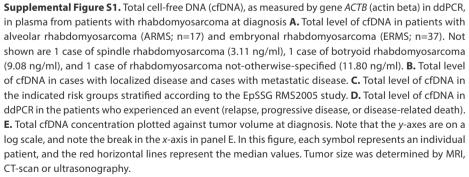
## Conclusions

Here, we demonstrate the feasibility to study ctDNA in pediatric rhabdomyosarcoma by different approaches. The choice of a given technique will depend on whether the underlying question is diagnostic or prognostic. We show that the presence of methylated *RASSF1A* in cfDNA is associated with poor outcome and can be used to improve risk stratification at diagnosis. Furthermore, we show that combining detection of methylated *RASSF1A* in plasma with analysis of tumor-specific RNA in blood and bone marrow identified patients with good vs. poor outcome.

## Acknowledgements


We thank Masafumi Seki for sharing detailed data regarding *RASSF1A* methylation from their published cohort. We thank Maisa Renata Ferro dos Santos from Ghent University for the analysis of cfRRBS data from healthy controls.

## References


- 1. https://www.prinsesmaximacentrum.nl/storage/configurations/prinsesmaximacentrumnl/files/ hetprinsesmaximacentrum-jaarverslag\_cenr2020\_06-21\_s\_interactive.pdf.
- 2. Gartrell J, Pappo A: Recent advances in understanding and managing pediatric rhabdomyosarcoma. F1000Res 9, 2020
- 3. Skapek SX, Ferrari A, Gupta AA, et al: Rhabdomyosarcoma. Nat Rev Dis Primers 5:1, 2019
- 4. Oberlin O, Rey A, Lyden E, et al: Prognostic factors in metastatic rhabdomyosarcomas: results of a pooled analysis from United States and European cooperative groups. J Clin Oncol 26:2384-9, 2008
- Oberlin O, Rey A, Sanchez de Toledo J, et al: Randomized comparison of intensified six-drug versus standard three-drug chemotherapy for high-risk nonmetastatic rhabdomyosarcoma and other chemotherapy-sensitive childhood soft tissue sarcomas: long-term results from the International Society of Pediatric Oncology MMT95 study. J Clin Oncol 30:2457-65, 2012
- Chisholm JC, Marandet J, Rey A, et al: Prognostic factors after relapse in nonmetastatic rhabdomyosarcoma: a nomogram to better define patients who can be salvaged with further therapy. J Clin Oncol 29:1319-25, 2011
- 7. Van Paemel R, Vlug R, De Preter K, et al: The pitfalls and promise of liquid biopsies for diagnosing and treating solid tumors in children: a review. Eur J Pediatr 179:191-202, 2020
- 8. Andersson D, Fagman H, Dalin MG, et al: Circulating cell-free tumor DNA analysis in pediatric cancers. Mol Aspects Med 72:100819, 2020
- Lak NSM, Voormanns TL, Zappeij-Kannegieter L, et al: Improving Risk Stratification for Pediatric Patients with Rhabdomyosarcoma by Molecular Detection of Disseminated Disease. Clin Cancer Res, 2021
- 10. van Zogchel LMJ, van Wezel EM, van Wijk J, et al: Hypermethylated RASSF1A as Circulating Tumor DNA Marker for Disease Monitoring in Neuroblastoma. JCO Precis Oncol 4, 2020
- 11. Jimenez I, Chicard M, Colmet-Daage L, et al: Circulating tumor DNA analysis enables molecular characterization of pediatric renal tumors at diagnosis. Int J Cancer 144:68-79, 2019
- 12. Chicard M, Boyault S, Colmet Daage L, et al: Genomic Copy Number Profiling Using Circulating Free Tumor DNA Highlights Heterogeneity in Neuroblastoma. Clin Cancer Res 22:5564-5573, 2016
- Chicard M, Colmet-Daage L, Clement N, et al: Whole-Exome Sequencing of Cell-Free DNA Reveals Temporo-spatial Heterogeneity and Identifies Treatment-Resistant Clones in Neuroblastoma. Clin Cancer Res 24:939-949, 2018
- van Zogchel LMJ, Lak NSM, Verhagen OJHM, et al: Novel Circulating Hypermethylated RASSF1A ddPCR for liquid biopsies in patients with pediatric solid tumors. JCO Precis Oncol 5:1738-1748, 2021
- 15. Lobo J, van Zogchel LMJ, Nuru MG, et al: Combining Hypermethylated RASSF1A Detection Using ddPCR with miR-371a-3p Testing: An Improved Panel of Liquid Biopsy Biomarkers for Testicular Germ Cell Tumor Patients. Cancers (Basel) 13, 2021
- 16. Van Paemel R, Vandeputte C, Raman L, et al: The feasibility of using liquid biopsies as a complementary assay for copy number aberration profiling in routinely collected paediatric cancer patient samples. Eur J Cancer, 2021
- 17. Eguchi-Ishimae M, Tezuka M, Kokeguchi T, et al: Early detection of the PAX3-FOXO1 fusion gene in circulating tumor-derived DNA in a case of alveolar rhabdomyosarcoma. Genes Chromosomes Cancer 58:521-529, 2019

- Klega K, Imamovic-Tuco A, Ha G, et al: Detection of Somatic Structural Variants Enables Quantification and Characterization of Circulating Tumor DNA in Children With Solid Tumors. JCO Precis Oncol 2018, 2018
- 19. Sun W, Chatterjee B, Wang Y, et al: Distinct methylation profiles characterize fusion-positive and fusion-negative rhabdomyosarcoma. Mod Pathol 28:1214-24, 2015
- 20. Seki M, Nishimura R, Yoshida K, et al: Integrated genetic and epigenetic analysis defines novel molecular subgroups in rhabdomyosarcoma. Nat Commun 6:7557, 2015
- 21. Van Paemel R, De Koker A, Vandeputte C, et al: Minimally invasive classification of paediatric solid tumours using reduced representation bisulphite sequencing of cell-free DNA: a proof-of-principle study. Epigenetics 16:196-208, 2021
- 22. Parham DM, Barr FG: Classification of rhabdomyosarcoma and its molecular basis. Adv Anat Pathol 20:387-97, 2013
- 23. De Koker AvP, R.; De Wilde, B.; de Preter, K.; Callewaert, N. : A versatile method for circulating cellfree DNA methylome profiling by reduced representation bisulfite sequencing. bioRxiv 2019
- 24. Wan JCM, Massie C, Garcia-Corbacho J, et al: Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer 17:223-238, 2017
- 25. Vessies DCL, Greuter MJE, van Rooijen KL, et al: Performance of four platforms for KRAS mutation detection in plasma cell-free DNA: ddPCR, ldylla, COBAS z480 and BEAMing. Sci Rep 10:8122, 2020
- 26. Grawenda AM, O'Neill E: Clinical utility of RASSF1A methylation in human malignancies. Br J Cancer 113:372-81, 2015
- 27. Lim S, Yang MH, Park JH, et al: Inactivation of the RASSF1A in osteosarcoma. Oncol Rep 10:897-901, 2003
- 28. Wagner KJ, Cooper WN, Grundy RG, et al: Frequent RASSF1A tumour suppressor gene promoter methylation in Wilms' tumour and colorectal cancer. Oncogene 21:7277-82, 2002
- 29. Honda S, Miyagi H, Suzuki H, et al: RASSF1A methylation indicates a poor prognosis in hepatoblastoma patients. Pediatr Surg Int 29:1147-52, 2013
- 30. Astuti D, Agathanggelou A, Honorio S, et al: RASSF1A promoter region CpG island hypermethylation in phaeochromocytomas and neuroblastoma tumours. Oncogene 20:7573-7, 2001
- 31. van Zogchel LMJ, van Wezel EM, van Wijk J, et al: Hypermethylated RASSF1A as circulating tumor DNA marker for disease monitoring in neuroblastoma. J clin Oncol Precision Oncology, 2020
- 32. Stutterheim J, Ichou FA, den Ouden E, et al: Methylated RASSF1a is the first specific DNA marker for minimal residual disease testing in neuroblastoma. Clin Cancer Res 18:808-14, 2012
- 33. Van Paemel R, De Koker A, Vandeputte C, et al: Minimally invasive classification of paediatric solid tumours using reduced representation bisulphite sequencing of cell-free DNA: a proof-of-principle study. Epigenetics:1-13, 2020
- Van Roy N, Van Der Linden M, Menten B, et al: Shallow Whole Genome Sequencing on Circulating Cell-Free DNA Allows Reliable Noninvasive Copy-Number Profiling in Neuroblastoma Patients. Clin Cancer Res 23:6305-6314, 2017
- 35. Clay MR, Patel A, Tran Q, et al: Methylation profiling reveals novel molecular classes of rhabdomyosarcoma. Sci Rep 11:22213, 2021
- Koelsche C, Schrimpf D, Stichel D, et al: Sarcoma classification by DNA methylation profiling. Nat Commun 12:498, 2021
- 37. R2: Genomics Analysis and Visualization Platform
- Raos D, Ulamec M, Katusic Bojanac A, et al: Epigenetically inactivated RASSF1A as a tumor biomarker. Bosn J Basic Med Sci 21:386-397, 2021

- Niu H, Yang J, Yang K, et al: The relationship between RASSF1A promoter methylation and thyroid carcinoma: A meta-analysis of 14 articles and a bioinformatics of 2 databases (PRISMA). Medicine (Baltimore) 96:e8630, 2017
- 40. Xu G, Zhou X, Xing J, et al: Identification of RASSF1A promoter hypermethylation as a biomarker for hepatocellular carcinoma. Cancer Cell Int 20:547, 2020
- 41. Chen L, Shern JF, Wei JS, et al: Clonality and evolutionary history of rhabdomyosarcoma. PLoS Genet 11:e1005075, 2015
- 42. Lynn M, Shah N, Conroy J, et al: A study of alveolar rhabdomyosarcoma copy number alterations by single nucleotide polymorphism analysis. Appl Immunohistochem Mol Morphol 22:213-21, 2014
- Laughton SJ, Ashton LJ, Kwan E, et al: Early responses to chemotherapy of normal and malignant hematologic cells are prognostic in children with acute lymphoblastic leukemia. J Clin Oncol 23:2264-71, 2005
- 44. van Dongen JJ, Seriu T, Panzer-Grumayer ER, et al: Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet 352:1731-8, 1998



## Supplemental figures and tables



|        |      | Patien              | it characteris | stics |      | cfDN                 | A techniq           | ue                 | RNA                | Surv<br>outc       |                  |
|--------|------|---------------------|----------------|-------|------|----------------------|---------------------|--------------------|--------------------|--------------------|------------------|
| RMSnr  | Ageª | Gender <sup>ь</sup> | Histology      | Sized | Risk | RASSF1A <sup>f</sup> | cfRRBS <sup>9</sup> | shWGS <sup>h</sup> | PB/BM <sup>i</sup> | Event <sup>j</sup> | DOD <sup>k</sup> |
| RMS004 | 2    | 2                   | 0              | 2     | 5    | 1                    | -                   | -                  | 1                  | 1                  | 1                |
| RMS005 | 1    | 2                   | 0              | 1     | 2    | 0                    | 1                   | 2                  | 0                  | 0                  | 0                |
| RMS007 | 2    | 1                   | 1              | 2     | 5    | 1                    | -                   | 1                  | 1                  | 1                  | 1                |
| RMS010 | 1    | 1                   | 0              | 2     | 5    | 1                    | 1                   | 1                  | 2                  | 1                  | 1                |
| RMS011 | 1    | 1                   | 1              | 2     | 5    | 1                    | 0                   | 2                  | 0                  | 1                  | 1                |
| RMS012 | 2    | 2                   | 1              | 2     | 3    | 0                    | -                   | -                  | 0                  | 0                  | 0                |
| RMS013 | 1    | 2                   | 0              | 1     | 2    | 0                    | -                   | -                  | 0                  | 0                  | 0                |
| RMS014 | 1    | 1                   | 0              | 1     | 5    | 0                    | 2                   | 0                  | 0                  | 0                  | 0                |
| RMS017 | 2    | 1                   | 0              | 2     | 5    | 1                    | 1                   | 1                  | 2                  | 1                  | 1                |
| RMS018 | 1    | 2                   | 0              | 2     | 3    | 0                    | -                   | -                  | -                  | 0                  | 0                |
| RMS022 | 1    | 1                   | 0              | 2     | 5    | 1                    | 1                   | 1                  | 2                  | 1                  | 1                |
| RMS026 | 1    | 2                   | 1              | 2     | 5    | 1                    | -                   | -                  | 1                  | 1                  | 1                |
| RMS027 | 2    | 1                   | 0              | 1     | 2    | 0                    | 1                   | 1                  | 0                  | 0                  | 0                |
| RMS030 | 2    | 1                   | 1              | 2     | 4    | 1                    | -                   | -                  | 0                  | 1                  | 1                |
| RMS032 | 1    | 1                   | 2              | 1     | 2    | 1                    | -                   | -                  | 0                  | 0                  | 0                |
| RMS033 | 1    | 1                   | 0              | 2     | 2    | 0                    | 1                   | 0                  | 0                  | 0                  | 0                |
| RMS037 | 2    | 1                   | 1              | 2     | 5    | 0                    | -                   | -                  | 1                  | 0                  | 0                |
| RMS039 | 1    | 1                   | 0              | 1     | 2    | 1                    | -                   | -                  | 0                  | 0                  | 0                |
| RMS044 | 1    | 1                   | 0              | 1     | 2    | 0                    | 1                   | 0                  | 0                  | 0                  | 0                |
| RMS046 | 2    | 1                   | 0              | 2     | 5    | 0                    | 1                   | 1                  | 0                  | 0                  | 0                |
| RMS047 | 0    | 1                   | 0              | 1     | 2    | 1                    | 1                   | 1                  | 0                  | 0                  | 0                |
| RMS051 | 2    | 1                   | 0              | 1     | 2    | 1                    | -                   | -                  | 0                  | 0                  | 0                |
| RMS052 | 2    | 1                   | 0              | 2     | 3    | 0                    | 2                   | 0                  | 0                  | 0                  | 0                |
| RMS053 | 1    | 2                   | 3              | 1     | 2    | 0                    | 1                   | 0                  | 0                  | 0                  | 0                |
| RMS060 | 1    | 1                   | 0              | 2     | 3    | 0                    | 1                   | 2                  | 0                  | 0                  | 0                |
| RMS061 | 1    | 2                   | 1              | 1     | 5    | 1                    | -                   | 1                  | 0                  | 0                  | 0                |
| RMS063 | 2    | 1                   | 0              | 1     | 2    | 0                    | 1                   | 0                  | 0                  | 0                  | 0                |
| RMS067 | 1    | 1                   | 1              | 1     | 5    | 1                    | -                   | 1                  | 1                  | 0                  | 0                |
| RMS071 | 2    | 2                   | 1              | 1     | 3    | 0                    | -                   | -                  | 0                  | 0                  | 0                |
| RMS080 | 1    | 1                   | 1              | 2     | 5    | 1                    | -                   | -                  | 2                  | 1                  | 0                |
| RMS083 | 1    | 2                   | 1              | 2     | 4    | 1                    | -                   | -                  | 0                  | 0                  | 0                |
| RMS086 | 2    | 2                   | 1              | 2     | 3    | 0                    | -                   | -                  | 0                  | 0                  | 0                |
| RMS087 | 1    | 2                   | 0              | 1     | 2    | 0                    | 2                   | 1                  | 1                  | 1                  | 0                |
| RMS090 | 2    | 2                   | 0              | 2     | 3    | 1                    | 1                   | 1                  | 2                  | 1                  | 1                |
| RMS092 | 2    | 1                   | 1              | 2     | 5    | 1                    | -                   | 1                  | 1                  | 1                  | 1                |

**Supplemental Table S1.** Patient characteristics, cell-free (cfDNA) techniques applied at diagnosis, and outcome.

#### Supplemental Table S1. Continued

|        |      | Patien              | nt characteris | stics |                   | cfDN                 | IA techniq          | ue                 | RNA                | Surv               |                  |
|--------|------|---------------------|----------------|-------|-------------------|----------------------|---------------------|--------------------|--------------------|--------------------|------------------|
| RMSnr  | Ageª | Gender <sup>ь</sup> | Histology      | Sized | Risk <sup>e</sup> | RASSF1A <sup>f</sup> | cfRRBS <sup>9</sup> | shWGS <sup>h</sup> | PB/BM <sup>i</sup> | Event <sup>j</sup> | DOD <sup>k</sup> |
| RMS096 | 1    | 2                   | 4              | 2     | 3                 | 1                    | -                   | -                  | 0                  | 0                  | 0                |
| RMS102 | 2    | 1                   | 0              | 1     | 2                 | 0                    | 1                   | 0                  | 0                  | 0                  | 0                |
| RMS106 | 2    | 2                   | 0              | 2     | 5                 | 0                    | 1                   | 1                  | 2                  | 0                  | 0                |
| RMS109 | 1    | 2                   | 1              | 2     | 3                 | 0                    | -                   | -                  | 0                  | 0                  | 0                |
| RMS110 | 1    | 2                   | 0              | 1     | 2                 | 0                    | 0                   | 0                  | 1                  | 1                  | 0                |
| RMS116 | 1    | 1                   | 0              | 1     | 2                 | 0                    | 1                   | 0                  | 0                  | 0                  | 0                |
| RMS118 | 1    | 1                   | 1              | 1     | 3                 | 0                    | -                   | -                  | 0                  | 0                  | 0                |
| RMS120 | 1    | 1                   | 0              | 2     | 2                 | 0                    | 1                   | 0                  | 0                  | 0                  | 0                |
| RMS121 | 1    | 1                   | 0              | 2     | 5                 | 0                    | 1                   | 1                  | 1                  | 0                  | 0                |
| RMS122 | 2    | 1                   | 0              | 2     | 5                 | 0                    | 1                   | 1                  | 0                  | 0                  | 0                |
| RMS123 | 2    | 1                   | 0              | 1     | 3                 | 1                    | 1                   | 1                  | 0                  | 0                  | 0                |
| RMS125 | 1    | 2                   | 0              | 1     | 2                 | 0                    | 1                   | 0                  | 0                  | 0                  | 0                |
| RMS126 | 2    | 1                   | 0              | 2     | 2                 | 0                    | -                   | -                  | 0                  | 0                  | 0                |
| RMS127 | 2    | 1                   | 1              | 1     | 5                 | 1                    | -                   | -                  | 1                  | 0                  | 0                |
| RMS128 | 2    | 2                   | 1              | 2     | 4                 | 0                    | -                   | -                  | 2                  | 1                  | 0                |
| RMS129 | 1    | 2                   | 0              | 2     | 5                 | 0                    | -                   | -                  | 1                  | 0                  | 0                |
| RMS132 | 2    | 1                   | 0              | 2     | 2                 | 0                    | -                   | -                  | 0                  | 0                  | 0                |
| RMS136 | 1    | 1                   | 0              | 2     | 2                 | 0                    | -                   | -                  | 0                  | 0                  | 0                |
| RMS138 | 2    | 1                   | 0              | 2     | 3                 | 0                    | -                   | -                  | 0                  | 1                  | 0                |
| RMS139 | 1    | 1                   | 0              | 1     | 1                 | 0                    | -                   | -                  | 0                  | 0                  | 0                |
| RMS140 | 1    | 1                   | 0              | 1     | 2                 | 0                    | -                   | -                  | 0                  | 0                  | 0                |
| RMS141 | 1    | 1                   | 0              | 2     | 5                 | 0                    | -                   | -                  | 0                  | 0                  | 0                |

-, test not performed; BM, bone marrow; cfRRBS, cell-free reduced representation bisulphite sequencing; DOD, died of disease; PB, peripheral blood; *RASSF1A*-M, methylated *RASSF1A*; RMSnr, patient research ID number (unique identifier); RNA, outcome of tumor-specific RNA panel as measured in blood and bone marrow; shWGS, shallow whole-genome sequencing;

<sup>a</sup> 0, <1 year; 1, 1-10 years; 2, >10 years

<sup>b</sup> 1, male; 2, female

<sup>c</sup> 0, embryonal; 1, alveolar; 2, spindle; 3, botryoid; 4, not otherwise specified

<sup>d</sup> 0, unknown; 1, <5 cm; 2, ≥5 cm

<sup>e</sup> EpSSG RMS2005 risk group: 1, low risk; 2, standard risk; 3, high risk; 4, very high risk; 5, metastatic

<sup>f</sup> 0, negative; 1, positive

- <sup>9</sup> 0, negative; 1, embryonal; 2, alveolar
- <sup>h</sup> 0, flat; 1, positive; 2, fail

<sup>1</sup>0, negative in both PB and BM; 1, positive in PB; 2, positive in BM

<sup>j</sup> 0, no event; 1, event (relapse, progressive disease, or disease-related death)

<sup>k</sup> 0, alive; 1; died of disease

|        |                     | RASSF                    | 1A                              | cfRRBS              | s                   | hWGS      |
|--------|---------------------|--------------------------|---------------------------------|---------------------|---------------------|-----------|
| RMSnr  | Result <sup>a</sup> | % RASSF1A-M <sup>b</sup> | Total cfDNA(ng/ml) <sup>c</sup> | Result <sup>d</sup> | Result <sup>e</sup> | CPAmscore |
| RMS004 | 1                   | 13.94                    | 6.87                            | -                   | -                   |           |
| RMS005 | 0                   | 0                        | 40.19                           | 1                   | 2                   |           |
| RMS007 | 1                   | 14.04                    | 21                              | -                   | 1                   |           |
| RMS010 | 1                   | 7.8                      | 56.65                           | 1*                  | 1†                  | 3.6268    |
| RMS011 | 1                   | 3.67                     | 11.51                           | 0*                  | 2†                  |           |
| RMS012 | 0                   | 0                        | 15.4                            | -                   | -                   |           |
| RMS013 | 0                   | 0                        | 12.71                           | -                   | -                   |           |
| RMS014 | 0                   | 0                        | 9.46                            | 2                   | 0                   | 0.3362    |
| RMS017 | 1                   | 42.04                    | 11.15                           | 1*                  | 1†                  |           |
| RMS018 | 0                   | 0                        | 13.09                           | -                   | -                   |           |
| RMS022 | 1                   | 78.14                    | 6.87                            | 1*                  | 1†                  |           |
| RMS026 | 1                   | 92.75                    | 428.69                          | -                   | -                   |           |
| RMS027 | 0                   | 0                        | 12.96                           | 1                   | 1                   | 0.3626    |
| RMS030 | 1                   | 48.03                    | 8.95                            | -                   | -                   |           |
| RMS032 | 1                   | 71.28                    | 3.11                            | -                   | -                   |           |
| RMS033 | 0                   | 0                        | 6.48                            | 1                   | 0                   | 0.3028    |
| RMS037 | 0                   | 0                        | 21.91                           | -                   | -                   |           |
| RMS039 | 1                   | 8.54                     | 7.26                            | -                   | -                   |           |
| RMS044 | 0                   | 0                        | 62.23                           | 1                   | 0                   | 0.3187    |
| RMS046 | 0                   | 0                        | 12.16                           | 1                   | 1                   | 0.4198    |
| RMS047 | 1                   | 27.98                    | 6.48                            | 1                   | 1                   | 3.831     |
| RMS051 | 1                   | 51.96                    | 4.15                            | -                   | -                   |           |
| RMS052 | 0                   | 0                        | 10.37                           | 2                   | 0                   | 0.3437    |
| RMS053 | 0                   | 0                        | 9.08                            | 1                   | 0                   | 0.2884    |
| RMS060 | 0                   | 0                        | 23.85                           | 1                   | 2                   |           |
| RMS061 | 1                   | 34.8                     | 17.63                           | -                   | 1†                  |           |
| RMS063 | 0                   | 0                        | 7.78                            | 1                   | 0                   | 0.2705    |
| RMS067 | 1                   | 15.12                    | 18.21                           | -                   | 1†                  |           |
| RMS071 | 0                   | 0                        | 10.89                           | -                   | -                   |           |
| RMS080 | 1                   | 14.13                    | 24.76                           | -                   | -                   |           |
| RMS083 | 1                   | 5.15                     | 14.99                           | -                   | -                   |           |
| RMS086 | 0                   | 0                        | 43.39                           | -                   | -                   |           |
| RMS087 | 0                   | 0                        | 12.71                           | 2                   | 1                   | 0.3573    |
| RMS090 | 1                   | 10.95                    | 34.1                            | 1                   | 1                   | 1.5756    |

**Supplemental Table S2.** Detailed results of the various cell-free DNA (cfDNA) techniques performed on diagnostic plasma samples.

|        |         | RASSF                    | 1A                              | cfRRBS              | s                   | hWGS      |
|--------|---------|--------------------------|---------------------------------|---------------------|---------------------|-----------|
| RMSnr  | Resultª | % RASSF1A-M <sup>b</sup> | Total cfDNA(ng/ml) <sup>c</sup> | Result <sup>d</sup> | Result <sup>e</sup> | CPAmscore |
| RMS092 | 1       | 33.77                    | 117.07                          | -                   | 1†                  |           |
| RMS096 | 1       | 9.63                     | 11.8                            | -                   | -                   |           |
| RMS102 | 0       | 0                        | 124.46                          | 1                   | 0                   | 0.3532    |
| RMS106 | 0       | 0                        | 190.675                         | 1                   | 1                   | 0.3568    |
| RMS109 | 0       | 0                        | 5.445                           | -                   | -                   |           |
| RMS110 | 0       | 0                        | 5.445                           | 0                   | 0                   | 0.3095    |
| RMS116 | 0       | 0                        | 17.11                           | 1                   | 0                   | 0.3409    |
| RMS118 | 0       | 0                        | 10.37                           | -                   | -                   |           |
| RMS120 | 0       | 0                        | 11.36                           | 1                   | 0                   | 0.2782    |
| RMS121 | 0       | 0                        | 5.1                             | 1                   | 1                   | 0.7034    |
| RMS122 | 0       | 0                        | 65.13                           | 1                   | 1                   | 3.9445    |
| RMS123 | 1       | 2                        | 11.75                           | 1                   | 1                   | 1.4441    |
| RMS125 | 0       | 0                        | 3.11                            | 1                   | 0                   | 0.3143    |
| RMS126 | 0       | 0                        | 46.41                           | -                   | -                   |           |
| RMS127 | 1       | 72.58                    | 536.72                          | -                   | -                   |           |
| RMS128 | 0       | 0                        | 10.11                           | -                   | -                   |           |
| RMS129 | 0       | 0                        | 47.97                           | -                   | -                   |           |
| RMS132 | 0       | 0                        | 41.75                           | -                   | -                   |           |
| RMS136 | 0       | 0                        | 130.55                          | -                   | -                   |           |
| RMS138 | 0       | 0                        | 7.65                            | -                   | -                   |           |
| RMS139 | 0       | 0                        | 28.39                           | -                   | -                   |           |
| RMS140 | 0       | 0                        | 3.24                            | -                   | -                   |           |
| RMS141 | 0       | 0                        | 14                              | -                   | -                   |           |

#### Supplemental Table S2. Continued

-, test not performed; BM, bone marrow; cfRRBS, cell-free reduced representation bisulphite sequencing; CPAm score, copy number tumor burden score; *RASSF1A*-M, methylated *RASSF1A*; RMSnr, patient research ID number (unique identifier); shWGS, shallow whole-genome sequencing.

<sup>a</sup> 0, negative; 1, positive

<sup>b</sup> Percentage of RASSF1A-M, calculated relative to total RASSF1A

<sup>c</sup> Total level of cell-free DNA as determined using the reference gene ACTB

<sup>d</sup> 0, negative; 1, embryonal; 2, alveolar

<sup>e</sup> 0, flat; 1, positive; 2, fail

t= samples already included in paper by van Paemel et al (1)

|        | RASSF1A             | Droplets                | АСТВ             | RASSF1A-M        |
|--------|---------------------|-------------------------|------------------|------------------|
| RMSnr  | Result <sup>a</sup> | RASSF1A-M+ <sup>b</sup> | copies/ml plasma | copies/ml plasma |
| RMS004 | 1                   | 14                      | 2082             | 251              |
| RMS005 | 0                   | 2                       | 12179            | 19.6             |
| RMS007 | 1                   | 44                      | 6364             | 707              |
| RMS010 | 1                   | 46                      | 17168            | 825              |
| RMS011 | 1                   | 7                       | 3488.571         | 97.43            |
| RMS012 | 0                   | 0                       | 4667             | 0                |
| RMS013 | 0                   | 0                       | 3850             | 0                |
| RMS014 | 0                   | 0                       | 2868             | 0                |
| RMS017 | 1                   | 96                      | 3379             | 1689             |
| RMS018 | 0                   | 2                       | 3968             | 10               |
| RMS022 | 1                   | 80                      | 2082             | 1257             |
| RMS026 | 1                   | 9223                    | 129905           | 82762            |
| RMS027 | 0                   | 1                       | 3929             | 24               |
| RMS030 | 1                   | 77                      | 2711             | 1139             |
| RMS032 | 1                   | 24                      | 943              | 358              |
| RMS033 | 0                   | 0                       | 1964             | 0                |
| RMS037 | 0                   | 0                       | 6639             | 0                |
| RMS039 | 1                   | 10                      | 2200             | 165              |
| RMS044 | 0                   | 0                       | 18857            | 0                |
| RMS046 | 0                   | 2                       | 0                | 3685             |
| RMS047 | 1                   | 45                      | 1964             | 483              |
| RMS051 | 1                   | 25                      | 1257             | 511              |
| RMS052 | 0                   | 0                       | 3143             | 0                |
| RMS053 | 0                   | 0                       | 2750             | 0                |
| RMS060 | 0                   | 1                       | 7229             | 31               |
| RMS061 | 1                   | 150                     | 5343             | 2671             |
| RMS063 | 0                   | 0                       | 2357             | 0                |
| RMS067 | 1                   | 142                     | 5520             | 746              |
| RMS071 | 0                   | 0                       | 3300             | 0                |
| RMS080 | 1                   | 47                      | 7504             | 982              |
| RMS083 | 1                   | 43                      | 4541             | 184              |
| RMS086 | 0                   | 0                       | 13148            | 0                |
| RMS087 | 0                   | 0                       | 3850             | 0                |
| RMS090 | 1                   | 160                     | 10332            | 1159             |
| RMS092 | 1                   | 537                     | 35475            | 11039            |

#### Supplemental Table S3. Detailed results of diagnostic plasmas analyzed by RASSF1A-M ddPCR.

|        | RASSF1A | Droplets                | АСТВ             | RASSF1A-M        |
|--------|---------|-------------------------|------------------|------------------|
| RMSnr  | Result  | RASSF1A-M+ <sup>b</sup> | copies/ml plasma | copies/ml plasma |
| RMS096 | 1       | 11                      | 3575             | 216              |
| RMS102 | 0       | 0                       | 37714            | 0                |
| RMS102 | 0       | 0                       | 5775             | 0                |
| RMS109 | 0       | 0                       | 1650             | 0                |
|        |         |                         |                  |                  |
| RMS110 | 0       | 0                       | 1650             | 0                |
| RMS116 | 0       | 0                       | 5186             | 0                |
| RMS118 | 0       | 0                       | 3143             | 0                |
| RMS120 | 0       | 0                       | 3441             | 0                |
| RMS121 | 0       | 3                       | 1545             | 21.0             |
| RMS122 | 0       | 2                       | 19737            | 7.86             |
| RMS123 | 1       | 9                       | 3562             | 65.48            |
| RMS125 | 0       | 1                       | 943              | 7.9              |
| RMS126 | 0       | 0                       | 14064            | 0                |
| RMS127 | 1       | 6162                    | 162643           | 120607           |
| RMS128 | 0       | 3                       | 3064             | 59               |
| RMS129 | 0       | 0                       | 14536            | 0                |
| RMS132 | 0       | 0                       | 12650            | 0                |
| RMS136 | 0       | 0                       | 39561            | 0                |
| RMS138 | 0       | 0                       | 2318             | 0                |
| RMS139 | 0       | 0                       | 8604             | 0                |
| RMS140 | 0       | 0                       | 982              | 0                |
| RMS141 | 0       | 0                       | 4243             | 0                |

#### Supplemental Table S3. Continued

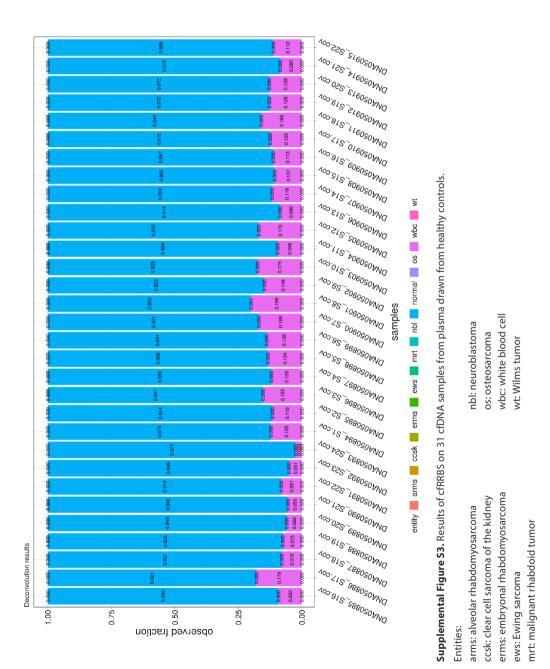
<sup>a</sup> 0, negative; 1, positive

<sup>b</sup> number of RASSF1A-M positive droplets per sample

| RMSnr                | cfRRBS | cfDNA<br>shWG5 | RASSF1A | RNA<br>panel | Outco<br>Event | ome<br>DOD |
|----------------------|--------|----------------|---------|--------------|----------------|------------|
| RM5092               |        |                |         |              | 1              | 1          |
| RM5010               |        |                |         |              | 1              | 1          |
| RM5017               |        |                |         |              | 1              | 1          |
| RMS022               |        |                |         |              | 1              | 1          |
| RMS047               |        |                |         |              | 0              | 0          |
| RMS090               |        |                |         |              | 1              | 1          |
| RM5123               |        |                |         |              | 0              | 0          |
| RMS027               |        |                |         |              | 0              | 0          |
| RMS046               |        |                |         |              | 0              | 0          |
| RMS087               |        |                |         |              | 1              | 0          |
| RMS106               |        |                |         |              | 0              | 0          |
| RMS121<br>RMS122     |        |                |         |              | 0              | 0          |
| RIVIS122<br>RIVIS033 |        |                |         |              | 0              | 0          |
| RM5044               |        |                |         |              | 0              | 0          |
| RMS053               |        |                |         |              | 0              | 0          |
| RM5063               |        |                |         |              | 0              | 0          |
| RM5102               |        |                |         |              | 0              | 0          |
| RM5116               |        |                |         |              | 0              | 0          |
| RM5120               |        |                |         |              | 0              | 0          |
| RMS125               |        |                |         |              | 0              | 0          |
| RMS014               |        |                |         |              | 0              | 0          |
| RM5052               |        |                |         |              | 0              | 0          |
| RMS026               |        |                |         |              | 1              | 1          |
| RMS080               |        |                |         |              | 1              | 0          |
| RMS037               |        |                |         |              | 0              | 0          |
| RM5128               |        |                |         |              | 1              | 0          |
| RMS007               |        |                |         |              | 1              | 1          |
| RMS061               |        |                |         |              | 0              | 0          |
| RMS067               |        |                |         |              | 0              | 0          |
| RMS011<br>RMS005     |        |                |         |              | 0              | 0          |
| RMS060               |        |                |         |              | 0              | 0          |
| RM5110               |        |                |         |              | 1              | 0          |
| RM5004               |        |                |         |              | 1              | 1          |
| RM5030               |        |                |         |              | 1              | 1          |
| RMS032               |        |                |         |              | 0              | 0          |
| RMS039               |        |                |         |              | 0              | 0          |
| RMS051               |        |                |         |              | 0              | 0          |
| RMS083               |        |                |         |              | 0              | 0          |
| RM5096               |        |                |         |              | 0              | 0          |
| RM5127               |        |                |         |              | 0              | 0          |
| RM5012               |        |                |         |              | 0              | 0          |
| RMS013               |        |                |         |              | 0              | 0          |
| RM5018               |        |                |         |              | 0              | 0          |
| RMS071               |        |                |         |              | 0              | 0          |
| RMS086               |        |                |         |              | 0              | 0          |
| RMS109<br>RMS118     |        |                |         |              | 0              | 0          |
| RIVIS118<br>RIVIS126 |        |                |         |              | 0              | 0          |
| RIVIS126<br>RIVIS129 |        |                |         |              | 0              | 0          |
| RMS123               |        |                |         |              | 0              | 0          |
| RMS132               |        |                |         |              | 0              | 0          |
| RM5138               |        |                |         |              | 1              | 0          |
| RM5139               |        |                |         |              | 0              | 0          |
| RM5140               |        |                |         |              | 0              | 0          |
| RM5141               |        |                |         |              | 0              | 0          |

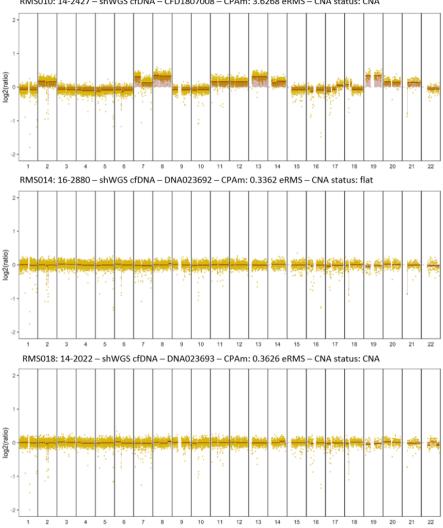
**Supplemental Figure S2.** Results of the cell-free (cfDNA) techniques performed on diagnostic plasma samples, as well as testing rhabdomyosarcoma-specific RNA and survival outcome.

cfRRBS, cell-free reduced representation bisulphite sequencing; RNA panel, presence of rhabdomyosarcoma-specific RNA in the cellular fraction of blood and/ or bone marrow; *RASSF1A-M*, methylated *RASSF1A*; RMSnr, patient research ID number (unique identifier); shWGS, shallow whole-genome sequencing.


For events: 0, no event; 1, event (relapse, progressive disease, or disease-related death). For DOD: 0, alive; 1; died of disease.

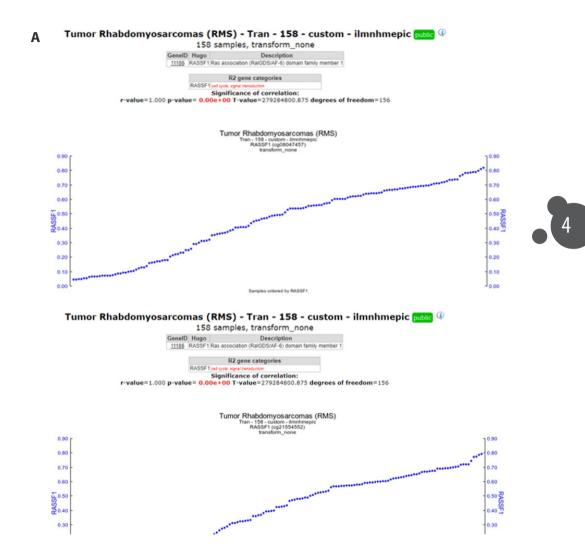


technique positive technique negative


technique not performed

ctDNA detected but not matching clinical subtype

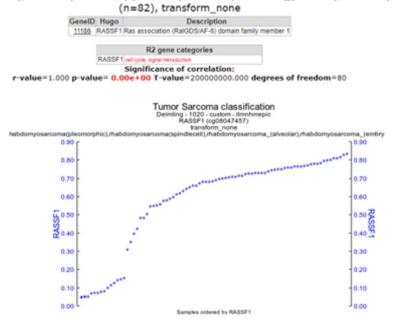



Cell-free DNA as a diagnostic and prognostic biomarker in pediatric rhabdomyosarcoma | 121

4

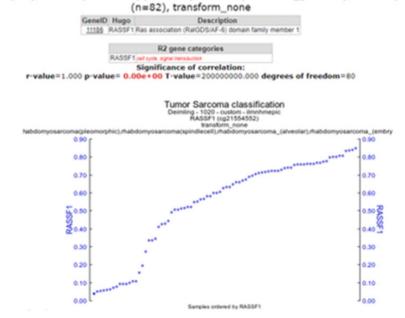


RMS010: 14-2427 - shWGS cfDNA - CFD1807008 - CPAm: 3.6268 eRMS - CNA status: CNA

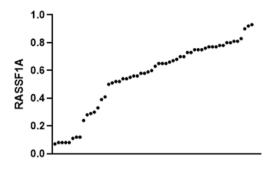

Supplemental Figure S4. Three representative examples of shWGS data obtained for three separate patients. Above each plot is the RMS patient ID, sample ID number, technique performed (shWGS on cfDNA), ID number for the technique, CPAm score, histologic subtype (in all case, embryonal), and CNA (copy number aberration) status. For this analysis, a 1% false discovery rate was set at 0.3549618.



**Supplemental Figure S5.** Overview of RASSF1A methylation in rhabdomyosarcoma tumors from 3 different datasets.


## B Tumor Sarcoma classification - Deimling - 1020 - custom - ilmnhmepic 📷

ma(pleomorphic), rhabdomy os ar coma (spindlecell), rhabdomy os ar coma\_(alveolar), rhabdomy o

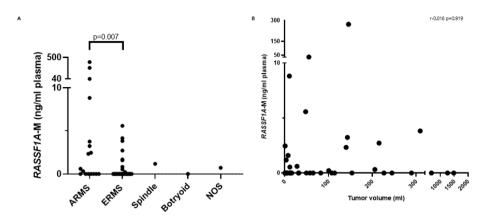


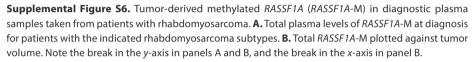

Tumor Sarcoma classification - Deimling - 1020 - custom - ilmnhmepic 🄜

ma(pleomorphic),rhabdomyosarcoma(spindlecell),rhabdomyosarcoma\_(alveolar),rhabdomyo



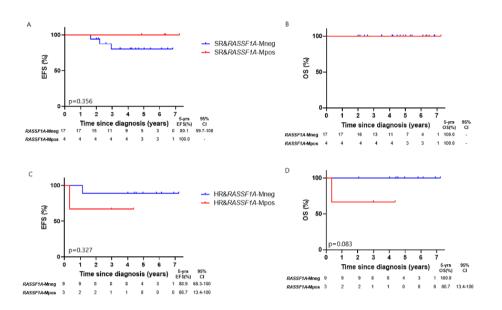
#### C Methylation of RASSF1A (cg00777121) in rhabdomyosarcoma (n=56) data from Seki et al





samples ordered by RASSF1A

| Dataset  | Number of<br>rhabdomyosarcoma<br>tumors | Probe      | Mean  | Range       |
|----------|-----------------------------------------|------------|-------|-------------|
| Tran     | 82                                      | cg08047457 | 0.444 | 0.044-0.818 |
| ITall    | 82                                      | cg21554552 | 0.394 | 0.032-0.791 |
| Deimling | 158                                     | cg08047457 | 0.580 | 0.049-0.833 |
| Denning  | 130                                     | cg21554552 | 0.540 | 0.04-0.850  |
| Seki     | 56                                      | cg00777121 | 0.790 | 0.073-0.933 |

**Supplemental Figure S5.** Overview of RASSF1A methylation in rhabdomyosarcoma tumors from 3 different datasets. **A.** Data from Tran (as published in the paper by Clay *et al*(2)) analyzed in R2(3), on methylation of *RASSF1A* in 158 rhabdomyosarcoma tumors on cg08047457 and cg21554552, respectively (cg00777121 not available in this dataset). **B.** Data from Deimling (as published in the paper by Koelsche *et al*(4)) analyzed in R2(3), on methylation of *RASSF1A* in 82 rhabdomyosarcoma tumors on cg08047457 and cg21554552, respectively (cg00777121 not available in R2(3), on methylation of *RASSF1A* in 82 rhabdomyosarcoma tumors on cg08047457 and cg21554552, respectively (cg00777121 not available in this dataset) **C.** Data on methylation of RASSF1A from the dataset from Seki et al (5) on cg00777121 (data on cg08047457 and cg21554552 not available), received on specific request. **D.** Overview of mean methylation (beta values) of the different datasets according to their respective Illumina probes and the range.


D





In this figure, each symbol represents an individual patient. Tumor size was determined by MRI, CT-scan or ultrasonography.

NOS, not otherwise specified.



**Supplemental Figure S7.** Survival outcome defined by detection of cell-free methylated *RASSF1A* (*RASSF1A*-M) at diagnosis. **A** and **B**. Event-free survival (EFS) overall survival (OS) of *RASSF1A*-M-negative patients (n=17) and *RASSF1A*-M-positive patients (n=4) with standard risk. **C** and **D**. EFS and OS of *RASSF1A*-M-negative patients (n=9) and *RASSF1A*-M-positive patients (n=3) with high risk.

**Supplemental table S4.** Number of patients tested by both RASSF1A-M ddPCR and shWGS for copy number aberration and number of events (in brackets).

|           | shWGS             |                   |                |
|-----------|-------------------|-------------------|----------------|
| RASSF1A-M | Negative (events) | Positive (events) | Total (events) |
| Negative  | 11 (1)            | 6 (1)             | 17 (2)         |
| positive  | 0                 | 10 (6)            | 10 (6)         |
| Total     | 11 (1)            | 16 ( <i>7</i> )   | 27 (8)         |
|           |                   |                   |                |

| RMSnr  | RASSF1A-M <sup>a</sup> | RNA panel <sup>ь</sup> | BM histology <sup>c</sup> | <b>Event</b> <sup>d</sup> | DOD <sup>e</sup> |
|--------|------------------------|------------------------|---------------------------|---------------------------|------------------|
| RMS004 | 1                      | 0                      | 0                         | 1                         | 1                |
| RMS007 | 1                      | 2                      | 1                         | 1                         | 1                |
| RMS010 | 1                      | 1                      | 0                         | 1                         | 1                |
| RMS017 | 1                      | 1                      | 0                         | 1                         | 1                |
| RMS022 | 1                      | 1                      | 1                         | 1                         | 1                |
| RMS026 | 1                      | 2                      | 1                         | 1                         | 1                |
| RMS037 | 0                      | 2                      | 0                         | 0                         | 0                |
| RMS067 | 1                      | 2                      | 1                         | 0                         | 0                |
| RMS080 | 1                      | 1                      | 0                         | 1                         | 0                |
| RMS087 | 0                      | 0                      | 0                         | 1                         | 0                |
| RMS090 | 1                      | 1                      | 0                         | 1                         | 1                |
| RMS092 | 1                      | 2                      | 1                         | 1                         | 1                |
| RMS106 | 0                      | 1                      | 1                         | 0                         | 0                |
| RMS110 | 0                      | 0                      | 0                         | 1                         | 0                |
| RMS121 | 0                      | 2                      | 1                         | 0                         | 0                |
| RMS127 | 1                      | 2                      | 1                         | 0                         | 0                |
| RMS128 | 0                      | 1                      | 0                         | 1                         | 0                |
| RMS129 | 0                      | 0                      | 0                         | 0                         | 0                |

**Supplemental Table S5.** Details on the samples that tested positive in the cellular fraction of blood and or bone marrow for the rhabdomyosarcoma-specific RNA panel.

BM, bone marrow; DOD, died of disease; *RASSF1A*-M, methylated *RASSF1A* as measured by ddPCR on cfDNA; RMSnr, patient research ID number (unique identifier);

<sup>a</sup> 0, negative; 1, positive

<sup>b</sup> 0, only peripheral blood positive; 1, only bone marrow positive; 2, blood and bone marrow positive

<sup>c</sup> 0, bone marrow negative by conventional immunohistochemistry; 1, bone marrow positive by conventional immunohistochemistry

<sup>d</sup> 0, no event; 1, event (relapse, progressive disease, death)

e0, alive; 1, died of disease

**Supplemental Table S6.** Hazard ratios with 95% CI estimated with an univariate Cox proportional hazard regression model for event-free survival.

|                                   | Hazard ratio (95% CI) |
|-----------------------------------|-----------------------|
| RASSF1A-M-positive                | 5.03 (1.75-14.52)     |
| RNA-positive                      | 10.01 (3.22-31.09)    |
| Standard risk                     | 1                     |
| High risk                         | 1.79 (0.36-8.87)      |
| Metastatic disease                | 4.19 (1.13-15.53)     |
| Localized vs metastatic disease   | 2.97 (1.10-8.01)      |
| Alveolar rhabdomyosarcoma subtype | 2.07 (0.80-5.35)      |
| Age >10 years                     | 2.38 (0.90-6.27)      |
| Tumor size >5cm                   | 7.21 (1.64-31.62)     |
| Lymph node involvement            | 1.89 (0.70-5.08)      |

*RASSF1A-*M, methylated *RASSF1A*; RNA-positive, positive for rhabdomyosarcoma-specific RNA panel in blood and/or bone marrow.

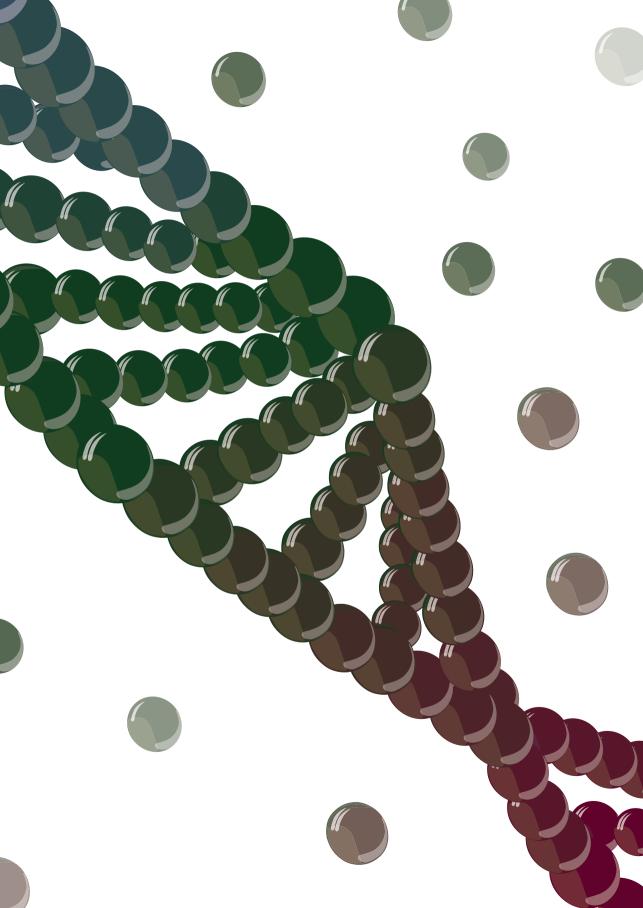
|        | luring primary treatment or during a |             | SF1A-M              |
|--------|--------------------------------------|-------------|---------------------|
| RMSnr  | Time point                           | % RASSF1A-M | Total cfDNA (ng/ml) |
| RMS025 | 2nd relapse                          | 0.63        | 10.94               |
| RMS025 | 3 month 2nd relapse                  | 0           | 9.13                |
| RMS025 | Eot 2nd relapse                      | 0           | 17.89               |
| RMS026 | Diagnosis                            | 92.75       | 428.69              |
| RMS026 | Before 5 CT                          | 0           | 9.85                |
| RMS026 | 6 month maint                        | 0           | 5.70                |
| RMS026 | FUP                                  | 0           | 13.14               |
| RMS061 | Diagnosis                            | 34.8        | 17.63               |
| RMS061 | After 2 CT                           | 64.25       | 15.82               |
| RMS061 | After 4 CT                           | 0           | 23.72               |
| RMS061 | 1 month maint                        | 0           | 27.38               |
| RMS061 | 3 month maint                        | 0           | 10.8                |
| RMS061 | 9 month maint                        | 0           | 9.33                |
| RMS061 | 4 months after end of maint          | 0           | 12.71               |
| RMS073 | 1st relapse                          | 3.83        | 7.67                |
| RMS080 | Diagnosis                            | 14.13       | 24.76               |
| RMS080 | 1st relapse                          | 0.59        | 11.1                |
| RMS083 | Diagnosis                            | 5.15        | 14.99               |
| RMS083 | After 2 CT                           | 0.33        | 62.02               |
| RMS083 | After 3 CT                           | 0           | 9.44                |
| RMS083 | After 4 CT                           | 0           | 12.86               |
| RMS083 | Eot                                  | 0           | 9.01                |
| RMS083 | 3 month maint                        | 0           | 16.49               |
| RMS083 | End of maint                         | 0           | 10.16               |
| RMS092 | Diagnosis                            | 33.77       | 117.07              |
| RMS092 | Before 2 CT                          | 0           | 27.61               |
| RMS092 | After 3 CT                           | 0           | 20.48               |
| RMS092 | Eot                                  | 0           | 44.60               |
| RMS092 | 4 month PD                           | 0           | 22.30               |
| RMS092 | 10 month PD                          | 0           | 9.33                |
| RMS092 | 14 month PD                          | 0           | 14.57               |
| RMS131 | 2nd relapse                          | 0           | 8.30                |
| RMS133 | PD in prim                           | 0           | 8.29                |
| RMS137 | 1st relapse                          | 13.49       | 34.54               |

**Supplemental Table S7.** Overview of all plasma samples available for 10 patients tested positive for *RASSF1A-M* during primary treatment or during an event.

-, test not performed; 3 month 2nd relapse, 3 months of relapse therapy for the second relapse; 3 month PD, 3 months of progressive disease therapy; 6 month maint, 6 months of maintenance therapy; 8kpt, patient-specific fusion gene breakpoint; CT, chemotherapy course; Eot, end of treatment; FUP, during clinical follow-up without therapy; PD in prim, progressive disease during primary treatment; *RASSF1A-M*, methylated *RASSF1A*; RMSnr, patient research ID number (unique identifier).

| RMSnr  | Time point                  | RASSF1A-M<br>result <sup>a</sup> | RASSF1A-M+<br>droplets <sup>b</sup> | ACTB<br>copies/ml plasma | RASSf1A-M<br>copies/ml plasma |
|--------|-----------------------------|----------------------------------|-------------------------------------|--------------------------|-------------------------------|
| RMS025 | 3 month 2nd<br>relapse      | 0                                | 0                                   | 2766                     | 0                             |
| RMS025 | Eot 2nd relapse             | 0                                | 0                                   | 5421                     | 0                             |
| RMS026 | Diagnosis                   | 1                                | 9223                                | 129905                   | 82762                         |
| RMS026 | Before 5 CT                 | 0                                | 1                                   | 2986                     | 8                             |
| RMS026 | 6 month maint               | 0                                | 0                                   | 1729                     | 0                             |
| RMS026 | FUP                         | 0                                | 0                                   | 3981                     | 0                             |
| RMS061 | Diagnosis                   | 1                                | 150                                 | 5343                     | 2671                          |
| RMS061 | After 2 CT                  | 1                                | 0                                   | 27284                    | 0                             |
| RMS061 | After 4 CT                  | 0                                | 0                                   | 7189                     | 0                             |
| RMS061 | 1 month maint               | 0                                | 0                                   | 8297.142857              | 0                             |
| RMS061 | 3 month maint               | 0                                | 0                                   | 3274                     | 0                             |
| RMS061 | 9 month maint               | 0                                | 1                                   | 2828.571429              | 31                            |
| RMS061 | 4 months after end of maint | 0                                | 1                                   | 3850                     | 8                             |
| RMS073 | 1st relapse                 | 1                                | 19                                  | 2325.714286              | 77                            |
| RMS080 | Diagnosis                   | 1                                | 47                                  | 7503.571429              | 982                           |
| RMS080 | 1st relapse                 | 1                                | 4                                   | 3362.857143              | 20                            |
| RMS083 | Diagnosis                   | 1                                | 43                                  | 4541                     | 184                           |
| RMS083 | After 2 CT                  | 1                                | 16                                  | 18794                    | 72                            |
| RMS083 | After 3 CT                  | 0                                | 1                                   | 2860                     | 5                             |
| RMS083 | After 4 CT                  | 0                                | 0                                   | 3897                     | 0                             |
| RMS083 | Eot                         | 0                                | 0                                   | 2730                     | 0                             |
| RMS083 | 3 month maint               | 0                                | 0                                   | 4997                     | 0                             |
| RMS083 | End of maint                | 0                                | 0                                   | 3080                     | 0                             |
| RMS092 | Diagnosis                   | 1                                | 537                                 | 35475                    | 11039                         |
| RMS092 | Before 2 CT                 | 0                                | 1                                   | 8368                     | 6                             |
| RMS092 | After 3 CT                  | 0                                | 0                                   | 6207                     | 0                             |
| RMS092 | Eot                         | 0                                | 1                                   | 13514                    | 12                            |
| RMS092 | 4 month PD                  | 0                                | 0                                   | 6757                     | 0                             |
| RMS092 | 10 month PD                 | 0                                | 0                                   | 2829                     | 0                             |
| RMS092 | 14 month PD                 | 0                                | 0                                   | 4416                     | 0                             |
| RMS131 | 2nd relapse                 | 0                                | 7854                                | 54057                    | 37871                         |
| RMS133 | PD in prim                  | 0                                | 0                                   | 2514                     | 0                             |
| RMS137 | 1st relapse                 | 1                                | 268                                 | 10466                    | 1226                          |

#### Supplemental Table S3. Detailed results of follow-up plasmas analyzed by RASSF1A-M ddPCR.


<sup>a</sup> 0, negative; 1, positive

<sup>b</sup> number of RASSF1A-M positive droplets per sample

## **References for Supplemental Figures and Tables**

- 1. Van Paemel R, Vandeputte C, Raman L, Van Thorre J, Willems L, Van Dorpe J, et al. The feasibility of using liquid biopsies as a complementary assay for copy number aberration profiling in routinely collected paediatric cancer patient samples. Eur J Cancer. 2021.
- 2. Clay MR, Patel A, Tran Q, Hedges DJ, Chang TC, Stewart E, et al. Methylation profiling reveals novel molecular classes of rhabdomyosarcoma. Sci Rep. 2021;11(1):22213.
- 3. R2: Genomics Analysis and Visualization Platform
- 4. Koelsche C, Schrimpf D, Stichel D, Sill M, Sahm F, Reuss DE, et al. Sarcoma classification by DNA methylation profiling. Nat Commun. 2021;12(1):498.
- Seki M, Nishimura R, Yoshida K, Shimamura T, Shiraishi Y, Sato Y, et al. Integrated genetic and epigenetic analysis defines novel molecular subgroups in rhabdomyosarcoma. Nat Commun. 2015;6:7557.

4



# Chapter 5

# Molecular characterisation of circulating tumor DNA in pediatric rhabdomyosarcoma: a feasibility study

JCO Precis Oncol. 2022 Oct;6:e2100534. doi: 10.1200/PO.21.00534.

Olivia Ruhen,<sup>1</sup> Nathalie S.M. Lak<sup>2,3</sup> Janine Stutterheim<sup>2,3</sup> Sara G. Danielli,<sup>4</sup> Mathieu Chicard,<sup>5</sup> Yasmine Iddir,<sup>5</sup> Alexandra Saint-Charles,<sup>5</sup> Virginia Di Paolo,<sup>6</sup> Lucia Tombolan,<sup>7</sup> Susanne A. Gatz,<sup>1,8</sup> Ewa Aladowicz,<sup>1</sup> Paula Proszek,<sup>1,9</sup> Sabri Jamal,<sup>1,9</sup> Reda Stankunaite,<sup>1,9,10</sup> Deborah Hughes,<sup>1,9</sup> Paul Carter,<sup>1,9</sup> Elisa Izquierdo,<sup>1,9</sup> Ajla Wasti,<sup>11</sup> Julia C. Chisholm,<sup>11,12</sup> Sally L. George,<sup>1,11</sup> Erika Pace,<sup>11,13</sup> Louis Chesler,<sup>1,11</sup> Isabelle Aerts,<sup>5</sup> Gaelle Pierron,<sup>5</sup> Sakina Zaidi,<sup>14</sup> Olivier Delattre,<sup>14</sup> Didier Surdez,<sup>14,15</sup> Anna Kelsey,<sup>16</sup> Michael Hubank,<sup>1,9</sup> Paolo Bonvini,<sup>7</sup> Gianni Bisogno,<sup>17</sup> Angela Di Giannatale,<sup>6</sup> Gudrun Schleiermacher,<sup>5,18</sup> Beat W. Schäfer,<sup>4</sup> Godelieve A.M. Tytgat,<sup>2,3</sup> and Janet Shipley,<sup>1</sup>

<sup>1</sup>Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom <sup>2</sup>Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands <sup>3</sup>Experimental Immunohematology, Sanguin, Amsterdam, the Netherlands <sup>4</sup>Department of Oncology and Children's Research Centre, University Children's Hospital, Zurich, Switzerland <sup>5</sup>SiRIC RTOP (Recherche Translationelle en Oncologie Pediatrique), Institut Curie, Paris, France <sup>6</sup>Department of Pediatric Haematology/Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy <sup>7</sup>Institute of Pediatric Research, Fondazione Città della Speranza, Padova, Italy 8Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom <sup>9</sup>Molecular Diagnostics, Royal Marsden NHS Foundation Trust, London, United Kingdom <sup>10</sup>Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom <sup>11</sup>Children & Young People's Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom<sup>12</sup>Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom <sup>13</sup>Department of Diagnostic Radiology, Royal Marsden NHS Foundation Trust, London, United Kingdom <sup>14</sup>INSERM U830, Équipe Labellisée LNCC, PSL Research University, SIREDO Oncology Centre, Institut Curie, Paris, France <sup>15</sup>Bone Sarcoma Research Laboratory, Balgrist University Hospital, University of Zurich, Zurich, Switzerland <sup>16</sup>Department of Pediatric Histopathology, Manchester University Foundation Trust, Manchester, United Kingdom <sup>17</sup>Department of Woman's and Children's Health, Hematology and Oncology Unit, University of Padova, Padova, Italy <sup>18</sup>Department of Pediatric Oncology, Hospital Group, Institut Curie, Paris, France

## Abstract

*Purpose:* Rhabdomyosarcomas (RMS) are rare neoplasms affecting children and young adults. Efforts to improve patient survival have been undermined by a lack of suitable disease markers. Plasma circulating tumor DNA (ctDNA) has shown promise as a potential minimally-invasive biomarker and monitoring tool in other cancers; however, it remains under-explored in RMS. We aimed to determine the feasibility of identifying and quantifying ctDNA in plasma as a marker of disease burden and/ or treatment response using blood samples from RMS mouse models and patients.

Patients and methods: We established mouse models of RMS and applied qPCR and droplet digital PCR (ddPCR) to detect ctDNA within the mouse plasma. Potential driver mutations, copy number alterations, and DNA breakpoints associated with PAX3/7- FOXO1 gene fusions were identified in the RMS samples collected at diagnosis. Patient-matched plasma samples collected from 28 RMS patients prior to, during, and after treatment were analyzed for the presence of ctDNA via ddPCR, panel sequencing and/or whole-exome sequencing.

*Results:* Human tumor-derived DNA was detectable in plasma samples from mouse models of RMS and correlated with tumor burden. In patients, ctDNA was detected in 14/18 pre-treatment plasma samples with ddPCR and 7/7 cases assessed by sequencing. Levels of ctDNA at diagnosis were significantly higher in patients with unfavorable tumor sites, positive nodal status, and metastasis. In patients with serial plasma samples (n=18), fluctuations in ctDNA levels corresponded to treatment response.

*Conclusions:* Comprehensive ctDNA analysis combining high sensitivity and throughput can identify key molecular drivers in RMS models and patients, suggesting potential as a minimally-invasive biomarker. Preclinical assessment of treatments using mouse models and further patient testing through prospective clinical trials are now warranted

## **Context summary**

*Key objective:* Whilst overall survival for children with rhabdomyosarcoma has improved, patients with high-risk and refractory disease continue to experience poor outcomes. This international collaborative pilot study aimed to assess the feasibility of detecting and quantifying circulating tumor DNA (ctDNA) in mouse models of and patients with rhabdomyosarcoma and investigate its relationship with clinical variables and outcome.

*Knowledge generated:* We provide evidence to suggest that ctDNA is a surrogate marker of tumor burden in animal models of rhabdomyosarcoma and demonstrate feasibility for detecting and quantifying ctDNA in serial plasma samples from rhabdomyosarcoma patients via several approaches including whole-exome and targeted sequencing and droplet digital PCR.

*Relevance:* Our data indicates that ctDNA holds potential as a minimally-invasive biomarker in rhabdomyosarcoma, providing evidence for its assessment in future preclinical animal model trials and prospective clinical trials

## Introduction

Rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in children, is a major cause of pediatric cancer–related death.<sup>1</sup> Outcomes for patients with high-risk or relapsed RMS remain particularly poor.<sup>2</sup> There is an urgent need to develop accurate prognostic and predictive markers and monitoring tools that can better identify patients at risk of treatment failure. This knowledge can aid in treatment decision making and the identification of patients who may benefit from participation in trials of novel therapeutics.

Molecular profiling of RMS tumors has identified several oncogenic drivers that hold potential as disease biomarkers. Alveolar subtype neoplasms (aRMS) commonly harbor the chromosomal translocations t(2;13) (q35;q14) or t(1;13) (p36;q14), which result in a fusion between the genes FOXO1 and PAX3 or PAX7, respectively.<sup>3,4</sup> Crucially, PAX3-FOXO1 fusions are associated with an unfavorable patient prognosis.<sup>2,5</sup> By contrast, embryonal RMS (eRMS) is characterized by mutations to key members of the AKT-PI3K and RAS pathways, some of which are predictive for response to certain molecular therapies.<sup>6</sup> RMS can also carry copy-number variants such as amplifications of the CDK4 and MYCN genes.<sup>6</sup> Hence, there is increasing evidence to support the screening of RMS for clinically relevant molecular alterations.

Recent research has focused on the assessment of blood-based biomarkers, such as cell-free DNA (cfDNA) and its malignant counterpart circulating tumor DNA (ctDNA), as a minimally invasive modality for tumor molecular profiling. This liquid biopsy approach is advantageous over tissue biopsies as it can provide a dynamic measurement of tumor activity in real time, allowing patient response to treatment to be monitored throughout their disease. Many studies have demonstrated the feasibility of using ctDNA for the diagnosis, prognosis, and monitoring of adult cancers.<sup>7</sup> However, the assessment of ctDNA in pediatric patients with RMS has thus far been limited. Quantitative polymerase chain reaction (qPCR), targeted sequencing panels, and whole-genome sequencing have previously been used to detect the PAX3-FOXO1 gene fusion in ctDNA from a limited number of patients with aRMS.<sup>8-10</sup> However, more evidence is needed (particularly for eRMS or fusion-negative patients) to support the clinical utility of ctDNA in this tumor type.

In this large international collaborative study, we applied several techniques including panel sequencing, whole-exome sequencing (WES), qPCR, and droplet digital PCR (ddPCR) to identify molecular drivers in pediatric RMS and quantify ctDNA in RMS patients and models.

## Methods

## **Animal Experiments**

Three patient-derived xenografts (PDX) were established by implanting RMS patient tumor biopsy samples in immunodeficient non scid gamma (NSG) mice, as previously described (Data Supplement for PDX characteristics).<sup>11</sup> For the aRMS PDX experiments, dissociated tumor cells from established xenografts were expanded in culture and labeled with enhanced green fluorescent protein (EGFP) (Data Supplement). One million IC-pPDX-104 EGFP or IC-pPDX-29 EGFP cells were injected orthotopically into the hind limb muscle of seven and five NSG mice, respectively. Tumor size was measured 3 times per week using calipers. Blood (100  $\mu$ L) was collected via the lateral tail vein every week in IC-pPDX-29-injected mice and from the day tumors started to be visible in ICpPDX-104-injected mice (day 32) until the end point of the experiment, upon which the mice were anesthetized with a lethal dose of ketamine-xylazine and 250-1,000 µL blood was collected through cardiac puncture. Plasma ctDNA and cfDNA were measured by SYBR Green-based gPCR using hLINE-1 and mPtger2 primer sets, respectively (Data Supplement). For the eRMS PDX experiments in ICR-PDX-RMS008, blood was collected from NSG mice during routine passaging of PDX tumor pieces. These pieces were implanted bilaterally in five NSG mice, with four mice developing tumors and one mouse no tumors. Blood (230-550 µL) was collected through cardiac puncture after lethal anesthetic. Tumor-specific variants in cfDNA were quantified with ddPCR.

## **Patients and Samples**

Blood and tissue samples were obtained from pediatric cancer patients (n = 48) with RMS according to institutional review board–approved protocols. To be included in the study, subjects had to be between age 0 and 18 years with a pathologic diagnosis of RMS. There

were no exclusion criteria. Samples were collected after obtaining written informed consent from patients, parents, or legal guardians. Participating institutions included Bambino Gesù Children's Hospital, Rome (protocol number 578); University-Hospital, Padova (4115/AO/17); Institut Curie, Paris (ClinicalTrials.gov identifier: NCT02546453); University Children's Hospital, Zurich (2020-01609); Princess Máxima Centre for Pediatric Oncology, Utrecht (METC2006-148 and PMCLAB2019-053); and The Institute of Cancer Research/Royal Marsden Hospital, London (13/LO/0254, 15/LO/0719 and 18/LO/1860).

Plasma was separated from blood collected in EDTA and DNA extracted from patient's plasma, and fresh, cultured, or formalin-fixed paraffin-embedded tumor tissue according to local standard operating procedures (Data Supplement). Targeted locus amplification, WES, and targeted sequencing with two custom sequencing panels were performed on patient tumor DNA and germline DNA (where available) to identify patient-specific genetic variants of interest (Data Supplement).<sup>12</sup>

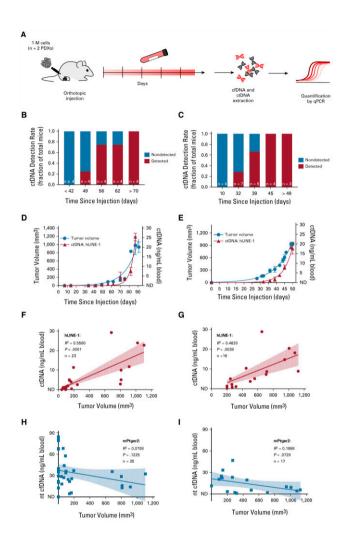
#### ddPCR

Patient and ICR-PDX-RMS008 cfDNA were assessed for the presence of tumor-specific genetic variants by ddPCR, which was performed on the Bio-Rad QX200 ddPCR system as per manufacturer's instructions (Data Supplement). Plasma ctDNA and cfDNA were measured by assays targeting tumor-specific variants and reference genes, respectively (Data Supplement).

## **Targeted Sequencing**

Baseline cfDNA samples from seven cases with sufficient DNA (10 ng) were analyzed by WES alongside patient-matched germline DNA and tumor DNA from fresh-frozen material, as previously described (Data Supplement).<sup>13</sup> Serial cfDNA samples were also sequenced with a targeted sequencing panel that was designed to encompass 196 single-nucleotide variants (SNVs), corresponding to all SNVs observed in WES sequencing and 44 single-nucleotide polymorphisms to identify each sample. Libraries of cfDNA were constructed using a double-capture procedure. Samples were multiplexed for the capture and sequenced with HiSeq reagents (Illumina, Cambridgeshire, UK; expected coverage: 5,000×). Variants were filtered according to an established bioinformatic pipeline.<sup>13</sup> For serial plasma samples, variants with < 10 supporting reads were excluded from the final data set.

## **Statistical Analysis**


Statistical analysis was performed using GraphPad Prism v9.0 (GraphPad Software). Pearson's correlation was performed to assess the relationship between mouse plasma ctDNA levels and tumor size or weight. To test whether detection of ctDNA

at baseline was associated with clinical features such as tumor size, a two-sided Fisher's exact test was used. A two-tailed Mann-Whitney U test was used to verify the hypothesis that patients with tumors in an unfavorable site (favorable tumor sites include the biliary tract, orbit, head and neck [excluding parameningeal sites] and the genitourinary tract [excluding bladder and prostate]; unfavorable tumor sites are those arising in all other anatomical locations, including [but not limited to] parameningeal sites, the bladder or prostate, and extremities), nodal spread, or metastases had higher pretreatment ctDNA levels than those who did not. The results were considered statistically significant when P < .05.

## Results

## CtDNA Can Be Detected in Animal Models of RMS and Correlates With Tumor Burden

In PDX models, human tumor DNA can be easily discriminated from host mouse DNA by targeting human-specific or tumor-specific sequences such as the chromosomal translocation PAX3-FOXO1 breakpoint or SNVs. Using serial dilutions of human tumor DNA and mouse plasma cfDNA, we established that hLINE-1 primers were optimal for detecting human DNA and mPtger2 for identifying mouse DNA in aRMS models (Data Supplement). We then tested whether ctDNA could be found in the blood of mice transplanted with aRMS PDXs. Blood samples were collected weekly until mice reached maximal tumor size (Fig 1A). Plasma ctDNA and cfDNA levels were quantified with hLINE-1 and mPtger2 primer sets, respectively. At the earliest time points after tumor injection, ctDNA was detected in only a fraction of the animals, but detection rates increased to 100% at later time points (Figs 1B and 1C). Similar to tumor volumes, ctDNA levels increased during the course of the experiment and ranged from nondetectable up to 25.3 + 2.0 ng/mL blood in IC-pPDX-29 (Fig 1D), and  $17.7 \pm$ 2.3 ng/mL blood in IC-pPDX-104 (Fig 1E). A significantly positive Pearson correlation was observed between ctDNA and tumor volume in both aRMS PDXs (Figs 1F and 1G). Importantly, no significant correlation was observed between tumor volume and cfDNA (Figs 1H and 1I), whose levels remained relatively stable during the entire course of the experiment (IC-pPDX-29: 33.9 ± 3.8 ng/mL blood; IC-pPDX-104: 14.4  $\pm$  3.1 ng/mL blood). In the eRMS PDX, tumor-specific variants (Data Supplement) were identified in all four cfDNA samples from tumor-bearing mice, whereas the plasma sample from the mouse that did not grow a tumor had no detectable ctDNA (Data Supplement). These results demonstrate feasibility to detecting human ctDNA in mouse models of RMS and using ctDNA as a marker to monitor tumor growth, providing the rationale for moving forward with patients' samples.



**Figure 1.** ctDNA correlates with tumor burden in RMS PDX models. (**A**) Experimental design. After orthotopic PDX injection, blood was collected weekly until the end point of the experiment. Plasma ctDNA was measured by qPCR using hLINE-1 primer sets; nontumor cfDNA was quantified with mPtger2 primer set. Detection rate of plasma ctDNA at different time points after tumor injection of IC-pPDX-29 (**B**) or ICpPDX-104 cells (**C**). The number of mice at the selected time points is indicated. Monitoring of ctDNA concentration and tumor volume over time in mice injected with (**D**) IC-pPDX-29 or (**E**) ICpPDX-104 cells. Tumor volume was measured 3 times a week, whereas plasma ctDNA was measured at the selected time points. Data are represented as mean  $\pm$  SEM of  $n \ge 2$  animals and connected with an exponential growth curve fit. Correlation between tumor volume and plasma (**F** and **G**) ctDNA or (**H** and **I**) cfDNA in mice injected with (**F** and **H**) IC-pPDX-29 or (**G** and **I**) ICpPDX-104 cells. Data points are interpolated with a linear regression. Correlation coefficient (R2), statistical significance (P), and number of data points (n) are indicated. cfDNA, cell-free DNA; ctDNA, circulating tumor DNA; ND, nondetectable; PCR, polymerase chain reaction; PDX, patient-derived xenograft; qPCR, quantitative PCR; RMS, rhabdomyosarcoma.

5

## **Patient Cohort**

A summary of the samples collected and successfully analyzed is illustrated in Figure 2A. Of the 48 patients, 28 had targetable tumor variants and sufficient cfDNA to analyze (see Tables 1 and and 2 for clinical characteristics). Baseline plasma samples (collected at diagnosis) were available for 25/28 (89%) patients (20 frontline and five relapse), whereas serial plasma samples collected during treatment (mean 4, range 2-7) were available for 18/28 (64%) patients (17 frontline and one relapse).

## CtDNA Can Be Detected in Baseline Plasma Samples by ddPCR and Is Associated With Clinical Features in Patients With RMS

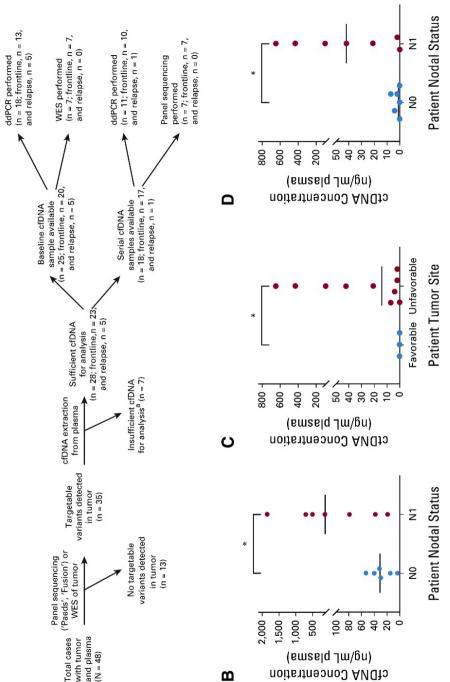
Across all baseline plasma samples assessed by ddPCR (n = 18), the median total cfDNA yield was 38.2 ng/mL plasma (range 3.9-1,857.5 ng/mL). Patients with nodal spread (N1) had significantly higher baseline cfDNA compared with those without it (N0; P = .035; Fig 2B), but there was no significant association between plasma cfDNA levels and characteristics such as tumor size, histology, site, or patient clinical risk group.

A tumor-specific variant was detected in 14/18 baseline samples, demonstrating 78% concordance with tumor tissue (Table 3). A patient-specific PAX3/7-FOXO1 fusion was exhibited in 10/11 (91%) baseline cfDNA samples from fusion-positive patients, whereas mutations and copy-number variants were seen in 3 of 5 (60%) and 1 of 2 (50%) patients, respectively.

Baseline ctDNA levels were significantly higher in frontline patients with an unfavorable tumor site and positive nodal status (mean = 0, median = 0 v mean = 124.9, median = 13.9 ng/mL plasma for favorable v unfavorable, P = .021, Fig 2C; and mean = 2.2, median = 1.1 v mean = 176.5, median = 41.6 ng/mL plasma for N0 versus N1, P = .043, Fig 2D). Both frontline and relapsed patients with metastasis at diagnosis had significantly higher ctDNA levels at baseline (mean = 97.3, median = 6.6 ng/mL plasma) compared with those without it (mean = 0.5, median = 0 ng/mL plasma, P = .0201, Fig 2E). These results support the utility of ddPCR for the detection of ctDNA in patients with RMS and suggest that diagnostic ctDNA levels are related to disease aggressiveness.

## The Molecular Profile of Baseline ctDNA Demonstrates Concordance With That of the Primary Tumor in Frontline RMS Patients

To more comprehensively assess the extent to which the genomic landscape of patient ctDNA reflects that of the primary tumor, we performed WES on seven


patients with matched tumor, germline, and baseline cfDNA. ctDNA was detected in all (100%) baseline plasma samples. A mean of nine SNVs per case were common to both the baseline cfDNA and primary tumor (range 3-26 SNVs), with a mean of 1 (range 0-2) SNV detected only in the cfDNA, and a mean of 10 SNVs (range 0-48) seen only in the tumor (Fig 2F). The latter were mainly observed in eRMS. These data demonstrate that patient ctDNA collected at the time of diagnosis largely reflects the molecular profile of the tumor in RMS, and that WES of cfDNA is a useful tool for highlighting variants that may not have been sampled in the tissue biopsy.

## CtDNA Levels Reflect the Disease Burden in Patients With RMS Over Time

In cases where serial plasma samples were available (n = 18), we used ddPCR or panel sequencing to track tumor variants over the course of patient treatment. In most of these patients, ctDNA levels decreased after the onset of chemotherapy and remained stable, corresponding with favorable response to therapy (Fig 3A and Data Supplement). However, there were three patients in whom ctDNA was detectable at various time points after treatment commenced, which coincided with disease progression or relapse (Figs 3B-3D). These results provide evidence to support the notion that ctDNA can act as a surrogate marker for disease aggressiveness in patients with RMS and suggest that ctDNA levels reflect patient response to treatment.

## Discussion

Analysis of ctDNA is rapidly being introduced into the clinic for the diagnosis, prognosis, and monitoring of adult patients with cancer.<sup>7</sup> However, its utility for pediatric cancers is yet to be fully realized. In this study, we aimed to assess the feasibility of detecting and quantifying plasma ctDNA in pediatric RMS. Using techniques offering high sensitivity (such as qPCR and ddPCR) and multiplexing of targets (whole-exome and panel sequencing), we have demonstrated that we can detect molecular markers in cfDNA from RMS animal models and patients, including variants of clinical significance, such as PAX3-FOXO1 fusions and MYOD1 mutations.<sup>5,6</sup> The detection of mutations is of particular importance, as ctDNA studies of RMS have focused on identifying gene fusions with little evidence for detection of ctDNA in fusion-negative patients.<sup>8-10,14</sup> In this study, we have also developed a custom sequencing panel, suitable for formalin-fixed paraffinembedded tissue, to define the unique PAX3/7-FOXO1 DNA breakpoints. This is more practical for clinical implementation than a requirement for fresh-frozen material.



٩

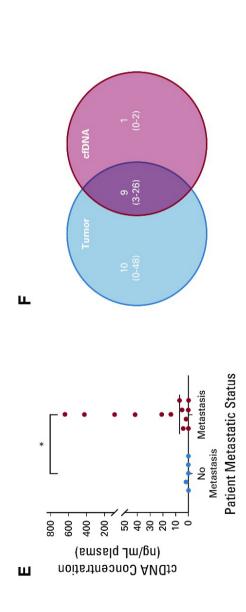
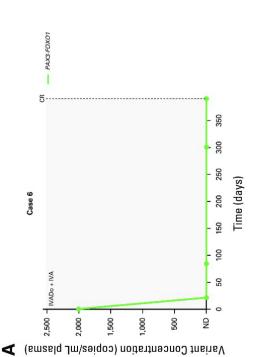
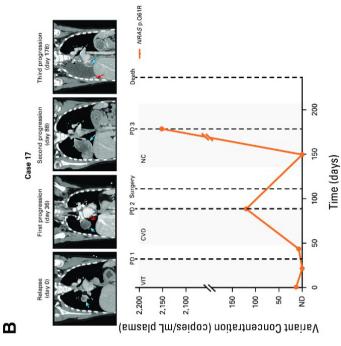
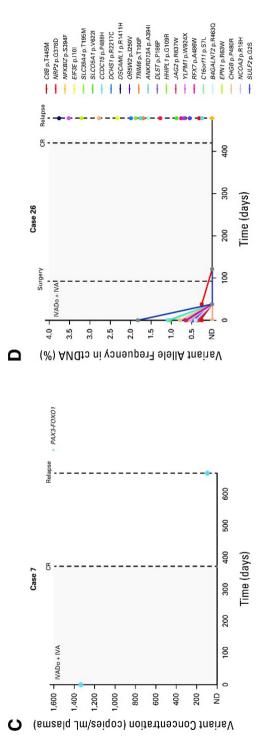






Figure 2. Baseline cfDNA analysis. (A) Overview of samples collected (n = 48 tumor and plasma) and successfully analyzed (n = 28 cfDNA). alnsufficient cfDNA yield diagnosis (n = 13) compared with those without it (n = 5; P = .0201). Median cfDNA or ctDNA yields indicated by horizontal lines on graphs. (F) There was considerable is defined as < 1 ng for ddPCR and < 10 ng for WES/panel sequencing. (B) Frontline patients with nodal spread (N1, n = 7) had significantly higher baseline cfDNA yields (ng/mL plasma) compared with those without it (N0, n = 6; P = .035). Baseline ctDNA yields (ng/mL plasma) were significantly higher in frontline patients with (C) tumors in an unfavorable site (n = 10) compared with those with tumors in a favorable site (n = 3; P = .0210) and (D) nodal involvement (N1, n = 7) compared with those without it (N0, n = 6; P = .043). (E) Baseline ctDNA yields (ng/mL plasma) were significantly higher in both frontline and relapsed patients with metastases at overlap in the molecular profile of matched patient tumor DNA and baseline cfDNA, as illustrated by mean number (and ranges) of variants detected in each via WES. cfDNA, cell-free DNA; ctDNA, circulating tumor DNA; ddPCR, droplet digital polymerase chain reaction.

5







became undetectable via ddPCR in plasma samples collected during chemotherapy. The patient ended therapy with a complete response. (B) Plasma levels of an Figure 3. Patient ctDNA levels reflect disease burden over time. (A) A PAX3-FOXO1 rearrangement in the pretreatment ctDNA of a frontline patient with aRMS NRAS variant in a relapsed eRMS patient with pulmonary metastasis (day 0 CT image, blue arrow) initially decreased after initiation of chemotherapy but increased 36 and 88, respectively). The patient was deemed to have disease progression according to the RECIST 1.1.24 Following surgery and adjuvant chemotherapy, ctDNA became undetectable via ddPCR, but a subsequent plasma sample illustrated a re-emergence of the variant, coinciding with further progression in the patient (new note the broken y-axis of the graph). The patient died 2 months later. (C) A PAX3-FOXO1 fusion initially identified in the pretreatment ctDNA of a patient with frontline aRMS was also detected in a ctDNA sample collected at time of relapse via ddPCR, albeit at a lower concentration. (D) Targeted sequencing of cfDNA from an aRMS patient illustrates an initial response to frontline treatment, as evidenced by decreasing variant allele frequencies (%) in serial plasma samples. However, ctDNA was as the patient's neoplasm enlarged (see enlarged nodule indicated by blue arrow and narrowing of right lower bronchus indicated by red arrow, CT images at days pulmonary metastasis in the surgical bed denoted by blue arrow and scattered vascularized ipsilateral pleural deposits indicated by red arrow in CT image day 178; detected in a blood sample collected 2 months after the completion of treatment, coinciding with clinical relapse. Day 0 for all patients is the day that the pretreatment blood sample was collected. Dots on the line graph correspond to the days in which plasma samples were obtained. Gray boxes indicate the chemotherapy duration. Dashed lines indicate clinical time point (surgery, response as assessed on imaging). cfDNA, cell-free DNA; CR, complete response; CT, computed tomography; ctDNA, circulating tumor DNA; CVD, cyclophosphamide, vincristine, and doxorubicin; ddPCR, droplet digital polymerase chain reaction; eRMS, embryonal RMS; IVA, ifosfamide, vincristine, and actinomycin D; IVADo, ifosfamide, vincristine, actinomycin D, and doxorubicin; NC, navelbine (vinorelbine) and cyclophosphamide; ND, not detected; PD, progressive disease; RMS, rhabdomyosarcoma; VIT, vincristine, irinotecan, and temozolomide. The sensitivity for detection of ctDNA in diagnostic patient plasma samples (78% and 100% for ddPCR and WES, respectively) was on par with that of previous studies in pediatric sarcomas.<sup>9,10,14-17</sup> Interestingly, all three frontline patients in whom baseline ctDNA could not be detected by ddPCR had tumors in a favorable anatomic site (genitourinary tract, excluding the bladder and prostate) and were fusion-negative. which are both positive survival indicators in RMS.<sup>2</sup> Two of the three patients had their tumors resected before collecting baseline blood samples, which explains why no ctDNA could be found in them. However, the fourth subject who was ctDNAnegative at baseline had a locoregional recurrence, which is generally associated with longer survival compared with distant relapse.<sup>18</sup> This suggests that ctDNA detection at diagnosis may be linked to disease aggressiveness in RMS, although survival data were not available for all patients to test this hypothesis. A recent study by members of our group found that the presence of circulating tumor cells in blood and bone marrow, as detected by an RMS-specific RNA panel at diagnosis, was negatively associated with survival in patients with RMS.<sup>19</sup> The identification of novel prognostic markers, such as ctDNA and circulating tumor cells at diagnosis, has the potential to further improve risk stratification for children with RMS, and thus, it will be of great value to assess the prognostic significance of these in future clinical studies.

Plasma ctDNA concentration correlated with tumor size in animal models, suggesting that analysis of ctDNA from models may prove useful for real-time assessment of tumor response to treatment. We believe this approach will better enable the RMS research community to conduct preclinical and coclinical testing of personalized therapies that have the potential to improve patient outcomes. In patients, baseline ctDNA levels were higher in those with advanced disease, supporting the notion that ctDNA acts as a surrogate measure of disease status and, thus, as a minimally invasive biomarker for RMS. This contrasts with nontumor cfDNA levels, which did not correlate with tumor burden in animal models, and was only associated with nodal status in frontline patients (possibly because of increased inflammation, a known trigger of cfDNA release, in cancer-infiltrated lymph nodes).<sup>20</sup> Although every effort was made to process blood and extract cfDNA in such a way as to minimize cell lysis and enrich for fragmented DNA, we cannot exclude the possibility of contamination with high-molecular-weight DNA.<sup>21</sup> Furthermore, blood collection for this study was only performed ad hoc, resulting in a small sample size, which limits the power of our statistical analysis. As such, these results should be validated in a larger cohort with standardized collection procedures.

We have also provided evidence to support serial monitoring of ctDNA in patients with RMS using both ddPCR and targeted sequencing, alongside current tools such as imaging. Changes in ctDNA levels corresponded to changes in disease burden and are consistent with the frequent initial responsiveness of RMS to current treatments.<sup>1</sup> We were also able to detect ctDNA at the time of disease relapse in three patients, indicating that ctDNA analysis has utility in the follow-up of patients after completion of frontline treatment. In this study, ctDNA was collected when relapse was clinically apparent. Future prospective studies will be required to determine whether ctDNA is detectable before imaging modalities and/or onset of disease symptoms in relapse patients, and whether earlier detection and treatment of relapse provides a survival benefit.

We initially used ddPCR for detection of ctDNA as it affords high sensitivity (down to 0.03% frequency in some assays) and absolute quantification of target molecules, enabling direct comparison among serial cfDNA samples. We found it ideal for cases with only one variant (eg, PAX3/7-FOXO1 fusions); however, its capacity for multiplexing targets is limited. In cases with matched fresh-frozen tumor tissue and serial plasma, we instead performed targeted sequencing to assess ctDNA. This allowed for longitudinal monitoring of tumor evolution across multiple genomic targets and the identification of potential treatment-resistant variants that may have been unsampled or below the level of detection in the tumor biopsy, or which arose during therapy. As such, sequencing approaches to monitor ctDNA may be more appropriate for patients who have more than one driver mutation, although for some cases, there were several variants that could not be detected in the ctDNA via WES. Future studies will explore the use of approaches such as ultra-deep panel sequencing for detection of rare variants and/or minimal residual disease.<sup>22</sup>

Limited starting material can also impact upon the test sensitivity, particularly in pediatric cancers, where blood volumes (and resulting cfDNA yields) may be very small.<sup>23</sup> We excluded cases with < 1 ng cfDNA for ddPCR, and < 10 ng for sequencing. However, it is possible that some low-input samples may have generated false-negative results because of limited amplification of target molecules. As such, caution in the interpretation of these results and consideration of other patient variables will be required for clinical application.

In summary, we have demonstrated that we can detect tumor-specific variants in the plasma of children with both aRMS and eRMS, and have provided preliminary evidence for the use of ctDNA to monitor disease burden in these patients. We believe that this approach warrants further investigation in the context of largescale prospective clinical trials, such as the international Frontline and Relapsed Rhabdomyosarcoma study (ClinicalTrials.gov identifier: NCT04625907).

## Acknowledgement

The authors would like to thank all patients and their families for their participation in this study. The authors are also grateful to Harma Feitsma, Ellen Stelloo, Irina Sergeeva, and Max van Min from Cergentis BV (Utrecht, The Netherlands) for performing the TLA procedure, and to Vladimir Kirkin and Gary Box for helping to create the ICR-PDX-RMS008 mouse model and collect blood samples.

## Support

This project was carried out with the support of the KickCancer Fund, managed by the King Baudouin Foundation and Innovative Therapies for Children with Cancer. O.R. was supported by the children's cancer charity Alice's Arc. N.L. and J.St. were supported by KiKa (Children Cancer Free), grant number 312. S.G.D. received support from the Swiss National Science Foundation grant 31003A\_175558 (to B.W.S.). V.D.P. was supported by Fondazione Umberto Veronesi. L.T. was supported by Peter Pan Onlus (Bolzen, Italy). E.I. was supported by Christopher's Smile, the National Institute of Health Research (NIHR) Royal Marsden Biomedical Research Centre (BRC). E.P. is supported by The Royal Marsden Cancer Charity.

This work represents independent research supported by the National Institute for Health Research (NIHR) Biomedical Research Centre at The Royal Marsden NHS Foundation Trust and the Institute of Cancer Research, London (J.C.C., A.W., S.L.G., E.P). **Table 1.** Clinical characteristics of patients with

 frontline rhabdomyosarcoma included in the study

# **Table 2.** Clinical characteristics of patients with relapsed rhabdomyosarcoma included in the study.

| Clinical Variable               | Patients, No. (%) |
|---------------------------------|-------------------|
| Sex                             |                   |
| Male                            | 10 (43)           |
| Female                          | 5 (22)            |
| Unknown                         | 8 (35)            |
| Age at primary diagnosis, years |                   |
| < 1                             | 2 (9)             |
| 1-10                            | 10 (43)           |
| > 10                            | 11 (48)           |
| Histologic subtype              |                   |
| Alveolar                        | 13 (57)           |
| Embryonal                       | 9 (39)            |
| Other                           | 1 (4)             |
| Fusion status                   |                   |
| Positive                        | 11 (48)           |
| Negative                        | 6 (26)            |
| Not assessed                    | 6 (26)            |
| IRS clinical group              |                   |
| 1                               | 0 (0)             |
| П                               | 3 (13)            |
| III                             | 7 (30)            |
| IV                              | 13 (57)           |
| Primary tumor site              |                   |
| Favorable <sup>a</sup>          | 6 (26)            |
| Unfavorable <sup>b</sup>        | 17 (74)           |
| Tumor size, cm                  |                   |
| < 5                             | 2 (9)             |
| ≥ 5                             | 21 (91)           |
| Nodal involvement               |                   |
| N <sub>x</sub>                  | 1 (4)             |
| No                              | 9 (39)            |
| N <sub>1</sub>                  | 13 (57)           |
| Metastasis present              |                   |
| Yes                             | 14 (61)           |
| No                              | 9 (39)            |
|                                 |                   |

Abbreviation: IRS, Intergroup Rhabdomyosarcoma Studies.

<sup>a</sup>Favorable tumor sites include the biliary tract, orbit, head and neck (excluding parameningeal sites), and the genitourinary tract (excluding bladder and prostate).

<sup>b</sup>Unfavorable tumor sites are those arising in all other anatomic locations, including (but not limited to) parameningeal sites, the bladder or prostate, and extremities.

| Clinical Variable       | Patients, No. (%) |
|-------------------------|-------------------|
| Sex                     |                   |
| Male                    | 4 (80)            |
| Female                  | 1 (20)            |
| Age at diagnosis, years |                   |
| < 1                     | 0 (0)             |
| 1-10                    | 4 (80)            |
| > 10                    | 1 (20)            |
| Histologic subtype      |                   |
| Alveolar                | 4 (80)            |
| Embryonal               | 1 (20)            |
| Other                   | 0 (0)             |
| Fusion status           |                   |
| Positive                | 4 (80)            |
| Negative                | 1 (20)            |
| Not assessed            | 0 (0)             |
| Site of relapse         |                   |
| Locoregional            | 1 (20)            |
| Distant                 | 4 (80)            |
|                         |                   |

| Patient | Variant<br>Type | Variant                 | Variant<br>Fractional<br>Abundance<br>(%) | Copy<br>Numberª | Variant<br>Concentration<br>(copies/mL<br>plasma) | ctDNA<br>Concentration<br>(ng/mL<br>plasma) | Reference<br>Concentration<br>(copies/mL<br>plasma) | cfDNA <sub>WT</sub><br>Concentration<br>(ng/mL<br>plasma) | Total<br>cfDNA<br>(ng/mL<br>plasma) |
|---------|-----------------|-------------------------|-------------------------------------------|-----------------|---------------------------------------------------|---------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------|-------------------------------------|
| 1       | Gene<br>fusion  | PAX3-FOXO1<br>variant 1 | 28.20                                     |                 | 5,758.00                                          | 19.00                                       | 17,554.02                                           | 57.93                                                     | 76.93                               |
|         | Gene<br>fusion  | PAX3-FOXO1<br>variant 2 | 32.20                                     |                 | 7,036.00                                          | 23.22                                       | 17,722.18                                           | 58.48                                                     | 81.70                               |
| 2       | SNV             | KRAS G13D               | 2.00                                      |                 | 22.88                                             | 0.08                                        | 1,144.00                                            | 3.78                                                      | 3.85                                |
| 3       | Gene<br>fusion  | PAX3-FOXO1              | 21.60                                     |                 | 28,214.26                                         | 93.11                                       | 123,591.25                                          | 407.85                                                    | 500.96                              |
| 4       |                 |                         |                                           | No b            | aseline cfDNA a                                   | available                                   |                                                     |                                                           |                                     |
| 5       | Gene<br>fusion  | PAX3-FOXO1              | 23.09                                     |                 | 129,957.14                                        | 428.86                                      | 432,928.57                                          | 1,428.66                                                  | 1,857.52                            |
| 6       | Gene<br>fusion  | PAX3-FOXO1              | 21.89                                     |                 | 2,003.57                                          | 6.61                                        | 7,150.00                                            | 23.60                                                     | 30.21                               |
| 7       | Gene<br>fusion  | PAX3-FOXO1              | 13.93                                     |                 | 1,335.71                                          | 4.41                                        | 8,250.00                                            | 27.23                                                     | 31.63                               |
| 8       | SNV             | NRAS <sup>Q61K</sup>    | /                                         |                 | 1                                                 | /                                           | 5,814.29                                            | 19.19                                                     | 19.19                               |
| 9       | CNV             | MDM2 amp                |                                           | 2.04            | 1                                                 | 1                                           | 16,185.71                                           | 53.41                                                     | 53.41                               |
| 10      | CNV             | FGFR2 amp               |                                           | 24.94           | 196,428.57                                        | 648.21                                      | 15,753.57                                           | 51.99                                                     | 700.20                              |
| 11      | SNV             | NRAS <sup>Q61K</sup>    | 1                                         |                 | 1                                                 | 1                                           | 12,060.71                                           | 39.80                                                     | 39.80                               |
| 12      |                 |                         |                                           | No b            | aseline cfDNA a                                   | available                                   |                                                     |                                                           |                                     |
| 13      | Gene<br>fusion  | PAX3-FOXO1              | 34.20                                     |                 | 12,615.85                                         | 41.63                                       | 26,132.38                                           | 86.24                                                     | 127.87                              |
| 14      | Gene<br>fusion  | PAX3-FOXO1<br>variant 1 | 2.60                                      |                 | 280.00                                            | 0.92                                        | 10,862.85                                           | 35.85                                                     | 36.77                               |
|         | Gene<br>fusion  | PAX3-FOXO1<br>variant 2 | 9.30                                      |                 | 1,083.00                                          | 3.57                                        | 10,931.99                                           | 36.08                                                     | 39.65                               |
| 15      | SNV             | BRAFVGCOE               | 17.50                                     |                 | 927.60                                            | 3.06                                        | 4,333.44                                            | 14.30                                                     | 17.36                               |
|         | SNV             | MYOD1 <sup>L122R</sup>  | 10.50                                     |                 | 410.80                                            | 1.36                                        | 3,493.47                                            | 11.53                                                     | 12.88                               |
| 16      |                 |                         |                                           | No b            | aseline cfDNA a                                   | available                                   |                                                     |                                                           |                                     |
| 17      | SNV             | NRAS <sup>Q61R</sup>    | 0.70                                      |                 | 13.11                                             | 0.04                                        | 1,847.57                                            | 6.10                                                      | 6.14                                |
| 18      | Gene<br>fusion  | PAX3-FOX01              | 1                                         |                 | 1                                                 | /                                           | 2,642.35                                            | 8.72                                                      | 8.72                                |
| 19      | Gene<br>fusion  | PAX3-FOXO1              | 3.00                                      |                 | 120.97                                            | 0.40                                        | 3,998.00                                            | 13.19                                                     | 13.59                               |
| 20      | Gene<br>fusion  | PAX7-FOX01              | 58.10                                     |                 | 4,286.25                                          | 14.14                                       | 3,148.67                                            | 10.39                                                     | 24.54                               |
| 21      | Gene<br>fusion  | PAX3-FOXO1<br>variant 1 | 10.70                                     |                 | 2,256.00                                          | 7.44                                        | 19,626.00                                           | 64.77                                                     | 72.21                               |
|         | Gene<br>fusion  | PAX3-FOXO1<br>variant 2 | 2.70                                      |                 | 515.00                                            | 1.70                                        | 19,433.00                                           | 64.13                                                     | 65.83                               |

 Table 3. Tumor-specific variants detected in patient baseline cfDNA by droplet digital polymerase chain reaction

NOTE. Patients 8, 11, and 18 had no detectable variants (/). Patient 9's tumor had a MDM2 copy number > 21, but the cfDNA copy number was 2 (normal) and thus, ctDNA was not detected.

Abbreviations: amp, amplification; cfDNA, cell-free DNA; CNV, copy-number variant; ctDNA, circulating tumor DNA; SNV, single nucleotide variant; WT, wild-type.

 $^{\rm a}$ Copy number 1.5-3 defined as normal diploid cells, 3-8 defined as a gain, and > 8 defined as an amplification.

## References

- 1. Skapek SX, Ferrari A, Gupta AA, et al.: Rhabdomyosarcoma. Nat Rev Dis Primers 5:1, 2019
- 2. Hibbitts E, Chi YY, Hawkins DS, et al.: Refinement of risk stratification for childhood rhabdomyosarcoma using FOXO1 fusion status in addition to established clinical outcome predictors: A report from the Children's Oncology Group. *Cancer Med* 8:6437-6448, 2019
- 3. Barr FG, Galili N, Holick J, et al.: Rearrangement of the PAX3 paired box gene in the pediatric solid tumor alveolar rhabdomyosarcoma. *Nat Genet* 3:113-117, 1993
- 4. Davis RJ, D'Cruz CM, Lovell MA, et al.: Fusion of PAX7 to FKHR by the variant t(1;13)(p36;q14) translocation in alveolar rhabdomyosarcoma. *Cancer Res* 54:2869-2872, 1994
- Missiaglia E, Williamson D, Chisholm J, et al.: PAX3/FOXO1 fusion gene status is the key prognostic molecular marker in rhabdomyosarcoma and significantly improves current risk stratification. J Clin Oncol 30:1670-1677, 2012
- 6. Shern JF, Selfe J, Izquierdo E, et al.: Genomic classification and clinical outcome in rhabdomyosarcoma: A report from an International Consortium. *J Clin Oncol* 39:2859-2871, 2021
- 7. Cescon DW, Bratman SV, Chan SM, Siu LL: Circulating tumor DNA and liquid biopsy in oncology. *Nat Cancer* 1:276-290, 2020
- 8. Eguchi-Ishimae M, Tezuka M, Kokeguchi T, et al.: Early detection of the PAX3-FOXO1 fusion gene in circulating tumor-derived DNA in a case of alveolar rhabdomyosarcoma. *Genes Chromosomes Cancer* 58:521-529, 2019
- Klega K, Imamovic-Tuco A, Ha G, et al.: Detection of somatic structural variants enables quantification and characterization of circulating tumor DNA in children with solid tumors. JCO Precis Oncol 2:1-9, 2018
- 10. Shah AT, Azad TD, Breese MR, et al.: A comprehensive circulating tumor DNA assay for detection of translocation and copy-number changes in pediatric sarcomas. *Mol Cancer Ther* 20:2016-2025, 2021
- 11. Manzella G, Schreck LD, Breunis WB, et al.: High throughput drug profiling with a living biobank of primary rhabdomyosarcoma cells unravels disease heterogeneity and detects an AKT inhibitor sensitive subgroup. *Nat Commun* 11:4629, 2020
- 12. Izquierdo E, Yuan L, George S, et al.: Development of a targeted sequencing approach to identify prognostic, predictive and diagnostic markers in paediatric solid tumours. *Oncotarget* 8:112036-112050, 2017
- Chicard M, Colmet-Daage L, Clement N, et al.: Whole-exome sequencing of cell-free DNA reveals temporo-spatial heterogeneity and identifies treatment-resistant clones in neuroblastoma. *Clin Cancer Res* 24:939-949, 2018
- 14. Tombolan L, Rossi E, Binatti A, et al.: Clinical significance of circulating tumor cells and cell-free DNA in pediatric rhabdomyosarcoma. *Mol Oncol* 16:2071-2085, 2022
- 15. Kurihara S, Ueda Y, Onitake Y, et al.: Circulating free DNA as non-invasive diagnostic biomarker for childhood solid tumors. *J Pediatr Surg* 50:2094-2097, 2015
- 16. Krumbholz M, Hellberg J, Steif B, et al.: Genomic EWSR1 fusion sequence as highly sensitive and dynamic plasma tumor marker in Ewing sarcoma. *Clin Cancer Res* 22:4356-4365, 2016
- 17. Barris DM, Weiner SB, Dubin RA, et al.: Detection of circulating tumor DNA in patients with osteosarcoma. *Oncotarget* 9:12695-12704, 2018
- 18. Heske CM, Mascarenhas L: Relapsed rhabdomyosarcoma. J Clin Med 10:804, 2021

- 19. Lak NSM, Voormanns TL, Zappeij-Kannegieter L, et al.: Improving risk stratification for pediatric patients with rhabdomyosarcoma by molecular detection of disseminated disease. *Clin Cancer Res* 27:5576-5585, 2021
- 20. Lin LH, Chang KW, Kao SY, et al.: Increased plasma circulating cell-free DNA could be a potential marker for oral cancer. *Int J Mol Sci* 19:3303, 2018
- 21. Risberg B, Tsui DWY, Biggs H, et al.: Effects of collection and processing procedures on plasma circulating cell-free DNA from cancer patients. *J Mol Diagn* 20:883-892, 2018
- 22. Stankunaite R, George SL, Gallagher L, et al.: Circulating tumour DNA sequencing to determine therapeutic response and identify tumour heterogeneity in patients with paediatric solid tumours. *Eur J Cancer* 162:209-220, 2022
- 23. Quan PL, Sauzade M, Brouzes E: dPCR: A technology review. Sensors (Basel) 18:1271, 2018
- 24. Eisenhauer EA, Therasse P, Bogaerts J, et al.: New response evaluation criteria in solid tumors: Revised RECIST guideline (version 1.1). *Eur J Cancer* 45:228-247, 2009

## **Supplementary methods**

#### **Establishment of RMS PDX**

Patient-derived xenografts (PDX) of alveolar and embryonal RMS were established by implanting tumor samples collected from patients at the Institut Curie and Royal Marsden Hospital (see Table S1 for PDX characteristics) as previously described.<sup>1</sup> To produce in vitro cultures of alveolar RMS PDXs, dissociated tumor cells were grown on plates coated with Matrigel (Corning, 354234) diluted 1:10 in Advanced DMEM/F-12 medium (Thermofisher Scientific, 12634010) and left at room temperature for 30-60 min to solidify. IC-pPDX-104 cells were cultured in Advanced DMEM/F-12 (Thermofisher Scientific, 12634010) medium supplemented with 100 U/ml penicillin/ streptomycin (Thermofisher Scientific, 15140122), 2 mM Glutamax (Thermofisher Scientific, 35050061), 0.75x B-27 (Thermofisher Scientific, 17504044), 20 ng/ml bFGF (PeproTech, AF-100-18B) and 20 ng/ml EGF (PeproTech, AF-100-15), whereas IC-pPDX-29 cells were grown in Neurobasal medium (Thermo Fisher Scientific) supplemented with 100 U/ml penicillin/streptomycin (Thermofisher, 15140122), 2 mM Glutamax (Thermofisher Scientific, 35050061), 2x B-27 (Thermofisher Scientific, 17504044), 20 ng/ml bFGF (PeproTech, AF-100-18B) and 20 ng/ml EGF (PeproTech, AF-100-15). For further passaging, cells were washed with PBS and detached with Accutase (Sigma-Aldrich, A6964) diluted 1:2 to 1:3 in PBS.

#### **EGFP transduction**

Lentiviral particles containing EGFP were produced in HEK293T cells with 2nd generation packaging plasmids (psPAX2 #12260 and pVSV #36399, both from Addgene) and the respective transfer plasmid (Plasmid #19070, Addgene) using calcium phosphate. Supernatants containing EGFP-lentivirus were collected 72 hours after transduction and concentrated with Amicon Ultra centrifugal filter units (Sigma-Aldrich UFC910024). IC-pPDX-104 and IC-pPDX-29 cells (below passage 20) were transduced with EGFP lentivirus and sorted on a BD FACSAriaTM Fusion.

#### **Animal experiments**

*Alveolar:* Mouse experiments were approved by the cantonal guidelines (License no 213/17). Six-to-ten-week-old NOD scid gamma (NSG) mice were used throughout the study. For orthotopic injection, mice were anesthetized using isofluorane. IC-pPDX-104 EGFP and IC-pPDX-29 EGFP cells were resuspended in Matrigel (10 M/mL) and kept on ice for the remaining of the procedure. 0.1 mL cell suspension were injected into the right hind limb muscle of each mouse.

*Embryonal*: For the eRMS PDX experiments in ICR-PDX-RMS008 (conducted under license number PD498FF8D), tumor pieces were implanted bilaterally in 5 NSG mice, with 3 mice developing bilateral tumors, 1 mouse a unilateral tumor and 1 mouse no tumors (negative control). Blood (230-550  $\mu$ L) was collected through cardiac puncture at the end of the experiment after human killing of the mouse in K3EDTA 2.5 ml tubes or into an Eppendorf tube through a 0.5M EDTA prewetted syringe.

## **Mouse plasma DNA extraction**

Blood samples were kept on ice and were processed within 1 hour from collection. Plasma was separated from blood via a double centrifugation step (1,200 g for 10 min then 16,000 g for 10 min, 4°C) and stored at -80°C. Circulating DNA was extracted with the QIAmp Circulating Nucleic Acid Kit (Qiagen, 55114) according to manufacturer's instructions and eluted in 50  $\mu$ L nuclease-free water. To test the sensitivity and specificity of the aRMS assays, genomic DNA was extracted from PDX-cultured cells or from the mouse cell line C2C12 with the DNeasy Blood & Tissue Kit (Qiagen, 69504). For the eRMS assays, tumor DNA was extracted from FFPE, fresh frozen and cultured PDX tumor tissue with the QIAmp DNA FFPE Tissue kit (Qiagen) and the DNeasy Blood & Tissue Kit (Qiagen).

### PDX tumor variant determination

To detect *PAX3-FOXO1* translocation sequences, genomic DNA was isolated from ICpPDX-104 and IC- pPDX-29 cultured cells and processed according to an established Targeted Locus Amplification protocol (Cergentis, Utrecht, Netherlands).<sup>2</sup> Droplet digital PCR (ddPCR) was performed on DNA from ICR-PDX-RMS008 PDX tumors to confirm the PDX tumors contained the same genetic variants (*MYOD1* L122R, *NRAS* G12A, *PIK3CA* H1044K) detected in the patient primary tumor (see 'ddPCR').

#### qPCR

We first tested the sensitivity and species-specificity of different primer sets that have been previously described to be selective for either human or mouse DNA. Primer sets, listed in Table S2, were purchased from Microsynth in liquid form (100  $\mu$ M). Probes were coupled to FAM at the 5'-end and to TAMRA at the 3'-end.

SYBR Green-based qPCR was used for primer sets hPtger2, hGAPDH, hAluJ, hLINE-1 and mPtger2, whereas Taqman-based qPCR was used for *PAX3-FOXO1*-breakpoint-specific primer sets and for mGAPDH. For SYBR Green qPCR, each reaction well of a 384 well plate consisted of 2  $\mu$ L DNA (100-0.001 ng), 5  $\mu$ L PowerUpTM SYBRTM Green Master Mix (Thermo Fischer Scientific, A25778,), 4.8  $\mu$ L nuclease-free water (not DEPC-treated) (ThermoFisher Scientific, AM9937) and the gene mix (0.1  $\mu$ L forward and 0.1  $\mu$ L

reverse primer). All samples were prepared on ice and run in triplicate on a 7900HT Fast Real-Time PCR System (Applied Biosystems) with the following cycling conditions: 50 °C for 2 min, 95 °C for 10 min, 40 cycles of 95 °C for 15 sec and 60 °C for 1 min, followed by a dissociation stage of 95 °C for 15 sec, 60 °C for 15 sec and 95 °C for 15 sec.

For real-time qPCR, each reaction well consisted of 4.5  $\mu$ L DNA (100-0.001 ng), 5  $\mu$ L TaqManTM Gene Expression Master Mix (Thermo Fischer Scientific, 4369016), 0.43  $\mu$ L nuclease-free water (not DEPC- treated) (ThermoFisher Scientific, AM9937) and the primer mix (0.03  $\mu$ L forward, 0.03  $\mu$ L reverse primer and 0.01  $\mu$ L probe). All samples were prepared on ice and run in triplicate on a 7900HT Fast Real-Time PCR System (Applied Biosystems) with the following cycling conditions: 50 °C for 2 min, 95 °C for 10 min, followed by 40 cycles of 95 °C for 15 sec and 60 °C for 1 min.

For ctDNA and nt-cfDNA quantification, SYBR Green qPCR with primer sets hLINE-1 and mPtger2 was performed as described above, except that DNA samples were diluted 1:5 in nuclease-free water (not DEPC-treated) (ThermoFisher Scientific, AM9937). Standard curves and negative controls (water and cfDNA extracted from plasma of healthy mice) were included in every run. The LoD was set 2-Ct-values below background of negative controls.

#### Patient blood sample processing

Whole blood was collected in EDTA tubes (BD, Reading, UK) and processed at participating sites according to local standard operating procedures:

Bambino Gesù Children's Hospital, Rome: Blood was centrifuged at 500 g for 10 min. Plasma was then collected and centrifuged at 3,000 g and then at 12,000 g for 20 min. Clarified plasma was then aliquoted and stored at  $-80^{\circ}$ C prior to use.

*University-Hospital, Padova*: Blood was centrifuged for 10 minutes at 890 g. The plasma fraction was transferred to new tubes and centrifuged for 10 minutes at 16,000 g. Clarified plasma was aliquoted into new tubes and stored at -80°C.

*Princess Máxima Centre, Utrecht*: Blood was centrifuged for 10 minutes at 1,375 g. The plasma fraction was aliquoted into new tubes and stored at -20°C prior to use.

*Institute of Cancer Research, London*: Blood was centrifuged for 10 minutes at 1,600 g. The plasma fraction was transferred to new tubes and centrifuged for 10 minutes at 1,600 g. Clarified plasma was aliquoted into new tubes and stored at -80°C. *Institut Curie, Paris:* Blood was centrifuged for 10 minutes at 2,000 rpm. The plasma fraction was aliquoted into new tubes and stored at -80°C.

### Plasma cell-free DNA extraction

Cell-free DNA was extracted from patient plasma at local sites according to established procedures.

*University-Hospital, Padova:* Cell-free DNA was extracted from 0.5-1 mL of plasma using the QIAamp MinElute ccfDNA kit (Qiagen, Hilden, Germany) according to the manufacturers' instructions.

*Princess Máxima Centre, Utrecht:* Cell-free DNA was extracted from 0.2-1 mL of plasma using the Quick-cfDNA Serum & Plasma kit (Zymo Research, Irvine, USA) according to the manufacturer's protocol.

*Institute of Cancer Research, London:* Cell-free DNA was extracted from 0.5-8 mL of plasma using the QIAamp Circulating Nucleic Acid kit (Qiagen) according to the manufacturers' instructions.

*Institut Curie, Paris:* Cell-free DNA was extracted from 0.5-1 mL of plasma using the QIAamp Circulating Nucleic Acid kit (Qiagen) according to the manufacturers' instructions.

## **Tumor DNA extraction**

Patient tumor samples were shipped to either Utrecht, London or Paris for DNA extraction as follows:

*FFPE tissue*: Tumor cases were assessed by an expert pediatric rhabdomyosarcoma pathologist prior to extraction to estimate tumor cellularity. Only cases with tumor cellularity greater than 50% were considered for extraction. DNA from FFPE tissue was isolated with the Maxwell RSC FFPE Plus DNA kit (Promega; Princess Maxima Centre, Utrecht) or the QIAamp DNA FFPE Tissue kit (Qiagen; Institute of Cancer Research, London) according to manufacturer's protocol. DNA quantity and quality were assessed with the Qubit HS dsDNA Kit (Thermo Fisher Scientific; both sites) and the Agilent HS D1000 Screen Tape (Agilent Technologies; Institute of Cancer Research, London).

*Fresh-frozen tissue:* Fresh-frozen tumor samples were processed if they had at least 30% of tumor cellularity determined by an experienced pathologist. Extraction was

performed with the AllPrep DNA Mini kit (Qiagen) according to the manufacturer's instructions (Institut Curie, Paris).

### **Germline DNA extraction**

In some cases where peripheral blood mononuclear cells were available, germline DNA was extracted with the DNeasy Blood and Tissue kit (Qiagen) according to the manufacturer's instructions (Institut Curie, Paris).

## **Targeted Locus Amplification**

In *PAX3-FOXO1*-rearranged cases where fresh tumor tissue was available, targeted locus amplification (TLA) was performed to determine the translocation breakpoints. TLA was performed according to established methods (Cergentis).<sup>2</sup> The input was 3-5 million cells from cultured patient-derived organoids.

### **Targeted sequencing**

For FFPE tumors, targeted sequencing was performed with two custom sequencing panels to identify tumor-specific variants of interest. The first panel ('Paeds') was for the detection of single nucleotide variants (SNVs), insertions and deletions (indels), or copy number variants (CNVs) recurrently altered in pediatric solid tumors, including RMS (see Table S3 for list of gene targets).<sup>3,4</sup> This panel has been validated to Good Laboratory and Clinical Practice standards and is now offered as part of routine diagnostic testing across the UK.

For FFPE tumor samples positive for the *PAX3/7-FOXO1* gene fusions, DNA was sequenced with a second panel ('RMS fusion 01') to detect the genomic position of translocation breakpoints. This panel was designed to detect any translocations involving the *PAX3, PAX7* and *FOXO1* genes, which account for >95% of all gene fusions in fusion-positive pediatric RMS. The genomic locations of the panel baits are listed in Table S4.

For both panels, tumor DNA samples (and, where available, germline DNA) were concentrated to >1.6 ng/µL with the DNA Clean and Concentrator kit (Zymo Research) according to the manufacturer's instructions. Between 29 and 226 ng of DNA per sample was input into the library preparation, which was performed with the KAPA Hyper Plus kits (Kapa Biosystems) with barcoded adapters (Roche) according to the manufacturer's instructions. Libraries were pooled and hybridised to the panel baits overnight at 47°C for 'RMS fusion 01' and 55°C for 'Paeds'. Sequencing was performed on the NovaSeq 6000 (Illumina). Sequencing data was analysed as previously described.<sup>3.4</sup>

## Whole-exome sequencing

WES was performed on fresh-frozen tumor material, as previously described.<sup>5</sup> Briefly, libraries were prepared using the KAPA Library Preparation kit (Kapa Biosystems) as per manufacturer's instructions, except for a modified overnight ligation at 20°C with a 10:1 adapter:insert ratio. The SeqCap EZ Exome Enrichment kit (Roche) was used for exome capture, with sequencing performed on the HiSeq 2500 (Illumina) to a mean coverage depth of 100x. Sequences were aligned to the human genome (hg19) with Bowtie2 and variant calling was performed with GenomeAnalysisTK-3.5 UnifiedGenotyper, HaplotypeCaller, and Samtools-0.1.18. Variants were filtered according to an established bioinformatic pipeline.<sup>5</sup>

## **Droplet digital PCR**

ddPCR primers and probes for tumor-specific variants and reference genes were purchased from Bio-Rad or Thermo Fisher Scientific, or were custom-designed using Primer3Plus and ordered through Integrated DNA Technologies. All assays were run against a temperature gradient to determine the optimal annealing temperature. Details of the custom and commercial assays used to assess cell-free DNA for PAX3/7-FOXO1 gene fusions, mutations and copy number changes are listed in Table S5 and S6, respectively. ddPCR was performed on the Bio-Rad QX200 ddPCR system as per manufacturer's instructions using 2X ddPCR Supermix for Probes (Bio-Rad), assay mixes (with a final concentration of 900 nM of primers and 250 nM of probe) and 1.0-30 ng of cfDNA. Each assay included a positive control (patient tumor DNA harbouring the variant of interest), a negative control (patient germline DNA or Human Genomic DNA, Promega) and a no-template control (Nuclease-free water, Ambion). All samples were run in duplicate where possible. Reaction mixes were partitioned into droplets on the QX200 Auto Droplet Generator. After droplet generation, PCR was performed with the following condition: 95 °C for 10 min (1 cycle); 94 °C for 30 s and 55–60 °C for 1 min (40 cycles); 98 °C for 10 min (1 cycle), 4 °C hold. Droplets were analysed in the QX200 ddPCR Droplet Reader and analysis performed with the QuantaSoft Analysis Pro software.

Fractional abundance of variants (*PAX3/7-FOXO1* gene fusions or SNVs such as *NRAS* G35C) in patient cfDNA was determined by the following formula:

Variant Fractional Abundance (%) =  $[C_{var} / (C_{var} + C_{ref})] *100$ 

Where:

 $C_{var} = Variant concentration in copies/\mu L$  $C_{rot} = Reference concentration in copies/\mu L$  The reference genes for *PAX3/7-FOXO1* gene fusions and copy number alterations was human *RPP30* and *RPPH1* (Bio-Rad) and *ACTB* (custom, see Table S5) and the reference for SNVs was the wild-type sequence at the target allele.

Plasma concentration of variant-positive cell-free DNA ('ctDNA') was calculated as follows:

ctDNA (copies/mL plasma) = C<sub>var</sub> x V<sub>rx</sub> x V<sub>elu</sub> / V<sub>dna</sub> x V<sub>plasma</sub>

Where: $C_{var} = Variant concentration (copies/µL)$  $V_{rx} = Total volume of ddPCR reaction mix (µL)$  $V_{elu} = Total volume of eluate from DNA extraction (µL)$  $V_{dna} = Volume of DNA input into ddPCR reaction (µL)$  $V_{plasma} = Volume of plasma DNA was extracted from (mL)$ 

Plasma concentration of wild-type cell-free DNA ('cfDNA $_{\rm wt}$ ') was calculated as follows:

cfDNA<sub>wr</sub> (copies/mL plasma) =  $C_{ref} \times V_{rx} \times V_{elu} / V_{dna} \times V_{plasma}$ 

Where:  $C_{ref} = Reference concentration (copies/µL)$   $V_{rx} = Total volume of ddPCR reaction mix (µL)$   $V_{elu} = Total volume of eluate from DNA extraction (µL)$   $V_{dna} = Volume of DNA input into ddPCR reaction (µL)$  $V_{plasma} = Volume of plasma DNA was extracted from (mL)$ 

Amount of ctDNA, cfDNA<sub>wt</sub> and total cfDNA ('cfDNA') in ng/mL plasma was calculated as per the following equations:

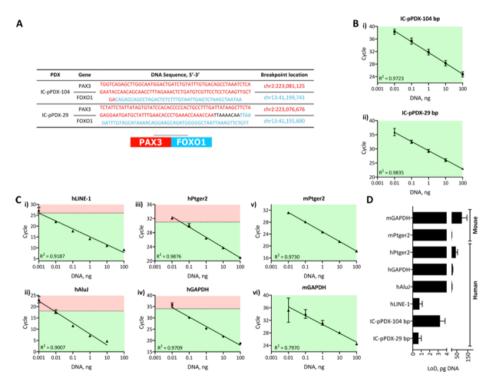
ctDNA (ng/mL plasma) = ctDNA (copies/mL plasma) x 0.0033

cfDNA<sub>wt</sub> (ng/mL plasma) = cfDNA<sub>wt</sub> (copies/mL plasma) x 0.0033

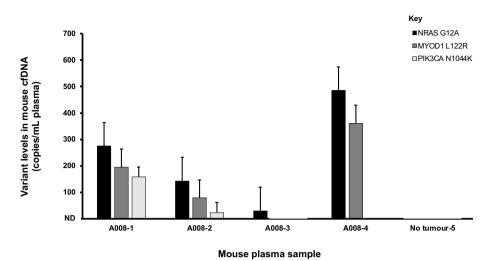
cfDNA (ng/mL plasma) = [cfDNA $_{WT}$  (copies/mL plasma) x 0.0033] + [ctDNA (copies/mL plasma) x 0.0033]

Where 0.0033 = approximate mass of the haploid genome in ng

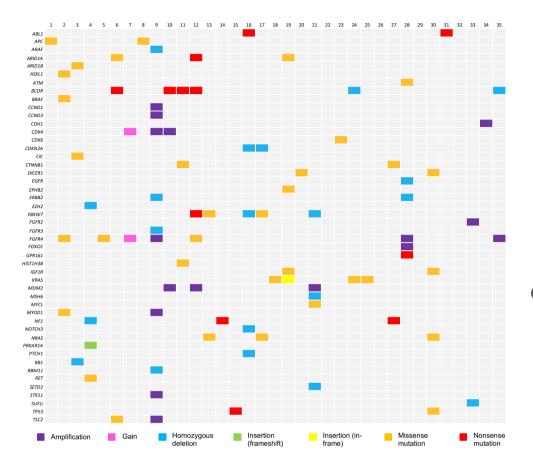
## Supplementary data


### **Animal experiments**

For the alveolar mouse models, we first verified the presence of individual PAX3-FOXO1 breakpoints in two aRMS PDXs using a targeted locus amplification (TLA) approach. In both samples, the translocation was successfully identified, and the breakpoint sequences determined (Table S7). We then determined the sensitivity and specificity of PAX3-FOXO1-specific primers (Figure S1A and B) and of previously published human-specific sequences (hLINE, hAluJ, hPtgerhGAPDH) (Figure S1C) by using serial dilutions of human tumor gDNA in water as template for quantitative PCR. Water and plasma cfDNA extracted from healthy mice were used as negative controls for background determination. All tested primers exhibited linearity of responses over four or more orders of magnitude of input DNA (Figure S1A-F). Among the human-specific primers, only tumor-specific PAX3-FOXO1 breakpoint sequences resulted in high specificity, with no detectable murine unspecific signal. Among mouse-specific assays, only mPtger (Figure S1G) was considered for further studies, as Ct values of mGAPDH (Figure S1H) were not reproducible below 0.1 ng input DNA (coefficient of variation >15%). We next assessed the limit of detection (LoD) of the tested primers based on a threshold cycle of 40 or of the corresponding species-unspecific background (Figure S1 I). Highest sensitivity for human DNA was achieved with primers targeting multi-copy DNA (hLINE-1: LoD =  $0.1 \pm 0.1$  pg; hAluJ:  $LoD = 7.1 \pm 1.9$  pg), and with tumor-specific *PAX3-FOXO1* breakpoint sequences (ICpPDX-29: LoD =  $4.5 \pm 1.2$  pg; IC-pPDX-104: LoD =  $16.3 \pm 3.7$  pg). For mouse DNA, mPtger2 could detect down to 5.0  $\pm$  1.6 pg. Given our experimental set-up and the necessity to detect and quantify ctDNA from very small amounts of blood, hLINE-1 and mPtger2 were chosen for further animal experiments. Data for the detection of SNVs in cfDNA from ICR-PDX-RMS008 is presented in Figure S2.


## Detection of key oncogenic drivers in patient tumors

DNA from patient FFPE tumor tissue was sequenced with the 'Paeds' targeted sequencing panel (n=35) and the 'RMS fusion 01' sequencing panel (n=14) to detect key tumor-specific variants (and, in the case of the 'RMS fusion 01' panel, determine the translocation breakpoints resulting in the fusions between the *PAX3* or *PAX7* and *FOXO1* genes). Cases had a tumor cellularity between 50 and 95% (as estimated by an expert pediatric rhabdomyosarcoma pathologist). The mean depth of coverage for samples sequenced with the 'Paeds' panel was 264x (range 14-1145x, median 164x), while that of the 'RMS fusion 01' panel was 974x (range 49-6432x, median 118x). Variants were identified in 31 (89%) cases sequenced with the 'Paeds' panel, with an average of 3 variants detected per case (range 0-6; Figure S3). *PAX3/7-FOX01* 


breakpoints were identified in 12 (86%) cases sequenced with the 'RMS fusion 01' panel (see Table S7 for breakpoint locations). Three cases had two unique *PAX3-FOXO1* gene fusions detected, whilst 1 case had two unique *PAX7-FOXO1* gene fusions. These do not appear to be reciprocal translocations as the breakpoints occur at different genomic locations, and ddPCR testing determined that they were present at different concentrations in patient cfDNA from the same timepoint (see Table 3). Variant-positive patients who had sufficient cfDNA for testing and for whom a ddPCR assay could be purchased/designed to target variants in cfDNA (e.g., those who had a 'targetable variant') were carried forward into the final cohort (n=28; See Figure 2A for sample overview).



**Figure S1.** Design of a human-specific qRT-PCR assay to quantify ctDNA in alveolar RMS PDXs. (**A-F**) Genomic DNA from human RMS PDXs was serially diluted in water and detected by qRT-PCR using primer sets specific for *PAX3-FOXO1* breakpoint sequences (**A** and **B**), or for previously published human hPtger2 (**C**), hGAPDH (**D**), hLINE-1 (**E**), hAluJ (**F**) sequences. Plasma cfDNA from murine controls was used to set the limit of detection (LoD) (dotted lines) for each assay. (**G-H**) Mouse DNA was serially diluted in water and detected with previously published primer sets specific for mouse DNA (mPtger2, **G**; mGAPDH, **H**). Data are represented as mean± SEM from at least two independent experiments. Correlation coefficient values (R<sup>2</sup>) are shown for each graph. (**I**) Limit of detection (LoD) of the different primer sets. LoD was set based on a threshold cycle of 40 or the corresponding species-unspecific background (LoD set 2-Ct-values below background signal). Data are represented as mean± SEM from at least two independent experiments.



**Figure S2.** Levels of key genetic variants *NRAS*<sup>G12A</sup>, *MYOD1*<sup>L122R</sup> and *PIK3CA*<sup>H1044K</sup> detected in mouse plasma samples by ddPCR (copies/mL plasma). Plasma samples 1 to 4 were collected from mice who had grown the ICR-PDX-RMS008 embryonal RMS PDX, whilst plasma sample 5 was collected from an NSG mouse which did not develop tumors.



**Figure S3:** OncoPrint map of SNVs and CNVs detected in patient tumor DNA via targeted sequencing with the Paeds panel.<sup>3</sup> Each column represents a case (1-35), with the type of variant in each gene detected in each case represented by a coloured square. Grey shading indicates that no variant was detected in that gene in that patient. *Note:* Not all cases presented here were subject to cfDNA analysis. Patients were excluded from the final liquid biopsy cohort if no variants were detected in their tumor, a ddPCR assay to target variants detected was not available, or there was insufficient cfDNA to test (see Figure 2A for sample overview).

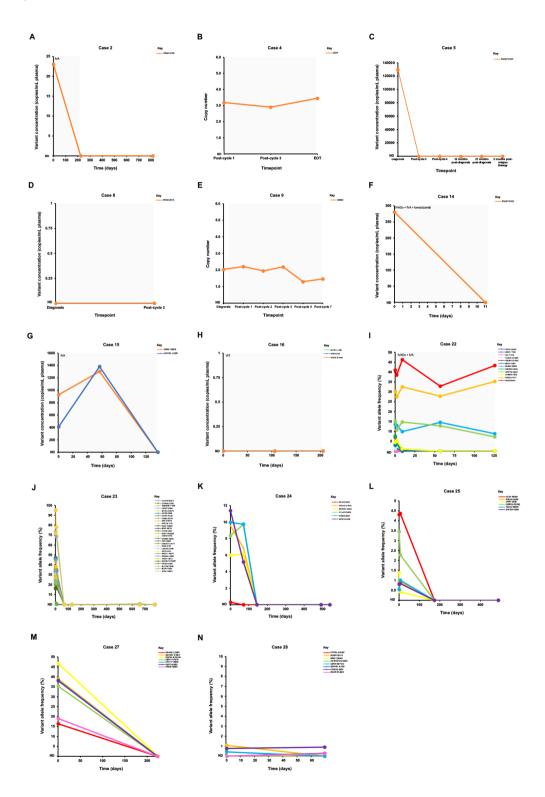



Figure 54. Variant levels in patient cfDNA over time as assessed by ddPCR or panel sequencing (n=14; remaining 4 cases illustrated in Figure 3). Although some variants exhibited marginal increases in concentration over time (<10% increase from baseline), Case 4 (B) and Case 22 (I) were deemed to have stable ctDNA levels during treatment. (previous page)

| Hist                           | ristics of PDXs<br>Histology | Table 51. Characteristics of PDXs and patient clinical data.         PDX       Histology       Disease status at | a.<br>Tumor sampled Tumor site | Tumor site                  | Metastatic infiltration                                | Tumor-specific                                                                                    |
|--------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| bid                            | įđ                           | biopsy                                                                                                           |                                |                             |                                                        | variants (AF%)                                                                                    |
| Alveolar Relapse               | Rela                         | pse                                                                                                              | Primary tumor                  | Anterior compartment of leg | Anterior compartment of leg No evidence in bone marrow | PAX3-FOXO1                                                                                        |
| Alveolar Relapse               | Relap                        | se                                                                                                               | Primary tumor                  | Paravertebral               | Pleural infiltration                                   | PAX3-FOXO1                                                                                        |
| ICR-PDX-RMS008 Embryonal Prima | Prima                        | Primary progressive                                                                                              | Primary tumor                  | Jaw (non-parameningeal)     | None                                                   | NRAS <sup>G12A</sup> (54.7%)<br>MYOD1 <sup>L122R</sup> (48.0%)<br>PIK3CA <sup>H104K</sup> (39.8%) |

| l data.  |
|----------|
| clinica  |
| patient  |
| Xs and   |
| of PD    |
| eristics |
| Charact  |
| e S1. (  |
| able     |

| Species                         | Target<br>sequence     | Oligo | Oligo sequence (5'-3')                    | <b>T</b> <sub>m</sub> (°C) | Amplicon<br>size (bp) |
|---------------------------------|------------------------|-------|-------------------------------------------|----------------------------|-----------------------|
| Human IC-pPDX-104<br>PAX3-FOXO1 |                        | F     | TGA GGG GCT GGT GTG AAG CAG TGT           | 68.5                       | -                     |
|                                 |                        | R     | AGG CTG CTC TGT CAG CAA CTT GAG G         | 69.1                       |                       |
|                                 |                        | Р     | TCA GGG AGG TCA CAC CTG TCC A             | 65.8                       |                       |
|                                 | IC-pPDX-29             | F     | CCA CTG CCT TTG ATT ATA AGC TTC TAG       | 65.3                       | -                     |
|                                 | PAX3-FOXO1             | R     | CTG CTT CCT GTT TTA TGC TAC AAA TC        | 62.9                       |                       |
|                                 |                        | Р     | TGA TGC TAT TTG AAC ACC CTG AAA CCA AAC C | 69.7                       |                       |
|                                 | hPtger26,7             | F     | GCT GCT TCT CAT TGT CTC GG                | 60.5                       | 189                   |
|                                 |                        | R     | GCC AGG AGA ATG AGG TGG TC                | 62.5                       |                       |
| hGAPDH <sup>®</sup>             |                        | F     | ATC ATC CCT GCC TCT ACT GG                | 60.5                       | 121                   |
|                                 |                        | R     | GTC AGG TCC ACC ACT GAC AC                | 62.5                       |                       |
|                                 | hAluJ <sup>9</sup>     | F     | CAC CTG TAA TCC CAG CAC TTT               | 59.5                       | 240                   |
|                                 |                        | R     | CCC AGG CTG GAG TGC AGT                   | 60.8                       |                       |
|                                 | hLINE-1 <sup>10</sup>  | F     | TCA CTC AAA GCC GCT CAA CTA C             | 62.1                       | 81                    |
|                                 |                        | R     | TCT GCC TTC ATT TCG TTA TGT ACC           | 62.0                       |                       |
| Mouse                           | mGAPDH <sup>11</sup>   | F     | CCT CAC AAT CTG TCT CAC CTT ATT           | 62.0                       | -                     |
|                                 |                        | R     | GAC CTC TGT AAG TCC GCT TTG               | 61.2                       |                       |
|                                 |                        | Р     | AGC CTT ATT GTC CTC GGG CAT               | 61.2                       |                       |
|                                 | mPtger2 <sup>6,7</sup> | F     | CCT GCT GCT TAT CGT GGC TG                | 62.5                       | 189                   |
|                                 |                        | R     | GCC AGG AGA ATG AGG TGG TC                | 62.5                       |                       |

 Table S2. Characteristics of qPCR primer-probe sets used for cfDNA analysis in PDX.

Abbreviations: F = forward primer; R = reverse primer; P = probe

| Table 55. Else of ger | les targeted in the re | ediatric Solia Talliol | (Tucus) pulleli |         |
|-----------------------|------------------------|------------------------|-----------------|---------|
| ABL1                  | CDK4                   | FGFR2                  | MRE11A          | PTEN    |
| ACVR1                 | CDK6                   | FGFR3                  | MSH2            | PTPN11  |
| AKT1                  | CDKN1A                 | FGFR4                  | MSH6            | RAD51B  |
| ALK                   | CDKN2A                 | GPR161                 | МҮС             | RAD51C  |
| AMER1                 | CDKN2B                 | H3F3A                  | MYCL            | RAD51D  |
| APC                   | CHEK1                  | HIST1H3B               | MYCN            | RAD54L  |
| ARID1A                | CHEK2                  | HIST1H3C               | MYOD1           | RAF1    |
| ARID1B                | CIC                    | HIST2H3C               | NF1             | RB1     |
| ASXL1                 | CREBBP                 | HRAS                   | NF2             | RET     |
| ATM                   | CTNNB1                 | IDH1                   | NRAS            | SETD2   |
| ATR                   | DAXX                   | IDH2                   | PALB2           | SMARCA4 |
| ATRX                  | DDX3X                  | IGF1R                  | PDGFRA          | SMARCB1 |
| BARD1                 | DICER1                 | KIT                    | РНОХ2В          | SMARCE1 |
| BBC3                  | DROSHA                 | KMT2A                  | РІКЗСА          | SMO     |
| BCOR                  | EGFR                   | KRAS                   | PIK3R1          | SUFU    |
| BRAF                  | EMSY                   | LIN28B                 | PIN1            | TERT    |
| BRCA1                 | EPHB2                  | MAP2K1                 | PMS1            | TFE3    |
| BRCA2                 | ERBB2                  | MAP2K2                 | PMS2            | TP53    |
| BRIP1                 | EZH2                   | MAPK1                  | PPM1D           | TSC1    |
| CCND1                 | FANCI                  | MDM2                   | PPP2R2A         | TSC2    |
| CCND2                 | FANCL                  | MDM4                   | PRKAR1A         | VHL     |
| CCNE1                 | FBXW7                  | MET                    | PTCH1           | WT1     |
| CDK12                 | FGFR1                  | MLH1                   | PTCH2           | YAP1    |

Table S3. List of genes targeted in the Pediatric Solid Tumor ('Paeds') panel.<sup>3</sup>

#### Table S4. Genomic locations of the 'RMS fusion 01' panel baits.

| Chromosome | Gene          | Start    | End      |
|------------|---------------|----------|----------|
| chr1       | PAX7_upstream | 18945508 | 18946114 |
| chr1       | PAX7_upstream | 18946133 | 18946669 |
| chr1       | PAX7_upstream | 18947028 | 18947239 |
| chr1       | PAX7_upstream | 18947533 | 18947826 |
| chr1       | PAX7_upstream | 18948158 | 18948437 |
| chr1       | PAX7_upstream | 18948468 | 18948713 |
| chr1       | PAX7_upstream | 18948723 | 18948943 |
| chr1       | PAX7_upstream | 18949543 | 18949645 |
| chr1       | PAX7_upstream | 18949673 | 18950588 |
| chr1       | PAX7_upstream | 18950783 | 18952680 |
| chr1       | PAX7_upstream | 18952688 | 18952829 |
| chr1       | PAX7_upstream | 18953293 | 18954552 |
| chr1       | PAX7_upstream | 18954558 | 18954632 |
| chr1       | PAX7_upstream | 18954658 | 18955643 |
| chr1       | PAX7_upstream | 18955708 | 18957311 |
| chr1       | PAX7          | 18957323 | 18958182 |
| chr1       | PAX7          | 18958183 | 18959142 |
| chr1       | PAX7          | 18959143 | 18960796 |
| chr1       | PAX7          | 18960797 | 18961032 |
| chr1       | PAX7          | 18961033 | 18961604 |
| chr1       | PAX7          | 18961605 | 18961734 |
| chr1       | PAX7          | 18961735 | 18961944 |
| chr1       | PAX7          | 18962033 | 18962278 |
| chr1       | PAX7          | 18962323 | 18962730 |
| chr1       | PAX7          | 18962731 | 18962865 |
| chr1       | PAX7          | 18962866 | 18963261 |
| chr1       | PAX7          | 18963278 | 18963377 |
| chr1       | PAX7          | 18963393 | 18966617 |
| chr1       | PAX7          | 18966623 | 18968571 |
| chr1       | PAX7          | 18968638 | 18969226 |
| chr1       | PAX7          | 18969243 | 18970856 |
| chr1       | PAX7          | 18970863 | 18974834 |
| chr1       | PAX7          | 18975103 | 18979683 |
| chr1       | PAX7          | 18979703 | 18979843 |
| chr1       | PAX7          | 18979853 | 18981285 |
| chr1       | PAX7          | 18981308 | 18982249 |

| Table S4. Continued | 60n0 | Start    | End      |
|---------------------|------|----------|----------|
| Chromosome          | Gene | Start    | End      |
| chr1                | PAX7 | 18982293 | 18982719 |
| chr1                | PAX7 | 18983008 | 18983217 |
| chr1                | PAX7 | 18983498 | 18984243 |
| chr1                | PAX7 | 18984258 | 18984741 |
| chr1                | PAX7 | 18984753 | 18985415 |
| chr1                | PAX7 | 18985608 | 18986957 |
| chr1                | PAX7 | 18986983 | 18988068 |
| chr1                | PAX7 | 18988153 | 18988919 |
| chr1                | PAX7 | 18988933 | 18989031 |
| chr1                | PAX7 | 18989418 | 18989874 |
| chr1                | PAX7 | 18990158 | 18990717 |
| chr1                | PAX7 | 18990728 | 18991859 |
| chr1                | PAX7 | 18992453 | 18992526 |
| chr1                | PAX7 | 18992658 | 18993716 |
| chr1                | PAX7 | 18993718 | 18993848 |
| chr1                | PAX7 | 18993938 | 18994860 |
| chr1                | PAX7 | 18995188 | 18996346 |
| chr1                | PAX7 | 18996593 | 18998193 |
| chr1                | PAX7 | 18998483 | 18999092 |
| chr1                | PAX7 | 18999383 | 18999623 |
| chr1                | PAX7 | 18999643 | 19002996 |
| chr1                | PAX7 | 19003008 | 19004303 |
| chr1                | PAX7 | 19004898 | 19006310 |
| chr1                | PAX7 | 19006323 | 19006565 |
| chr1                | PAX7 | 19006578 | 19007380 |
| chr1                | PAX7 | 19007678 | 19008196 |
| chr1                | PAX7 | 19008508 | 19008647 |
| chr1                | PAX7 | 19008648 | 19010057 |
| chr1                | PAX7 | 19010343 | 19012407 |
| chr1                | PAX7 | 19012433 | 19013374 |
| chr1                | PAX7 | 19013673 | 19015107 |
| chr1                | PAX7 | 19015428 | 19017482 |
| chr1                | PAX7 | 19017753 | 19017964 |
| chr1                | PAX7 | 19017988 | 19018247 |
| chr1                | PAX7 | 19018248 | 19018447 |
| chr1                | PAX7 | 19018448 | 19018751 |

5

| Chromosome         Gene         Start         End           chrl         PAX7         19019068         19020696           chrl         PAX7         19021008         19021709           chrl         PAX7         19021718         19022556           chrl         PAX7         19022833         19022963           chrl         PAX7         19023458         19023057           chrl         PAX7         19023458         1902341           chrl         PAX7         19023458         19024494           chrl         PAX7         19024518         19025591           chrl         PAX7         19025618         19026065           chrl         PAX7         1902648         1902553           chrl         PAX7         19026603         1902605           chrl         PAX7         1902663         1902605           chrl         PAX7         1902663         19027127           chrl         PAX7         19027138         19027146           chrl         PAX7         19027138         1902786           chrl         PAX7         19028454         PA           chrl         PAX7         19028453         19029154       | Table 54. Continued |      | -        |          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------|----------|----------|
| chrlPAX71902100819021709chrlPAX71902171819022556chrlPAX71902283319022963chrlPAX71902232819023057chrlPAX7190232381902341chrlPAX71902345819024494chrlPAX71902451819024760chrlPAX71902451819025651chrlPAX719026181902605chrlPAX71902633819026440chrlPAX71902660319026891chrlPAX71902644819025533chrlPAX71902713819027127chrlPAX71902713819027146chrlPAX71902713119027312chrlPAX71902713319027886chrlPAX7190284319029154chrlPAX71902918819029154chrlPAX71902918819029309chrlPAX71902918819029309chrlPAX7190231819029309chrlPAX7190231819029309chrlPAX7190231819039301chrlPAX7190231819039301chrlPAX7190231819039301chrlPAX7190312031903433chrlPAX7190312031903433chrlPAX7190336131903436chrlPAX719034031903478chrlPAX719034031                                                                                                                                                                                                                                                                                                                                                                                                              | Chromosome          | Gene | Start    | End      |
| chrlPAX71902171819022556chrlPAX71902283319022963chrlPAX71902297819023057chrlPAX7190232381902341chrlPAX71902345819024494chrlPAX7190245181902460chrlPAX7190245181902605chrlPAX7190263381902605chrlPAX71902633819026440chrlPAX71902660319026911chrlPAX71902601819027127chrlPAX71902711819027147chrlPAX71902713119027312chrlPAX71902713319027866chrlPAX719021471902312chrlPAX7190284319029154chrlPAX7190284319029154chrlPAX71902918819029309chrlPAX71902918819029309chrlPAX71902918819029309chrlPAX71902918819029309chrlPAX7190231819039361chrlPAX719023181903943chrlPAX719023181903943chrlPAX719030431903443chrlPAX7190312031903443chrlPAX7190329181903387chrlPAX719034031903478chrlPAX719034031903478chrlPAX719034031903478<                                                                                                                                                                                                                                                                                                                                                                                                              | chr1                | PAX7 | 19019068 | 19020696 |
| chrl         PAX7         19022883         19022963           chrl         PAX7         19022978         19023057           chrl         PAX7         19023238         19023341           chrl         PAX7         19023458         19024494           chrl         PAX7         19024518         19024500           chrl         PAX7         19024788         19025591           chrl         PAX7         19026338         19026440           chrl         PAX7         1902603         19026430           chrl         PAX7         1902603         19026440           chrl         PAX7         1902603         19026440           chrl         PAX7         1902603         1902643           chrl         PAX7         1902603         1902643           chrl         PAX7         19027138         19027127           chrl         PAX7         19027133         1902786           chrl         PAX7         19027133         1902786           chrl         PAX7         19027133         1902852           chrl         PAX7         1902843         19029154           chrl         PAX7         19029168         19029199< | chr1                | PAX7 | 19021008 | 19021709 |
| chr1PAX71902297819023057chr1PAX71902323819023341chr1PAX71902345819024494chr1PAX71902451819024500chr1PAX71902478819025591chr1PAX71902633819026440chr1PAX7190264819026553chr1PAX7190260319026891chr1PAX7190260319026891chr1PAX71902713819027127chr1PAX71902713819027146chr1PAX71902713319027866chr1PAX71902731319027866chr1PAX719028431902958chr1PAX7190284319029154chr1PAX7190291681902909chr1PAX7190291681902909chr1PAX7190291881902909chr1PAX7190291881902909chr1PAX71902312319030717chr1PAX7190307431903043chr1PAX71903120319032920chr1PAX7190336131903381chr1PAX719034031903443chr1PAX719035681903443chr1PAX719036431903443chr1PAX71903614319039285chr1PAX71903614319039285chr1PAX7190361431903285chr1PAX71903614319039                                                                                                                                                                                                                                                                                                                                                                                                              | chr1                | PAX7 | 19021718 | 19022556 |
| chr1PAX71902323819023341chr1PAX71902345819024494chr1PAX71902451819024500chr1PAX71902478819025010chr1PAX71902633819026400chr1PAX719026031902691chr1PAX719026031902691chr1PAX719026031902691chr1PAX71902691819027127chr1PAX71902713819027146chr1PAX71902713119027886chr1PAX71902731319027886chr1PAX7190284819029154chr1PAX7190284319029154chr1PAX7190291819029309chr1PAX7190291819029154chr1PAX7190291819029154chr1PAX7190291819029154chr1PAX7190231819029587chr1PAX7190307431903843chr1PAX71903120319032920chr1PAX7190312031903843chr1PAX719034031903443chr1PAX71903440319034778chr1PAX71903440319034778chr1PAX7190356819036142chr1PAX7190356819036142chr1PAX719035731904020chr1PAX719035731904020chr1PAX719035731904107 <td>chr1</td> <td>PAX7</td> <td>19022883</td> <td>19022963</td>                                                                                                                                                                                                                                                                                                                                                 | chr1                | PAX7 | 19022883 | 19022963 |
| chr1PAX71902345819024494chr1PAX71902451819025591chr1PAX719026181902605chr1PAX71902633819026440chr1PAX7190260319026891chr1PAX71902660319026891chr1PAX71902691819027127chr1PAX71902713819027146chr1PAX71902713119027312chr1PAX71902713319027866chr1PAX7190284319028454chr1PAX7190284731902852chr1PAX7190284319029154chr1PAX71902918819029154chr1PAX71902918819029587chr1PAX71902918819029587chr1PAX7190279119030717chr1PAX719037431903843chr1PAX7190312031903843chr1PAX719036131903843chr1PAX719036131903843chr1PAX71903421819034778chr1PAX71903614319034778chr1PAX7190361431903285chr1PAX7190361431903285chr1PAX7190361431903285chr1PAX7190361431903285chr1PAX7190361431903285chr1PAX7190361431903285chr1PAX719039573190404                                                                                                                                                                                                                                                                                                                                                                                                              | chr1                | PAX7 | 19022978 | 19023057 |
| chr1PAX71902451819024760chr1PAX71902478819025591chr1PAX71902561819026065chr1PAX71902633819026440chr1PAX7190260319026891chr1PAX7190260319026910chr1PAX7190261819027127chr1PAX71902713819027146chr1PAX71902713119027312chr1PAX71902731319027866chr1PAX7190284319028454chr1PAX71902847319028552chr1PAX71902843319029154chr1PAX71902918819029309chr1PAX71902918819029700chr1PAX7190291819029700chr1PAX719037431903843chr1PAX719037431903843chr1PAX71903120319032920chr1PAX7190312031903381chr1PAX719034131903478chr1PAX7190340319034778chr1PAX719036131903478chr1PAX7190340319034778chr1PAX719035081903412chr1PAX719035081903412chr1PAX7190357319040420chr1PAX7190357319040420chr1PAX7190357319040420chr1PAX719035731904107 <td>chr1</td> <td>PAX7</td> <td>19023238</td> <td>19023341</td>                                                                                                                                                                                                                                                                                                                                                 | chr1                | PAX7 | 19023238 | 19023341 |
| chr1PAX71902478819025511chr1PAX71902633819026440chr1PAX71902633819026440chr1PAX71902603319026533chr1PAX71902603319026918chr1PAX71902691819027127chr1PAX71902713819027146chr1PAX71902713119027312chr1PAX7190273131902866chr1PAX7190273131902852chr1PAX7190284731902852chr1PAX71902843319029154chr1PAX71902916819029309chr1PAX71902931819029587chr1PAX7190293181902990chr1PAX719037431903043chr1PAX719037431903843chr1PAX719037431903843chr1PAX7190316319032920chr1PAX71903361319033887chr1PAX719034031903496chr1PAX719034031903496chr1PAX7190350681903642chr1PAX7190350681903642chr1PAX7190350531904420chr1PAX7190357319040420chr1PAX7190472319041107chr1PAX7190472319041107                                                                                                                                                                                                                                                                                                                                                                                                                                                             | chr1                | PAX7 | 19023458 | 19024494 |
| chrlPAX71902561819026065chrlPAX71902633819026440chrlPAX71902643819026533chrlPAX71902660319026891chrlPAX71902691819027127chrlPAX71902713819027146chrlPAX71902713719027312chrlPAX71902713719027866chrlPAX71902804819028454chrlPAX7190284731902852chrlPAX7190284731902852chrlPAX71902884319029154chrlPAX71902916819029309chrlPAX71902931819029587chrlPAX71902931819029587chrlPAX71903074319030433chrlPAX7190307431903843chrlPAX719036131903843chrlPAX719036131903887chrlPAX719036131903496chrlPAX719036131903496chrlPAX719036131903478chrlPAX7190361431903496chrlPAX719035731904020chrlPAX719047231904020chrlPAX7190472319041107chrlPAX7190472319041107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | chr1                | PAX7 | 19024518 | 19024760 |
| chr1PAX71902633819026440chr1PAX71902644819026553chr1PAX71902660319026891chr1PAX71902691819027127chr1PAX71902713819027146chr1PAX71902713719027312chr1PAX71902731319027866chr1PAX71902844819028454chr1PAX71902847319028552chr1PAX71902847319029309chr1PAX71902916819029309chr1PAX71902931819029587chr1PAX71902931819029790chr1PAX71903074319030433chr1PAX719032581903581chr1PAX7190332581903581chr1PAX71903413819034736chr1PAX71903413319034778chr1PAX71903403319034778chr1PAX7190356819036142chr1PAX7190356819036142chr1PAX719035731904020chr1PAX7190472319041107chr1PAX7190472319041107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | chr1                | PAX7 | 19024788 | 19025591 |
| chr1PAX71902644819026553chr1PAX7190260319026891chr1PAX71902691819027127chr1PAX71902713819027146chr1PAX71902713319027312chr1PAX71902714719027312chr1PAX71902731319027886chr1PAX7190284819028454chr1PAX71902847319028552chr1PAX71902916819029309chr1PAX71902931819029587chr1PAX71902938819029700chr1PAX71902958819029700chr1PAX71903074319030843chr1PAX7190312031903843chr1PAX7190312031903887chr1PAX7190361319033881chr1PAX719036131903396chr1PAX719036131903496chr1PAX7190361431903496chr1PAX7190350681903412chr1PAX71903614319039285chr1PAX71903614319039285chr1PAX7190357319044020chr1PAX71903957319044020chr1PAX71903957319044020chr1PAX71904072319041107chr1PAX71904072319041107                                                                                                                                                                                                                                                                                                                                                                                                                                                    | chr1                | PAX7 | 19025618 | 19026065 |
| chr1PAX71902660319026891chr1PAX71902691819027127chr1PAX71902713819027146chr1PAX71902714719027312chr1PAX71902731319027886chr1PAX7190284819028454chr1PAX71902847319028552chr1PAX71902916819029309chr1PAX71902918819029309chr1PAX71902931819029587chr1PAX71902958819029790chr1PAX71902931319030717chr1PAX7190307431903843chr1PAX71903120319032920chr1PAX719033131903887chr1PAX7190361319033887chr1PAX7190340319034778chr1PAX71903506819036142chr1PAX7190350731904020chr1PAX719035731904420chr1PAX71904072319041107chr1PAX71904111819042507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | chr1                | PAX7 | 19026338 | 19026440 |
| chrlPAX71902691819027127chrlPAX71902713819027146chrlPAX71902714719027312chrlPAX71902731319027886chrlPAX71902804819028454chrlPAX71902847319028552chrlPAX71902884319029154chrlPAX71902884319029309chrlPAX71902916819029309chrlPAX71902958819029587chrlPAX71902979119030717chrlPAX71903074319030843chrlPAX71903120319032920chrlPAX71903325819033581chrlPAX71903361319033887chrlPAX7190364319034396chrlPAX71903614319034208chrlPAX7190361431903285chrlPAX7190361431903285chrlPAX7190361431903285chrlPAX7190361431903285chrlPAX7190361431903285chrlPAX7190361431903285chrlPAX7190361431903285chrlPAX71903614319032285chrlPAX71903614319034020chrlPAX7190361431904420chrlPAX71904072319041107chrlPAX71904072319041107                                                                                                                                                                                                                                                                                                                                                                                                                         | chr1                | PAX7 | 19026448 | 19026553 |
| chr1PAX71902713819027146chr1PAX71902714719027312chr1PAX71902731319027886chr1PAX71902804819028454chr1PAX71902847319028552chr1PAX71902843319029154chr1PAX71902916819029309chr1PAX71902931819029587chr1PAX71902958819029790chr1PAX71902979119030717chr1PAX71903074319030843chr1PAX71903120319032920chr1PAX71903325819033581chr1PAX71903421819034396chr1PAX7190364319034778chr1PAX7190361431903285chr1PAX71903614319032920chr1PAX719034031903496chr1PAX71903421819034396chr1PAX71903421819034396chr1PAX7190361431903285chr1PAX7190361431903285chr1PAX71903957319040420chr1PAX71903957319041107chr1PAX71904072319041107chr1PAX71904072319041107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | chr1                | PAX7 | 19026603 | 19026891 |
| chr1PAX71902714719027312chr1PAX71902731319027886chr1PAX71902804819028454chr1PAX71902847319028552chr1PAX71902884319029154chr1PAX71902916819029309chr1PAX71902931819029587chr1PAX71902958819029790chr1PAX71902979119030717chr1PAX7190374319030843chr1PAX71903120319032920chr1PAX71903361319033887chr1PAX71903361319033887chr1PAX71903421819034396chr1PAX719036431903443chr1PAX71903614319039285chr1PAX71903614319039285chr1PAX7190306431903142chr1PAX719031614319032920chr1PAX7190340319034778chr1PAX719034031903478chr1PAX71903506819036142chr1PAX71903614319039285chr1PAX71903957319040420chr1PAX71904072319041107chr1PAX71904072319041107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | chr1                | PAX7 | 19026918 | 19027127 |
| chr1PAX71902731319027886chr1PAX71902804819028454chr1PAX71902847319028552chr1PAX71902843319029154chr1PAX71902916819029309chr1PAX71902918819029587chr1PAX71902958819029790chr1PAX71902958819029790chr1PAX71902979119030717chr1PAX71903074319030843chr1PAX71903120319032920chr1PAX71903361319033887chr1PAX71903361319033887chr1PAX7190341819034778chr1PAX71903643319034778chr1PAX71903614319039285chr1PAX71903614319039285chr1PAX71903614319039285chr1PAX71903120319041107chr1PAX71903140319034778chr1PAX7190314331903420chr1PAX7190314331903285chr1PAX7190361431903285chr1PAX7190361431903285chr1PAX71904072319041107chr1PAX71904072319041107chr1PAX7190407231904200chr1PAX7190407231904207                                                                                                                                                                                                                                                                                                                                                                                                                                               | chr1                | PAX7 | 19027138 | 19027146 |
| chr1PAX71902804819028454chr1PAX71902847319028552chr1PAX71902884319029154chr1PAX71902916819029309chr1PAX71902931819029587chr1PAX71902958819029790chr1PAX71902979119030717chr1PAX71903074319030843chr1PAX71903120319032920chr1PAX71903325819033581chr1PAX71903361319033887chr1PAX7190340319034778chr1PAX71903506819036142chr1PAX71903614319039285chr1PAX71903614319039285chr1PAX71904072319041107chr1PAX71904072319041107chr1PAX71904111819042507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | chr1                | PAX7 | 19027147 | 19027312 |
| chr1PAX71902847319028552chr1PAX71902884319029154chr1PAX71902916819029309chr1PAX71902931819029587chr1PAX71902958819029790chr1PAX71902979119030717chr1PAX71903074319030843chr1PAX71903074319030843chr1PAX71903120319032920chr1PAX71903325819033581chr1PAX71903361319033887chr1PAX71903421819034396chr1PAX71903506819036142chr1PAX71903506819036142chr1PAX71903614319039285chr1PAX71903957319040420chr1PAX71904072319041107chr1PAX71904072319041107chr1PAX71904111819042507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | chr1                | PAX7 | 19027313 | 19027886 |
| chr1PAX71902884319029154chr1PAX71902916819029309chr1PAX71902931819029587chr1PAX71902958819029790chr1PAX71902979119030717chr1PAX71903074319030843chr1PAX71903120319032920chr1PAX71903325819033581chr1PAX71903361319033887chr1PAX71903421819034396chr1PAX7190350681903142chr1PAX71903614319039285chr1PAX71903957319040420chr1PAX71904072319041107chr1PAX71904111819042507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | chr1                | PAX7 | 19028048 | 19028454 |
| chr1PAX71902916819029309chr1PAX71902931819029587chr1PAX71902958819029790chr1PAX71902979119030717chr1PAX71903074319030843chr1PAX71903120319032920chr1PAX71903325819033581chr1PAX7190361319033887chr1PAX71903421819034396chr1PAX71903506819034778chr1PAX71903614319039285chr1PAX71903614319039285chr1PAX71903957319040420chr1PAX71904072319041107chr1PAX71904111819042507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | chr1                | PAX7 | 19028473 | 19028552 |
| chr1PAX71902931819029587chr1PAX71902958819029790chr1PAX71902979119030717chr1PAX71903074319030843chr1PAX71903120319032920chr1PAX71903325819033581chr1PAX71903361319033887chr1PAX71903421819034396chr1PAX71903506819034778chr1PAX71903614319039285chr1PAX71903614319039285chr1PAX7190361431903420chr1PAX71903614319034020chr1PAX71904072319041107chr1PAX71904111819042507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | chr1                | PAX7 | 19028843 | 19029154 |
| chr1PAX71902958819029790chr1PAX71902979119030717chr1PAX71903074319030843chr1PAX71903120319032920chr1PAX71903325819033581chr1PAX71903361319033887chr1PAX71903421819034396chr1PAX71903440319034778chr1PAX71903506819036142chr1PAX71903614319039285chr1PAX71903957319040420chr1PAX71904072319041107chr1PAX71904111819042507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | chr1                | PAX7 | 19029168 | 19029309 |
| chr1PAX71902979119030717chr1PAX71903074319030843chr1PAX71903120319032920chr1PAX71903325819033581chr1PAX71903361319033887chr1PAX71903421819034396chr1PAX71903506819034778chr1PAX71903614319039285chr1PAX71903614319039285chr1PAX71903957319040420chr1PAX71904072319041107chr1PAX71904111819042507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | chr1                | PAX7 | 19029318 | 19029587 |
| chr1PAX71903074319030843chr1PAX71903120319032920chr1PAX71903325819033581chr1PAX71903361319033887chr1PAX71903421819034396chr1PAX71903440319034778chr1PAX71903506819036142chr1PAX71903614319039285chr1PAX71903957319040420chr1PAX71904072319041107chr1PAX71904111819042507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | chr1                | PAX7 | 19029588 | 19029790 |
| chr1PAX71903120319032920chr1PAX71903325819033581chr1PAX71903361319033887chr1PAX71903421819034396chr1PAX71903440319034778chr1PAX71903506819036142chr1PAX71903614319039285chr1PAX71903957319040420chr1PAX71904072319041107chr1PAX71904111819042507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | chr1                | PAX7 | 19029791 | 19030717 |
| chr1PAX71903325819033581chr1PAX71903361319033887chr1PAX71903421819034396chr1PAX71903440319034778chr1PAX71903506819036142chr1PAX71903614319039285chr1PAX71903957319040420chr1PAX71904072319041107chr1PAX71904111819042507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | chr1                | PAX7 | 19030743 | 19030843 |
| chr1PAX71903361319033887chr1PAX71903421819034396chr1PAX71903440319034778chr1PAX71903506819036142chr1PAX71903614319039285chr1PAX71903957319040420chr1PAX71904072319041107chr1PAX71904111819042507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | chr1                | PAX7 | 19031203 | 19032920 |
| chr1PAX71903421819034396chr1PAX71903440319034778chr1PAX71903506819036142chr1PAX71903614319039285chr1PAX71903957319040420chr1PAX71904072319041107chr1PAX71904111819042507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | chr1                | PAX7 | 19033258 | 19033581 |
| chr1PAX71903440319034778chr1PAX71903506819036142chr1PAX71903614319039285chr1PAX71903957319040420chr1PAX71904072319041107chr1PAX71904111819042507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | chr1                | PAX7 | 19033613 | 19033887 |
| chr1PAX71903506819036142chr1PAX71903614319039285chr1PAX71903957319040420chr1PAX71904072319041107chr1PAX71904111819042507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | chr1                | PAX7 | 19034218 | 19034396 |
| chr1PAX71903614319039285chr1PAX71903957319040420chr1PAX71904072319041107chr1PAX71904111819042507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | chr1                | PAX7 | 19034403 | 19034778 |
| chr1PAX71903957319040420chr1PAX71904072319041107chr1PAX71904111819042507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | chr1                | PAX7 | 19035068 | 19036142 |
| chr1     PAX7     19040723     19041107       chr1     PAX7     19041118     19042507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | chr1                | PAX7 | 19036143 | 19039285 |
| chr1 <i>PAX7</i> 19041118 19042507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | chr1                | PAX7 | 19039573 | 19040420 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | chr1                | PAX7 | 19040723 | 19041107 |
| chr1 PAX7 19042528 19042988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | chr1                | PAX7 | 19041118 | 19042507 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | chr1                | PAX7 | 19042528 | 19042988 |

| Table S4. Continued |                 |          |          |
|---------------------|-----------------|----------|----------|
| Chromosome          | Gene            | Start    | End      |
| chr1                | PAX7            | 19043003 | 19045146 |
| chr1                | PAX7            | 19045423 | 19047007 |
| chr1                | PAX7            | 19047023 | 19047189 |
| chr1                | PAX7            | 19047223 | 19051579 |
| chr1                | PAX7            | 19051583 | 19052463 |
| chr1                | PAX7            | 19052528 | 19052626 |
| chr1                | PAX7            | 19052668 | 19053517 |
| chr1                | PAX7            | 19053523 | 19053612 |
| chr1                | PAX7            | 19053613 | 19053745 |
| chr1                | PAX7            | 19053898 | 19054069 |
| chr1                | PAX7            | 19054083 | 19055091 |
| chr1                | PAX7            | 19055373 | 19056701 |
| chr1                | PAX7            | 19056703 | 19056919 |
| chr1                | PAX7            | 19056923 | 19057922 |
| chr1                | PAX7            | 19057923 | 19058511 |
| chr1                | PAX7            | 19058538 | 19058824 |
| chr1                | PAX7            | 19058828 | 19062125 |
| chr1                | PAX7            | 19062126 | 19062632 |
| chr1                | PAX7_downstream | 19062633 | 19062685 |
| chr1                | PAX7_downstream | 19062973 | 19063358 |
| chr1                | PAX7_downstream | 19063368 | 19063894 |
| chr1                | PAX7_downstream | 19063918 | 19064635 |
| chr1                | PAX7_downstream | 19064648 | 19066973 |
| chr1                | PAX7_downstream | 19066978 | 19067189 |
| chr1                | PAX7_downstream | 19067983 | 19068380 |
| chr1                | PAX7_downstream | 19068393 | 19068630 |
| chr1                | PAX7_downstream | 19068933 | 19069708 |
| chr1                | PAX7_downstream | 19069713 | 19070384 |
| chr1                | PAX7_downstream | 19070388 | 19070918 |
| chr1                | PAX7_downstream | 19071043 | 19071154 |
| chr1                | PAX7_downstream | 19071228 | 19074279 |
| chr1                | PAX7_downstream | 19074318 | 19074483 |
| chr1                | PAX7_downstream | 19074488 | 19075784 |
| chr1                | PAX7_downstream | 19075883 | 19079140 |
| chr1                | PAX7_downstream | 19079148 | 19079750 |
| chr1                | PAX7_downstream | 19079753 | 19081503 |

5

| International (http:///www.com/stream         19081508         19081718           chr1         PAX7_downstream         19081728         19082146           chr1         PAX7_downstream         19082233         19082704           chr1         PAX7_downstream         19082768         19082887           chr1         PAX7_downstream         19082938         19083015           chr1         PAX7_downstream         19083083         19083788           chr1         PAX7_downstream         1908368         19083788           chr1         PAX7_downstream         19083848         19084323           chr1         PAX7_downstream         19084388         19084323           chr1         PAX7_downstream         19084388         19085102           chr1         PAX7_downstream         19084388         19087002           chr1         PAX7_downstream         19085588         19087002           chr1         PAX7_downstream         19086588         19087002           chr2         PAX3         23066512         2306651           chr2         PAX3         23066512         2306662           chr2         PAX3         23067156         23067416           chr2         PAX3 <td< th=""><th>Chromosome</th><th>Gene</th><th>Start</th><th>End</th></td<> | Chromosome | Gene | Start     | End       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|-----------|-----------|
| chrl         PAX7_downstream         19081728         19082704           chrl         PAX7_downstream         19082233         19082704           chrl         PAX7_downstream         19082768         19082887           chrl         PAX7_downstream         19082938         19083015           chrl         PAX7_downstream         19083083         19083283           chrl         PAX7_downstream         1908368         19083788           chrl         PAX7_downstream         19083488         19084136           chrl         PAX7_downstream         19084138         1908301           chrl         PAX7_downstream         19084388         19085117           chrl         PAX7_downstream         19085788         1908011           chrl         PAX7_downstream         19086588         19087002           chrl         PAX7_downstream         19086588         19087002           chrl2         PAX3         223066551         22306662           chrl2         PAX3         223066653         22306662           chr2         PAX3         223067156         22306716           chr2         PAX3         223067766         22306708           chr2         PAX3         2230                                                                              |            |      |           |           |
| chr1         PAX2_downstream         19082233         19082704           chr1         PAX7_downstream         19082768         19082887           chr1         PAX7_downstream         19082938         19083015           chr1         PAX7_downstream         19083083         19083283           chr1         PAX7_downstream         19083568         19083788           chr1         PAX7_downstream         19084136         19084136           chr1         PAX7_downstream         19084138         19084136           chr1         PAX7_downstream         19084138         1908517           chr1         PAX7_downstream         19084388         1908502           chr1         PAX7_downstream         19085788         19086011           chr1         PAX7_downstream         1908578         19086011           chr1         PAX7_downstream         1908578         19086011           chr2         PAX3         223066531         22306662           chr2         PAX3         223066162         2306662           chr2         PAX3         223067156         22306704           chr2         PAX3         223067766         22306804           chr2         PAX3         22307776                                                                              |            | _    |           |           |
| chrl         PAX2_downstream         19082768         19082887           chrl         PAX2_downstream         19083083         19083015           chrl         PAX7_downstream         19083083         19083283           chrl         PAX7_downstream         19083568         19083788           chrl         PAX7_downstream         19083848         19084136           chrl         PAX7_downstream         19084143         19084323           chrl         PAX7_downstream         19084388         19085417           chrl         PAX7_downstream         19085798         19086011           chrl         PAX7_downstream         19085588         19087002           chrl         PAX3         223066162         223066661           chrl2         PAX3         223066551         22306662           chrl2         PAX3         223066610         223067142           chrl2         PAX3         223066761         223067142           chrl2         PAX3         223066761         223067466           chr2         PAX3         223067661         223070856           chr2         PAX3         223077661         223076862           chr2         PAX3         22307781         <                                                                                   |            | _    |           |           |
| chr1         PAX2_downstream         19082938         19083015           chr1         PAX2_downstream         19083083         19083283           chr1         PAX7_downstream         19083568         19083788           chr1         PAX7_downstream         19083848         19084136           chr1         PAX7_downstream         19084143         19084323           chr1         PAX7_downstream         19084388         1908517           chr1         PAX7_downstream         19085798         19086011           chr1         PAX7_downstream         1908558         19087002           chr1         PAX3_downstream         1908558         19087002           chr2         PAX3         223066151         22306661           chr2         PAX3         223066551         22306662           chr2         PAX3         223066610         223067142           chr2         PAX3         22306651         223067142           chr2         PAX3         22306676         223067142           chr2         PAX3         22306766         22306786           chr2         PAX3         2230070856         22307185           chr2         PAX3         223071116         22307138                                                                                       |            | _    |           |           |
| chrl         PAX2_downstream         19083083         19083283           chrl         PAX2_downstream         19083568         19083788           chrl         PAX2_downstream         19083848         19084136           chrl         PAX2_downstream         19084143         19084323           chrl         PAX7_downstream         19084388         19085117           chrl         PAX7_downstream         19085798         19086011           chrl         PAX7_downstream         1908558         19087002           chrl         PAX7_downstream         1908558         19087002           chrl         PAX3         223066162         22306613           chrl2         PAX3         22306663         22306662           chrl2         PAX3         22306663         223067142           chrl2         PAX3         223067156         223067142           chrl2         PAX3         22306766         223067736           chrl2         PAX3         22306766         223070856           chrl2         PAX3         223070861         22307113           chrl2         PAX3         223071421         223071398           chrl2         PAX3         223071731         22307130<                                                                                       |            | -    |           |           |
| chr1PAX2<br>cdownstream1908356819083788chr1PAX2<br>cdownstream190834819084136chr1PAX2<br>cdownstream1908414319084323chr1PAX2<br>cdownstream1908579819085011chr1PAX2<br>cdownstream1908579819085012chr1PAX3223064571223066161chr2PAX3223066162223066539chr2PAX32230666322306662chr2PAX322306663223067142chr2PAX3223067156223067142chr2PAX322306776622306746chr2PAX322306766223068044chr2PAX322306766223068044chr2PAX32230676622307856chr2PAX32230776622307856chr2PAX322307711622307113chr2PAX322307711223071398chr2PAX3223077131223072668chr2PAX32230774122307304chr2PAX32230774122307304chr2PAX3223077412307304chr2PAX32230774122307304chr2PAX322307746822307344chr2PAX32230776322307344chr2PAX32230736322307344chr2PAX32230736322307344chr2PAX32230736322307344chr2PAX32230736322307344chr2<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | _    |           |           |
| chr1PAX7_downstream1908384819084136chr1PAX7_downstream1908414319084323chr1PAX7_downstream1908579819086011chr1PAX7_downstream1908579819086011chr1PAX7_downstream1908568819087002chr2PAX3223064571223066161chr2PAX322306616222306662chr2PAX3223066632230667142chr2PAX3223066151223067142chr2PAX3223067156223067142chr2PAX3223067766223067416chr2PAX3223067766223068044chr2PAX322306776622306804chr2PAX3223067766223070856chr2PAX322307766223070856chr2PAX32230786122307113chr2PAX32230786122307113chr2PAX32230786122307113chr2PAX32230786122307113chr2PAX32230786122307113chr2PAX322307116223071398chr2PAX32230711222307124chr2PAX322307131223072668chr2PAX32230713122307303chr2PAX32230724122307314chr2PAX32230728622307344chr2PAX32230736322307344chr2PAX32230736322307344chr2PAX3 <t< td=""><td></td><td>_</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | _    |           |           |
| chr1PAX2<br>downstream1908414319084233chr1PAX7_downstream190843881908517chr1PAX7_downstream1908579819080011chr1PAX7_downstream190865881908702chr2PAX3223066151223066161chr2PAX322306655122306662chr2PAX32230666312230667142chr2PAX3223066910223067142chr2PAX3223067156223067161chr2PAX32230672622306736chr2PAX322306766223067736chr2PAX322306766223068044chr2PAX3223068662223068790chr2PAX322306776622306736chr2PAX322307676223078682chr2PAX322307766223078666chr2PAX32230786122307113chr2PAX32230776622307786chr2PAX322307116223071398chr2PAX322307173122307241chr2PAX322307274122307468chr2PAX3223075868223075573chr2PAX3223076308223075573chr2PAX3223076308223077344chr2PAX3223077868223077344chr2PAX3223079288223081401chr2PAX3223079288223081401chr2PAX3223079288223082491chr2PAX3<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | _    |           |           |
| chr1PAX2_downstream190843881908517chr1PAX7_downstream1908579819086011chr1PAX7_downstream1908579819087002chr2PAX3223064571223066161chr2PAX3223066162223066539chr2PAX32230666322306662chr2PAX322306663223066909chr2PAX3223066910223067142chr2PAX3223067156223067142chr2PAX322306776622306804chr2PAX322306766223068790chr2PAX3223068066223068790chr2PAX3223076766223070856chr2PAX322307676223070856chr2PAX32230786122307113chr2PAX322307786122307113chr2PAX322307731223071398chr2PAX3223072741223071398chr2PAX322307736322307533chr2PAX322307736322307533chr2PAX3223077638223077344chr2PAX3223077638223077344chr2PAX3223077638223077344chr2PAX3223077868223079278chr2PAX3223077868223077344chr2PAX322307288223081401chr2PAX322307288223081401chr2PAX322307288223081401chr2PAX322307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | -    |           |           |
| chr1         PAX7_downstream         19085798         19086011           chr1         PAX7_downstream         19086588         19087002           chr2         PAX3         223064571         223066161           chr2         PAX3         223066162         223066539           chr2         PAX3         223066551         22306662           chr2         PAX3         223066633         223067142           chr2         PAX3         223067156         223067142           chr2         PAX3         223067736         223067416           chr2         PAX3         223067766         223068044           chr2         PAX3         223068066         223068790           chr2         PAX3         223068066         223068790           chr2         PAX3         223068066         223070856           chr2         PAX3         223078676         223070856           chr2         PAX3         223070861         22307113           chr2         PAX3         223070861         22307113           chr2         PAX3         22307141         223071398           chr2         PAX3         223071731         223072668           chr2 <t< td=""><td></td><td></td><td></td><td></td></t<>                                                                             |            |      |           |           |
| chr1PAX2_downstream1908658819087002chr2PAX3223064571223066161chr2PAX3223066162223066539chr2PAX322306663223066622chr2PAX32230666322306702chr2PAX3223066910223067142chr2PAX3223067156223067142chr2PAX3223067766223067416chr2PAX3223067766223068044chr2PAX3223068066223068790chr2PAX322306806622306968chr2PAX3223068066223069668chr2PAX322307086122307131chr2PAX3223071116223071398chr2PAX3223071421223071398chr2PAX32230774122307305chr2PAX322307731223072668chr2PAX32230773122307304chr2PAX322307586822307304chr2PAX322307586822307344chr2PAX3223075868223079278chr2PAX3223077363223079278chr2PAX3223075868223079278chr2PAX3223077363223079278chr2PAX3223077363223079278chr2PAX3223077363223079278chr2PAX3223077363223079278chr2PAX3223077363223079278chr2PAX32230773632                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | _    |           |           |
| chr2PAX3223064571223066161chr2PAX3223066162223066539chr2PAX3223066551223066622chr2PAX32230666322306709chr2PAX3223067156223067142chr2PAX3223067156223067142chr2PAX322306776622306736chr2PAX3223067766223068044chr2PAX3223068066223068790chr2PAX322306967622306968chr2PAX322307086122307131chr2PAX3223071116223071398chr2PAX3223071421223071398chr2PAX32230774122307305chr2PAX32230773122307304chr2PAX322307586822307341chr2PAX3223075868223079274chr2PAX322307586822307344chr2PAX3223075868223079274chr2PAX3223077363223079278chr2PAX3223075868223079344chr2PAX3223077363223079278chr2PAX3223077363223079278chr2PAX3223077363223079278chr2PAX3223077363223079278chr2PAX3223077363223079278chr2PAX3223077363223079278chr2PAX3223077363223079278chr2PAX3223077363223079278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | _    |           |           |
| chr2PAX3223066162223066539chr2PAX322306655122306662chr2PAX322306663223066909chr2PAX3223066910223067142chr2PAX3223067156223067416chr2PAX3223067766223067476chr2PAX3223067766223068044chr2PAX322306776622306806chr2PAX3223068066223068790chr2PAX3223069676223070856chr2PAX322307681223070856chr2PAX3223071116223071398chr2PAX3223071116223071398chr2PAX3223071731223072668chr2PAX32230717312230730310chr2PAX3223075868223076304chr2PAX3223077341223073410chr2PAX3223075868223075373chr2PAX322307736322307344chr2PAX3223077363223079278chr2PAX3223077363223079278chr2PAX3223077363223079278chr2PAX322307363822307134chr2PAX3223077363223079278chr2PAX3223077363223082491chr2PAX3223078148223082491chr2PAX3223078148223083525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | _    |           |           |
| chr2PAX3223066551223066662chr2PAX322306663223066909chr2PAX3223066910223067142chr2PAX3223067156223067416chr2PAX3223067426223067736chr2PAX3223067766223068044chr2PAX3223068066223068790chr2PAX3223068066223068790chr2PAX3223068066223070856chr2PAX3223070861223071856chr2PAX3223071116223071398chr2PAX3223071421223071724chr2PAX3223071731223072668chr2PAX3223071731223072668chr2PAX322307557322307408chr2PAX322307530822307344chr2PAX3223077363223079278chr2PAX3223077363223079278chr2PAX3223077363223079278chr2PAX3223077363223079278chr2PAX3223077363223079278chr2PAX3223079288223081401chr2PAX3223079288223082491chr2PAX3223082508223083525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |      |           |           |
| chr2PAX3223066663223066909chr2PAX3223066910223067142chr2PAX3223067156223067416chr2PAX3223067426223067736chr2PAX3223067766223068044chr2PAX3223068066223068790chr2PAX3223068826223069668chr2PAX3223070861223070856chr2PAX322307086122307113chr2PAX322307116223071398chr2PAX3223071731223072668chr2PAX3223072741223074310chr2PAX3223075868223075373chr2PAX3223075868223075304chr2PAX3223077363223077344chr2PAX3223077363223079278chr2PAX3223077868223079278chr2PAX3223077363223072744chr2PAX3223077868223079278chr2PAX3223077868223079278chr2PAX3223077868223079278chr2PAX3223077868223079278chr2PAX3223079288223081401chr2PAX3223079288223082491chr2PAX3223081448223083525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |      |           |           |
| chr2PAX3223066910223067142chr2PAX3223067156223067416chr2PAX3223067426223067736chr2PAX3223067766223068044chr2PAX3223068066223068790chr2PAX322306882622307856chr2PAX3223070861223071856chr2PAX3223071116223071398chr2PAX3223071421223071398chr2PAX3223077411223071724chr2PAX3223077411223072668chr2PAX3223075868223075573chr2PAX3223075868223076304chr2PAX32230776308223077344chr2PAX3223077863223077344chr2PAX3223077863223079278chr2PAX3223077863223079278chr2PAX322307288223081401chr2PAX322307288223081401chr2PAX322307288223081401chr2PAX322307288223081401chr2PAX3223078148223082491chr2PAX3223081448223082491chr2PAX3223082508223083525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |      |           |           |
| chr2PAX3223067156223067416chr2PAX3223067426223067736chr2PAX3223067766223068044chr2PAX3223068066223068790chr2PAX3223068826223069668chr2PAX3223069676223070856chr2PAX3223070861223071113chr2PAX3223071116223071398chr2PAX3223071421223071724chr2PAX3223072741223074310chr2PAX3223075868223076304chr2PAX3223075868223076304chr2PAX3223077363223077344chr2PAX3223077363223079278chr2PAX3223077363223081401chr2PAX3223079288223081401chr2PAX3223079288223082491chr2PAX3223082508223083525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |      |           |           |
| chr2PAX3223067426223067736chr2PAX3223067766223068044chr2PAX3223068066223068790chr2PAX3223068826223069668chr2PAX3223069676223070856chr2PAX3223070861223071113chr2PAX3223071116223071398chr2PAX3223071421223071398chr2PAX3223071731223072668chr2PAX3223072741223074310chr2PAX3223075868223075573chr2PAX3223076308223075304chr2PAX3223077363223077344chr2PAX3223077363223079278chr2PAX3223079288223081401chr2PAX3223081448223082491chr2PAX3223081448223083525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |      | 223067156 |           |
| chr2PAX3223067766223068044chr2PAX3223068066223068790chr2PAX3223068826223069668chr2PAX3223069676223070856chr2PAX322307086122307113chr2PAX322307116223071398chr2PAX3223071421223071724chr2PAX3223071731223072668chr2PAX3223072741223074310chr2PAX3223075868223075573chr2PAX3223075868223076304chr2PAX3223077363223079278chr2PAX3223077363223079278chr2PAX3223079288223081401chr2PAX3223079288223081401chr2PAX3223079288223082491chr2PAX3223082508223083525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | PAX3 |           |           |
| chr2PAX3223068826223069668chr2PAX3223070861223070856chr2PAX3223070861223071113chr2PAX3223071116223071398chr2PAX3223071421223071724chr2PAX3223071731223072668chr2PAX3223072741223074310chr2PAX3223074608223075573chr2PAX3223075868223076304chr2PAX3223077363223077344chr2PAX3223077363223079278chr2PAX3223079288223081401chr2PAX3223081448223082491chr2PAX3223081448223083525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | chr2       | PAX3 | 223067766 | 223068044 |
| chr2PAX3223069676223070856chr2PAX3223070861223071113chr2PAX3223071116223071398chr2PAX3223071421223071724chr2PAX3223071731223072668chr2PAX3223072741223074310chr2PAX3223075868223075573chr2PAX3223075868223076304chr2PAX3223077363223077344chr2PAX3223077363223079278chr2PAX3223079288223081401chr2PAX3223081448223082491chr2PAX3223082508223083525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | chr2       | PAX3 | 223068066 | 223068790 |
| chr2PAX3223070861223071113chr2PAX3223071116223071398chr2PAX3223071421223071724chr2PAX3223071731223072668chr2PAX3223072741223074310chr2PAX3223074608223075573chr2PAX3223075868223076304chr2PAX3223075308223077344chr2PAX3223077363223079278chr2PAX3223079288223081401chr2PAX3223081448223082491chr2PAX3223082508223083525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | chr2       | PAX3 | 223068826 | 223069668 |
| chr2PAX3223071116223071398chr2PAX3223071421223071724chr2PAX3223071731223072668chr2PAX3223072741223074310chr2PAX3223074608223075573chr2PAX3223075868223076304chr2PAX3223077363223077344chr2PAX3223077363223079278chr2PAX3223079288223081401chr2PAX3223081448223082491chr2PAX3223082508223083525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | chr2       | PAX3 | 223069676 | 223070856 |
| chr2PAX3223071421223071724chr2PAX3223071731223072668chr2PAX3223072741223074310chr2PAX3223074608223075573chr2PAX3223075868223076304chr2PAX3223076308223077344chr2PAX3223077363223079278chr2PAX3223079288223081401chr2PAX3223081448223082491chr2PAX3223082508223083525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | chr2       | PAX3 | 223070861 | 223071113 |
| chr2PAX3223071731223072668chr2PAX3223072741223074310chr2PAX3223074608223075573chr2PAX3223075868223076304chr2PAX3223076308223077344chr2PAX3223077363223079278chr2PAX3223079288223081401chr2PAX3223081448223082491chr2PAX3223082508223083525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | chr2       | PAX3 | 223071116 | 223071398 |
| chr2PAX3223072741223074310chr2PAX3223074608223075573chr2PAX3223075868223076304chr2PAX3223076308223077344chr2PAX3223077363223079278chr2PAX3223079288223081401chr2PAX3223081448223082491chr2PAX3223082508223083525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | chr2       | PAX3 | 223071421 | 223071724 |
| chr2PAX3223074608223075573chr2PAX3223075868223076304chr2PAX3223076308223077344chr2PAX3223077363223079278chr2PAX3223079288223081401chr2PAX3223081448223082491chr2PAX3223082508223083525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | chr2       | PAX3 | 223071731 | 223072668 |
| chr2PAX3223075868223076304chr2PAX3223076308223077344chr2PAX3223077363223079278chr2PAX3223079288223081401chr2PAX3223081448223082491chr2PAX3223082508223083525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | chr2       | PAX3 | 223072741 | 223074310 |
| chr2PAX3223076308223077344chr2PAX3223077363223079278chr2PAX3223079288223081401chr2PAX3223081448223082491chr2PAX3223082508223083525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | chr2       | PAX3 | 223074608 | 223075573 |
| chr2PAX3223077363223079278chr2PAX3223079288223081401chr2PAX3223081448223082491chr2PAX3223082508223083525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | chr2       | PAX3 | 223075868 | 223076304 |
| chr2PAX3223079288223081401chr2PAX3223081448223082491chr2PAX3223082508223083525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | chr2       | PAX3 | 223076308 | 223077344 |
| chr2     PAX3     223081448     223082491       chr2     PAX3     223082508     223083525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | chr2       | PAX3 | 223077363 | 223079278 |
| chr2 <i>PAX3</i> 223082508 223083525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | chr2       | PAX3 | 223079288 | 223081401 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | chr2       | PAX3 | 223081448 | 223082491 |
| chr2 <i>PAX3</i> 223083533 223084504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | chr2       | PAX3 | 223082508 | 223083525 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | chr2       | PAX3 | 223083533 | 223084504 |

| Chromosome | Gene | Start     | End       |
|------------|------|-----------|-----------|
| chr2       | PAX3 | 223084523 | 223084858 |
| chr2       | PAX3 | 223084859 | 223085073 |
| chr2       | PAX3 | 223085074 | 223085940 |
| chr2       | PAX3 | 223085941 | 223086106 |
| chr2       | PAX3 | 223086107 | 223087135 |
| chr2       | PAX3 | 223087393 | 223089277 |
| chr2       | PAX3 | 223089293 | 223091643 |
| chr2       | PAX3 | 223091648 | 223091783 |
| chr2       | PAX3 | 223091798 | 223092042 |
| chr2       | PAX3 | 223092338 | 223092442 |
| chr2       | PAX3 | 223092453 | 223093359 |
| chr2       | PAX3 | 223093683 | 223094631 |
| chr2       | PAX3 | 223095588 | 223095663 |
| chr2       | PAX3 | 223095668 | 223096796 |
| chr2       | PAX3 | 223096797 | 223097002 |
| chr2       | PAX3 | 223097003 | 223097484 |
| chr2       | PAX3 | 223097498 | 223097788 |
| chr2       | PAX3 | 223097818 | 223098998 |
| chr2       | PAX3 | 223099003 | 223100501 |
| chr2       | PAX3 | 223100503 | 223100985 |
| chr2       | PAX3 | 223101078 | 223102030 |
| chr2       | PAX3 | 223102068 | 223102525 |
| chr2       | PAX3 | 223102528 | 223104187 |
| chr2       | PAX3 | 223104198 | 223104542 |
| chr2       | PAX3 | 223104553 | 223105490 |
| chr2       | PAX3 | 223105493 | 223105668 |
| chr2       | PAX3 | 223105678 | 223109457 |
| chr2       | PAX3 | 223109468 | 223109603 |
| chr2       | PAX3 | 223109888 | 223110402 |
| chr2       | PAX3 | 223110718 | 223111202 |
| chr2       | PAX3 | 223111223 | 223111294 |
| chr2       | PAX3 | 223111318 | 223112512 |
| chr2       | PAX3 | 223112518 | 223113943 |
| chr2       | PAX3 | 223113948 | 223115312 |
| chr2       | PAX3 | 223115323 | 223115809 |
|            |      |           |           |

| Chromosome | Gene | Start     | End       |
|------------|------|-----------|-----------|
| chr2       | PAX3 | 223118673 | 223118874 |
| chr2       | PAX3 | 223118878 | 223119506 |
| chr2       | PAX3 | 223119788 | 223120492 |
| chr2       | PAX3 | 223120778 | 223121929 |
| chr2       | PAX3 | 223121933 | 223123219 |
| chr2       | PAX3 | 223123233 | 223123550 |
| chr2       | PAX3 | 223123578 | 223123779 |
| chr2       | PAX3 | 223123783 | 223124623 |
| chr2       | PAX3 | 223124883 | 223124989 |
| chr2       | PAX3 | 223125068 | 223125274 |
| chr2       | PAX3 | 223125588 | 223126286 |
| chr2       | PAX3 | 223126348 | 223127035 |
| chr2       | PAX3 | 223127068 | 223127399 |
| chr2       | PAX3 | 223127408 | 223127689 |
| chr2       | PAX3 | 223127693 | 223127826 |
| chr2       | PAX3 | 223127833 | 223127908 |
| chr2       | PAX3 | 223127918 | 223127995 |
| chr2       | PAX3 | 223128018 | 223128118 |
| chr2       | PAX3 | 223128133 | 223128274 |
| chr2       | PAX3 | 223128283 | 223128904 |
| chr2       | PAX3 | 223129003 | 223129316 |
| chr2       | PAX3 | 223129358 | 223130093 |
| chr2       | PAX3 | 223130403 | 223132529 |
| chr2       | PAX3 | 223132543 | 223134383 |
| chr2       | PAX3 | 223134388 | 223135193 |
| chr2       | PAX3 | 223135218 | 223138044 |
| chr2       | PAX3 | 223138048 | 223138474 |
| chr2       | PAX3 | 223138483 | 223139247 |
| chr2       | PAX3 | 223139258 | 223140147 |
| chr2       | PAX3 | 223140158 | 223140585 |
| chr2       | PAX3 | 223140603 | 223142353 |
| chr2       | PAX3 | 223142738 | 223143643 |
| chr2       | PAX3 | 223144043 | 223144646 |
| chr2       | PAX3 | 223145163 | 223146766 |
| chr2       | PAX3 | 223146768 | 223148051 |
| chr2       | PAX3 | 223148053 | 223148220 |

| Chromosome | Gene             | Start     | End       |
|------------|------------------|-----------|-----------|
| chr2       | PAX3             | 223148223 | 223149313 |
| chr2       | PAX3             | 223149358 | 223150651 |
| chr2       | PAX3             | 223150948 | 223151965 |
| chr2       | PAX3             | 223151983 | 223152848 |
| chr2       | PAX3             | 223152853 | 223155647 |
| chr2       | PAX3             | 223155653 | 223156679 |
| chr2       | PAX3             | 223156728 | 223158058 |
| chr2       | PAX3             | 223158113 | 223158431 |
| chr2       | PAX3             | 223158438 | 223158574 |
| chr2       | PAX3             | 223158588 | 223158885 |
| chr2       | PAX3             | 223158886 | 223159020 |
| chr2       | PAX3             | 223159021 | 223159513 |
| chr2       | PAX3             | 223159538 | 223160246 |
| chr2       | PAX3             | 223160247 | 223160376 |
| chr2       | PAX3             | 223160377 | 223160907 |
| chr2       | PAX3             | 223160928 | 223161166 |
| chr2       | PAX3             | 223161173 | 223161696 |
| chr2       | PAX3             | 223161697 | 223161932 |
| chr2       | PAX3             | 223161933 | 223162813 |
| chr2       | PAX3             | 223162838 | 223163249 |
| chr2       | PAX3             | 223163250 | 223163735 |
| chr13      | FOXO1_downstream | 41118832  | 41119089  |
| chr13      | FOXO1_downstream | 41119357  | 41119544  |
| chr13      | FOXO1_downstream | 41119797  | 41119895  |
| chr13      | FOXO1_downstream | 41119957  | 41121089  |
| chr13      | FOXO1_downstream | 41121102  | 41121625  |
| chr13      | FOXO1_downstream | 41121637  | 41122575  |
| chr13      | FOXO1_downstream | 41122877  | 41123072  |
| chr13      | FOXO1_downstream | 41123122  | 41124372  |
| chr13      | FOXO1_downstream | 41124422  | 41125918  |
| chr13      | FOXO1_downstream | 41125967  | 41126523  |
| chr13      | FOXO1_downstream | 41126537  | 41126882  |
| chr13      | FOXO1            | 41127197  | 41133171  |
| chr13      | FOXO1            | 41133172  | 41133337  |
| chr13      | FOXO1            | 41133347  | 41133645  |
| chr13      | FOXO1            | 41133646  | 41134997  |

5

| Chromosome         Gene         Start         End           chr13         FOX01         41134998         41135210           chr13         FOX01         4113502         41135812           chr13         FOX01         41136097         41136263           chr13         FOX01         4113642         41140526           chr13         FOX01         4113842         41140526           chr13         FOX01         41140807         41141829           chr13         FOX01         4114022         41141464           chr13         FOX01         4114402         41143921           chr13         FOX01         4114402         41143921           chr13         FOX01         4114462         4114332           chr13         FOX01         4114462         4114332           chr13         FOX01         4114827         41147844           chr13         FOX01         41149210         41148243           chr13         FOX01         41152967         41156372           chr13         FOX01         41152967         41156356           chr13         FOX01         41152967         41156372           chr13         FOX01         411 | Table 54. Continued |       |          |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------|----------|----------|
| chr13FOX014113550241135812chr13FOX014113609741136263chr13FOX014113626741138425chr13FOX014113843241140526chr13FOX014114080741141829chr13FOX014114210741143921chr13FOX01411440241143921chr13FOX01411440241143921chr13FOX0141144024114332chr13FOX0141144624114532chr13FOX01411478674114843chr13FOX01411478674114843chr13FOX014114980741149210chr13FOX014114980741149210chr13FOX014115037741150372chr13FOX014115296741156356chr13FOX014115296741156356chr13FOX01411565741156732chr13FOX0141156574115737chr13FOX0141156574115732chr13FOX01411573774115780chr13FOX01411587741157850chr13FOX0141158774115844chr13FOX01411587741158484chr13FOX01411587741158484chr13FOX0141158774115878chr13FOX0141164174116325chr13FOX0141164974116383chr13FOX014116497411639 <td< th=""><th>Chromosome</th><th>Gene</th><th>Start</th><th>End</th></td<>                                                                                                                                                                                                                                                                                                               | Chromosome          | Gene  | Start    | End      |
| chr13FOX014113609741136263chr13FOX014113626741138425chr13FOX014113843241140526chr13FOX014114080741141829chr13FOX01411402241144164chr13FOX014114402241145332chr13FOX01411446241145332chr13FOX01411451241147844chr13FOX01411480741148243chr13FOX01411487741149210chr13FOX01411496741149210chr13FOX014115037741150372chr13FOX014115037741150372chr13FOX014115296741156356chr13FOX014115296741156350chr13FOX01411565741156732chr13FOX014115737741157327chr13FOX01411577741157327chr13FOX0141158774115737chr13FOX01411587741157327chr13FOX01411587741158484chr13FOX01411587741158484chr13FOX0141158474116496chr13FOX0141169674116959chr13FOX0141169674116496chr13FOX014116974116496chr13FOX0141164974116839chr13FOX0141164974116839chr13FOX0141169074116839 <td< td=""><td>chr13</td><td>FOXO1</td><td>41134998</td><td>41135210</td></td<>                                                                                                                                                                                                                                                                                                           | chr13               | FOXO1 | 41134998 | 41135210 |
| chr13FOX014113626741138425chr13FOX014113843241140526chr13FOX014114080741141829chr13FOX014114210741143921chr13FOX014114402241144164chr13FOX014114402241145332chr13FOX01411446241145332chr13FOX014114786741148243chr13FOX014114786741148243chr13FOX014114830741149210chr13FOX01411537741152924chr13FOX01411537741152924chr13FOX01411537741152924chr13FOX0141156574115656chr13FOX01411565741156356chr13FOX01411565741156732chr13FOX01411568724115737chr13FOX01411573774115746chr13FOX0141157774115780chr13FOX0141158774115947chr13FOX0141158774115947chr13FOX0141158774115844chr13FOX0141158774115844chr13FOX0141158774115947chr13FOX0141159474116412chr13FOX0141158774115947chr13FOX014115224116496chr13FOX0141164974116539chr13FOX01411649741168539chr                                                                                                                                                                                                                                                                                                                                                                                            | chr13               | FOXO1 | 41135502 | 41135812 |
| chr13FOX014113843241140526chr13FOX014114080741141529chr13FOX014114210741143921chr13FOX0141144022411445332chr13FOX01411440241145332chr13FOX01411445241145332chr13FOX014114786741148243chr13FOX014114830741149210chr13FOX014114830741149210chr13FOX014115937241159224chr13FOX014115937741152924chr13FOX014115296741156356chr13FOX014115665741156356chr13FOX014115665741156732chr13FOX01411573774115777chr13FOX01411587241157327chr13FOX014115737741157850chr13FOX014115737741157850chr13FOX01411580574115844chr13FOX0141158774115846chr13FOX0141158774115846chr13FOX0141158774115983chr13FOX0141158474116958chr13FOX01411649741162958chr13FOX01411649741162958chr13FOX01411649741162958chr13FOX01411649741168539chr13FOX01411649741168539chr13FOX01411641741162958 </td <td>chr13</td> <td>FOXO1</td> <td>41136097</td> <td>41136263</td>                                                                                                                                                                                                                                                                                                          | chr13               | FOXO1 | 41136097 | 41136263 |
| chr13FOX014114080741141829chr13FOX014114210741143921chr13FOX014114402241145332chr13FOX01411446241145332chr13FOX014114786741148243chr13FOX014114786741148243chr13FOX014114830741149210chr13FOX014114946241150372chr13FOX014115037741152924chr13FOX014115296741156356chr13FOX01411565741156590chr13FOX014115665741156732chr13FOX014115667241157073chr13FOX014115737741157073chr13FOX01411573774115727chr13FOX01411573774115780chr13FOX014115805741158057chr13FOX01411580574115844chr13FOX01411580574115844chr13FOX014115805741158464chr13FOX014115805741158484chr13FOX01411694074116842chr13FOX01411632241164896chr13FOX01411649074116539chr13FOX01411649741168539chr13FOX01411649741168539chr13FOX01411649741168539chr13FOX01411649741168539chr13FOX01411649741168539 <td>chr13</td> <td>FOXO1</td> <td>41136267</td> <td>41138425</td>                                                                                                                                                                                                                                                                                                           | chr13               | FOXO1 | 41136267 | 41138425 |
| chr13FOX014114210741143921chr13FOX0141144022411445332chr13FOX01411446241145332chr13FOX01411451241147844chr13FOX014114786741148243chr13FOX014114830741149210chr13FOX014114946241150372chr13FOX0141159674115924chr13FOX0141159674115536chr13FOX01411565741156590chr13FOX014115667741156732chr13FOX01411566774115732chr13FOX0141157874115732chr13FOX0141157774115732chr13FOX01411577741157860chr13FOX01411577741157850chr13FOX0141158774115844chr13FOX0141158774115844chr13FOX0141158774115844chr13FOX0141158774115848chr13FOX0141164974116492chr13FOX0141164974116495chr13FOX0141164974116839chr13FOX014116474116839chr13FOX014116474116839chr13FOX014116474116839chr13FOX0141169074116839chr13FOX0141169074116839chr13FOX0141169074116839chr13 <td< td=""><td>chr13</td><td>FOXO1</td><td>41138432</td><td>41140526</td></td<>                                                                                                                                                                                                                                                                                                                    | chr13               | FOXO1 | 41138432 | 41140526 |
| chr13FOX014114402241144164chr13FOX01411446241145332chr13FOX014114551241147844chr13FOX014114786741148243chr13FOX01411480741149210chr13FOX01411480741149210chr13FOX014114946241150372chr13FOX01411503774115294chr13FOX014115296741156356chr13FOX01411565741156390chr13FOX01411568724115732chr13FOX014115687241157733chr13FOX0141157774115732chr13FOX01411577741157860chr13FOX01411577741157850chr13FOX01411580774115844chr13FOX01411587741158484chr13FOX01411587741158484chr13FOX01411587741158484chr13FOX0141161274116422chr13FOX0141164774116422chr13FOX0141164774116838chr13FOX0141164974116839chr13FOX0141164274116839chr13FOX0141164274116839chr13FOX0141164774116839chr13FOX01411685424116830chr13FOX01411685424116830chr13FOX01411685424116830ch                                                                                                                                                                                                                                                                                                                                                                                            | chr13               | FOXO1 | 41140807 | 41141829 |
| chr13FOX01411446241145332chr13FOX014114551241147844chr13FOX014114786741148243chr13FOX014114830741149210chr13FOX014114946241150372chr13FOX014115037741152924chr13FOX014115296741156356chr13FOX014115635741156390chr13FOX014115665741156732chr13FOX01411568724115737chr13FOX014115718241157327chr13FOX014115737741157366chr13FOX01411573774115746chr13FOX01411573774115746chr13FOX01411580574115844chr13FOX01411587741158484chr13FOX01411587741158484chr13FOX01411587741158484chr13FOX01411587741158484chr13FOX01411587741158484chr13FOX01411632524116496chr13FOX014116325241164896chr13FOX014116490741162958chr13FOX01411649741168539chr13FOX014116490741168539chr13FOX014116490741169577chr13FOX014116490741168539chr13FOX01411649741169577chr13FOX014116490741168539 </td <td>chr13</td> <td>FOXO1</td> <td>41142107</td> <td>41143921</td>                                                                                                                                                                                                                                                                                                     | chr13               | FOXO1 | 41142107 | 41143921 |
| chr13FOX014114551241147844chr13FOX014114786741148243chr13FOX014114830741149210chr13FOX014114830741149210chr13FOX014115037741150372chr13FOX014115037741152924chr13FOX014115296741156356chr13FOX01411565741156390chr13FOX0141156574115632chr13FOX014115665741156732chr13FOX01411568724115737chr13FOX01411573774115732chr13FOX01411573774115746chr13FOX01411587741157850chr13FOX01411587741158484chr13FOX01411587741159475chr13FOX01411587741159475chr13FOX01411632524116492chr13FOX014116325241164866chr13FOX014116325241164836chr13FOX014116490741165838chr13FOX0141164274116830chr13FOX01411674741168539chr13FOX014116642741168830chr13FOX01411674741168539chr13FOX01411674741169677chr13FOX014116968741170067chr13FOX014116968741170667chr13FOX014116968741170667                                                                                                                                                                                                                                                                                                                                                                               | chr13               | FOXO1 | 41144022 | 41144164 |
| chr13FOX014114786741148243chr13FOX014114830741149210chr13FOX014114830741150372chr13FOX014115037741152924chr13FOX014115037741152924chr13FOX014115296741156356chr13FOX01411565741156732chr13FOX01411565741156732chr13FOX014115687241157073chr13FOX01411578241157327chr13FOX01411573774115746chr13FOX01411577741157546chr13FOX01411587741158484chr13FOX01411587741158484chr13FOX01411587741158484chr13FOX01411649741161412chr13FOX01411694741162958chr13FOX01411649741163838chr13FOX01411649741168539chr13FOX01411649741168539chr13FOX014116974116830chr13FOX0141168424116830chr13FOX01411690741168539chr13FOX01411690741168539chr13FOX01411690741168539chr13FOX01411690741168539chr13FOX01411690741169677chr13FOX01411690741169677chr13FOX01411690741169677                                                                                                                                                                                                                                                                                                                                                                                        | chr13               | FOXO1 | 41144462 | 41145332 |
| chr13FOXO14114830741149210chr13FOXO14114946241150372chr13FOXO14115037741152924chr13FOXO14115296741156356chr13FOXO1411563574115690chr13FOXO14115665741156732chr13FOXO1411568724115732chr13FOXO141157824115737chr13FOXO1411573774115746chr13FOXO14115737741157546chr13FOXO1411580574115850chr13FOXO1411587741157850chr13FOXO1411587741158484chr13FOXO1411587741158484chr13FOXO1411587741159475chr13FOXO14116141741162958chr13FOXO14116141741162958chr13FOXO14116490741165838chr13FOXO1411690741165839chr13FOXO1411690741165839chr13FOXO1411691741168300chr13FOXO14116910741168300chr13FOXO14116910741169677chr13FOXO1411690741169677chr13FOXO14116910741169677chr13FOXO14116910741172640chr13FOXO1411691741172640chr13FOXO14117264741172640chr13FOXO14117264741173269 <td>chr13</td> <td>FOXO1</td> <td>41145512</td> <td>41147844</td>                                                                                                                                                                                                                                                                                                            | chr13               | FOXO1 | 41145512 | 41147844 |
| chr13FOX014114946241150372chr13FOX014115037741152924chr13FOX014115296741156356chr13FOX014115635741156590chr13FOX01411565741156732chr13FOX01411568724115773chr13FOX01411578724115773chr13FOX01411577741157327chr13FOX01411577741157546chr13FOX01411577741157850chr13FOX014115805741158484chr13FOX014115878741159475chr13FOX014115947541161412chr13FOX014116325241164896chr13FOX014116325241168539chr13FOX014116490741165838chr13FOX014116612741167168chr13FOX014116612741167839chr13FOX014116612741168539chr13FOX01411690741168539chr13FOX014116910741168539chr13FOX014116910741169677chr13FOX014116910741169677chr13FOX01411690241172640chr13FOX014117009241172649chr13FOX014117224741173269chr13FOX014117224741173269chr13FOX014117224741173269chr13FOX014117224741173                                                                                                                                                                                                                                                                                                                                                                          | chr13               | FOXO1 | 41147867 | 41148243 |
| chr13FOX014115037741152924chr13FOX014115296741156356chr13FOX014115635741156590chr13FOX01411565741156732chr13FOX014115687241157073chr13FOX01411578241157327chr13FOX014115737741157546chr13FOX014115737741157850chr13FOX014115737741157850chr13FOX01411587741158484chr13FOX01411587741159475chr13FOX014115947541161412chr13FOX014116325241164896chr13FOX014116325241164896chr13FOX014116490741165838chr13FOX01411690741165838chr13FOX01411690741165839chr13FOX01411690741168539chr13FOX01411691741168539chr13FOX01411691741168539chr13FOX01411691741169677chr13FOX01411691741169677chr13FOX014117009241172640chr13FOX014117264741173269chr13FOX014117264741173269chr13FOX0141172244117589                                                                                                                                                                                                                                                                                                                                                                                                                                                          | chr13               | FOXO1 | 41148307 | 41149210 |
| chr13FOX014115296741156356chr13FOX014115635741156590chr13FOX014115665741156732chr13FOX014115687241157073chr13FOX014115718241157327chr13FOX014115737741157327chr13FOX01411573774115780chr13FOX014115737741157850chr13FOX014115805741158484chr13FOX01411587741158484chr13FOX01411587741159475chr13FOX01411632524116412chr13FOX014116325241164896chr13FOX014116612741165838chr13FOX014116612741167168chr13FOX01411690741168539chr13FOX01411690741168539chr13FOX014116910741169677chr13FOX01411690741169677chr13FOX01411690741169677chr13FOX01411690741170067chr13FOX014116968741170067chr13FOX01411709241172640chr13FOX01411709241172640chr13FOX014117264741173269chr13FOX014117264741173269chr13FOX014117327241175898                                                                                                                                                                                                                                                                                                                                                                                                                              | chr13               | FOXO1 | 41149462 | 41150372 |
| chr13FOX014115635741156590chr13FOX014115665741156732chr13FOX014115687241157073chr13FOX014115718241157073chr13FOX014115717741157327chr13FOX014115777741157850chr13FOX014115805741158484chr13FOX01411587741159475chr13FOX01411587741159475chr13FOX01411632524116412chr13FOX014116325241164896chr13FOX014116612741165838chr13FOX014116612741167168chr13FOX014116612741168539chr13FOX01411690741168539chr13FOX014116910741169677chr13FOX01411690741169677chr13FOX01411690741169677chr13FOX01411690741169677chr13FOX01411690741170067chr13FOX014116967741170067chr13FOX01411709241172640chr13FOX014117264741173269chr13FOX014117264741173269chr13FOX014117264741173269chr13FOX014117264741173269chr13FOX014117327241175898                                                                                                                                                                                                                                                                                                                                                                                                                            | chr13               | FOXO1 | 41150377 | 41152924 |
| chr13FOX014115665741156732chr13FOX014115687241157073chr13FOX014115718241157327chr13FOX014115737741157860chr13FOX014115777741157850chr13FOX014115805741158484chr13FOX014115878741159475chr13FOX014115947741161412chr13FOX014116141741162958chr13FOX014116325241164896chr13FOX01411632741165838chr13FOX014116612741165838chr13FOX014116612741168539chr13FOX01411684241168830chr13FOX01411684241168830chr13FOX01411690741169677chr13FOX014116910741169677chr13FOX01411709241172640chr13FOX014117264741173269chr13FOX014117264741173269chr13FOX014117327241175889                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | chr13               | FOXO1 | 41152967 | 41156356 |
| chr13FOX014115687241157073chr13FOX014115718241157327chr13FOX014115737741157360chr13FOX014115777741157850chr13FOX01411580574115844chr13FOX014115878741159475chr13FOX014115949741161412chr13FOX014116325241164896chr13FOX014116325241164896chr13FOX014116612741165838chr13FOX014116744741168539chr13FOX014116744741168539chr13FOX014116910741168539chr13FOX014116910741169677chr13FOX014116968741170067chr13FOX014117009241172640chr13FOX014117264741173269chr13FOX014117227241175989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | chr13               | FOXO1 | 41156357 | 41156590 |
| chr13FOX014115718241157327chr13FOX014115737741157546chr13FOX014115777741157850chr13FOX014115805741158484chr13FOX014115878741159475chr13FOX014115949741161412chr13FOX014116141741162958chr13FOX014116325241164896chr13FOX014116612741165838chr13FOX014116612741167168chr13FOX014116612741167168chr13FOX01411690741168399chr13FOX014116910741168747chr13FOX014116910741169677chr13FOX014116910741169677chr13FOX014117909241172640chr13FOX014117264741173269chr13FOX014117264741175989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | chr13               | FOXO1 | 41156657 | 41156732 |
| chr13FOX014115737741157546chr13FOX014115777741157850chr13FOX014115805741158484chr13FOX014115878741159475chr13FOX014115949741161412chr13FOX014116141741162958chr13FOX014116325241164896chr13FOX014116490741165838chr13FOX014116612741167168chr13FOX014116744741168539chr13FOX014116744741168539chr13FOX014116910741169677chr13FOX0141169074116907chr13FOX0141169074116907chr13FOX01411691074116907chr13FOX01411690741169677chr13FOX01411709241172640chr13FOX014117264741173269chr13FOX014117327241175989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | chr13               | FOXO1 | 41156872 | 41157073 |
| chr13FOX014115777741157850chr13FOX014115805741158484chr13FOX014115878741159475chr13FOX014115949741161412chr13FOX014116141741162958chr13FOX014116325241164896chr13FOX014116490741165838chr13FOX014116612741167168chr13FOX014116744741168539chr13FOX014116910741168539chr13FOX014116910741169677chr13FOX014116910741169677chr13FOX014116968741170067chr13FOX01411709241172640chr13FOX014117264741173269chr13FOX014117327241175989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | chr13               | FOXO1 | 41157182 | 41157327 |
| chr13FOX014115805741158484chr13FOX014115878741159475chr13FOX014115949741161412chr13FOX014116141741162958chr13FOX014116325241164896chr13FOX014116490741165838chr13FOX014116612741167168chr13FOX014116744741168539chr13FOX014116854241168830chr13FOX014116910741169677chr13FOX014116968741170067chr13FOX01411709241172640chr13FOX014117264741173269chr13FOX014117327241175989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | chr13               | FOXO1 | 41157377 | 41157546 |
| chr13FOXO14115878741159475chr13FOXO14115949741161412chr13FOXO14116141741162958chr13FOXO14116325241164896chr13FOXO14116490741165838chr13FOXO14116612741167168chr13FOXO14116744741168539chr13FOXO14116854241168830chr13FOXO14116910741169677chr13FOXO14116968741170067chr13FOXO1411709241172640chr13FOXO14117264741173269chr13FOXO14117327241175989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | chr13               | FOXO1 | 41157777 | 41157850 |
| chr13FOX014115949741161412chr13FOX014116141741162958chr13FOX014116325241164896chr13FOX014116490741165838chr13FOX014116612741167168chr13FOX014116744741168539chr13FOX014116854241168830chr13FOX014116910741169677chr13FOX014116968741170067chr13FOX01411709241172640chr13FOX014117264741173269chr13FOX014117327241175989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | chr13               | FOXO1 | 41158057 | 41158484 |
| chr13FOXO14116141741162958chr13FOXO14116325241164896chr13FOXO14116490741165838chr13FOXO14116612741167168chr13FOXO14116744741168539chr13FOXO1411684241168830chr13FOXO14116910741169677chr13FOXO14116968741170067chr13FOXO1411709241172640chr13FOXO14117264741173269chr13FOXO14117327241175989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | chr13               | FOXO1 | 41158787 | 41159475 |
| chr13FOX014116325241164896chr13FOX014116490741165838chr13FOX014116612741167168chr13FOX014116744741168539chr13FOX014116854241168830chr13FOX014116910741169677chr13FOX014116968741170067chr13FOX01411709241172640chr13FOX014117264741173269chr13FOX014117327241175989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | chr13               | FOXO1 | 41159497 | 41161412 |
| chr13FOXO14116490741165838chr13FOXO14116612741167168chr13FOXO14116744741168539chr13FOXO1411684241168830chr13FOXO14116910741169677chr13FOXO14116968741170067chr13FOXO1411709241172640chr13FOXO14117264741173269chr13FOXO14117327241175989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | chr13               | FOXO1 | 41161417 | 41162958 |
| chr13FOX014116612741167168chr13FOX014116744741168539chr13FOX014116854241168830chr13FOX014116910741169677chr13FOX014116968741170067chr13FOX014117009241172640chr13FOX014117264741173269chr13FOX014117327241175989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | chr13               | FOXO1 | 41163252 | 41164896 |
| chr13FOXO14116744741168539chr13FOXO14116854241168830chr13FOXO14116910741169677chr13FOXO14116968741170067chr13FOXO14117009241172640chr13FOXO14117264741173269chr13FOXO14117327241175989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | chr13               | FOXO1 | 41164907 | 41165838 |
| chr13FOXO14116854241168830chr13FOXO14116910741169677chr13FOXO14116968741170067chr13FOXO14117009241172640chr13FOXO14117264741173269chr13FOXO14117327241175989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | chr13               | FOXO1 | 41166127 | 41167168 |
| chr13FOXO14116910741169677chr13FOXO14116968741170067chr13FOXO14117009241172640chr13FOXO14117264741173269chr13FOXO14117327241175989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | chr13               | FOXO1 | 41167447 | 41168539 |
| chr13FOXO14116968741170067chr13FOXO14117009241172640chr13FOXO14117264741173269chr13FOXO14117327241175989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | chr13               | FOXO1 | 41168542 | 41168830 |
| chr13FOXO14117009241172640chr13FOXO14117264741173269chr13FOXO14117327241175989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | chr13               | FOXO1 | 41169107 | 41169677 |
| chr13FOXO14117264741173269chr13FOXO14117327241175989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | chr13               | FOXO1 | 41169687 | 41170067 |
| chr13 FOXO1 41173272 41175989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | chr13               | FOXO1 | 41170092 | 41172640 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | chr13               | FOXO1 | 41172647 | 41173269 |
| chr13 FOXO1 41176007 41176660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | chr13               | FOXO1 | 41173272 | 41175989 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | chr13               | FOXO1 | 41176007 | 41176660 |

| Table S4. Continued |       |          |          |
|---------------------|-------|----------|----------|
| Chromosome          | Gene  | Start    | End      |
| chr13               | FOXO1 | 41176667 | 41176978 |
| chr13               | FOXO1 | 41176992 | 41177486 |
| chr13               | FOXO1 | 41177612 | 41178317 |
| chr13               | FOXO1 | 41178332 | 41179150 |
| chr13               | FOXO1 | 41179267 | 41179361 |
| chr13               | FOXO1 | 41179382 | 41180117 |
| chr13               | FOXO1 | 41180127 | 41180435 |
| chr13               | FOXO1 | 41180737 | 41181675 |
| chr13               | FOXO1 | 41181677 | 41184792 |
| chr13               | FOXO1 | 41184847 | 41185466 |
| chr13               | FOXO1 | 41185472 | 41185919 |
| chr13               | FOXO1 | 41186237 | 41186825 |
| chr13               | FOXO1 | 41186837 | 41186910 |
| chr13               | FOXO1 | 41186922 | 41187542 |
| chr13               | FOXO1 | 41187562 | 41187876 |
| chr13               | FOXO1 | 41187887 | 41188086 |
| chr13               | FOXO1 | 41188092 | 41189383 |
| chr13               | FOXO1 | 41189702 | 41190410 |
| chr13               | FOXO1 | 41190422 | 41191293 |
| chr13               | FOXO1 | 41191577 | 41192216 |
| chr13               | FOXO1 | 41192487 | 41193150 |
| chr13               | FOXO1 | 41193447 | 41194942 |
| chr13               | FOXO1 | 41195217 | 41196511 |
| chr13               | FOXO1 | 41196532 | 41197265 |
| chr13               | FOXO1 | 41197277 | 41197653 |
| chr13               | FOXO1 | 41197657 | 41197968 |
| chr13               | FOXO1 | 41198252 | 41198456 |
| chr13               | FOXO1 | 41198472 | 41199480 |
| chr13               | FOXO1 | 41199482 | 41199757 |
| chr13               | FOXO1 | 41199802 | 41200111 |
| chr13               | FOXO1 | 41200242 | 41201674 |
| chr13               | FOXO1 | 41201987 | 41202172 |
| chr13               | FOXO1 | 41202192 | 41202313 |
| chr13               | FOXO1 | 41202327 | 41202500 |
| chr13               | FOXO1 | 41202527 | 41202775 |
| chr13               | FOXO1 | 41202842 | 41203288 |
|                     |       |          |          |

#### Table S4. Continued

| Chromosome         Gene         Start         End           chr13         FOXO1         41203572         41203777           chr13         FOXO1         41203827         41204525           chr13         FOXO1         41208807         41205434           chr13         FOXO1         41205872         41205943           chr13         FOXO1         41205872         41205943           chr13         FOXO1         41205957         41206547           chr13         FOXO1         41207197         41207298           chr13         FOXO1         41207312         41207385           chr13         FOXO1         41207392         41208634           chr13         FOXO1         41207312         41207385           chr13         FOXO1         41207392         41208634           chr13         FOXO1         41207392         41208634           chr13         FOXO1         41209132         4121091           chr13         FOXO1         4120197         41211091           chr13         FOXO1         4121097         4121153           chr13         FOXO1         41211097         41212111           chr13         FOXO1 | Table 54. Continued | 1     |          |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------|----------|----------|
| chr13FOX014120382741204525chr13FOX014120561241205713chr13FOX014120561241205713chr13FOX014120597741206048chr13FOX014120597741206477chr13FOX014120719741207298chr13FOX014120731241207385chr13FOX01412073241208634chr13FOX01412091324120091chr13FOX01412091324121091chr13FOX014121037241210513chr13FOX01412103724121091chr13FOX01412109474121137chr13FOX01412109474121137chr13FOX01412109474121137chr13FOX01412109474121197chr13FOX01412109474121814chr13FOX0141216274121514chr13FOX0141212074121514chr13FOX0141212524121860chr13FOX0141215274121570chr13FOX0141215074121570chr13FOX0141215724121572chr13FOX0141215774121678chr13FOX0141217874121846chr13FOX014121787412182chr13FOX01412178741218027chr13FOX0141217874121807chr13FOX01412178741218027chr                                                                                                                                                                                                                                                                                                                                                                                       | Chromosome          | Gene  | Start    | End      |
| chr13FOX014120480741205434chr13FOX014120561241205713chr13FOX014120587241205943chr13FOX014120595741206048chr13FOX014120719741207298chr13FOX014120731241207385chr13FOX014120739241208634chr13FOX01412037241210913chr13FOX01412037241210913chr13FOX014121037241210913chr13FOX014121037241210513chr13FOX01412109474121137chr13FOX0141211574121137chr13FOX01412120741212197chr13FOX0141212074121214chr13FOX0141212074121514chr13FOX0141212524121806chr13FOX01412182241213060chr13FOX0141218224121506chr13FOX0141215274121570chr13FOX0141215724121570chr13FOX0141215724121572chr13FOX0141215724121678chr13FOX0141217874121822chr13FOX0141217874121822chr13FOX01412178741218027chr13FOX01412178741218027chr13FOX014122072412077chr13FOX0141220724120727chr13                                                                                                                                                                                                                                                                                                                                                                                       | chr13               | FOXO1 | 41203572 | 41203777 |
| chr13FOX014120561241205713chr13FOX014120587241205943chr13FOX014120595741206048chr13FOX014120719741207298chr13FOX014120731241207385chr13FOX014120739241208634chr13FOX01412073224120091chr13FOX01412091324121091chr13FOX014121037241210513chr13FOX01412109474121153chr13FOX014121109474121197chr13FOX01412120741212197chr13FOX014121220741212514chr13FOX01412128224121800chr13FOX01412128224121800chr13FOX0141215074121521chr13FOX0141215074121521chr13FOX0141215074121521chr13FOX0141215074121521chr13FOX0141215074121521chr13FOX0141215704121521chr13FOX01412178741216758chr13FOX014121787412042chr13FOX014121787412042chr13FOX0141220124120430chr13FOX0141220174121637chr13FOX0141220174121607chr13FOX0141220174121637chr13FOX0141220174121637chr13<                                                                                                                                                                                                                                                                                                                                                                                       | chr13               | FOXO1 | 41203827 | 41204525 |
| chr13FOX014120587241205943chr13FOX014120595741206048chr13FOX014120719741207298chr13FOX014120719741207298chr13FOX014120731241207385chr13FOX014120739241208634chr13FOX014120913241210091chr13FOX014120737241210513chr13FOX014121037241210513chr13FOX0141210474121153chr13FOX01412109474121197chr13FOX01412120741212197chr13FOX014121220741212514chr13FOX01412122074121514chr13FOX0141215324121860chr13FOX0141215274121521chr13FOX0141215274121551chr13FOX0141215074121551chr13FOX01412150741215701chr13FOX01412170241215701chr13FOX0141217624121701chr13FOX0141217624121790chr13FOX014121787741218027chr13FOX014121787741218027chr13FOX01412201241220727chr13FOX01412201241220727chr13FOX0141220174122140chr13FOX0141221324122140chr13FOX0141221324122145 <t< td=""><td>chr13</td><td>FOXO1</td><td>41204807</td><td>41205434</td></t<>                                                                                                                                                                                                                                                                                                       | chr13               | FOXO1 | 41204807 | 41205434 |
| chr13FOX014120595741206048chr13FOX014120719741207298chr13FOX014120731241207385chr13FOX014120731241208634chr13FOX01412091324120091chr13FOX014120913241210091chr13FOX014120913241210513chr13FOX014121037241210513chr13FOX01412109474121153chr13FOX014121094741211317chr13FOX01412120741212197chr13FOX014121220741212514chr13FOX014121220741212514chr13FOX0141213224121060chr13FOX0141215274121514chr13FOX0141215274121521chr13FOX0141215274121521chr13FOX0141215274121521chr13FOX01412157024121521chr13FOX0141217741215701chr13FOX0141217741216758chr13FOX014121787741218027chr13FOX01412178774121080chr13FOX0141221824121940chr13FOX01412218241217872chr13FOX0141221844121940chr13FOX01412218241221827chr13FOX01412218424121940chr13FOX0141221824122182 <td< td=""><td>chr13</td><td>FOXO1</td><td>41205612</td><td>41205713</td></td<>                                                                                                                                                                                                                                                                                                      | chr13               | FOXO1 | 41205612 | 41205713 |
| chr13FOX01412064174120547chr13FOX014120719741207298chr13FOX014120731241207385chr13FOX01412073924120634chr13FOX01412091324121091chr13FOX014120913241210513chr13FOX014121037241210513chr13FOX01412109474121137chr13FOX014121094741211317chr13FOX01412120741212197chr13FOX014121220741212514chr13FOX0141212324121080chr13FOX014121282241213060chr13FOX0141215324121514chr13FOX0141215274121521chr13FOX01412152074121521chr13FOX0141215074121521chr13FOX014121570241215701chr13FOX0141217741215701chr13FOX0141217741216758chr13FOX014121774121872chr13FOX014121787741218027chr13FOX01412178774121030chr13FOX014121787741218027chr13FOX014121787741218027chr13FOX014121787741218027chr13FOX014121787741218027chr13FOX014121787741218027chr13FOX0141221744120430 <tr< td=""><td>chr13</td><td>FOXO1</td><td>41205872</td><td>41205943</td></tr<>                                                                                                                                                                                                                                                                                                  | chr13               | FOXO1 | 41205872 | 41205943 |
| chr13FOX014120719741207298chr13FOX014120731241207385chr13FOX014120739241208634chr13FOX01412091324121091chr13FOX01412091241210513chr13FOX01412109474121153chr13FOX01412109474121137chr13FOX0141211024121297chr13FOX0141212074121214chr13FOX014121220741212514chr13FOX01412125324121816chr13FOX0141218224121360chr13FOX01412152074121521chr13FOX0141215074121521chr13FOX0141215074121521chr13FOX0141215074121521chr13FOX0141215024121501chr13FOX0141217024121521chr13FOX0141217024121521chr13FOX01412178724121846chr13FOX014121787741218027chr13FOX014122774120430chr13FOX01412201241220430chr13FOX0141220174122017chr13FOX01412201741220430chr13FOX01412201741220430chr13FOX01412213241220430chr13FOX01412213241220430chr13FOX01412213241220430chr13 </td <td>chr13</td> <td>FOXO1</td> <td>41205957</td> <td>41206048</td>                                                                                                                                                                                                                                                                                                                  | chr13               | FOXO1 | 41205957 | 41206048 |
| chr13FOX014120731241207385chr13FOX014120739241208634chr13FOX01412091324121091chr13FOX014121037241210513chr13FOX01412109474121153chr13FOX0141211574121137chr13FOX01412110024121297chr13FOX01412120741212514chr13FOX014121253241212816chr13FOX014121282241213060chr13FOX01412152074121521chr13FOX0141215074121521chr13FOX0141215074121521chr13FOX0141215074121521chr13FOX0141215024121501chr13FOX0141217024121501chr13FOX0141217024121501chr13FOX0141217024121501chr13FOX01412178724121846chr13FOX014121787741218027chr13FOX014121787741218027chr13FOX014122012412077chr13FOX01412201241220430chr13FOX0141220174122017chr13FOX0141220174122017chr13FOX01412213241220430chr13FOX01412213241220430chr13FOX01412213241220430chr13FOX0141221324122145chr13<                                                                                                                                                                                                                                                                                                                                                                                       | chr13               | FOXO1 | 41206417 | 41206547 |
| chr13FOX014120739241208634chr13FOX01412091324121091chr13FOX014121037241210513chr13FOX01412109474121153chr13FOX014121160241211317chr13FOX01412116024121297chr13FOX01412120741212514chr13FOX01412125241212816chr13FOX01412182241213060chr13FOX01412152074121521chr13FOX0141215074121521chr13FOX0141215074121521chr13FOX0141215074121521chr13FOX0141215024121501chr13FOX014121570241215846chr13FOX01412170241217872chr13FOX014121787741218027chr13FOX014121787741218027chr13FOX0141220124120940chr13FOX014122012412077chr13FOX01412201241220430chr13FOX0141220174122116chr13FOX01412210174122116chr13FOX01412210174122116chr13FOX014122101741221440chr13FOX01412211324122140chr13FOX01412213241221440chr13FOX0141221324122440chr13FOX0141221324122440chr                                                                                                                                                                                                                                                                                                                                                                                       | chr13               | FOXO1 | 41207197 | 41207298 |
| chr13FOX014120913241210091chr13FOX014121037241210513chr13FOX014121094741211153chr13FOX014121115741211317chr13FOX014121160241212197chr13FOX01412120741212514chr13FOX01412125241212816chr13FOX01412182241213060chr13FOX01412152074121521chr13FOX01412152074121521chr13FOX0141215074121521chr13FOX01412157024121521chr13FOX014121570241215701chr13FOX0141217024121578chr13FOX0141217624121790chr13FOX014121787741218027chr13FOX0141220124122030chr13FOX014122059241220727chr13FOX0141220174122116chr13FOX01412210174122116chr13FOX01412210174122116chr13FOX01412210174122116chr13FOX01412213241220430chr13FOX014122101741221146chr13FOX014122101741221146chr13FOX01412213241221440chr13FOX0141221324122440chr13FOX0141221324122440chr13FOX0141221324122440 <t< td=""><td>chr13</td><td>FOXO1</td><td>41207312</td><td>41207385</td></t<>                                                                                                                                                                                                                                                                                                       | chr13               | FOXO1 | 41207312 | 41207385 |
| chr13FOX014121037241210513chr13FOX014121094741211153chr13FOX01412115741211317chr13FOX014121160241212197chr13FOX01412120741212514chr13FOX014121253241212816chr13FOX014121282241213060chr13FOX014121334741214884chr13FOX0141215074121521chr13FOX01412150741215521chr13FOX014121570241215701chr13FOX01412170241215701chr13FOX0141217024121758chr13FOX0141217624121790chr13FOX014121787741218027chr13FOX01412104241219940chr13FOX01412201241220430chr13FOX01412201241220430chr13FOX01412210174122116chr13FOX01412210174122116chr13FOX014122113241220430chr13FOX01412210174122116chr13FOX014122113241221440chr13FOX014122183241221440chr13FOX01412218324122440chr13FOX01412218324122440chr13FOX0141221324122440chr13FOX01412213241224380                                                                                                                                                                                                                                                                                                                                                                                                         | chr13               | FOXO1 | 41207392 | 41208634 |
| chr13FOX014121094741211153chr13FOX014121115741211317chr13FOX014121160241212197chr13FOX014121220741212514chr13FOX014121253241212816chr13FOX014121282241213060chr13FOX014121334741214884chr13FOX014121520741215521chr13FOX014121520741215521chr13FOX014121570241215701chr13FOX014121570241215701chr13FOX01412170241217870chr13FOX014121706241217190chr13FOX014121749741217872chr13FOX014121787741218027chr13FOX0141220124120430chr13FOX01412201741220430chr13FOX01412210174122116chr13FOX01412210174122116chr13FOX01412210174122116chr13FOX01412210174122116chr13FOX01412210174122116chr13FOX01412213241221440chr13FOX014122183241224140chr13FOX014122183241224140chr13FOX014122183241224380                                                                                                                                                                                                                                                                                                                                                                                                                                                  | chr13               | FOXO1 | 41209132 | 41210091 |
| chr13FOX014121115741211317chr13FOX014121160241212197chr13FOX014121220741212514chr13FOX014121253241212816chr13FOX014121282241213060chr13FOX014121334741214884chr13FOX01412152074121521chr13FOX01412157074121521chr13FOX014121570241215701chr13FOX014121613741216758chr13FOX014121706241217190chr13FOX014121787741218027chr13FOX01412187741218027chr13FOX014122021241220430chr13FOX014122021241220430chr13FOX01412210174122116chr13FOX01412210174122116chr13FOX01412213241221440chr13FOX01412213241221440chr13FOX01412213241224440chr13FOX014122183241224440chr13FOX01412218324122440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | chr13               | FOXO1 | 41210372 | 41210513 |
| chr13FOX014121160241212197chr13FOX014121220741212514chr13FOX014121253241212816chr13FOX014121282241213060chr13FOX014121334741214884chr13FOX014121520741215521chr13FOX014121556741215701chr13FOX014121570241215701chr13FOX01412167741216758chr13FOX01412170241217790chr13FOX014121787241217872chr13FOX014121787741218027chr13FOX014122021241220430chr13FOX014122059241220430chr13FOX014122059241220727chr13FOX01412210174122116chr13FOX0141221324122116chr13FOX0141221324122140chr13FOX014122183241224140chr13FOX014122183241224380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | chr13               | FOXO1 | 41210947 | 41211153 |
| chr13FOXO14121220741212514chr13FOXO14121253241212816chr13FOXO14121282241213060chr13FOXO14121334741214884chr13FOXO14121520741215521chr13FOXO14121520741215701chr13FOXO14121570241215846chr13FOXO141217024121578chr13FOXO14121706241217190chr13FOXO14121787741218027chr13FOXO1412202124120430chr13FOXO14122021241220430chr13FOXO1412201741220727chr13FOXO1412210174122116chr13FOXO1412210174122116chr13FOXO14122183241221440chr13FOXO14122183241224140chr13FOXO14122183241224880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | chr13               | FOXO1 | 41211157 | 41211317 |
| chr13FOX014121253241212816chr13FOX014121282241213060chr13FOX014121334741214884chr13FOX014121520741215521chr13FOX014121556741215701chr13FOX014121570241215846chr13FOX014121613741216758chr13FOX01412170624121790chr13FOX014121787741218027chr13FOX014121787741218027chr13FOX014122021241220430chr13FOX014122059241220727chr13FOX014122059241220727chr13FOX0141221324122116chr13FOX0141221324122116chr13FOX01412213241221140chr13FOX01412213241221440chr13FOX01412213241224380chr13FOX014122183241224380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | chr13               | FOXO1 | 41211602 | 41212197 |
| chr13FOX014121282241213060chr13FOX014121334741214884chr13FOX014121520741215521chr13FOX014121556741215701chr13FOX014121570241215846chr13FOX014121613741216758chr13FOX014121706241217190chr13FOX014121787241217872chr13FOX014121787741218027chr13FOX014122021241220430chr13FOX014122059241220727chr13FOX01412210174122116chr13FOX0141221324122145chr13FOX0141221324122140chr13FOX01412213241221440chr13FOX014122132412214380chr13FOX01412213241224380chr13FOX014122427741224380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | chr13               | FOXO1 | 41212207 | 41212514 |
| chr13FOXO14121334741214884chr13FOXO14121520741215521chr13FOXO14121556741215701chr13FOXO14121570241215846chr13FOXO14121613741216758chr13FOXO14121706241217190chr13FOXO14121779741217872chr13FOXO14121787741218027chr13FOXO1412202124120430chr13FOXO14122059241220727chr13FOXO1412210174122116chr13FOXO14122113241221545chr13FOXO14122183241221440chr13FOXO14122183241224480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | chr13               | FOXO1 | 41212532 | 41212816 |
| chr13FOXO14121520741215521chr13FOXO14121556741215701chr13FOXO14121570241215846chr13FOXO14121613741216758chr13FOXO14121706241217190chr13FOXO14121787741218027chr13FOXO14121787741218027chr13FOXO14122021241220430chr13FOXO14122059241220727chr13FOXO14122101741221116chr13FOXO1412213241221545chr13FOXO14122183241224140chr13FOXO14122183241224380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | chr13               | FOXO1 | 41212822 | 41213060 |
| chr13FOXO14121556741215701chr13FOXO14121570241215846chr13FOXO14121613741216758chr13FOXO14121706241217190chr13FOXO14121749741217872chr13FOXO1412178774128027chr13FOXO14122021241220430chr13FOXO14122059241220727chr13FOXO14122101741221116chr13FOXO14122113241221545chr13FOXO1412218324122440chr13FOXO1412218324122440chr13FOXO14122183241224380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | chr13               | FOXO1 | 41213347 | 41214884 |
| chr13FOXO14121570241215846chr13FOXO14121613741216758chr13FOXO14121706241217190chr13FOXO14121749741217872chr13FOXO14121787741218027chr13FOXO14122021241220430chr13FOXO14122059241220727chr13FOXO14122101741221116chr13FOXO1412213241221545chr13FOXO1412218324122140chr13FOXO14122183241224380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | chr13               | FOXO1 | 41215207 | 41215521 |
| chr13FOXO14121613741216758chr13FOXO14121706241217190chr13FOXO14121749741217872chr13FOXO14121787741218027chr13FOXO14121804241219940chr13FOXO14122021241220430chr13FOXO14122059241220727chr13FOXO14122101741221116chr13FOXO14122113241221545chr13FOXO14122183241221440chr13FOXO14122427741224380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | chr13               | FOXO1 | 41215567 | 41215701 |
| chr13FOXO14121706241217190chr13FOXO14121749741217872chr13FOXO14121787741218027chr13FOXO14121804241219940chr13FOXO14122021241220430chr13FOXO14122059241220727chr13FOXO14122101741221116chr13FOXO1412213241221545chr13FOXO14122183241224140chr13FOXO14122427741224380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | chr13               | FOXO1 | 41215702 | 41215846 |
| chr13FOXO14121749741217872chr13FOXO14121787741218027chr13FOXO14121804241219940chr13FOXO14122021241220430chr13FOXO14122059241220727chr13FOXO14122101741221116chr13FOXO14122113241221545chr13FOXO14122183241224140chr13FOXO14122427741224380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | chr13               | FOXO1 | 41216137 | 41216758 |
| chr13FOXO14121787741218027chr13FOXO14121804241219940chr13FOXO14122021241220430chr13FOXO14122059241220727chr13FOXO14122101741221116chr13FOXO14122113241221545chr13FOXO14122183241224140chr13FOXO14122427741224380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | chr13               | FOXO1 | 41217062 | 41217190 |
| chr13FOXO14121804241219940chr13FOXO14122021241220430chr13FOXO14122059241220727chr13FOXO14122101741221116chr13FOXO14122113241221545chr13FOXO14122183241224140chr13FOXO14122427741224380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | chr13               | FOXO1 | 41217497 | 41217872 |
| chr13FOXO14122021241220430chr13FOXO14122059241220727chr13FOXO14122101741221116chr13FOXO14122113241221545chr13FOXO14122183241224140chr13FOXO14122427741224380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | chr13               | FOXO1 | 41217877 | 41218027 |
| chr13FOXO14122059241220727chr13FOXO14122101741221116chr13FOXO14122113241221545chr13FOXO14122183241224140chr13FOXO14122427741224380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | chr13               | FOXO1 | 41218042 | 41219940 |
| chr13FOXO14122101741221116chr13FOXO14122113241221545chr13FOXO14122183241224140chr13FOXO14122427741224380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | chr13               | FOXO1 | 41220212 | 41220430 |
| chr13FOXO14122113241221545chr13FOXO14122183241224140chr13FOXO14122427741224380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | chr13               | FOXO1 | 41220592 | 41220727 |
| chr13FOXO14122183241224140chr13FOXO14122427741224380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | chr13               | FOXO1 | 41221017 | 41221116 |
| chr13 FOXO1 41224277 41224380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | chr13               | FOXO1 | 41221132 | 41221545 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | chr13               | FOXO1 | 41221832 | 41224140 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | chr13               | FOXO1 | 41224277 | 41224380 |
| chr13 FOXO1 41224572 41224880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | chr13               | FOXO1 | 41224572 | 41224880 |
| chr13 FOXO1 41225347 41226429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | chr13               | FOXO1 | 41225347 | 41226429 |
| chr13 FOXO1 41226662 41227108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | chr13               | FOXO1 | 41226662 | 41227108 |

| Chromosome | Gene           | Start    | End      |
|------------|----------------|----------|----------|
| chr13      | FOXO1          | 41227397 | 41227581 |
| chr13      | FOXO1          | 41227597 | 41228342 |
| chr13      | FOXO1          | 41228657 | 41229218 |
| chr13      | FOXO1          | 41229497 | 41229768 |
| chr13      | FOXO1          | 41230057 | 41230972 |
| chr13      | FOXO1          | 41231197 | 41231448 |
| chr13      | FOXO1          | 41231757 | 41232872 |
| chr13      | FOXO1          | 41233482 | 41233608 |
| chr13      | FOXO1          | 41233612 | 41233780 |
| chr13      | FOXO1          | 41233817 | 41234975 |
| chr13      | FOXO1          | 41235117 | 41235422 |
| chr13      | FOXO1          | 41235722 | 41236029 |
| chr13      | FOXO1          | 41236332 | 41237351 |
| chr13      | FOXO1          | 41237377 | 41238151 |
| chr13      | FOXO1          | 41238397 | 41239719 |
| chr13      | FOXO1          | 41239720 | 41240734 |
| chr13      | FOXO1_upstream | 41240735 | 41240982 |
| chr13      | FOXO1_upstream | 41240992 | 41243152 |
| chr13      | FOXO1_upstream | 41243402 | 41243921 |
| chr13      | FOXO1_upstream | 41244222 | 41244314 |
| chr13      | FOXO1_upstream | 41244322 | 41244951 |
| chr13      | FOXO1_upstream | 41244977 | 41245782 |
| chr13      | FOXO1_upstream | 41246032 | 41248301 |
| chr13      | FOXO1_upstream | 41248632 | 41249463 |
| chr13      | FOXO1_upstream | 41249467 | 41249883 |
| chr13      | FOXO1_upstream | 41250167 | 41250609 |
| chr13      | FOXO1_upstream | 41250797 | 41250934 |
| chr13      | FOXO1_upstream | 41251212 | 41251561 |
| chr13      | FOXO1_upstream | 41251577 | 41251666 |
| chr13      | FOXO1_upstream | 41251672 | 41251746 |

#### Table S4. Continued

| Iable >>. Chara | ICTERISTICS OT CUSTOR | aarck primer-prope : | lable >>. Unaracteristics of custom dar/uk primer-probe sets used for analysis of genetic variants in patient crUNA. | UNA.      |               |           |
|-----------------|-----------------------|----------------------|----------------------------------------------------------------------------------------------------------------------|-----------|---------------|-----------|
| Assay ID        | Target gene           | Oligo                | Oligo sequence (5′-3′)                                                                                               | Annealing | Amplicon size | Probe dye |
|                 |                       |                      |                                                                                                                      | temp (°C) | (dq)          |           |
|                 |                       | ш                    | TCC AGG AGA TGC AAT GAC C                                                                                            |           |               |           |
| 1 Variant 1     | PAX3-FOXO1            | R                    | GAG ACC TCC ATA GTT GCT CA                                                                                           | 58        | 97            | FAM       |
|                 |                       | Ч                    | CCC C+AG CCT +AAT G+AA CAA CC                                                                                        |           |               |           |
|                 |                       | ц                    | GCT CTG AAC ATG GCT TTG G                                                                                            |           |               |           |
| 1 Variant 2     | PAX3-FOXO1            | R                    | GAA CAC CTG ACT ACT TAA GAA CA                                                                                       | 58        | 98            | FAM       |
|                 |                       | Ч                    | AGG A+AT TCT +TGG TTC +ACG TCT T                                                                                     |           |               |           |
|                 |                       | ч                    | ATA GAG ACA CAC AGC CAC AG                                                                                           |           |               |           |
| £               | PAX3-FOXO1            | R                    | GTT CAT GTC TAA CAC CCT GG                                                                                           | 56        | 102           | FAM       |
|                 |                       | Ч                    | ACG CCT G+AT TAT AGG TCA CAA GCC                                                                                     |           |               |           |
|                 |                       | н                    | GTAGACATGGGGTTTCACC                                                                                                  |           |               |           |
| 5               | PAX3-FOXO1            | R                    | TCCTGGTCTAGGATCTTGTC                                                                                                 | 58        | 141           | FAM       |
|                 |                       | Ч                    | TGACTAAAACCTCCTGCATCTGTTT                                                                                            |           |               |           |
|                 |                       | ш                    | TGCCTCAAGAGCAAATGACA                                                                                                 |           |               |           |
| 9               | PAX3-FOXO1            | R                    | TCCTTTCCTAATGAATTTTCTAACG                                                                                            | 57        | 120           | FAM       |
|                 |                       | Ч                    | AGCAGCAACTTTTGGCAGTCGC                                                                                               |           |               |           |
|                 |                       | ш                    | TTGTCCCCCACTCTAGGTT                                                                                                  |           |               |           |
| 7               | PAX7-FOXO1            | R                    | CCTCCCTCACTTTCTGAAG                                                                                                  | 56        | 121           | FAM       |
|                 |                       | Ь                    | AAAGGGCCAGGAGAGAGAAG                                                                                                 |           |               |           |
|                 |                       | ц                    | CACTCCAGCTTGGTGACAGA                                                                                                 |           |               |           |
| 12 Variant 1    | PAX7-FOXO1            | Я                    | TTAGCCTTCCAGAGCTGCAT                                                                                                 | 57        | 85            | FAM       |
|                 |                       | Р                    | AATTGCATTCTTTCCCACCAAGC                                                                                              |           |               |           |

**Table S5.** Characteristics of custom ddPCR primer-probe sets used for analysis of genetic variants in patient cfDNA.

| Table 55. Continued | nued               |       |                                 |                        |                       |           |
|---------------------|--------------------|-------|---------------------------------|------------------------|-----------------------|-----------|
| Assay ID            | Target gene        | Oligo | Oligo sequence (5'-3')          | Annealing<br>temp (°C) | Amplicon size<br>(bp) | Probe dye |
|                     |                    | ш     | CATCACTGACGGAGCAGAAA            |                        |                       |           |
| 12 Variant 2        | PAX7-FOXO1         | Я     | GCACCAGGATCTCACACTTG            | 57                     | 125                   | FAM       |
|                     |                    | P     | ACCCATATTGTTTCCTAGTTGGTTTTTGAC  |                        |                       |           |
|                     |                    | ц     | AAT AGA GAC ACA GAG CCA CA      |                        |                       |           |
| 13                  | PAX3-FOXO1         | Ж     | CAC TTC TCT GTA ATG ACA CTG T   | 56                     | 86                    | FAM       |
|                     |                    | ط     | ACA CAC GCC TT+A GC+A AAA GT    |                        |                       |           |
|                     |                    | ц     | ACA AGA AGGTAC AGA AGA AGC T    |                        |                       |           |
| 14 Variant 1        | PAX3- <i>FOXO1</i> | Я     | GAC CAA CAT CAT GAG ACC CT      | 58                     | 116                   | FAM       |
|                     |                    | Ъ     | TAC AGC TGT GTG CC+A CCA CG     |                        |                       |           |
|                     |                    | ц     | GAG TGA GGT GGC TCG ATC         |                        |                       |           |
| 14 Variant 2        | PAX3-FOXO1         | Я     | GAC AGC ACC AAT AGA GTT CAA     | 58                     | 94                    | FAM       |
|                     |                    | Ч     | CCT CCC +AGG TCC +AAG CAA       |                        |                       |           |
|                     |                    | ш     | AGA GAG ATT ACA CCA CGT CC      |                        |                       |           |
| 18                  | PAX3-FOXO1         | R     | ATC TGA ACA ACA TCC TGG AC      | 56                     | 119                   | FAM       |
|                     |                    | Ь     | TCT GTC GGT TTT TG+A GGT GAC CT |                        |                       |           |
|                     |                    | ш     | TCT GAA TGG TCC ATG AGC         |                        |                       |           |
| 19                  | PAX3-FOXO1         | Ч     | CAA CCA TTT TCT TCC TTT AGC A   | 56                     | 94                    | FAM       |
|                     |                    | Ч     | AGC TGC ATT +ACC CCG GGA AG     |                        |                       |           |
|                     |                    | ш     | AGA CAG GAA CAC CAC ACC         |                        |                       |           |
| 20                  | PAX7-FOXO1         | Ж     | TGC CTC TTC CCT TCT AAT CC      | 56                     | 79                    | FAM       |
|                     |                    | Ч     | TTC +ACC TCC CCG ACA CCT CT     |                        |                       |           |
|                     |                    |       |                                 |                        |                       |           |

Table S5. Continued

5

| Table S5. Continued | pan         |       |                                       |                        |                       |           |
|---------------------|-------------|-------|---------------------------------------|------------------------|-----------------------|-----------|
| Assay ID            | Target gene | Oligo | Oligo sequence (5'-3')                | Annealing<br>temp (°C) | Amplicon size<br>(bp) | Probe dye |
|                     |             | ш     | ATC TCC ATC CTT GAA CGG TT            |                        |                       |           |
| 21 Variant 1        | PAX3-FOXO1  | R     | CTT GCC TTT CTC TTG TGC TG            | 58                     | 97                    | FAM       |
|                     |             | Ч     | TGA CCC +ACC CTG +ATC ACT TCT         |                        |                       |           |
|                     |             | ш     | ATA GGT TGG TTG CAG GCT AC            |                        |                       |           |
| 21 Variant 2        | PAX3-FOXO1  | Я     | GCA GGG ATT TGA GTC AGG AT            | 58                     | 119                   | FAM       |
|                     |             | Р     | AGC TTT +AGG +AAG AG+A TGT +AGC TTT G |                        |                       |           |
| ß-actin             |             | ш     | GTAAGGACAAGTTGGCCCCC                  |                        |                       |           |
| (reference          | ACTB        | R     | TGACTTTGTGGTGTGGCTGG                  | 55-60                  | 101                   | НЕХ       |
| gene)               |             | Р     | TGCAGGGTTCACCCTCTGCTGCCCCCA           |                        |                       |           |
|                     |             |       |                                       |                        |                       |           |

*Abbreviations*: F = forward primer; R = reverse primer; P = probe

**Table S6.** Characteristics of commercial ddPCR primer-probe sets used for analysis of tumor variantsin patient cfDNA.

| Assay ID                                           | Target                   | Source        | Annealing temp (°C) | Dye |
|----------------------------------------------------|--------------------------|---------------|---------------------|-----|
| dHsaCP2500374<br>(Copy number assay)               | CDK4                     | Bio-Rad       | 60                  | FAM |
| dHsaCP2500320<br>(Copy Number assay)               | FGFR2                    | Bio-Rad       | 60                  | FAM |
| 228443642<br>(SNP Genotyping Assay)                | KRAS <sup>G13D</sup>     | IDT           | 60                  | FAM |
| dHsaCP2500317<br>(Copy number assay)               | MDM2                     | Bio-Rad       | 60                  | FAM |
| dHsaMDS579992170                                   | NRAS <sup>Q61K</sup>     | Bio-Rad       | 55                  | FAM |
| 4331349<br>(Custom Taqman SNP<br>Genotyping Assay) | BRAF <sup>V600E</sup>    | Thermo Fisher | 60                  | FAM |
| 4331349<br>(Custom Taqman SNP<br>Genotyping Assay) | NRAS <sup>G12A</sup>     | Thermo Fisher | 60                  | FAM |
| 4331349<br>(Custom Taqman SNP<br>Genotyping Assay) | NRAS <sup>Q61R</sup>     | Thermo Fisher | 60                  | FAM |
| 4331349<br>(Custom Taqman SNP<br>Genotyping Assay) | MYOD1 <sup>L122R</sup>   | Thermo Fisher | 55                  | FAM |
| 4331349<br>(Custom Taqman SNP<br>Genotyping Assay) | PIK3CA <sup>H1044K</sup> | Thermo Fisher | 55                  | FAM |
| dHsaCP2500350<br>(Copy number assay)               | RPP30                    | Bio-Rad       | 58                  | HEX |
| dHsaCNS674780718<br>(Copy number assay)            | RPPH1                    | Bio-Rad       | 58                  | HEX |

5

**Table S7.** PAX3-FOXO1 and PAX7-FOXO1 breakpoint locations identified in fusion-positive patient tumor

 DNA via targeted sequencing

| Case | Gene fusion | Fusion p   | artner 1    | Fusion pa  | artner 2   |
|------|-------------|------------|-------------|------------|------------|
|      |             | Chromosome | Location    | Chromosome | Location   |
| 1    | PAX3-FOXO1  | 2          | 223,071,019 | 13         | 41,162,803 |
|      | PAX3-FOXO1  | 2          | 223,071,615 | 13         | 41,157,856 |
| 3    | PAX3-FOXO1  | 2          | 223,082,412 | 13         | 41,191,753 |
| 5    | PAX3-FOXO1  | 2          | 223,082,041 | 13         | 41,195,136 |
| 6    | PAX3-FOXO1  | 2          | 223,069,832 | 13         | 41,161,236 |
| 7    | PAX7-FOXO1  | 1          | 19,042,580  | 13         | 41,176,358 |
| 12   | PAX7-FOXO1  | 1          | 19,041,354  | 13         | 41,229,493 |
|      | PAX7-FOXO1  | 1          | 19,048,182  | 13         | 41,229,523 |
| 13   | PAX3-FOXO1  | 2          | 223,082,528 | 13         | 41,191,754 |
| 14   | PAX3-FOXO1  | 2          | 223,076,047 | 13         | 41,165,979 |
|      | PAX3-FOXO1  | 2          | 223,076,078 | 13         | 41,165,949 |
| 18   | PAX3-FOXO1  | 2          | 223,067,214 | 13         | 41,143,785 |
| 19   | PAX3-FOXO1  | 2          | 223,073,869 | 13         | 41,157,501 |
| 20   | PAX7-FOXO1  | 1          | 19,056,569  | 13         | 41,151,743 |
| 21   | PAX3-FOXO1  | 2          | 223,078,665 | 13         | 41,169,915 |
|      | PAX3-FOXO1  | 2          | 223,078,489 | 13         | 41,170,565 |

### **References for Supplementary data**

- Manzella G, Schreck LD, Breunis WB, Molenaar J, Merks H, Barr FG, Sun W, Römmele M, Zhang L,Tchinda J, Ngo Q, Bode PK, Delattre O, Surdez D, Rekhi B, Niggli FK, Schäfer BW, WachtelM. High throughput drug profiling with a living biobank of primary rhabdomyosarcoma cells unravels disease heterogeneity and detects an AKT inhibitor sensitive subgroup. Nat Commun. 2020 Sep 15;11(1):4629. doi.org/10.1038/s41467-020-18388-7
- de Vree PJP, de Wit E, Yilmaz M, et al. Targeted sequencing by proximity ligation for comprehensive variant detection and local haplotyping. Nat Biotechnol. 2014 32(10):1019-25
- Izquierdo E, Yuan L, George S, et al. Development of a targeted sequencing approach to identify prognostic, predictive and diagnostic markers in pediatric solid tumors. Oncotarget, 2017 8(67):112036-112050.
- George SL, Izquierdo E, Campbell J, et al. A tailored molecular profiling programme for children with cancer to identify clinically actionable genetic alterations. Eur J Cancer. 2019 21:224-235.
- Chicard M, Colmet-Daage L, Clement N, Danzon A, Bohec M, Bernard V, Baulande S, Bellini A, Deveau P, Pierron G, Lapouble E, Janoueix-Lerosey I, Peuchmaur M, Corradini N, Defachelles AS, Valteau-Couanet D, Michon J, Combaret V, Delattre O, Schleiermacher G. Whole-Exome Sequencing of Cell-Free DNA Reveals Temporo-spatial Heterogeneity and Identifies Treatment-Resistant Clones in Neuroblastoma. Clin Cancer Res. 2018 Feb 15;24(4):939-949. doi: 10.1158/1078-0432.CCR-17-1586.
- Alcoser SY et al. Real-time PCR-based assay to quantify the relative amount of human and mouse tissue present in tumor xenografts. BMC Biotechnol. 2011. doi:10.1186/1472-6750-11-124
- Deng W, McLaughlin SL & Klinke DJ. Quantifying spontaneous metastasis in a syngeneic mouse melanoma model using real time PCR. Analyst. 2017. doi:10.1039/c7an00623c
- Gorges TM et al. Cancer therapy monitoring in xenografts by quantitative analysis of circulating tumor DNA. Biomarkers. 2012. doi:10.3109/1354750X.2012.689133
- Schneider T, Osl F, Friess T et al. Quantification of human Alu sequences by real-time PCR An improved method to measure therapeutic efficacy of anti- metastatic drugs in human xenotransplants. Clin. Exp. Metastasis. 2002. doi:10.1023/A:1020992411420
- Rago C et al. Serial assessment of human tumor burdens in mice by the analysis of circulating DNA. Cancer Res 2007. doi:10.1158/0008-5472.CAN-07-0605
- Rakhit CP et al. Early detection of pre-malignant lesions in a KRAS G12D-driven mouse lung cancer model by monitoring circulating free DNA. DMM Dis. Model. Mech. 2019. doi:10.1242/dmm.036863



# Chapter 6 Targeted Locus Amplification to develop robust patient-specific assays for liquid biopsies in pediatric solid tumors

Front Oncol. 2023 Apr 20;13:1124737. doi: 10.3389/fonc.2023.1124737.

Lieke M. Van Zogchel <sup>1, 2\*</sup>, Nathalie S. Lak <sup>2, 1\*</sup>, Nina U. Gelineau <sup>2, 1</sup>, Irina Sergeeva<sup>3</sup>, Ellen Stelloo <sup>3</sup>, Joost Swennenhuis<sup>3</sup>, Harma Feitsma<sup>3</sup>, Max van Min<sup>3</sup>, Erik Splinter<sup>3</sup>, Margit Bleijs<sup>1</sup>, Marian Groot Koerkamp<sup>1</sup>, Willemijn Breunis <sup>1, 4</sup>, Michael T. Meister<sup>1, 5</sup>, Waleed H. Kholosy<sup>1</sup>, Frank C. Holstege <sup>1, 6</sup>, Jan J. Molenaar<sup>1</sup>, Wendy W. de Leng<sup>7</sup>, Janine Stutterheim<sup>1</sup>, Ellen Van Der Schoot<sup>2</sup>, Lieve Tytgat<sup>1</sup>

- <sup>1</sup> Princess Maxima Center for Pediatric Oncology, Netherlands,
- <sup>2</sup> Sanquin Research, Netherlands,
- <sup>3</sup> Cergentis B.V., Netherlands,
- <sup>4</sup> University Children's Hospital Zurich, Switzerland,
- <sup>5</sup> Oncode Institute, Netherlands,
- <sup>6</sup> Center for Molecular Medicine, University Medical Center Utrecht, Netherlands,
- <sup>7</sup> Department of Pathology, UMC Utrecht, Netherlands

## Abstract

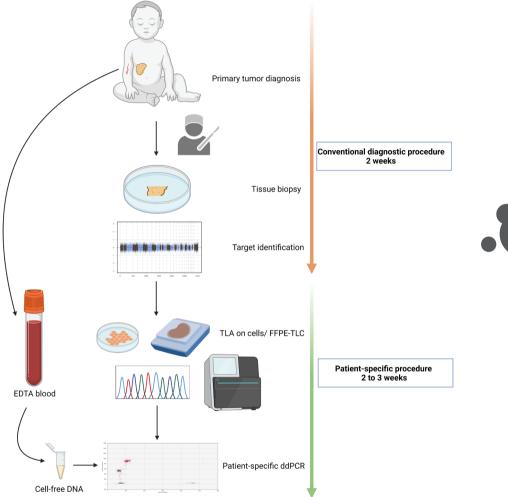
*Background:* Liquid biopsies combine minimally invasive sample collection with sensitive detection of residual disease. Pediatric malignancies harbor tumor-driving copy number alterations or fusion genes, rather than recurrent point mutations. These regions contain tumor-specific DNA breakpoint sequences. We investigated the feasibility to use these breakpoints to design patient-specific markers to detect tumor-derived cell-free DNA (cfDNA) in plasma from patients with pediatric solid tumors.

*Materials and methods:* Regions of interest (ROI) were identified through standard clinical diagnostic pipelines, using SNP array for CNAs, and FISH or RT-qPCR for fusion genes. Using targeted locus amplification (TLA) on tumor organoids grown from tumor material or targeted locus capture (TLC) on FFPE material, ROI-specific primers and probes were designed, which were used to design droplet digital PCR (ddPCR) assays. cfDNA from patient plasma at diagnosis and during therapy was analyzed.

*Results:* TLA was performed on material from 2 rhabdomyosarcoma, 1 Ewing sarcoma and 3 neuroblastoma. FFPE-TLC was performed on 8 neuroblastoma tumors. For all patients, at least one patient-specific ddPCR was successfully designed and in all diagnostic plasma samples the patient-specific markers were detected. In the rhabdomyosarcoma and Ewing sarcoma patients, all samples after start of therapy were negative. In neuroblastoma patients, presence of patient-specific markers in cfDNA tracked tumor burden, decreasing during induction therapy, disappearing at complete remission and re-appearing at relapse.

*Conclusion:* We demonstrate the feasibility to determine tumor-specific breakpoints using TLA/TLC in different pediatric solid tumors and use these for analysis of cfDNA from plasma. Considering the high prevalence of CNAs and fusion genes in pediatric solid tumors, this approach holds great promise and deserves further study in a larger cohort with standardized plasma sampling protocols.

#### **Contribution to the field**


An important challenge in the treatment of children with solid tumors is monitoring therapy response. In current clinical practice, treatment response is evaluated by different imaging modalities, which have several limitations. In young children, most evaluation scans require general anesthesia. Moreover, subtle changes in the primary tumor or appearance of relapse are not detected by imaging until the tumor burden reaches a certain threshold. Precise monitoring of treatment response and relapse detection are essential to improve survival. Liquid biopsies offer another approach to monitor tumor activity on a molecular level. Studying tumor-derived cell-free DNA in blood plasma combines minimal invasiveness with a high sensitivity, which makes this extremely suitable for use in pediatric patients. Pediatric solid tumors have a low mutational burden, often harboring tumordriving copy number alterations or fusion genes. In this study, we demonstrate the feasibility of designing patient-specific markers within these regions using targeted locus amplification (TLA) and evaluate the use of these assays on diagnostic and serial plasma samples from patients with pediatric solid tumors (neuroblastoma, rhabdomyosarcoma and Ewing sarcoma). This workflow for the analysis of liquid biopsies in pediatric solid tumors can be considered ready for the transition from bench to bedside.

### Introduction

Despite advances in treatment and survival, mortality for pediatric patients with solid tumors that suffer of metastatic or relapsed disease remains high (1-7). During the course of the disease, children face many invasive procedures to acquire tumor material as well as imaging under general anesthesia to determine disease dissemination and response evaluation. Sampling of blood or other liquids produced by the human body, e.g. 'liquid biopsies' form a potential source of biomarkers that can be collected in a less invasive manner which could reduce the number of stressful procedures. Moreover, liquid biopsies contain material from both the primary tumor and metastatic lesions, thereby offering a more comprehensive view of the disease and could assist in clinical decision making (8-10). An important challenge is the correct choice of the marker. Studies focusing on the detection of tumor-derived mRNA from blood and bone marrow using a tumor-specific RNA panel have shown promising results for improving risk stratification at diagnosis, as seen in neuroblastoma and rhabdomyosarcoma (10-12). However, these methods still require the use of bone marrow, and the potential for response monitoring with this approach has not been shown yet for rhabdomyosarcoma (10). Cell-free DNA (cfDNA) from plasma holds great potential for diagnostic and prognostic purposes in pediatric solid tumors (13–16). We have previously described hypermethylated RASSF1A as a marker for cell free tumor DNA in several pediatric tumors. However, the level of methylation of RASSF1A differs in different types of pediatric tumors, which limits its use (16). In contrast to adult malignancies, mutations in pediatric tumors are scarce. Often, they have copy number alterations (CNAs) or translocations resulting in fusion genes which are considered early tumor-driving events and remain present during the entire course of the disease (17–19). In rhabdomyosarcoma, the fusion gene between PAX3 or PAX7 and FOXO1 is an important characteristic within the alveolar subtype (3, 20–22). In Ewing sarcoma, EWSR1 pairs with several fusion partners from the ETS family of transcription factors (5, 17). Neuroblastoma tumors often have amplification of MYCN, loss of heterozygosity of chromosome 1p and 11p and gain of 17q (4). Most of these CNAs result in a unique chromosomal fusion, however it is mostly unknown to which chromosome. These genetic events are formed by DNA sequences which are exclusive to a patient, thereby forming a perfect target to detect tumor-derived DNA since these sequences are not present in the background of healthy cell-free DNA, which is always present in blood. For pediatric patients with a solid tumor, fluorescent in situ hybridization (FISH), shallow whole genome sequencing (sWGS) or single nucleotide polymorphism (SNP) array has become available for routine diagnostics to identify clinically relevant fusion genes, as well as genomic deletions or amplifications. As these genomic aberrations are independent of gene activity, their presence could potentially be used to detect and quantify tumor burden. Historically, the identification of the exact breakpoint sequence has been time- and resource consuming, as WGS followed by Sanger sequencing validation was necessary (23). However, this procedure can be sped up by using a targeted approach for genomic breakpoint sequencing, like targeted locus amplification/capture (TLA/TLC). TLA/TLC is a technique that uses crosslinking of physically proximal sequences to selectively amplify and sequence regions of >100 kb surrounding specific primer or probe binding sites without prior detailed locus information. TLA can be applied to cells, while TLC is optimized for formalin fixed paraffin embedded (FFPE) material (24–27). The breakpoint sequence revealed by the TLA/TLC technique can be used to design an assay that targets the patient-specific breakpoint. We use droplet digital PCR (ddPCR) to detect these targets in small volumes of plasma from patients with pediatric solid tumors, since ddPCR allows for absolute guantification combined with high sensitivity. In this report, we investigate the possibility of designing patient-specific assays for cell free tumor DNA detection in patients with neuroblastoma, rhabdomyosarcoma and Ewing sarcoma, using TLA/ TLC – based breakpoint sequences. Furthermore, we study whether the presence of these specific breakpoints correlates to residual and recurrent disease and, thus, its potential as marker for treatment response.

## Methods

For a graphical overview of the methods, see Figure 1.



**Figure 1.** Workflow for the development of a patient-specific assay. At primary diagnosis, tumor material is collected through biopsy or resection. The tissue is then analyzed in the regular diagnostic pipeline. This means copy number analysis through SNP array for neuroblastoma tumors, and fusion gene detection through immunohistochemistry or RT-qPCR for rhabdomyosarcoma and Ewing sarcoma. Based on the identified altered regions/copy number aberrations and fusion partner, for targeted locus amplification (TLA) or targeted locus capture (TLC) is performed on cellsor FFPE material, respectively. The breakpoint sequence(s) are then used for a patient-specific ddPCR design which is then measured on cell- free DNA from EDTA blood.

#### Tumor and plasma samples

Patients with neuroblastoma, rhabdomyosarcoma and Ewing sarcoma, diagnosed in 2016 and 2017 and treated at the Princess Máxima Center (Utrecht, the Netherlands), of whom tumor material (viable or FFPE) and genetic information of the tumor and plasma samples were available, were included in this study. Tumor samples were collected if patients/caretakers gave informed consent for biobanking. Plasma samples from neuroblastoma patients were collected within the Minimal Residual Disease study of the DCOG high-risk protocol (MEC07/219#08.17.0836) and from patients with rhabdomyosarcoma within the Minimal Residual Disease study (add-on within the EpSSG RMS2005, EudraCT number: 2005-000217-35). Plasma samples from the patient with Ewing sarcoma was collected after informed consent for the biobank. Peripheral blood was collected in EDTA tubes (Becton-Dickinson, NJ, USA) and processed within 24 hours. Plasma was obtained by centrifuging the blood samples at 1,375g for 10 minutes and stored at -20°C until further processing.

#### Identification of regions of interest

For neuroblastoma tumors, chromosomal regions with aberrations in copy numbers were identified through SNP array. SNP array copy number profiling and analysis of regions of homozygosity were performed according to standard procedures using the CytoSNP-850 K BeadChip (Illumina, San Diego, CA). Visualizations of SNP array results and data analysis were performed using NxClinical software (BioDiscovery, Los Angeles, CA), using Human genome build February 2009 GRCh37/hg1. Chromosomal aberrations that are known to be tumor driving or associated with high-risk disease were preferentially selected for TLA/TLC breakpoint identification (e.g. chromosome 1p, 1q, 2p (including *MYCN* locus), 3p, 11q, 17q) (4). The fusion partners of *FOXO1* in the fusion-positive alveolar rhabdomyosarcomas were validated through RT-qPCR on tumor organoid models (tumoroids) grown from primary tumor material, as described previously (28). In the Ewing sarcoma sample, the fusion between EWSR1 and FLI1 was validated through RT-qPCR on the tumoroid with primers located on EWSR1 exon 8 (AGGAGAGAACCGGAGCATGA) and FLI1 exon 5 (CCCTGAGGTAACTGAGGTGTG).

# Identification of the patient-specific breakpoint(s) using TLA and FFPE-TLC

After the regions of interest (ROI) were identified through standard clinical diagnostic pipelines, ROI-specific primers or probe panels were designed for TLA and FFPE-TLC sequencing by Cergentis (Utrecht, the Netherlands), to sequence tumor-specific breakpoints (24, 25). As starting material for TLA, 2 to 5 million tumoroid cells were used. For tumors for which only FFPE material was available, targeted locus capture (FFPE-TLC) was performed as described previously (27). For FFPE-TLC, 2-3 slides of 10µm

with >30% tumor were used. The region-specific primers used for TLA and location of capture probes used for TLC are provided in Supplemental Table S1. For TLA, PCR products were library prepped using the Illumina Nextera DNA Flex protocol (Illumina, San Diego, CA, USA) after ROI amplification, whereas for TLC, libraries were created with the KAPA library preparation kit (Roche Kapa Hyperprep, Kapa Unique Dual indexed adapter kit) and subsequently subjected to targeted capture. Sequencing for both TLA and TLC was performed on an Illumina sequencer. 151 bp reads were mapped using BWA-SW, version 0.7.15-r1140, settings bwasw -b 7. The NGS reads were aligned to the human genome (hg19). Breakpoint sites were identified based on coverage peak(s) in the genome and the detection of fusion-reads between different parts of the genome.

#### cfDNA isolation and ddPCR

cfDNA was isolated from plasma samples using the Quick-cfDNA Serum & Plasma kit (Zymo Research, CA, USA). Based on the plasma volume available, different amounts of plasma were used to isolate cfDNA based on availability, ranging from 200µl to 1000µl. To correct for variations in the amount of input plasma, cfDNA is reported in copies/mL plasma. In every analysis, *Actin beta* (*ACTB*) was included as a reference gene to determine total cfDNA input.

Using the patient-specific DNA sequence, a ddPCR assay was designed using Primer 3 Plus (https://primer3plus.com/). The design was tested for specificity using Primer Blast (https://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi). Designs yielding amplicons in the human reference genome below 1000 bp were excluded to avoid aspecific amplification. The ddPCR assay conditions were optimized using DNA from the primary tumor. In every run, DNA from a healthy leukocyte pool and H<sub>2</sub>O were included as negative controls. The patient-specific primers, probes, and assay conditions are provided in Supplemental Table S2.

Reaction mixes for ddPCR were prepared to a final volume of 22 µl using 11 µl ddPCR Supermix for probes (no dUTP) (Bio-Rad Laboratories, Hercules, CA, USA), 1 µl of target assay and 1 µl of *ACTB* assay (final concentration of 900 nM of each primer and 250 nM of each probe, unless otherwise specified), 5 µl of DNA eluate and 3 µl H<sub>2</sub>O. Droplets were generated using the QX200<sup>™</sup> Droplet Generator (Bio-Rad) or QX200<sup>™</sup> Automated Droplet Generator (Bio-Rad). Incubation and thermal cycling were performed using the C1000 Touch Thermal Cycler (Bio-Rad), with the following program: 95°C for 10 min; 40 cycles of 94°C for 30s, annealing temperature variable per assay, for 1 min; 98°C for 10 min; 4°C hold. Following PCR, droplets were read and quantified using the QX200 Droplet reader and analyzed by QuantaSoft 1.7.4.0917 (Bio Rad) software for single targets on FAM and HEX. Analysis on assays with multiple targets on FAM were done in QX Manager 1.2 Standard Edition software (Bio-Rad). The assay for methylated *RASSF1A* (*RASSF1A*-M) was performed as described previously (16).

## Results

# Patient-specific breakpoints were successfully identified in different pediatric solid tumors

An overview of the clinical characteristics of the patient cohort can be found in Table 1. Tumor material grown from primary tumor cells was available for TLA for 2 patients with rhabdomyosarcoma, 1 patient with Ewing sarcoma and 4 with neuroblastoma. For 8 patients with neuroblastoma, FFPE material was available for analysis by FFPE-TLC. An overview of the tested tumor material and identified breakpoints is shown in Table 2. In 4 patients with neuroblastoma, multiple breakpoints were detected by TLA and/or FFPE-TLC. In NB2056 2 breakpoints were identified in different locations: between chromosome 2 and 4, and between chromosome 11 and 17. In NB2050 4 breakpoints were identified in chromosome 2. Based on in-silico design results we proceeded with only 2 of these 4 breakpoints for ddPCR design. In 3 samples, NB2066, NB2086 and NB2100, some of the candidate breakpoint sequences were also found in the normal human reference genome (hg38) and therefore were not suited as tumorspecific target. For NB2100, no tumor-specific ddPCR could be designed, in NB2086 and NB2100, other suitable breakpoints were identified in these tumors. In all 14 tumors at least one breakpoint was identified by TLA/FFPE-TLC, and for 13/14 a tumorspecific ddPCR could be designed. These findings illustrate that TLA can be applied successfully both in freshly grown cells and FFPE material, for different tumor entities and different types of genetic aberrations: copy number aberrations and fusion genes.

#### Results of ddPCR assay in single and multiple breakpoints

Patient-specific ddPCR assays were designed for 15 breakpoints identified in 13 cases. An illustrative example of a ddPCR assay with one breakpoint is shown in Figure 2 for the cfDNA from diagnostic plasma and genomic DNA from the primary tumor from patient NB2049. In case more than one tumor-specific ddPCR could be designed, we aimed to combine these in a multiplex assay (Figure 3). For NB2050, two breakpoints, both chromosome 2-2 breakpoints in the amplified MYCN locus, were massively amplified relative to the reference gene, resulting in overloading of the droplets and failure to quantify the cfDNA targets accurately in undiluted cfDNA from diagnostic plasma. cfDNA diluted 500 times enabled correct quantification of the different targets. Both Figures 2, 3 illustrate the range that can be covered by ddPCR and the possibilities of absolute quantification.

|                                                                                                            | Molecular characteristics Survival        | PAX3-FOXO1(Chr13-Chr2) 2x relapse,<br>died of disease | PAX3-FOX01(Chr13-Chr2) Progressive<br>disease, died<br>of disease | EWSR1-FLI(Chr22-Chr11) | MYCN gain, Refractory<br>Chr17 gain disease, died<br>of disease | Chr17 gain Progressive<br>disease, died<br>of disease | MYCN amp, LOH1p, Chr17 Relapse, died<br>gain, ALK F1174L mutation of disease | <i>MYCN</i> amp, Complete<br>Chr17 gain remission<br>LOH1p | MYCN gain, Refractory<br>Chr17 gain disease,<br>Complete<br>remission | LOH1p Progressive<br>disease, died |
|------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------|------------------------|-----------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------|
| TLC).                                                                                                      | Primary Molecular<br>tumor volume<br>(ml) | 145.8 PAX3-FOX                                        | 55.3 PAX3-FOX                                                     | EWSR1-FL               | 3198.8 <i>M</i>                                                 | 1276.6 Ch                                             | 1517 MYCN aml<br>gain, ALK F                                                 | 2.1 MY<br>Ch                                               | 210.0 MY<br>Ch                                                        | 204                                |
| ion (TLA)/capture ( <sup>-</sup>                                                                           | Metastatic                                | Lung, bone                                            | Lung, bone                                                        |                        | Bone marrow                                                     | Bone marrow                                           | Bone marrow,<br>lung, liver                                                  | Bone marrow                                                | Bone marrow                                                           | Bone marrow,<br>liver              |
| Table 1. Clinical characteristics of patients analyzed by targeted locus amplification (TLA)/capture (TLC) | Tumor location Risk<br>group              | Bladder M                                             | M                                                                 |                        | Abdominal HR                                                    | Abdominal HR                                          | Adrenal HR                                                                   | Adrenal, HR<br>paravertebral                               | Adrenal HR                                                            | Adrenal LR                         |
| of patients analyzed by                                                                                    | Tumor type                                | Fusion-positive<br>rhabdomyosarcoma                   | Fusion-positive<br>rhabdomyosarcoma                               | Ewing sarcoma          | Neuroblastoma                                                   | Neuroblastoma                                         | Neuroblastoma                                                                | Neuroblastoma                                              | Neuroblastoma                                                         | Neuroblastoma                      |
| aracteristics                                                                                              | Gender<br>)                               | Female                                                | Male                                                              |                        | Male                                                            | Male                                                  | Male                                                                         | Male                                                       | Female                                                                | Male                               |
| linical ch                                                                                                 | Age<br>(years)                            | 8.8                                                   | 11.6                                                              |                        | 10.8                                                            | 4.1                                                   | 1.8                                                                          | 0.7                                                        | 3.2                                                                   | 0.4                                |
| Table 1. C                                                                                                 | PtID                                      | RMS108                                                | RM5006                                                            | EWS010                 | NB2049                                                          | NB2050                                                | NB2053                                                                       | NB2054                                                     | NB2056                                                                | NB2061                             |

amplification (TLA)/capture (TLC) Table 1. Clinical characteristics of patients analyzed by targeted locus

6

| Table 1. Continued | ntinued        |        |               |                |               |             |                                 |                                             |                                            |
|--------------------|----------------|--------|---------------|----------------|---------------|-------------|---------------------------------|---------------------------------------------|--------------------------------------------|
| PtID               | Age<br>(years) | Gender | Tumor type    | Tumor location | Risk<br>group | Metastatic  | Primary<br>tumor volume<br>(ml) | Molecular characteristics                   | Survival                                   |
| NB2066             | 1.8            | Female | Neuroblastoma | Adrenal        | HR            | Bone marrow | 4.7                             | <i>MYCN</i> gain, Chr17 gain                | Complete<br>remission                      |
| NB2074             | 1.9            | Male   | Neuroblastoma | Adrenal        | HR            | Bone marrow | 491                             | Chr1p gain, Chr17q<br>gain, <i>MYCN</i> amp | Progressive<br>disease, died<br>of disease |
| NB2086             | 2.0            | Male   | Neuroblastoma | Adrenal        | HR            | Bone marrow | unknown                         | LOH1p, LOH11q, <i>MYCN</i> amp              | Progressive<br>disease, died<br>of disease |
| NB2100             | 2.4            | Male   | Neuroblastoma | Adrenal        | HR            | Bone marrow | 1281                            | LOH1p, gain<br>17q, <i>MYC</i> N amp        | Relapse, died<br>of disease                |
| NB2101             | 4.7            | Male   | Neuroblastoma | Adrenal        | HR            | Bone marrow | 1767                            | Chr1p gain, Chr17q<br>gain, MYCN amp        | Relapse, died<br>of disease                |
|                    |                |        |               |                |               |             |                                 | :                                           |                                            |

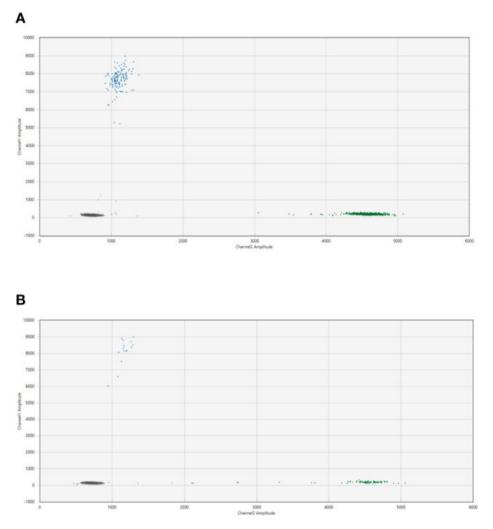
PtID; unique patient identifier; Risk group; M; metastatic, HR; high risk disease; amp, amplification; LOH, loss of heterozygosity.

| PtID   | Tumor<br>material    | Timing of tumor<br>sample   | Region                             | Type of genetic<br>aberration              | Breakpoint<br>partner 1  | Breakpoint<br>partner 2  | Details on<br>breakpoint  | ddPCR assay<br>successful                            |
|--------|----------------------|-----------------------------|------------------------------------|--------------------------------------------|--------------------------|--------------------------|---------------------------|------------------------------------------------------|
| RMS108 | Tumoroid             | Relapse surgery             | Chr13-<br>Chr2                     | Fusion gene                                | Chr13:4119<br>5136 (fwd) | Chr2:22308<br>2041       | no<br>over lapping        | yes                                                  |
|        |                      |                             | (PAX3-<br>FOXO1)                   |                                            |                          |                          | base                      |                                                      |
| RMS006 | Tumoroid             | Relapse surgery             | Chr13-<br>Chr2<br>(PAX3-<br>FOXO1) | Fusion gene                                | Chr13:4113<br>6846       | Chr 2:22308<br>2995      | 1<br>overlapping<br>base  | yes                                                  |
| ES010  | Tumoroid             | Relapse surgery             | Chr22-<br>Chr11<br>(EWSR-<br>FLI)  | Fusion gene                                | Chr22:2929<br>2022       | Chr11:1287<br>72451      | 2<br>homologous<br>bases  | yes                                                  |
| NB2049 | FFPE                 | Primary biopsy              | Chr1-Chr1                          | Amplification                              | Chr1:53649<br>791        | Chr1:32092<br>640        | 7 inserted<br>bases       | yes                                                  |
| NB2050 | FFPE                 | Resection                   | Chr2-Chr2                          | Amplification                              | Chr2:16022<br>293        | Chr2:15960<br>456        | 5 inserted<br>bases       | NA                                                   |
|        |                      |                             | Chr 2-Chr 2                        | Amplification                              | Chr2:21514<br>327        | Chr2:15957<br>643        | 4<br>homologous<br>bases  | yes                                                  |
|        |                      |                             | Chr 2-Chr 2                        | Amplification                              | Chr2:21511<br>794        | Chr2:15957<br>693        | 2<br>homologous<br>bases  | NA                                                   |
|        |                      |                             | Chr2-Chr2                          | Amplification                              | Chr2:16108<br>256        | Chr2:20989<br>391        | 3<br>homologous<br>bases  | yes                                                  |
| NB2053 | Tumoroid             | Relapse biopsy              | Chr1-<br>Chr17                     | Translocation & gain                       | Chr1:47886<br>678        | Chr17:3304<br>8245       | 2<br>homologous<br>bases  | yes                                                  |
| NB2054 | FFPE                 | Resection                   | Chr2-Chr2                          | Amplification                              | Chr2:14863<br>510        | Chr2:15987<br>902        | 1<br>homologous<br>base   | yes                                                  |
| NB2056 | FFPE                 | Resection                   | Chr4-Chr2                          | Translocation                              | Chr4:19104<br>4254       | Chr2:57488<br>356        | 1<br>homologous<br>base   | yes                                                  |
|        |                      |                             | Chr17-<br>Chr11                    | Amplification                              | Chr17:3094<br>7919       | Chr11:7122<br>1924       | 17 inserted<br>bases      | yes                                                  |
| NB2061 | Tumoroid             | Relapse biopsy              | Chr1-<br>Chr16                     | Translocation                              | Chr16:6852<br>9301       | chr 1:29295<br>626       | 2<br>homologous<br>bases  | yes                                                  |
| NB2066 | FFPE                 | Primary biopsy              | Chr 3-<br>Chr3                     | Amplification                              | Chr3:56630<br>532        | Chr3:56630<br>543        | 20<br>homologous<br>bases | no, sequenc<br>was found in<br>normal hg3<br>genome  |
| NB2074 | FFPE                 | Resection                   | Chr 2                              | Amplification                              | Chr2:18597<br>249        | Chr2:27751               |                           | yes                                                  |
| NB2086 | Tumor oid            | Relapse biopsy              | Chr 11-9                           | Translocation                              | Chr11:8830<br>1222       | 059<br>Chr9:92443<br>417 |                           | no, sequenc<br>was found in<br>normal hg3i<br>genome |
|        |                      |                             | Chr 2                              | Amplification                              | Chr2:16893<br>201        | Chr2:15757<br>504        | 2<br>homologous<br>bases  | yes                                                  |
| NB2100 | Tumoroid ánd<br>FFPE | Organoid:<br>relapse biopsy | Chr 1                              | Deletion                                   | Chr 1:<br>92107327       | Chr1:<br>95347109        | 1<br>homologous<br>base   | yes                                                  |
|        |                      | FFPE: resection             | Chr 2                              | Amplification                              | Chr2:16670<br>567        | Chr2:15943<br>507        |                           | no, sequenc<br>was found i<br>normal hg3<br>genome   |
|        |                      |                             | Chr17                              | NA                                         |                          |                          | In telomeric sequence     | NA                                                   |
| NB2101 | FFPE                 | Primary biopsy              | Chr 2                              | Amplification<br>(multiple<br>breakpoints) | Chr2:15179<br>926        | Chr2:16075<br>495        |                           | yes                                                  |

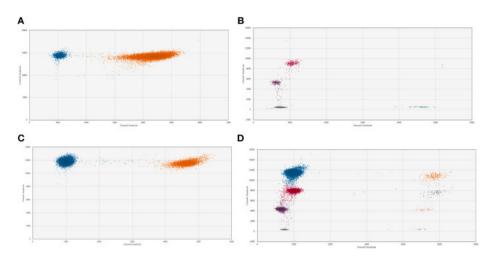
 Table 2. Overview of tumor material and breakpoints. (following page)

#### Presence of patient-specific targets correlates with disease stage

Sequential cfDNA samples obtained during the clinical disease course were measured by ddPCR for the patient-specific breakpoint and by the RASSF1A-M assay (Figure 4 for patients with neuroblastoma, Figure 5 for patients with rhabdomyosarcoma and Ewing sarcoma). In all plasma samples taken at initial diagnosis in patients with neuroblastoma and rhabdomyosarcoma, the patientspecific targets were present. In neuroblastoma, presence of tumor-derived targets followed the clinical course, decreasing after start of treatment and reappearing before or at relapse. In patients NBL2061 and NBL2101 the tumor-specific target is clearly detectable in the cfDNA before a relapse is detected by imaging or standard bone marrow evaluation. In the two patients with rhabdomyosarcoma, the targets in the tumor-derived cfDNA disappeared quickly after start of therapy and did not reappear during therapy for relapse (RMS108) or progressive disease (RMS006). In both cases, no samples were drawn at diagnosis of relapse or progressive disease. For the patient with Ewing sarcoma, the specific breakpoint target was not detected in two cfDNA samples taken during therapy for relapse, even though design of a patient-specific breakpoint was successful, as determined in the positive control. Unfortunately, no sample taken at initial diagnosis was available for this patient.

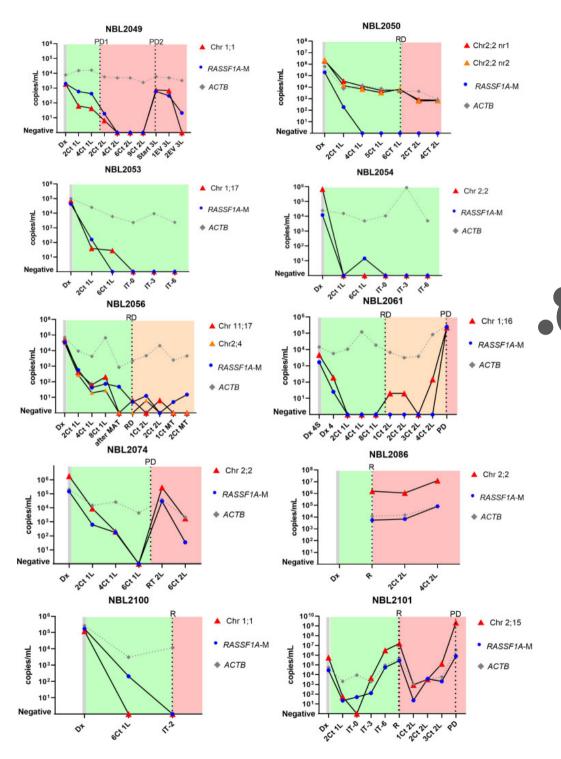

For NBL2053, NBL2061, NBL2086, NBL2100, RMS006 and RMS108, the tumoroid that was used to identify the patient-specific breakpoint for TLA was grown from a tumor sample taken at relapse. However, we could detect the exact same breakpoints in plasma taken at initial diagnosis. This illustrates clearly that the targeted chromosomal breakpoints in neuroblastoma and the *PAX3-FOXO1* fusion gene in the rhabdomyosarcoma patient remain stable during the course of the disease.

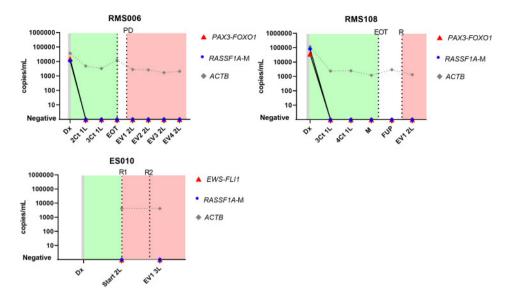
We show that patient-specific targets identified in tumor material by TLA can be detected in cfDNA from diagnostic plasma, furthermore, the presence of these targets track clinical course in neuroblastoma.


#### Levels of patient-specific target in cfDNA comparable to RASSF1A-M

Levels of the patient-specific marker and *RASSF1A-M* were comparable at initial diagnosis in patients with neuroblastoma and rhabdomyosarcoma. During the course of treatment minor discrepancies were found between *RASSF1A-M* and the patient-specific marker (NBL2054, NBL2056, NBL2061, NBL2100, NBL2101) (Figure 4), reflecting the presence of minimal residual disease. Note that in patient NBL2050 the patient-specific marker targets the highly amplified *MYCN* sequence and therefore has an increased sensitivity compared to the *RASSF1A-M* assay. Similar to the breakpoint levels, all sequential samples in the patients with rhabdomyosarcoma

were negative for *RASSF1A-M* (Figure 5). For the patient with Ewing sarcoma, all samples were negative for both RASSF1A-M and the breakpoint.





**Figure 2.** 2D plot from the ddPCR assay for NB2049 with (**A**). cfDNA from the diagnostic plasma sample (total cfDNA input 25.6 ng/well) and (**B**). positive control with DNA from FFPE material from the primary tumor (total cfDNA input 3.3 ng/well). Blue dots; droplets positive for patient-specific breakpoint (FAM channel) Green dots; droplets positive for ACTB(HEX channel) Grey dots; droplets negative for both targets.



**Figure 3.** 2D plot from the ddPCR assay for NB2050 with 2 patient-specific breakpoints **(A)**. cfDNA from the diagnostic plasma sample (total cfDNA input can not be determined due to overload of the droplets) **(B)**. positive control with DNA from FFPE material from the primary tumor (total cfDNA input 1.7 ng/ well). **(C)** Dilution of diagnostic plasma 50 times and **(D)**. 500 times Blue dots; droplets positive for both patient-specific breakpoint (FAM channel) Green dots; droplets positive for Actin Beta (HEX channel) Pink dots; droplets positive for breakpoint Chr 2;2 nr 1 Purple dots; droplets positive for breakpoint Chr 2;2 nr 2 (with 450 nM and 125 nM primer and probe concentrations, respectively) Orange dots; droplets positive for both breakpoints and Actin Beta Black dots; droplets positive for breakpoint nr 1 and Actin Beta Salmon-colored dots; droplets positive for breakpoint nr 2 and Actin Beta Grey dot; droplets negative for both targets.

**Figure 4 (next page).** Levels of patient-specific targets, reference gene ACTIN beta (ACTB) and methylated RASSF1A (RASSF1A-M) in cell-free DNA (cfDNA) from 10 neuroblastoma patients at diagnosis and during the course of the disease. Dx, diagnosis; Dx 4S, diagnosis INSS stage 4S; Dx 4, diagnosis INSS stage 4; nCt 1L, after n courses in first line therapy; nCt 2L, after courses in second line therapy; 3L, third line therapy; 1EV 3L, first evaluation third line therapy; 2EV 3L, second evaluation third line therapy; IT-0, before GD-2 immunotherapy IT-3 after 3 cycles of GD-2 immunotherapy; IT-6, after 6 cycles of GD-2 immunotherapy; MAT, myeloablative therapy and autologous stem cell transplantation; RT 2L, after radiotherapy during second line therapy; MT, maintenance treatment. PD, progressive disease; R, relapse; RD, refractory disease. Green blocks indicate first line treatment, orange blocks indicate added treatment for refractory disease, red blocks indicate treatment for progressive or relapsed disease.





**Figure 5.** Levels of patient-specific targets, reference gene ACTIN beta (ACTB) and methylated RASSF1A (RASSF1A-M) in cell-free DNA (cfDNA) in 2 patients with rhabdomyosarcoma (RMS026 and RMS092) and 1 patient with Ewing sarcoma (ES010) at diagnosis and during the course of the disease. Dx, diagnosis; nCt 1L, after n courses in first line therapy; M, maintenance; FUP-follow up; EVn 2L, evaluation number n during second line therapy; EOT, end of treatment; R, relapse; Start 2L, start second line therapy; R, relapse; PD, progressive disease. Green blocks indicate first line treatment, red blocks indicate treatment for progressive or relapsed disease.

### Discussion

In this study we demonstrate the feasibility to identify a patient-specific target, based on chromosomal structural variants, and design a patient-specific assay for use in liquid biopsies in different pediatric solid tumors. Moreover, we show that the presence of these targets in plasma at initial diagnosis for neuroblastoma and rhabdomyosarcoma, and that its presence during the course of the disease, corresponds to detectable or minimal residual disease status in neuroblastoma.

In patients with neuroblastoma, we observed that the level of tumor-derived cfDNA, as measured by the patient-specific targets, already increased before the clinical diagnosis of relapse or progressive disease was made. This finding suggests a potential for monitoring treatment response in neuroblastoma by detecting tumor-derived cfDNA. This is in line with data from our previous study on hypermethylated RASSF1A (16), but is also shown by others. Su et al. reported that the total amount of cfDNA increases before the recurrence of high risk neuroblastoma (29), which can be explained as the majority of the present cfDNA at relapse is tumor derived (16). More recently, Lodrini et al., showed the applicability of detecting tumor-derived cfDNA MYCN and ALK copy number alterations and ALK hotspot mutations in longitudinal plasma samples from patients with neuroblastoma (30). The study of Bosse et al., that predominantly included neuroblastoma patients with an event (91%), showed at least one pathogenic genomic alteration detected in 56% of the samples (31). However, only 20% and 10% of neuroblastoma tumors harbor MYCN amplification or ALK mutation, respectively (4). With the development of TLA/TLC, patient-specific targets for use in liquid biopsies can be detected for any CNAs, as illustrated in our study, which significantly increases the number of patients eligible for monitoring of disease with tumor-derived cfDNA.

In our study, we did not observe re-appearance of the patient-specific breakpoint in samples from patients with rhabdomyosarcoma and Ewing sarcoma. This might be due to a lack of well-timed samples, especially for the patient with Ewing sarcoma. Re-appearance of the patient-specific breakpoint has been described by Eguchi-Ishimae in a patient with fusion-positive rhabdomyosarcoma that suffered from relapse (32). Recently, Ruhen et al. published analysis of cfDNA from plasma in a cohort of 18 patients with rhabdomyosarcoma, which showed a rapid decrease of cfDNA targets after initiation of therapy and an increase at relapse (33). This rapid decrease of tumor-derived cfDNA was also observed by Klega et al. in patients with Ewing sarcoma and fusion-positive rhabdomyosarcoma, often becoming undetectable at the start of the second cycle of chemotherapy (34). Moreover, they

observed that in patients with Ewing sarcoma the detection of tumor-derived cfDNA after start of treatment was related to the level of tumor necrosis (34). The relation to tumor burden and monitoring of relapse in Ewing sarcoma was also demonstrated in the recent study by Shulman et al. (35) They also designed a patient-specific assay for the fusion genes in 6 patients with Ewing sarcoma, using data from WGS of the tumor material. In 2 patients that remained in complete remission, the fusion breakpoint disappeared after initiation of treatment. In 4 patients that suffered from relapse, cfDNA levels of the breakpoint reflected presence of relapse and response to therapy (35). These findings from other reports underline the potential of a patientspecific target as a treatment response marker and early relapse detection. But the timing of blood sampling is crucial. In the 2 patients with rhabdomyosarcoma in our study, we did not have samples taken right before or at diagnosis of relapse, only samples taken after start of relapse therapy. Standardized and uniform sampling in a larger cohort of patients with rhabdomyosarcoma and Ewing sarcoma is essential to validate these markers for clinical use. Clinical trials are now being conducted, with liquid biopsy sampling being implemented in the current EpSSG FaR RMS trial for pediatric and adult rhabdomyosarcoma in Europe and in the US a focused trial in adults into liquid biopsies for solid tumors (36, 37).

The use of a patient-specific molecular target as marker for minimal residual disease has been implemented firmly in leukemia (38, 39). In solid tumors, our group has previously described the feasibility to design patient-specific DNA markers from aberrations detected by WGS, and successful marker detection in BM of patients with neuroblastoma (23), but this has not reached clinical practice yet. Some important factors contributing to this lack of translation should be considered. One challenge is defining a target. At initial diagnosis, the search for potential targets can be guided by clinical information and tumor histology, focusing on early oncogenic events that remain present throughout the course of the disease, for example the PAX3-FOXO1 fusion in rhabdomyosarcoma. This fusion gene is considered the tumor-driving event in this tumor entity (3, 20, 40). Also for neuroblastoma, amplification of the MYCN gene, gain of 17g and loss of heterozygosity of chromosome 1 have been found to be recurring events, occurring extremely early in tumor development and remaining present during the course of the disease (41–43). Clonal evolution can affect the suitability of targets. Studies of paired primary and relapse neuroblastoma tumor have shown that mutations detected at relapse represent outgrowth of clones already present at diagnosis or *de novo* events, but most structural events remain present in the relapse sample (41, 44). Combining a panel of targets from diagnosis and then updating this panel again at relapse, using fresh genetic data from the relapsed tumors, might maintain sensitivity of the patient-specific ddPCR assays. In other types of pediatric solid tumors, it might be more challenging to identify patient-specific targets that remain stable throughout the course of the disease. For example, in osteosarcoma, many structural variations have been reported throughout the genome in primary tumors (45, 46), but extensive studies on the stability of these regions in recurrent and progressive disease is lacking. Nonetheless, as many pediatric tumors harbor any structural variant (insertions, deletions, translocations) (18), this approach could benefit cfDNA research in other pediatric tumors as well (42, 45). In our center, regions involved in translocations and copy numbers were previously evaluated by FISH, RT-qPCR and SNP arrays as part of regular clinical investigations and this information can direct the investigations into patient-specific targets. Considering these recurrent regions with copy number aberrations, it would be interesting to explore a multiplex approach of TLA/TLC for neuroblastoma, targeting several regions often carrying amplifications. This approach has shown its potential for detection of translocations in acute leukemia (26).

Another important challenge is the time and effort necessary to identify a patientspecific target. The procedure for FFPE-TLC takes 2 to 3 weeks, shorter than the process based on WGS as described by Subhash et al. (47) Furthermore, FFPE-TLC opens up the possibility to analyze archived samples of patients presenting with late relapse. If no FFPE material is available and not enough cells are available directly after biopsy or surgery, then the time depends on growth of the tumoroids. This can differ significantly. TLA-based approaches to determine the patient-specific breakpoint also preclude the known objections to WGS, with the risk of unsolicited findings and their impact on patients' lives (48, 49).

In this study, we used a ddPCR-based approach for the detection of the patientspecific targets in cfDNA. Other reports have used hybrid capture sequencing (e.g., TranSS-Seq by Klega et al.) (34). All approaches correlate well with each other (34, 50, 51). The choice of a platform for cfDNA detection depends on the availability at a specific center, the costs and whether multiplexing is necessary, in tumors with multiple targets. A next generation sequencing platform can offer a wider range of targets to be tested, but on the other hand it can be time-consuming to validate, is less flexible and more costly. The possibility of multiplexing targets in cfDNA on the ddPCR is more limited but not impossible, as reported here and in previous publications (52, 53). ddPCR thereby offers a rapid testing modality, also very suited for monitoring of residual disease during treatment and follow-up in a clinical setting.

In some cases, it might be impossible to design a patient-specific assay, which might be due to absence of an appropriate chromosomal region or presence of the

sequence in the normal genome (as illustrated by case NB2100). Alternative liquid biopsy-based platforms could be explored, as we have demonstrated previously. We have developed and validated RNA panels for the detection of circulating tumor cells in the cellular compartment of blood and bone marrow for patients with neuroblastoma and rhabdomyosarcoma (10–12). Furthermore, as we also applied in the current study, an enzyme-based ddPCR for methylated RASSF1A in cfDNA is also suited for the detection of tumor-derived cfDNA. Since hypermethylation of RASSF1A has been found in many types of tumors (54–60), this assay offers another approach for liquid biopsy-based disease monitoring. The combination of both RNA and DNA-based platforms for the analysis of liquid biopsies could be complementary, as we have showed previously in a cohort of patients with rhabdomyosarcoma (61).

## Conclusion

In this study, we demonstrate that patient-specific targets can be identified using targeted locus amplification in different pediatric solid tumors. Furthermore, we show that these patient-specific targets can be detected in cfDNA from plasma and their presence may correlate to (minimal) residual or recurrent disease. This approach holds promise for use in daily clinical practice.

## References

- Chisholm JC, Marandet J, Rey A, Scopinaro M, de Toledo JS, Merks JH, et al.. Prognostic factors after relapse in nonmetastatic rhabdomyosarcoma: a nomogram to better define patients who can be salvaged with further therapy. J Clin Oncol (2011) 29(10):1319–25. doi: 10.1200/JCO.2010.32.1984
- 2. Selfe J, Olmos D, Al-Saadi R, Thway K, Chisholm J, Kelsey A, et al.. Impact of fusion gene status versus histology on risk-stratification for rhabdomyosarcoma: Retrospective analyses of patients on UK trials. *Pediatr Blood Cancer* (2017) 64(7). doi: 10.1002/pbc.26386
- 3. Skapek SX, Ferrari A, Gupta AA, Lupo PJ, Butler E, Shipley J, et al.. Rhabdomyosarcoma. *Nat Rev Dis Primers* (2019) 5(1):1. doi: 10.1038/s41572-018-0051-2
- 4. Matthay KK, Maris JM, Schleiermacher G, Nakagawara A, Mackall CL, Diller L, et al.. Neuroblastoma. *Nat Rev Dis Primers* (2016) 2:16078. doi: 10.1038/nrdp.2016.78
- 5. Grunewald TGP, Cidre-Aranaz F, Surdez D, Tomazou EM, de Alava E, Kovar H, et al.. Ewing Sarcoma. *Nat Rev Dis Primers* (2018) 4(1):5. doi: 10.1038/s41572-018-0003-x
- Park JR, Kreissman SG, London WB, Naranjo A, Cohn SL, Hogarty MD, et al.. Effect of tandem autologous stem cell transplant vs single transplant on event-free survival in patients with highrisk neuroblastoma. JAMA (2019) 322(8):746. doi: 10.1001/jama.2019.11642
- Stahl M, Ranft A, Paulussen M, Bolling T, Vieth V, Bielack S, et al.. Risk of recurrence and survival after relapse in patients with Ewing sarcoma. *Pediatr Blood Cancer* (2011) 57(4):549–53. doi: 10.1002/ pbc.23040
- van Paemel R, Vlug R, de Preter K, van Roy N, Speleman F, Willems L, et al.. The pitfalls and promise of liquid biopsies for diagnosing and treating solid tumors in children: a review. *Eur J Pediatr* (2020) 179(2):191–202. doi: 10.1007/s00431-019-03545-y
- 9. Alix-Panabieres C, Pantel K. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. *Cancer Discov* (2016) 6(5):479–91. doi: 10.1158/2159-8290.CD-15-1483
- Lak NSM, Voormanns TL, Zappeij-Kannegieter L, van Zogchel LMJ, Fiocco M, van Noesel MM, et al.. Improving risk stratification for pediatric patients with rhabdomyosarcoma by molecular detection of disseminated disease. *Clin Cancer Res* (2021) 27(20):5576–85. doi: 10.1158/1078-0432.CCR-21-1083
- Stutterheim J, Gerritsen A, Zappeij-Kannegieter L, Yalcin B, Dee R, van Noesel MM, et al.. Detecting minimal residual disease in neuroblastoma: the superiority of a panel of real-time quantitative PCR markers. *Clin Chem* (2009) 55(7):1316–26. doi: 10.1373/clinchem.2008.117945
- 12. van Zogchel LMJ, Zappeij-Kannegieter L, Javadi A, Lugtigheid M, Gelineau NU, Lak NSM, et al.. Specific and sensitive detection of neuroblastoma mRNA markers by multiplex RT-qPCR. *Cancers* (*Basel*) (2021) 13(1). doi: 10.3390/cancers13010150
- van Paemel R, de Koker A, Vandeputte C, Van L, Lammens T, Laureys G, et al.. Minimally invasive classification of paediatric solid tumours using reduced representation bisulphite sequencing of cell-free DNA : a proof-of-principle study. *Epigenetics* (2020) 00(00):1–13. doi: 10.1080/15592294.2020.1790950
- 14. van Paemel R, Vandeputte C, Raman L, van Thorre J, Willems L, van Dorpe J, et al.. The feasibility of using liquid biopsies as a complementary assay for copy number aberration profiling in routinely collected paediatric cancer patient samples. *Eur J Cancer* (2021) 160:12–23. doi: 10.1016/j.ejca.2021.09.022
- van Paemel R, de Koker A, Vandeputte C, van Zogchel L, Lammens T, Laureys G, et al.. Minimally invasive classification of paediatric solid tumours using reduced representation bisulphite sequencing of cell-free DNA: a proof-of-principle study. *Epigenetics* (2021) 16(2):196–208. doi: 10.1080/15592294.2020.1790950

- van Zogchel LMJ, Lak NSM, Verhagen OJHM, Tissoudali A, Gusmalla Nuru M, Gelineau NU, et al.. Novel circulating hypermethylated RASSF1A ddPCR for liquid biopsies in patients with pediatric solid tumors. JCO Precis Oncol (2021) 5:1738–48. doi: 10.1200/PO.21.00130
- Jones DTW, Banito A, Grünewald TGP, Haber M, Jäger N, Kool M, et al.. Molecular characteristics and therapeutic vulnerabilities across paediatric solid tumours. *Nat Rev Cancer* (2019) 19(8):420–38. doi: 10.1038/s41568-019-0169-x
- Gröbner SN, Worst BC, Weischenfeldt J, Buchhalter I, Kleinheinz K, Rudneva VA, et al.. The landscape of genomic alterations across childhood cancers. *Nature* (2018) 555(7696):321–7. doi: 10.1038/ nature25480
- 19. Bosse KR, Maris JM. Advances in the translational genomics of neuroblastoma: from improving risk stratification and revealing novel biology to identifying actionable genomic alterations. *Cancer* (2016) 122(1):20–33. doi: 10.1002/cncr.29706
- 20. Barr FG. Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma. *Oncogene* (2001) 20(40):5736–46. doi: 10.1038/sj.onc.1204599
- 21. Barr FG, Biegel JA, Sellinger B, Womer RB, Emanuel BS. Molecular and cytogenetic analysis of chromosomal arms 2q and 13q in alveolar rhabdomyosarcoma. *Genes Chromosomes Cancer* (1991) 3(2):153–61. doi: 10.1002/gcc.2870030212
- 22. Parham DM, Barr FG. Classification of rhabdomyosarcoma and its molecular basis. *Adv Anat Pathol* (2013) 20(6):387–97. doi: 10.1097/PAP.0b013e3182a92d0d
- 23. van Wezel EM, Zwijnenburg D, Zappeij-Kannegieter L, Bus E, van Noesel MM, Molenaar JJ, et al.. Whole-genome sequencing identifies patient-specific DNA minimal residual disease markers in neuroblastoma. *J Mol Diagn* (2015) 17(1):43–52. doi: 10.1016/j.jmoldx.2014.09.005
- 24. de Vree PJP, de Wit E, Yilmaz M, van de Heijning M, Klous P, Verstegen MJAM, et al.. Targeted sequencing by proximity ligation for comprehensive variant detection and local haplotyping. *Nat Biotechnol* (2014) 32(10):1019–25. doi: 10.1038/nbt.2959
- 25. Hottentot QP, van Min M, Splinter E, White SJ. Targeted locus amplification and next-generation sequencing. *Methods Mol Biol* (2017) 1492:185–96. doi: 10.1007/978-1-4939-6442-0\_13
- 26. Alimohamed MZ, Johansson LF, de Boer EN, Splinter E, Klous P, Yilmaz M, et al.. Genetic screening test to detect translocations in acute leukemias by use of targeted locus amplification. *Clin Chem* (2018) 64(7):1096–103. doi: 10.1373/clinchem.2017.286047
- Allahyar A, Pieterse M, Swennenhuis J, Los-de Vries GT, Yilmaz M, Leguit R, et al.. Robust detection of translocations in lymphoma FFPE samples using targeted locus capture-based sequencing. *Nat Commun* (2021) 12(1):3361. doi: 10.1038/s41467-021-23695-8
- Meister MT, Groot Koerkamp MJA, de Souza T, Breunis WB, Frazer-Mendelewska E, Brok M, et al.. Mesenchymal tumor organoid models recapitulate rhabdomyosarcoma subtypes. *EMBO Mol Med* (2022) 14(10). doi: 10.15252/emmm.202216001
- Su Y, Wang L, Jiang C, Yue Z, Fan H, Hong H, et al.. Increased plasma concentration of cell-free DNA precedes disease recurrence in children with high-risk neuroblastoma. *BMC Cancer* (2020) 20(1):102. doi: 10.1186/s12885-020-6562-8
- Lodrini M, Graef J, Thole-Kliesch TM, Astrahantseff K, Sprussel A, Grimaldi M, et al.. Targeted analysis of cell-free circulating tumor DNA is suitable for early relapse and actionable target detection in patients with neuroblastoma. *Clin Cancer Res* (2022) 28(9):1809–20. doi: 10.1158/1078-0432.CCR-21-3716
- Bosse KR, Giudice AM, Lane MV, McIntyre B, Schürch PM, Pascual-Pasto G, et al.. Serial profiling of circulating tumor DNA identifies dynamic evolution of clinically actionable genomic alterations in high-risk neuroblastoma. *Cancer Discov* (2022) 12(12):2800–19. doi: 10.1158/2159-8290.CD-22-0287

- Eguchi-Ishimae M, Tezuka M, Kokeguchi T, Nagai K, Moritani K, Yonezawa S, et al.. Early detection of the PAX3-FOXO1 fusion gene in circulating tumor-derived DNA in a case of alveolar rhabdomyosarcoma. *Genes Chromosomes Cancer* (2019) 58(8):521–9. doi: 10.1002/gcc.22734
- Ruhen O, Lak NSM, Stutterheim J, Danielli S, Chicard M, Iddir Y, et al.. Molecular characterisation of circulating tumor DNA in pediatric rhabdomyosarcoma: a feasibility study. JCO Precis Oncol (2022) 6. doi: 10.1200/PO.21.00534
- 34. Klega K, Imamovic-Tuco A, Ha G, Clapp AN, Meyer S, Ward A, et al.. Detection of somatic structural variants enables quantification and characterization of circulating tumor DNA in children with solid tumors. *JCO Precis Oncol* (2018) 2018. doi: 10.1200/PO.17.00285
- 35. Seidel MG, Kashofer K, Moser T, Thueringer A, Liegl-Atzwanger B, Leithner A, et al.. Clinical implementation of plasma cell-free circulating tumor DNA quantification by digital droplet PCR for the monitoring of Ewing sarcoma in children and adolescents. *Front Pediatr* (2022) 10. doi: 10.3389/fped.2022.926405
- 36. NCT04625907: FaR-RMS: an overarching study for children and adults with frontline and relapsed RhabdoMyoSarcoma (FaR-RMS).
- 37. NCT04354064 circulating tumor DNA (ctDNA) for early treatment response assessment of solid tumors.
- Borowitz MJ, Wood BL, Devidas M, Loh ML, Raetz EA, Salzer WL, et al.. Prognostic significance of minimal residual disease in high risk b-ALL: a report from children's oncology group study AALL0232. *Blood* (2015) 126(8):964–71. doi: 10.1182/blood-2015-03-633685
- della Starza I, Chiaretti S, de Propris MS, Elia L, Cavalli M, de Novi LA, et al.. Minimal residual disease in acute lymphoblastic leukemia: technical and clinical advances. *Front* (2019) 9:726. doi: 10.3389/ fonc.2019.00726
- 40. Chen L, Shern JF, Wei JS, Yohe ME, Song YK, Hurd L, et al.. Clonality and evolutionary history of rhabdomyosarcoma. *PloS Genet* (2015) 11(3):e1005075. doi: 10.1371/journal.pgen.1005075
- 41. Eleveld TF, Oldridge DA, Bernard V, Koster J, Colmet Daage L, Diskin SJ, et al.. Relapsed neuroblastomas show frequent RAS-MAPK pathway mutations. *Nat Genet* (2015) 47(8):864–71. doi: 10.1038/ng.3333
- Mlakar V, Jurkovic Mlakar S, Lopez G, Maris JM, Ansari M, Gumy-Pause F. 11q deletion in neuroblastoma: a review of biological and clinical implications. *Mol Cancer*. (2017) 16(1):1–12. doi: 10.1186/s12943-017-0686-8
- 43. Guan J, Hallberg B, Palmer RH. Chromosome imbalances in Neuroblastoma—Recent molecular insight into chromosome 1p-deletion, 2p-gain, and 11q-deletion identifies new friends and foes for the future. *Cancers (Basel)* (2021) 13(23):5897. doi: 10.3390/cancers13235897
- 44. Schulte M, Köster J, Rahmann S, Schramm A. Cancer evolution, mutations, and clonal selection in relapse neuroblastoma. *Cell Tissue Res* (2018) 372(2):263–8. doi: 10.1007/s00441-018-2810-5
- 45. Rickel K, Fang F, Tao J. Molecular genetics of osteosarcoma. *Bone* (2017) 102:69–79. doi: 10.1016/j. bone.2016.10.017
- Chen X, Bahrami A, Pappo A, Easton J, Dalton J, Hedlund E, et al.. Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. *Cell Rep* (2014) 7(1):104–12. doi: 10.1016/j.celrep.2014.03.003
- Subhash VV, Huang L, Kamili A, Wong M, Chen D, Venn NC, et al.. Whole-genome sequencing facilitates patient-specific quantitative PCR-based minimal residual disease monitoring in acute lymphoblastic leukaemia, neuroblastoma and Ewing sarcoma. *Br J Cancer* (2021) 126:482–91. doi: 10.1038/s41416-021-01538-z
- 48. Pinxten W, Howard HC. Ethical issues raised by whole genome sequencing. *Best Pract Res Clin Gastroenterol* (2014) 28(2):269–79. doi: 10.1016/j.bpg.2014.02.004

- 49. Schoot VV, Viellevoije SJ, Tammer F, Brunner HG, Arens Y, Yntema HG, et al.. The impact of unsolicited findings in clinical exome sequencing, a qualitative interview study. *Eur J Hum Genet* (2021) 29(6):930–9. doi: 10.1038/s41431-021-00834-9
- Deveson IW, Gong B, Lai K, LoCoco JS, Richmond TA, Schageman J, et al.. Evaluating the analytical validity of circulating tumor DNA sequencing assays for precision oncology. *Nat Biotechnol* (2021) 39(9):1115–28. doi: 10.1038/s41587-021-00857-z
- 51. Garcia J, Forestier J, Dusserre E, Wozny AS, Geiguer F, Merle P, et al.. Cross-platform comparison for the detection of RAS mutations in cfDNA (ddPCR biorad detection assay, BEAMing assay, and NGS strategy). *Oncotarget* (2018) 9(30):21122–31. doi: 10.18632/oncotarget.24950
- 52. de Kock R, van den Borne B, Youssef-El Soud M, Belderbos H, Brunsveld L, Scharnhorst V, et al. Therapy monitoring of EGFR-positive non-Small-Cell lung cancer patients using ddPCR multiplex assays. *J Mol Diagn* (2021) 23(4):495–505. doi: 10.1016/j.jmoldx.2021.01.003
- Oscorbin I, Kechin A, Boyarskikh U, Filipenko M. Multiplex ddPCR assay for screening copy number variations in BRCA1 gene. *Breast Cancer Res Treat* (2019) 178(3):545–55. doi: 10.1007/s10549-019-05425-3
- 54. Bin Y, Ding Y, Xiao W, Liao A. RASSF1A: a promising target for the diagnosis and treatment of cancer. *Clinica Chimica Acta* (2020) 504:98–108. doi: 10.1016/j.cca.2020.01.014
- Dubois F, Bergot E, Zalcman G, Levallet G. RASSF1A, puppeteer of cellular homeostasis, fights tumorigenesis, and metastasis-an updated review. *Cell Death Dis* (2019) 10(12):928. doi: 10.1038/ s41419-019-2169-x
- 56. Donninger H, Vos MD, Clark GJ. The RASSF1A tumor suppressor. *J Cell Sci* (2007) 120(Pt 18):3163–72. doi: 10.1242/jcs.010389
- 57. Lim S, Yang MH, Park JH, Nojima T, Hashimoto H, Unni KK, et al.. Inactivation of the RASSF1A in osteosarcoma. *Oncol Rep* (2003) 10(4):897–901. doi: 10.3892/or.10.4.897
- 58. Hesson LB, Cooper WN, Latif F. The role of RASSF1A methylation in cancer. *Dis Markers* (2007) 23(1–2):73–87. doi: 10.1155/2007/291538
- 59. Wong IHN, Chan J, Wong J, Tam PKH. Ubiquitous aberrant RASSF1A promoter methylation in childhood neoplasia. *Clin Cancer Res* (2004) 10(3):994–1002. doi: 10.1158/1078-0432.CCR-0378-3
- 60. Grawenda AM, O'Neill E. Clinical utility of RASSF1A methylation in human malignancies. *Br J Cancer* (2015) 113(3):372–81. doi: 10.1038/bjc.2015.221
- 61. Lak NSM, van Zogchel LMJ, Zappeij-Kannegieter L, Javadi A, van Paemel R, Vandeputte C, et al.. Cell-free DNA as a diagnostic and prognostic biomarker in pediatric rhabdomyosarcoma. *JCO Precis Oncol* (2023) 7). doi: 10.1200/PO.22.00113

## Supplementary data

| PtID   | TLA/TLC | Primer name | Direction | <b>Binding position</b> | Sequence               |
|--------|---------|-------------|-----------|-------------------------|------------------------|
| NB2053 | TLA     | Chr 17      | RV        | chr17:33078551          | TCTTTGGGTAACAAGGCTTT   |
|        |         |             | FW        | chr17:33078702          | AAAGTAAGCATCACTGAGCA   |
|        |         | Chr 1       | RV        | chr1:47894882           | TCCACATTGCTTGTAAGACA   |
|        |         |             | FW        | chr1:47894975           | CAGACAAATCCAATGACTGC   |
|        |         | Chr 11      | RV        | chr11:69560644          | AGTGATTCACAAAGGACACA   |
|        |         |             | FW        | chr11:69560726          | AGGGACTGGAGCTGATTT     |
| NB2061 | TLA     | Chr 1       | RV        | chr1:29310092           | CAGGCTCAGTAAACAAGGTA   |
|        |         |             | FW        | chr1:29310232           | AGTATCTGCATCCCTCCAAG   |
|        |         | Chr 16-gain | RV        | chr16:68569701          | GAATACCGAGAAGCCCAAA    |
|        |         |             | FW        | chr16:68569926          | CTTACTATTGTGAACTGCGC   |
|        |         | Chr 16-gain | RV        | chr16:69899652          | TAAGTGTCCATCTCAAAGGG   |
|        |         |             | FW        | chr16:69899886          | CGACACTGAGGAAAGAAAGA   |
|        |         | Chr 16-gain | RV        | chr16:71251358          | AGTGTATTTCTACTTGGGCA   |
|        |         |             | FW        | chr16:71251584          | ATAACTGCTTACTTGTGGGC   |
| NB2086 | TLA     | Chr 11      | RV        | chr11:88295587          | TGCACGGTGAGAATACTTG    |
|        |         |             | FW        | chr11:88295918          | ACACCTGACACGCCATTT     |
|        |         | NMYC        | RV        | chr2:15785316           | GATCCCTGGTTTCTTTGACT   |
|        |         |             | FW        | chr2:15785594           | CAATCACGCACCAAATTCC    |
|        |         | NMYC        | RV        | chr2:16886121           | GCTAGAAATGTTCCACCTGT   |
|        |         |             | FW        | chr2:16886227           | GATATTTAAACCTCAGCTCCTG |
| NB2100 | TLA     | Chr 2       | RV        | Chr2:15948909           | CTAATTAATTCTCGGCTACACC |
|        |         |             | FW        | Chr2:15949614           | TGCTAATTACTTCGCCCTTT   |
|        |         | Chr 2       | RV        | Chr2:16669425           | TGAATGAATGTGAACAGACAAA |
|        |         |             | FW        | Chr2:16669521           | CTTCAGCACATTGGTTGGT    |
|        |         | Chr 17      | RV        | Chr17:45935137          | CCCACTCCAAGCTACAGG     |
|        |         |             | FW        | Chr17:45935709          | TAAGCTTGCTTACCTCACTG   |
|        |         | Chr 17      | RV        | Chr17:45960196          | CTTCACAGTCAGGATTCCAG   |
|        |         |             | FW        | Chr17:45960293          | AAATGGGCTTGAATGAGTCA   |
|        |         | Chr 17      | RV        | Chr17:45979674          | GTGTGACCTAACCTCTTTCA   |
|        |         |             | FW        | Chr17:45979710          | TTACTTTGAGTGGGAGATGG   |
|        |         | Chr 17      | RV        | Chr17:46000144          | TGGCGAATGTTGACTATTGA   |
|        |         |             | FW        | Chr17:46000752          | CATAGCTTAAGGGTACGTCC   |
|        |         | Chr 1       | RV        | Chr17:92088225          | AATGGTCCACTTTGCTCTTT   |
|        |         |             | FW        | Chr17:92088352          | CCTCTGGCACCCTTGATG     |
|        |         | Chr 1       | RV        | Chr17:95353980          | CTCAAAGCACATCTGTAGGA   |
|        |         |             | FW        | Chr17:95354220          | CATCTGACGTCTCACTGAAA   |

Supplemental Table S1. Primer location and sequences for TLA, and capture probe locations for TLC

| PtID   | TLA/TLC | Primer name | Direction | <b>Binding position</b> | Sequence             |
|--------|---------|-------------|-----------|-------------------------|----------------------|
| RMS026 | TLA     | PAX3 exon 9 | RV        | chr2:223066247          | ATGACATTGTCAGCCTGTAG |
|        |         |             | FW        | chr2:223066337          | CATATGATCCTGGAGCTGAC |
|        |         | PAX3 exon 7 | RV        | chr2:223086048          | TGGCTTTCAACCATCTCATT |
|        |         |             | FW        | chr2:223086281          | GTGTCAAAGGTCAGTAGAGG |
| RMS092 | TLA     | PAX3 exon 9 | RV        | chr2:223066247          | ATGACATTGTCAGCCTGTAG |
|        |         |             | FW        | chr2:223066337          | CATATGATCCTGGAGCTGAC |
|        |         | PAX3 exon 7 | RV        | chr2:223086048          | TGGCTTTCAACCATCTCATT |
|        |         |             | FW        | chr2:223086281          | GTGTCAAAGGTCAGTAGAGG |
| ES010  | TLA     | EWSR1       | RV        | chr22:29,287,610        | CATCCAAGATGTTAGCTGGA |
|        |         |             | FW        | chr22:29,287,807        | CTATTGCAGGCCACTATGAT |
|        |         | FLI1        | RV        | chr11:128,786,438       | ATGTACGAACGTACAGTTGT |
|        |         |             | FW        | chr11:128,786,734       | CAATCAGCACATCTCTTCCT |

Supplemental Table S1. Continued

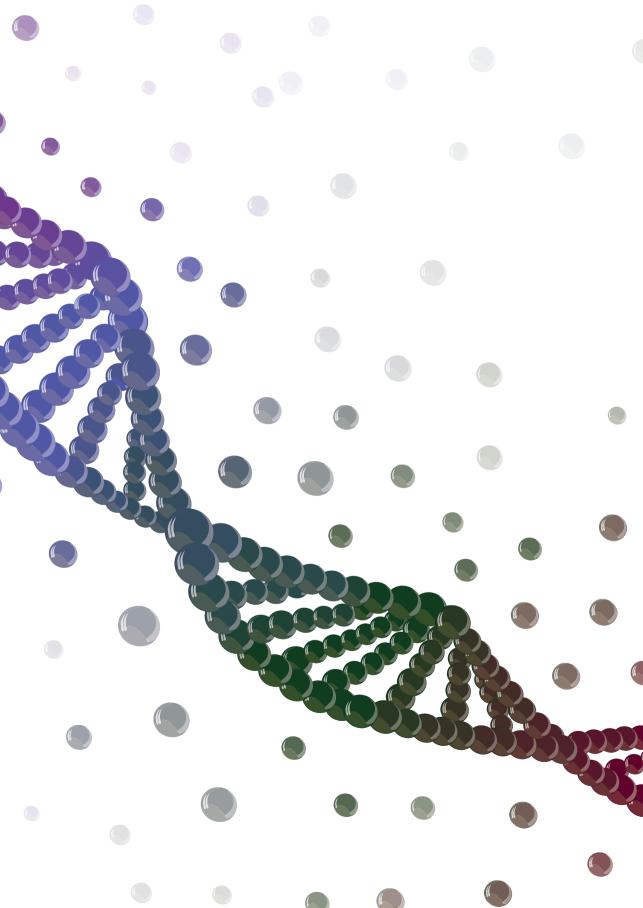
| PtID   | TLA/TLC | Probe targeted region (hg19)               |
|--------|---------|--------------------------------------------|
| NB2049 | TLC     | chr1:53625000-53665000                     |
| NB2050 | TLC     | chr2:15952000-15962000                     |
|        |         | chr2:16104000-16114000                     |
| NB2054 | TLC     |                                            |
| NB2056 | TLC     | chr2:57465000-57515000                     |
|        | TLC     | chr11:71200000-71250000                    |
| NB2066 | TLC     | chr3:56610000-56650000                     |
| NB2074 | TLC     | chr2:18585000-18615000                     |
|        |         | chr2:27740000-27780000                     |
|        |         | chr2:31100000-31130000                     |
| NB2100 | TLC     | chr2:15928000-15958000                     |
|        |         | chr2:16655000-16685000                     |
| NB2101 | TLC     | NA, SV identified with sWGS FFPE-TLC preps |
|        |         |                                            |

PtID= unique patient identifier

| PtiD   | Region                     | Start    | End      | Oligo                | Oligo sequence (5'-3')           | Amplicon size<br>(bp) Reporter Quent |     | Quencher              | Annealing<br>temperature<br>(°C) |
|--------|----------------------------|----------|----------|----------------------|----------------------------------|--------------------------------------|-----|-----------------------|----------------------------------|
|        |                            |          |          | Fwd                  | ATAACCTGGTTCATGCCATC             |                                      |     | ZEN/Iowa<br>Black™ FQ |                                  |
| NB2049 | Chr1-1                     | 53625000 | 53665000 | Rev                  | CAGAGTCACACAGGCAGAAA             | 111                                  | FAM |                       | 57                               |
|        |                            |          |          | Probe                | AGCTGGATGTGGTGAAAGGCT            |                                      |     |                       |                                  |
| NB2050 |                            | 15952000 | 15962000 | Fwd                  | CTCCTGTCTACCAGGAAGTG             |                                      | FAM | ZEN/Iowa<br>Black™ FQ | 57                               |
|        | Chr2-chr2                  |          |          | Rev                  | TGCTTGGTTCTATGACGAGA             | 100                                  |     |                       |                                  |
|        |                            |          |          | Probe                | ACTCTACTTCCAGGAGATCTTTTTGTAGA    |                                      |     |                       |                                  |
|        |                            | 15952000 | 15962000 | Fwd²                 | CCTTATACCCTGGCCTTCC <sup>2</sup> | 117                                  | FAM | ZEN/Iowa<br>Black™ FQ | 57                               |
|        | Chr2-Chr2                  |          |          | Rev <sup>2</sup>     | ACAGACAGGGGTTGGGAAC <sup>2</sup> |                                      |     |                       |                                  |
|        |                            |          |          | Probe <sup>113</sup> | TGCCTGCACATAGGCCCAT <sup>3</sup> |                                      |     |                       |                                  |
|        | Chr1-Chr17                 | 47886678 | 33048245 | Fwd                  | CCATCAGTCCAGATGAGCAG             |                                      | FAM | ZEN/Iowa<br>Black™ FQ | 59                               |
| NB2053 |                            |          |          | Rev                  | TGTAACTATGCAGCCCTGTG             | 94                                   |     |                       |                                  |
|        |                            |          |          | Probe <sup>1</sup>   | TGGGGCATCTCCCCAGAACCCTCCA        |                                      |     |                       |                                  |
|        | Chr2-Chr2                  | 14863510 | 15987902 | Fwd                  | ACCATGGAAACCATGAGACA             |                                      | FAM | ZEN/Iowa<br>Black™ FQ | 59                               |
| NB2054 |                            |          |          | Rev                  | ATTACAGGTGCCTACCACAC             | 123                                  |     |                       |                                  |
|        |                            |          |          | Probe <sup>1</sup>   | ACTGTCAGTTTCACTCATTTCCGCAGCACA   |                                      |     |                       |                                  |
|        | Chr4-chr2                  | 57465000 | 57515000 | Fwd                  | GGGTTAGGGTTCGGGTTT               |                                      | FAM | ZEN/Iowa<br>Black™ FQ | 57                               |
|        |                            |          |          | Rev                  | CAAAATGCAGGGATTACAGG             | 116                                  |     |                       |                                  |
|        |                            |          |          | Probe                | AAAACGGAGACCAGGAGCG              |                                      |     |                       |                                  |
| NB2056 | Chr 17/11                  | 71200000 | 71250000 | Fwd <sup>2</sup>     | GCACTTTGGATAAGGTATACTCAA         |                                      | FAM | ZEN/Iowa<br>Black™ FQ | 57                               |
|        |                            |          |          | Rev <sup>2</sup>     | GTCCCTGTTCCTTCCCCTA              | 119                                  |     |                       |                                  |
|        |                            |          |          | Probe <sup>3</sup>   | TGTATATATGGTTCATGGATACGACC       |                                      |     |                       |                                  |
|        |                            |          |          | Fwd                  | CAGAGTTTCACTCTTGCTGC             |                                      |     |                       |                                  |
| NB2061 | Chr16-Chr1                 | 68529301 | 29295626 | Rev                  | CTTGGGTGACAGGGCAAG               | 81                                   | FAM | ZEN/Iowa<br>Black™ FQ | 59                               |
|        |                            |          |          | Probe                | AGATCATGCCATTGCACTCCAGCCTGG      |                                      |     |                       |                                  |
|        |                            |          |          | Fwd                  | GCCTGCCCTTTCTTGTTTC              |                                      |     |                       |                                  |
| NB2074 | Chr2-Chr2<br>amplification | 31120077 | 98796284 | Rev                  | GAGGGAGGAAGGAGAGAGAA             | 106                                  | FAM | ZEN/Iowa<br>Black™ FQ | 57                               |
|        |                            |          |          | Probe <sup>1</sup>   | ACAAGCACAGGCTGAAGACAAGCACA       |                                      |     |                       |                                  |
|        | Chr2-Chr2<br>amplification | 16893201 | 15757504 | Fwd                  | AACAAAGGATATTACCCATCT            |                                      | FAM | MGB Eclipse®          | 55                               |
| NB2086 |                            |          |          | Rev                  | AGGTAGTAGGATCATGACTGAA           | 120                                  |     |                       |                                  |
|        |                            |          |          | Probe <sup>1</sup>   | TGCCATTGTAGTATGGA                |                                      |     |                       |                                  |
|        |                            | 92107327 | 95347109 | Fwd                  | CTCTTTTTCAGCCAGGCGT              |                                      | FAM | ZEN/Iowa<br>Black™ FQ | 55                               |
| NB2100 | Chr 1-Chr1<br>deletion     |          |          | Rev                  | GCTGGGACTACAGGCACC               | 75                                   |     |                       |                                  |
|        |                            |          |          | Probe                | AATTTTAGCCAGGCATGGTGGCG          |                                      |     |                       |                                  |
|        |                            |          |          |                      |                                  |                                      |     |                       |                                  |

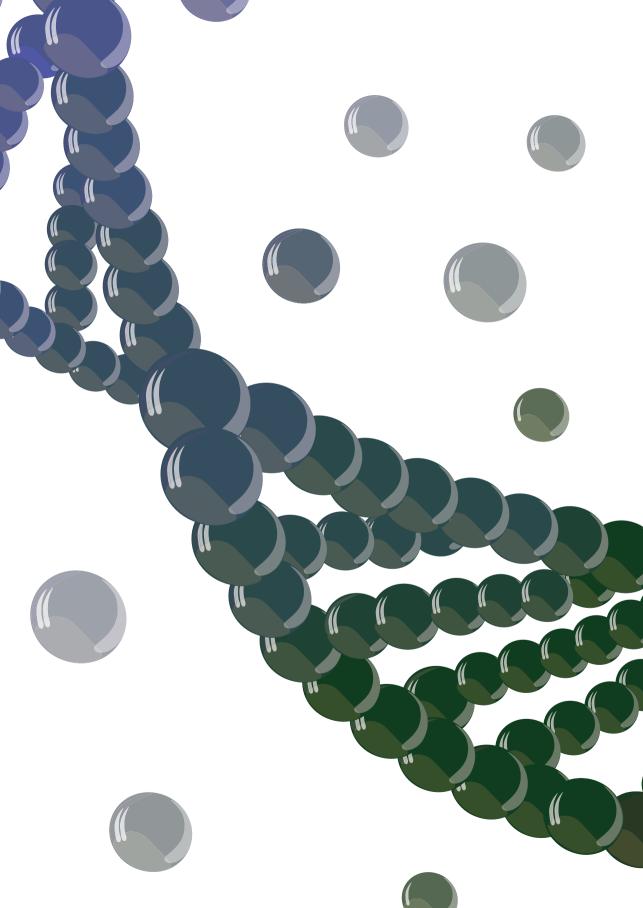
| Supple | emental T | <b>able S2.</b> Pr | imer ar | nd probe se | equences for patier | nt-sp | ecific do | IPCR |
|--------|-----------|--------------------|---------|-------------|---------------------|-------|-----------|------|
|        |           |                    |         |             |                     |       |           |      |

#### Supplemental Table S2. Continued


|        |                            |          |           | Fwd                | CACCTTTAGCAGAGCTTGGA           |     |     |                       |    |
|--------|----------------------------|----------|-----------|--------------------|--------------------------------|-----|-----|-----------------------|----|
| NB2101 | Chr2-Chr2<br>amplification | 15179926 | 16075495  | Rev                | GACAATCAGTCAGGTGGAGG           | 118 | FAM | ZEN/Iowa<br>Black™ FQ | 57 |
|        |                            |          |           | Probe <sup>1</sup> | AGGACAGCCTGGGAGGCTGATCATCTCC   |     |     |                       |    |
|        |                            |          |           | Fwd                | GTAGACATGGGGTTTCACC            |     |     |                       |    |
| RMS026 | Chr13-Chr2<br>(PAX3-FOXO1) | 41136846 | 223082995 | Rev                | TCCTGGTCTAGGATCTTGTC           | 141 | FAM | ZEN/Iowa<br>Black™ FQ | 58 |
|        |                            |          |           | Probe              | TGACTAAAACCTCCTGCATCTGTTT      |     |     |                       |    |
|        |                            |          |           | Fwd                | AAGTAGAATTGCTAGAATGTG          |     |     |                       |    |
| RMS092 | Chr13-Chr2<br>(PAX3-FOXO1) | 41136846 | 223082995 | Rev                | AGTCCTGCTTCTCTATTCCT           | 116 | FAM | ZEN/Iowa<br>Black™ FQ | 55 |
|        | (PAX3-F0X01)               |          |           | Probe              | TGCAGTTGTGGGTTTGTATCTGT        |     |     | BIACK FQ              |    |
|        |                            |          |           | Fwd                | GCTCCATTTTAGCAGTGCG            |     |     | 1                     |    |
| 1      |                            |          |           | Rev                | GGAGAGCAGTTGGAACCTTT           |     |     |                       |    |
| ES010  | Chr 22-Chr11<br>(EWS-FLI)  | 29292022 | 128772451 | Probe <sup>1</sup> | CACAGACCCCGGGACCAACTCAAAATGACC | 111 | FAM | ZEN/Iowa<br>Black™ FQ | 58 |

<sup>1</sup> Probe on reverse sequence

<sup>2</sup> Primer concentration 450 nM


<sup>3</sup> Probe concentration 125 nM

Targeted Locus Amplification for patient-specific assays for liquid biopsies in pediatric solid tumors | 217



# PART II

# Extracellular vesicles and cell-free RNA



# Chapter 7 Extracellular vesicles: a new source of biomarkers in pediatric solid tumors? A systematic review

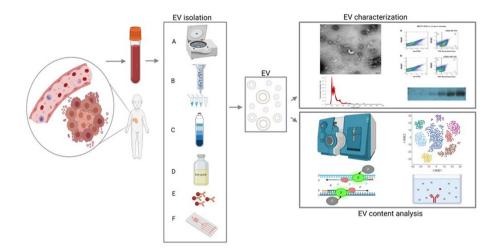
Front Oncol. 2022 May 24;12:887210. doi: 10.3389/fonc.2022.887210.

Nathalie S.M. Lak<sup>1,2</sup>, Elvera J. van der Kooi<sup>2</sup>, Agustin Enciso-Martinez<sup>3</sup>, Estefanía Lozano-Andrés<sup>4</sup>, Cees Otto<sup>3</sup>, Marca H.M. Wauben<sup>4</sup>, Godelieve A.M. Tytgat<sup>1,2</sup>

<sup>1</sup> Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands

- <sup>2</sup> Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands
- <sup>3</sup> Medical Cell Biophysics Group, University of Twente, Enschede, the Netherlands
- <sup>4</sup> Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.

# Abstract


Virtually every cell in the body releases extracellular vesicles (EVs), the contents of which can provide a "fingerprint" of their cellular origin. EVs are present in all bodily fluids and can be obtained using minimally invasive techniques. Thus, EVs can provide a promising source of diagnostic, prognostic, and predictive biomarkers, particularly in the context of cancer. Despite advances using EVs as biomarkers in adult cancers, little is known regarding their use in pediatric cancers. In this review, we provide an overview of published clinical and *in vitro* studies in order to assess the potential of using EV-derived biomarkers in pediatric solid tumors. We performed a systematic literature search, which yielded studies regarding desmoplastic small round cell tumor, hepatoblastoma, neuroblastoma, osteosarcoma, and rhabdomyosarcoma. We then determined the extent to which the *in vivo* findings are supported by *in* vitro data, and vice versa. We also critically evaluated the clinical studies using the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) system, and we evaluated the purification and characterization of EVs in both the in vivo and in vitro studies in accordance with MISEV guidelines, yielding EV-TRACK and PedEV scores. We found that several studies identified similar miRNAs in overlapping and distinct tumor entities, indicating the potential for EV-derived biomarkers. However, most studies regarding EV-based biomarkers in pediatric solid tumors lack a standardized system of reporting their EV purification and characterization methods, as well as validation in an independent cohort, which are needed in order to bring EV-based biomarkers to the clinic.

## Introduction

Extracellular vesicles (EVs) are released by virtually every cell in the body (1). EVs therefore play a key role in intercellular communication and are involved in several aspects of cancer (2, 3), making cancer-associated EVs a promising source of biomarkers (4, 5). EVs are highly heterogenous, and many subtypes of EVs have been defined based on their size, cell type of origin, biogenesis route, and the cellular processes in which they are involved (1). Intraluminal vesicles (ILVs) are formed within the endosomal network and are released by the fusion of multivesicular bodies (MVBs) with the plasma membrane; the resulting EVs are thereafter called exosomes (1). In contrast, microvesicles (MVs) are formed and released via direct budding of the plasma membrane (1). Other EV subtypes include apoptotic bodies, ectosomes, oncosomes, and microparticles (1, 6). Because the various EV subtypes overlap with respect to their size and composition, their classification and nomenclature remain open for debate (1, 2, 7). For the purposes of this review, however, we will use the rather general term "EVs". EVs play an essential role in both physiological and pathological processes by mediating cell-cell communication (8). The precise effect exerted by a given EV is determined primarily by its surface molecules and its cargo, which can include proteins, lipids, nucleic acids such as DNA and RNA, and metabolites derived from the cell of origin (9). Lipid encapsulation protects the cargo from degradation and allows the EV to be transported throughout the body and across physiological barriers (10). Thus, EVs can be recovered from various bodily fluids, including blood (Figure 1) (4, 11, 12), cerebrospinal fluid (13), urine (14), and breast milk (15). Moreover, EVs can also be isolated from liquid biopsies, providing a minimally invasive, clinically relevant method for monitoring patients with cancer (16).

In cancer, EVs play a role in both disease progression and metastasis by mediating the crosstalk between tumor cells and their environment (3, 17, 18). EVs can also induce a tumor-promoting phenotype in recipient cells (19), and EVs have been associated with the induction of multi-drug resistance in several cancer types (20). Compared to non-malignant cells, cancer cells release relatively high amounts of EVs (2, 21, 22), thus translating to higher numbers of EVs present in the blood of cancer patients compared to healthy controls. Moreover, the cargo contained in tumor-derived EVs differs from the cargo in EVs released by healthy cells, and the contents of tumor-derived EVs can change during tumor progression, reflecting the stage of the tumor (23).

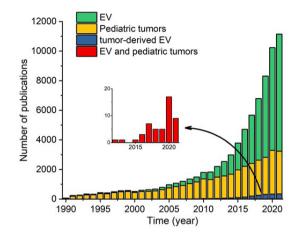
Compared to other biomarkers from liquid biopsies for the use in pediatric solid tumors, EVs have some potential advantages (24). The use of cell-free DNA from plasma has been extensively studied for different tumor entities using various molecular techniques. The presence of the methylated tumor suppressor gene



**Figure 1.** Extracellular vesicles (EVs) from blood as a liquid biopsy: isolation methods and downstream analyses. Left: EVs (including tumor-derived EVs) are isolated from peripheral blood and purified using differential centrifugation/ultracentrifugation (A), size exclusion chromatography (SEC; B), density gradient (C), commercially available precipitating agents (e.g., Exoquick; D), immunoprecipitation/ capture (E) or microfluidic/nanostructure approaches (F). Right, top panel: the isolated EVs are then characterized using (from the top-left, moving clockwise) electron microscopy, flow cytometry, western blot analysis, and/or nanoparticle tracking analysis (NTA). Right, bottom panel: the EV contents are analyzed using (from the top left, moving clockwise) mass spectrometry, RNA sequencing, enzyme-linked immunosorbent assay (ELISA), and/or RT-qPCR.

RASSF1A can be detected in plasma for several types of pediatric solid tumors, and can be used to monitor therapy response (25, 26). For neuroblastoma, tumor-specific aberrations in the MYCN and ALK genes (mutations and copy number alterations) can be monitored during the course of the disease (27, 28). Copy number profiling can be performed on cell-free DNA to detect a tumor-derived signal, and this can be combined with the copy number profile from the primary tumor, offering a more comprehensive overview of the genetic landscape of the tumor and its metastatic lesions (29). However, since plasma mostly contains non-tumor cell-free DNA, the signal-to-noise reduction can be challenging, especially considering that not all tumors shed large amounts of cell-free DNA (25, 30) Another option that has been explored, is detection of circulating tumor cells in blood, or bone marrow, using tumor-specific targets. This has been shown to be of clinical value in neuroblastoma and rhabdomyosarcoma (31-33). Still, it is hard to identify targets for specific tumors, especially for the detection of relapse since tumor cells can change their molecular characteristics under influence of therapy, and not all tumors shed large numbers of tumor cells into circulation (34-37). Biomarkers that are isolated from purified EVs benefit from a decrease of background noise and, since all cells in the body shed EVs, are not depending on the presence of circulating tumor cells. Furthermore, the lipid bilayer of EVs offers protection from RNAse naturally present in plasma (38, 39).

Importantly, the outcome of an EV study can be affected by the methods used to enrich (including isolation and purification) and analyze the EVs. Over the past decade alone, a wide range of methods have been used to isolate EVs, including ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, precipitation, and immunocapture (Figure 1) (40). Apart from these conventional approaches to EV purification, microfluidic and nanostructure-based techniques have emerged in recent years. Potentially, these approaches pair high-throughput testing to low sample input, which makes them very interesting for clinical, point-ofcare use. Most of these techniques depend on differences in size and/or (immuno-) labelling of the EVs (41-43). The reproducibility and reliability of EV-derived data depend heavily on the enrichment method used, as demonstrated back in 2014 by Van Deun et al. (44), who used several methods to isolate EVs from conditioned medium from a breast cancer cell line and found clear differences with respect to the number of co-isolates, EV morphology, EV quantity, and EV content. The authors found that the OptiPrep density gradient method outperformed both ultracentrifugation and commercially available precipitating agents with respect to the purity of the resulting EVs; they also found that their downstream analysis of protein and RNA content was greatly affected by the enrichment method used, thus potentially compromising the reproducibility and validation of EV studies (44). Apart from the purity of EVs, an important aspect to consider is the workflow and costs from every technique. Size exclusion chromatography and precipitation approaches are relatively rapid considering the workflow, whereas differential centrifugation requires specific material and is time-consuming, as is density gradient centrifugation. Immunocapture demands knowledge on markers present on the surface of EVs, which restricts unbiased studying of a heterogeneous EV population. (40, 42). The combination of different techniques, like size exclusion chromatography followed by density gradient centrifugation is considered as an approach for pure EV recovery. However, this is very time consuming and also results in a loss of total EV(40, 45). Various techniques for EV characterization and validation are used. Western blot is available in most laboratories and several established EV-related markers are often used, e.g. CD9, CD63, CD81 or TSG101 (40). However, this approach depends on the assumption that all EV of interest contain these markers, which can turn into a self-fulfilling prophecy. Nanoparticle tracking analysis can determine size and concentration of particles in a solution, however it does not only measure EVs but also other particles like lipoproteins or protein aggregates (40) Flowcytometry is


often performed to confirm the presence of EV. This approach is prone to erroneous measurements, since detection of EVs depends on specific instrument requirements and correct interpretation of data, which can be ambiguous (46, 47).

In an attempt to improve both precision and standardization in the EV field, the International Society for Extracellular Vesicles (ISEV) published a position paper in 2014 with guidelines regarding the minimal experimental requirements for studies involving EVs (48); this was followed in 2018 by a research community-based update entitled Minimal Information for Studies of Extracellular Vesicles (MISEV) (49). Together, these guidelines provide researchers with criteria for isolating, enriching, and analyzing EVs, as well as guidelines for the standardized reporting of their findings, thus improving both reproducibility and validity, and paving the way towards the clinical application of EVs as a biomarker (48, 49). Moreover, the online crowdsourced knowledge base EV-TRACK (transparent reporting and centralizing knowledge in extracellular vesicle research; https://evtrack.org/)—to which essential information regarding methods for enriching and characterizing EVs can be published and submitted manuscripts can be uploaded—also contributes to increasing the accuracy, rigor, and reproducibility of EV research (50, 51). When a new study is submitted to EV-TRACK, a so-called EV-METRIC score is calculated and controlled by the EV-TRACK administrators for inclusion in the database, allowing other researchers to objectively evaluate the technical reproducibility and detailed reporting of the study (50, 51).

In several adult cancers, EV-based biomarkers have been shown to be correlated with both disease stage and outcome (21, 22, 52-56). Due to significant differences in pathophysiology between adult and pediatric cancers, however, this knowledge cannot simply be extrapolated from adults to pediatric patients. For example, in adults cancer progression is often driven by multiple genetic aberrations, whereas pediatric tumors have a distinct genomic landscape typically characterized by a paucity of recurrent mutations and structural variants (57-59). Furthermore, the genes that are mutated in childhood tumors often differ from those in adult tumors and tend to be specific to certain cancer types and individual patients (60, 61).

To date, relatively few studies examined the clinical relevance of EVs in pediatric solid tumors, despite the high potential of using liquid biopsies in pediatric patients. To illustrate this research gap, we counted the number of articles published since 1990 involving EVs, pediatric solid tumors, tumor-derived EVs, and EVs in pediatric solid tumors; the results are shown in Figure 2. Over the past decade, the number of publications regarding EVs and tumor-derived EVs (in adult cancer) has increased

exponentially, and publications regarding pediatric solid tumors also increased, albeit gradually; strikingly, however, the number of publications regarding EVs in pediatric solid tumors has remained extremely low.



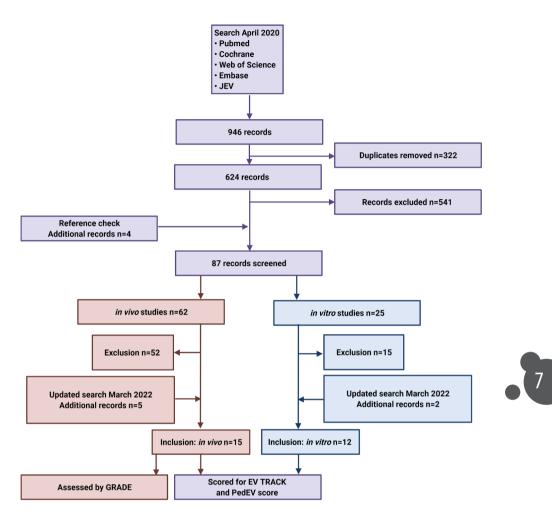
**Figure 2.** Number of papers published in the indicated years regarding extracellular vesicles (EVs), pediatric solid tumors, tumor-derived EVs, and both EVs and pediatric solid tumors. The inset shows only the publications regarding both EVs and pediatric solid tumors.

In this review, we critically assessed the published *in vivo* and *in vitro* studies involving EVs in pediatric solid tumors, and we discuss the barriers that must be overcome in order to bring EVs from the bench to the pediatric bedside. We focused primarily on studies that report patient-derived EVs, and we examined whether the conclusions drawn from these studies were supported by *in vitro* data. Given the importance of studying EVs using standardized methods with respect to reproducibility, we also evaluated the methods used to isolate and characterize EVs, and we assessed whether validation studies using either patient cohorts or *in vitro* methods were reported.



# Methodology

### Search strategy


The literature search and review strategy is depicted in Figure 3. In brief, we performed an electronic search of the PubMed, Cochrane Library, Web of Science, and Embase databases, as well as the *Journal of Extracellular Vesicles (JEV*) website, using the following search terms:

"("extracellular vesicle" OR "extracellular vesicles" OR EV OR EVS OR exosom\* OR ectosom\* OR oncosom\* OR microvesicle\* OR microparticle\* OR nanosom\* OR nanoparticle\* OR "shedding vesicles" OR "exosome-like vesicles") AND (pediatric OR child OR children OR infant) AND (neuroblastoma OR rhabdomyosarcoma OR sarcoma OR "rhabdoid tumor\*" OR "rhabdoid tumor\*" OR Wilms OR nephroblastoma OR "renal medullary carcinoma" OR "renal cell carcinoma" OR "renal tumor\*" OR leiomyosarcoma OR osteosarcoma OR hepatoblastoma OR "hepatocellular carcinoma" OR "Ewing")"

Additional eligible studies were identified by screening the references listed in relevant reviews. The final search was performed on April 28, 2020, and EndNote X9 was used to identify and remove duplicate records. We updated the search on March 16<sup>th</sup> 2022. After pre-screening by two independent investigators (authors EK and NL) based on the title and abstract, followed by subsequent full text screening, a total of 27 studies (15 *in vivo* studies and 12 *in vitro* studies) were included in the final analysis.

## **Study selection**

The literature was searched for studies that investigated the use of EVs as a biomarker of pediatric solid tumors. Because we were interested primarily in the clinical relevance of EVs in children with solid tumors, the starting point of our search was *in vivo* studies involving pediatric patients. We then identified *in vitro* studies that investigated the same tumors and included the same authors and/or used the same downstream analysis platform to identify potential biomarkers. Using this approach, we were able to compare studies and investigate whether the *in vitro* data supported the *in vivo* findings. For the *in vivo* part of this review, we included clinical studies that used EVs derived from patients  $\leq$ 25 years old with pediatric solid tumors. For the *in vitro* part of this review, we included studies that: *i*) assessed EVs from cell lines derived from the same tumor entities as the *in vivo* studies, and *ii*) either used the same platform as the *in vivo* studies or were performed by the same research group as the *in vivo* studies. Only primary reports of original studies were included, and we excluded studies that were published in non-peer-reviewed form such as conference abstracts.



**Figure 3.** Flow diagram depicting the search strategy and inclusion and exclusion of studies. JEV: Journal of Extracellular Vesicles

## **Grading of studies**

We graded the studies using three approaches. First, we assessed the guality of the clinical studies using the GRADE (Grading of Recommendations, Assessment, Development, and Evaluations) system (Supplemental Table S1) (62, 63). Second, we assessed all selected publications (both in vivo and in vitro studies) by importing all methodological details from these studies into EV-TRACK (https://evtrack.org) in order to obtain their corresponding EV-METRIC scores (50). Although scoring via EV-TRACK is highly rigorous and detailed, studies involving pediatric patients are challenging due to the relatively limited volumes of peripheral blood available, which limits the number of techniques that can be applied. Therefore, we also developed a PedEV score. Based on the MISEV guidelines and EV-TRACK score, we defined 11 criteria that are essential to improve reproducibility in pediatric EV studies and included these criteria in our PedEV score (Supplemental Table S2). The difference between PedEV and EV-TRACK lies primarily in the score allocated for the EV characterization technique, with PedEV providing a more lenient scoring system of EV characterization compared to EV-TRACK. Data for the evaluation were retrieved from the Materials and Methods sections of the included articles and from the supplementary materials. The 22 publications included in our review are listed in Table 4, including each publication's unique EV-TRACK ID number.

# **Results and Discussion**

## Literature search

The initial literature search yielded 241 papers in PubMed, 2 papers in the Cochrane Library, 160 papers in Web of Science, 515 papers in Embase, and 28 papers published in the *Journal of Extracellular Vesicles* (Figure 3). After duplicates were removed, prescreening of the remaining 652 articles led to the exclusion of an additional 541 articles due to a lack of relevance. An additional 4 papers were then identified by checking the reference lists. The full text articles describing 62 *in vivo* studies and 30 *in vitro* studies were then assessed for the inclusion and exclusion criteria, and on 16<sup>th</sup> of March 2022 the search was updated. Finally, this resulted in the inclusion of 15 *in vivo* studies (7 only *in vivo* experiments and 8 both *in vivo* and *in vitro* experiments) and 12 fully *in vitro* studies. We found publications describing six tumor entities (desmoplastic small round cell tumor, hepatoblastoma, neuroblastoma, osteosarcoma, rhabdomyosarcoma and Ewing sarcoma); no other pediatric solid tumors were described.

| Tumor type                          | EV source                 | Method                                                                                         | Cohort                                                                                                                                    |                     | Result                                                                                                     | <b>Biological function</b>                           |
|-------------------------------------|---------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Author<br>Year                      | <i>Starting</i><br>amount | Isolation<br>Platform                                                                          | Patients:<br>Test cohort<br>Validation cohort                                                                                             | Healthy<br>controls |                                                                                                            |                                                      |
| Desmoplastic small round cell tumor | all round cell            | tumor                                                                                          |                                                                                                                                           |                     |                                                                                                            |                                                      |
| Colletti 2018 (70)                  | Plasma<br>0.6 mL          | Precipitation (miRCURY<br>Exosome Serum/Plasma Kit)<br>Exigon miRNA PCR panel<br>(175 targets) | <b>Test cohort:</b><br>DSRCT n=3<br>(3 metastatic)<br>Time: diagnosis (n=1), disease<br>progression (n=2)<br><b>Validation cohort:</b> NR | HC n=4              | <b>miRNA</b><br>1 miR-34a-5p<br>1 miR-22-3p<br>1 miR-22-3p<br>1 miR-324-5p<br>1 miR-150-5p<br>1 miR-342-3p | Cell growth, proliferation,<br>migration, invasion 🖽 |
| Hepatoblastoma                      |                           |                                                                                                |                                                                                                                                           |                     |                                                                                                            |                                                      |
| Liu 2016 (75)                       | Serum<br>NR               | Precipitation (ExoQuick)<br>TaqMan miRNA assay<br>(target: miR-21)                             | <b>Test cohort:</b><br>HB n=32<br>(8 metastatic, 24 localised)<br>Stage: I (n=3), II (n=5), III (n=10), IV<br>(n=14)                      | HC n=32             | <b>miRNA</b><br>↑ miR-21                                                                                   | R                                                    |

Table 1. Overview of *in vivo* studies involving EVs derived from pediatric solid tumors.

Validation cohort: NR

| Tumor type     | EV source   | Method                                                                                    | Cohort                                                                                                                 |         | Result                                              | <b>Biological function</b>                      |
|----------------|-------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------|-------------------------------------------------|
| Jiao 2017 (77) | Serum<br>NR | Precipitation (ExoQuick)<br>TaqMan miRNA assay<br>(targets: miR-34a, miR-34b,<br>miR-34c) | <b>Test cohort:</b><br>HB n=63<br>(14 metastatic, 49 localised)<br>Stage: I (n=7), II (n=10), III (n=20), IV<br>(n=26) | HC n=63 | <b>miRNA</b><br>4 miR-34a<br>4 miR-34b<br>1 miR-34c | Tumor initiation,<br>metastasis,<br>progression |
|                |             |                                                                                           | Validation cohort:<br>HB n=26<br>(7 metastatic, 19 localised)<br>Stage: I (n=2), II (n=2), III (n=9), IV<br>(n=13)     |         |                                                     |                                                 |
| Neuroblastoma  |             |                                                                                           |                                                                                                                        |         |                                                     |                                                 |
| Ma 2019 (85)   | Plasma      | Membrane-based affinity                                                                   | Test cohort:                                                                                                           | HC n=7  | miRNA                                               | Cell proliferation,                             |
|                | 2 mL        | binding (exoRNeasy Serum                                                                  | NBL n=9, GNBi n=6                                                                                                      |         | ↑ miR-199a-3p                                       | migration                                       |
|                |             | /Plasma Midi Kit)                                                                         | (12 FH, 3 UFH)                                                                                                         |         |                                                     | )                                               |
|                |             | BGIseq-500 miRNA platform<br>(500 targets)                                                | INSS stage: I (n=2), II (n=4), III (n=5), IV<br>(n=4)                                                                  |         |                                                     |                                                 |
|                |             |                                                                                           | Validation cohort:                                                                                                     |         |                                                     |                                                 |
|                |             |                                                                                           | NBL n=8                                                                                                                |         |                                                     |                                                 |
|                |             |                                                                                           | (6 FH, 2 UFH)                                                                                                          |         |                                                     |                                                 |
|                |             |                                                                                           | INSS stage: I (n=1), II (n=3), III (n=2), IV                                                                           |         |                                                     |                                                 |
|                |             |                                                                                           | (n=2)                                                                                                                  |         |                                                     |                                                 |

232 | Chapter 7

| Table 1. Continued |                  |                                                                                                                                                     |                                                                                                                                                                 |                                                                                     |                                                                                                                         |                                                                                            |
|--------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Tumor type         | EV source        | Method                                                                                                                                              | Cohort                                                                                                                                                          |                                                                                     | Result                                                                                                                  | <b>Biological function</b>                                                                 |
| Morini 2019 (86)   | Plasma<br>0.5 mL | Membrane-based affinity<br>binding (exoRNeasy Serum<br>/Plasma Midi Kit)<br>TaqMan miRNA array (381<br>targets)                                     | <b>Test cohort:</b><br>NB n=52<br>Time: before + after induction<br>chemotherapy<br>INSS stage: IV (n=47), III (n=4), IVS (n=1)<br><b>Validation cohort:</b> NR |                                                                                     | <b>miRNA</b><br><sup>1</sup> miR-29c<br><sup>1</sup> miR-342-3p<br><sup>1</sup> let-7b                                  | Response to induction                                                                      |
| Osteosarcoma       |                  |                                                                                                                                                     |                                                                                                                                                                 |                                                                                     |                                                                                                                         |                                                                                            |
| Xu 2017 (96)       | Serum<br>NR      | Differential centrifugation<br>(10 min 1,000 g, 10 min<br>2,000 g, 30 min 10,000 g,<br>2 x 70 min 100,000 g)<br>TaqMan miRNA array<br>(746 targets) | <b>Test cohort:</b><br>OS n=28 (poor response), OS n=25<br>(good response)<br><b>Validation cohort:</b><br>OS n=20 (poor response), OS n=20<br>(good response)  | <b>Test</b><br><b>cohort:</b><br>HC n=31<br><b>Validation</b><br>HC n=20<br>HC n=20 | <b>miRNA</b> 1 miR-135b 1 miR-135b 1 miR-27a 1 miR-27a 1 miR-27a 1 miR-124 1 miR-124 1 miR-133a 1 miR-199a-3p 1 miR-385 | Response to<br>chemotherapy<br>Proliferation, invasion,<br>migration, tumor<br>progression |
|                    |                  | Differential centrifugation<br>(10 min 1,000 g, 10 min<br>2,000 g, 30 min 10,000 g, 2 x<br>70 min 100,000 g)<br>TaqMan mRNA assay<br>(8 targets)    | <b>Test cohort:</b><br>OS n=20 (poor response)<br>OS n=20 (good response)<br><b>Validation cohort:</b> NR                                                       | <b>Test</b><br><b>cohort:</b><br>HC n=20<br><b>Validation</b><br>NR                 | mRNA<br>1 Annexin2<br>1 Smad2<br>1 Cdc5L<br>1 P27<br>1 MTAP<br>1 CIP4<br>1 PEDF<br>1 WVOX                               | Response to<br>chemotherapy 🕖                                                              |

Extracellular vesicles: a new source of biomarkers in pediatric solid tumors? A systematic review | 233

| Table 1. Continued |                 |                                                                                                           |                                                                                                 |         |                                             |                                                                             |
|--------------------|-----------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------|---------------------------------------------|-----------------------------------------------------------------------------|
| Tumor type         | EV source       | Method                                                                                                    | Cohort                                                                                          |         | Result                                      | <b>Biological function</b>                                                  |
| Baglio 2017 (97)   | Serum<br>1.5 mL | Size exclusion<br>chromatography<br>ELISA (target: TGFB)                                                  | <b>Test cohort:</b><br>OS n=10<br>Stage: IB (n=4), IIA (n=2), IIB (n=2), III<br>(n=2)           | HC n=10 | <b>Protein</b><br>1 TGFβ                    | Tumor growth, metastasis                                                    |
|                    |                 |                                                                                                           | Validation cohort: NR                                                                           |         |                                             |                                                                             |
| Shen 2016 (98)     | Serum<br>NR     | Precipitation (ExoQuick)<br>Western blotting (target:<br>G6PD)                                            | <b>Test cohort:</b><br>OS n=15<br>Time: diagnosis                                               | HC n=15 | <b>Protein</b><br>1 G6PD                    | Cell adherion, migration, viability                                         |
|                    |                 |                                                                                                           | Validation cohort: NR                                                                           |         |                                             |                                                                             |
| Gong 2018 (99)     | Plasma<br>NR    | Differential centrifugation<br>(10 min 300 g, 10 min 2,000<br>g, 30 min 10,000 g, 2x 70<br>min 100,000 g) | <b>Test cohort:</b><br>OS n=2 (localised)<br>Time: diagnosis + postoperative<br>metastasis      |         | <b>miRNA</b><br>† miR-675                   | Migration, invasion 👃<br>Metastasis 🌾                                       |
|                    |                 | Small RNA library<br>sequencing (Illumina)                                                                | <b>Validation cohort:</b><br>OS n=3 (lung metastasis),<br>OS n=3 (localised)<br>Time: diagnosis |         |                                             |                                                                             |
| Ye 2020 (106)      | Plasma<br>NR    | Differential centrifugation<br>(20 min 1,500G, 30 min<br>10,000G, 120 min 100,000G)                       | <b>Test cohort:</b><br>OS n=25<br>Validation cohort:                                            | HC n=10 | <b>miRNA</b><br>1 miR92a-3p<br>1 miR130a-3p | Proliferation, apoptosis<br>inhibition, G2/M cell cycle<br>arrest, invasion |
|                    |                 | Small RNA sequencing<br>(BGISEQ-500)                                                                      | NR                                                                                              |         | 1 miR195-3p<br>1 miR335-5<br>1 let7i-3p     |                                                                             |
|                    |                 | RT-qPCR                                                                                                   |                                                                                                 |         |                                             |                                                                             |

| Tumor type              | EV source         | Method                                               | Cohort                              |         | Result                             | <b>Biological function</b>          |
|-------------------------|-------------------|------------------------------------------------------|-------------------------------------|---------|------------------------------------|-------------------------------------|
| Cambier<br>2021(107)    | Serum<br>0.3ml    | Precipiation<br>(Exoquick                            | Test cohort:<br>OS n=12             | HC n=12 | <b>DNA</b><br>†HSATII              | NR                                  |
|                         |                   | Precipitation<br>(PEG)                               | <b>Validation cohort:</b><br>OS n=8 | HC n=12 | 1LINE1-P1<br>Charlie3              |                                     |
|                         |                   | Size exclusion<br>chromatography                     |                                     |         | <b>RNA</b><br>=HSATII<br>=LINE1-P1 |                                     |
|                         |                   | Immunoaffinity<br>capture                            |                                     |         | =Charlie3                          |                                     |
| Rhabdomyosarcoma        | ma                |                                                      |                                     |         |                                    |                                     |
| Ghamloush 2019<br>(116) | Serum<br>0.4 mL   | Differential centrifugation<br>(10 min 300 g. 10 min | <b>Test cohort:</b><br>BMS n=7      |         | <b>miRNA</b><br>↑ miR-486-5p       | Response to<br>chemotherapy in ABMS |
|                         |                   | 2,000 g, 30 min 10,000 g,                            | (ERMS n=6, ARMS n=1), control n=6   |         | -                                  | 00                                  |
|                         |                   | 2x 70 min 100,000 g) +                               | (benign tumor)                      |         |                                    | Invasion mioration                  |
|                         |                   | precipitation (ExoQuick)                             | Time: diagnosis                     |         |                                    | proliferation                       |
|                         |                   | TaqMan miRNA assay                                   | Follow-up n=2                       |         |                                    |                                     |
|                         |                   | (target: miR-486)                                    | (ERMS n=1, ARMS n=1)                |         |                                    |                                     |
|                         |                   |                                                      | Time: follow-up after treatment     |         |                                    |                                     |
| Ewing sarcoma           |                   |                                                      |                                     |         |                                    |                                     |
| Dong 2020 (123)         | Plasma<br>0.3 mL  | ES-EV Click Chip                                     | <b>Test cohort:</b><br>ES n=4       | HC=4    | <b>mRNA</b><br>EWSR1               | NR                                  |
|                         |                   | RT-ddPCR                                             | Time: NR                            |         | rearrangement                      |                                     |
|                         |                   |                                                      |                                     |         |                                    |                                     |
| Samuel 2020<br>(124)    | Plasma<br>0.25 mL | Immunoprecipitation                                  | Test cohort:<br>ES n=10             | HC=6    | mRNA<br>EWSR1-ETS                  | NR                                  |
|                         |                   | qRT-PCR                                              |                                     |         | fusion                             |                                     |

| Tumor type     | EV source | Method      | Cohort                |       | Result     | Biological function |
|----------------|-----------|-------------|-----------------------|-------|------------|---------------------|
| Sun 2022 (125) | Plasma    | Click Beads | Test cohort:          | HC=10 | mRNA       | NR                  |
|                | 1.0 mL    |             | ES n=28 (35 patients) |       | EWSR1-FLI1 |                     |
|                |           | RT-dPCR     |                       |       |            |                     |

GNBi; ganglioneuroblastoma intermixed; FH: favourable histology; UFH: unfavourable histology; INSS: International Neuroblastoma Staging System; OS: osteosarcoma; ERMS: embryonal rhabdomyosarcoma; ARMS: alveolar rhabdomyosarcoma; RMS: rhabdomyosarcoma. Function derived from: 🛄: literature; 📥: in vitro; 🖓 : clinical; : mice.

| Tumor type             | <b>Cell lines</b>                                                    | Method                                                                                                                                                        | Result                                                                                                                                                   | <b>Biological function</b>                                                                         |
|------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|                        |                                                                      | lsolation<br>Platform                                                                                                                                         |                                                                                                                                                          |                                                                                                    |
| Neuroblastoma          |                                                                      |                                                                                                                                                               |                                                                                                                                                          |                                                                                                    |
| Ma 2019 (85)           | SK-N-SH<br>SH-SY5Y<br>SK-N- BE(2)                                    | Differential centrifugation (10 min 300 g, 10 min 2,000 g,<br>30 min 10,000 g, 70 min 100,000 g, 60 min 100,000 g)<br>BGIseq-500 miRNA platform (500 targets) | <b>miRNA</b><br>1 miR-199a-3p                                                                                                                            | Cell proliferation, migration                                                                      |
| Challagundla 2015 (87) | SK-N-BE(2)<br>CHLA-255<br>IMR-32                                     | Precipitation (ExoQuick)<br>Affymetrix human exon arrays (> 10° targets)                                                                                      | <b>miRNA</b><br>1 miR-21-5p                                                                                                                              | Drug resistance                                                                                    |
| Haug 2015 (88)         | MYCN-amplified<br>Kelly<br>MYCN-amplified<br>SK-N-BE(2)-C<br>SK-N-AS | Differential centrifugation (10 min 200 g, 20 min 2,000 g, 30 min 10,000 g, 70 min 110,000 g)<br>miRCURY qPCR panels 1+2 V2.M (752 targets)                   | <b>miRNA</b> 1 miR-92a-3p 1 miR-23a-3p 1 miR-23a-3p 1 miR-218-5p 1 miR-27b-3p 1 miR-26-3p 1 miR-16-5p 1 miR-125b-5p 1 miR-125b-5p 1 miR-1250b 1 miR-320b | Survival, proliferation,<br>apoptosis, angiogenesis,<br>differentiation, invasion,<br>metastasis 🛄 |
| Osteosarcoma           |                                                                      |                                                                                                                                                               |                                                                                                                                                          |                                                                                                    |
| Baglio 2017 (97)       | MG63<br>HOS<br>143B                                                  | Differential centrifugation (2x 10 min 500 g, 2x 15 min<br>2,000 g, 2x 30 min 10,000 g, 2x 60 min 70,000 g)<br>ELISA (target: TGFβ)                           | <b>Protein</b><br>† TGFβ                                                                                                                                 | Tumor growth, metastasis                                                                           |

Table 2. Overview of the in vitro studies involving pediatric solid tumors and EVs. (following page)

| Tumor type          | Cell lines                                                | Method                                                                                                                                         | Result                                                            | <b>Biological function</b>                                              |
|---------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------|
| Gong 2018 (99)      | MG63<br>HOS<br>143B<br>Well5                              | Differential centrifugation (10 min 300 g, 10 min 2,000 g,<br>30 min 10,000 g, 2x 70 min 100,000 g)<br>Small RNA library sequencing (Illumina) | <b>miRNA</b><br>† miR-675                                         | Migration, invasion 👃<br>Metastasis 🖓                                   |
| Jerez 2017 (100)    | SAO52<br>MG63<br>U2OS<br>HOS<br>143B                      | Ultracentrifugation (90 min 100,000 g)<br>Proteomics (MS)                                                                                      | <b>Protein</b><br>565 unique proteins                             | Angiogenesis, adhesion, migration, metastasis 🛄                         |
| Yoshida 2018 (103)  | 143B<br>U2OS                                              | Ultracentrifugation (2x 70 min 110,000 g)<br>RT-qPCR (target miR-25-3p)                                                                        | <b>miRNA</b><br>† miR-25-3p                                       | Proliferation, invasion,<br>migration, angiogenesis,<br>drug resistance |
| Fujiwara 2017 (102) | U2OS<br>HOS<br>143B<br>SaOS2                              | Ultracentrifugation (70 min 110,000 g)<br>RT-qPCR (target miR-25-3p)                                                                           | <b>miRNA</b><br>† miR-25-3p<br>† miR-17-5p                        | Cell proliferation,<br>tumor growth                                     |
| Macklin 2016 (104)  | KHOS<br>(HiMet-C1,<br>HiMet-C6,<br>LoMet-C4,<br>LoMet-C5) | Precipitation (ExoQuick)<br>Proteomics (MS)                                                                                                    | <b>Protein</b><br>31 unique proteins                              | Migration, invasion 🖢<br>Lung metastasis 💥                              |
| Jerez 2019 (101)    | SAOS2<br>MG63<br>HOS<br>143B<br>U2OS<br>hFOB1.19          | Ultracentrifugation (90 min 100,000 g)<br>NEBNext Small RNA library (Illumina)                                                                 | <b>miRNA</b> 1 miR-21-5p 1 miR-143-3p 1 miR-181a-5p 1 miR-148a-3p | Tumor progression,<br>metastasis 🔟                                      |

| Tumor type           | <b>Cell lines</b>                 | Method                                                                                                                                                             | Result                                                              | <b>Biological function</b>                                                  |
|----------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Raimondi 2020 (105)  | SAOS2<br>MG63<br>U2               | Differential centrifugation (5 min 300 g, 15 min 3,000 g, 30<br>min, 10,000 g, 90 min 100,000 g)<br>MiSeq Reagent Kit v3 (Illumina)                                | <b>miRNA</b><br>† miR-21-5p<br>† miR-148a-3p                        | Carcinogenesis 🛄                                                            |
| Ye 2020 (106)        | NHOst<br>U2OS<br>143B             | EV isolation not reported<br>RT-qPCR                                                                                                                               | <b>miRNA</b><br>miR130a-30<br>miR195-3p                             | Proliferation, apoptosis<br>inhibition, G2/M cell cycle<br>arrest, invasion |
| Rhabdomyosarcoma     |                                   |                                                                                                                                                                    |                                                                     |                                                                             |
| Ghayad 2016 (114)    | Rh30<br>Rh41<br>RD<br>JR1<br>Rh36 | Differential centrifugation<br>(10 min 300 g, 10 min 2,000 g, 30 min 10,000 g, 2x 70 min<br>100,000 g)<br>Affymetrix GeneChip miRNA 3.0 Arrays kit (19724 targets) | <b>miRNA</b><br>1 miR-1246<br>1 miR-1268                            | Proliferation, migration,<br>invasion, metastasis 👗                         |
| Rammal 2019 (115)    | Rh30<br>Rh41<br>RD<br>JR1<br>Rh36 | Differential centrifugation<br>(10 min 300 g, 20 min 2,000 g, 30 min 10,000 g, 2x 70 min<br>100,000 g)<br>Proteomics (MS)                                          | Protein<br>36 unique proteins                                       | Invasion, proliferation,<br>metastasis 🛄                                    |
| Ghamloush 2019 (116) | Rh30<br>Rh41<br>RD<br>JR1<br>Rh36 | Differential centrifugation<br>(10 min 300 g, 10 min 2,000 g, 30 min 10,000 g, 2x 70 min<br>100,000 g)<br>TaqMan miRNA assay (target: miR-486)                     | <b>miRNA</b><br>1 miR-486-5p                                        | Invasion, migration,<br>proliferation                                       |
| Ewing sarcoma        |                                   |                                                                                                                                                                    |                                                                     |                                                                             |
| Miller 2013 (121)    | A673<br>SK-N-MC<br>SB-KMS-KS1     | Differential centrifugation<br>10 min 300 g, 10 min 2,000g, 30 min 10,000, 70 min<br>100,000, 60 min 100,000<br>Affyrmetrix HumanGene 1.0 ST arrays                | <b>mRNA</b><br>NROB1, NKX2.2,<br>STEAP1, LIPI, EWSR1-<br>FLI fusion | Signal transduction,<br>stemness 🖽                                          |

| Zhang 2018 (122) Hs919.T<br>CHLA-258<br>CHLA-9<br>Dong 2020 (123) A673<br>SK E5 1<br>E55838 | Т<br>258    |                                                                                                                                          |                                               |                                                                          |
|---------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------|
|                                                                                             | 6           | Differential centrifugation<br>5 min 2500 rpm, 45 min 10,000 g, 120 min 100,000 g                                                        | <b>mRNA</b><br>EWSR1-FLI1 fusion              | NR                                                                       |
|                                                                                             | - ~         | Differential centrifugation<br>(10 min 300 g, 30 min 4600 g, 120 min 100,000 g)<br>Exoquick<br>Immunomagnetic beads<br>ES-EV Click Chips | <b>mRNA</b><br>EWSR1 rearrangement            | Ж                                                                        |
|                                                                                             |             | RT-ddPCR                                                                                                                                 |                                               |                                                                          |
| Samuel 2020 (124) TC-71<br>RD-ES<br>SK-ES-1                                                 | -           | Differential centrifugation<br>5 min 2500 rpm, 45 min 10,000 g, 75 min 110,000 g, 60<br>min 35,800 rpm                                   | <b>Protein</b><br>Bulk analysis<br>CD99, NGFR | Bulk: Exosomal proteins<br>(membrane transport<br>and fusion), metabolic |
| CHLA-258<br>COG-E-352                                                                       | 258<br>-352 | Proteomics                                                                                                                               | mRNA                                          | enzymes, antigen presenting,<br>cytoskeletal, protein binding            |
| Hs919.T                                                                                     | L.          | Immunoprecipitation                                                                                                                      | EWSR1-ETS fusion                              |                                                                          |
|                                                                                             |             | RT-qPCR                                                                                                                                  |                                               |                                                                          |
| Sun 2022 (125) A673                                                                         |             | Differential centrifugation<br>10 min 300 g, 10 min 2800 g, 90 min 100,000 g                                                             | <b>mRNA</b><br>EWSR1-FLl1 fusion              | NR                                                                       |
|                                                                                             |             | Click beads<br>ExoQuick<br>Magnetic biotin-PEG-DSPE beads<br>RT-dPCR                                                                     |                                               |                                                                          |

MS: mass spectrometry. Function derived from: 🎞: literature; 🤳: in vitro; 🕖 🛛 : clinical; : mice.

| Table 3. Critical appraisal of the clinical studies using the GRADE system. | of the clir     | ו studies ו          | using the GRADE s          | ystem.            |                 |                        |           |         |         |       |
|-----------------------------------------------------------------------------|-----------------|----------------------|----------------------------|-------------------|-----------------|------------------------|-----------|---------|---------|-------|
| Reference                                                                   | Study<br>design | Patient<br>inclusion | Patient<br>characteristics | Selection<br>bias | Reproducibility | In vitro<br>validation | End point | Outcome | Funding | Score |
| Colletti 2018 (70)                                                          | 2               | 0                    | -                          | 0                 | 0               | 0                      | -         | 2       | -       | 7     |
| Liu 2016 (75)                                                               | 2               |                      | -                          | 0                 | 0               | 0                      | -         | 2       |         | 80    |
| Jiao 2017 (77)                                                              | -               |                      | -                          | 0                 | 1               | 0                      | 1         | 2       |         | 8     |
| Ma 2019 (85)                                                                | 2               |                      |                            | 0                 | 2               | -                      | 1         | 2       |         | 11    |
| Morini 2019 (86)                                                            | 2               | -                    |                            | 0                 | 0               | 0                      | 1         | 2       |         | 80    |
| Xu 2017 (96)                                                                | 2               |                      |                            | 0                 | 2               | 0                      | 1         | 2       |         | 10    |
| Baglio 2017 (97)                                                            | 2               | 0                    | -                          | 0                 | 0               | *                      | 1         | 2       | 0       | 7     |
| Shen 2016 (98)                                                              | 2               |                      |                            | 0                 | 0               | 0                      | -         | 2       |         | 80    |
| Gong 2018 (99)                                                              | 2               | -                    | 0                          | 0                 | 2               | *                      | -         | 2       |         | 10    |
| Ye 2020 (106)                                                               | 2               | 0                    | -                          | -                 | 0               | -                      | -         | -       | 0       | 7     |
| Cambier 2021 (107)                                                          | 2               | 0                    |                            | 0                 | 1               | 0                      | 1         | 2       | 0       | 7     |
| Ghamloush 2019 (116)                                                        | -               | 0                    | 0                          | 0                 | 0               | *                      | -         | 2       | 0       | 5     |
| Dong 2020 ((123)                                                            | -               | 0                    | 0                          | 0                 | 0               | 2                      | -         | 0       | -       | 5     |
| Samuel 2020 ((124)                                                          | -               | -                    | 0                          | -                 | 0               | -                      | -         | -       | -       | 7     |
| Sun 2020 (125)                                                              | -               | -                    | -                          | -                 | 0               | 1                      | 1         | 2       | 0       | 8     |
|                                                                             |                 |                      |                            |                   |                 |                        |           |         |         |       |

See Supplementary Table S1 for a detailed description of the criteria. \*: in vivo validation of in vitro findings.

| EV-METRIC in vitro (%)                   | ı                  | I             | I              | 0            | I                | 0                      | 44             | I            | 22               | I              | 44             | 22               | 14               | 0                   | 22                 | 38                 |
|------------------------------------------|--------------------|---------------|----------------|--------------|------------------|------------------------|----------------|--------------|------------------|----------------|----------------|------------------|------------------|---------------------|--------------------|--------------------|
| EV-METRIC in vivo (%)                    | 17                 | 0             | 0              | 38           | 0                | ı                      | ī              | 0            | 0                | 25             | 0              | ī                | ī                | ı                   | ī                  | I.                 |
| EV Track ID                              | EV200162           | EV200163      | EV200164       | EV200165     | EV200166         | EV210115               | EV210117       | EV210073     | EV210074         | EV210080       | EV210072       | EV210071         | EV210070         | EV210116            | EV210079           | EV210078           |
| PedEV Score (%)                          | 55                 | 27.5          | 27.5           | 71.5         | 55               | 60.5                   | 88             | 11           | 99               | 49.5           | 99             | 71.5             | 71.5             | 27.5                | 99                 | 82.5               |
| Inclusion of controls                    | 0                  | 0             | 0              | 0            | 0                | 5.5                    | 5.5            | 0            | 0                | 0              | 0              | 5.5              | 5.5              | 0                   | 5.5                | 0                  |
| Characterisation platform                | 11                 | 11            | 11             | 11*          | 11               | 11                     | 11             | 5.5          | 11               | 5.5            | 5.5            | 11               | 11               | 11                  | 11                 | 11                 |
| Electron microscopy                      | 5.5                | 0             | 0              | 5.5*         | 0                | 0                      | 5.5            | 0            | 5.5*             | 5.5            | 5.5*           | 5.5              | 0                | 0                   | 5.5                | 5.5                |
| Single vesicle<br>characterisation       | 11                 | 0             | 0              | 11*          | 5.5              | 5.5                    | 11             | 0            | 5.5*             | 5.5            | 11*            | 5.5              | 5.5              | 0                   | 11                 | 11                 |
| rəffud sizyl & yboditnA                  | NA                 | NA            | NA             | 5.5*         | 5.5              | 11                     | 11             | NA           | 11*              | 11             | 11*            | 11               | 11               | NA                  | 11                 | 11                 |
| sniətorq bərərinə-V∃-noN                 | 0                  | 0             | 0              | 5.5*         | 0                | 0                      | 5.5            | 0            | 0                | 0              | 5.5*           | 0                | 0                | 0                   | 0                  | 0                  |
| EV-enriched proteins                     | 0                  | 0             | 0              | 5.5*         | 5.5              | 5.5                    | 11             | 0            | 5.5*             | 5.5            | 11*            | 11               | 11               | 0                   | 5.5                | 11                 |
| Source volume & EV<br>Source volume & EV | 11                 | 0             | 0              | 5.5*         | 5.5              | 5.5                    | 0              | 0            | 5.5              | 0              | 0              | 0                | 5.5              | 0                   | 0                  | 5.5                |
| bontsem noitalozi                        | 11                 | 11            | 11             | 11           | 11               | 11                     | 11             | 5.5**        | 11               | 11             | 11             | 11               | 11               | 11                  | 11                 | 11                 |
| Preanalytical variables                  | 5.5                | 5.5           | 5.5            | 5.5          | 5.5              | 5.5                    | 11             | 0            | 5.5              | 5.5            | 5.5*           | 5.5              | 5.5              | 5.5                 | 5.5                | 11                 |
| Nomenclature                             | 0                  | 0             | 0              | 5.5          | 5.5              | 0                      | 5.5            | 0            | 5.5              | 0              | 0              | 5.5              | 5.5              | 0                   | 0                  | 5.5                |
| Reference                                | Colletti 2019 (70) | Liu 2016 (75) | Jiao 2017 (77) | Ma 2019 (85) | Morini 2019 (86) | Challagundla 2015 (87) | Haug 2015 (88) | Xu 2017 (96) | Baglio 2017 (97) | Shen 2016 (98) | Gong 2018 (99) | Jerez 2017 (100) | Jerez 2019 (101) | Fujiwara 2017 (102) | Yoshida 2018 (103) | Macklin 2016 (104) |

Table 4. Continued

U

S

| Electron microscopy<br>Characterisation<br>Characterisation platform<br>PedEV Score (%)<br>EV-METRIC in vivo (%)<br>EV-METRIC in vivo (%) | 5.5 0 11 0 60.5 EV210081 - 44 | .5* 5.5* 11 5.5 66 EV220086 11 0 | 5.5 0 11 11 55 EV220085 29 - | 5.5 5.5 11 0 71.5 EV210077 - 33 | 5.5 5.5 11 0 66 EV210082 - 33 | .5* 5.5* 11 0 66 EV200167 0 38 | 11 5.5 11 5.5 77 EV130146 - 25 | 11 5.5 11 5.5 60.5 EV220168 - 29 | 5.5 5.5 11 5.5 55 EV220170 0 0 | 5.5 0 11 11 60.5 EV220169 0 11 | 5.5 5.5 11 5.5 60.5 EV220167 0 0 |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------|------------------------------|---------------------------------|-------------------------------|--------------------------------|--------------------------------|----------------------------------|--------------------------------|--------------------------------|----------------------------------|--|
| Antibody & lysis buffer<br>Single vesicle<br>characterisation                                                                             | 11 5.5                        | 5.5 5.5*                         | 0 5.5                        | 11 5.5                          | 11 5.5                        | 11* 5.5*                       | 0 11                           | 0 11                             | 0 5.5                          | 0 5.5                          | 0 5.5                            |  |
| niətorq bəriched protein:                                                                                                                 | 5.5                           | 0                                | 0                            | 5.5 1                           | 5.5 1                         | 5.5*                           | 5.5                            | 0                                | 0                              | 0                              | 0                                |  |
| Source volume & EV<br>abundance<br>EV-enriched proteins                                                                                   | 0 5.5                         | 5.5 11*                          | 5.5 0                        | 5.5 11                          | 0 11                          | 5.5 11*                        | 11 5.5                         | 5.5 0                            | 5.5 5.5                        | 5.5 5.5                        | 5.5 0                            |  |
| Preanalytical variables<br>Isolation method                                                                                               | 11 5.5                        | 5.5 11                           | 11 5.5                       | 5.5 11                          | 5.5 11                        | 5.5 5.5                        | 5.5 11                         | 5.5 11                           | 5.5 11                         | 5.5 11                         | 11 11                            |  |
| Nomenclature                                                                                                                              | 5.5                           | 0                                | 5.5                          | 0                               | 0                             | 0                              | 5.5                            | 5.5                              | 0                              | 5.5                            | 5.5                              |  |
| Reference                                                                                                                                 | Raimondi 2019 (105)           | Ye 2020 (106)                    | Cambier 2021 (107)           | Ghayad 2016 (114)               | Rammal 2019 (115)             | Ghamloush 2019 (116)           | Miller, 2013 (121)             | Zhang 2018 (122)                 | Dong 2020 (123)                | Samuel 2020 (124)              | Sun 2022 (125)                   |  |

EV isolation from conditioned media is mentioned, but from the rest of the article it is clear that this should be serum. Note: if different EV-METRIC scores were given to different experiments, only the highest score is reported.

## Extracellular vesicles in pediatric solid tumors

The *in vivo* and *in vitro* studies are summarized in Table 1 and Table 2, respectively. Regarding the *in vivo* studies, we reviewed the following information: tumor type, the sample used to detect EVs, and the sample volume, the latter of which is particularly important in pediatric patients, as sample volumes are typically relatively low. To assess the possible effects of specific EV enrichment techniques on the results, we also examined the enrichment protocols used in each study. We also noted any details regarding the patient cohorts and—if included in the study—healthy controls. As an outcome, we examined the biomarkers, including their function and how this was determined in the study.

Next, we critically assessed the clinical studies using the GRADE system (62, 63) and the EV methodology using our own PedEV score and EV-TRACK score(51). The mean GRADE score was 7.7 points (range: 5-11 points), and the mean PedEV score was 59.1% (range: 11-88%). Finally, the mean EV-TRACK score was 8% (range: 0-38%) for the *in vivo* studies and 21% (range: 0-44%) for the *in vitro* studies. Below, we discuss the output for each of the six tumor entities.

#### Desmoplastic small round cell tumor

Desmoplastic small round cell tumor (DSRCT) is an aggressive and rare sarcoma that occurs primarily in adolescents and young adults, with an increased prevalence among males (64). The majority of DSRCT cases present intra-abdominally, often with widespread metastasis throughout the abdomen (65). At the molecular level, DSRCT is characterized by a t(11:22)(p13;q12) translocation, causing fusion of the *EWSR1* and *WT1* genes (66). The resulting fusion gene generates the oncogenic EWSR1-WT1 fusion protein, which regulates transcriptional activity and is essential for tumor cell proliferation (67). Patients with DSRCT have extremely poor outcome, and sparse research has been performed with respect to diagnostic and prognostic biomarkers (68, 69). Our literature search identified only one clinical study involving EV in DSRCT and no *in vitro* studies.

Colletti *et al.* examined the miRNA profiles of EVs isolated from plasma samples obtained from three patients with DSRCT and compared the results with EVs obtained from four healthy controls (Table 1) (70). They found that five miRNAs were highly dysregulated in all three patients, and the dysregulated miRNAs were correlated with both tumor aggressiveness and clinical outcome, suggesting that this EV-derived miRNA profile could be used as a possible prognostic marker. Moreover, bioinformatics analysis showed that the genes targeted by the dysregulated miRNAs are involved in oncogenic signaling pathways. A potential limitation of this study

is that the authors reported, using western blot analysis, to detect EV-related and non-EV-related proteins, but did not show the results of these experiments. Other methodological limitations include the relatively small cohort size (with 3 patients and 4 controls), no clear list of inclusion and exclusion criteria, and no validation in an independent cohort, which complicates the translation to clinical practice. These limitations are reflected in the relatively low GRADE and EV-TRACK scores of 7 and 17%, respectively, although the PedEV score (55%) was average, indicating a more permissive assessment of their EV characterization.

Given that DSRCT is extremely rare, validation in an independent cohort may be difficult. However, *in vitro* validation of the results would likely increase their applicability and provide important insights into the pathology underlying DSRCT.

#### Hepatoblastoma

Hepatoblastoma is the most common primary pediatric liver tumor, typically presenting in children between 6 months and 4 years of age (71). Hepatoblastoma is an embryonal tumor, presumably arising from hepatocyte precursor cells and displaying histological patterns that recapitulate the liver's developmental stages (72). Although most hepatoblastoma cases are sporadic in origin, some are associated with genetic syndromes such as Beckwith-Wiedemann syndrome or familial adenomatous polyposis (73). In recent decades, the overall survival rate among patients with hepatoblastoma has improved considerably; however, the outcome for patients with advanced disease remains unfavorable, and effective biomarkers for early diagnosis and for predicting outcome are still lacking (74). Our literature search revealed two clinical studies regarding EV in hepatoblastoma, and no *in vitro* studies.

Liu *et al.* examined the diagnostic and prognostic potential of measuring miR-21 in serum EVs in patients with hepatoblastoma (Table 2) (75). The authors found significantly higher expression of miR-21 in both the serum and serum-derived EVs in patients compared to healthy controls. They also showed that miR-21 expression in EVs is a better diagnostic marker for hepatoblastoma than serum AFP (alpha-fetoprotein) levels, the currently used biomarker (76). miR-21 expression was also found to be an independent predictor of low event-free survival, suggesting that it could be used as both a diagnostic and prognostic biomarker for hepatoblastoma. Although they did not assess the function of miR-21 in hepatoblastoma, the authors noted that this will be examined in a follow-up study. In addition, future studies are needed in order to determine the precise prognostic value of miR-21, as well as the relationship between this marker and other risk factors, which may confer a possible

bias. Finally, the size of their study cohort (n=32 patients) was relatively large given the rarity of this tumor, and the authors included a control group consisting of healthy age- and gender-matched children; nevertheless, a validation cohort and/ or *in vitro* validation is needed in order to support their conclusions.

Jiao *et al.* studied the diagnostic and prognostic value of measuring miR-34 expression in serum-derived EVs in patients with hepatoblastoma (Table 2) and found lower levels of miR-34a, miR-34b, and miR-34c in EV-enriched samples obtained from patients compared to healthy age- and gender-matched controls (77). With respect to diagnosing hepatoblastoma, they found that a panel comprised of all three miRNAs performed better than serum AFP levels, indicating its potential as a diagnostic biomarker. Moreover, this miRNA panel appeared to be superior at predicting poor prognosis compared to other risk factors. The authors also reported that miR-34 miRNAs have been shown previously to play a role in the initiation, progression, and metastasis of several types of tumors. Although the authors did not investigate the function of miR-34 miRNAs specifically in hepatoblastoma, their study included a relatively large patient cohort (n=63) and an age- and gender-matched control group; moreover, they also included a validation cohort (n=26 patients). On the other hand, a potential limitation of their study is that it was retrospective.

Remarkably, although the studies by Liu *et al.* (75) and Jiao *et al.* (77) were performed by two different groups at two different research centers, their publications contained large sections of identical text (particularly their description of the methods), and the studies were performed during the same time period with comparable cohorts. In addition, although the two groups used a similar approach, they studied different miRNAs, without discussing their choice of miRNAs.

An important limitation common to both studies is a general lack of EV characterization. Furthermore, they provided no evidence that the miRNAs were EV-associated, nor did they report the initial volume of serum. These limitations are reflected in the low EV-METRIC and PedEV scores (0% and 27.5%, respectively, for both studies), although their GRADE score of 8 was average.

#### Neuroblastoma

Neuroblastoma is the most common pediatric extracranial solid tumor, predominantly occurring in children in the first 2 years of life (78). Neuroblastoma arises from the developing sympathetic nervous system, resulting in tumors in the adrenal glands and/or sympathetic ganglia. Neuroblastoma is characterized by biological heterogeneity and unique clinical properties such as a tendency for spontaneous

regression in infants, even in cases with metastatic disease (79). These features translate to a highly variable outcome, with a survival rate higher than 90% in low-risk and intermediate-risk cases, but only 40-50% survival in high-risk cases (80). Several genetic aberrations have been associated with neuroblastoma, including mutations in the *ALK* (81) and *PHOX2B* (82) genes, amplification of the *MYCN* gene (83), and segmental chromosome alterations (84). Importantly, new biomarkers for the early detection of neuroblastoma and for predicting the patient's response to therapy are urgently needed. With respect to EVs in neuroblastoma, our literature search revealed two clinical studies regarding EVs in neuroblastoma (one of which also assessed EVs *in vitro*) and two *in vitro* studies.

Ma et al. identified EV-derived miRNA biomarkers in vivo and then examined the underlying molecular mechanism in an *in vitro* study (Tables 1 and 2)(85). In their *in* vivo study, they used next-generation sequencing of EV-derived miRNA and found that the expression of miR-199a-3p was significantly higher in EVs isolated from plasma obtained at the initial diagnosis of patients with neuroblastoma (in all risk groups) compared to healthy age- and gender-matched controls. Moreover, this upregulation of miR-199a-3p in patients appeared to be correlated with a high risk profile. In their in vitro study, the authors found that miR-199a-3p was expressed at significantly higher levels in neuroblastoma cell lines and their corresponding EVs compared to control human cell lines, including HUVEC (human umbilical vein endothelial cells), HEK293, and MRC-5 (fibroblast) cells. This miRNA was also shown to promote the proliferation and migration of neuroblastoma cells. Based on their results, the authors suggest that miR-199a-3p may be used as a rapid, easy, noninvasive biomarker for the detection of neuroblastoma, even though their study included only 7 healthy controls. With respect to the authors' in vitro validation of their in vivo findings, it is important to note that they used different methods to isolate EVs, and only the patient-derived EVs were characterized. Moreover, their in vivo study had a relatively small cohort (n=15 patients) and was cross-sectional; thus, longitudinal studies involving several time points and larger cohorts may provide more insights into the progression of neuroblastoma and facilitate the discovery of new biomarkers. Nevertheless, their validation using both a clinical validation cohort (n=8) and *in vitro* data increase their study's reproducibility. The resulting GRADE score of 11 indicates that this was a well-balanced study; in addition, the study used a sound methodological approach for the in vivo experiments, reflected by the relatively high EV-TRACK and PedEV scores of 38% and 71.5%, respectively.

Morini *et al.* investigated whether EV-derived miRNA can be used to predict the patient's response to induction chemotherapy (Table 1)(86). The authors found that

plasma samples from patients with high-risk neuroblastoma contained significant levels of neuroblastoma-derived EVs, and these levels decreased and developed a differential miRNA expression profile in response to chemotherapy. Specifically, they found that a signature consisting of three miRNAs (miR-29c, miR-342-3p, and let-7b) could discriminate between patients with a poor clinical response and patients with a good clinical response. These three miRNAs have tumor-suppressor functions, and pathway analysis indicated that they play a role in tumor progression, survival, and chemoresistance. Notably, for each patient the authors also calculated a chemoresistance index for the specific drugs used in neuroblastoma treatment. based on changes in EV-derived miRNAs; they found that this index reliably defined each patient's response to specific drugs, creating new opportunities for applications involving personalized medicine. Despite these strengths, their study was retrospective and lacked in vivo and in vitro validation. Thus, a prospective study involving a validation cohort would likely support the prognostic value of these miRNAs. Moreover, their characterization of EVs did not use conventional techniques such as western blot analysis or electron microscopy, which resulted in an EV-METRIC score of 0%. In contrast, the PedEV score was 55%; this higher PedEV score was due to their use of flow cytometry to analyze EVs. However, all of the essential information regarding the use of flow cytometry needs to be properly reported to avoid an erroneous interpretation of the data, particularly when analyzing single EV-based flow cytometry data (47).

Challagundla et al. examined the role of EV-derived miRNAs in the development of drug resistance in neuroblastoma (Table 2) (87). They measured the expression of several pro-inflammatory miRNAs in three neuroblastoma cell lines and found that only miR-21-5p was expressed in all three cell lines. The authors also claimed that they used a noncoding RNA array to screen for miRNA expression in EVs released by five neuroblastoma cell lines; however, these data were not shown. Co-culture experiments showed that secreted miR-21-5p could be transferred to human monocytes via EVs. Thus, although the potential of using miR-21-5p as a biomarker for neuroblastoma was not examined, it would be interesting to analyze whether this miRNA is upregulated in vivo. Another interesting question is if miR-21-5p is upregulated only in MYCN-amplified neuroblastoma, as the MYCN amplification status of the cell lines was not clearly stated. Similar to the study by Morini et al. (86), we found a relatively large discrepancy between the EV-METRIC score (0%) and PedEV score (60.5%). Moreover, the study by Challagundla et al. did not meet the strict criteria established by EV-TRACK, including failing to report an analysis of EVenriched and non-EV-enriched proteins, and not using a density gradient to purify the EV-enriched fraction. However, the authors did provide details regarding their EV enrichment method, their characterization of EVs using nanoparticle tracking analysis (NTA), and their analysis of the EV cargo, which is reflected in the relatively higher PedEV score (60.5%).

Haug *et al.* examined the miRNA profile of EVs derived from two *MYCN*-amplified neuroblastoma cell lines (Table 2) (88) and found a total of 11 EV-derived miRNAs that were expressed at high levels in both cell lines. Functional enrichment analysis showed that these miRNAs are involved in several processes in cancer, including tumor survival, proliferation, and metastasis. A strength of this study is that they validated the origin of the isolated miRNAs by measuring the expression of EV-derived miRNAs in a single neuroblastoma cell line using two different isolation protocols, yielding nearly identical expression levels. Among all of the publications that we analyzed, this study had the highest EV-METRIC (44%) and PedEV (88%) scores, reflecting its sound methodology and study design.

Among these four studies, miR-199a-3p was the only miRNA reported to be upregulated in neuroblastoma both *in vivo* and *in vitro* (85). In addition, miR-21-5p was upregulated in two *in vitro* studies (87, 88). Based on the various groups' reporting of their EV methodologies, we found disparity between the EV-METRIC and PedEV scores. This disparity reflects the efforts that the researchers put into characterizing EVs, but it also reflects possible limitations with respect to EV-specific equipment and/or the knowledge available at the various research centers.

#### Osteosarcoma

Osteosarcoma is a highly aggressive primary bone tumor that typically presents in children and adolescents, although a second peak in incidence can occur among individuals >60 years of age (89). The primary tumors typically arise in the appendicular skeleton, with metastatic disease commonly occurring in the lungs and other bones (90). The tumor is mesenchymal in origin and is characterized by the production of osteoid (91), and includes a wide range of distinct histological subtypes (92). Although the genetic landscape of osteosarcoma varies widely between tumors, osteosarcoma has been associated with recurrent somatic mutations in several genes, including *TP53*, *RB1*, *ARTX*, and *DLG2* (93, 94). The survival rate among patients with metastatic disease remains low, emphasizing the urgent need to identify reliable biomarkers for diagnosis and tracking the disease progression (95). Our search revealed six *in vivo* studies involving EVs in osteosarcoma (of which three studies also included *in vitro* experiments) and six distinct *in vitro* studies.



Xu et al. examined the potential of using serum EV-derived miRNA expression profiles to predict the response to chemotherapy in patients with osteosarcoma (Table 1) (96). The authors identified the differential expression of 30 miRNAs, 8 of which were confirmed in a validation cohort, and they found that the expression levels were correlated with poor response. Comparative pathway analysis revealed that the differentially regulated miRNAs affect several pathways involved in cancer. Based on these results, the authors suggest that both miRNAs and mRNAs derived from EVs could be used as markers to monitor and predict disease progression in patients with osteosarcoma undergoing chemotherapy. This study had several strengths, including the use of a uniform method for EV enrichment in all samples, the relatively large size of the patient cohort (n=53) and validation cohort (n=40), and their assessment of both miRNA and mRNA. On the other hand, a limitation of their study is that preanalysis factors such as the collection and processing of the serum samples were not described, and no results were reported with respect to EV characterization or validation. These limitations are reflected in both a low EV-METRIC score (0%) and a low PedEV score (11%). In contrast, the GRADE score was 10, which is relatively good.

Baglio et al. studied the effect of tumor EV-educated mesenchymal stem cells on osteosarcoma progression (Tables 1 and 2) (97). They found that EVs derived from three osteosarcoma cell lines contained higher levels of transforming growth factor  $\beta$  (TGF $\beta$ ) compared to EVs derived from fibroblast cells (as a control group). They also studied the effect of osteosarcoma-derived EVs on tumor growth and metastasis in a preclinical mouse model. Finally, they measured serum TGFB levels in osteosarcoma patients and healthy controls and found increased levels in the patient group; however, they did not indicate whether the healthy controls were age-matched. Importantly, this study was not designed to identify biomarkers for osteosarcoma, but rather to perform an in vitro analysis of osteosarcoma-derived EVs. Furthermore, they used different EV isolation protocols for the *in vitro* and *in vivo* samples. This difference is reflected in the EV-METRIC scores of 0% and 22% for the in vivo and in vitro experiments, respectively. This difference between the in vivo and in vitro protocols cannot be captured by the PedEV score (66%), which scores overall methodological quality. Finally, the GRADE score for this study was 7, as the authors failed to report their patient inclusion criteria and no validation cohort was included.

Shen *et al.* found that serum-derived EVs obtained from patients with osteosarcoma can affect the adhesion, migration, and viability of MG-63 cells, a human preosteoblastic cell line (Table 1) (98). They then used mass spectrometry (MS) to identify the proteins in these EVs, finding that 233 proteins were expressed in the osteosarcoma patients but not in healthy (albeit not age- or gender-matched) controls. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis revealed that these proteins play a role in four pathways that are important for osteosarcoma progression. Interestingly, the protein G6PD (glucose-6-phospate dehydrogenase) was expressed at particularly high levels in the EVs obtained from patients with osteosarcoma and was suggested as a diagnostic and/or therapeutic target in osteosarcoma; however, this finding should be substantiated in a validation cohort. More extensive characterization of the EVs and the inclusion of age- and gender-matched healthy controls would have increased the study's validity; these limitations resulted in a GRADE score of 8. The PedEV score of 49.5% indicates that the EV characterization was reported in sufficient detail; however, the EV-METRIC score was only 25% based on the authors failing to report EV quantitation and not mentioning whether they purified the EV-enriched fraction using a density gradient.

Gong et al. examined the miRNA profiles of EVs isolated from metastatic osteosarcoma cell lines and non-metastatic osteosarcoma cell lines (Tables 1 and 2) (99). Small RNA sequencing identified a total of 61 miRNAs that were differentially expressed in EVs between the metastatic and non-metastatic cell lines, as well as patient serum. miR-675 was the most significantly upregulated miRNA in EVs isolated from the metastatic cell lines, and this result was confirmed both in vitro and in vivo using RT-gPCR. In vitro functional studies indicated that miR-675 can increase tumor cell migration and invasion by targeting expression of the calcium-binding protein CALN1 (Calneuron-1); thus, miR-675 might serve as a valuable mechanismbased prognostic biomarker for osteosarcoma metastasis. A strength of this study is that it included both in vivo and in vitro data. However, it is limited by the small patient cohort (n=2) and the fact that the patient characteristics are not reported. The GRADE score was therefore 10. A follow-up study with a larger clinical cohort is needed in order to validate these findings. The PedEV and EV-METRIC scores were relatively high for the *in vitro* experiments (66% and 44%, respectively); however, the in vivo experiments lacked sufficient EV characterization.

Jerez *et al.* performed a proteomic analysis of EVs derived from three osteosarcoma cell lines (Table 2) (100). The authors identified a total of 1,741 proteins that were unique to the osteosarcoma-derived EVs, 565 of which were found in all three cell lines. Gene Ontology analysis revealed that these proteins are involved in angiogenesis, adhesion, and cell migration.

In a separate, more recent study the same group used next-generation sequencing to characterize the miRNAs in EVs derived from five osteosarcoma cell lines, some of which were included in their previous report (Table 2) (101). They found 237 miRNAs

that were present exclusively in the osteosarcoma cell lines, and they found that the metastatic cell lines clustered differently than the non-metastatic cell lines. In particular, they found four miRNAs (miR-21-5p, miR-143-3p, miR-181a-5p, and miR-148a-3p) that were enriched in the metastatic SaOS2 cell line. Gene Ontology analysis revealed that the genes targeted by these highly abundant miRNAs in osteosarcoma cell lines are related to tumor progression and metastasis. The EV methodology used in both the 2017 and 2019 studies had rather high standards with respect to EV isolation and characterization, resulting in a PedEV score of 71.5% for both studies. However, in their 2019 paper (101) they did not report the results regarding EV characterization by EV-enriched proteins, resulting in a slightly lower EV-METRIC score for this paper (14%) compared to their previous publication (22%).

Fujiwara *et al.* screened circulating miRNAs in patient serum samples and in EVs secreted by osteosarcoma cell lines (Table 2) (102). They found that miR-25-3p and miR-17-5p were upregulated in the osteosarcoma cell lines and culture media, and the expression of these two miRNAs was even higher in EVs derived from the osteosarcoma cell lines than in the cells themselves. They also found that the serum levels of these miRNAs were higher in patients with osteosarcoma than in healthy controls. Due to the limited volume of serum, miRNAs were isolated only from total serum and not from EV-enriched samples. Moreover, the low EV-METRIC and PedEV scores of 0% and 5, respectively, reflect the limited effort that the authors put into providing a detailed description of their isolation and characterization of EVs.

In a follow-up study by the same group, Yoshida *et al.* assessed the role of miR-25-3p in osteosarcoma (Table 2) (103) and found that high expression levels of miR-25-3p were correlated with poor prognosis. They also performed functional analyses and found that this miRNA is involved in proliferation, invasion, migration, and multi-drug resistance in osteosarcoma cells. The encapsulation of the miRNAs in the lipid vesicles was believed to increase the stability of miR-25-3p and facilitate delivery to the tumor microenvironment, promoting tumor progression. In this follow-up study, the authors included more details regarding their EV methodology and characterization, as reflected by the PedEV and EV-METRIC scores of 66% and 22%, respectively.

Macklin *et al.* analyzed EVs secreted by both high and low metastatic clonal variants of the KHOS human osteosarcoma cell line (Table 2) (104). The authors found that the high metastatic cells secreted three times more EVs than the low metastatic cells, and transfer of these EVs to low metastatic cells induced a migratory and invasive phenotype in those cells. Using MS, they identified 64 proteins in the

high metastatic cell-derived EVs, 31 of which were unique to these vesicles. In *in vivo* mouse experiments, they also found that high metastatic EVs preferentially colonized the lung tissue, which is the principal site of metastatic development in osteosarcoma(90). The quality of reporting their EV methodology was high, with EV-METRIC and PedEV scores of 38% and 15%, respectively.

Raimondi *et al.* performed small RNA sequencing on osteosarcoma-derived EVs and on their parental cells (Table 2) (105). The authors found a total of 21 differentially expressed miRNAs, and bioinformatic analysis revealed that these miRNAs are associated with carcinogenesis. In addition, they found that expression of miR-21-5p and miR-148a was increased in cultured osteoclast-like and endothelial cells that were treated with osteosarcoma-derived EVs, promoting osteoclast formation and angiogenesis; this finding confirmed the notion that these miRNAs are transferred from EVs to their target cells, in which they exert functional effects. The PedEV score of 82.5% and EV-METRIC score of 44% reflect the fact that the authors reported more details regarding their EV methodology than the other publications assessed in our review.

Ye *et al.* also performed small RNA sequencing on EV derived from osteosarcoma patients and healthy controls (106). They identified 10 miRNA that were upregulated in patients. They went on to perform RT-qPCR on a selection of these miRNA and compared that to EV from 3 osteosarcoma cell lines. This comparison found only miR195-3p and miR130a-3p to be upregulated in both patient and cell line-derived EV. They further analyzed the function of miR195-3p in several experiments with an osteosarcoma cell line and mice, from which they concluded that miR195-3p promotes cell proliferation and migration, and inhibits apoptosis. The investigators do not state the exact starting volume for EV isolation from plasma. They also do not report the EV isolation method from the cell lines for the functional experiments, nor if these EVs were analyzed by transmission electron microscopy and/or western blot, as was done for the EVs from plasma. Considering the clinical part of the study, a validation cohort is missing, as is a clear description of patient inclusion criteria. This results in a PedEV score of 66% and an EV-METRIC score of 11%, and a GRADE score of 7.

Cambier *et al.* analyzed repetitive DNA and RNA elements present in EVs isolated from serum from patients and healthy controls (107). In this report, different EV isolation and purification approaches were used: ExoQuick in the discovery cohort and PEG precipitation, SEC and immunoaffinity capture in different subgroups within the validation cohort. In both the discovery and validation cohort, size and concentration

of EV were analyzed by nanoparticle analysis after each EV purification method. However, the samples isolated by PEG precipitation and immunoaffinity were also analyzed by ExoView. This visualization technique depends on immunocapture of EVs to a microarray chip by different EV-enriched surface proteins (107). In the discovery cohort sequencing of RNA and DNA resulted in identification of 4 repetitive elements upregulated in serum from patients with osteosarcoma, in comparison to healthy controls. This finding was then confirmed in the validation cohort. The complex subgrouping and different techniques within the validation weakens the possibility to draw any conclusions. It demands further validation in a patient cohort analyzed with a uniform approach to EV isolation, visualization and characterization. These limitations result in a PedEV score of 55% and EV-METRIC score of 14%. Patient inclusion and exclusion is not clearly described, which precludes assessment of selection bias. The presence of a validation cohort is good, however it is not fully independent to the discovery cohort since 2 samples from the discovery cohort were also analyzed in the validation cohort. Furthermore, the validation cohort is divided in several subgroups with different techniques. This results in a GRADE score of 7.

In summary, several miRNAs were identified in several osteosarcoma studies, including miR-25-3p (102, 103) and miR-21-5p (101, 105). Interestingly, miR-675 (99), miR-148a (96, 101, 105) were found in both *in vivo* and *in vitro* studies. With respect to EV methodology, we found differences in the extent of details reported for EV characterization between the *in vitro* and *in vivo* experiments.

#### Rhabdomyosarcoma

Rhabdomyosarcoma is a highly malignant cancer that develops from skeletal myoblast-like cells (108). Rhabdomyosarcoma is the most common soft tissue sarcoma in children and has a slight male predominance (109). The primary tumor can arise in a variety of anatomical sites, including the head, neck, and extremities, and metastases in the lungs, bone, and/or bone marrow are quite common (110, 111). Two major histological subtypes of rhabdomyosarcoma—embryonal and alveolar—have been identified. Alveolar tumors are often associated with the recurrent chromosomal translocations t(2;13) and t(1;13), which generate fusion oncoproteins between *PAX3* and *FOXO1* and between *PAX7* and *FOXO1*, respectively (112). Although the 5-year overall survival rate is now as high as 70% due to therapeutic advances, the cure rate among patients with metastatic and/or recurrent rhabdomyosarcoma is still low (113). Our literature study identified one study that examined EVs in rhabdomyosarcoma using both *in vivo* and *in vitro* experiments and two additional *in vitro* studies; all three studies were performed by the same group.

In their first study, Ghayad et al. characterized the miRNA expression profiles of EVs secreted by five rhabdomyosarcoma cell lines (Table 2) (114). They found miRNAs that were differentially expressed between rhabdomyosarcoma-derived EVs and the corresponding cell lysates, and they also found differential expression between cell lines. Two miRNAs—miR-1246 and miR-1268—were enriched in the EVs of all five rhabdomyosarcoma cell lines. Rhabdomyosarcoma-derived EVs were also shown to increase the proliferation of recipient fibroblasts and rhabdomyosarcoma cells. Moreover, these EVs also induced the migration and invasion of normal fibroblasts, and they promoted angiogenesis in endothelial cells. Subsequently, Rammal et al. examined the protein composition of EVs derived from five rhabdomyosarcoma cell lines using liquid chromatography-MS/MS (LC-MS/MS) (Table 2) (115). They found a total of 80 proteins that were common to all five cell lines, as well as 81 that were specific to embryonal rhabdomyosarcoma cells and 42 that were specific to alveolar rhabdomyosarcoma cells. Pathway analysis revealed that these EV proteins are involved in pathways related to tumor cell invasion, proliferation, and metastasis. Thus, these proteins may serve as potential biomarkers, although this should be tested in a clinical study.

Finally, in their recent study, Ghamloush et al. found that expressing the PAX3-FOXO1 fusion protein in murine myoblasts modulated the miRNA content and paracrine function of their EVs, promoting the proliferation, migration, and invasion of recipient fibroblasts (Tables 1 and 2) (116). Hierarchical clustering of miRNA microarray profiling data showed that expressing the PAX3-FOXO1 fusion protein altered the EVs' miRNA content. Interestingly, miR-486-5p was identified as a downstream effector of PAX3-FOXO1 expressed in the EVs of all five rhabdomyosarcoma cell lines, albeit at higher levels in the alveolar rhabdomyosarcoma cell lines compared to the embryonal cell lines. The authors also found this miRNA in serum-derived EVs obtained from patients with rhabdomyosarcoma; in one patient with an alveolar tumor, the levels of miR-486-5p decreased after chemotherapy when the patient was in remission. Despite the relatively small patient cohort, these findings suggest that this miRNA may play a clinically relevant role in patients with rhabdomyosarcoma. A follow-up study with a larger cohort may provide additional insights into the potential use of miR-486-5p as a diagnostic biomarker and for assessing the patient's response to chemotherapy. However, this study received a GRADE score of only 5, as the patient cohort and inclusion criteria were not described in sufficient detail, and their findings were not validated in an independent cohort.

With respect to the EV methodology for the *in vitro* experiments, these three reports had good EV-METRIC scores (33%, 33%, and 38% for the first, second, and

third studies, respectively) and PedEV scores (71.5%, 66%, and 66%, respectively). However, for the *in vivo* experiments EV characterization was not performed, and importantly—no healthy controls were included.

Overall, miR-486-5p was the only miRNA that was found to be upregulated in the rhabdomyosarcoma-derived EVs isolated from both patient serum samples and cell lines (116). However, given the low number of patients with rhabdomyosarcoma included in this study, additional fundamental work regarding characterization of the EVs is warranted before EV-derived diagnostics can be applied in clinical practice.

#### Ewing sarcoma

Ewing sarcoma is the second most common bone tumor, mostly presenting in adolescents (117, 118). It is characterized by the presence of a tumor-driving fusion gene, the most common one is EWSR1-FLI1, but several other combinations by members from the FET and ETS gene families have been described, e.g. EWSR1-ERG or FUS-FEV (117). Currently, risk stratification at initial diagnosis relies on imaging and molecular pathology. The first step is often FISH and/or RT-gPCR for the detection of the most common EWSR1 rearrangements (119). Prognosis depends heavily on the presence of metastatic lesions at diagnosis, which mostly presents in the lungs, bone and bone marrow (117). Treatment consists of a combination of chemotherapy, local control by surgery and radiotherapy (117, 118). Evaluation of treatment response is an important challenge, since relapse is associated with <10% 5-years survival (117). Currently, response evaluation depends on imaging. However, liquid biopsies are also gaining attention. The use of cell-free DNA has been explored in several reports (29, 30, 120) but often the level of tumor-derived cell-free DNA is low which limits sensitivity. Detection of circulating tumor cells from blood is also an option, but sensitivity is challenging, due to a high signal-to-noise ratio in peripheral blood cells and not all tumors shedding cells into circulation (34, 119). Considering the limitations of other liquid biopsy-based targets, EVs are also an interesting source of biomarkers in Ewing sarcoma. We identified 3 reports that studied EVs from Ewing sarcoma both in vivo and in vitro, and 2 that contained only in vitro data.

Miller et al. (121) were one of the first in 2013 to demonstrate the presence of the EWSR1 fusion gene in RNA isolated from Ewing sarcoma cell line-derived EV. They identified several other potential Ewing sarcoma-specific genes through analysis of publicly available array data and then confirmed the presence of this panel in their own EV preparations. They went one step further, using RNAse experiments to show that these mRNA markers are truly present within EV. Lastly, they mixed EVs derived from Ewing sarcoma cell lines with plasma from healthy controls, and were also able

to detect these markers. On the contrary, in the plasma from 20 healthy controls without EV, these markers were not present. This study reports the EV methodology in detail, which is reflected by a good PedEV score of 77% and also EV METRIC score is quite good with 25%. No clinical samples were included.

Zhang et al. (122) present a microfluidic, chip-based approach for the quantification of tumor-specific mRNA from EV. All their experiments were performed on EVs purified from conditioned culture medium originating from Ewing sarcoma cell lines, without any *in vivo* validation. PedEV score was 60.5%, resulting from a detailed reporting on EV-enrichment and characterization, but lacking any report on the analysis of EV-derived protein. EV-METRIC score is 29%, which is quite high and is mostly caused by very detailed reporting on the qualitative and quantitative analysis, and the ultracentrifugation specifics.

Dong et al. (123) present a new technique for purifying EVs from plasma from patients with Ewing sarcoma. In their report, they describe in detail the development, optimization and validation of the 'ES-EV Click Chip', first in conditioned culture medium from Ewing sarcoma cell lines. The ES-EV Click Chip combines click chemistrymediated EV capture within a nanostructure-embedded microchip, which depends on the presence of the protein LINGO1 on Ewing sarcoma-derived EVs. LINGO1 is presented as a Ewing sarcoma-specific marker by the authors. The presence of tumorspecific EVs is then confirmed by RT-ddPCR targeted to the EWSR1 rearrangement. Dong et al. compared this novel ES-EV Click Chip technique to more conventional EV purification approaches, e.g. differential centrifugation, immunocapture and Exoquick. The focus is clearly on the development and optimization of this new technique and the small number of plasma samples included at the end just serves as a small validation. There are no details reported on pre-analytical variables for the plasma samples, such as type of blood tube. Patient characteristics and timing of sampling are also not reported. This results in a low GRADE score of 5. PedEV is more average (55%) since the in vitro details are well described, however conventional EV characterization techniques are not reported (or not detailed enough) which leads to an EV-METRIC score of 0%.

Samuel *et al.* (124) also report on a new approach to isolating Ewing sarcoma-specific EVs. They started by performing proteomics on EVs isolated from different Ewing sarcoma cell lines. By comparing these data to proteomics data from healthy human plasma, they identified Ewing sarcoma-specific markers CD99 and NGFR. The next step was to develop an immunocapture approach combining CD99 and NGFR and thereby purifying tumor-specific EVs. They confirmed the presence of Ewing sarcoma-

specific mRNA by performing RT-qPCR for the EWSR1 fusions. Finally, they performed this Ewing-EV-specific immunocapture on plasma of a small cohort of patients and compared this to healthy controls. It is an impressive effort, however especially the details on the clinical samples (type of blood tube, preparation of plasma) are not reported, as are some details of the Western Blot procedures, resulting in an EV METRIC score of 0% for the *in vivo* and 11% for the *in vitro* part. Within PedEV, *in vivo* and *in vitro* are taken together, which results in a score of 60.5%. Considering the clinical part of the study, patient details are not reported in detail and there is no independent validation cohort, resulting in a GRADE score of 7.

Sun et al. (125) also developed a click chemistry-based approach for the purification of EV. They first optimized this approach in conditioned medium from an Ewing sarcoma cell line, and then validated its in vivo potential in plasma from Ewing sarcoma patients and even patients with pancreatic cancer, coupled to a cohort of healthy controls. To confirm that the EVs from patient plasma are originating from the tumor, RT-dPCR is performed for the EWSR1-FLI1 fusion gene. For 2 patients, sequential samples were also tested and the number of EWSR1-FLI1 copies tracks the course of the disease, as is determined by clinical imaging. This is an interesting finding, suggesting a true potential as a minimal residual disease marker for these EVs isolated with click chemistry. Concerning the GRADE score, this report has an average score (8), with one of the most important limitations being a lack of a validation cohort. The reporting of the methodology behind the report is also sound, only characterization of the EV-related proteins is lacking. This is reflected in a PedEV score of 60.5%. However, EV METRIC score for both in vivo and in vitro experiments is 0%, since the level of details of the EV enrichment and characterization techniques is not sufficient for EV-TRACK.

## Overview of the miRNAs identified in EVs derived from pediatric solid tumors, and the role of the miRNAs in the hallmarks of cancer

The majority of studies included in our systematic review involved an analysis of miRNA, and nearly all studies reported their putative biological function. This allowed us to provide an overview of the reported miRNAs (both from *in vivo* and *in vitro* studies) in relation to the hallmarks of cancer. In Figure 4A, we summarize the miRNAs involved in the "classic" hallmarks of cancer described by Hanahan and Weinberg first in 2000 (126) and again in 2011 (127), and we included an emerging cancer trait: drug resistance (19). In addition, changes in several miRNAs were found in different tumor entities, as illustrated in Figure 4B. For example, miR-21—which is known to play a role in metastasis and tumor progression(128)—was upregulated in neuroblastoma (87, 88), hepatoblastoma (75) and osteosarcoma (101, 105). Consistent



**Figure 4. A.** Overview of the hallmarks of cancer and the differentially regulated miRNAs described in the various in vitro and in vivo reports, classified according to their function. DSRCT, desmoplastic small round cell tumor **B.** Differentially regulated miRNAs in the indicated solid tumors (hepatoblastoma, neuroblastoma, DSRCT, and osteosarcoma) based on the in vivo and in vitro publications († upregulated; <sup>1</sup>, downregulated). References for miR-21: (75, 87, 88, 101, 105); for miR-25-3p: (88, 102, 103); for miR199a-3p: (85, 96); for miR-34: (70, 77); for miR92a: (88, 106) and for miR-342-3p: (70, 86).

with this finding, miR-21 has been shown to be overexpressed in many types of solid tumors (129). In addition, miR-25-3p was upregulated in both neuroblastoma (88) and osteosarcoma (102, 103). This miRNA was shown previously to play a role in these two tumor types (130, 131), as well as in other types of cancer, particularly with respect to tumor initiation and progression (132); miR-25-3p has also been reported as a potential biomarker for breast cancer and hepatocarcinoma (133, 134). miR-34a-5p was upregulated in DSRCT (70), while miR-34 miRNAs were downregulated in hepatoblastoma (77). The miR-34 family members play an important role in tumor suppression and are dysregulated in several cancers (135-137). miR-199a-3p was upregulated in neuroblastoma (85) but downregulated in osteosarcoma (96); this miRNA is known to exert opposite effects in different tumors (138), acting as a promoter of leukemic transformation (139) and as a tumorsuppressor gene in both renal cancer (140) and esophageal cancer (141). Finally, miR-342-3p was downregulated in both neuroblastoma (86) and DSRCT (70); this miRNA has been shown to suppress cell proliferation and migration in several types of cancer (142-144).

## Summary and future directions

EVs have high potential as diagnostic and prognostic biomarkers for both adult and pediatric cancers (145, 146). However, major discrepancies exist between the number of novel EV-based biomarkers that are reported and the biomarkers that have been successfully incorporated into daily clinical practice, and many obstacles must still be overcome along the road to developing and implementing these biomarkers (147).

Peripheral blood is a suitable source of EVs, as it can be obtained by minimally invasive sampling methods and contains high levels of tumor-derived EVs (148, 149). However, challenges have arisen with respect to the isolation, purification, and analysis of blood-derived EVs. For example, pre-analytical factors such as the type of collection tubes and the conditions used to store the samples can affect several EV characteristics, ranging from the final EV concentration to the origin of the EVs (e.g., platelet-derived versus tumor-derived) (150-154). The method used to enrich EVs from the blood can also affect the subsequent RNA (44, 155, 156) and protein (157, 158) analyses, thereby affecting the final result. Moreover, the complex composition of blood—including non-EV-bound proteins and lipoprotein particles—can complicate the identification of bona fide EV-derived molecules and can potentially hinder the discovery and validation of these biomarkers (159-162). This issue is illustrated by two recent reports by Palviainen *et al.* (154) and Chiam *et al.* (163). In their study, Palviainen *et al.* found that serum contains more platelet-derived EVs compared to plasma; moreover, they found that the protein composition differs

between plasma and serum, as well as between samples obtained using different anticoagulants(154). Chiam *et al.* examined miRNAs in EVs purified from serum and plasma samples obtained from patients with esophageal carcinoma and found that although the plasma contained more miRNA than serum, the plasma also contained more non-EV-derived miRNA (163). With respect to pediatric solid tumors, the clinical studies that we identified from our literature search evaluated EVs that were derived from either serum or plasma; however, detailed descriptions of the pre-analytical factors and the starting sample volumes were often absent, for example in studies involving hepatoblastoma (75, 77) and osteosarcoma (99, 164, 165). Moreover, a wide range of methods were used for enriching and characterizing the EVs, in some cases even within the same publication (85, 97). These missing details limit the studies' reproducibility and our ability to correctly interpret the resulting data, thereby preventing subsequent validation in a clinical setting.

Our search of the literature for *in vitro* studies assessing EV-derived biomarkers in pediatric solid tumors yielded >3000 hits. However, when focusing on clinical studies that described EVs derived from liquid biopsies from children with solid tumors, and when we evaluated whether these *in vivo* findings were supported using *in vitro* data, we found only the 27 reports that we discussed in this review. It is interesting that we did not find many reports studying the use of microfluidics or nanostructure-based approaches, apart from the two reports in Ewing sarcoma (122, 123), even though in theory these approaches would be suited for low input samples and point-of-care use. Also, more novel particle characterization platforms like Raman scattering (166, 167) were not used in the reports that we found. However, these techniques are often still in early development phases, and pre-clinical testing, which is challenging considering the limited sample number and volumes available in pediatric oncology.

The majority of studies included in this review, were *in vitro* and focused on EVs secreted from cultured cancer cell lines, whereas validation of these biomarkers in physiologically relevant biofluids was often not performed. With respect to the *in vivo* studies, important details regarding the enrichment and characterization platforms of EVs were often not reported, as reflected by the relatively low PedEV scores for these studies. Moreover, many studies did not report using—and therefore may not have used—a density gradient for EV enrichment and/or purification, and they did not report in details on EV characterization, thus resulting in low EV-METRIC scores. Overall, many studies yielded relatively higher scores from PedEV than from EV-TRACK. This is probably caused by the rigorous EV-TRACK scoring system, with points allocated for reporting on specific techniques, e.g. density gradient and details on both qualitative analysis. As mentioned before, pediatric studies on

patient samples are limited by sample volumes which results in a limitation in the number of techniques that can be performed. The PedEV score requires no specific techniques to be performed and allocates scores for more generally defined criteria (e.g. at least one method for particle characterization not further specified). This also increases the PedEV scores for studies using less conventional EV enrichment approaches, e.g. click chemistry-based approaches. Furthermore, PedEV allocates a general score for the entire report, creating the possibility for a report with less detailed reporting on *in vivo* experiments but with a very detailed report of *in vitro* experiments to still receive a good score. In this respect, it is important to emphasize that EV-TRACK was developed as a general tool for scoring the reproducibility and reporting of EV research and is based on studies using conditioned culture medium or biofluids collected from adults. Given that pediatric studies are far more limited with respect to patient numbers and the volume of biofluids, the extent of EV characterization is limited, as is the inclusion of healthy controls, particularly agematched controls. Another consideration is that because the field of EV research in pediatric oncology is relatively new and often limited to pediatric oncology centers, EV-specific knowledge and equipment are not yet widely available. Thus, our PedEV score may provide a more lenient and flexible scoring system for EV characterization, at least until the pediatric research community reaches the level of standards that are only now emerging in adult studies involving EVs. Indeed, the EV field is not the first to experience a gap in the quality of study designs between pediatric and adult research (168). Closing this gap will require collaboration beyond the borders of the respective centers and countries, as well as collaboration between scientists in the fields of pediatrics and adult medicine.

Altered regulation of miRNAs has been associated with the initiation and progression of cancer (169). Moreover, the potential of miRNAs was previously demonstrated in adults, with several ongoing clinical trials investigating the potential of using EV-derived miRNAs as diagnostic, predictive, and/or prognostic biomarkers (170). In the studies we evaluated in this review, the same miRNAs were upregulated both *in vivo* and *in vitro* in neuroblastoma(85), osteosarcoma (99), and rhabdomyosarcoma (96, 99, 101, 105). This finding suggests that *in vitro* screening of candidate biomarkers can be highly valuable before moving to *in vivo* validation. However, it is important to note that most of these biomarkers were identified within the same study and/or by the same group. In addition, a study using alveolar rhabdomyosarcoma cell lines suggests that gene expression can differ between *in vitro* validation studies, as they may not fully recapitulate the clinical situation. Nevertheless, if *in vitro* studies are performed, we recommend using the same techniques that were used in the

corresponding clinicalstudies, thus reducing technical variations and improving the resulting conclusions. An even better strategy would be to validate the *in vivo* findings in an independent cohort, thus strengthening the claim of identifying a promising new biomarker.

The finding that the same miRNAs are differentially regulated in different tumor types suggests that a panel of miRNAs may be more suitable than any given miRNA as a general pediatric oncology marker, as it may span the entire spectrum of pediatric solid tumors. Studying the changes in this miRNA panel throughout the course of the disease may even lead to the use of miRNAs as a marker of minimal residual disease, as shown previously in adults with Hodgkin lymphoma (4).

To conclude, EVs remain a promising diagnostic biomarker for use in pediatric solid tumors. However, for many tumor types the methodical research—and in particular, *in vivo* validation—is currently lacking. Thus, studies using standardized methods and clear reporting of each step in the enrichment and analysis of EVs derived from liquid biopsies are urgently needed in the field of pediatric oncology. Such studies will likely accelerate both the validation of EV-based techniques and the translation of these biomarkers from the bench to the bedside.



# References

- 1. van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213-28.
- 2. Bebelman MP, Smit MJ, Pegtel DM, Baglio SR. Biogenesis and function of extracellular vesicles in cancer. Pharmacol Ther. 2018;188:1-11.
- 3. Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D. Extracellular Vesicles in Cancer: Cellto-Cell Mediators of Metastasis. Cancer Cell. 2016;30(6):836-48.
- van Eijndhoven MA, Zijlstra JM, Groenewegen NJ, Drees EE, van Niele S, Baglio SR, et al. Plasma vesicle miRNAs for therapy response monitoring in Hodgkin lymphoma patients. JCI Insight. 2016;1(19):e89631.
- Merchant ML, Rood IM, Deegens JKJ, Klein JB. Isolation and characterization of urinary extracellular vesicles: implications for biomarker discovery. Nat Rev Nephrol. 2017;13(12):731-49.
- Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. Journal of Cell Biology. 2013;200(4):373-83.
- Willms E, Cabañas C, Mäger I, Wood MJA, Vader P. Extracellular Vesicle Heterogeneity: Subpopulations, Isolation Techniques, and Diverse Functions in Cancer Progression. Frontiers in immunology. 2018;9:738-.
- Yuana Y, Sturk A, Nieuwland R. Extracellular vesicles in physiological and pathological conditions. Blood Reviews. 2013;27(1):31-9.
- 9. Zaborowski MP, Balaj L, Breakefield XO, Lai CP. Extracellular Vesicles: Composition, Biological Relevance, and Methods of Study. BioScience. 2015;65(8):783-97.
- Simeone P, Bologna G, Lanuti P, Pierdomenico L, Guagnano MT, Pieragostino D, et al. Extracellular Vesicles as Signaling Mediators and Disease Biomarkers across Biological Barriers. International journal of molecular sciences. 2020;21(7):2514.
- 11. Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C. Exosomal-like vesicles are present in human blood plasma. Int Immunol. 2005;17(7):879-87.
- 12. Berckmans RJ, Lacroix R, Hau CM, Sturk A, Nieuwland R. Extracellular vesicles and coagulation in blood from healthy humans revisited. J Extracell Vesicles. 2019;8(1):1688936.
- 13. Akers J, Ramakrishnan V, Kim R, Phillips S, Kaimal V, Mao Y, et al. miRNA contents of cerebrospinal fluid extracellular vesicles in glioblastoma patients. Journal of neuro-oncology. 2015;123.
- 14. Gonzales PA, Zhou H, Pisitkun T, Wang NS, Star RA, Knepper MA, et al. Isolation and purification of exosomes in urine. Methods Mol Biol. 2010;641:89-99.
- 15. Zonneveld MI, Brisson AR, van Herwijnen MJC, Tan S, van de Lest CHA, Redegeld FA, et al. Recovery of extracellular vesicles from human breast milk is influenced by sample collection and vesicle isolation procedures. Journal of extracellular vesicles. 2014;3:10.3402/jev.v3.24215.
- 16. Weiser DA, West-Szymanski DC, Fraint E, Weiner S, Rivas MA, Zhao CWT, et al. Progress toward liquid biopsies in pediatric solid tumors. Cancer and Metastasis Reviews. 2019;38(4):553-71.
- 17. Nakata R, Shimada H, Fernandez GE, Fanter R, Fabbri M, Malvar J, et al. Contribution of neuroblastoma-derived exosomes to the production of pro-tumorigenic signals by bone marrow mesenchymal stromal cells. J Extracell Vesicles. 2017;6(1):1332941.
- Tamura T, Yoshioka Y, Sakamoto S, Ichikawa T, Ochiya T. Extracellular Vesicles in Bone Metastasis: Key Players in the Tumor Microenvironment and Promising Therapeutic Targets. Int J Mol Sci. 2020;21(18).

- 19. Xavier CP, Caires HR, Barbosa MA, Bergantim R, Guimarães JE, Vasconcelos MH. The Role of Extracellular Vesicles in the Hallmarks of Cancer and Drug Resistance. Cells. 2020;9(5):1141.
- 20. Namee NM, O'Driscoll L. Extracellular vesicles and anti-cancer drug resistance. Biochim Biophys Acta Rev Cancer. 2018;1870(2):123-36.
- 21. Nanou A, Coumans FAW, van Dalum G, Zeune LL, Dolling D, Onstenk W, et al. Circulating tumor cells, tumor-derived extracellular vesicles and plasma cytokeratins in castration-resistant prostate cancer patients. Oncotarget. 2018;9(27):19283-93.
- Nanou A, Miller MC, Zeune LL, de Wit S, Punt CJA, Groen HJM, et al. Tumour-derived extracellular vesicles in blood of metastatic cancer patients associate with overall survival. Br J Cancer. 2020;122(6):801-11.
- 23. Kosaka N, Kogure A, Yamamoto T, Urabe F, Usuba W, Prieto-Vila M, et al. Exploiting the message from cancer: the diagnostic value of extracellular vesicles for clinical applications. Experimental & molecular medicine. 2019;51(3):1-9.
- 24. Van Paemel R, Vlug R, De Preter K, Van Roy N, Speleman F, Willems L, et al. The pitfalls and promise of liquid biopsies for diagnosing and treating solid tumors in children: a review. Eur J Pediatr. 2020;179(2):191-202.
- van Zogchel LMJ, Lak NSM, Verhagen OJHM, Tissoudali A, Gusmalla Nuru M, Gelineau NU, et al. Novel Circulating Hypermethylated RASSF1A ddPCR for liquid biopsies in patients with pediatric solid tumors. JCO Precis Oncol. 2021;5:1738-48.
- van Zogchel LMJ, van Wezel EM, van Wijk J, Stutterheim J, Bruins WSC, Zappeij-Kannegieter L, et al. Hypermethylated RASSF1A as circulating tumor DNA marker for disease monitoring in neuroblastoma. J clin Oncol Precision Oncology. 2020.
- 27. Lodrini M, Graef J, Thole-Kliesch TM, Astrahantseff K, Sprussel A, Grimaldi M, et al. Targeted analysis of cell-free circulating tumor DNA is suitable for early relapse and actionable target detection in patients with neuroblastoma. Clin Cancer Res. 2022.
- Lodrini M, Sprussel A, Astrahantseff K, Tiburtius D, Konschak R, Lode HN, et al. Using droplet digital PCR to analyze MYCN and ALK copy number in plasma from patients with neuroblastoma. Oncotarget. 2017;8(49):85234-51.
- 29. Van Paemel R, Vandeputte C, Raman L, Van Thorre J, Willems L, Van Dorpe J, et al. The feasibility of using liquid biopsies as a complementary assay for copy number aberration profiling in routinely collected paediatric cancer patient samples. Eur J Cancer. 2021.
- Klega K, Imamovic-Tuco A, Ha G, Clapp AN, Meyer S, Ward A, et al. Detection of Somatic Structural Variants Enables Quantification and Characterization of Circulating Tumor DNA in Children With Solid Tumors. JCO Precis Oncol. 2018;2018.
- Lak NSM, Voormanns TL, Zappeij-Kannegieter L, van Zogchel LMJ, Fiocco M, van Noesel MM, et al. Improving Risk Stratification for Pediatric Patients with Rhabdomyosarcoma by Molecular Detection of Disseminated Disease. Clin Cancer Res. 2021.
- Stutterheim J, Gerritsen A, Zappeij-Kannegieter L, Kleijn I, Dee R, Hooft L, et al. PHOX2B is a novel and specific marker for minimal residual disease testing in neuroblastoma. J Clin Oncol. 2008;26(33):5443-9.
- Stutterheim J, Gerritsen A, Zappeij-Kannegieter L, Yalcin B, Dee R, van Noesel MM, et al. Detecting minimal residual disease in neuroblastoma: the superiority of a panel of real-time quantitative PCR markers. Clin Chem. 2009;55(7):1316-26.
- 34. Tellez-Gabriel M, Brown HK, Young R, Heymann MF, Heymann D. The Challenges of Detecting Circulating Tumor Cells in Sarcoma. Front Oncol. 2016;6:202.

7

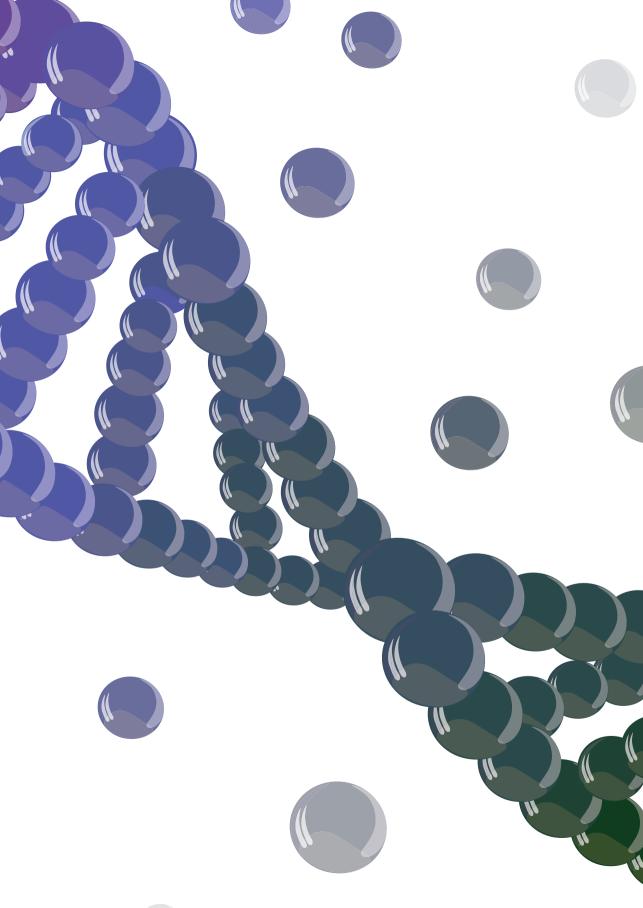
- Chicard M, Colmet-Daage L, Clement N, Danzon A, Bohec M, Bernard V, et al. Whole-Exome Sequencing of Cell-Free DNA Reveals Temporo-spatial Heterogeneity and Identifies Treatment-Resistant Clones in Neuroblastoma. Clin Cancer Res. 2018;24(4):939-49.
- 36. Eleveld TF, Oldridge DA, Bernard V, Koster J, Colmet Daage L, Diskin SJ, et al. Relapsed neuroblastomas show frequent RAS-MAPK pathway mutations. Nat Genet. 2015;47(8):864-71.
- 37. Van Wezel EM, Van Zogchel LMJ, Van Wijk J, Timmerman I, Vo N, Zappeij-Kannegieter L, et al. Mesenchymal neuroblastoma cells are undetected by current mRNA marker panels: the development of a specific neuroblastoma mesenchymal minimal residual disease panel. J clin Oncol Precision Oncology. 2019.
- 38. Cui M, Wang H, Yao X, Zhang D, Xie Y, Cui R, et al. Circulating MicroRNAs in Cancer: Potential and Challenge. Front Genet. 2019;10:626.
- 39. Mussbacher M, Pirabe A, Brunnthaler L, Schrottmaier WC, Assinger A. Horizontal MicroRNA Transfer by Platelets - Evidence and Implications. Front Physiol. 2021;12:678362.
- 40. Coumans FAW, Brisson AR, Buzas El, Dignat-George F, Drees EEE, El-Andaloussi S, et al. Methodological Guidelines to Study Extracellular Vesicles. Circ Res. 2017;120(10):1632-48.
- 41. Shirejini SZ, Inci F. The Yin and Yang of exosome isolation methods: conventional practice, microfluidics, and commercial kits. Biotechnol Adv. 2022;54:107814.
- 42. Abreu CM, Costa-Silva B, Reis RL, Kundu SC, Caballero D. Microfluidic platforms for extracellular vesicle isolation, analysis and therapy in cancer. Lab Chip. 2022;22(6):1093-125.
- 43. Singh PK, Patel A, Kaffenes A, Hord C, Kesterson D, Prakash S. Microfluidic Approaches and Methods Enabling Extracellular Vesicle Isolation for Cancer Diagnostics. Micromachines (Basel). 2022;13(1).
- 44. Van Deun J, Mestdagh P, Sormunen R, Cocquyt V, Vermaelen K, Vandesompele J, et al. The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J Extracell Vesicles. 2014;3.
- 45. Vergauwen G, Dhondt B, Van Deun J, De Smedt E, Berx G, Timmerman E, et al. Confounding factors of ultrafiltration and protein analysis in extracellular vesicle research. Sci Rep. 2017;7(1):2704.
- Arkesteijn GJ, Lozano-Andrés E, Libregts SF, Wauben MHM. Improved flow cytometric light scatter detection of submicron-sized particles by reduction of optical backgrouns signals. Cytometry A. 2020.
- Welsh JA, Van Der Pol E, Arkesteijn GJA, Bremer M, Brisson A, Coumans F, et al. MIFlowCyt-EV: a framework for standardized reporting of extracellular vesicle flow cytometry experiments. J Extracell Vesicles. 2020;9(1):1713526.
- 48. Lotvall J, Hill AF, Hochberg F, Buzas El, Di Vizio D, Gardiner C, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles. 2014;3:26913.
- 49. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of extracellular vesicles. 2018;7(1):1535750.
- Consortium E-T, Van Deun J, Mestdagh P, Agostinis P, Akay O, Anand S, et al. EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nat Methods. 2017;14(3):228-32.
- 51. Van Deun J, Hendrix A, consortium E-T. Is your article EV-TRACKed? J Extracell Vesicles. 2017;6(1):1379835.
- 52. Peng J, Wang W, Hua S, Liu L. Roles of Extracellular Vesicles in Metastatic Breast Cancer. Breast Cancer (Auckl). 2018;12:1178223418767666.

- 53. Linxweiler J, Junker K. Extracellular vesicles in urological malignancies: an update. Nature Reviews Urology. 2019:1-17.
- 54. Tang MK, Wong AS. Exosomes: Emerging biomarkers and targets for ovarian cancer. Cancer letters. 2015;367(1):26-33.
- 55. Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10(12):1470-6.
- 56. Kadota T, Yoshioka Y, Fujita Y, Kuwano K, Ochiya T, editors. Extracellular vesicles in lung cancer— From bench to bedside. Seminars in cell & developmental biology; 2017: Elsevier.
- 57. Lee RS, Stewart C, Carter SL, Ambrogio L, Cibulskis K, Sougnez C, et al. A remarkably simple genome underlies highly malignant pediatric rhabdoid cancers. J Clin Invest. 2012;122(8):2983-8.
- 58. Crompton BD, Stewart C, Taylor-Weiner A, Alexe G, Kurek KC, Calicchio ML, et al. The genomic landscape of pediatric Ewing sarcoma. Cancer Discov. 2014;4(11):1326-41.
- 59. Pugh TJ, Morozova O, Attiyeh EF, Asgharzadeh S, Wei JS, Auclair D, et al. The genetic landscape of high-risk neuroblastoma. Nat Genet. 2013;45(3):279-84.
- Ma X, Liu Y, Liu Y, Alexandrov LB, Edmonson MN, Gawad C, et al. Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. Nature. 2018;555(7696):371-6.
- 61. Gröbner SN, Worst BC, Weischenfeldt J, Buchhalter I, Kleinheinz K, Rudneva VA, et al. The landscape of genomic alterations across childhood cancers. Nature. 2018;555(7696):321-7.
- 62. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924-6.
- 63. https://www.gradeworkinggroup.org/. GRADE working group.
- 64. Thomas R, Rajeswaran G, Thway K, Benson C, Shahabuddin K, Moskovic E. Desmoplastic small round cell tumour: the radiological, pathological and clinical features. Insights Imaging. 2013;4(1):111-8.
- 65. Gerald WL, Ladanyi M, de Alava E, Cuatrecasas M, Kushner BH, LaQuaglia MP, et al. Clinical, pathologic, and molecular spectrum of tumors associated with t (11; 22)(p13; q12): desmoplastic small round-cell tumor and its variants. Journal of Clinical Oncology. 1998;16(9):3028-36.
- 66. Gerald WL, Haber DA. The EWS-WT1 gene fusion in desmoplastic small round cell tumor. Semin Cancer Biol. 2005;15(3):197-205.
- 67. Gedminas JM, Chasse MH, McBrairty M, Beddows I, Kitchen-Goosen SM, Grohar PJ. Desmoplastic small round cell tumor is dependent on the EWS-WT1 transcription factor. Oncogenesis. 2020;9(4):41.
- 68. Lal DR, Su WT, Wolden SL, Loh KC, Modak S, La Quaglia MP. Results of multimodal treatment for desmoplastic small round cell tumors. J Pediatr Surg. 2005;40(1):251-5.
- 69. Bent MA, Padilla BE, Goldsby RE, DuBois SG. Clinical Characteristics and Outcomes of Pediatric Patients with Desmoplastic Small Round Cell Tumor. Rare Tumors. 2016;8(1):6145.
- Colletti M, Paolini A, Galardi A, Di Paolo V, Pascucci L, Russo I, et al. Expression profiles of exosomal miRNAs isolated from plasma of patients with desmoplastic small round cell tumor. Epigenomics. 2019;11(5):489-500.
- 71. Aronson DC, Meyers RL. Malignant tumors of the liver in children. Semin Pediatr Surg. 2016;25(5):265-75.
- 72. Sumazin P, Chen Y, Treviño LR, Sarabia SF, Hampton OA, Patel K, et al. Genomic analysis of hepatoblastoma identifies distinct molecular and prognostic subgroups. Hepatology. 2017;65(1):104-21.

- 73. Czauderna P, Lopez-Terrada D, Hiyama E, Häberle B, Malogolowkin MH, Meyers RL. Hepatoblastoma state of the art: pathology, genetics, risk stratification, and chemotherapy. Current Opinion in Pediatrics. 2014;26(1):19-28.
- 74. Horton JD, Lee S, Brown SR, Bader J, Meier DE. Survival trends in children with hepatoblastoma. Pediatric surgery international. 2009;25(5):407.
- 75. Liu W, Chen S, Liu B. Diagnostic and prognostic values of serum exosomal microRNA-21 in children with hepatoblastoma: a Chinese population-based study. Pediatr Surg Int. 2016;32(11):1059-65.
- 76. Meyers RL, Maibach R, Hiyama E, Haberle B, Krailo M, Rangaswami A, et al. Risk-stratified staging in paediatric hepatoblastoma: a unified analysis from the Children's Hepatic tumors International Collaboration. Lancet Oncol. 2017;18(1):122-31.
- 77. Jiao C, Jiao X, Zhu A, Ge J, Xu X. Exosomal miR-34s panel as potential novel diagnostic and prognostic biomarker in patients with hepatoblastoma. J Pediatr Surg. 2017;52(4):618-24.
- 78. Matthay KK, Maris JM, Schleiermacher G, Nakagawara A, Mackall CL, Diller L, et al. Neuroblastoma. Nat Rev Dis Primers. 2016;2:16078.
- 79. Louis CU, Shohet JM. Neuroblastoma: molecular pathogenesis and therapy. Annual review of medicine. 2015;66:49-63.
- 80. Ahmed AA, Zhang L, Reddivalla N, Hetherington M. Neuroblastoma in children: Update on clinicopathologic and genetic prognostic factors. Pediatr Hematol Oncol. 2017;34(3):165-85.
- Mossé YP, Laudenslager M, Longo L, Cole KA, Wood A, Attiyeh EF, et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature. 2008;455(7215):930-5.
- Trochet D, Bourdeaut F, Janoueix-Lerosey I, Deville A, de Pontual L, Schleiermacher G, et al. Germline mutations of the paired-like homeobox 2B (PHOX2B) gene in neuroblastoma. Am J Hum Genet. 2004;74(4):761-4.
- 83. Deyell RJ, Attiyeh EF. Advances in the understanding of constitutional and somatic genomic alterations in neuroblastoma. Cancer Genet. 2011;204(3):113-21.
- Schleiermacher G, Janoueix-Lerosey I, Ribeiro A, Klijanienko J, Couturier J, Pierron G, et al. Accumulation of segmental alterations determines progression in neuroblastoma. J Clin Oncol. 2010;28(19):3122-30.
- 85. Ma J, Xu M, Yin M, Hong J, Chen H, Gao Y, et al. Exosomal hsa-miR199a-3p Promotes Proliferation and Migration in Neuroblastoma. Front Oncol. 2019;9:459.
- 86. Morini M, Cangelosi D, Segalerba D, Marimpietri D, Raggi F, Castellano A, et al. Exosomal microRNAs from Longitudinal Liquid Biopsies for the Prediction of Response to Induction Chemotherapy in High-Risk Neuroblastoma Patients: A Proof of Concept SIOPEN Study. Cancers (Basel). 2019;11(10).
- Challagundla KB, Wise PM, Neviani P, Chava H, Murtadha M, Xu T, et al. Exosome-mediated transfer of microRNAs within the tumor microenvironment and neuroblastoma resistance to chemotherapy. J Natl Cancer Inst. 2015;107(7).
- Haug BH, Hald OH, Utnes P, Roth SA, Lokke C, Flaegstad T, et al. Exosome-like Extracellular Vesicles from MYCN-amplified Neuroblastoma Cells Contain Oncogenic miRNAs. Anticancer Res. 2015;35(5):2521-30.
- Mirabello L, Troisi RJ, Savage SA. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results Program. Cancer: Interdisciplinary International Journal of the American Cancer Society. 2009;115(7):1531-43.
- 90. Geller DS, Gorlick R. Osteosarcoma: a review of diagnosis, management, and treatment strategies. Clin Adv Hematol Oncol. 2010;8(10):705-18.
- 91. Luetke A, Meyers PA, Lewis I, Juergens H. Osteosarcoma treatment–where do we stand? A state of the art review. Cancer treatment reviews. 2014;40(4):523-32.

- 92. Klein MJ, Siegal GP. Osteosarcoma: anatomic and histologic variants. American journal of clinical pathology. 2006;125(4):555-81.
- 93. Martin JW, Squire JA, Zielenska M. The genetics of osteosarcoma. Sarcoma. 2012;2012:627254-.
- 94. Chen X, Bahrami A, Pappo A, Easton J, Dalton J, Hedlund E, et al. Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep. 2014;7(1):104-12.
- 95. Simpson E, Brown HL. Understanding osteosarcomas. Journal of the American Academy of PAs. 2018;31(8):15-9.
- Xu J-F, Wang Y-P, Zhang S-J, Chen Y, Gu H-F, Dou X-F, et al. Exosomes containing differential expression of microRNA and mRNA in osteosarcoma that can predict response to chemotherapy. Oncotarget. 2017;8(44):75968-78.
- 97. Baglio SR, Lagerweij T, Perez-Lanzon M, Ho XD, Leveille N, Melo SA, et al. Blocking Tumor-Educated MSC Paracrine Activity Halts Osteosarcoma Progression. Clin Cancer Res. 2017;23(14):3721-33.
- 98. Shen RK, Zhu X, Yi H, Wu CY, Chen F, Dai LQ, et al. Proteomic identification of osteosarcoma-derived exosomes and their activation of pentose phosphate pathway. Int J Clin Exp Pathol. 2016;9(3):4140-8.
- Gong L, Bao Q, Hu C, Wang J, Zhou Q, Wei L, et al. Exosomal miR-675 from metastatic osteosarcoma promotes cell migration and invasion by targeting CALN1. Biochem Biophys Res Commun. 2018;500(2):170-6.
- 100. Jerez S, Araya H, Thaler R, Charlesworth MC, López-Solís R, Kalergis AM, et al. Proteomic Analysis of Exosomes and Exosome-Free Conditioned Media From Human Osteosarcoma Cell Lines Reveals Secretion of Proteins Related to Tumor Progression. J Cell Biochem. 2017;118(2):351-60.
- Jerez S, Araya H, Hevia D, Irarrazaval CE, Thaler R, van Wijnen AJ, et al. Extracellular vesicles from osteosarcoma cell lines contain miRNAs associated with cell adhesion and apoptosis. Gene. 2019;710:246-57.
- 102. Fujiwara T, Uotani K, Yoshida A, Morita T, Nezu Y, Kobayashi E, et al. Clinical significance of circulating miR-25-3p as a novel diagnostic and prognostic biomarker in osteosarcoma. Oncotarget. 2017;8(20):33375-92.
- 103. Yoshida A, Fujiwara T, Uotani K, Morita T, Kiyono M, Yokoo S, et al. Clinical and Functional Significance of Intracellular and Extracellular microRNA-25-3p in Osteosarcoma. Acta Med Okayama. 2018;72(2):165-74.
- 104. Macklin R, Wang H, Loo D, Martin S, Cumming A, Cai N, et al. Extracellular vesicles secreted by highly metastatic clonal variants of osteosarcoma preferentially localize to the lungs and induce metastatic behaviour in poorly metastatic clones. Oncotarget. 2016;7(28):43570-87.
- 105. Raimondi L, De Luca A, Gallo A, Costa V, Russelli G, Cuscino N, et al. Osteosarcoma cellderived exosomes affect tumor microenvironment by specific packaging of microRNAs. Carcinogenesis. 2019.
- 106. Ye Z, Zheng Z, Peng L. MicroRNA profiling of serum exosomes in patients with osteosarcoma by high-throughput sequencing. J Investig Med. 2020;68(4):893-901.
- 107. Cambier L, Stachelek K, Triska M, Jubran R, Huang M, Li W, et al. Extracellular vesicle-associated repetitive element DNAs as candidate osteosarcoma biomarkers. Sci Rep. 2021;11(1):94.
- 108. Skapek SX, Ferrari A, Gupta AA, Lupo PJ, Butler E, Shipley J, et al. Rhabdomyosarcoma. Nat Rev Dis Primers. 2019;5(1):1.
- 109. Ognjanovic S, Linabery AM, Charbonneau B, Ross JA. Trends in childhood rhabdomyosarcoma incidence and survival in the United States, 1975-2005. Cancer: Interdisciplinary International Journal of the American Cancer Society. 2009;115(18):4218-26.

- 110. Oberlin O, Rey A, Lyden E, Bisogno G, Stevens MC, Meyer WH, et al. Prognostic factors in metastatic rhabdomyosarcomas: results of a pooled analysis from United States and European cooperative groups. J Clin Oncol. 2008;26(14):2384-9.
- 111. Dasgupta R, Fuchs J, Rodeberg D. Rhabdomyosarcoma. Semin Pediatr Surg. 2016;25(5):276-83.
- 112. Parham DM, Barr FG. Classification of rhabdomyosarcoma and its molecular basis. Adv Anat Pathol. 2013;20(6):387-97.
- 113. Rodeberg D, Paidas C. Childhood rhabdomyosarcoma. Semin Pediatr Surg. 2006;15(1):57-62.
- 114. Ghayad SE, Rammal G, Ghamloush F, Basma H, Nasr R, Diab-Assaf M, et al. Exosomes derived from embryonal and alveolar rhabdomyosarcoma carry differential miRNA cargo and promote invasion of recipient fibroblasts. Sci Rep. 2016;6:37088.
- 115. Rammal G, Fahs A, Kobeissy F, Mechref Y, Zhao J, Zhu R, et al. Proteomic Profiling of Rhabdomyosarcoma-Derived Exosomes Yield Insights into Their Functional Role in Paracrine Signaling. Journal of Proteome Research. 2019;18(10):3567-79.
- 116. Ghamloush F, Ghayad SE, Rammal G, Fahs A, Ayoub AJ, Merabi Z, et al. The PAX3-FOXO1 oncogene alters exosome miRNA content and leads to paracrine effects mediated by exosomal miR-486. Sci Rep. 2019;9(1):14242.
- 117. Grunewald TGP, Cidre-Aranaz F, Surdez D, Tomazou EM, de Alava E, Kovar H, et al. Ewing sarcoma. Nat Rev Dis Primers. 2018;4(1):5.
- 118. Zollner SK, Amatruda JF, Bauer S, Collaud S, de Alava E, DuBois SG, et al. Ewing Sarcoma-Diagnosis, Treatment, Clinical Challenges and Future Perspectives. J Clin Med. 2021;10(8).
- 119. Salguero-Aranda C, Amaral AT, Olmedo-Pelayo J, Diaz-Martin J, Alava E. Breakthrough Technologies Reshape the Ewing Sarcoma Molecular Landscape. Cells. 2020;9(4).
- 120. Van Paemel R, De Koker A, Vandeputte C, van Zogchel L, Lammens T, Laureys G, et al. Minimally invasive classification of paediatric solid tumours using reduced representation bisulphite sequencing of cell-free DNA: a proof-of-principle study. Epigenetics. 2021;16(2):196-208.
- 121. Miller IV, Raposo G, Welsch U, Prazeres da Costa O, Thiel U, Lebar M, et al. First identification of Ewing's sarcoma-derived extracellular vesicles and exploration of their biological and potential diagnostic implications. Biol Cell. 2013;105(7):289-303.
- 122. Zhang P, Crow J, Lella D, Zhou X, Samuel G, Godwin AK, et al. Ultrasensitive quantification of tumor mRNAs in extracellular vesicles with an integrated microfluidic digital analysis chip. Lab Chip. 2018;18(24):3790-801.
- 123. Dong J, Zhang RY, Sun N, Hu J, Smalley MD, Zhou A, et al. Coupling Nanostructured Microchips with Covalent Chemistry Enables Purification of Sarcoma-Derived Extracellular Vesicles for Downstream Functional Studies. Adv Funct Mater. 2020;30(49).
- 124. Samuel G, Crow J, Klein JB, Merchant ML, Nissen E, Koestler DC, et al. Ewing sarcoma family of tumors-derived small extracellular vesicle proteomics identify potential clinical biomarkers. Oncotarget. 2020;11(31):2995-3012.
- 125. Sun N, Tran BV, Peng Z, Wang J, Zhang C, Yang P, et al. Coupling Lipid Labeling and Click Chemistry Enables Isolation of Extracellular Vesicles for Noninvasive Detection of Oncogenic Gene Alterations. Advanced Science.n/a(n/a):2105853.
- 126. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57-70.
- 127. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-74.
- 128. Bautista-Sanchez D, Arriaga-Canon C, Pedroza-Torres A, De La Rosa-Velazquez IA, Gonzalez-Barrios R, Contreras-Espinosa L, et al. The Promising Role of miR-21 as a Cancer Biomarker and Its Importance in RNA-Based Therapeutics. Mol Ther Nucleic Acids. 2020;20:409-20.


- Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A. 2006;103(7):2257-61.
- 130. Wang XH, Cai P, Wang MH, Wang Z. microRNA-25 promotes osteosarcoma cell proliferation by targeting the cell-cycle inhibitor p27. Molecular medicine reports. 2014;10(2):855-9.
- 131. Ren CL, L.; Zhang, H.; Gao, L., Li, A. The role of miR-25 in pediatric neuroblastoma. Biomed Res 2017;28(16):7261-7.
- Ding X, Zhong T, Jiang L, Huang J, Xia Y, Hu R. miR-25 enhances cell migration and invasion in non-small-cell lung cancer cells via ERK signaling pathway by inhibiting KLF4. Molecular medicine reports. 2018;17(5):7005-16.
- 133. Hu Z, Dong J, Wang L-E, Ma H, Liu J, Zhao Y, et al. Serum microRNA profiling and breast cancer risk: the use of miR-484/191 as endogenous controls. Carcinogenesis. 2012;33(4):828-34.
- 134. Li LM, Hu ZB, Zhou ZX, Chen X, Liu FY, Zhang JF, et al. Serum microRNA profiles serve as novel biomarkers for HBV infection and diagnosis of HBV-positive hepatocarcinoma. Cancer Res. 2010;70(23):9798-807.
- 135. Guessous F, Zhang Y, Kofman A, Catania A, Li Y, Schiff D, et al. microRNA-34a is tumor suppressive in brain tumors and glioma stem cells. Cell cycle. 2010;9(6):1031-6.
- 136. Jafari N, Abediankenari S. MicroRNA-34 dysregulation in gastric cancer and gastric cancer stem cell. Tumour Biol. 2017;39(5):1010428317701652.
- 137. Imani S, Wu RC, Fu J. MicroRNA-34 family in breast cancer: from research to therapeutic potential. J Cancer. 2018;9(20):3765-75.
- 138. Gu S, Chan WY. Flexible and versatile as a chameleon-sophisticated functions of microRNA-199a. Int J Mol Sci. 2012;13(7):8449-66.
- 139. Alemdehy MF, Haanstra JR, de Looper HW, van Strien PM, Verhagen-Oldenampsen J, Caljouw Y, et al. ICL-induced miR139-3p and miR199a-3p have opposite roles in hematopoietic cell expansion and leukemic transformation. Blood. 2015;125(25):3937-48.
- 140. Tsukigi M, Bilim V, Yuuki K, Ugolkov A, Naito S, Nagaoka A, et al. Re-expression of miR-199a suppresses renal cancer cell proliferation and survival by targeting GSK-3β. Cancer letters. 2012;315(2):189-97.
- 141. Phatak P, Burrows WM, Chesnick IE, Tulapurkar ME, Rao JN, Turner DJ, et al. MiR-199a-3p decreases esophageal cancer cell proliferation by targeting p21 activated kinase 4. Oncotarget. 2018;9(47):28391-407.
- 142. Xue X, Fei X, Hou W, Zhang Y, Liu L, Hu R. miR-342-3p suppresses cell proliferation and migration by targeting AGR2 in non-small cell lung cancer. Cancer Lett. 2018;412:170-8.
- 143. Li XR, Chu HJ, Lv T, Wang L, Kong SF, Dai SZ. miR-342-3p suppresses proliferation, migration and invasion by targeting FOXM1 in human cervical cancer. FEBS Lett. 2014;588(17):3298-307.
- 144. Zhao L, Zhang Y. miR-342-3p affects hepatocellular carcinoma cell proliferation via regulating NFκB pathway. Biochem Biophys Res Commun. 2015;457(3):370-7.
- 145. Galardi A, Colletti M, Di Paolo V, Vitullo P, Antonetti L, Russo I, et al. Exosomal MiRNAs in Pediatric Cancers. Int J Mol Sci. 2019;20(18).
- 146. Xu R, Rai A, Chen M, Suwakulsiri W, Greening DW, Simpson RJ. Extracellular vesicles in cancer implications for future improvements in cancer care. Nature reviews Clinical oncology. 2018;15(10):617.
- 147. Yekula A, Muralidharan K, Kang KM, Wang L, Balaj L, Carter BS. From laboratory to clinic: Translation of extracellular vesicle based cancer biomarkers. Methods. 2020;177:58-66.
- 148. Logozzi M, De Milito A, Lugini L, Borghi M, Calabrò L, Spada M, et al. High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients. PLoS One. 2009;4(4):e5219.

7

- 149. Eldh M, Olofsson Bagge R, Lässer C, Svanvik J, Sjöstrand M, Mattsson J, et al. MicroRNA in exosomes isolated directly from the liver circulation in patients with metastatic uveal melanoma. BMC Cancer. 2014;14:962.
- 150. Momen-Heravi F, Balaj L, Alian S, Trachtenberg AJ, Hochberg FH, Skog J, et al. Impact of biofluid viscosity on size and sedimentation efficiency of the isolated microvesicles. Front Physiol. 2012;3:162.
- 151. Menck K, Bleckmann A, Wachter A, Hennies B, Ries L, Schulz M, et al. Characterisation of tumourderived microvesicles in cancer patients' blood and correlation with clinical outcome. J Extracell Vesicles. 2017;6(1):1340745.
- 152. Ramirez MI, Amorim MG, Gadelha C, Milic I, Welsh JA, Freitas VM, et al. Technical challenges of working with extracellular vesicles. Nanoscale. 2018;10(3):881-906.
- 153. Clayton A, Boilard E, Buzas El, Cheng L, Falcon-Perez JM, Gardiner C, et al. Considerations towards a roadmap for collection, handling and storage of blood extracellular vesicles. J Extracell Vesicles. 2019;8(1):1647027.
- 154. Palviainen M, Saraswat M, Varga Z, Kitka D, Neuvonen M, Puhka M, et al. Extracellular vesicles from human plasma and serum are carriers of extravesicular cargo-Implications for biomarker discovery. PLoS One. 2020;15(8):e0236439.
- 155. Helwa I, Cai J, Drewry MD, Zimmerman A, Dinkins MB, Khaled ML, et al. A comparative study of serum exosome isolation using differential ultracentrifugation and three commercial reagents. PloS one. 2017;12(1):e0170628.
- 156. Andreu Z, Rivas E, Sanguino-Pascual A, Lamana A, Marazuela M, González-Alvaro I, et al. Comparative analysis of EV isolation procedures for miRNAs detection in serum samples. Journal of extracellular vesicles. 2016;5(1):31655.
- 157. Kalra H, Adda CG, Liem M, Ang CS, Mechler A, Simpson RJ, et al. Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma. Proteomics. 2013;13(22):3354-64.
- 158. Macías M, Rebmann V, Mateos B, Varo N, Perez-Gracia JL, Alegre E, et al. Comparison of six commercial serum exosome isolation methods suitable for clinical laboratories. Effect in cytokine analysis. Clinical Chemistry and Laboratory Medicine (CCLM). 2019;57(10):1539-45.
- 159. Millioni R, Tolin S, Puricelli L, Sbrignadello S, Fadini GP, Tessari P, et al. High abundance proteins depletion vs low abundance proteins enrichment: comparison of methods to reduce the plasma proteome complexity. PLoS One. 2011;6(5):e19603.
- 160. Simonsen JB. What are we looking at? Extracellular vesicles, lipoproteins, or both? Circulation research. 2017;121(8):920-2.
- 161. Yuana Y, Koning RI, Kuil ME, Rensen PC, Koster AJ, Bertina RM, et al. Cryo-electron microscopy of extracellular vesicles in fresh plasma. J Extracell Vesicles. 2013;2.
- 162. Yuana Y, Levels J, Grootemaat A, Sturk A, Nieuwland R. Co-isolation of extracellular vesicles and high-density lipoproteins using density gradient ultracentrifugation. Journal of extracellular vesicles. 2014;3:10.3402/jev.v3.23262.
- 163. Chiam K, Mayne GC, Wang T, Watson DI, Irvine TS, Bright T, et al. Serum outperforms plasma in small extracellular vesicle microRNA biomarker studies of adenocarcinoma of the esophagus. World J Gastroenterol. 2020;26(20):2570-83.
- 164. Xu JF, Wang YP, Zhang SJ, Chen Y, Gu HF, Dou XF, et al. Exosomes containing differential expression of microRNA and mRNA in osteosarcoma that can predict response to chemotherapy. Oncotarget. 2017;8(44):75968-78.

- 165. Shen RK, Zhu X, Yi H, Wu CY, Chen F, Dai LQ, et al. Proteomic identification of osteosarcoma-derived exosomes and their activation of pentose posphate pathway. Int J Clin Exp Pathol. 2016;9(3):4140-8.
- 166. Enciso-Martinez A, Van Der Pol E, Hau CM, Nieuwland R, Van Leeuwen TG, Terstappen L, et al. Labelfree identification and chemical characterisation of single extracellular vesicles and lipoproteins by synchronous Rayleigh and Raman scattering. J Extracell Vesicles. 2020;9(1):1730134.
- 167. Enciso-Martinez A, van der Pol E, Lenferink ATM, Terstappen L, van Leeuwen TG, Otto C. Synchronized Rayleigh and Raman scattering for the characterization of single optically trapped extracellular vesicles. Nanomedicine. 2020;24:102109.
- 168. Martinez-Castaldi C, Silverstein M, Bauchner H. Child versus adult research: the gap in high-quality study design. Pediatrics. 2008;122(1):52-7.
- 169. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6(11):857-66.
- 170. Mills J, Capece M, Cocucci E, Tessari A, Palmieri D. Cancer-Derived Extracellular Vesicle-Associated MicroRNAs in Intercellular Communication: One Cell's Trash Is Another Cell's Treasure. International journal of molecular sciences. 2019;20(24):6109.
- 171. Batchu S, Kellish AS, Hakim AA. Assessing alveolar rhabdomyosarcoma cell lines as tumor models by comparison of mRNA expression profiles. Gene. 2020:145025.





# Chapter 8 Cell-free RNA from plasma in patients with neuroblastoma: exploring the technical and clinical potential

Cancers (Basel). 2023 Mar 31;15(7):2108. doi: 10.3390/cancers15072108.

Nathalie S.M. Lak<sup>1,2</sup>, Anne Seijger<sup>3</sup>, Lieke M.J. van Zogchel<sup>1,2</sup>, Nina U. Gelineau<sup>1,2</sup>, Ahmad Javadi<sup>2</sup>, Lily Zappeij-Kannegieter<sup>2</sup>, Laura Bongiovanni<sup>3,4</sup>, Anneloes Andriessen<sup>3</sup>, Janine Stutterheim<sup>1</sup>, C. Ellen van der Schoot<sup>1</sup>, Alain de Bruin<sup>3</sup>, Godelieve A.M. Tytgat<sup>1,2</sup>

 <sup>1</sup>Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
 <sup>2</sup>Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands
 <sup>3</sup>Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
 <sup>4</sup>Department of Veterinary Medicine, University of Teramo, Italy.

# Abstract

Neuroblastoma affects mostly young children, bearing a high morbidity and mortality. Liquid biopsies, e.g., molecular analysis of circulating tumor-derived nucleic acids in blood, offer a minimally invasive diagnostic modality. Cell-free RNA (cfRNA) is released by all cells, especially cancer. It circulates in blood packed in extracellular vesicles (EV) or attached to proteins. We studied the feasibility of analyzing cfRNA and EV, isolated by size exclusion chromatography (SEC), from platelet-poor plasma from healthy controls (n = 40) and neuroblastoma patients with localized (n = 10) and metastatic disease (n = 30). The mRNA content was determined using several multiplex droplet digital PCR (ddPCR) assays for a neuroblastomaspecific gene panel (PHOX2B, TH, CHRNA3) and a cell cycle regulation panel (E2F1, CDC6, ATAD2, H2AFZ, MCM2, DHFR). We applied corrections for the presence of platelets. We demonstrated that neuroblastoma-specific markers were present in plasma from 14/30 patients with metastatic disease and not in healthy controls and patients with localized disease. Most cell cycle markers had a higher expression in patients. The mRNA markers were mostly present in the EV-enriched SEC fractions. In conclusion, cfRNA can be isolated from plasma and EV and analyzed using multiplex ddPCR. cfRNA is an interesting novel liquid biopsy-based target to explore further.

#### Simple summary

Neuroblastoma mostly affects young children and despite intensive treatment, many children die of progressive disease. It remains challenging to identify those patients at risk. Analyzing blood, as liquid biopsies, is not invasive and can help to identify these patients. We studied whether RNA molecules can be detected in these liquid biopsies. In blood plasma, RNA can be free-floating or packed in small particles, 'extracellular vesicles'. We present a workflow to analyze this cell-free RNA from small volumes of blood plasma of children with neuroblastoma. We have used neuroblastoma-specific markers and markers involved in cell proliferation. These latter genes can be upregulated in many different tumor types. We demonstrate that both types of markers have a higher expression in patients with metastatic disease, compared to healthy controls and patients with localized disease. These findings are essential for future studies on cell-free RNA, hopefully leading to improved survival for these patients.

# Introduction

Neuroblastoma is the most common extracranial solid tumor in children [1]. Most patients present with disseminated disease which requires intensive treatment, consisting of chemotherapy, surgery and immunotherapy [1]. Still, more than half of patients suffer from refractory disease or relapse, which is associated with low survival [2,3]. At initial diagnosis and during the first courses of chemotherapy, it is hard to identify patients with treatment-resistant disease or at risk for relapse. Currently, response evaluation depends on imaging which often demands general anesthesia in these young patients. Liquid biopsy-based monitoring might decrease the number of diagnostic procedures and potentially even improve sensitivity of response monitoring [4,5].

The presence of neuroblastoma-specific mRNA in the cellular compartment of blood and bone marrow, such as PHOX2B, TH and CHRNA3, has been shown to correlate with outcome, enabling response monitoring in patients with high-risk disease [6,7,8,9]. Additionally, several targets in cell-free DNA (cfDNA) from plasma have been described to track therapy response, disappearing as tumor burden decreases and re-appearing as the disease relapses [10,11,12,13]. However, the presence of tumor-specific mRNA is often attributed to circulating tumor cells, which are not always present in every stage of the disease. cfDNA targets such as mutations in the ALK gene, amplification of MYCN or hypermethylation of the tumor suppressor gene RASSF1A (RASSF1A-M) are only applicable in patients with high-risk disease [10,12]. Therefore, apart from cfDNA, other liquid biopsy-based biomarkers in the plasma compartment deserve to be investigated. cfDNA is often shed through apoptosis or necrosis [14], whereas RNA is also actively secreted by living cells [15], presumably presenting a more comprehensive perspective on the ongoing disease [16]. Due to the presence of RNases in plasma [17], RNA has historically been considered unstable in plasma and therefore cfRNA not suitable for biomarker studies. However, in recent years, it has been discovered that plasma contains several types of RNA, which are mostly protected from degradation through their association with extracellular vesicles (EVs) or protein aggregates [16,18,19,20,21]. Furthermore, platelets contain RNA which also bears biomarker potential [22,23,24].

In the field of neuroblastoma, Morini et al. identified a panel of miRNA and showed that upregulation of these miRNA in plasma after induction therapy was associated with better chemotherapy response [25]. Ma et al. identified a single miRNA (miR199a-3p) which was upregulated in plasma from patients with neuroblastoma in all risk groups [26]. Recently, Matthew et al. have performed an impressive sequencing effort and characterized cell-free mRNA from plasma from both healthy

controls and adults with lung and breast cancer [27]. They demonstrated that cfRNA expression profiles in patients differed from healthy controls, and they were able to identify tumor tissue-specific signatures. So far, similar sequencing studies in neuroblastoma have not been performed.

Another example of the possibilities of cell-free mRNA from plasma in cancer comes from studies in canines. Duplication of genomic DNA and distribution amongst the new daughter cells is a normal process in healthy cells. This process, named 'cell cycle', consists of well-defined phases, all guarded by checkpoints and their respective regulatory genes [28]. Tumor cells are highly proliferative due to dysregulation of the cell cycle [29]. A pivotal gene for the progression of the G2 phase to the S phase is E2F1 [29,30]. In canines, Bongiovanni et al. identified several genes within the E2F1 pathway to be overexpressed in tissue from canine melanomas, amongst them E2F1, DHFR, CDC6, ATAD2, MCM2 and H2AFZ [31]. Subsequently, Andriessen et al. reported that CDC6, DHFR, H2AFZ and ATAD2 transcripts were present in plasma of canines with malignancies and that these genes were mainly associated with EV [32]. Cell cycle dysregulation is an important feature of the pathogenesis of neuroblastoma [1,33], and we therefore postulated that transcripts of cell cycle proteins might potentially serve as novel biomarkers for this disease.

In this study, we explore the feasibility of detecting and studying cfRNA in plasma from patients with neuroblastoma by studying both a neuroblastoma-specific and a cell cycle panel for use on cell-free mRNA from plasma in patients with neuroblastoma. We report on the development of several multiplex panels for droplet digital PCR (ddPCR) and investigate whether these mRNA targets from plasma are associated with EVs. Finally, we describe technical challenges arising from the study of cfRNA from plasma.

# Methods

# **Patients and Samples**

Peripheral blood samples from neuroblastoma patients were collected within the Minimal Residual Disease study of the DCOG high-risk protocol, approved by the ethical committee of the Academic Medical Center, Amsterdam, The Netherlands (MEC07/219#08.17.0836). Samples from patients with International Neuroblastoma Staging System (INSS) stage 1 (localized disease that can be fully resected) and INSS stage 4 (metastatic disease) were included. Peripheral blood was collected in EDTA tubes (Becton-Dickinson, Franklin Lakes, NJ, USA) and processed within 24 h. Plasma

was obtained by centrifugating blood samples at  $1375 \times g$  for 10 min and stored at -20 °C until further processing. For controls, blood was collected from healthy adult volunteers and prepared similar to patients' samples, including storage at -20 °C.

## **Preparation of Platelets from Peripheral Blood**

Peripheral blood was collected in EDTA tubes (Becton-Dickinson) and processed within 2 h. First, platelet-rich plasma was obtained by centrifugation at 235× g for 15 min. The supernatant was collected and 10% anticoagulant citrate dextrose, solution A (ACD-A, Terumo, Japan)) was added and centrifuged at 16,873× g for 4 min to pellet the platelets. Leukocyte and platelet counts were measured with the Sysmex XN1000 Hematology analyzer (Sysmex, Kobe, Japan) according to manufacturer's protocol.

# Isolation of Cell-Free RNA and cDNA Synthesis

RNA was isolated from 200  $\mu$ L of plasma, unless otherwise specified, with the miRNeasy micro serum/plasma kit (Qiagen, Germantown, TN, USA) following manufacturer's protocol. RNA was eluted in 12  $\mu$ L of H2O and subsequently used for cDNA synthesis with the High Capacity RNA-to-cDNA kit (Thermo Fisher, Waltham, MA, USA).

# Design and Optimization of the Multiplex ddPCR Assays

For the detection of PHOX2B, TH and CHRNA3, the same primers and probes as previously described for RT-qPCR were used [6,9,34]. As potential cfRNA reference genes, GUSB and B2M were included, as previously described for RT-gPCR [35]. Genes involved in the E2F1 pathway were CDC6, ATAD2, DHFR, H2AFZ and MCM2. To quantify the presence of platelets in the plasma, we applied an assay for plateletspecific ITG3B, designed to amplify and detect both polymorphic alleles (HPA-1A and HPA-1B) of this gene [29]. ddPCR assays were designed using Primer3Plus (www.primer3plus.com (accessed on 1 February 2021)). All sequences are shown in Supplemental Table S1. The QX200<sup>™</sup> Droplet Generator (Bio Rad, Hercules, CA, USA) or QX200<sup>™</sup> Automated Droplet Generator (Bio Rad) were used for droplet generation. Thermal cycling was performed using the C1000 Touch Thermal Cycler (Bio Rad) with the following program: 95 °C for 10 min; 40 cycles of 94 °C for 30 s, annealing temperature variable per assay for 1 min; 98 °C for 10 min; 4 °C hold. Following PCR, droplets were read and quantified using the QX200 Droplet reader (Bio Rad). Assays were optimized using RNA isolated from the neuroblastoma cell line IMR32 or RNA isolated from healthy platelets. All patient samples were tested in duplicate and 'no template controls' were included with every assay. ddPCR assay analyses were done in QX Manager 1.2 Standard Edition software (Bio Rad), except if indicated, then analyzed in Quantasoft 1.7.4 software (Bio Rad). Results are represented in copies/ mL plasma, unless otherwise specified.

# Isolation of Cell-Free DNA and ddPCR Assays

cfDNA was isolated using the Quick cfDNA Serum & Plasma kit (Zymo Research, Irvine, CA, USA). The methylation-sensitive restriction enzyme-based ddPCR for methylated tumor suppressor gene RASSF1A (RASSF1A-M) and ACTB was performed as described previously [10].

## Isolation of EVs from Plasma and Electron Microscopy on EVs

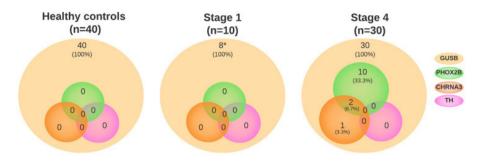
EVs from plasma were isolated from 500 µL plasma by size exclusion chromatography (SEC) columns (qEV Original 70 nm from Izon Science, Christchurch, New Zealand) according to manufacturer's protocol. SEC fractions 6 to 20 were collected. Electron microscopy was performed as reported previously [30].

## **Western Blot**

Protein content of each SEC fraction was measured by micro BCA protein assay (Thermo Fisher Scientific), and input from the separate SEC fractions was adjusted accordingly to obtain equal loading of every SEC fraction onto the 4–12% SDS PAGE gel (Bio Rad). Protein concentration was eventually determined by a precipitation assay with trichloroacetic acid (Sigma, Kanagawa, Japan). After transfer to a nitrocellulose membrane (Bio Rad), the membrane was cut into two parts to allow for staining for different targets simultaneously. The membrane was blocked with PBS containing 5% (w/v) bovine serum albumin and then incubated with CD9 (Santa Cruz Biotechnology, Dallas, TX, USA, sc52519, 1:1000) and CD63 (BD Biosciences, San Jose, CA, USA, 556019, 1:1000). Antibody binding was visualized with antimouse IgG coupled to horse radish peroxidase at a 1:5000 dilution. Subsequently, the membranes were stripped by incubating with 1% NaN3 for an hour, and after blocking, incubated with CD81 (Santa Cruz Biotechnology, Santa Cruz, Dallas, TX, USA, SC9158, 1:1000) and TSG101 (Sigma, St. Louis, MI, USA, T5701, 1:1000).

## **Statistical Analysis**

Statistical analyses were performed using SPSS version 23. Venn diagrams were generated using Lucid chart (www.lucidchart.com (accessed on 18 February 2022)). All other figures were generated using GraphPad Prism version 8. Continuous variables were analyzed using the non-parametric Mann–Whitney U test; differences were considered significant at p < 0.05.


# Results

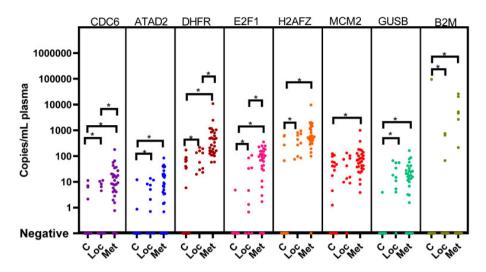
#### Neuroblastoma-Specific mRNA Is Present in Plasma

To study cfRNA in limited volume samples of pediatric patients with neuroblastoma, we first designed and optimized a multiplex ddPCR which included the neuroblastoma-specific targets PHOX2B, CHRNA3 and TH, and GUSB as a reference gene (Supplemental Figure S1). In 40 healthy controls, there were no transcripts of PHOX2B, TH or CHRNA3 detected, whereas in all donors, GUSB transcripts could be demonstrated (mean 96 copies/mL plasma, range 36–238 copies/mL) (Supplemental Table S2).

We tested the neuroblastoma-specific multiplex ddPCR panel in a first cohort, consisting of 38 samples from 22 patients with neuroblastoma, which were collected at different timepoints during treatment (patient characteristics and outcome in Supplemental Table S3). In these 38 samples, only 24 samples were positive for GUSB and at lower concentrations (mean of positive samples 14.9 copies/mL plasma (range 2.0–127 copies/mL)). In the 24 samples positive for GUSB, 2 samples were positive for PHOX2B and GUSB (1 at initial diagnosis (2.1 and 2.1 copies/mL, respectively) and 1 at relapse (11 and 127 copies/mL), Supplemental Table S4). No samples were positive for TH or CHRNA3. As it is known that freeze–thaw cycles can affect cfRNA quality [27], we hypothesized that the cfRNA in the samples from these archived samples might be degenerated. Unfortunately, no RNA or plasma was left for analysis of RNA quality through another modality, e.g., Bioanalyzer.

To overcome this problem, we subsequently used only pre-treatment plasma samples that had not been thawed before, 10 samples from patients with INSS stage 1 (localized disease) and 30 INSS stage 4 neuroblastoma patients (metastatic disease), to form a second cohort. Patient characteristics and outcomes are shown in Supplemental Table S3. Results for the neuroblastoma-specific markers are shown in Figure 1 and Supplemental Table S5. In all 40 neuroblastoma samples, GUSB was detectable; for patients with localized disease, the mean was 38.2 copies/mL plasma (range 2.3–95 copies/mL plasma) and metastatic disease, 53 copies/mL plasma (range 10–220 copies/mL plasma). In none of the samples of patients with localized disease were PHOX2B, TH and CHRNA3 detected. In contrast, in 14/30 samples of patients with metastatic disease, PHOX2B (n = 13, 9.2 copies/mL, range 0.4–47 copies/mL) and/or CHRNA3 (n = 4, mean 5.4 copies/mL, range 2.1–11 copies/mL) was detected. No samples were positive for TH. In the samples with at least one marker positive, 10/14 (71%) suffered from an event vs. 11/16 (69%) in the negative samples.




**Figure 1.** Expression of neuroblastoma-specific genes in cell-free RNA from healthy controls (n = 40), and diagnostic plasmas from patients with neuroblastoma with localized (n = 10) and metastatic (n = 30) disease. \* Not enough material was left for 2 patients to perform the ddPCR for these neuroblastomaspecific markers.

## **Cell Cycle Genes in Plasma and Correction for the Presence of Platelets**

Next, we investigated the presence of transcripts of cell cycle genes in cfRNA (Supplemental Figure S2 for the cell cycle panel ddPCR assays). We found that platelets also contain these transcripts (Supplemental Figure S3 for expression in platelets). Since plasma was isolated by centrifugation at 1375× g for 10 min, contaminating platelets might have been present in the plasma thereby affecting the analysis. Indeed, in EDTA blood from four healthy controls that were treated similarly as our plasma samples, using the Sysmex system, we measured that after the centrifugation step, 25–50% of the platelets were still present in plasma (Supplemental Table S6). As platelet counts can vary between patients and healthy controls, the cfRNA was corrected for the presence of platelet-specific RNA using the platelet-specific ITGB3 ddPCR. The ratio between ITGB3 expression and the different cell cycle gene transcripts was stable between donors, which enabled a correction co-efficient for each marker, as indicated in Supplemental Table S7.

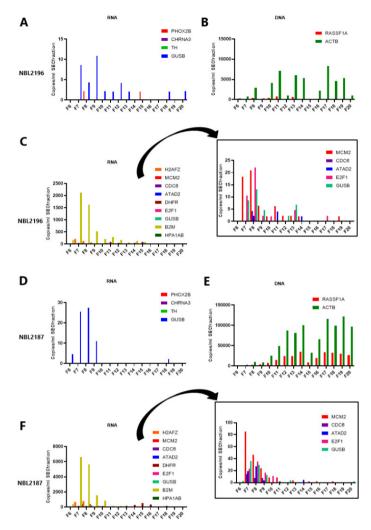
#### Cell Cycle Genes in Plasma from Patients at Diagnosis

We measured the expression of the six cell cycle genes (CDC6, ATAD2, E2F1, H2AFZ, MCM2 and DHFR), the two potential references genes (GUSB and B2M) and the platelet-specific marker ITGB3 in 200 µL of plasma from 20 healthy controls (Supplemental Table S8). We then proceeded to measure these genes in our cohort of 40 patients. After correcting for platelets, CDC6, ATAD2, DHFR, E2F1, H2AFZ, GUSB and B2M were significantly higher in patients with localized disease than in healthy controls. CDC6, DHFR, E2F1, H2AFZ, MCM2, GUSB and B2M were significantly higher in patients with netastatic disease than in healthy controls, and CDC6, DHFR and E2F1 were significantly higher in metastatic patients than in localized patients (Figure 2 and Supplemental Table S9).



**Figure 2.** Expression of cell cycle genes (CDC6, ATAD2, DHFR, E2F1, H2AFZ and MCM2) and reference genes (GUSB and B2M) in cell-free RNA from healthy controls (n = 40) and diagnostic plasmas from patients with neuroblastoma with localized (n = 10) and metastatic (n = 30) disease, as measured by ddPCR from 200  $\mu$ L plasma and corrected for platelet contamination. C; healthy controls. Loc; patients with localized disease. Met; patients with metastatic disease. \* Significance at p < 0.05.

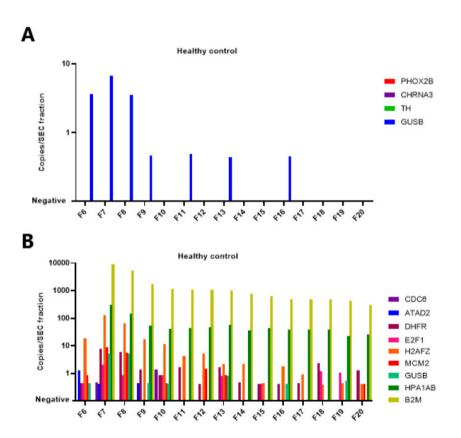
We hypothesized that these cell cycle panels could assist in differentiating patients from healthy controls and could possibly differentiate between low- and highrisk disease. For this purpose, we determined the background expression of the cell cycle markers in 20 healthy plasma samples and set a threshold for positivity (Supplemental Table S8). When applying the thresholds for positivity per marker (after correcting for platelets), none of the 10 patients with localized disease were positive, whereas 14 out of 30 patients with metastatic disease had markers that were above the threshold (Supplemental Table S9). All of these 14 patients were positive for DHFR, and only 3 patients were also positive for MCM2 in combination with CDC6 (n = 2) and H2AFZ (n = 1). All three patients suffered from relapse. Eleven other patients were only positive for DHFR. A total of 7/11 suffered from relapse or refractory disease, and 4 eventually died from the disease. In this small cohort, we observed that, when correcting for platelets and background expression, DHFR was elevated in 14/30 patients with metastatic disease at diagnosis. When compared with the neuroblastoma genes, 7/14 DHFR-positive patients were also positive for PHOX2B and/or CHRNA3.


#### cfRNA during Treatment

To explore the potential of cfRNA measurements to monitor residual disease during treatment, we measured 66 samples drawn during treatment from 11 patients with

metastatic disease (Supplemental Table S10). Patients were chosen according to their clinical outcome and availability of follow-up samples. All neuroblastoma-specific markers were negative in all follow-up samples, except for one sample at the first course of first-line chemotherapy in patient NBL 2187. This sample was positive for CHRNA3 (2.0 copies/mL plasma). We also measured the cell cycle markers in the sequential samples. Many neuroblastoma patients suffer from bone marrow depression due to toxicity of chemotherapy during treatment, which results in low platelet counts. Since we do not know how this affects the RNA content of platelets and if the cell cycle/ITGB3 ratios are affected, we decided not to use the ITGB3corrected ratios for these samples but to only use the absolute number of copies present in the samples. Supplemental Figure S4 displays the course of the markers for all 11 patients, sorted per clinical outcome. From seven patients, at least three samples during the first line of therapy were available, and from three patients, two samples during the first line of therapy. In all patients, B2M always had the highest expression throughout the entire treatment. The other transcripts varied greatly per patient. No marker showed an evident increase or decrease in expression in patients with good vs. poor clinical outcome. Therefore, it is impossible to draw a conclusion on the level of specific markers in relation to clinical outcome in this small cohort. considering the variation in sampled time points, the unknown platelet counts and variation in expression levels between the different patients.

#### The mRNA in Plasma Is Concentrated in EV-Enriched SEC Fractions


Subsequently, we investigated in which compartment the neuroblastoma-derived transcripts were present in a patient with metastatic disease by size exclusion chromatography (SEC) on 500  $\mu$ L of plasma, yielding SEC fractions of 500  $\mu$ L each. The mRNA markers were tested in parallel to cfDNA using the reference gene ACTB and tumor-specific RASSF1A-M. The presence of EV was confirmed on western blot by the presence of EV-enriched proteins CD9, CD63, CD81 and TSG101 in SEC fractions 7 to 10 isolated from a healthy control and a patient with metastatic disease (Supplemental Figures S5–S7). Electron microscopy on SEC fractions from the same patient also confirmed the presence of EV in fractions 7 to 10 (Supplemental Figure S8), whereas the higher fractions contained aggregated proteins. ddPCR of the RNA markers (both neuroblastoma-specific and cell cycle) and DNA markers from 200 µL of each SEC fraction from two other patients with metastatic disease (one (NBL2196) being PHOX2B-positive in unfractionated plasma and one PHOX2Bnegative (NBL2187)) showed that the mRNA markers were mostly present in the EV-enriched fractions, whereas the DNA targets were mostly present in the higher, protein-enriched fractions (Figure 3A,B,D,E, Supplemental Table S11).



**Figure 3.** Expression of the mRNA markers and cell-free DNA markers in fractions isolated by size exclusion chromatography (SEC) and analyzed by ddPCR. Fractions F7 to F10 are considered as enriched in extracellular vesicles (EV). For patient NBL2196, **(A)** shows the expression of the neuroblastomaspecific mRNA markers, PHOX2B, CHRNA3 and TH, and reference gene GUSB in cell-free RNA from 200  $\mu$ L per SEC fraction: only GUSB and PHOX2B are expressed. **(B)** shows the cfDNA tumor-specific target methylated RASSF1A (RASSF1A-M) and reference gene ACTB in cfDNA from 200  $\mu$ L per SEC fraction. **(C)** illustrates the expression of the cell cycle markers (H2AFZ, MCM2, CDC6, ATAD2, DHFR, E2F1, GUSB, B2M and HPA1A/B) in 200  $\mu$ L per SEC fraction from the same patient. For patient NBL2187, **(D)** shows the expression of the neuroblastoma-specific mRNA markers, PHOX2B, CHRNA3 and TH, and reference gene GUSB in cell-free RNA from 200  $\mu$ L per SEC fraction: only GUSB is expressed. **(E)** shows the cfDNA tumor-specific target methylated RASSF1A (RASSF1A-M) and reference gene ACTB in cfDNA from 200  $\mu$ L per SEC fraction: only GUSB is expressed. **(E)** shows the cfDNA tumor-specific target methylated RASSF1A (RASSF1A-M) and reference gene ACTB in cfDNA from 200  $\mu$ L per SEC fraction: only GUSB is expressed. **(E)** shows the cfDNA tumor-specific target methylated RASSF1A (RASSF1A-M) and reference gene ACTB in cfDNA from 200  $\mu$ L per SEC fraction: only GUSB is expressed. **(E)** shows the cfDNA tumor-specific target methylated RASSF1A (RASSF1A-M) and reference gene ACTB in cfDNA from 200  $\mu$ L per SEC fraction. **(F)** illustrates the expression of the cell cycle markers (H2AFZ, MCM2, CDC6, ATAD2, DHFR, E2F1, GUSB, B2M and HPA1A/B) in 200  $\mu$ L per SEC fraction from the same patient.

Please note that due to a high concentration of B2M, H2AFZ and HPA1A/B, the insert in Figure 3C,F displays an adjusted y-axis without these markers to show the concentration of the other markers.

The presence of mRNA (neuroblastoma-specific and cell cycle markers) in the EV fractions was confirmed in a subsequent experiment with another patient (NBL2177) and a healthy control in which the input in the cDNA reaction was increased 2.5-fold by using the complete 500  $\mu$ L of SEC fractions. The results are shown in Figure 4 and Supplemental Table S12. Overall, the sum of the positive droplets from all SEC fractions corresponds well to what is found in 500  $\mu$ L of whole plasma. Unexpectedly, DHFR is increased in the higher, protein-enriched fraction in the patient sample and is even higher than B2M.



**Figure 4.** Expression of neuroblastoma-specific and cell cycle genes in 500  $\mu$ L of SEC (size exclusion chromatography) fractions, as isolated from 500  $\mu$ L plasma, from one healthy control and one patient with metastatic neuroblastoma. Fractions F7 to F10 are considered as enriched in extracellular vesicles (EV). In the healthy control, (**A**) shows the expression of the neuroblastoma-specific genes (PHOX2B, CHRNA3 and TH with reference gene GUSB) and (**B**) shows the expression of the cell cycle markers (CDC6, ATAD2, DHFR, E2F1, H2AFZ and MCM2 with GUSB, HPA1A/B and B2M). In the patient NBL 2177, (C) shows the expression of the neuroblastoma-specific genes (PHOX2B, CHRNA3 and TH with reference gene GUSB) and (D) shows the expression of the cell cycle markers (CDC6, ATAD2, DHFR, E2F1, H2AFZ and MCM2 with GUSB, HPA1A/B and B2M). DHFR, E2F1, H2AFZ and MCM2 with GUSB and (D) shows the expression of the cell cycle markers (CDC6, ATAD2, DHFR, E2F1, H2AFZ and MCM2 with GUSB, HPA1A/B and B2M). DHFR, E2F1, H2AFZ and MCM2 with GUSB, HPA1A/B and B2M, DHFR, E2F1, H2AFZ and MCM2 with GUSB, HPA1A/B and B2M). DHFR, E2F1, H2AFZ and MCM2 with GUSB, HPA1A/B and B2M). DHFR, E2F1, H2AFZ and MCM2 with GUSB, HPA1A/B and B2M). DHFR, E2F1, H2AFZ and MCM2 with GUSB, HPA1A/B and B2M). Please note that the y-axis is represented on a log scale.

# Discussion

This study addressed the potential for cfRNA analysis from small volumes of plasma using multiplex ddPCR assays and EV enrichment. Within this first exploratory study, we did not aim to draw conclusions on added value to current clinical practice. However, we demonstrated that in patients with neuroblastoma, neuroblastomaspecific cfRNA is only present in patients with metastatic disease and that this RNA is associated with EV. Even with low volumes of plasma, neuroblastoma-specific and quantifiable signals can be obtained when using multiplex ddPCR assays. In this small patient cohort, no correlation with outcome of the disease was observed.

However, we did identify several challenges that are essential to further studies on cfRNA in neuroblastoma. Firstly, pre-analytical variables concerning the preparation and storage of the plasma are critical [20]. The plasma samples we used were prepared within 24 h after collection and then stored at -20 °C. In our first cohort, we used plasma samples that had gone through several cycles of thawing and freezing, and from many of these plasmas, no intact mRNA could be isolated, in contrast to plasma from healthy controls that was only thawed once for the cfRNA isolation. This observation that one freeze–thaw cycle does not affect RNA content is also described by Matthew et al. [27].

The plasma preparation protocol is an equally important consideration if one aims to study cfRNA and the transcripts of interest are also expressed in platelets. In this cohort, a one-step centrifugation protocol was applied to obtain platelet-poor plasma (as we confirmed). Since cell cycle genes are expressed in healthy platelets, the quantitative data had to be corrected for the presence of the variable number of platelets. As we showed that the ratio between our transcripts of interest and the platelet-specific transcript ITGB3 was similar between platelets of different healthy donors, it was possible to correct our data. For future studies, the use of platelet-free plasma might be preferable. Platelet-free plasma was not collected for our cohort but is worth considering in future prospective studies on cfRNA.

Considering the lack of literature on reference genes for cfRNA, we pragmatically included GUSB, which is regularly used as a reference gene for the cellular compartment of peripheral blood for patients with neuroblastoma [9]. In addition, we included B2M as a reference gene [35] as it has been described that B2M is one of the genes highly expressed in plasma, although this finding might partly be caused by its high expression in platelets, as is shown in our data and known from the literature [23,27]. B2M is also an interesting gene specifically for neuroblastoma.

It is part of the major histocompatibility complex (MHC), and neuroblastoma cells downregulate MHC proteins, probably in order to evade the immune system [36,37]. Our data suggest that this downregulation is not mediated by specific expulsion of B2M mRNA from the neuroblastoma cells.

The literature on cfRNA analysis in neuroblastoma patients is scarce. Only a single report by Corrias et al. reports on the analysis of cfRNA by RT-gPCR in neuroblastoma patients, stages 1 to 4, using TH as the only neuroblastoma-specific marker and several reference genes, including B2M [38]. This study aimed to investigate whether the analysis of cfRNA was useful in monitoring disease status, as compared to analysis with the same markers in whole blood. In this study, 6 out of 47 samples were positive for TH (1/4 patients with stage 3 disease at diagnosis, 0/15 patients with stage 4 at diagnosis, 1/13 patients with stage 4 during treatment, and 4/15 patients at relapse). In our study, we increased the number of neuroblastoma-specific genes, and by using the ddPCR instead of RT-gPCR, we could increase sensitivity and were able to precisely quantitate the number of transcripts. Interestingly, in our study, no samples were positive for TH, but almost half of the stage 4 samples were positive for PHOX2B and/or CHRNA3 at diagnosis. In contrast, none of the 10 diagnostic samples from patients with localized disease tested positive, strongly suggesting that the presence of cfRNA is related to the stage of the disease. Corrias et al. conclude that the analysis of cfRNA with TH was not superior for monitoring of treatment response compared to RNA analysis from blood cells. Although our discovery study was not aimed or powered to study this question, our study also found that in only one of the 66 samples obtained during treatment could tumor-specific cfRNA be demonstrated. In addition, we did not find a prognostic difference for patients testing positive for the neuroblastoma-specific cfRNA at diagnosis compared to the negative patients (71% vs. 69%, respectively).

It is known that cell cycle genes belonging to the E2F1 pathway can be highly expressed in malignancies. For neuroblastoma, it is known that MYCN amplification is a feature of aggressive disease [1] and that this in turn can upregulate E2F1 and MCM2 [39,40,41]. CDC6, one of the genes of the E2F1 pathway, is also described as an important player in cell proliferation and cell death in neuroblastoma cells, as illustrated by knockdown experiments by Feng et al. [42]. Recently, Andriessen et al. demonstrated that CDC6 was significantly elevated in plasma from canine patients with malignancies compared to healthy controls [32]. This prompted us to study cell cycle genes in our cohort as well, aiming to overcome the low expression of the neuroblastoma-specific markers in cfRNA. Although CDC6 as well as E2F1 and DHFR were, after correcting for platelet presence, significantly higher in patients

with metastatic disease compared to patients with localized disease and healthy controls, these markers cannot be easily used to discriminate between healthy individuals and neuroblastoma patients at the individual level. Only two patients had increased levels of CDC6 and MCM2 after correcting for background expression; one patient had increased levels of MCM2 and other genes were not increased, except for DHFR. This latter gene was elevated in 14/30 patients with metastatic disease. DHFR plays a role in the cell cycle as an enzyme in the folate biosynthesis pathway and is thereby essential for cell proliferation. Inhibition of DHFR has been used historically in antimicrobial agents (e.g., trimethoprim), rheumatoid disease and cancer (e.g., methotrexate) [43,44]. Our findings on elevated DHFR at diagnosis in neuroblastoma patients with metastatic disease support its crucial role, corresponding to a high proliferation rate in metastatic disease. However, if the level of DHFR would have a linear association with tumor burden, we would expect this to be reflected in the longitudinal samples. But this was not observed in our cohort.

Indeed, in the longitudinal samples, all cell cycle markers had a high variation in expression between patients and within individual patients, whereas B2M was consistently high. Sample collection was not consistent in our cohort beyond the induction treatment phase, which further complicated speculations on their potential as markers for early treatment failure or relapse detection. This underlines that further studies with standardized sampling are essential for future cfRNA research. In addition, studies broadening the perspective on mRNA markers specifically for cfRNA research are necessary since current RNA markers are mostly based on the cellular compartment of blood and might not be suited for cfRNA. Specifically for patients with neuroblastoma, a study including RNA sequencing of the transcriptome of the cell-free compartment at different timepoints could improve understanding of this field immensely and help identify cfRNA markers with diagnostic and prognostic value.

We confirmed that most of the mRNA markers are concentrated in the EV-enriched fractions [18,21,32]. However, unexpectedly, DHFR was found to be mostly present in the higher SEC fractions. This could be due to elution of smaller EV in later fractions or also to packaging of mRNA into protein aggregates; both hypotheses are supported by the literature [21,45,46,47,48] and the presence of B2M and GUSB in these SEC fractions. Further studies using RNase and proteinase on the different SEC fractions could elucidate further if mRNA is truly packaged within EV or only associated with EV. The same approach is possible for cfDNA using DNase, since we mostly demonstrate the presence of cfDNA in the protein-enriched fractions. The literature is still conflicting on this subject [49,50], and it is not inconceivable

that EV cargo could even differ per disease. Furthermore, the method chosen for EV enrichment heavily affects the result of the downstream analysis, and after SEC, the presence of similar-sized lipoprotein particles in the EV-enriched fractions might also result in less pure EV preparations [51,52].

Considering a possible implementation in clinical practice, our study does not immediately show a benefit for EV enrichment prior to cfRNA isolation, especially in respect to time and cost effectiveness. In children, the amount of plasma is the major limiting step, and it seems simpler to just isolate RNA from full plasma than first performing density gradient centrifugation for EV isolation. However, that the concentration of EV can result in enrichment of tumor RNA was indeed recently shown by Steamaier et al. [53]. They show that their target of interest, the transcripts of the PAX-FOXO or SYT-SSX fusion genes from alveolar rhabdomyosarcoma and synovial sarcoma, respectively, had a higher concentration in EV-derived cfRNA from patient plasma than cfRNA directly from plasma [53]. In future studies, it is important to determine which question needs to be answered. The purity of EV through elaborate isolation procedures can be essential to increase the knowledge of EV cargo and function, whereas a translational goal to improve diagnostic procedures might benefit more from a quick EV enrichment procedure through commercially available precipitating agents which increase the target concentration and thereby the sensitivity of the test.

### Conclusions

In this study, we explore the possibilities of different cfRNA markers from plasma as novel biomarkers in patients with neuroblastoma. We discuss the possible variables affecting the detection of cfRNA-based markers and present approaches for correcting for the presence of platelets and background marker expression in plasma. Considering the neuroblastoma-specific markers, we conclude that these are only present in patients with metastatic disease. For the cell cycle markers, we find that many markers are higher in patients than in healthy controls, but only elevated above background expression levels in some metastatic patients. Our experiments on EV using SEC isolation illustrate that the mRNA markers are mostly expressed in EV-enriched SEC fractions, whereas cfDNA is mostly present in EV-poor SEC fractions. This study can form a starting point for further research into the potential of cfRNAbased analysis of liquid biopsies since this can be an additional approach to the more common analysis of cfDNA for liquid biopsies.

#### Acknowledgements

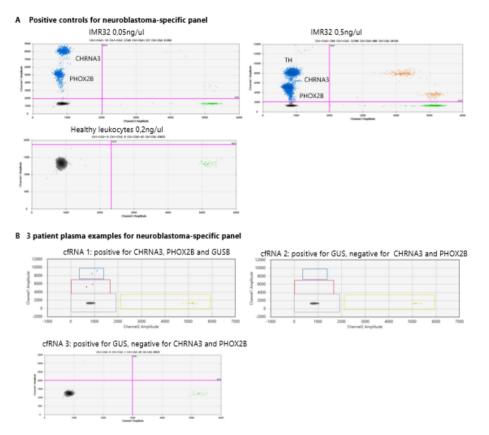
We are grateful to Jalenka van Wijk for performing the pilot experiments for this study. We thank Floris van Alphen for his help with the TCA assays and Herbert Koster for his help with the experiments on the platelets. We are grateful to Nicole van der Wel and Anita Grootemaat for their help with the electron microscopy on the SEC fractions.



### References

- 1. Matthay K.K., Maris J.M., Schleiermacher G., Nakagawara A., Mackall C.L., Diller L., Weiss W.A. Neuroblastoma. *Nat. Rev. Dis. Prim.* 2016;2:16078. doi: 10.1038/nrdp.2016.78.
- 2. Pearson A.D., Pinkerton C.R., Lewis I.J., Imeson J., Ellershaw C., Machin D. High-dose rapid and standard induction chemotherapy for patients aged over 1 year with stage 4 neuroblastoma: A randomised trial. *Lancet Oncol.* 2008;9:247–256. doi: 10.1016/S1470-2045(08)70069-X.
- Kreissman S.G., Seeger R.C., Matthay K.K., London W.B., Sposto R., A Grupp S., A Haas-Kogan D., LaQuaglia M.P., Yu A.L., Diller L., et al. Purged versus non-purged peripheral blood stem-cell transplantation for high-risk neuroblastoma (COG A3973): A randomised phase 3 trial. *Lancet Oncol.* 2013;14:999–1008. doi: 10.1016/S1470-2045(13)70309-7.
- 4. Van Paemel R., Vlug R., De Preter K., Van Roy N., Speleman F., Willems L., Lammens T., Laureys G., Schleiermacher G., Tytgat G.A.M., et al. The pitfalls and promise of liquid biopsies for diagnosing and treating solid tumors in children: A review. *Eur. J. Pediatr.* 2020;179:191–202. doi: 10.1007/ s00431-019-03545-y.
- 5. Alix-Panabières C., Pantel K. Clinical Applications of Circulating Tumor Cells and Circulating Tumor DNA as Liquid Biopsy. *Cancer Discov.* 2016;6:479–491. doi: 10.1158/2159-8290.CD-15-1483.
- Stutterheim J., Gerritsen A., Zappeij-Kannegieter L., Kleijn I., Dee R., Hooft L., van Noesel M.M., Bierings M., Berthold F., Versteeg R., et al. *PHOX2B* Is a Novel and Specific Marker for Minimal Residual Disease Testing in Neuroblastoma. *J. Clin. Oncol.* 2008;26:5443–5449. doi: 10.1200/ JCO.2007.13.6531.
- Yáñez Y., Hervás D., Grau E., Oltra S., Pérez G., Palanca S., Bermúdez M., Márquez C., Cañete A., Castel V. TH and DCX mRNAs in peripheral blood and bone marrow predict outcome in metastatic neuroblastoma patients. *J. Cancer Res. Clin. Oncol.* 2016;142:573–580. doi: 10.1007/s00432-015-2054-7.
- Van Wezel E.M., van Zogchel L.M.J., van Wijk J., Timmerman I., Vo N.K., Zappeij-Kannegieter L., deCarolis B., Simon T., van Noesel M.M., Molenaar J.J., et al. Mesenchymal Neuroblastoma Cells Are Undetected by Current mRNA Marker Panels: The Development of a Specific Neuroblastoma Mesenchymal Minimal Residual Disease Panel. JCO Precis. Oncol. 2019;3:1–11. doi: 10.1200/ PO.18.00413.
- Stutterheim J., Gerritsen A., Zappeij-Kannegieter L., Yalcin B., Dee R., van Noesel M.M., Berthold F., Versteeg R., Caron H.N., van der Schoot C.E., et al. Detecting Minimal Residual Disease in Neuroblastoma: The Superiority of a Panel of Real-Time Quantitative PCR Markers. *Clin. Chem.* 2009;55:1316–1326. doi: 10.1373/clinchem.2008.117945.
- Van Zogchel L.M.J., Lak N.S.M., Verhagen O.J.H.M., Tissoudali A., Nuru M.G., Gelineau N.U., Zappeij-Kannengieter L., Javadi A., Zijtregtop E.A.M., Merks J.H.M., et al. Novel Circulating Hypermethylated RASSF1A ddPCR for Liquid Biopsies in Patients With Pediatric Solid Tumors. *JCO Precis. Oncol.* 2021;5:1738–1748. doi: 10.1200/PO.21.00130.
- Lodrini M., Sprüssel A., Astrahantseff K., Tiburtius D., Konschak R., Lode H.N., Fischer M., Keilholz U., Eggert A., Deubzer H.E. Using droplet digital PCR to analyze *MYCN* and *ALK* copy number in plasma from patients with neuroblastoma. *Oncotarget*. 2017;8:85234–85251. doi: 10.18632/ oncotarget.19076.
- Lodrini M., Graef J., Thole-Kliesch T.M., Astrahantseff K., Sprüssel A., Grimaldi M., Peitz C., Linke R.B., Hollander J.F., Lankes E., et al. Targeted Analysis of Cell-free Circulating Tumor DNA is Suitable for Early Relapse and Actionable Target Detection in Patients with Neuroblastoma. *Clin. Cancer Res.* 2022;28:1809–1820. doi: 10.1158/1078-0432.CCR-21-3716.

- Van Zogchel L.M.J., van Wezel E.M., van Wijk J., Stutterheim J., Bruins W.S.C., Zappeij-Kannegieter L., Tirza J.E., Iedan R.N., Verly C., Godelieve A.M., et al. Hypermethylated RASSF1A as Circulating Tumor DNA Marker for Disease Monitoring in Neuroblastoma. *JCO Precis. Oncol.* 2020;4:291–306. doi: 10.1200/PO.19.00261.
- Wan J.C.M., Massie C., Garcia-Corbacho J., Mouliere F., Brenton J.D., Caldas C., Pacey S., Baird R., Rosenfeld N. Liquid biopsies come of age: Towards implementation of circulating tumour DNA. *Nat. Rev. Cancer.* 2017;17:223–238. doi: 10.1038/nrc.2017.7.
- Skog J., Wurdinger T., van Rijn S., Meijer D.H., Gainche L., Curry W.T., Jr., Sena-Esteves M., Carter B.S., Krichevsky A.M., Breakefield X.O. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. *Nat. Cell Biol.* 2008;10:1470–1476. doi: 10.1038/ncb1800.
- Hulstaert E., Morlion A., Avila Cobos F., Verniers K., Nuytens J., Vanden Eynde E., Yigit N., Anckaert J., Geerts A., Hindryckx P., et al. Charting Extracellular Transcriptomes in The Human Biofluid RNA Atlas. *Cell Rep.* 2020;33:108552. doi: 10.1016/j.celrep.2020.108552.
- 17. Herriott R.M., Connolly J.H., Gupta S. Blood Nucleases and Infectious Viral Nucleic Acids. *Nature*. 1961;189:817–820. doi: 10.1038/189817a0.
- 18. Bebelman M.P., Smit M.J., Pegtel D.M., Baglio S.R. Biogenesis and function of extracellular vesicles in cancer. *Pharmacol. Ther.* 2018;188:1–11. doi: 10.1016/j.pharmthera.2018.02.013.
- Xavier C.P.R., Caires H.R., Barbosa M.A.G., Bergantim R., Guimarães J.E., Vasconcelos M.H. The Role of Extracellular Vesicles in the Hallmarks of Cancer and Drug Resistance. *Cells*. 2020;9:1141. doi: 10.3390/cells9051141.
- Grölz D., Hauch S., Schlumpberger M., Guenther K., Voss T., Sprenger-Haussels M., Oelmüller U. Liquid Biopsy Preservation Solutions for Standardized Pre-Analytical Workflows—Venous Whole Blood and Plasma. *Curr. Pathobiol. Rep.* 2018;6:275–286. doi: 10.1007/s40139-018-0180-z.
- Arroyo J.D., Chevillet J.R., Kroh E.M., Ruf I.K., Pritchard C.C., Gibson D.F., Mitchell P.S., Bennett C.F., Pogosova-Agadjanyan E.L., Stirewalt D.L., et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. *Proc. Natl. Acad. Sci. USA*. 2011;108:5003–5008. doi: 10.1073/pnas.1019055108.
- 22. Wurdinger T., In 't Veld S.G.J.G., Best M.G. Platelet RNA as Pan-Tumor Biomarker for Cancer Detection. *Cancer Res.* 2020;80:1371–1373. doi: 10.1158/0008-5472.CAN-19-3684.
- 23. Rowley J.W., Oler A.J., Tolley N.D., Hunter B.N., Low E.N., Nix D.A., Yost C.C., Zimmerman G.A., Weyrich A. Genome-wide RNA-seq analysis of human and mouse platelet transcriptomes. *Blood*. 2011;118:e101–e111. doi: 10.1182/blood-2011-03-339705.
- 24. Rowley J.W., Schwertz H., Weyrich A.S. Platelet mRNA. *Curr. Opin. Hematol.* 2012;19:385–391. doi: 10.1097/MOH.0b013e328357010e.
- Morini M., Cangelosi D., Segalerba D., Marimpietri D., Raggi F., Castellano A., Fruci D., de Mora J.F., Cañete A., Yáñez Y., et al. Exosomal microRNAs from Longitudinal Liquid Biopsies for the Prediction of Response to Induction Chemotherapy in High-Risk Neuroblastoma Patients: A Proof of Concept SIOPEN Study II. *Cancers.* 2019;11:1476. doi: 10.3390/cancers11101476.
- Ma J., Xu M., Yin M., Hong J., Chen H., Gao Y., Xie C., Shen N., Gu S., Mo X. Exosomal hsa-miR199a-3p Promotes Proliferation and Migration in Neuroblastoma. *Front. Oncol.* 2019;9:459. doi: 10.3389/ fonc.2019.00459.
- Larson M.H., Pan W., Kim H.J., Mauntz R.E., Stuart S.M., Pimentel M., Zhou Y., Knudsgaard P., Demas V., Aravanis A.M., et al. A comprehensive characterization of the cell-free transcriptome reveals tissue- and subtype-specific biomarkers for cancer detection. *Nat. Commun.* 2021;12:2357. doi: 10.1038/s41467-021-22444-1.


- 28. Harashima H., Dissmeyer N., Schnittger A. Cell cycle control across the eukaryotic kingdom. *Trends Cell Biol.* 2013;23:345–356. doi: 10.1016/j.tcb.2013.03.002.
- 29. Matthews H.K., Bertoli C., de Bruin R.A.M. Cell cycle control in cancer. *Nat. Rev. Mol. Cell Biol.* 2021;23:74–88. doi: 10.1038/s41580-021-00404-3.
- 30. Thurlings I., de Bruin A. E2F Transcription Factors Control the Roller Coaster Ride of Cell Cycle Gene Expression. *Methods Mol. Biol.* 2016;1342:71–88.
- Bongiovanni L., Andriessen A., Silvestri S., Porcellato I., Brachelente C., de Bruin A. H2AFZ: A Novel Prognostic Marker in Canine Melanoma and a Predictive Marker for Resistance to CDK4/6 Inhibitor Treatment. *Front. Vet. Sci.* 2021;8:705359. doi: 10.3389/fvets.2021.705359.
- Andriessen A., Bongiovanni L., Driedonks T.A.P., van Liere E., Seijger A., Hegeman C.V., van Nimwegen S.A., Galac S., Westendorp B., Hoen E.N.M.N., et al. CDC6: A novel canine tumour biomarker detected in circulating extracellular vesicles. *Veter Comp. Oncol.* 2021;20:381–392. doi: 10.1111/vco.12781.
- 33. Ando K., Nakagawara A. Acceleration or Brakes: Which Is Rational for Cell Cycle-Targeting Neuroblastoma Therapy? *Biomolecules*. 2021;11:750. doi: 10.3390/biom11050750.
- 34. Van Zogchel L., de Carolis B., van Wezel E., Stutterheim J., Zappeij-Kannegieter L., van Doornum M., Schumacher-Kuckelkorn R., Gecht J., Simon T., Caron H., et al. *Pediatric Blood & Cancer*. Wiley; Hoboken, NJ, USA: 2018. Detection of Minimal Residual Disease (MRD) in High Risk Neuroblastoma Correlates with Outcome: Final Results of International GPOH-DCOG Prospective Validation Study; p. S38.
- 35. Beillard E., Pallisgaard N., van der Velden V.H.J., Bi W., Dee R., van der Schoot E., Delabesse E., Macintyre E., Gottardi E., Saglio G., et al. Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using 'real-time' quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR)—A Europe against cancer program. *Leukemia*. 2003;17:2474– 2486. doi: 10.1038/sj.leu.2403136.
- Corrias M.V., Occhino M., Croce M., De Ambrosis A., Pistillo M.P., Bocca P., Pistoia V., Ferrini S. Lack of HLA-class I antigens in human neuroblastoma cells: Analysis of its relationship to TAP and tapasin expression. *Tissue Antigens*. 2001;57:110–117. doi: 10.1034/j.1399-0039.2001.057002110.x.
- 37. Spel L., Schiepers A., Boes M. NFκB and MHC-1 Interplay in Neuroblastoma and Immunotherapy. *Trends Cancer.* 2018;4:715–717. doi: 10.1016/j.trecan.2018.09.006.
- Corrias M.V., Pistorio A., Cangemi G., Tripodi G., Bs B.C., Scaruffi P., Fardin P., Garaventa A., Pistoia V., Haupt R. Detection of cell-free RNA in children with neuroblastoma and comparison with that of whole blood cell RNA. *Pediatr. Blood Cancer*. 2010;54:897–903. doi: 10.1002/pbc.22498.
- Koppen A., Ait-Aissa R., Koster J., Van Sluis P.G., Øra I., Caron H.N., Volckmann R., Versteeg R., Valentijn L.J. Direct regulation of the minichromosome maintenance complex by MYCN in neuroblastoma. *Eur. J. Cancer.* 2007;43:2413–2422. doi: 10.1016/j.ejca.2007.07.024.
- Liu X., Cai Y., Cheng C., Gu Y., Hu X., Chen K., Wu Y., Wu Z. PCLAF promotes neuroblastoma G1/S cell cycle progression via the E2F1/PTTG1 axis. *Cell Death Dis.* 2022;13:178. doi: 10.1038/s41419-022-04635-w.
- Wang H., Wang X., Xu L., Zhang J., Cao H. Prognostic significance of MYCN related genes in pediatric neuroblastoma: A study based on TARGET and GEO datasets. *BMC Pediatr.* 2020;20:314. doi: 10.1186/s12887-020-02219-1.
- Feng L., Barnhart J.R., Seeger R.C., Wu L., Keshelava N., Huang S.-H., Jong A. Cdc6 knockdown inhibits human neuroblastoma cell proliferation. *Mol. Cell. Biochem.* 2008;311:189–197. doi: 10.1007/s11010-008-9709-5.

- Bhagat K., Kumar N., Gulati H.K., Sharma A., Kaur A., Singh J.V., Singh H., Bedi P.M.S. Dihydrofolate reductase inhibitors: Patent landscape and phases of clinical development (2001–2021) *Expert Opin. Ther. Patents.* 2022;32:1079–1095. doi: 10.1080/13543776.2022.2130752.
- Raimondi M.V., Randazzo O., La Franca M., Barone G., Vignoni E., Rossi D., Collina S. DHFR Inhibitors: Reading the Past for Discovering Novel Anticancer Agents. *Molecules*. 2019;24:1140. doi: 10.3390/ molecules24061140.
- Böing A.N., van der Pol E., Grootemaat A.E., Coumans F.A.W., Sturk A., Nieuwland R. Singlestep isolation of extracellular vesicles by size-exclusion chromatography. *J. Extracell. Vesicles*. 2014;3:23430. doi: 10.3402/jev.v3.23430.
- Clayton A., Boilard E., Buzas E.I., Cheng L., Falcón-Perez J.M., Gardiner C., Gustafson D., Gualerzi A., Hendrix A., Hoffman A., et al. Considerations towards a roadmap for collection, handling and storage of blood extracellular vesicles. *J. Extracell. Vesicles*. 2019;8:1647027. doi: 10.1080/20013078.2019.1647027.
- Théry C., Witwer K.W., Aikawa E., Alcaraz M.J., Anderson J.D., Andriantsitohaina R., Antoniou A., Arab T., Archer F., Atkin-Smith G.K., et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. *J. Extracell. Vesicles*. 2018;7:1535750. doi: 10.1080/20013078.2018.1535750.
- Coumans F.A.W., Brisson A.R., Buzas E.I., Dignat-George F., Drees E.E., El-Andaloussi S., Emanueli C., Gasecka A., Hendrix A., Hill A.F., et al. Methodological Guidelines to Study Extracellular Vesicles. *Circ. Res.* 2017;120:1632–1648. doi: 10.1161/CIRCRESAHA.117.309417.
- Liu H., Tian Y., Xue C., Niu Q., Chen C., Yan X. Analysis of extracellular vesicle DNA at the singlevesicle level by nano-flow cytometry. J. Extracell. Vesicles. 2022;11:12206. doi: 10.1002/jev2.12206.
- Thakur B.K., Zhang H., Becker A., Matei I., Huang Y., Costa-Silva B., Zheng Y., Hoshino A., Brazier H., Xiang J., et al. Double-stranded DNA in exosomes: A novel biomarker in cancer detection. *Cell Res.* 2014;24:766–769. doi: 10.1038/cr.2014.44.
- Van Deun J., Mestdagh P., Sormunen R., Cocquyt V., Vermaelen K., Vandesompele J., Bracke M., De Wever O., Hendrix A. The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. *J. Extracell. Vesicles*. 2014;3:24858. doi: 10.3402/jev.v3.24858.
- 52. Vergauwen G., Tulkens J., Pinheiro C., Cobos F.A., Dedeyne S., De Scheerder M., Vandekerckhove L., Impens F., Miinalainen I., Braems G., et al. Robust sequential biophysical fractionation of blood plasma to study variations in the biomolecular landscape of systemically circulating extracellular vesicles across clinical conditions. J. Extracell. Vesicles. 2021;10:e12122. doi: 10.1002/jev2.12122.
- Stegmaier S., Sparber-Sauer M., Aakcha-Rudel E., Münch P., Reeh T., Feuchtgruber S., Hallmen E., Blattmann C., Bielack S., Klingebiel T., et al. Fusion transcripts as liquid biopsy markers in alveolar rhabdomyosarcoma and synovial sarcoma: A report of the Cooperative Weichteilsarkom Studiengruppe (CWS) *Pediatr. Blood Cancer*. 2022;69:29652. doi: 10.1002/pbc.29652.

## Supplemental data

| MCM2    | Forward     | CACATCCATGTCCGCATCTC                               |
|---------|-------------|----------------------------------------------------|
|         | Reverse     | GTTGCAGTTGTACTTGACCATGC                            |
|         | Probe       | /5HEX/ACTGGCGTC/ZEN/CTGCCCCAGCTC/3IABkFQ/          |
| CDC6    | Forward     | CAAATTCTGAGCAGAGATGTCCACT                          |
|         | Reverse     | TGACATCCATCTCCCTTTCCC                              |
|         | Probe       | /56-FAM/CCCAGATCG/ZEN/GCTGCCTGCCA/3IABkFQ/         |
| H2AFZ   | Forward     | GTTTCCCGCTCGCAGAGA                                 |
|         | Reverse     | GTGAGGTACTCCAGGATGGCTG                             |
|         | Probe       | /56-FAM/CATGGACGT/ZEN/GTGGGCGCGACT/3IABkFQ/        |
| ATAD2   | Forward     | CAACTTGCTAATGGCAGGCA                               |
|         | Reverse     | TTCTAGCCCTCAATGACCGAGTA                            |
|         | Probe       | /5HEX/AGCCTGCTG/ZEN/TCTGGCCAACTGCCT/3IABkFQ/       |
| E2F1    | Forward     | CAGCTGGACCACCTGATGAATA                             |
|         | Reverse     | GGTCTGCAATGCTACGAAGGTC                             |
|         | Probe       | /56-FAM/CCTCGGAGA/ZEN/GCAGGCGCAGC/3IABkFQ/         |
| DHFR    | Forward     | GGTTCGCTAAACTGCATCGTC                              |
|         | Reverse     | AGAGGTTGTGGTCATTCTCTGGA                            |
|         | Probe       | /56-FAM/CGGTGGCCA/ZEN/GGGCAGGTCC/3IABkFQ/          |
| PHOX2B  | Forward     | GGCACCCTCAGGGACCA                                  |
|         | Reverse     | CTGCGCGCTCCTGCTT                                   |
|         | Probe       | /56-FAM/CCAGAACCG/ZEN/CCGCGCCAA/3IABkFQ/           |
| B2M     | Forward     | GAGTATGCCTGCCGTGTG                                 |
|         | Reverse     | AATCCAAATGCGGCATCT                                 |
|         | Probe       | /5HEX/CCTCCATGA/ZEN/TGCTGCTTACATGTCTC/3IABkFQ/     |
| GUSB    | Forward     | GAAAATATGTGGTTGGAGAGCTCATT                         |
|         | Reverse     | CCGAGTGAAGATCCCCTTTTTA                             |
|         | Probe       | /5HEX/CCAGCACTC/ZEN/TCGTCGGTGACTGTTCA/3IABkFQ/     |
| тн      | Forward     | ATT GCT GAG ATC GCC TTC CA                         |
|         | Reverse     | AAT CTC CTC GGC GGT GTA CTC                        |
|         | Probe       | /56-FAM/ACA GGC ACG GCG/ZEN/ ACC CGA TTC /3IABkFQ/ |
| CHRNA3  | Forward     | GTCCATGTCTCAGCTGGTGAAG                             |
|         | Reverse     | TTCCATTTCAGCTTGTAGTCATTCC                          |
|         | Probe       | /56-FAM/CAGATCATG/ZEN/GAGACCAACCTGTGGCTC/3IABkFQ/  |
| HPA1A/B | Forward     | CCAACATCTGTACCACGCGA                               |
|         | Reverse     | GGCACAGTTATCCTTCAG                                 |
|         | HPA1A probe | /56-FAM/CCTGCCTCT/ZEN/GGGCTCACCTC/3IABkFQ/         |
|         | HPA1B probe | /56-FAM/CCTGCCTCC/ZEN/GGGCTCACCTC/3IABkFQ/         |

**Supplemental table 1.** Sequences of ddPCR assays.



**Supplemental Figure 1.** 2D plots from the ddPCR assays illustrating gating strategies for the neuroblastoma-specific genes. **A.** Neuroblastoma-specific assay in controls (positive control: neuroblastoma cell line IMR32 0,05 ng/ul, 0,5 ng/ul and negative control: healthy leukocytes 0,2 ng/ul). **B.** cfRNA detection by ddPCR from plasma of 3 patients, cfRNA1 was positive for *CHRNA3*, *PHOX2B* and *GUSB*, cfRNA2 and cfRNA3 only for *GUSB*.

Please note that cfRNA 1 and 2 were analyzed with QX Manager 1.2 Standard Edition software (Bio Rad): pink droplets represent *PHOX2B*, blue droplets *CHRNA3* and yellow droplets *GUSB*. cfRNA 3 was analyzed in Quantasoft 1.7.4 software (Bio Rad), green droplets represent *GUSB*.

Droplets are only counted as positive for *PHOX2B* if they are located exactly above the negative cluster around an amplitude of 5000.

| Control | GUS       | PHOX2B    | тн        | <b>CHRNA3</b> |
|---------|-----------|-----------|-----------|---------------|
| ID      | copies/ml | copies/ml | copies/ml | copies/ml     |
| 1       | 56.49     | 0.00      | 0.00      | 0.00          |
| 2       | 196.11    | 0.00      | 0.00      | 0.00          |
| 3       | 153.71    | 0.00      | 0.00      | 0.00          |
| 4       | 42.40     | 0.00      | 0.00      | 0.00          |
| 5       | 97.68     | 0.00      | 0.00      | 0.00          |
| 6       | 237.75    | 0.00      | 0.00      | 0.00          |
| 7       | 40.66     | 0.00      | 0.00      | 0.00          |
| 8       | 111.30    | 0.00      | 0.00      | 0.00          |
| 9       | 102.98    | 0.00      | 0.00      | 0.00          |
| 10      | 52.47     | 0.00      | 0.00      | 0.00          |
| 11      | 104.49    | 0.00      | 0.00      | 0.00          |
| 12      | 96.92     | 0.00      | 0.00      | 0.00          |
| 13      | 91.62     | 0.00      | 0.00      | 0.00          |
| 14      | 58.38     | 0.00      | 0.00      | 0.00          |
| 15      | 51.56     | 0.00      | 0.00      | 0.00          |
| 16      | 81.77     | 0.00      | 0.00      | 0.00          |
| 17      | 36.42     | 0.00      | 0.00      | 0.00          |
| 18      | 180.21    | 0.00      | 0.00      | 0.00          |
| 19      | 67.39     | 0.00      | 0.00      | 0.00          |
| 20      | 60.65     | 0.00      | 0.00      | 0.00          |
| 21      | 50.73     | 0.00      | 0.00      | 0.00          |
| 22      | 10.60     | 0.00      | 0.00      | 0.00          |
| 23      | 35.59     | 0.00      | 0.00      | 0.00          |
| 24      | 6.81      | 0.00      | 0.00      | 0.00          |
| 25      | 62.09     | 0.00      | 0.00      | 0.00          |
| 26      | 12.87     | 0.00      | 0.00      | 0.00          |
| 27      | 15.14     | 0.00      | 0.00      | 0.00          |
| 28      | 49.97     | 0.00      | 0.00      | 0.00          |
| 29      | 24.99     | 0.00      | 0.00      | 0.00          |
| 30      | 31.80     | 0.00      | 0.00      | 0.00          |
| 31      | 15.14     | 0.00      | 0.00      | 0.00          |
| 32      | 15.14     | 0.00      | 0.00      | 0.00          |
| 33      | 6.81      | 0.00      | 0.00      | 0.00          |
| 34      | 6.81      | 0.00      | 0.00      | 0.00          |
| 35      | 29.53     | 0.00      | 0.00      | 0.00          |
| 36      | 15.14     | 0.00      | 0.00      | 0.00          |
| 37      | 19.69     | 0.00      | 0.00      | 0.00          |
| 38      | 10.60     | 0.00      | 0.00      | 0.00          |
| 39      | 67.39     | 0.00      | 0.00      | 0.00          |
| 40      | 6.06      | 0.00      | 0.00      | 0.00          |

**Supplemental Table 2.** Results of the neuroblastoma-specific panel and *GUSB* in plasma of 40 healthy controls.

|               | NBLnr        | Gender | Age at Dx<br>(months) | Stage | Risk | MYCN | LOH1p | Gain17q | ALK | Tumor<br>location | BM | Event | DOD |
|---------------|--------------|--------|-----------------------|-------|------|------|-------|---------|-----|-------------------|----|-------|-----|
|               | 834          | 0      | 21                    | 3     | 2    | 1    | 1     | 1       | 1   | 0                 | 1  | 2     | 0   |
|               | 865          | 0      | 19                    | 3     | 2    | 1    | NA    | NA      | NA  | NA                | NA | 0     | 0   |
|               | 2011         | 1      | 43                    | 3     | 2    | 0    | 0     | NA      | 1   | 0                 | 1  | 0     | 0   |
|               | 2012         | 1      | 56                    | 3     | 2    | 1    | 1     | 1       | 1   | 0                 | 1  | 2     | 1   |
|               | 2016         | 1      | 86                    | 3     | 2    | 0    | 0     | 1       | 0   | 0                 | 1  | 1     | 1   |
|               | 2022 2024    | 0      | 26<br>224             | 3     | 2    | 2    | 1     | 2       | 2   | 0                 | 1  | 2     | 1   |
|               | 2024         | 1      | 28                    | 2     | 2    | 1    | 1     | 2       | 0   | 2                 | 0  | 0     | 0   |
|               | 2029         | 1      | 78                    | 3     | 2    | 2    | 1     | 2       | 2   | 0                 | 1  | 2     | 1   |
|               | 2032         | 1      | 133                   | 3     | 2    | 2    | 0     | 2       | 2   | 0                 | NA | 0     | 0   |
|               | 2033         | 1      | 5                     | 3     | 1    | 0    | 3     | 2       | 1   | 0                 | 1  | 0     | 0   |
| First cohort  | 2034         | 1      | 59                    | 3     | 2    | 2    | 0     | 1       | 0   | 0                 | 0  | 0     | 0   |
|               | 2043         | 0      | 76                    | 3     | 2    | 0    | 0     | 1       | 2   | 3                 | 1  | 2     | 1   |
|               | 2046         | 1      | 79                    | 3     | 2    | 0    | 0     | 2       | 0   | NA                | 1  | 2     | 1   |
|               | 2047         | 0      | 14                    | 3     | 2    | 1    | 1     | 1       | 0   | 0                 | 1  | 2     | 0   |
|               | 2048         | 1      | 50                    | 3     | 2    | 0    | 0     | 1       | 0   | 2                 | 1  | 4     | 1   |
|               | 2049         | 0      | 128                   | 3     | 2    | 2    | 0     | 1       | 2   | 1                 | 1  | 1     | 1   |
|               | 2050         | 0      | 49                    | 3     | 2    | 0    | 1     | 1       | 0   | 0                 | 1  | 1     | 1   |
|               | 2051         | 0      | 57                    | 3     | 2    | 0    | 0     | 2       | 0   | 0                 | 1  | 2     | 1   |
|               | 2052         | 0      | 17                    | 3     | 2    | 0    | 0     | 1       | 0   | 1                 | 0  | 0     | 0   |
|               | 2054         | 0      | 8                     | 3     | 2    | 1    | 1     | 1       | 0   | 5                 | 0  | 0     | 0   |
|               | 2055         | 0      | 35                    | 2     | 1    | 2    | 0     | 0       | 2   | 0                 | 0  | 1     | 0   |
|               | 2079         | 0      | 28.3                  | 0     | 0    | 0    | 1     | 1       | 0   | 0                 | 0  | 0     | 0   |
|               | 2097<br>2102 | 1      | 5.9<br>20.6           | 3     | 2    | 0    | 0     | 0       | 0   | 0                 | 0  | 1     | 1   |
|               | 2102         | 1      | 3.7                   | 3     | 0    | 0    | 2     | 1       | 0   | 0                 | 0  | 0     | 0   |
|               | 2113         | 0      | 13.6                  | 3     | 2    | 0    | 1     | 1       | 0   | 0                 | 1  | 0     | 0   |
|               | 2124         | 1      | 32.8                  | 0     | 0    | 0    | 0     | 0       | 0   | 0                 | 0  | 0     | 0   |
|               | 2124         | 0      | 13.6                  | 0     | 0    | 0    | 0     | 0       | 0   | 1                 | 0  | 0     | 0   |
|               | 2141         | 1      | 45.1                  | 3     | 2    | 0    | 0     | 1       | 0   | 1                 | 1  | 1     | 0   |
|               | 2143         | 1      | 56.8                  | 3     | 2    | 2    | 1     | 1       | 1   | 1                 | 1  | 1     | 0   |
|               | 2144         | 0      | 52.6                  | 3     | 2    | 2    | 1     | 1       | 0   | 1                 | 1  | 0     | 0   |
|               | 2146         | 1      | 32.9                  | 3     | 2    | 0    | 0     | 1       | 0   | 1                 | 1  | 2     | 1   |
|               | 2147         | 1      | 62.9                  | 2     | 0    | 0    | 1     | 1       | 0   | 1                 | 0  | 2     | 0   |
|               | 2148         | 0      | 17.5                  | 0     | 0    | 2    | 0     | 1       | 0   | 2                 | 0  | 0     | 0   |
|               | 2149         | 1      | 10.4                  | 0     | 0    | 0    | 0     | 1       | 0   | 2                 | 0  | 0     | 0   |
|               | 2150         | 1      | 95.5                  | 3     | 2    | 0    | 1     | 1       | 0   | 1                 | 1  | 0     | 0   |
|               | 2151         | 1      | 36.7                  | 3     | 2    | 1    | 1     | 1       | 0   | 1                 | 1  | 2     | 0   |
|               | 2152         | 0      | 12.3                  | 3     | 2    | 1    | 1     | 1       | 0   | 2                 | 0  | 1     | 1   |
|               | 2153         | 0      | 33.4                  | 3     | 2    | 1    | 1     | 1       | 0   | 1                 | 0  | 1     | 1   |
|               | 2155         | 1      | 1.2                   | 0     | 0    | 0    | 0     | 1       | 0   | 1                 | 0  | 3     | 0   |
|               | 2157         | 1      | 9.7                   | 3     | 2    | 1    | 1     | 1       | 1   | 1                 | 1  | 1     | 0   |
| Second cohort | 2160         | 1      | 8.2                   | 3     | 2    | 1    | 1     | 1       | 0   | 1                 | 0  | 1     | 1   |
|               | 2161<br>2163 | 1      | 11.1<br>52.5          | 3     | 2    | 0    | 0     | 1       | 0   | 1                 | 1  | 1     | 0   |
|               | 2163         | 0      | 29.2                  | 3     | 2    | 0    | 0     | 1       | 0   | 2                 | 0  | 0     | 0   |
|               | 2164         | 1      | 29.2                  | 3     | 0    | 0    | 0     | 0       | 1   | 1                 | 0  | 0     | 0   |
|               | 2165         | 1      | 141.4                 | 3     | 2    | 1    | 1     | 1       | 0   | 2                 | 1  | 2     | 1   |
|               | 2160         | 0      | 0.1                   | 0     | 0    | 0    | 0     | 0       | 0   | 2                 | 0  | 0     | 0   |
|               | 2105         | 1      | 9.8                   | 3     | 1    | 0    | 0     | 1       | 0   | 3                 | 1  | 0     | 0   |
|               | 2172         | 1      | 153.7                 | 3     | 2    | 0    | 0     | 0       | 0   | 1                 | 1  | 1     | 0   |
|               | 2174         | 1      | 1.5                   | 3     | 1    | 0    | NA    | NA      | NA  | 1                 | 1  | 0     | 0   |
|               | 2175         | 0      | 138.4                 | 3     | 2    | 1    | 1     | 0       | 0   | 0                 | 1  | 0     | 0   |
|               | 2177         | 0      | 30.3                  | 3     | 2    | 0    | 0     | 1       | 0   | 1                 | 1  | 2     | 0   |
|               | 2179         | 1      | 11                    | 3     | 1    | 0    | 0     | 1       | 0   | 1                 | 1  | 1     | 1   |
|               | 2181         | 1      | 49.3                  | 3     | 2    | 0    | 0     | 1       | 0   | 0                 | 0  | 0     | 0   |
|               | 2183         | 0      | 56.8                  | 3     | 2    | 0    | 0     | 1       | 0   | 1                 | 1  | 0     | 0   |
|               | 2184         | 1      | 25.1                  | 3     | 2    | 0    | 0     | 1       | 0   | 0                 | 1  | 1     | 1   |
|               | 2187         | 0      | 76.3                  | 3     | 2    | 0    | 0     | 1       | 0   | 0                 | 1  | 1     | 0   |
|               | 2193         | 0      | 35.8                  | 3     | 2    | 1    | 1     | 1       | 1   | 0                 | 1  | 1     | 0   |
|               | 2194         | 0      | 13.33                 | 3     | 2    | 1    | 1     | 1       | 0   | 0                 | 0  | 1     | 1   |
|               | 2196         | 0      | 4.4                   | 3     | 1    | 0    | 1     | 1       | 0   | 0                 | 1  | 1     | 1   |
|               | 2211         | 1      | 41.73                 | 3     | 2    | 0    | 0     | 0       | 1   | 0                 | 1  | 1     | 0   |

| Supplemental Table 3 | Patient characteristics of the first and second cohort. |  |
|----------------------|---------------------------------------------------------|--|
|----------------------|---------------------------------------------------------|--|

ALK; 0=ALK gene wild type, 1=ALK mutation, 2=gain of ALK

BM; 0=no bone marrow invasion, 1=bone marrow invasion

DOD; 0=did not die of disease, 1=died of disease

Dx; diagnosis

Event; 0=no event, 1=progressive disease, 2=relapse, 3=second malignancy, 4=death to other cause Gain 17q; 0=no gain of chromosome 17q, 1= gain of 17q, 2=partial gain of 17q

Gender; 0=male, 1=female

LOH1p; 0=no loss of heterozygosity of chromosome 1p, 1=LOH1p, 2=partial LOH1p

MYCN; 0=no aberration in MYCN gene, 1=MYCN amplification, 2=gain in MYCN

NBLnr; unique patient identifier

Stage; number corresponds to International Neuroblastoma Staging System Committee (INSS) stage for neuroblastoma

Tumor location; 0=adrenal, 1=abdominal, 2=thoracic, 3=thoracic-abdominal, 4=paravertebral, 5=adrenal paravertebral thoracic

| NBL ID | Moment                              |       | PCR (copie |      |         |
|--------|-------------------------------------|-------|------------|------|---------|
|        |                                     |       | CHRNA3     |      | GUSBnbl |
|        | Relapse                             | 0.00  | 0.00       | 0.00 | 2.04    |
|        | After 2nd N8 Relapse therapy        | 0.00  | 0.00       | 0.00 | 4.18    |
|        | Before ASCT                         | 0.00  | 0.00       | 0.00 | 2.18    |
|        | 3 month after eot                   | 0.00  | 0.00       | 0.00 | 0.00    |
|        | After IT during relapse             | 0.00  | 0.00       | 0.00 | 0.00    |
|        | Relapse therapy                     | 0.00  | 0.00       | 0.00 | 0.00    |
|        | after Gemcitabine-MIBG              | 0.00  | 0.00       | 0.00 | 2.17    |
|        | Relapse                             | 0.00  | 0.00       | 0.00 | 2.21    |
|        | 2 months relapse therapy            | 0.00  | 0.00       | 0.00 | 2.22    |
|        | Before start high-dose chemotherapy | 0.00  | 0.00       | 0.00 | 0.00    |
|        | After ASCT                          | 0.00  | 0.00       | 0.00 | 4.53    |
| 2026   |                                     | 0.00  | 0.00       | 0.00 | 13.33   |
|        | During anti GD2                     | 0.00  | 0.00       | 0.00 | 0.00    |
|        | After salvage N8                    | 0.00  | 0.00       | 0.00 | 2.22    |
|        | Before N7                           | 0.00  | 0.00       | 0.00 | 0.00    |
|        | After ASCT                          | 0.00  | 0.00       | 0.00 | 0.00    |
|        | Relapse                             | 10.98 | 0.00       | 0.00 | 127.21  |
|        | After N5/N6 and 2xN8                | 0.00  | 0.00       | 0.00 | 16.73   |
|        | After 3rd N5/N6 relapse therapy     | 0.00  | 0.00       | 0.00 | 95.40   |
|        | After 2nd relapse Ct                | 0.00  | 0.00       | 0.00 | 2.23    |
|        | Diagnosis                           | 0.00  | 0.00       | 0.00 | 8.63    |
|        | After 2nd N5/N6                     | 0.00  | 0.00       | 0.00 | 37.40   |
| 2046   | After 2nd N5/N6                     | 0.00  | 0.00       | 0.00 | 2.16    |
| 2047   | After 3rd N5/N6                     | 0.00  | 0.00       | 0.00 | 8.40    |
| 2047   | Before ASCT                         | 0.00  | 0.00       | 0.00 | 15.75   |
| 2047   | After 1st N5/N6                     | 0.00  | 0.00       | 0.00 | 8.48    |
| 2048   | Diagnosis                           | 0.00  | 0.00       | 0.00 | 4.12    |
| 2048   | After 1st N5/N6                     | 0.00  | 0.00       | 0.00 | 0.00    |
| 2048   | After 2nd N5/N6                     | 0.00  | 0.00       | 0.00 | 2.20    |
| 2049   | Diagnosis                           | 0.00  | 0.00       | 0.00 | 2.23    |
| 2049   | After 2nd N5/N6                     | 0.00  | 0.00       | 0.00 | 4.22    |
| 2050   | Diagnosis                           | 2.07  | 0.00       | 0.00 | 2.07    |
| 2050   | After 1st N5/N6                     | 0.00  | 0.00       | 0.00 | 0.00    |
| 2051   | Relapse                             | 0.00  | 0.00       | 0.00 | 2.33    |
| 2052   | Diagnosis                           | 0.00  | 0.00       | 0.00 | 0.00    |
| 2052   | After 2nd N5/N6                     | 0.00  | 0.00       | 0.00 | 0.00    |
| 2054   | Diagnosis                           | 0.00  | 0.00       | 0.00 | 0.00    |
| 2055   | Tumor growth during wait-and-see    | 0.00  | 0.00       | 0.00 | 13.63   |

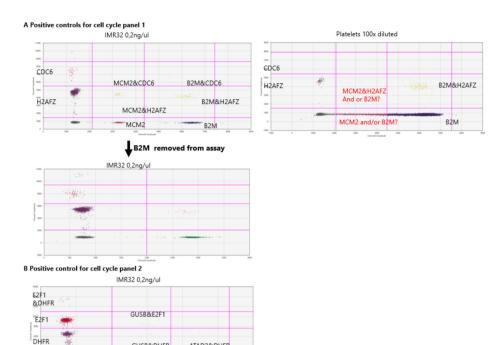
#### Supplemental Table 4. Results of ddPCR (copies/ml) of the genes in the first cohort.

ASCT; autologous stem cell transplantation

EOT; end of treatment

GUSBnbl; GUSB as included in the neuroblastoma-specific assay

GUSBc; GUSB as included in the 'cell cycle' assay


NBL ID; unique patient identifier

|              |   | AND       | DNA targets                               | Neurobi    | astoma sr | Neuroblastoma specific mBNA markers | A markers |                     |           |           | Cellov              | Cell cvcle mRNA markers | markers   |                               |           |            | Supplemental Tak                         |
|--------------|---|-----------|-------------------------------------------|------------|-----------|-------------------------------------|-----------|---------------------|-----------|-----------|---------------------|-------------------------|-----------|-------------------------------|-----------|------------|------------------------------------------|
| NBL ID Stage |   | RASSF1A-M | RASSF1A-M ACTB / ml plas PHOX2B CHRNA3 TH | 15 PHOX2B  | CHRNA3    | 3 TH                                | GUSnbl    | CDC6                | ATAD2     | DHFR      | E2F1                | HZAFZ                   | MCM2 GUSB | GUSB                          | HPA1AB    | B2M        | of the ddPCR for                         |
|              |   | copies/ml | copies/ml                                 | copie s/ml |           | copies/ml copies/ml                 | copies/ml | copies/ml copies/ml | copies/ml | copies/ml | copies/ml_copies/ml | copies/ml               | copies/ml | copies/ml copies/ml copies/ml | copies/ml | copie s/ml | telvidtomi stopret                       |
| 2079         | 1 | 3142.9    | 3661.4                                    | 0.0        | 0.0       | 0.0                                 | NA        | 4.6                 | 2.3       | 29.5      | 6.8                 | 277.9                   | 13.6      | 15.8                          | 78.0      | 3831.3     | uargers (meunyiau                        |
| 2097         | 1 | 17600.0   | 17285.7                                   | 0.0        | 0.0       | 0.0                                 | 22.1      | 11.8                | 17.8      | 147.6     | 188.5               | 1052.5                  | 106.8     | 78.7                          | 3642.0    | 73218.7    | and ACTB), mRNA {                        |
| 2115         | 1 | 785.7     | 801.4                                     | 0.0        | 0.0       | 0.0                                 | 0.5       | 0.0                 | 0.0       | 23.5      | 2.4                 | 90.9                    | 9.8       | 4.7                           | 58.8      | 1438.6     | (neuroblastoma-sr                        |
| 2124         | 1 | 0.0       | 3465.0                                    | 0.0        | 0.0       | 0.0                                 | 6.3       | 0.0                 | 2.3       | 59.8      | 11.5                | 389.2                   | 15.7      | 18.4                          | 607.3     | 12720.5    |                                          |
| 2126         | 1 | 2734.3    | 3441.4                                    | 0.0        | 0.0       | 0.0                                 | NA        | 0.0                 | 0.0       | 20.1      | 4.5                 | 109.8                   | 0.0       | 6.7                           | 109.8     | 2877.3     | with PHOX2B, CHR                         |
| 2148         |   | 286.0     | 9328.0                                    | 0.0        | 0.0       | 0.0                                 | 20.9      | 2.3                 | 22.3      | 173.4     | 89.3                | 1113.0                  | 44.5      | 95.4                          | 3331.6    | 49594.9    | GUSB and cell cy                         |
| 2149         | 1 | 0.0       | 19305.0                                   | 0.0        | 0.0       | 0.0                                 | 3.5       | 6.8                 | 12.6      | 136.3     | 45.4                | 483.8                   | 75.1      | 22.7                          | 376.3     | 15522.1    |                                          |
| 2155         | - | 79.8      | 17847.5                                   | 0.0        | 0.0       | 0.0                                 | 1.4       | 11.1                | 6.7       | 220.3     | 51.6                | 885.9                   | 81.8      | 74.1                          | 645.9     | 25592.5    |                                          |
| 2165         | 1 | 8.3       | 2282.5                                    | 0.0        | 0.0       | 0.0                                 | 2.6       | 0.0                 | 0.0       | 34.1      | 2.3                 | 102.2                   | 9.1       | 2.3                           | 236.2     | 4217.5     | H2AFZ, MCM2, GU                          |
| 2169         | 1 | 535.3     | 10413.3                                   | 0.0        | 0.0       | 0.0                                 | 10.4      | 11.9                | 9.0       | 195.4     | 123.4               | 1022.2                  | 133.3     | 62.8                          | 592.9     | 20216.5    | and B2M) in the se                       |
| 2102         | 4 | 64606.7   | 119533.3                                  | 0.0        | 0.0       | 0.0                                 | 14.0      | 4.9                 | 7.1       | 1007.0    | 142.3               | 908.6                   | 141.6     | 52.2                          | 832.9     | 28848.3    | Diaco act that t                         |
| 2117         | 4 | 48714.3   | 55471.4                                   | 0.0        | 0.0       | 0.0                                 | 3.7       | 0.0                 | 4.6       | 268.8     | 34.4                | 424.8                   | 31.7      | 16.1                          | 224.1     | 8783.2     | Please not that the                      |
| 2141         | 4 | 23430.0   | 86460.0                                   | 0.0        | 0.0       | 0.0                                 | 27.0      | 19.4                | 6.6       | 855.6     | 62.1                | 848.0                   | 79.5      | 17.7                          | 1953.5    | 39297.3    | markers are not o                        |
| 2143         | 4 | 9845.0    | 22825.0                                   | 0.0        | 0.0       | 0.0                                 | 60.1      | 9.2                 | 2.2       | 170.4     | 305.9               | 454.3                   | 9.2       | 77.2                          | 6617.7    | 124100.8   | nlatelets in this tab                    |
| 2144         | 4 | 8690.0    | 34782.0                                   | 4.4        | 0.0       | 0.0                                 | 35.1      | 15.6                | 8.1       | 189.3     | 44.7                | 493.7                   | 24.5      | 26.4                          | 446.7     | 17869.3    |                                          |
| 2146         | 4 | 22110.0   | 69410.0                                   | 10.8       | 2.2       | 0.0                                 | 73.7      | 58.8                | 53.1      | 1181.2    | 335.4               | 2210.9                  | 184.0     | 55.4                          | 3051.4    | 57393.8    |                                          |
| 2150         | 4 | 6160.0    | 28985.0                                   | 0.0        | 0.0       | 0.0                                 | 19.3      | 0.0                 | 4.4       | 63.8      | 35.2                | 353.6                   | 26.7      | 24.2                          | 1415.9    | 52245.0    |                                          |
| 2151         | 4 | 72160.0   | 108020.0                                  | 2.1        | 0.0       | 0.0                                 | 25.1      | 6.5                 | 11.0      | 489.9     | 171.9               | 477.8                   | 8.7       | 35.2                          | 742.0     | 11039.6    |                                          |
| 2152         | 4 | 3476.0    | 5984.0                                    | 0.0        | 0.0       | 0.0                                 | 22.6      | 2.1                 | 0.0       | 61.3      | 19.0                | 355.9                   | 12.7      | 23.2                          | 605.7     | 28545.5    |                                          |
| 2153         | 4 | 52085.0   | 78705.0                                   | 0.0        | 0.0       | 0.0                                 | 4.8       | 9.9                 | 2.3       | 495.2     | 138.6               | 380.9                   | 24.8      | 31.7                          | 2460.8    | 34678.6    |                                          |
| 2157         | 4 | 8052.0    | 15642.0                                   | 0.0        | 0.0       | 0.0                                 | 21.5      | 16.3                | 0.0       | 107.5     | 134.8               | 636.0                   | 34.7      | 21.0                          | 1468.9    | 46263.3    |                                          |
| 2160         | 4 | 4818.0    | 22462.0                                   | 0.0        | 0.0       | 0.0                                 | 25.4      | 8.9                 | 8.7       | 135.5     | 87.1                | 622.4                   | 62.5      | 24.0                          | 885.9     | 40205.9    |                                          |
| 2161         | 4 | 17343.3   | 47813.3                                   | 4.5        | 0.0       | 0.0                                 | 56.2      | 27.7                | 19.6      | 246.1     | 117.4               | 1113.0                  | 104.5     | 26.1                          | 742.0     | 13757.9    |                                          |
| 2163         | 4 | 250.8     | 5456.0                                    | 0.0        | 0.0       | 0.0                                 | 44.4      | 2.1                 | 3.9       | 109.8     | 7.8                 | 583.8                   | 42.3      | 35.2                          | 170.4     | 32709.9    |                                          |
| 2164         | 4 | 46676.7   | 103400.0                                  | 0.0        | 0.0       | 0.0                                 | 44.5      | 2.1                 | 8.5       | 480.0     | 230.2               | 647.4                   | 70.3      | 36.2                          | 2688.0    | 126599.5   |                                          |
| 2166         | 4 | 591360.0  | 632720.0                                  | 15.5       | 9.9       | 0.0                                 | 53.2      | 45.1                | 44.0      | 2468.4    | 160.5               | 1574.9                  | 118.9     | 46.0                          | 2067.1    | 20746.6    |                                          |
| 2171         | 4 | 23100.0   | 102080.0                                  | 0.0        | 2.1       | 0.0                                 | 55.7      | 19.5                | 25.5      | 461.1     | 238.5               | 1673.4                  | 103.7     | 66.0                          | 1953.5    | 30968.4    |                                          |
| 2172         | 4 | 37693.3   | 84993.3                                   | 2.1        | 0.0       | 0.0                                 | 21.0      | 8.4                 | 4.4       | 162.0     | 53.3                | 535.3                   | 52.5      | 31.1                          | 416.4     | 8359.2     |                                          |
| 2174         | 4 | 4253.3    | 149820.0                                  | 46.7       | 10.6      | 0.0                                 | 81.0      | 38.4                | 45.0      | 1188.8    | 246.8               | 1832.4                  | 177.2     | 98.4                          | 1703.6    | 10812.4    |                                          |
| 2175         | 4 | 17160.0   | 88366.7                                   | 0.0        | 0.0       | 0.0                                 | 77.2      | 4.5                 | 6.1       | 628.5     | 360.4               | 583.8                   | 77.2      | 105.2                         | 3891.9    | 45809.0    |                                          |
| 2177         | 4 | 485100.0  | 1129700.0                                 | 3.3        | 0.0       | 0.0                                 | 4.7       | 21.4                | 20.2      | 10827.6   | 192.3               | 1309.9                  | 128.0     | 10.1                          | 1294.8    | 15749.2    |                                          |
| 2179         | 4 | 5060.0    | 30250.0                                   | 1.0        | 0.0       | 0.0                                 | 19.5      | 13.0                | 7.2       | 243.8     | 198.4               | 1279.6                  | 62.9      | 88.6                          | 8480.3    | 87756.5    |                                          |
| 2181         | 4 | 11220.0   | 30800.0                                   | 0.0        | 0.0       | 0.0                                 | 6.3       | 13.7                | 0.0       | 346.8     | 295.3               | 870.8                   | 41.0      | 39.8                          | 2423.0    | 53607.9    |                                          |
| 2183         | 4 | 22073.3   | 37033.3                                   | 0.4        | 0.0       | 0.0                                 | 6.1       | 5.2                 | 11.3      | 165.1     | 103.7               | 581.5                   | 82.5      | 29.3                          | 1120.6    | 39297.3    | NBLID: Unique hat                        |
| 2184         | 4 | 47.7      | 4546.7                                    | 0.0        | 0.0       | 0.0                                 | 3.9       | 8.6                 | 19.6      | 152.2     | 12.3                | 490.6                   | 42.7      | 12.3                          | 53.8      | 1718.8     | 2 20 20 20 20 20 20 20 20 20 20 20 20 20 |
| 2187         | 4 | 96525.0   | 355025.0                                  | 0.0        | 0.0       | 0.0                                 | 184.0     | 79.5                | 66.9      | 863.2     | 477.0               | 3740.4                  | 386.9     | 141.6                         | 15166.2   | 295297.9   | 5                                        |
| 2193         | 4 | 80685.0   | 93885.0                                   | 2.3        | 0.0       | 0.0                                 | 46.9      | 20.2                | 17.2      | 112.1     | 107.5               | 654.2                   | 38.5      | 34.5                          | 870.8     | 12357.1    | International Ne                         |
| 2194         | 4 | 6966.7    | 64460.0                                   | 0.0        | 0.0       | 0.0                                 | 50.1      | 183.2               | 96.2      | 1067.6    | 487.6               | 10221.8                 | 1007.0    | 220.3                         | 4709.6    | 28545.5    | Staging System                           |
| 2196         | 4 | 346.5     | 49060.0                                   | 26.3       | 0.0       | 0.0                                 | 115.1     | 35.3                | 39.4      | 514.1     | 137.0               | 2059.5                  | 165.8     | 96.9                          | 817.7     | 34981.4    |                                          |
| 2211         | 4 | 7315.0    | 9680.0                                    | 0.4        | 0.0       | 0.0                                 | 8.0       | 11.4                | 0.0       | 133.3     | 30.9                | 817.7                   | 86.3      | 54.6                          | 2195.8    | 56333.7    |                                          |

t corrected for able. ble 5. Results based targets USB, HPA1A/B the cell cycle ted RASSF1A cycle markers econd cohort. or DNA-based specific panel IRNA3, TH and DHFR, E2F1,

atient identifier corresponds to leuroblastoma n Committee euroblastoma

8



GUSB&DHFR

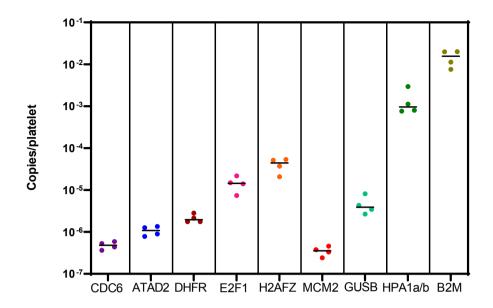
IMR32 0,2ng/ul

C Positive control for cell cycle panel 3

HPA1A/B

GUSB

ATAD2&DHFR


ATAD2

B2M& HPA1A/F

B2M

Supplemental Figure 2. 2D plots from the ddPCR assays illustrating gating strategies for the cell cycle genes. A. 2D plots for cell cycle panel 1 (top left and right: CDC6 (bright red droplets, H2AFZ dark purple, turquoise double positive for CDC6 and H2AFZ, MCM2 burgundy droplets, B2M dark violet, green double positive for B2M and MCM2, orange positive for MCM2 and H2AFZ, yellow positive for B2M and H2AFZ, pink positive for CDC6 and MCM2, blue positive for B2M and CDC6) (below left (after removal from B2M from this panel): CDC6 bright red droplets, H2AFZ dark purple, turquoise double positive for CDC6 and H2AFZ, MCM2 green droplets, orange positive for MCM2 and H2AFZ. B. 2D plot for cell cycle panel 2 (bright red droplets E2F1, DHFR dark purple, turquoise E2F1 and DHFR double positive, GUSB burgundy, ATAD2 dark violet, orange GUSB and DHFR, light pink GUSB and E2F1, yellow ATAD2 and DHFR). C. 2D plot for cell cycle panel 3 (turquoise droplets positive for HPA1A/B, dark green B2M, orange B2M and HPA1A/B).

Please note that these 2D plots were all generated in QX Manager 1.2 Standard Edition (BioRad).



**Supplemental Figure 3.** Expression of cell cycle genes (CDC6, ATAD2, DHFR, E2F1, H2AFZ and MCM2), reference genes (GUSB and B2M) and platelet-specific gene HPA1a/b in platelets from 4 healthy donors as measured by ddPCR.

|            |            |           |                          |            | PLATE        | PLATELET POOR PLASMA              | SMA              |                         |                 |                                                                                  |                  |
|------------|------------|-----------|--------------------------|------------|--------------|-----------------------------------|------------------|-------------------------|-----------------|----------------------------------------------------------------------------------|------------------|
|            |            | Whol      | ole blood                |            | After 1x cen | After 1x centrifugation in plasma | E                |                         | After 1x centri | After 1x centrifugation in cellular fraction                                     | iction           |
| Healthy    |            |           |                          |            | PP volume    |                                   |                  |                         |                 |                                                                                  |                  |
| control ID |            | number/ul | Total in 9 ml            | number/ul  | (ml)         | (ml) Total in PPP                 | % of whole blood | number/ul               | Cell fraction   | % of whole blood number/ul Cell fraction Total in cell fraction % of whole blood | % of whole blood |
| Control 1  | Leukocytes | 8 330     | 74 970 000               | 0.70       | 4            | 2800                              | 0.00             | 0.00 13 050.00 6 000.00 | 6 000.00        | 78 300 000.00                                                                    | 104.44           |
|            | Platelets  | 298 000   | 2 682 000 000            | 236 000.00 | 4            | 944 000 000.00                    | 35.20            | 35.20 351 000.00        | 6 000.00        | 2 106 000 000.00                                                                 | 78.52            |
| Control 2  | Leukocytes | 5 590     | 50 310 000               | 0.80       | 3.5          | 2 800.00                          | 0.01             | 8 120.00                | 6 000.00        | 48 720 000.00                                                                    | 96.84            |
|            | Platelets  | 189 000   | 1 701 000 000            | 234 000.00 | 3.5          | 819 000 000.00                    | 48.15            | 210 000.00              | 6 000.00        | 1 260 000 000.00                                                                 | 74.07            |
| Control 3  | Leukocytes | 6 840     | 61 560 000               | 1.50       | 3            | 4 500.00                          | 0.01             | 8 650.00                | 7 000.00        | 60 550 000.00                                                                    | 98.36            |
|            | Platelets  | 240 000   | 2 160 000 000            | 159 000.00 | 3            | 477 000 000.00                    | 22.08            | 276 000.00              | 7 000.00        | 1 932 000 000.00                                                                 | 89.44            |
| Control 4  | Leukocytes | 3 730     | 33 570 000               | 0.90       | 4            | 3 600.00                          | 0.01             | 6 010.00                | 7 000.00        | 42 070 000.00                                                                    | 125.32           |
|            | Platelets  | 257 000   | 2 313 000 000 175 000.00 | 175 000.00 | 4            | 700 000 000.00                    | 30.26            | 30.26 275 000.00        | 7 000.00        | 7 000.00 1 925 000 000.00                                                        | 83.23            |
|            |            |           |                          |            |              |                                   |                  |                         |                 |                                                                                  |                  |

Supplemental table 6. Overview of number of leukocytes and platelets recovered at the different centrifugation steps during the preparation of platelet poor plasma, and their percentages to whole blood. Supplemental Table 7. Expression of cell cycle genes in 4 samples of platelets isolated from healthy controls and the corresponding correction co-efficients, as calculated by the following formula:

|                         | CDC6     | Ratio m arker / | ATAD2    | Ratio marker/ DHFR               | DHFR    | Ratio<br>marker/ | E2F1     | Ratio marker/ | H2AFZ    | Ratio marker/ H2AFZ Ratio marker/ MCM2 Ratio marker/ GUSB | MCM2       | atio marker/ | GUSB R    | Ratio marker/     |                                                                                                                            | Ratio marker / HPA1a/b | HPA1a/b    |
|-------------------------|----------|-----------------|----------|----------------------------------|---------|------------------|----------|---------------|----------|-----------------------------------------------------------|------------|--------------|-----------|-------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------|------------|
| Control ID              | (copies) | HPA1ab          | (copies) | HPA1ab                           | (       | HPA1ab           | (copies) | HPA1ab        | (copies) | HPA1ab                                                    | (copies) H | HPA1ab       | copies) H | (copies) HPA1ab B | B2M (copies) HPA1ab                                                                                                        | HPA1ab                 | (copies)   |
| Tr1                     | 352.84   | 0.000472        |          | 0.000698                         | 1441.66 | 0.001927         | 9964.41  | 0.013320      | 24956.46 | 0.033360                                                  | 222.61     | 0.000298     | 2301.81   | 0.003077          | 522.45 0.000698 1441.66 0.001927 9964.41 0.013320 24956.46 0.0333560 222.61 0.000298 2301.81 0.003077 7526309.56 10.060729 | 10.060729              | 748087.91  |
| Tr3                     | 215.04   | 0.000174        |          | 526.99 0.000426 1038.84 0.000841 | 1038.84 | 0.000841         |          | 0.006691      | 12266.22 | 0.009926                                                  | 142.20     | 0.000115     | 1574.92   | 0.001275          | 8268.34 0.006691 12266.22 0.00926 142.20 0.000115 1574.92 0.001275 8328914.00 6.740196 1235707.97                          | 6.740196               | 1235707.97 |
| Tr2                     | 246.84   | 0.000524        |          | 0.001199                         | 1176.65 | 0.002498         | 9101.23  | 0.019325      | 21443.17 | 0.045531                                                  | 192.32     | 0.000408     | 3407.28   | 0.007235          | 564.85 0.001199 1176.65 0.002498 9101.23 0.019325 21443.17 0.045531 192.32 0.000408 3407.28 0.007235 4452183.12            | 9.453376               | 470962.23  |
| Tr4                     | 305.90   | 0.000571        |          | 885.89 0.001653                  | 1228.14 | 0.002291         | 5179.07  | 0.009661      | 37525.54 | 0.070000                                                  | 263.50     | 0.000492     | 3028.70   | 0.005650          | 1228.14[0.002291] 5179.07[ 0.009661] 37525.54[ 0.070000] 263.50[ 0.000492] 3028.70[ 0.005650] 14007719.00] 26.129944       | 26.129944              | 536079.19  |
| Mean copies             | 280.15   | 0.000435        |          | 625.05 0.000994 1221.32 0.001889 | 1221.32 | 0.001889         |          | 0.012249      | 24047.85 | 0.039704                                                  | 205.16     | 0.000328     | 2578.18   | 0.004309          | 8128.26 0.012249 24047.85 0.039704 205.16 0.000328 2578.18 0.004309 8578781.42 13.096061                                   | 13.096061              | 747709.33  |
| Standard deviation      | 215.04   | 0.000174        |          | 0.000426                         | 1038.84 | 0.000841         | 5179.07  | 0.006691      | 12266.22 | 0.009926                                                  | 142.20     | 0.000115     | 1574.92   | 0.001275          | 522.45 0.000426 1038.84 0.000841 5179.07 0.006691 12266.22 0.009926 142.20 0.000115 1574.92 0.001275 4452183.12 6.740196   | 6.740196               | 470962.23  |
| Minimum                 | 352.84   | 0.000571        |          | 885.89 0.001653 1441.66 0.002498 | 1441.66 | 0.002498         | 9964.41  | 0.019325      | 37525.54 | 0.070000                                                  | 263.50     | 0.000492     | 3407.28   | 0.007235          | 964.41 0.019325 37525.54 0.070000 263.50 0.000492 3407.28 0.007235 14007719.00 26.12944 1235707.97                         | 26.129944              | 1235707.97 |
| Maximum                 | 61.36    | 0.000179        |          | 174.93 0.000543                  | 167.22  | 167.22 0.000738  | 2084.50  | 0.005441      | 10457.29 | 0.025025                                                  | 51.11      | 0.000163     | 811.02    | 0.002651          | 2084.50 0.005441 10457.29 0.025025 51.11 0.000163 811.02 0.002651 3986322.76                                               | 8.808358               | 346178.71  |
| Correction co-efficient |          | 0.000971        |          | 0.002624                         |         | 0.004103         |          | 0.028571      |          | 0.114779                                                  |            | 0.000816     |           | 0.012262          |                                                                                                                            | 39.521135              |            |
|                         |          |                 |          |                                  |         |                  |          |               |          |                                                           |            |              |           |                   |                                                                                                                            |                        |            |

| after correction for platelets using the correction co-efficient per marker and below the calculated thresholds for positivity. The following 2 formulas were used: | on for p  | latelets us           | ing the   | e correcti         | on co-6   | the correction co-efficient per marker and below the calculated thresholds for positivity. The following 2 formulas were used: | marker    | and belov             | v the cal | iculated thi          | eshold     | s for posi            | tivity. The | following   | g 2 formu   | ulas were us | ed:          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------|-----------|--------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------|-----------|-----------------------|------------|-----------------------|-------------|-------------|-------------|--------------|--------------|
|                                                                                                                                                                     | CDC6      | After                 | ATAD2     | After              | DHFR      | After                                                                                                                          | E 2F1     | After                 | H2AFZ     | After                 | MCM2       | After                 |             | After       |             | After        |              |
|                                                                                                                                                                     | (copies/n | (copies/m subtraction | (copies/n | pies/m subtraction |           | (copies/m subtraction                                                                                                          | (copies/m | (copies/m subtraction | (copies/m | [copies/m subtraction | copies/m s | (copies/m subtraction | GUS         | subtraction | B2M         | subtraction  | HPA1A/B      |
|                                                                                                                                                                     | ()        | platelets             | ()        | platelets          | (1        | platelets                                                                                                                      | ()        | platelets             | ()        | platelets             | ) p        | platelets             | (copies/ml) | platelets   | (copies/ml) | platelets    | (co pies/ml) |
| 1                                                                                                                                                                   | 15.45     | 5 11.29               | 9 12.11   | 1 0.87             | 37 93.13  | 13 75.55                                                                                                                       | 5 127.21  | 4.76                  | 1082.76   | 590.86 NA             | ٨A         |                       | 56.49       | 3.94 NA     | NA          |              | 4285.60      |
| 2                                                                                                                                                                   | 28.92     | 2 -50.41              | 1 55.05   | 159.33             | 33 106.00 | 229.21                                                                                                                         | 1 434.62  | -1899.61              | 1658.21   | -7719.13 NA           | ٨A         |                       | 196.11      | -805.69     | NA          |              | 81699.07     |
| 3                                                                                                                                                                   | 23.02     | 2 -75.35              | 5 36.42   | -229.42            | 12 224.88 | 88 -190.79                                                                                                                     | 9 286.21  | -2608.31              | 2074.66   | -9553.59 NA           | ٨A         |                       | 153.71      | -1088.56 NA | NA          |              | 101309.88    |
| 4                                                                                                                                                                   | 6.75      | 5 2.14                | 4 24.53   | 12.08              | 87.08     | 08 67.60                                                                                                                       | 0 129.48  | -6.16                 | 1173.62   | 628.71 NA             | ٨A         |                       | 42.40       | -15.81 NA   | NA          |              | 4747.48      |
| 5                                                                                                                                                                   | 10.37     | 7 -18.52              | 2 18.02   | -60.06             | 127.96    | 96 5.87                                                                                                                        | 7 199.89  | -650.29               | 3377.00   | -38.48                | 81.02      | 56.74                 | 97.68       | -267.20     | 843643.27   | -332384.70   | 29756.94     |
| 9                                                                                                                                                                   | 23.32     | 2 -2.78               |           | 2 -47.82           | 32 150.68 | 58 40.39                                                                                                                       | 9 351.33  | -416.65               | 2218.52   | -866.70               | 146.13     | 124.20                | 237.75      | -91.85      | 664874.49   | -397440.85   | 26879.68     |
| 2                                                                                                                                                                   | 4.94      | 4 -3.67               | 7 2.91    | 1 -20.34           | 84 69.74  | 74 33.39                                                                                                                       | 9 203.68  | -49.43                | 686.76    | -330.06               | 54.37      | 47.14                 | 40.66       | -67.97      | 132429.73   | -217685.47   | 8858.94      |
| 8                                                                                                                                                                   | 5.91      | 1 -61.95              | 5 9.24    | -174.15            | 145.38    | 38 -141.37                                                                                                                     | 7 259.71  | -1737.04              | 1892.94   | -6128.64              | 38.39      | -18.64                | 111.30      | -745.65     | 605436.33   | -2156583.56  | 69887.16     |
| 6                                                                                                                                                                   | 3.32      | 2 -26.90              | 2.28      | -79.38             | 89.35     | 35 -38.34                                                                                                                      | 4 166.58  | -722.55               | 999.47    | -2572.44              | 29.91      | 4.51                  | 102.98      | -278.62     | 201029.70   | -1028862.15  | 31119.85     |
| 10                                                                                                                                                                  | 11.51     | 1 6.24                | 4 4.37    | -9.86              | 36 83.29  | 29 61.05                                                                                                                       | 5 48.08   | -106.81               | 688.27    | 66.01                 | 45.96      | 41.54                 | 52.47       | -14.00      | 137124.21   | -77134.32    | 5421.37      |
| 11                                                                                                                                                                  | 5.05      | -10.32                | 2 5.21    | -36.32             | 32 151.43 | 43 86.51                                                                                                                       | 1 117.36  | -334.77               | 1590.07   | -226.30               | 121.15     | 108.23                | 104.49      | -89.56      | 79200.40    | -546219.06   | 15824.94     |
| 12                                                                                                                                                                  | 24.38     | 8 -60.68              | 3.35      | 5 -226.53          | 33 100.70 | 70 -258.74                                                                                                                     | 4 274.85  | -2228.11              | 938.90    | -9116.32              | 18.93      | -52.56                | 96.92       | -977.29     | 586734.13   | -2875516.16  | 87605.03     |
| 13                                                                                                                                                                  | 13.25     | 5 -38.14              | 4 18.32   | -120.56            | 66 89.35  | 35 -127.81                                                                                                                     | 1 215.04  | -1297.12              | 1370.48   | -4704.36              | 19.91      | -23.27                | 91.62       | -557.37     | 499431.97   | -1592281.90  | 52926.46     |
| 14                                                                                                                                                                  | 6.35      | 5 -26.00              |           | 5 -63.57           | 57 109.03 | 33 -27.66                                                                                                                      | 6 353.60  | -598.26               | 726.89    | -3097.05              | 25.44      | -1.74                 | 58.38       | -350.14     | 311879.97   | -1004792.57  | 33315.66     |
| 15                                                                                                                                                                  | 4.59      | 9 -26.66              | 5 3.03    | -81.41             | 11 102.98 | 98 -29.06                                                                                                                      | 6 279.40  | -640.01               | 908.61    | -2784.97              | 43.61      | 17.35                 | 51.56       | -343.03     | 188309.17   | -1083476.80  | 32179.90     |
| 16                                                                                                                                                                  | 11.51     | 1 -44.07              | 7 13.10   | .0 -137.10         | 134.78    | 78 -100.09                                                                                                                     | 91.62     | -1543.85              | 878.32    | -5691.90              | 86.32      | 39.61                 | 81.77       | -620.13     | 217990.39   | -2044292.42  | 57242.35     |
| 17                                                                                                                                                                  | 6.04      | 4 0.00                | 0 6.83    | 3 -9.50            | 50 61.48  | 48 35.95                                                                                                                       | 5 25.06   | -152.76               | 984.33    | 269.95                | 33.24      | 28.16                 | 36.42       | -39.90      | 341561.19   | 95582.82     | 6223.97      |
| 18                                                                                                                                                                  | 24.23     | 3 -77.01              | 1 37.56   | -236.03            | 198.38    | 38 -229.41                                                                                                                     | 1 404.33  | -2574.56              | 2135.23   | -9831.96              | 86.32      | 1.24                  | 180.21      | -1098.26    | 789202.46   | -3331384.10  | 104262.86    |
| 19                                                                                                                                                                  | 4.55      | 5 -5.01               | 1 12.27   | -13.56             | 56 128.72 | 72 88.33                                                                                                                       | 3 137.81  | -143.43               | 730.67    | -399.13               | 68.30      | 60.26                 | 67.39       | -53.31      | 200348.24   | -188668.65   | 9843.26      |
| 20                                                                                                                                                                  | 16.51     | 1 7.02                | 2 6.06    | -19.57             | 57 212.01 | 01 171.93                                                                                                                      | 3 69.74   | -209.33               | 1060.04   | -61.07                | 104.49     | 96.52                 | 60.65       | -59.12      | 269251.07   | -116773.37   | 9767.54      |
| Mean                                                                                                                                                                | 12.50     | 0 -25.04              | 4 15.86   | 6 -85.58           | 58 123.32 | 32 -35.30                                                                                                                      | 0 208.78  | -895.72               | 1358.79   | -3078.33              | 62.72      | 33.08                 | 96.05       | -377.98     | 379277.92   | -1056119.58  | 38657.90     |
| Standard deviation                                                                                                                                                  | 8.23      | 3 28.43               | 3 14.14   | 81                 | .99 46.04 | 04 124.80                                                                                                                      | 0 119.07  | 892.71                | 693.21    | 3692.53               | 38.29      | 49.05                 | 55.97       | 384.44      | 248706.29   | 1058502.97   | 33957.73     |
| Minimum                                                                                                                                                             | 3.32      | 2 -77.01              | 1 2.28    | -236.03            | 03 61.48  | 48 -258.74                                                                                                                     | 4 25.06   | -2608.31              | 686.76    | -9831.96              | 18.93      | -52.56                | 36.42       | -1098.26    | 79200.40    | -3331384.10  | 4285.60      |
| Maximum                                                                                                                                                             | 28.92     | 2 11.29               | 9 55.05   | 12.08              | 224.88    | 88 171.93                                                                                                                      | 3 434.62  | 4.76                  | 3377.00   | 628.71                | 146.13     | 124.20                | 237.75      | 3.94        | 843643.27   | 95582.82     | 104262.86    |
| Control threshold                                                                                                                                                   | 37.19     | 9 60.24               | 4 58.29   | 160.40             | 10 261.45 | 45 339.11                                                                                                                      | 1 565.99  | 1782.41               | 3438.40   | 7999.25               | 177.58     | 180.22                | 263.95      | 775.33      | 1125396.80  | 2119389.33   | 140531.09    |

Supplemental Table 8. Expression of cell cycles genes in plasma from the 20 healthy controls (as shown previously in Supplemental Table 6) with adjacent the levels

Supplemental Table 9. Overview of the cell cycle marker results and the levels corrected for presence of platelets using the above-mentioned correction co-efficients. Cells in red are positive according to the thresholds (as shown in Supplemental Table 8).

| ID Stage | e CDC6     | for HPA                                         | ATAD2              | for HPA                                | DHFR               | for HPA                                                           | UE CEE   | for HPA                                | H2AFZ fo          | for HPA N           | MCM2 f   | for HPA                       | GUS      | for HPA                                         | B2M f    | for HPA    | HPA1AB   |
|----------|------------|-------------------------------------------------|--------------------|----------------------------------------|--------------------|-------------------------------------------------------------------|----------|----------------------------------------|-------------------|---------------------|----------|-------------------------------|----------|-------------------------------------------------|----------|------------|----------|
| 79       | -          | 4.550616 4.4748885                              |                    | 2.0593073                              | 29.45407           | 2.26395 2.0593073 29.45407 29.1340801 6.791851 4.5636293 277.8829 | 6.791851 | 4.5636293                              | 277.8829          | 137                 | 13.62913 | 13.565493                     | 15.82494 | 3644                                            | 31.3     | 749.090115 | 77.98892 |
| 2097     | 1 11.811   | 11.81191 8.2755257 17.79359 8.2369628 147.6489  |                    | 8.2369628                              | 147.6489           | 132.705776                                                        | 188.5363 | 132.705776 188.5363 84.480546 1052.472 |                   | 634.44595           | 106.7615 | 634.44595 106.7615 103.789656 |          | 78.7461 34.0878069 73218.73                     |          |            |          |
| 2115     | 1          | 0 -0.0571263                                    | 0                  | 0 -0.154376 23.54811                   | 23.54811           |                                                                   | 2.354811 | 23.306722 2.354811 0.6739101           |                   | 84.108154           | 9.767545 | 9.71953735                    |          | 9.71953735 4.709622 3.988219148 1438.631        |          | -886.49311 |          |
| 2124     | 1          | 0 -0.5896432                                    | 2.301809           | 2.301809 0.7083757                     | 59.81675           | 57.3251847                                                        | 11.50904 | 11.50904 -5.8407963                    | 389.1874          | 319.48748           | 15.6735  | 15.6735 15.1779829 18.39933   | 18.39933 | 10.95318519 12720.52                            | 12720.52 | -11278.823 | 607.2535 |
| 2126     | 1          | 0 -0.1066063                                    | 0                  | -0.28809                               | 20.06511           | 19.6146417 4.459755                                               | 4.459755 | 1.3229382                              | 109.7902          | 97.188617           | 0        | -0.08958883                   | 6.685846 | 5.33959862                                      | 2877.261 | -1461.7728 | 109.7902 |
| 2148     | 1 2.3472   | 2.347239 -0.8877108 22.26092 13.518887 173.3928 | 22.26092           | 13.518887                              | 173.3928           | 159.723432 89.34653                                               | 89.34653 | -5.8396288 1113.046                    |                   | 730.65201 44.52183  |          | 41.8032737                    | 95.40392 | 95.40392 54.55226661                            | 49594.9  | -82072.34  | 3331.566 |
| 2149     | 1 6.829709 |                                                 | 12.64481           | 6.4643072 12.64481 11.657354 136.2913  | 136.2913           | 134.747298 45.43044                                               | 45.43044 | 34.67873                               | 34.67873 483.8342 | 440.64107 75.11166  |          | 74.8045874                    | 22.71522 | 22.71522 18.10083961 15522.07                   | 15522.07 | 649.654073 | 376.3155 |
| 2155     | 1 11.05474 | 174 10.427601                                   |                    | 6.731277 5.0365155                     | 220.3376           | 217.687632                                                        | 51.63927 | 33.186132                              | 885.8936          | 811.76133           | 81.77479 | 81.2477626                    | 74.12733 | 66.20768375                                     | 25592.48 | 66.9918101 | 645.8694 |
| 2165     | -          | 0 -0.2293874                                    | 0                  | -0.619889                              | -0.619889 34.07283 | 33.1035443 2.271522                                               | 2.271522 | -4.4780421 102.2185                    |                   | 75.103296 9.086088  |          | 8.89331756                    | 2.271522 | 8.89331756 2.271522 -0.62523189 4217.459        | 4217.459 | -5118.9449 | 236.2383 |
| 2169     | 1 11.88763 | 763 11.311958                                   | 11.311958 9.010371 | 7.454687                               | 7.454687 195.3509  | 192.918358 123.4194                                               | 123.4194 | 106.48055 1022.185                     | 1022.185          | 954.13619 133.2626  | 133.2626 | 132.778844                    | 62.84544 | 55.57570388                                     | 20216.55 | -3214.2375 | 592.8672 |
| 2102     | 4 4.868629 |                                                 | 7.109864           | 4.0598913 7.109864 4.9243568           | 1007.041           | 1003.62407                                                        | 142.3487 | 118.55217 908.6088                     |                   | 813.01036 141.5915  | 141.5915 | 140.911899                    | 52.16929 | 41.95637425 28848.33                            | 28848.33 | -4068.4799 | 832.8914 |
| 2117     | 4          | 0 -0.2176239                                    | 4.588474           | -0.2176239 4.588474 4.0003744 268.7968 | 268.7968           | 267.877191                                                        | 34.3757  | 27.972267 424.7746                     | 424.7746          | 399.04994 31.72559  | 31.72559 | 31.5427058                    |          | 16.05209 13.30388639                            | 8783.218 | -74.395738 | 224.1235 |
| 2141     | 4 19.38365 |                                                 | 6.647988           | 17.486797 6.647988 1.5219803 855.6066  | 855.6066           | 847.591373                                                        | 62.08827 | 6.2745646 848.0349                     |                   | 623.81308 79.50327  | 79.50327 | 77.9092067                    | 17.71787 | 77.9092067 17.71787 -6.23605478 39297.33        | 39297.33 | -37907.549 | 1953.509 |
| 2143     | 4 9.237523 |                                                 | 2.150374           | 2.8117354 2.150374 -15.21447 170.3642  | 170.3642           | 143.211724 305.8983                                               | 305.8983 | 116.82397 454.3044                     |                   | -305.26868 9.237523 |          | 3.83747898                    | 77.23175 | 77.23175 -3.91449872 124100.8                   | 124100.8 | -137438.19 | 6617.701 |
| 2144     | 4 15.59778 | 778 15.164007                                   | 8.101762           | 6.9295353                              | 6.9295353 189.2935 | 187.460556 44.67327                                               | 44.67327 | 31.909667                              | 493.6774          | 442.40192 24.45672  | 24.45672 | 24.0921863                    | 26.42537 | 20.94753672 17869.31                            | 17869.31 | 213.926869 | 446.7327 |
| 2.146    | 4 58.83242 | 242 55.8695                                     | 53.0779            | 45.070994 1181.191                     | 1181.191           | 1168.6715 335.4281                                                | 335.4281 | 248.24621 2210.948                     |                   | 1860.7102 183.9933  | 183.9933 | 181.50333                     | 55.42514 | 181.50333 55.42514 18.00873242 57393.79         | 57393.79 | -63201.43  | 3051.411 |
| 2150     | 4          | 0 -1.3748538 4.399181                           | 4.399181           | 0.683819                               | 0.683819 63.75405  | 57.94455                                                          | 35.20859 | 57.94455 35.20859 -5.2455273 353.6003  | 353.6003          | 191.08291           | 26.65252 | 25.4971378 24.15385           | 24.15385 | 6.79189621 52245.01                             | 52245.01 | -3713.5698 | 1415.915 |
| 2151     | 4 6.534412 | 112 5.8139                                      | 10.97902           | 9.0319349                              | 9.0319349 489.8916 | 486.847027                                                        | 171.8785 | 150.67794 477.7768                     | 477.7768          | 392.60727           | 8.707501 | 8.1020041 35.20859            |          | 26.10981276                                     | 11039.6  | -18286.288 | 742.0305 |
| 2152     | 4 2.127659 | 559 1.5394862                                   | 0                  |                                        | -1.58946 61.25538  | 58.7700287 19.00507                                               | 19.00507 | 1.6984927 355.8718                     | 355.8718          | 286.34564 12.72052  | 12.72052 | 12.22624                      | 23.24524 | 12.22624 23.24524 15.81766773 28545.46          | 28545.46 | 4605.96213 | 605.7392 |
| 2153     | 4 9.918979 | 979 7.5295275                                   | 2.26395            |                                        | -4.19323 495.1918  | 485.09507 138.5628                                                | 138.5628 | 68.254882 380.8585                     | 380.8585          | 98.40858 24.83531   | 24.83531 | 22.8272818                    | 31.72559 | 22.8272818 31.72559 1.551070939 34678.57        | 34678.57 | -62575.64  | 2460.816 |
| 2157     | 4 16.27924 | 924 14.852922                                   |                    | 0 -3.85444 107.5187                    | 107.5187           | 101.491739 134.777                                                | 134.777  | 92.808528                              | 636.0262          | 467.42527 34.67857  | 34.67857 | 33.4799325                    | 21.04944 | 21.04944 3.037570079 46263.33                   | 46263.33 | -11789.95  | 1468.918 |
| 2160     | 4 8.934653 | 553 8.0744505                                   |                    | 8.707501 6.3829162 135.5341            | 135.5341           | 131.899325                                                        | 87.07501 | 61.764145                              | 622.397           | 520.71505           | 62.46686 | 61.7439658                    |          | 24.00242 13.13958872 40205.94                   | 40205.94 | 5194.42406 | 885.8936 |
| 2161     | 4 27.71257 |                                                 | 19.61081           | 26.992057 19.61081 17.663719 246.0816  | 246.0816           | 243.036999 117.362                                                | 117.362  | 96.161416 1113.046                     | 1113.046          | 1027.8763           | 104.49   | 103.884515                    |          | 26.1225 17.02372476 13757.85                    | 13757.85 | -15568.033 | 742.0305 |
| 2163     | 4 2.112515 |                                                 | 3.907018           | 1.9470919 3.907018 3.4599823 109.7902  | 109.7902           | 109.091226 7.798892                                               | 7.798892 | 2.9314181                              | 583.7812          | 564.22693 42.32603  | 42.32603 | 42.1870095                    | 35.20859 | 33.11958579 32709.92                            | 32709.92 | 25976.9331 | 170.3642 |
| 2164     | 4 2.067085 | 385 -0.5429316                                  | 8.480349           | 8.480349 1.4271216 480.0483            | 480.0483           | 469.019585                                                        | 230.1809 | 153.38297                              | 647.3838          | 338.86153           | 70.34146 | 68.148083                     | 36.19292 | 3.233057263 126599.5                            | 126599.5 | 20367.9719 | 2687.968 |
| 2166     | 4 45.12757 | 757 43.120431                                   |                    | 43.99181 38.567778 2468.387            | 2468.387           | 2459.90599                                                        | 160.5209 | 101.4622                               | 1574.922          | 1337.664            | 118.8763 | 117.189577                    | 46.03618 | 46.03618 20.68958268 20746.57                   | 20746.57 | -60946.968 | 2067.085 |
| 2171     | 4 19.53509 |                                                 | 25.51676           | 17.638232 25.51676 20.390756 461.119   | 461.119            | 453.103719                                                        | 238.5098 | 182.69611 1673.355                     | 1673.355          | 1449.1327 103.7328  | 103.7328 | 102.138775                    | 66.02557 | 42.07164642 30968.42                            | 30968.42 | -46236.463 | 1953.509 |
| 2172     | 4 8.404631 |                                                 | 4.43704            | 8.0002626 4.43704 3.3442861 162.0352   | 162.0352           | 160.326559                                                        | 53.30505 | 41.40678                               | 535.322           | 487.5228            | 52.54788 | 52.2080559                    | 31.11985 | 26.01339423                                     | 8359.201 | -8099.2037 | 416.4457 |
| 2174     | 4 38.38872 | 372 36.734486                                   | 44.97614           | 40.50578                               | 40.50578 1188.763  | 1181.77314                                                        | 246.8387 | 198.16398 1832.361                     | 1832.361          | 1636.8188 177.1787  | 177.1787 | 175.788545                    | 98.43262 | 77.54256793 10812.44                            | 10812.44 | -56517.392 | 1703.642 |
| 2175     | 4 4.543044 |                                                 | 6.064964           | 0.764034 6.064964 -4.147315 628.4544   | 628.4544           | 612.48606                                                         | 360.4148 | 249.22008 583.7812                     | 583.7812          | 137.07571 77.23175  | 77.23175 | 74.0559785                    | 105.2472 | 57.5250226 45809.03                             | 45809.03 | -108002.25 | 3891.874 |
| 2177     | 4 21.35231 | 231 20.095088                                   |                    | 20.21655 16.819076 10827.59            | 10827.59           | 10822.2758                                                        | 192.3222 | 155.32939 1309.911                     | 1309.911          | 1161.2989 127.9624  | 127.9624 | 126.905876                    | 10.14613 | -5.73030798 15749.22                            | 15749.22 | -35421.457 | 1294.768 |
| 2179     | 4 13.02339 | 339 4.7889741                                   | 7.170438           | -15.082                                | 243.81             | 209.015157 198.3796                                               | 198.3796 | -43.912458 1279.624                    | 1279.624          | 306.25811 (         | 62.92116 | 56.0011948                    | 88.58936 | -15.396679                                      | 87756.47 | -247396.5  | 8480.349 |
| 2181     | 4 13.70485 | 185 11.352158                                   | 0                  | -6.357839                              | -6.357839 346.7857 | 336.8443                                                          | 295.2979 | 226.07156 870.7501                     | 870.7501          | 592.64554 41.03883  | 41.03883 | 39.0616981                    |          | 39.75164 10.04133872 53607.92                   | 53607.92 | -42150.071 | 2422.957 |
| 2183     | 4 5.156355 |                                                 | 11.28189           | 4.0682353 11.28189 8.3413922 165.0639  | 165.0639           | 160.466038 103.7328                                               | 103.7328 | 71.715675 581.5096                     | 581.5096          | 452.88627 82.53197  | 82.53197 | 81.6175421                    | 29.30263 | 29.30263 15.56162177 39297.33                   | 39297.33 | -4990.7401 | 1120.618 |
| 2184     | 4 8.556066 |                                                 | 19.61081           | 8.5038659 19.61081 19.469742           | 152.192            | 151.971399 12.26622                                               | 12.26622 | 10.73026 490.6488                      |                   | 484.47831           | 42.70461 | 42.660746                     | 12.26622 | 42.660746 12.26622 11.6070216 1718.785          | 1718.785 | -405.84544 | 53.75935 |
| 2187     | 4 79.50327 | 327 64.776894                                   |                    | 66.93418 27.138085                     | 863.1784           | 800.951461                                                        | 477.0196 | 43.706256                              | 3740.44           | 1999.6788           | 386.9159 | 374.540299                    | 141.5915 | -44.3763478                                     | 295297.9 | -304087.31 | 15166.2  |
| 2193     | 4 20.21655 |                                                 | 17.18785           | 19.371047 17.18785 14.903002 112.0618  | 112.0618           | 108.489064 107.5187                                               | 107.5187 | 82.640507 654.1983                     | 654.1983          | 554.25451 38.46444  | 38.46444 | 37.7539071 34.45142           | 34.45142 | 23.77427927 12357.08                            | 12357.08 | -22055.948 | 870.7501 |
| 2194     | 4 183.2361 | 361 178.66306                                   | 96.1611            | 83.803049                              | 83.803049 1067.615 | 1048.29176                                                        | 487.6201 | 353.06144 10221.85                     | 10221.85          | 9681.2833 1007.041  | 1007.041 | 1003.19837                    | 220.3376 | <b>1003.19837 220.3376 162.5882456 28545.46</b> | 28545.46 | -157584.13 | 4709.622 |
| 2196     | 4 35.28431 | 131 34.490275                                   | 39.37305           | 37.227277                              | 514.1211           | 510.765926                                                        | 137.0485 | 113.68462 2059.513                     | 2059.513          | 1965.653            | 165.8211 | 165.153824 96.91827           | 96.91827 | 86.891047 34981.44                              | 34981.44 | 2663.11695 | 817.7479 |
| 1111     | A 44 21404 | 1009100 901                                     | •                  |                                        |                    | 000000000                                                         |          |                                        |                   |                     |          |                               |          |                                                 |          |            |          |

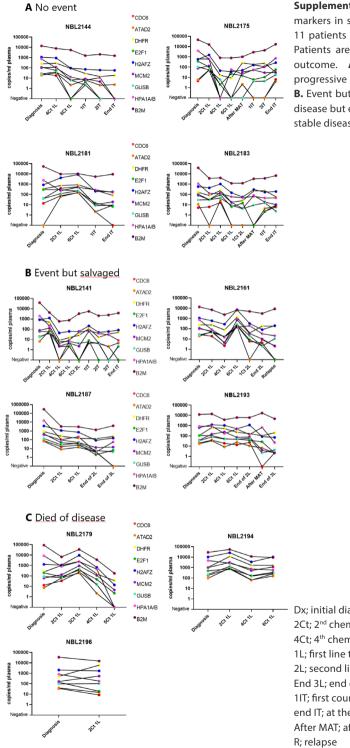
NBL ID; unique patient identifier

Stage; number corresponds to International Neuroblastoma Staging System Committee (INSS) stage for neuroblastoma

**Supplemental Table 10.** Levels of the neuroblastoma-specific markers and cell cycle genes in sequential plasma samples from 11 patients with metastatic neuroblastoma. (following page).

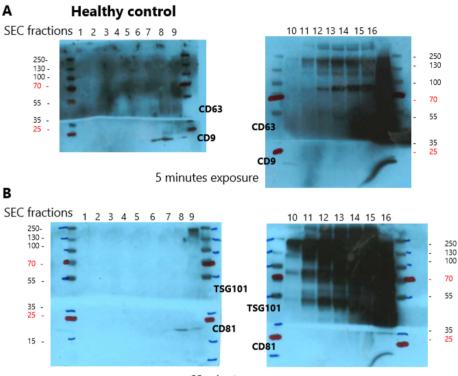
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CDC6                                                                                                                                                                                                           | ATAD2                                                                                                                                                                                                               | DHFR                                                                                                                                                                                                                                                                                       | E2F1                                                                                                                                                                                                                                                                                                                                                                      | HZAFZ                                                                                                                                                                                                                                                            | MCM2                                                                                                                                                                                                                                                                                                                          | GUS                                                                                                                                                                                                                                                                            | HPA1AB                                                                                                                                                                                                                                   | B2M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NBL ID       | Time point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (copies/ml)                                                                                                                                                                                                    | (copies/ml)<br>6.647988                                                                                                                                                                                             | (copies/ml)                                                                                                                                                                                                                                                                                | (copies/ml)                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                  | (copies/ml)                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                          | (copies/ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2141         | Diagnosis<br>After 2CT 1L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19.38365 40.81168                                                                                                                                                                                              | 6.64/988                                                                                                                                                                                                            | 855.6066<br>475.5053                                                                                                                                                                                                                                                                       | 62.08827<br>57.69666                                                                                                                                                                                                                                                                                                                                                      | 848.0349                                                                                                                                                                                                                                                         | 79.50327                                                                                                                                                                                                                                                                                                                      | 17.71787                                                                                                                                                                                                                                                                       | 1953.509                                                                                                                                                                                                                                 | 39297.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | After 4Ct 1L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40.81108                                                                                                                                                                                                       | 74.80879                                                                                                                                                                                                            | 8.556066                                                                                                                                                                                                                                                                                   | 2.142802                                                                                                                                                                                                                                                                                                                                                                  | 43.91609                                                                                                                                                                                                                                                         | 2.309381                                                                                                                                                                                                                                                                                                                      | 6.428407                                                                                                                                                                                                                                                                       | 4.149314                                                                                                                                                                                                                                 | 585.295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | After 6Ct 1L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.233663                                                                                                                                                                                                       | 6.57227                                                                                                                                                                                                             | 15.29491                                                                                                                                                                                                                                                                                   | 2.188233                                                                                                                                                                                                                                                                                                                                                                  | 62.46686                                                                                                                                                                                                                                                         | 4.459755                                                                                                                                                                                                                                                                                                                      | 6.57227                                                                                                                                                                                                                                                                        | 8.783218                                                                                                                                                                                                                                 | 750.359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | 1Ct 2L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                              | 0                                                                                                                                                                                                                   | 25.81963                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                         | 60.87679                                                                                                                                                                                                                                                         | 2.248807                                                                                                                                                                                                                                                                                                                      | 4.300748                                                                                                                                                                                                                                                                       | 51.94214                                                                                                                                                                                                                                 | 3323.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | 1IT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.626333                                                                                                                                                                                                       | 6.04982                                                                                                                                                                                                             | 111.3046                                                                                                                                                                                                                                                                                   | 8.101762                                                                                                                                                                                                                                                                                                                                                                  | 212.7659                                                                                                                                                                                                                                                         | 64.81409                                                                                                                                                                                                                                                                                                                      | 6.04982                                                                                                                                                                                                                                                                        | 75.7174                                                                                                                                                                                                                                  | 5572.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | 2IT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.543044                                                                                                                                                                                                       | 4.149314                                                                                                                                                                                                            | 16.58211                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                         | 49.97348                                                                                                                                                                                                                                                         | 4.543044                                                                                                                                                                                                                                                                                                                      | 4.149314                                                                                                                                                                                                                                                                       | 39.1459                                                                                                                                                                                                                                  | 2067.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | 3IT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.097372                                                                                                                                                                                                       | 2.082229                                                                                                                                                                                                            | 35.36003                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                         | 60.95251                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                              | 29.37835                                                                                                                                                                                                                                 | 2460.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | End IT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                              | 4.702051                                                                                                                                                                                                            | 49.36774                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                         | 84.04631                                                                                                                                                                                                                                                         | 2.142802                                                                                                                                                                                                                                                                                                                      | 2.347239                                                                                                                                                                                                                                                                       | 8.404631                                                                                                                                                                                                                                 | 3823.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2144         | Diagnosis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27.71257                                                                                                                                                                                                       | 19.61081                                                                                                                                                                                                            | 246.0816                                                                                                                                                                                                                                                                                   | 117.362                                                                                                                                                                                                                                                                                                                                                                   | 1113.046                                                                                                                                                                                                                                                         | 104.49                                                                                                                                                                                                                                                                                                                        | 26.1225                                                                                                                                                                                                                                                                        | 742.0305                                                                                                                                                                                                                                 | 13757.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | After 4Ct 1L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18.09646                                                                                                                                                                                                       | 33.39137                                                                                                                                                                                                            | 287.7261                                                                                                                                                                                                                                                                                   | 57.84809<br>0                                                                                                                                                                                                                                                                                                                                                             | 916.1805                                                                                                                                                                                                                                                         | 119.6335                                                                                                                                                                                                                                                                                                                      | 40.0545                                                                                                                                                                                                                                                                        | 100.7041                                                                                                                                                                                                                                 | 7798.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | After 6Ct 1L<br>1IT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.180661                                                                                                                                                                                                       | 2.157946                                                                                                                                                                                                            | 88.58936<br>28.77261                                                                                                                                                                                                                                                                       | 4,429468                                                                                                                                                                                                                                                                                                                                                                  | 94.64675<br>74.05162                                                                                                                                                                                                                                             | 6.458694<br>8.707501                                                                                                                                                                                                                                                                                                          | 6.473838<br>2.210948                                                                                                                                                                                                                                                           | 12.79624                                                                                                                                                                                                                                 | 5451.65<br>1559.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              | 217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.100001                                                                                                                                                                                                       | 2.074657                                                                                                                                                                                                            | 14.53774                                                                                                                                                                                                                                                                                   | 4.42.5400                                                                                                                                                                                                                                                                                                                                                                 | 61.17966                                                                                                                                                                                                                                                         | 4.702051                                                                                                                                                                                                                                                                                                                      | 2.210348                                                                                                                                                                                                                                                                       | 11.13046                                                                                                                                                                                                                                 | 2112.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | End IT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                              | 2.347239                                                                                                                                                                                                            | 18.77792                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                         | 57.54522                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                        | 1514.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2161         | Diagnosis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27.71257                                                                                                                                                                                                       | 19.61081                                                                                                                                                                                                            | 246.0816                                                                                                                                                                                                                                                                                   | 117.362                                                                                                                                                                                                                                                                                                                                                                   | 1113.046                                                                                                                                                                                                                                                         | 104.49                                                                                                                                                                                                                                                                                                                        | 26.1225                                                                                                                                                                                                                                                                        | 742.0305                                                                                                                                                                                                                                 | 13757.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | After 2CT 1L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19.23222                                                                                                                                                                                                       | 55.12227                                                                                                                                                                                                            | 239.267                                                                                                                                                                                                                                                                                    | 50.57922                                                                                                                                                                                                                                                                                                                                                                  | 602.7105                                                                                                                                                                                                                                                         | 57.77238                                                                                                                                                                                                                                                                                                                      | 45.96046                                                                                                                                                                                                                                                                       | 82.53197                                                                                                                                                                                                                                 | 7155.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | After 4Ct 1L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.210948                                                                                                                                                                                                       | 17.33928                                                                                                                                                                                                            | 77.98892                                                                                                                                                                                                                                                                                   | 4.331035                                                                                                                                                                                                                                                                                                                                                                  | 281.6687                                                                                                                                                                                                                                                         | 4.421896                                                                                                                                                                                                                                                                                                                      | 17.33928                                                                                                                                                                                                                                                                       | 14.84061                                                                                                                                                                                                                                 | 2377.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | After 6Ct 1L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 197.6224                                                                                                                                                                                                       | 174.15                                                                                                                                                                                                              | 1340.198                                                                                                                                                                                                                                                                                   | 221.0948                                                                                                                                                                                                                                                                                                                                                                  | 7276.442                                                                                                                                                                                                                                                         | 741.2733                                                                                                                                                                                                                                                                                                                      | 264.2537                                                                                                                                                                                                                                                                       | 145.3774                                                                                                                                                                                                                                 | 6890.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | 1Ct 2L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.087679                                                                                                                                                                                                       | 0                                                                                                                                                                                                                   | 39.6002                                                                                                                                                                                                                                                                                    | 8.328914                                                                                                                                                                                                                                                                                                                                                                  | 324.8276                                                                                                                                                                                                                                                         | 34.45142                                                                                                                                                                                                                                                                                                                      | 20.82229                                                                                                                                                                                                                                                                       | 195.9188                                                                                                                                                                                                                                 | 5035.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | End 2L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.081168                                                                                                                                                                                                       | 8.556066                                                                                                                                                                                                            | 183.9933                                                                                                                                                                                                                                                                                   | 2.135231                                                                                                                                                                                                                                                                                                                                                                  | 81.77479                                                                                                                                                                                                                                                         | 10.22185                                                                                                                                                                                                                                                                                                                      | 2.135231                                                                                                                                                                                                                                                                       | 32.93707                                                                                                                                                                                                                                 | 3157.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | Relapse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                              | 2.188233                                                                                                                                                                                                            | 183.9933                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                         | 202.9226                                                                                                                                                                                                                                                         | 2.029226                                                                                                                                                                                                                                                                                                                      | 10.90331                                                                                                                                                                                                                                                                       | 20.898                                                                                                                                                                                                                                   | 8858.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                              |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2175         | Diagnosis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.543044                                                                                                                                                                                                       | 6.064964                                                                                                                                                                                                            | 628.4544                                                                                                                                                                                                                                                                                   | 360.4148                                                                                                                                                                                                                                                                                                                                                                  | 583.7812                                                                                                                                                                                                                                                         | 77.23175                                                                                                                                                                                                                                                                                                                      | 105.2472                                                                                                                                                                                                                                                                       | 3891.874                                                                                                                                                                                                                                 | 45809.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | After 2CT 1L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50.88209                                                                                                                                                                                                       | 54.06222                                                                                                                                                                                                            | 610.2822                                                                                                                                                                                                                                                                                   | 108.2759                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                  | 133.2626                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                | 598.1675<br>0                                                                                                                                                                                                                            | 15597.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | After 4Ct 1L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                              | 2.036798                                                                                                                                                                                                            | 16.27924                                                                                                                                                                                                                                                                                   | 2.036798                                                                                                                                                                                                                                                                                                                                                                  | 45.12757                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                             | 6.102822                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                          | 802.604                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | After 6Ct 1L<br>After MAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.173089                                                                                                                                                                                                       | 2.097372                                                                                                                                                                                                            | 9.010371 255.9248                                                                                                                                                                                                                                                                          | 22.48807<br>14.68918                                                                                                                                                                                                                                                                                                                                                      | 36.42007 50.0492                                                                                                                                                                                                                                                 | 32.6342                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                              | 58.22668                                                                                                                                                                                                                                 | 1007.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | 1IT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.1/5069                                                                                                                                                                                                       | 2.097372                                                                                                                                                                                                            | 181.7218                                                                                                                                                                                                                                                                                   | 6.117966                                                                                                                                                                                                                                                                                                                                                                  | 163.5496                                                                                                                                                                                                                                                         | 52.54788                                                                                                                                                                                                                                                                                                                      | 4.081168                                                                                                                                                                                                                                                                       | 55.95516                                                                                                                                                                                                                                 | 2869.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | 3IT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                              | 0                                                                                                                                                                                                                   | 238.5098                                                                                                                                                                                                                                                                                   | 10.82759                                                                                                                                                                                                                                                                                                                                                                  | 112.0618                                                                                                                                                                                                                                                         | 28.54546                                                                                                                                                                                                                                                                                                                      | 4.323464                                                                                                                                                                                                                                                                       | 101.4613                                                                                                                                                                                                                                 | 4346.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | End IT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6,405692                                                                                                                                                                                                       | 3.96002                                                                                                                                                                                                             | 31.72559                                                                                                                                                                                                                                                                                   | 57.46951                                                                                                                                                                                                                                                                                                                                                                  | 271.8255                                                                                                                                                                                                                                                         | 29.90837                                                                                                                                                                                                                                                                                                                      | 17.79359                                                                                                                                                                                                                                                                       | 739.0018                                                                                                                                                                                                                                 | 16809.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              | Diagnosis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.02339                                                                                                                                                                                                       | 7.170438                                                                                                                                                                                                            | 243.81                                                                                                                                                                                                                                                                                     | 198.3796                                                                                                                                                                                                                                                                                                                                                                  | 1279.624                                                                                                                                                                                                                                                         | 62.92116                                                                                                                                                                                                                                                                                                                      | 88.58936                                                                                                                                                                                                                                                                       | 8480.349                                                                                                                                                                                                                                 | 87756.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | After 2CT 1L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 33.76996                                                                                                                                                                                                       | 64.35979                                                                                                                                                                                                            | 1014.613                                                                                                                                                                                                                                                                                   | 84.04631                                                                                                                                                                                                                                                                                                                                                                  | 1097.902                                                                                                                                                                                                                                                         | 130.9911                                                                                                                                                                                                                                                                                                                      | 68.82712                                                                                                                                                                                                                                                                       | 817.7479                                                                                                                                                                                                                                 | 6647.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2179         | After 3Ct 1L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 232.4524                                                                                                                                                                                                       | 193.8365                                                                                                                                                                                                            | 2430.529                                                                                                                                                                                                                                                                                   | 370.2581                                                                                                                                                                                                                                                                                                                                                                  | 9540.392                                                                                                                                                                                                                                                         | 954.0392                                                                                                                                                                                                                                                                                                                      | 466.4192                                                                                                                                                                                                                                                                       | 2347.239                                                                                                                                                                                                                                 | 34375.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              | After 4Ct 1L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14.99205                                                                                                                                                                                                       | 2.082229                                                                                                                                                                                                            | 154.4635                                                                                                                                                                                                                                                                                   | 45.88474                                                                                                                                                                                                                                                                                                                                                                  | 662.5273                                                                                                                                                                                                                                                         | 111.3046                                                                                                                                                                                                                                                                                                                      | 14.61346                                                                                                                                                                                                                                                                       | 454.3044                                                                                                                                                                                                                                 | 3581.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | After 5Ct 1L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                              | 0                                                                                                                                                                                                                   | 35.13287                                                                                                                                                                                                                                                                                   | 2.195805                                                                                                                                                                                                                                                                                                                                                                  | 13.55341                                                                                                                                                                                                                                                         | 4.512757                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                        | 177.178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              | Diagnosis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.70485                                                                                                                                                                                                       | 0                                                                                                                                                                                                                   | 346.7857                                                                                                                                                                                                                                                                                   | 295.2979                                                                                                                                                                                                                                                                                                                                                                  | 870.7501                                                                                                                                                                                                                                                         | 41.03883                                                                                                                                                                                                                                                                                                                      | 39.75164                                                                                                                                                                                                                                                                       | 2422.957                                                                                                                                                                                                                                 | 53607.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | After 2CT 1L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 74.88451                                                                                                                                                                                                       | 62.76972                                                                                                                                                                                                            | 736.7303                                                                                                                                                                                                                                                                                   | 290.7548                                                                                                                                                                                                                                                                                                                                                                  | 4141.742                                                                                                                                                                                                                                                         | 402.0594                                                                                                                                                                                                                                                                                                                      | 121.1478                                                                                                                                                                                                                                                                       | 233.2096                                                                                                                                                                                                                                 | 9464.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2181         | After 6Ct 1L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 152.192                                                                                                                                                                                                        | 151.4348                                                                                                                                                                                                            | 885.8936                                                                                                                                                                                                                                                                                   | 212.7659                                                                                                                                                                                                                                                                                                                                                                  | 8556.066                                                                                                                                                                                                                                                         | 555.7657                                                                                                                                                                                                                                                                                                                      | 225.6379                                                                                                                                                                                                                                                                       | 498.9777                                                                                                                                                                                                                                 | 10373.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | 1IT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.104944                                                                                                                                                                                                       | 2.074657                                                                                                                                                                                                            | 258.9535                                                                                                                                                                                                                                                                                   | 14.53774                                                                                                                                                                                                                                                                                                                                                                  | 204.437                                                                                                                                                                                                                                                          | 10.52472                                                                                                                                                                                                                                                                                                                      | 8.253197                                                                                                                                                                                                                                                                       | 281.6687                                                                                                                                                                                                                                 | 5421.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | End IT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                              | 9.086088                                                                                                                                                                                                            | 81.77479                                                                                                                                                                                                                                                                                   | 6.829709                                                                                                                                                                                                                                                                                                                                                                  | 180.9646                                                                                                                                                                                                                                                         | 18.92935                                                                                                                                                                                                                                                                                                                      | 9.086088                                                                                                                                                                                                                                                                       | 159.0065                                                                                                                                                                                                                                 | 9313.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                | 11.28189                                                                                                                                                                                                            | 165.0639                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                  | 82.53197                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                          | 39297.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | Diagnosis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.156355                                                                                                                                                                                                       |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                            | 103.7328                                                                                                                                                                                                                                                                                                                                                                  | 581.5096                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                               | 29.30263                                                                                                                                                                                                                                                                       | 1120.618                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              | After 2CT 1L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                | 100 0100                                                                                                                                                                                                                                 | 00.00.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.170968                                                                                                                                                                                                       | 0                                                                                                                                                                                                                   | 78.7461                                                                                                                                                                                                                                                                                    | 30.58983                                                                                                                                                                                                                                                                                                                                                                  | 436.8894                                                                                                                                                                                                                                                         | 30.8927                                                                                                                                                                                                                                                                                                                       | 30.58983                                                                                                                                                                                                                                                                       | 128.7196                                                                                                                                                                                                                                 | 3649.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | After 4Ct 1L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.170968<br>16.27924                                                                                                                                                                                           | 0<br>26.80396                                                                                                                                                                                                       | 78.7461<br>241.5385                                                                                                                                                                                                                                                                        | 30.58983<br>91.61805                                                                                                                                                                                                                                                                                                                                                      | 436.8894<br>1044.9                                                                                                                                                                                                                                               | 30.8927<br>152.9491                                                                                                                                                                                                                                                                                                           | 30.58983<br>44.74898                                                                                                                                                                                                                                                           | 121.905                                                                                                                                                                                                                                  | 3649.57<br>4096.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2183         | After 6Ct 1L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.170968<br>16.27924<br>0                                                                                                                                                                                      | 0<br>26.80396<br>0                                                                                                                                                                                                  | 78.7461<br>241.5385<br>17.18785                                                                                                                                                                                                                                                            | 30.58983<br>91.61805<br>6.451122                                                                                                                                                                                                                                                                                                                                          | 436.8894<br>1044.9<br>147.6489                                                                                                                                                                                                                                   | 30.8927<br>152.9491<br>16.65783                                                                                                                                                                                                                                                                                               | 30.58983<br>44.74898<br>8.631784                                                                                                                                                                                                                                               | 121.905<br>60.0439                                                                                                                                                                                                                       | 3649.57<br>4096.31<br>1219.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2183         | After 6Ct 1L<br>1Ct 2L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.170968<br>16.27924                                                                                                                                                                                           | 0<br>26.80396<br>0<br>0                                                                                                                                                                                             | 78.7461<br>241.5385<br>17.18785<br>24.91102                                                                                                                                                                                                                                                | 30.58983<br>91.61805<br>6.451122<br>14.53774                                                                                                                                                                                                                                                                                                                              | 436.8894<br>1044.9<br>147.6489<br>56.71233                                                                                                                                                                                                                       | 30.8927<br>152.9491<br>16.65783<br>4.361322                                                                                                                                                                                                                                                                                   | 30.58983<br>44.74898<br>8.631784<br>4.149314                                                                                                                                                                                                                                   | 121.905<br>60.0439<br>47.32338                                                                                                                                                                                                           | 3649.57<br>4096.31<br>1219.0<br>1256.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2183         | After 6Ct 1L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.170968<br>16.27924<br>0<br>0<br>0<br>0                                                                                                                                                                       | 0<br>26.80396<br>0<br>0<br>0                                                                                                                                                                                        | 78.7461<br>241.5385<br>17.18785<br>24.91102<br>216.5518                                                                                                                                                                                                                                    | 30.58983<br>91.61805<br>6.451122<br>14.53774<br>0                                                                                                                                                                                                                                                                                                                         | 436.8894<br>1044.9<br>147.6489                                                                                                                                                                                                                                   | 30.8927<br>152.9491<br>16.65783<br>4.361322<br>77.98892                                                                                                                                                                                                                                                                       | 30.58983<br>44.74898<br>8.631784<br>4.149314<br>9.161805                                                                                                                                                                                                                       | 121.905<br>60.0439<br>47.32338<br>65.57127                                                                                                                                                                                               | 3649.57<br>4096.31<br>1219.0<br>1256.90<br>3339.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2183         | After 6Ct 1L<br>1Ct 2L<br>After MAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.170968<br>16.27924<br>0<br>0                                                                                                                                                                                 | 0<br>26.80396<br>0<br>0                                                                                                                                                                                             | 78.7461<br>241.5385<br>17.18785<br>24.91102                                                                                                                                                                                                                                                | 30.58983<br>91.61805<br>6.451122<br>14.53774                                                                                                                                                                                                                                                                                                                              | 436.8894<br>1044.9<br>147.6489<br>56.71233<br>299.0837                                                                                                                                                                                                           | 30.8927<br>152.9491<br>16.65783<br>4.361322                                                                                                                                                                                                                                                                                   | 30.58983<br>44.74898<br>8.631784<br>4.149314                                                                                                                                                                                                                                   | 121.905<br>60.0439<br>47.32338                                                                                                                                                                                                           | 3649.57<br>4096.31<br>1219.0<br>1256.90<br>3339.13<br>3702.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2183         | After 6Ct 1L<br>1Ct 2L<br>After MAT<br>1IT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.170968<br>16.27924<br>0<br>0<br>0<br>2.256379                                                                                                                                                                | 0<br>26.80396<br>0<br>0<br>4.353751                                                                                                                                                                                 | 78.7461<br>241.5385<br>17.18785<br>24.91102<br>216.5518<br>235.4811                                                                                                                                                                                                                        | 30.58983<br>91.61805<br>6.451122<br>14.53774<br>0<br>2.180661                                                                                                                                                                                                                                                                                                             | 436.8894<br>1044.9<br>147.6489<br>56.71233<br>299.0837<br>168.8498                                                                                                                                                                                               | 30.8927<br>152.9491<br>16.65783<br>4.361322<br>77.98892<br>18.02074                                                                                                                                                                                                                                                           | 30.58983<br>44.74898<br>8.631784<br>4.149314<br>9.161805<br>15.2192                                                                                                                                                                                                            | 121.905<br>60.0439<br>47.32338<br>65.57127<br>44.52183                                                                                                                                                                                   | 3649.57<br>4096.31<br>1219.0<br>1256.90<br>3339.13<br>3702.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2183         | After 6Ct 1L<br>1Ct 2L<br>After MAT<br>1IT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.170968<br>16.27924<br>0<br>0<br>0<br>2.256379                                                                                                                                                                | 0<br>26.80396<br>0<br>0<br>4.353751                                                                                                                                                                                 | 78.7461<br>241.5385<br>17.18785<br>24.91102<br>216.5518<br>235.4811                                                                                                                                                                                                                        | 30.58983<br>91.61805<br>6.451122<br>14.53774<br>0<br>2.180661                                                                                                                                                                                                                                                                                                             | 436.8894<br>1044.9<br>147.6489<br>56.71233<br>299.0837<br>168.8498                                                                                                                                                                                               | 30.8927<br>152.9491<br>16.65783<br>4.361322<br>77.98892<br>18.02074                                                                                                                                                                                                                                                           | 30.58983<br>44.74898<br>8.631784<br>4.149314<br>9.161805<br>15.2192                                                                                                                                                                                                            | 121.905<br>60.0439<br>47.32338<br>65.57127<br>44.52183                                                                                                                                                                                   | 3649.57<br>4096.31<br>1219.0<br>1256.90<br>3339.13<br>3702.58<br>6814.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | After 6Ct 1L<br>1Ct 2L<br>After MAT<br>1IT<br>End IT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.170968<br>16.27924<br>0<br>0<br>2.256379<br>6.201255                                                                                                                                                         | 0<br>26.80396<br>0<br>0<br>4.353751<br>6.943286                                                                                                                                                                     | 78.7461<br>241.5385<br>17.18785<br>24.91102<br>216.5518<br>235.4811<br>60.19533                                                                                                                                                                                                            | 30.58983<br>91.61805<br>6.451122<br>14.53774<br>0<br>2.180661<br>9.237523                                                                                                                                                                                                                                                                                                 | 436.8894<br>1044.9<br>147.6489<br>56.71233<br>299.0837<br>168.8498<br>194.5937                                                                                                                                                                                   | 30.8927<br>152.9491<br>16.65783<br>4.361322<br>77.98892<br>18.02074<br>10.29757                                                                                                                                                                                                                                               | 30.58983<br>44.74898<br>8.631784<br>4.149314<br>9.161805<br>15.2192<br>2.316952                                                                                                                                                                                                | 121.905<br>60.0439<br>47.32338<br>65.57127<br>44.52183<br>45.88474                                                                                                                                                                       | 3649.57<br>4096.31<br>1219.0<br>1256.90<br>3339.13<br>3702.58<br>6814.56<br>295297.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2183         | After 6Ct 1L<br>1Ct 2L<br>After MAT<br>1IT<br>End IT<br>Diagnosis<br>2Ct 1L<br>6Ct 1L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.170968<br>16.27924<br>0<br>0<br>2.256379<br>6.201255<br>79.50327<br>17.11213<br>24.53244                                                                                                                     | 0<br>26.80396<br>0<br>0<br>4.353751<br>6.943286<br>66.93418<br>8.328914<br>14.53774                                                                                                                                 | 78.7461<br>241.5385<br>17.18785<br>24.91102<br>216.5518<br>235.4811<br>60.19533<br>863.1784<br>257.4392<br>146.8918                                                                                                                                                                        | 30.58983<br>91.61805<br>6.451122<br>14.53774<br>0<br>2.180661<br>9.237523<br>477.0196<br>47.70196<br>33.16422                                                                                                                                                                                                                                                             | 436.8894<br>1044.9<br>147.6489<br>56.71233<br>299.0837<br>168.8498<br>194.5937<br>3740.44<br>1143.333<br>728.4014                                                                                                                                                | 30.8927<br>152.9491<br>16.65783<br>4.361322<br>77.98892<br>18.02074<br>10.29757<br>386.9159<br>96.1611<br>49.14059                                                                                                                                                                                                            | 30.58983<br>44.74898<br>8.631784<br>4.149314<br>9.161805<br>15.2192<br>2.316952<br>141.5915<br>26.95539<br>41.41742                                                                                                                                                            | 121.905<br>60.0439<br>47.32338<br>65.57127<br>44.52183<br>45.88474<br>15166.2<br>105.2472<br>220.3376                                                                                                                                    | 3649.57<br>4096.31<br>1219.0<br>1256.90<br>3339.13<br>3702.58<br>6814.56<br>295297.<br>3263.4<br>3005.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | After 6Ct 1L<br>1Ct 2L<br>After MAT<br>1IT<br>End IT<br>Diagnosis<br>2Ct 1L<br>End of 2L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.170968<br>16.27924<br>0<br>0<br>2.256379<br>6.201255<br>79.50327<br>17.11213<br>24.53244<br>4.512757                                                                                                         | 0<br>26.80396<br>0<br>0<br>4.353751<br>6.943286<br>66.93418<br>8.328914<br>14.53774<br>4.103883                                                                                                                     | 78.7461<br>241.5385<br>17.18785<br>24.91102<br>216.5518<br>235.4811<br>60.19533<br>863.1784<br>257.4392<br>146.8918<br>135.5341                                                                                                                                                            | 30.58983<br>91.61805<br>6.451122<br>14.53774<br>0<br>2.180661<br>9.237523<br>477.0196<br>47.70196<br>33.16422<br>2.051942                                                                                                                                                                                                                                                 | 436.8894<br>1044.9<br>147.6489<br>56.71233<br>299.0837<br>168.8498<br>194.5937<br>3740.44<br>1143.333<br>728.4014<br>87.83218                                                                                                                                    | 30.8927<br>152.9491<br>16.65783<br>4.361322<br>77.98892<br>18.02074<br>10.29757<br>386.9159<br>96.1611<br>49.14059<br>13.55341                                                                                                                                                                                                | 30.58983<br>44.74898<br>8.631784<br>4.149314<br>9.161805<br>15.2192<br>2.316952<br>141.5915<br>26.95539<br>41.41742<br>6.163396                                                                                                                                                | 121.905<br>60.0439<br>47.32338<br>65.57127<br>44.52183<br>45.88474<br>15166.2<br>105.2472<br>220.3376<br>4.111455                                                                                                                        | 3649.57<br>4096.31<br>1219.0<br>3339.13<br>3702.58<br>6814.56<br>295297.<br>3263.4<br>3005.98<br>1332.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | After 6Ct 1L<br>1Ct 2L<br>After MAT<br>1IT<br>End IT<br>Diagnosis<br>2Ct 1L<br>6Ct 1L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.170968<br>16.27924<br>0<br>0<br>2.256379<br>6.201255<br>79.50327<br>17.11213<br>24.53244                                                                                                                     | 0<br>26.80396<br>0<br>0<br>4.353751<br>6.943286<br>66.93418<br>8.328914<br>14.53774                                                                                                                                 | 78.7461<br>241.5385<br>17.18785<br>24.91102<br>216.5518<br>235.4811<br>60.19533<br>863.1784<br>257.4392<br>146.8918                                                                                                                                                                        | 30.58983<br>91.61805<br>6.451122<br>14.53774<br>0<br>2.180661<br>9.237523<br>477.0196<br>47.70196<br>33.16422                                                                                                                                                                                                                                                             | 436.8894<br>1044.9<br>147.6489<br>56.71233<br>299.0837<br>168.8498<br>194.5937<br>3740.44<br>1143.333<br>728.4014                                                                                                                                                | 30.8927<br>152.9491<br>16.65783<br>4.361322<br>77.98892<br>18.02074<br>10.29757<br>386.9159<br>96.1611<br>49.14059                                                                                                                                                                                                            | 30.58983<br>44.74898<br>8.631784<br>4.149314<br>9.161805<br>15.2192<br>2.316952<br>141.5915<br>26.95539<br>41.41742                                                                                                                                                            | 121.905<br>60.0439<br>47.32338<br>65.57127<br>44.52183<br>45.88474<br>15166.2<br>105.2472<br>220.3376                                                                                                                                    | 3649.57<br>4096.31<br>1219.0<br>3339.13<br>3702.58<br>6814.56<br>295297.<br>3263.4<br>3005.98<br>1332.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | After 6Ct 1L<br>1Ct 2L<br>After MAT<br>1IT<br>End IT<br>Diagnosis<br>2Ct 1L<br>End of 2L<br>End of 3L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.170968<br>16.27924<br>0<br>0<br>2.256379<br>6.201255<br>79.50327<br>17.11213<br>24.53244<br>4.512757<br>0                                                                                                    | 0<br>26.80396<br>0<br>0<br>4.353751<br>6.943286<br>66.93418<br>8.328914<br>14.53774<br>4.103883<br>0                                                                                                                | 78.7461<br>241.5385<br>17.18785<br>24.91102<br>216.5518<br>235.4811<br>60.19533<br>863.1784<br>257.4392<br>146.8918<br>135.5341<br>243.81                                                                                                                                                  | 30.58983<br>91.61805<br>6.451122<br>14.53774<br>0<br>2.180661<br>9.237523<br>477.0196<br>47.70196<br>33.16422<br>2.051942<br>6.587414                                                                                                                                                                                                                                     | 436.8894<br>1044.9<br>147.6489<br>56.71233<br>299.0837<br>168.8498<br>194.5937<br>3740.44<br>1143.333<br>728.4014<br>87.83218<br>158.2494                                                                                                                        | 30.8927<br>152.9491<br>16.65783<br>4.361322<br>77.98892<br>18.02074<br>10.29757<br>386.9159<br>96.1611<br>49.14059<br>13.55341<br>15.14348                                                                                                                                                                                    | 30.58983<br>44.74898<br>8.631784<br>4.149314<br>9.161805<br>15.2192<br>2.316952<br>141.5915<br>26.95539<br>41.41742<br>6.163396<br>4.391609                                                                                                                                    | 121.905<br>60.0439<br>47.32338<br>65.57127<br>44.52183<br>45.88474<br>15166.2<br>105.2472<br>220.3376<br>4.111455<br>57.77238                                                                                                            | 3649.57<br>4096.31<br>1219.0<br>1256.90<br>3339.13<br>3702.58<br>6814.56<br>295297.<br>3263.4<br>3005.98<br>1332.62<br>3929.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              | After 6Ct 1L<br>1Ct 2L<br>After MAT<br>IIT<br>End IT<br>Diagnosis<br>2Ct 1L<br>6Ct 1L<br>End of 3L<br>Diagnosis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.170968<br>16.27924<br>0<br>0<br>0<br>2.256379<br>6.201255<br>79.50327<br>17.11213<br>24.53244<br>4.512757<br>0<br>20.21655                                                                                   | 0<br>26.80396<br>0<br>0<br>4.353751<br>6.943286<br>66.93418<br>8.328914<br>14.53774<br>4.103883<br>0<br>17.18785                                                                                                    | 78.7461<br>241.5385<br>17.18785<br>24.91102<br>216.5518<br>235.4811<br>60.19533<br>863.1784<br>257.4392<br>146.8918<br>135.5341<br>243.81<br>112.0618                                                                                                                                      | 30.58983<br>91.61805<br>6.451122<br>14.53774<br>0<br>2.180661<br>9.237523<br>477.0196<br>47.70196<br>33.16422<br>2.051942<br>6.587414<br>107.5187                                                                                                                                                                                                                         | 436.8894<br>1044.9<br>147.6489<br>56.71233<br>299.0837<br>168.8498<br>194.5937<br>3740.44<br>1143.333<br>728.4014<br>87.83218<br>158.2494<br>654.1983                                                                                                            | 30.8927<br>152.9491<br>16.65783<br>4.361322<br>77.98892<br>18.02074<br>10.29757<br>386.9159<br>96.1611<br>49.14059<br>13.55341<br>15.14348<br>38.46444                                                                                                                                                                        | 30.58983<br>44.74898<br>8.631784<br>4.149314<br>9.161805<br>15.2192<br>2.316952<br>141.5915<br>26.95539<br>41.41742<br>6.163396<br>4.391609<br>34.45142                                                                                                                        | 121.905<br>60.0439<br>47.32338<br>65.57127<br>44.52183<br>45.88474<br>15166.2<br>105.2472<br>220.3376<br>4.111455<br>57.77238<br>870.7501                                                                                                | 3649.57<br>4096.31<br>1219.0<br>1256.90<br>3339.13<br>3702.58<br>6814.56<br>295297.<br>3263.4<br>3005.98<br>3005.98<br>3029.73<br>1332.62<br>3929.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              | After 6Ct 11<br>1Ct 2L<br>After MAT<br>IIT<br>End IT<br>Diagnosis<br>2Ct 1L<br>End of 2L<br>End of 3L<br>Diagnosis<br>After 2CT 1L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.170968<br>16.27924<br>0<br>0<br>2.256379<br>6.201255<br>79.50327<br>17.11213<br>24.53244<br>4.512757<br>0<br>20.21655<br>38.61587                                                                            | 0<br>26.80396<br>0<br>0<br>4.353751<br>6.943286<br>66.93418<br>8.328914<br>14.53774<br>4.103883<br>0<br>17.18785<br>33.9214                                                                                         | 78.7461<br>241.5385<br>17.18785<br>24.91102<br>216.5518<br>235.4811<br>60.19533<br>863.1784<br>257.4392<br>146.8918<br>135.5341<br>243.81<br>112.0618<br>660.2557                                                                                                                          | 30.58983<br>91.61805<br>6.451122<br>14.53774<br>0<br>2.180661<br>9.237523<br>477.0196<br>47.70196<br>33.16422<br>2.051942<br>6.587414<br>107.5187<br>106.0044                                                                                                                                                                                                             | 436.8894<br>1044.9<br>147.6489<br>56.71233<br>299.0837<br>168.8498<br>194.5937<br>3740.44<br>1143.333<br>728.4014<br>87.83218<br>158.2494<br>654.1983<br>1219.05                                                                                                 | 30.8927<br>152.9491<br>16.65783<br>4.361322<br>77.98892<br>18.02074<br>10.29757<br>386.9159<br>96.1611<br>49.14059<br>13.55341<br>15.14348<br>38.46444<br>148.4061                                                                                                                                                            | 30.58983<br>44.74898<br>8.631784<br>4.149314<br>9.161805<br>15.2192<br>2.316952<br>141.5915<br>26.95539<br>41.41742<br>6.163396<br>4.391609<br>34.45142<br>80.26044                                                                                                            | 121.905<br>60.0439<br>47.32338<br>65.57127<br>44.52183<br>45.88474<br>15166.2<br>105.2472<br>220.3376<br>4.111455<br>57.77238<br>870.7501<br>890.6259                                                                                    | 3649.57<br>4096.31<br>1219.0<br>1256.90<br>3339.13<br>3702.58<br>6814.56<br>295297.<br>3263.4<br>3005.98<br>1332.62<br>3929.73<br>12357.0<br>14102.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2187         | After 6Ct 11<br>1Ct 2L<br>After MAT<br>1IT<br>End IT<br>Diagnosis<br>2Ct 1L<br>End of 2L<br>End of 3L<br>Diagnosis<br>After 2CT 1L<br>After 4Ct 1L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.170968<br>16.27924<br>0<br>0<br>0<br>2.256379<br>6.201255<br>79.50327<br>17.11213<br>24.53244<br>4.512757<br>0<br>0<br>20.21655<br>38.61587<br>19.08078                                                      | 0<br>26.80396<br>0<br>0<br>4.353751<br>6.943286<br>66.93418<br>8.328914<br>4.103883<br>0<br>17.18785<br>3.9214<br>8.328914                                                                                          | 78.7461<br>241.5385<br>17.18785<br>24.91102<br>216.5518<br>235.4811<br>60.19533<br>863.1784<br>257.4392<br>257.4392<br>146.8918<br>135.5341<br>243.81<br>112.0618<br>660.2557<br>529.2646                                                                                                  | 30.58983<br>91.61805<br>6.451122<br>14.53774<br>0<br>2.180661<br>9.237523<br>477.0196<br>47.70196<br>47.70196<br>33.16422<br>2.051942<br>6.587414<br>107.5187<br>106.0044<br>52.01785                                                                                                                                                                                     | 436.8894<br>1044.9<br>147.6489<br>56.71233<br>299.0837<br>168.8498<br>194.5937<br>3740.44<br>1143.333<br>728.4014<br>87.83218<br>158.2494<br>554.1983<br>1219.05<br>1067.615                                                                                     | 30.8927<br>152.9491<br>16.65783<br>4.361322<br>77.98892<br>18.02074<br>10.29757<br>386.9159<br>96.1611<br>49.14059<br>13.55341<br>15.14348<br>38.46444<br>148.4061<br>243.81                                                                                                                                                  | 30.58983<br>44.74898<br>8.631784<br>4.149314<br>9.161805<br>15.2192<br>2.316952<br>141.5915<br>26.95539<br>41.41742<br>6.163396<br>4.391609<br>34.45142<br>80.26044<br>49.89777                                                                                                | 121.905<br>60.0439<br>47.32338<br>65.57127<br>44.52183<br>45.88474<br>15166.2<br>105.2472<br>220.3376<br>4.111455<br>57.77238<br>870.7501<br>890.6259<br>171.8785                                                                        | 3649.57<br>4096.31<br>1219.0<br>1256.90<br>3339.13<br>3702.58<br>6814.56<br>295297.<br>3263.4<br>3005.98<br>1332.62<br>3929.73<br>12357.0<br>14102.3<br>3763.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              | After 6Ct 11<br>1Ct 21<br>After MAT<br>1IT<br>End IT<br>Diagnosis<br>2Ct 11<br>End of 21<br>End of 31<br>Diagnosis<br>After 2CT 11<br>After 4Ct 11<br>After 6Ct 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.170968<br>16.27924<br>0<br>0<br>0<br>2.256379<br>6.201255<br>79.50327<br>17.11213<br>24.53244<br>4.512757<br>0<br>20.21655<br>38.61587<br>19.08078<br>13.32626                                               | 0<br>26.80396<br>0<br>0<br>4.353751<br>6.943286<br>66.93418<br>8.328914<br>14.53774<br>4.103883<br>0<br>17.18785<br>3.3.9214<br>8.328914<br>23.69955                                                                | 78.7461<br>241.5385<br>17.18785<br>24.91102<br>216.5518<br>235.4811<br>60.19533<br>863.1784<br>257.4392<br>146.8918<br>135.5341<br>243.81<br>112.0618<br>660.2557<br>529.2646<br>224.8807                                                                                                  | 30.58983<br>91.61805<br>6.451122<br>14.53774<br>0<br>2.180661<br>9.237523<br>477.0196<br>47.70196<br>33.16422<br>2.051942<br>6.587414<br>107.5187<br>106.0044<br>52.01785<br>47.47481                                                                                                                                                                                     | 436.8894<br>1044.9<br>147.6489<br>56.71233<br>299.0837<br>168.8498<br>194.5937<br>3740.44<br>1143.333<br>728.4014<br>87.83218<br>158.2494<br>654.1983<br>1219.05<br>1067.615<br>497.4633                                                                         | 30.8927<br>152.9491<br>16.65783<br>4.361322<br>77.98892<br>18.02074<br>10.29757<br>386.9159<br>96.1611<br>49.14059<br>13.55341<br>15.14348<br>38.46444<br>148.4061<br>243.81<br>71.17436                                                                                                                                      | 30.58983<br>44.74898<br>8.631784<br>4.149314<br>9.161805<br>15.2192<br>2.316952<br>141.5915<br>26.95539<br>41.41742<br>6.163396<br>4.391609<br>34.45142<br>80.26044<br>49.89777<br>47.47481                                                                                    | 121.905<br>60.0439<br>47.3238<br>65.57127<br>44.52183<br>45.88474<br>15166.2<br>105.2472<br>220.3376<br>4.111455<br>57.77238<br>870.7501<br>890.6259<br>458.8474                                                                         | 3649.57<br>4096.31<br>1219.0<br>1256.90<br>3339.13<br>3702.58<br>6814.56<br>295297.<br>3263.4<br>3005.98<br>1332.62<br>3929.73<br>12357.0<br>14102.3<br>3763.15<br>6246.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2187         | After 6Ct 11<br>1Ct 2L<br>After MAT<br>1IT<br>End IT<br>Diagnosis<br>2Ct 1L<br>End of 2L<br>End of 3L<br>Diagnosis<br>After 2CT 1L<br>After 4Ct 11<br>After 6Ct 11<br>End of 2L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.170968<br>16.27924<br>0<br>0<br>0<br>2.256379<br>6.201255<br>79.50327<br>17.11213<br>24.53244<br>4.512757<br>0<br>20.21655<br>38.61587<br>13.32626<br>23.69955                                               | 0<br>26.80396<br>0<br>0<br>4.353751<br>6.943286<br>66.93418<br>8.328914<br>14.53774<br>4.103883<br>0<br>17.18785<br>33.9214<br>8.328914<br>23.69955<br>10.67615                                                     | 78.7461<br>241.5385<br>17.18785<br>24.91102<br>216.5518<br>235.4811<br>60.19533<br>863.1784<br>257.4392<br>146.8918<br>135.5341<br>243.81<br>112.0618<br>660.2557<br>529.2646<br>224.8807<br>166.5783                                                                                      | 30.58983<br>91.61805<br>6.451122<br>14.53774<br>0<br>2.180661<br>9.237523<br>477.0196<br>47.70196<br>47.70196<br>33.16422<br>2.051942<br>6.587414<br>107.5187<br>106.0044<br>52.01785<br>38.38872                                                                                                                                                                         | 436.8894<br>1044.9<br>147.6489<br>56.71233<br>299.0837<br>168.8498<br>194.5937<br>3740.44<br>1143.333<br>728.4014<br>87.83218<br>158.2494<br>654.1983<br>1219.05<br>1067.615<br>497.4633<br>1166.048                                                             | 30.8927<br>152.9491<br>16.65783<br>4.361322<br>77.98892<br>18.02074<br>10.29757<br>386.9159<br>96.1611<br>49.14059<br>13.55341<br>15.14348<br>38.46444<br>148.4061<br>23.818<br>71.17436<br>77.98892                                                                                                                          | 30.58983<br>44.74898<br>8.631784<br>4.149314<br>9.161805<br>15.2192<br>2.316952<br>141.5915<br>26.95539<br>41.41742<br>6.163396<br>4.391609<br>34.45142<br>80.26044<br>49.89777<br>47.47481<br>57.54522                                                                        | 121.905<br>60.0439<br>47.32388<br>65.57127<br>44.52183<br>45.88474<br>15166.2<br>105.2472<br>220.3376<br>4.111455<br>57.77238<br>870.7501<br>890.6259<br>171.8785<br>458.8474<br>4358.8474<br>438.8474                                   | 3649.57<br>4096.31<br>1219.0<br>1256.90<br>3339.13<br>3702.58<br>6814.56<br>86814.56<br>295297.<br>3263.4<br>3005.98<br>1332.62<br>3929.73<br>12357.0<br>14102.3<br>3763.15<br>6246.68<br>6155.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2187         | After 6Ct 11<br>1Ct 2L<br>After MAT<br>1IT<br>End IT<br>Diagnosis<br>2Ct 1L<br>End of 2L<br>End of 3L<br>Diagnosis<br>After 2Ct 1L<br>After 4Ct 11<br>After 6Ct 11<br>End of 2L<br>After MAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.170968<br>16.27924<br>0<br>0<br>0<br>2.256379<br>6.201255<br>79.50327<br>17.11213<br>24.53244<br>4.512757<br>0<br>20.21655<br>38.61587<br>19.08078<br>13.36266<br>23.69955<br>0<br>0                         | 0<br>26.80396<br>0<br>0<br>0<br>4.353751<br>6.943286<br>66.93418<br>8.328914<br>14.53774<br>4.103883<br>0<br>17.18785<br>3.3.9214<br>8.328914<br>23.69955<br>10.67615<br>6.708562                                   | 78.7461<br>241.5385<br>17.18785<br>24.91102<br>216.5518<br>235.4811<br>60.19533<br>863.1784<br>257.4392<br>146.8918<br>135.5341<br>243.81<br>112.0618<br>165.2783<br>259.2646<br>224.8807<br>166.5783<br>105.2472                                                                          | 30.58983<br>91.61805<br>6.451122<br>14.53774<br>0<br>2.180661<br>9.237523<br>477.0196<br>47.70196<br>33.16422<br>2.051942<br>6.587414<br>107.5187<br>106.0044<br>52.01785<br>47.47481<br>38.38872<br>26.80396                                                                                                                                                             | 436.8894<br>1044.9<br>147.6489<br>56.71233<br>299.0837<br>168.8498<br>194.5937<br>3740.44<br>1143.333<br>728.4014<br>87.83218<br>158.2494<br>654.1983<br>1219.05<br>1067.615<br>497.4633<br>1166.048<br>87.07501                                                 | 30.8927<br>152.9491<br>16.65783<br>4.361322<br>77.98892<br>18.02074<br>10.29757<br>386.9159<br>96.1611<br>49.14059<br>13.55341<br>15.14348<br>38.46444<br>148.4061<br>243.81<br>71.17436<br>77.98892<br>4.058453                                                                                                              | 30.58983<br>44.74898<br>8.631784<br>4.149314<br>9.161805<br>15.2192<br>2.316952<br>141.5915<br>26.95539<br>41.41742<br>6.163396<br>4.391609<br>34.45142<br>80.26044<br>49.89777<br>47.47481<br>57.54522<br>2.233663                                                            | 121.905<br>60.0439<br>47.3238<br>65.57127<br>44.52183<br>45.88474<br>15166.2<br>105.2472<br>220.3376<br>4.111455<br>57.77238<br>870.7501<br>890.6259<br>171.8785<br>458.8474<br>137.0485<br>673.1277                                     | 3649.57<br>4096.31<br>1219.0<br>1256.90<br>3339.13<br>3702.58<br>6814.56<br>6814.56<br>6814.56<br>1332.62<br>3329.73<br>12357.0<br>14102.3<br>3763.15<br>6246.68<br>6155.82<br>17112.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2187         | After 6Ct 11<br>1Ct 2L<br>After MAT<br>1IT<br>End IT<br>Diagnosis<br>2Ct 1L<br>End of 2L<br>End of 3L<br>Diagnosis<br>After 2CT 1L<br>After 4Ct 11<br>After 6Ct 11<br>End of 2L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.170968<br>16.27924<br>0<br>0<br>0<br>2.256379<br>6.201255<br>79.50327<br>17.11213<br>24.53244<br>4.512757<br>0<br>20.21655<br>38.61587<br>13.32626<br>23.69955                                               | 0<br>26.80396<br>0<br>0<br>4.353751<br>6.943286<br>66.93418<br>8.328914<br>14.53774<br>4.103883<br>0<br>17.18785<br>33.9214<br>8.328914<br>23.69955<br>10.67615                                                     | 78.7461<br>241.5385<br>17.18785<br>24.91102<br>216.5518<br>235.4811<br>60.19533<br>863.1784<br>257.4392<br>146.8918<br>135.5341<br>243.81<br>112.0618<br>660.2557<br>529.2646<br>224.8807<br>166.5783                                                                                      | 30.58983<br>91.61805<br>6.451122<br>14.53774<br>0<br>2.180661<br>9.237523<br>477.0196<br>47.70196<br>47.70196<br>33.16422<br>2.051942<br>6.587414<br>107.5187<br>106.0044<br>52.01785<br>38.38872                                                                                                                                                                         | 436.8894<br>1044.9<br>147.6489<br>56.71233<br>299.0837<br>168.8498<br>194.5937<br>3740.44<br>1143.333<br>728.4014<br>87.83218<br>158.2494<br>654.1983<br>1219.05<br>1067.615<br>497.4633<br>1166.048                                                             | 30.8927<br>152.9491<br>16.65783<br>4.361322<br>77.98892<br>18.02074<br>10.29757<br>386.9159<br>96.1611<br>49.14059<br>13.55341<br>15.14348<br>38.46444<br>148.4061<br>23.818<br>71.17436<br>77.98892                                                                                                                          | 30.58983<br>44.74898<br>8.631784<br>4.149314<br>9.161805<br>15.2192<br>2.316952<br>141.5915<br>26.95539<br>41.41742<br>6.163396<br>4.391609<br>34.45142<br>80.26044<br>49.89777<br>47.47481<br>57.54522                                                                        | 121.905<br>60.0439<br>47.32388<br>65.57127<br>44.52183<br>45.88474<br>15166.2<br>105.2472<br>220.3376<br>4.111455<br>57.77238<br>870.7501<br>890.6259<br>171.8785<br>458.8474<br>4358.8474<br>438.8474                                   | 3649.57<br>4096.31<br>1219.0<br>1256.90<br>3339.13<br>3702.58<br>6814.56<br>925297.<br>3263.4<br>3005.98<br>1332.62<br>3329.73<br>12357.0<br>14102.3<br>3763.15<br>6246.68<br>6246.68<br>17112.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2187         | After GCt 11<br>ICt 21<br>After MAT<br>11T<br>End IT<br>Diagnosis<br>2Ct 11<br>GCt 11<br>End of 21<br>End of 31<br>Diagnosis<br>After 2Ct 11<br>After 6Ct 11<br>After GCt 11<br>After GCt 11<br>After GCt 11<br>End of 31<br>End of 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.170968<br>16.27924<br>16.27924<br>0<br>0<br>0<br>0<br>0<br>2.256379<br>6.201255<br>79.50327<br>17.11213<br>24.53244<br>4.512757<br>0<br>20.21655<br>38.61587<br>13.32626<br>23.69955<br>0<br>0<br>2.226092   | 0<br>26.80396<br>0<br>0<br>4.353751<br>6.943286<br>66.93418<br>8.328914<br>14.53774<br>4.103883<br>0<br>17.18785<br>33.9214<br>8.328914<br>23.69955<br>10.67615<br>6.708562<br>2.142802                             | 78.7461<br>241.5385<br>17.18785<br>24.91102<br>216.5518<br>235.4811<br>60.19533<br>863.1784<br>257.4392<br>146.8918<br>135.5341<br>243.81<br>112.0618<br>660.2557<br>529.2646<br>224.8807<br>166.5783<br>105.2472<br>203.6798                                                              | 30.58983<br>91.61805<br>6.451122<br>14.53774<br>0<br>2.180661<br>9.237523<br>477.0196<br>47.70196<br>47.70196<br>47.70196<br>47.70196<br>47.70196<br>133.16422<br>2.051942<br>6.587414<br>107.5187<br>106.0044<br>52.01785<br>47.47481<br>38.38872<br>26.80396<br>2.142802                                                                                                | 436.8894<br>1044.9<br>147.6489<br>56.71233<br>299.0837<br>168.8498<br>194.5937<br>3740.44<br>1143.333<br>728.4014<br>87.83218<br>158.2494<br>654.1983<br>1219.05<br>1067.615<br>497.4633<br>1166.048<br>87.07501<br>71.25007                                     | 30.8927<br>152.9491<br>16.65783<br>4.361322<br>77.98892<br>18.02074<br>10.29757<br>386.9159<br>96.1611<br>49.14059<br>13.55341<br>15.14348<br>38.46444<br>148.4061<br>243.81<br>71.17436<br>77.98892<br>4.058453<br>2.226092                                                                                                  | 30.58983<br>44.74898<br>8.631784<br>4.149314<br>9.161805<br>15.2192<br>2.316952<br>2.316952<br>2.4141742<br>6.163396<br>4.391609<br>34.45142<br>80.26044<br>49.89777<br>47.7481<br>57.54522<br>2.233663<br>4.285605                                                            | 121.905<br>60.0439<br>47.32338<br>65.57127<br>44.52183<br>45.88474<br>15166.2<br>105.2472<br>220.3376<br>4.111455<br>57.77238<br>870.7501<br>890.6259<br>171.8785<br>458.8474<br>137.0485<br>673.1277<br>22.6395                         | 3649.57<br>4096.31<br>1219.0<br>1256.90<br>3339.13<br>3702.58<br>6814.56<br>295297.<br>3263.4<br>3005.98<br>1332.62<br>3329.73<br>12357.0<br>14102.3<br>3763.15<br>6246.68<br>6155.82<br>17112.1<br>4785.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2187<br>2193 | After 6C1 11<br>1C1 21<br>After MAT<br>1GT 21<br>After MAT<br>Diagnosis<br>2C1 11<br>End 07 31<br>End of 31<br>End of 31<br>End of 31<br>After 4C1 11<br>After 6C1 11<br>End of 72<br>After 6C1 11<br>End of 72<br>After 6C1 11<br>End of 73<br>End of 74<br>End o | 6.170968<br>16.27924<br>16.27924<br>0<br>0<br>0<br>2.256379<br>6.201255<br>79.50327<br>17.11213<br>24.53244<br>4.512757<br>0<br>20.21655<br>38.61587<br>13.32626<br>23.69955<br>0<br>0<br>2.226092<br>183.2261 | 0<br>26.80396<br>0<br>0<br>0<br>0<br>4.353751<br>6.943286<br>66.93418<br>8.328914<br>4.103883<br>0<br>17.18785<br>3.9214<br>8.328914<br>23.69955<br>10.67615<br>6.708562<br>2.142802<br>96.1611                     | 78.7461<br>241.5385<br>17.18785<br>24.91102<br>216.5518<br>235.4811<br>60.19533<br>863.1784<br>257.4392<br>146.8918<br>135.5341<br>243.81<br>112.0618<br>660.2557<br>529.2646<br>224.8807<br>166.5783<br>105.2472<br>203.6798                                                              | 30.58983<br>91.61805<br>6.451122<br>14.53774<br>0<br>2.180661<br>9.237523<br>477.0196<br>47.70196<br>33.16422<br>2.051942<br>6.587414<br>107.5187<br>106.0044<br>52.01785<br>47.47481<br>38.38872<br>26.80396<br>2.142802<br>487.6201                                                                                                                                     | 436.8894<br>1044.9<br>147.6489<br>56.71233<br>299.0837<br>168.8498<br>194.5937<br>3740.44<br>1143.333<br>728.4014<br>87.83218<br>158.2494<br>654.1983<br>1219.05<br>1067.615<br>497.4633<br>1166.048<br>87.07501<br>71.25007<br>10221.85                         | 30.8927<br>152.9491<br>156.5783<br>4.361322<br>77.98892<br>18.02074<br>10.29757<br>96.1611<br>49.14059<br>96.1611<br>15.14348<br>38.46444<br>15.14348<br>38.46444<br>148.4061<br>243.81<br>71.17436<br>77.98892<br>4.058453<br>2.226092<br>1007.041                                                                           | 30.58983<br>44.74898<br>8.631784<br>4.149314<br>9.161805<br>15.2192<br>2.316952<br>41.415915<br>26.95539<br>41.41742<br>6.163396<br>4.331609<br>34.45142<br>80.26044<br>49.89777<br>47.47481<br>57.54522<br>2.233663<br>4.285605<br>220.3376                                   | 121.905<br>60.0439<br>47.32338<br>65.57127<br>44.52183<br>45.88474<br>15166.2<br>105.2472<br>220.3376<br>4.111455<br>57.77238<br>870.7501<br>890.6259<br>171.8785<br>458.8474<br>137.0485<br>673.1277<br>22.6395                         | 3649.57<br>4096.31<br>1219.0<br>1256.90<br>3339.13<br>3702.58<br>6814.56<br>6814.56<br>295297.<br>3263.4<br>3005.98<br>1332.62<br>3929.73<br>3929.73<br>12357.0<br>14102.3<br>3763.15<br>6246.68<br>6155.82<br>17112.1<br>4785.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2187         | After 6C11<br>ICT 2L<br>After MAT<br>IT<br>End IT<br>Diagnosis<br>2C111<br>End of 2L<br>End of 3L<br>Diagnosis<br>After 2CT 1L<br>After 6C11<br>End of 3L<br>After 6C11<br>End of 3L<br>Diagnosis<br>After 4C11<br>End of 3L<br>After 6C11<br>End of 3L<br>After 6C11<br>End of 3L<br>After 6C11<br>After 6C11<br>End of 3L<br>After 6C11<br>After 6C11<br>End of 3L<br>After 6C11<br>After 6C11<br>End Of 3L<br>After 6C11<br>After 6C11<br>Aft                         | 6.170968<br>16.27924<br>02<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                    | 0<br>26.80396<br>0<br>0<br>0<br>4.353751<br>6.943286<br>6.943286<br>6.943286<br>8.328914<br>4.103883<br>0<br>17.18785<br>33.9214<br>8.328914<br>23.69955<br>10.67615<br>6.708562<br>2.142802<br>9.61611<br>893.4653 | 78.7461<br>241.5385<br>17.18785<br>24.91102<br>216.5518<br>235.4811<br>60.19533<br>863.1784<br>257.4392<br>146.8918<br>135.5341<br>243.81<br>112.0618<br>660.2557<br>529.2646<br>224.8807<br>166.5783<br>105.2472<br>203.6798<br>1067.615<br>11584.76                                      | 30.58983<br>91.61805<br>6.451122<br>14.53774<br>0<br>2.180661<br>9.237523<br>477.0196<br>47.70196<br>33.16422<br>2.051942<br>6.587414<br>107.5187<br>106.0044<br>52.01785<br>47.47481<br>38.38872<br>26.80396<br>2.142802<br>487.6201<br>779.8892                                                                                                                         | 436.8894<br>1044.9<br>147.6489<br>56.71233<br>299.0837<br>168.8498<br>194.5937<br>3740.44<br>1143.333<br>728.4014<br>87.83218<br>158.2494<br>654.1983<br>1219.05<br>1067.615<br>497.4633<br>1166.048<br>87.07501<br>71.25007<br>10221.85<br>26425.37             | 30.8927<br>152.9491<br>16.65783<br>4.361322<br>77.98892<br>18.02074<br>10.29757<br>386.9159<br>96.1611<br>49.14059<br>13.55341<br>15.14348<br>38.46444<br>148.4061<br>243.81<br>71.17436<br>77.98892<br>4.058453<br>2.226092<br>1007.041<br>3119.557                                                                          | 30.58983<br>44.74898<br>8.631784<br>4.149314<br>9.161805<br>15.2192<br>2.316952<br>41.41742<br>6.163396<br>4.391609<br>34.45142<br>80.26044<br>49.89777<br>47.47481<br>57.54522<br>2.233663<br>4.285605<br>220.3376<br>1317.483                                                | 121.905<br>60.0439<br>47.32338<br>65.57127<br>44.52183<br>45.88474<br>15166.2<br>105.2472<br>220.3376<br>4.111455<br>57.77238<br>870.7501<br>890.6259<br>171.8785<br>458.8474<br>137.0485<br>673.1277<br>22.6395<br>4709.622<br>2657.681 | 3649.57<br>4096.31<br>1219.0<br>1256.90<br>3339.13<br>3702.58<br>6814.56<br>295297.<br>3263.4<br>3005.98<br>1332.62<br>3929.73<br>12357.0<br>14102.3<br>3763.15<br>6246.68<br>6155.82<br>17112.1<br>4785.3<br>28545.4<br>54819.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2187<br>2193 | After 6CT 11.<br>1CT 22.<br>After MAT<br>After MAT<br>IIT<br>End IT<br>Diagnosis<br>2CT 11.<br>End of 22.<br>End of 31.<br>Diagnosis<br>After 2CT 11.<br>After 4CT 11.<br>After 4CT 11.<br>Diagnosis<br>After 2CT 11.<br>Diagnosis<br>After 2CT 11.<br>After 4CT 11.<br>After                                                                                           | 6.170968<br>16.27924<br>02<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                    | 0<br>26.80396<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                      | 78.7461<br>241.5385<br>17.18785<br>24.91102<br>216.5518<br>235.4811<br>60.19533<br>863.1784<br>257.4392<br>146.8918<br>135.5341<br>243.81<br>112.0618<br>660.2557<br>529.2646<br>224.8807<br>105.2472<br>203.6798<br>106.5783<br>105.2472<br>203.6798                                      | 30.58983<br>91.61805<br>6.451122<br>14.53774<br>0<br>2.180661<br>9.237523<br>477.0196<br>477.0196<br>477.0196<br>477.0196<br>477.0196<br>477.0196<br>477.0196<br>477.0196<br>477.0196<br>477.0196<br>477.0196<br>2.051942<br>6.587414<br>100.5187<br>100.0044<br>52.01785<br>47.47481<br>38.38872<br>26.80396<br>2.142802<br>487.6201<br>779.8892<br>167.3355             | 436.8894<br>1044.9<br>147.6489<br>56.71233<br>299.0837<br>168.8498<br>194.5937<br>3740.44<br>1143.333<br>728.4014<br>87.83218<br>158.2494<br>654.1983<br>1219.05<br>1067.615<br>497.4633<br>1166.048<br>87.07501<br>71.25007<br>10221.85<br>26425.37<br>3498.144 | 30.8927<br>152.9491<br>16.65783<br>4.361322<br>77.98892<br>18.02074<br>49.14059<br>96.1611<br>49.14059<br>96.1611<br>13.55341<br>13.55341<br>13.55341<br>13.55341<br>13.55341<br>13.55341<br>13.55341<br>13.55341<br>13.55341<br>13.55341<br>13.55341<br>13.55341<br>24.563453<br>2.226092<br>1007.041<br>31.9557<br>514.1211 | 30.58983<br>44.74898<br>8.631784<br>4.149314<br>9.161805<br>15.2192<br>2.316952<br>2.316952<br>141.5915<br>26.95539<br>41.41742<br>6.163396<br>4.391609<br>34.45142<br>80.26044<br>49.89777<br>47.47481<br>57.54522<br>2.233663<br>4.285655<br>220.3376<br>1317.483<br>152.192 | 121.905<br>60.0439<br>47.3238<br>65.57127<br>44.52183<br>45.88474<br>15166.2<br>105.2472<br>220.3376<br>4.111455<br>57.77238<br>870.7501<br>890.6259<br>171.8785<br>458.8474<br>137.0485<br>673.1277<br>22.6395<br>4709.622<br>2657.681  | 3649.57<br>4096.31<br>1219.0<br>1356.90<br>3339.13<br>3702.58<br>6814.56<br>6814.56<br>6814.56<br>6814.56<br>295297.<br>3263.4<br>3005.98<br>1332.62<br>3929.73<br>12357.0<br>14102.3<br>3763.15<br>6246.68<br>6155.82<br>17112.1<br>4785.3<br>28545.4<br>54819.9<br>11509.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2187<br>2193 | After 6C11<br>ICT 2L<br>After MAT<br>IT<br>End IT<br>Diagnosis<br>2C111<br>End of 2L<br>End of 3L<br>Diagnosis<br>After 2CT 1L<br>After 6C11<br>End of 3L<br>After 6C11<br>End of 3L<br>Diagnosis<br>After 4C11<br>End of 3L<br>After 6C11<br>End of 3L<br>After 6C11<br>End of 3L<br>After 6C11<br>After 6C11<br>End of 3L<br>After 6C11<br>After 6C11<br>End of 3L<br>After 6C11<br>After 6C11<br>End Of 3L<br>After 6C11<br>After 6C11<br>Aft                         | 6.170968<br>16.27924<br>02<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                    | 0<br>26.80396<br>0<br>0<br>0<br>4.353751<br>6.943286<br>6.943286<br>6.943286<br>8.328914<br>4.103883<br>0<br>17.18785<br>33.9214<br>8.328914<br>23.69955<br>10.67615<br>6.708562<br>2.142802<br>9.61611<br>893.4653 | 78.7461<br>241.5385<br>17.18785<br>24.91102<br>216.5518<br>235.4811<br>60.19533<br>863.1784<br>257.4392<br>146.8918<br>135.5341<br>243.81<br>112.0618<br>660.2557<br>529.2646<br>224.8807<br>166.5783<br>105.2472<br>203.6798<br>1067.615<br>11584.76                                      | 30.58983<br>91.61805<br>6.451122<br>14.53774<br>0<br>2.180661<br>9.237523<br>477.0196<br>47.70196<br>33.16422<br>2.051942<br>6.587414<br>107.5187<br>106.0044<br>52.01785<br>47.47481<br>38.38872<br>26.80396<br>2.142802<br>487.6201<br>779.8892                                                                                                                         | 436.8894<br>1044.9<br>147.6489<br>56.71233<br>299.0837<br>168.8498<br>194.5937<br>3740.44<br>1143.333<br>728.4014<br>87.83218<br>158.2494<br>654.1983<br>1219.05<br>1067.615<br>497.4633<br>1166.048<br>87.07501<br>71.25007<br>10221.85<br>26425.37             | 30.8927<br>152.9491<br>16.65783<br>4.361322<br>77.98892<br>18.02074<br>10.29757<br>386.9159<br>96.1611<br>49.14059<br>13.55341<br>15.14348<br>38.46444<br>148.4061<br>243.81<br>71.17436<br>77.98892<br>4.058453<br>2.226092<br>1007.041<br>3119.557                                                                          | 30.58983<br>44.74898<br>8.631784<br>4.149314<br>9.161805<br>15.2192<br>2.316952<br>41.41742<br>6.163396<br>4.391609<br>34.45142<br>80.26044<br>49.89777<br>47.47481<br>57.54522<br>2.233663<br>4.285605<br>220.3376<br>1317.483                                                | 121.905<br>60.0439<br>47.32338<br>65.57127<br>44.52183<br>45.88474<br>15166.2<br>105.2472<br>220.3376<br>4.111455<br>57.77238<br>870.7501<br>890.6259<br>171.8785<br>458.8474<br>137.0485<br>673.1277<br>22.6395<br>4709.622<br>2657.681 | 3649.57<br>4096.31<br>1219.0<br>1356.90<br>3339.13<br>3702.58<br>6814.56<br>6814.56<br>6814.56<br>6814.56<br>6814.56<br>73263.4<br>305.98<br>1332.62<br>3929.73<br>12357.0<br>14102.3<br>3763.15<br>6246.68<br>6155.82<br>17112.1<br>4785.3<br>28545.4<br>54819.9<br>11509.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2187<br>2193 | After 6CT 11.<br>1CT 22.<br>After MAT<br>After MAT<br>IIT<br>End IT<br>Diagnosis<br>2CT 11.<br>End of 22.<br>End of 31.<br>Diagnosis<br>After 2CT 11.<br>After 4CT 11.<br>After 4CT 11.<br>Diagnosis<br>After 2CT 11.<br>Diagnosis<br>After 2CT 11.<br>After 4CT 11.<br>After                                                                                           | 6.170968<br>16.27924<br>02<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                    | 0<br>26.80396<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                      | 78.7461<br>241.5385<br>17.18785<br>24.91102<br>216.5518<br>235.4811<br>60.19533<br>863.1784<br>257.4392<br>146.8918<br>135.5341<br>135.5341<br>243.81<br>112.0618<br>660.2557<br>529.2646<br>224.8807<br>166.5783<br>105.2472<br>203.6798<br>1055.2472<br>203.6798<br>1067.615<br>11584.76 | 30.58983<br>91.61805<br>6.451122<br>14.53774<br>0<br>2.180661<br>9.237523<br>477.0196<br>47.70196<br>47.70196<br>47.70196<br>47.70196<br>33.16422<br>2.051942<br>2.051942<br>2.051942<br>2.051942<br>2.051942<br>107.5187<br>106.0044<br>52.01785<br>47.47481<br>38.38872<br>26.80396<br>2.142802<br>2.142802<br>2.142802<br>2.142802<br>2.142802<br>2.142802<br>351.3287 | 436.8894<br>1044.9<br>147.6489<br>56.71233<br>299.0837<br>168.8498<br>194.5937<br>3740.44<br>1143.333<br>728.4014<br>87.83218<br>158.2494<br>654.1983<br>1219.05<br>1067.615<br>497.4633<br>1166.048<br>87.07501<br>71.25007<br>71.25007<br>11.25007<br>11.25007 | 30.8927<br>152.9491<br>16.65783<br>4.361322<br>77.98892<br>18.02074<br>10.29757<br>386.9159<br>96.1611<br>15.14348<br>38.46444<br>148.4061<br>243.81<br>71.17436<br>77.98892<br>4.058453<br>2.226092<br>2.226092<br>1007.041<br>3119.557<br>514.1211<br>1173.62                                                               | 30.58983<br>44.74898<br>86.531784<br>4.149314<br>9.161805<br>15.2192<br>2.316952<br>141.5915<br>26.95539<br>41.41742<br>6.163396<br>4.391609<br>34.45142<br>80.26044<br>49.89777<br>47.47481<br>57.54522<br>2.233663<br>4.23565<br>220.3376<br>1317.483<br>152.192<br>284.6974 | 121.905<br>60.0439<br>47.3238<br>65.57127<br>44.52183<br>45.88474<br>15166.2<br>105.2472<br>220.3376<br>4.111455<br>57.77238<br>870.7501<br>890.6259<br>171.8785<br>458.8474<br>137.0485<br>673.1277<br>22.6395<br>4709.622<br>2657.681  | 3649.57<br>4096.31<br>2219.0<br>1226.90<br>3339.13<br>3702.58<br>6814.56<br>8014.56<br>8014.56<br>8014.56<br>8014.56<br>8014.56<br>8014.56<br>8014.56<br>8014.56<br>8014.56<br>8014.56<br>8014.56<br>8015.92<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82<br>8015.82 |

1 IT= at first course of anti-GD2 immunotherapy


After 2Ct 1L= after 2 courrses of chemotherapy in first line therapy

After MAT= after myeoloablative therapy and autologous stem cell treatment

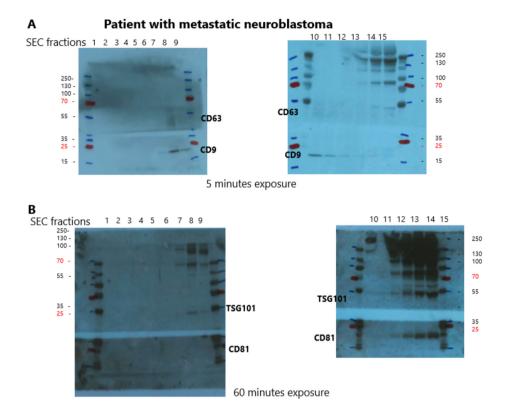
End of 2L= end of second line therapy


End of 3L= end of third line therapy

End of IT=at the end of anti-GD2 immunotherapy courses

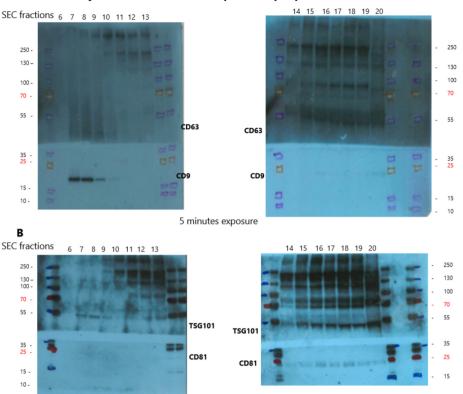


Supplemental figure 4. Level of the cell cycle markers in sequential plasma samples from 11 patients with metastatic neuroblastoma. Patients are classified according to clinical outcome. A. No event (=no relapse/ progressive disease and/or death of disease) B. Event but salvaged (=relapse/progressive disease but eventually complete remission or stable disease) C. Died of disease.


Dx; initial diagnosis 2Ct; 2<sup>nd</sup> chemotherapy course 4Ct; 4<sup>th</sup> chemotherapy course 1L; first line treatment 2L; second line treatment End 3L; end of third line treatment 1IT; first course of immunotherapy end IT; at the end of immunotherapy After MAT; after myloablative therapy R; relapse



60 minutes exposure


**Supplemental figure 5.** Western blot images from the size exclusion chromatography (SEC) fractions isolated from 500ul of plasma from 1 healthy control. **A.** The blots were cut and first stained with CD63 (a smear around 44-55kDa) and CD9 (a band around 24kDa). SEC fractions 7, 8 and 9 are positive for CD9. CD63 is not clearly present in this blot, much aspecific staining in the higher protein-rich SEC fractions. **B.** Below, the same blots stained for TSG101 (band around 46kDa) and CD81 (band around 25kDa). SEC fractions 7, 8 and 9 are positive for CD81. SEC fractions 11 and further seem positive for TSG101 but much aspecific binding in these protein-enriched fractions.

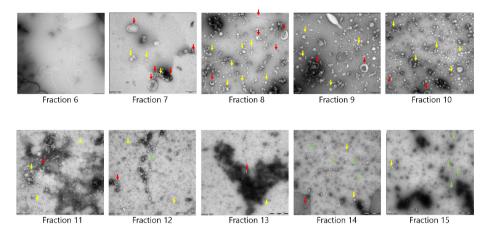
Please note that protein input was not normalized in this experiment.



**Supplemental figure 6.** Western blot images from the size exclusion chromatography (SEC) fractions isolated from 500ul of plasma from 1 patient with metastatic neuroblastoma. **A.** The blots were cut and first stained with CD63 (a smear around 44-55kDa) and CD9 (a band around 24kDa). SEC fractions 7, 8, 9, 10, 11 and 12 are positive for CD9. CD63 is present as a smear especially in SEC fraction 8, and some aspecific staining in the higher protein-rich SEC fractions. **B.** Below, the same blots stained for TSG101 (band around 46kDa) and CD81 (band around 25kDa). SEC fractions 12 and higher are positive for CD81. SEC fractions 7, 8 and 9, and later from 12 upwards are positive for TSG101 but some aspecific binding in the higher SEC fractions is present as well in the high molecular weight area.

Please note that protein input was not normalized in this experiment.




Healthy control with normalized protein input per well

Α

90 minutes exposure

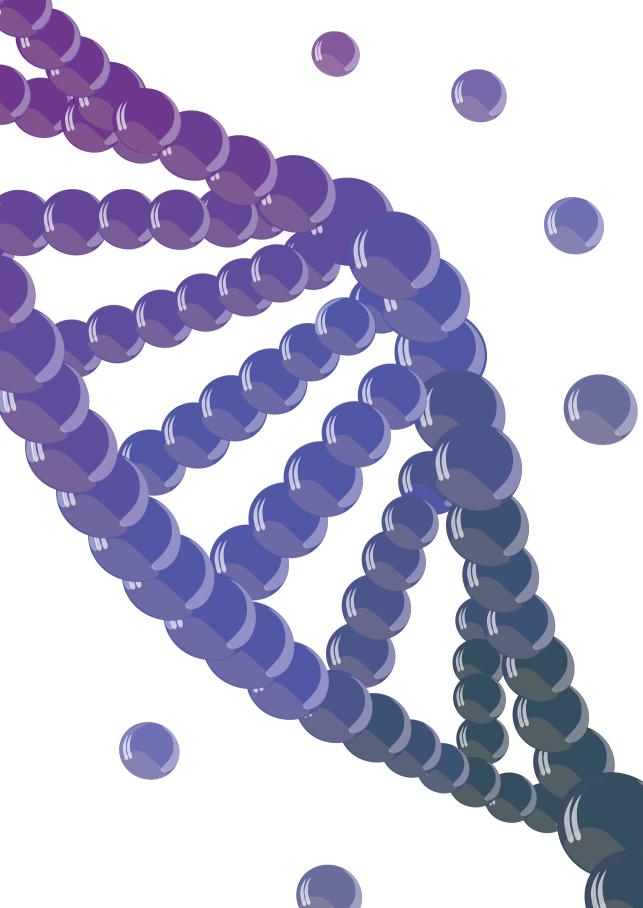
**Supplemental figure 7.** Western blot images from the size exclusion chromatography (SEC) fractions isolated from 500ul of plasma from a healthy control. **A.** The blots were cut and first stained with CD63 (a smear around 44-55kDa) and CD9 (a band around 24kDa). SEC fractions 7, 8 and 9 are positive for CD9. CD63 is present as a smear in SEC fractions 7, 8 and 9 and faintly in 10. A smear might be present in SEC fractions 16 and upwards, with also some aspecific staining in the high molecular weight area. **B.** Below, the same blots stained for TSG101 (band around 46kDa) and CD81 (band around 25kDa). SEC fractions 16 and higher are positive for CD81. SEC fractions 7, 8 and 9, and later from 12 upwards are positive for TSG101 but some aspecific binding is present in the higher SEC fractions in the high molecular weight area as well.

Please note that protein input was normalized per well.



**Supplemental Figure 8.** Electron microscopy images of fractions (6 to 15) purified by size exclusion chromatography from 500ul of plasma from a patient with neuroblastoma. Red arrows indicate extracellular vesicles, yellow arrows lipoproteins and green arrows protein strands.

| วท 200เ     | ul of SEC | on 200ul of SEC fractions isolated | olated fror | from 500ul of plasma | <sup>c</sup> plasma. |             |             |             |             |             |             |             |                |              |             |             |
|-------------|-----------|------------------------------------|-------------|----------------------|----------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|----------------|--------------|-------------|-------------|
|             |           |                                    |             |                      |                      |             |             | RNA         |             |             |             |             |                |              | DNA         |             |
|             |           | HPAFZ                              | MGM2        | CDC6                 | ΑΤΑΠ2                | DHFR        | E2E1        | GUSE        | ROM         | HPA1AR      | PHOX9B      | CHRNA3      |                | GUSE nbl     | RASSFIA     | ACTB        |
|             |           | (copies/ml)                        | (copies/ml) | (copies/ml)          | (copies/ml)          | (copies/ml) | (copies/ml) | (copies/ml) | (copies/ml) | (copies/ml) | (copies/ml) | (copies/ml) | TH (copies/ml) | (copie s/ml) | (copies/ml) | (copies/ml) |
|             | F6        | 18.02074                           | 0           | 0                    | 0                    | 2.21852     | 0           | 0           | 174.15      | 4.543044    | 0           | 0           | 0              | 0            | 0           | 264         |
|             | F7        | 214.2802                           | 18.32361    | 0                    | 0                    | 42.70461    | 10.67615    | 8.556066    | 2120.087    | 54.51653    | 0           | 0           | 0              | 8.556066     | 0           | 748         |
|             | F8        | 121.905                            | 20.97372    | 4.194744             | 2.210948             | 22.10948    | 22.10948    | 13.25055    | 1620.352    | 23.47239    | 2.150374    | 0           | 0              | 4.293177     | 352         | 2904        |
|             | F9        | 62.16399                           | 6.428407    | 0                    | 0                    | 13.932      | 2.316952    | 4.633905    | 530.0218    | 11.35761    | 0           | 0           | 0              | 10.82759     | 0           | 264         |
|             | F10       | 23.09381                           | 2.104944    | 0                    | 0                    | 12.56909    | 2.097372    | 0           | 212.0087    | 0           | 0           | 0           | 0              | 2.120087     | 352         | 4092        |
|             | F11       | 47.24766                           | 6.163396    | 0                    | 4.066024             | 81.77479    | 0           | 0           | 287.7261    | 6.057392    | 0           | 0           | 0              | 2.082229     | 792         | 7084        |
|             | F12       | 15.82494                           | 2.256379    | 0                    | 0                    | 50.95781    | 0           | 2.210948    | 168.0926    | 15.14348    | 0           | 0           | 0              | 4.141742     | 132         | 968         |
| NBL2196 F13 | F13       | 2.157946                           | 2.157946    | 0                    | 0                    | 36.34435    | 4.543044    | 6.814566    | 67.38849    | 2.271522    | 0           | 0           | 0              | 2.0898       | 616         | 6072        |
|             | F14       | 12.41765                           | 2.067085    | 0                    | 2.014083             | 44.3704     | 0           | 0           | 120.3907    | 2.271522    | 0           | 0           | 0              | 0            | 0           | 5324        |
|             | F15       | 9.994697                           | 0           | 0                    | 0                    | 96.1611     | 0           | 0           | 77.23175    | 0           | 2.04437     | 0           | 0              | 0            | 0           | 132         |
|             | F16       | 2.0898                             | 0           | 0                    | 0                    | 18.17218    | 0           | 0           | 31.04413    | 2.271522    | 0           | 0           | 0              | 0            | 0           | 2200        |
|             | F17       | 2.029226                           | 0           | 0                    | 0                    | 12.94768    | 2.157946    | 0           | 22.71522    | 0           | 0           | 0           | 0              | 0            | 0           | 8272        |
|             | F18       | 1.930794                           | 0           | 0                    | 0                    | 6.481409    | 0           | 0           | 30.28696    | 0           | 0           | 0           | 0              | 2.036798     | 0           | 4576        |
|             | F19       | 0                                  | 2.014083    | 0                    | 0                    | 8.631784    | 0           | 0           | 17.415      | 4.543044    | 0           | 0           | 0              | 0            | 0           | 5324        |
|             | F20       | 0                                  | 0           | 0                    | 0                    | 14.31059    | 0           | 0           | 29.52979    | 0           | 0           | 0           | 0              | 2.150374     | 0           | 1012        |
|             |           |                                    |             |                      |                      |             |             |             |             |             |             |             |                |              |             |             |
|             | F6        | 28.99976                           | 0           | 0                    | 0                    | 0           | 0           | 3.066555    | 393.7305    | 31.04413    | 0           | 0           | 0              | 4.573331     | 110         | 0           |
|             | F7        | 689.0283                           | 85.56066    | 14.31059             | 19.08078             | 156.735     | 23.32096    | 36.04148    | 6579.842    | 408.874     | 0           | 0           | 0              | 25.59248     | 1188        | 3212        |
|             | F8        | 787.461                            | 46.41477    | 8.101762             | 27.18255             | 159.0065    | 35.58718    | 29.30263    | 5678.805    | 401.3022    | 0           | 0           | 0              | 27.56113     | 2684        | 9284        |
|             | F9        | 264.2537                           | 23.62383    | 7.87461              | 4.111455             | 109.0331    | 16.43068    | 12.34194    | 1567.35     | 106.7615    | 0           | 0           | 0              | 10.90331     | 3696        | 9020        |
|             | F10       | 123.4194                           | 8.253197    | 0                    | 0                    | 156.735     | 10.75187    | 0           | 840.4631    | 60.57392    | 0           | 0           | 0              | 0            | 7876        | 25080       |
|             | F11       | 35.81433                           | 8.404631    | 0                    | 2.067085             | 49.5949     | 0           | 0           | 179.4502    | 8.328914    | 0           | 0           | 0              | 0            | 14520       | 48840       |
|             | F12       | 14.31059                           | 0           | 0                    | 0                    | 113.5761    | 0           | 4.202316    | 124.9337    | 26.50109    | 0           | 0           | 0              | 0            | 24200       | 87120       |
| NBL2187     | 7 F13     | 14.76489                           | 4.209887    | 0                    | 0                    | 180.2074    | 0           | 0           | 74.20305    | 6.057392    | 0           | 0           | 0              | 0            | 24640       | 80960       |
|             | F14       | 8.253197                           | 0           | 0                    | 4.30832              | 276.3685    | 0           | 0           | 67.38849    | 6.814566    | 0           | 0           | 0              | 0            | 34320       | 100320      |
|             | F15       | 33.31566                           | 1.961081    | 0                    | 0                    | 551.2227    | 0           | 0           | 65.87414    | 10.60044    | 0           | 0           | 0              | 0            | 8668        | 32120       |
|             | F16       | 8.101762                           | 2.021655    | 0                    | 0                    | 320.2846    | 0           | 0           | 44.67327    | 9.086088    | 0           | 0           | 0              | 0            | 18920       | 65560       |
|             | F17       | 0                                  | 0           | 0                    | 0                    | 106.0044    | 0           | 0           | 25.74392    | 2.271522    | 0           | 0           | 0              | 0            | 33880       | 116160      |
|             | F18       | 8.404631                           | 2.097372    | 0                    | 0                    | 135.5341    | 0           | 0           | 25.74392    | 4.543044    | 0           | 0           | 0              | 2.112515     | 32560       | 00066       |
|             | F19       | 10.82759                           | 0           | 0                    | 0                    | 111.3046    | 0           | 0           | 12.11478    | 0           | 0           | 0           | 0              | 0            | 30360       | 121440      |
|             | F20       | 3.967592                           | 0           | 0                    | 0                    | 69.50857    | 0           | 1.930794    | 8.328914    | 2.271522    | 0           | 0           | 0              | 0            | 26840       | 97240       |


Supplemental Table 11. Results of the RNA-based ddPCR assays (both neuroblastoma-specific and cell cycle panels) and DNA-based ddPCR (RASSF1A-M and ACTB)

Supplemental table 12. Number of positive droplets per neuroblastoma-specific and cell cycle marker gene per 500ul SEC fraction, below the sum of all the droplets from the SEC fractions and as a comparison the number of droplets per marker from unfractionated 500ul plasma, of a healthy control and a neuroblastoma patient with metastatic disease.

|                                |              |                               |                    |                                                                     | 0110 |                    | 01010 |                    |     | 2.1 4 6 1          | 00000              |                    |       |                            |
|--------------------------------|--------------|-------------------------------|--------------------|---------------------------------------------------------------------|------|--------------------|-------|--------------------|-----|--------------------|--------------------|--------------------|-------|----------------------------|
|                                |              | r noxza<br>pos/drop<br>/SECfr | pos/drop<br>/SECfr | стичка и созв<br>pos/drop pos/drop pos/drop<br>/SECfr /SECfr /SECfr |      | pos/drop<br>/SECfr | d     | pos/drop<br>/SECfr |     | pos/drop<br>/SECfr | pos/drop<br>/SECfr | pos/drop<br>/SECfr |       | b2IN<br>pos/drop<br>/SECfr |
| Control                        | F6           | 0                             |                    | 0                                                                   | 8    |                    | ŝ     | 1                  | 1   | 41                 | 2                  | 1                  | NA    | NA                         |
|                                | F7           | 0                             | 0                  | 0                                                                   | 15   | 1                  | 1     | 19                 | 5   | 282                | 19                 | 12                 | 1421  | 33337                      |
|                                | F8           | 0                             | 0                  | 0                                                                   | 8    | 0                  | 0     | 13                 | 2   | 149                | 12                 | 12                 | 327   | 10073                      |
|                                | F9           | 0                             | 0                  | 0                                                                   | 1    | 0                  | 1     | 3                  | 0   | 38                 | 0                  | 1                  | 126   | 3875                       |
|                                | F10          | 0                             | 0                  | 0                                                                   | 0    | 3                  | 0     | 2                  | 2   | 25                 | 1                  | 1                  | 88    | 2389                       |
|                                | F11          | 0                             | 0                  | 0                                                                   | 1    | 0                  | 0     | 4                  | 0   | 10                 | 0                  | 0                  |       | 2217                       |
|                                | F12          | 0                             | 0                  | 0                                                                   | 0    | 0                  | 0     | 1                  | 0   | 11                 | 3                  | 0                  |       | 2290                       |
|                                | F13          | 0                             | 0                  | 0                                                                   | 1    | 0                  | 0     | 4                  | 2   | 5                  | 2                  | 2                  | 123   | 2137                       |
|                                | F14          | 0                             | 0                  | 0                                                                   | 0    | 0                  | 0     | 1                  | 0   | 5                  | 0                  | 0                  |       | 1727                       |
|                                | F15          | 0                             | 0                  | 0                                                                   | 0    | 0                  | 0     | 1                  | 1   | 1                  | 0                  | 0                  | 66    | 1441                       |
|                                | F16          | 0                             | 0                  | 0                                                                   | 1    | 0                  | 0     | 1                  | 0   | 4                  | 0                  | 1                  | 84    | 1082                       |
|                                | F17          | 0                             | 0                  | 0                                                                   | 0    | 0                  | 0     | 1                  | 0   | 2                  | 0                  | 0                  | 83    | 1012                       |
|                                | F18          | 0                             | 0                  | 0                                                                   | 0    | 0                  | 0     | 6                  | 3   | 1                  | 0                  | 0                  | 91    | 1172                       |
|                                | F19          | 0                             | 0                  | 0                                                                   | 0    | 0                  | 0     | 0                  | 2   | 1                  | 0                  | 1                  | 53    | 1016                       |
|                                | F20          | 0                             | 0                  | 0                                                                   | 0    | 0                  | 0     | 3                  | 0   | 1                  | 1                  | 0                  |       | 712                        |
| Total pos drop in all SECfr    | in all SECfr | 0                             | 0                  | 0                                                                   | 35   | 4                  | 5     | 60                 | 18  | 576                | 40                 | 31                 | 2837  | 64480                      |
| Total pos drop in 500ul plasma | 500ul plasma | 0                             | 0                  | 0                                                                   | 86   | 17                 | 38    | 197                | 182 | 1154               | 42                 | 83                 | 21346 | 42400                      |
| NBL2177                        | F6           | 0                             | 0                  | 0                                                                   | 1    | 0                  | 0     | 6                  | 5   | 16                 | 0                  | 0                  | 49    | 338                        |
|                                | F7           | 4                             | 13                 | 0                                                                   | 23   | 5                  | 6     | 33                 | 51  | 470                | 50                 | 17                 | 612   | 5191                       |
|                                | F8           | 3                             | 6                  | 0                                                                   | 21   | 6                  | 8     | 102                | 91  | 424                | 26                 | 18                 | 447   | 4783                       |
|                                | F9           | 0                             | 5                  | 0                                                                   | 7    | 2                  | 1     | 140                | 35  | 161                | 17                 | 8                  | 161   | 1663                       |
|                                | F10          | 0                             | 1                  | 0                                                                   | 3    | 1                  | 0     | 237                | 18  | 75                 | 4                  | 2                  | 74    | 615                        |
|                                | F11          | 0                             | 3                  | 0                                                                   | 0    | 0                  | 1     | 249                | 9   | 42                 | 4                  | 2                  | 40    | 365                        |
|                                | F12          | 1                             | 1                  | 0                                                                   | 0    | 0                  | 1     | 228                | 2   | 24                 | 3                  | 0                  | 15    | 150                        |
|                                | F13          | 0                             | 0                  | 0                                                                   | 0    | 0                  | 0     | 548                | 3   | 32                 | 3                  | 0                  | 10    | 95                         |
|                                | F14          | 0                             | 0                  | 0                                                                   | 0    | 0                  | 0     | 577                | 3   | 15                 | 0                  | 0                  | 9     | 69                         |
|                                | F15          | 0                             | 0                  | 0                                                                   | 0    | 0                  | 0     | 1358               | 0   | 41                 | 2                  | 0                  | 6     | 58                         |
|                                | F16          | 0                             | 0                  | 0                                                                   | 0    | 0                  | 1     | 729                | 2   | 25                 | 2                  | 1                  | 9     | 85                         |
|                                | F17          | 0                             | 0                  | 0                                                                   | 3    | 0                  | 0     | 232                | 0   | 14                 | 0                  | 0                  | 5     | 63                         |
|                                | F18          | 0                             | 0                  | 0                                                                   | 0    | 0                  | 0     | 186                | 0   | 11                 | 1                  | 0                  | 3     | 49                         |
|                                | F19          | 0                             | 0                  | 0                                                                   | 0    | 0                  | 0     | 191                | 0   | 7                  | 0                  | 0                  | 6     | 43                         |
|                                | F20          | 0                             | 0                  | 0                                                                   | 0    | 0                  | 0     | 261                | 0   | 6                  | 3                  | 0                  | 2     | 36                         |
| Total pos drop in all SECfr    | in all SECfr | 8                             | 29                 | 0                                                                   | 58   | 14                 | 18    | 5077               | 219 | 1363               | 115                | 48                 | 1451  | 13603                      |
| Total pos drop in 500ul plasma | 500ul plasma | 13                            | 10                 | 0                                                                   | 27   | 21                 | 23    | 9335               | 203 | 1511               | 69                 | 30                 | 1545  | 13739                      |

Cell-free RNA from plasma in patients with neuroblastoma: exploring the technical and clinical potential | 315

8



## Chapter 9

## Discussion and future directions

#### Part I: Liquid biopsies for patients with rhabdomyosarcoma

In **Part I** of this thesis, we mainly focus on liquid biopsies for patients with rhabdomyosarcoma. The overarching question was if liquid biopsy analysis in this group of patients is of additional value to current clinical practice. We hypothesized that liquid biopsies could be more sensitive than conventional analysis of bone marrow (BM) for disseminated disease. Furthermore, we speculated that detection of molecular disease in blood and BM might represent a novel prognostic entity by itself.

#### **RNA-based approaches: historic and current findings**

The groundwork for liquid biopsy analysis was laid out thirty years ago, when Galili *et al.* and Davis *et al.* reported on the presence of a fusion between *PAX3* and *FOXO1*, and *PAX7* and *FOXO1* respectively in alveolar rhabdomyosarcoma tumors.(1,2)These fusion genes formed the first targets used in liquid biopsy samples from patients. Detection of disseminated disease in blood and bone marrow (BM) by reverse transcriptase PCR (RT-PCR) was published for the first time by Kelly *et al.* in 1996.(3) These results inspired further efforts on the use of PCR for the detection of rhabdomyosarcomaspecific RNA markers in blood and bone marrow during the early 2000's. These studies widened the scope, including all subtypes of rhabdomyosarcoma, increasing the number of transcripts analyzed and investigating the association of PCR results with clinical outcome. Concurrently, the technique of RT-PCR evolved further over the years, integrating a real-time quantifying step of the targets, designated RT-qPCR (reverse transcriptase quantitative PCR).

In summary, these studies demonstrated that presence of rhabdomyosarcomaspecific transcripts in blood and/or BM at diagnosis was associated to poor clinical outcome and that detection of these transcripts in bone marrow could be of added value to conventional histology for the detection of BM metastasis.(4–6) However, the number of patients analyzed in these studies were rather small, ranging from 5 to 48.

These studies were at the origin of our study on the RNA panel for BM and blood analysis. Our findings in **Chapter 2** with an extended RNA panel containing 11 markers in a large cohort of 99 patients confirmed the previous results for increased sensitivity of BM metastasis detection through RT-qPCR instead of immunohistochemistry, and poor clinical outcome for patients with RNA-positivity in blood and/or BM at diagnosis. Survival of RNA-positive patients was significantly lower than RNA-negative patients (5-year event-free survival 35.5% vs 88%, and 5-year overall survival 54.8% vs 93.7%, p<0.001). In our cohort, the 3 markers *MYOG, MYOD1*, and *PAX3/7-FOXO1* were most often positive. Positivity of multiple

markers was not associated to adverse clinical outcome. Of the novel markers, only *CDH11* was occasionally positive on its own and positivity was associated to poor clinical outcome.

#### Improving treatment stratification with a rhabdomyosarcomaspecific RNA panel

It remains to be investigated why RNA positivity at diagnosis is associated to poor clinical outcome. Does RNA-positivity reflect disseminated tumor cells and therefore more aggressive and advanced disease? This could explain why RNA-positivity in patients with supposedly localized disease results in a decreased disease-free and overall survival since these patients do not receive treatment according to the metastatic disease protocol. The finding that BM involvement as determined by conventional immunohistochemistry is associated with poor clinical outcome was already reported by Oberlin et al and Bailey et al.(7,8) Our data and data from previous studies underline that BM positivity by RT-qPCR alone is associated to poor outcome. In our cohort of 99 patients, 6 of 14 (42.9%) patients with localized disease and RNA positivity suffered from relapse and 3 eventually died, compared to five events in the 58 (8.6%) patients with localized disease without RNA panel positivity. These findings demonstrate that RT-qPCR of BM is a more sensitive technique for the detection of disseminated disease than conventional immunohistochemistry.

Moreover, in our cohort the subset of patients who were diagnosed with metastatic disease through conventional diagnostics and received the corresponding treatment, RNA-positivity especially in blood and/or BM at diagnosis still resulted in a significant decrease of event-free survival. This finding could suggest that presence of disseminated rhabdomyosarcoma-specific transcripts might originate from more aggressive disease and that these patients deserve even more intense therapy. Considering the recent developments and initiatives in the field of rhabdomyosarcoma, this could result in more targeted therapies, given in frontline. (9–11) Many preclinical trials have studied drugs affecting the activation of kinases and downstream pathways, or cell cycle regulation and apoptosis induction.(12) Another much sought after approach is inhibition of the PAX3/7-FOXO1 fusion product. Until now, this has been unsuccessful.(12) Clinical application of targeted therapies in pediatric oncology are still limited to small patient numbers and mostly relapsed tumors. This is illustrated by Langenberg *et al.* for different types of pediatric tumors including 5 patients with relapsed rhabdomyosarcoma and a case report on a single patient with refractory rhabdomyosarcoma by Acanda de la Rocha et al. (13,14) Personalized therapies included inhibitors of CDK4/6, PARP and FGFR4. (14)

#### Response monitoring for rhabdomyosarcoma with the RNA panel

Two important clinical challenges are identifying patients with poor response to first line treatment and (early) relapse detection. Considering the application of RTqPCR in blood and BM for response monitoring, previous studies analyzed small numbers of inconsistently sampled blood and BM samples.(4–6,15). However, the results suggested that persisting RNA-positivity or (re)-emerging RNA-positivity is associated to poor clinical outcome. In **Chapter 2**, we analyzed serial samples from 20 patients. For blood samples, only one patient had a positive blood sample after 3 cycles of frontline therapy and once more shortly before death due to progressive disease. Three out of 10 blood samples at relapse were positive. BM was available at relapse for 5 patients and was positive for only 1 patient. All the other 41 blood samples collected during first line treatment and 34 samples during follow-up were negative. Notably, blood and BM samples drawn shortly before diagnosis of relapse were lacking.

As stated before, a lack of standardized sampling during first line treatment and follow-up is an important limitation. Comparison to the previous cohorts from the early 2000's is further complicated by difference in the frequency of BM sampling after initial diagnosis, with a tendency towards a higher number of BM sampling within these historical cohorts than within current treatment protocols. Another variable is the sensitivity and specificity of the *MYOD1* assay. We updated the design of the *MYOD1* assay to be fully specific for the transcript, since we found that the previously published design also amplified genomic DNA. This potentially false positive signal might be one explanation for the proportionately more positive follow up samples in the cohorts from Sartori *et al.*, Gallego *et al.* and Krskova *et al.* 

Finally, clonal evolution of the tumor cells during treatment could result in distinct gene expression which would require a different combination of genes in the RNA panel. Data on gene expression in relapsed tumors were not available for our cohort but considering the increase in genetic data from pediatric refractory and recurrent tumors that is currently being generated,(14,16–18) we expect that in the future these gene expression data can advise a modified RNA panel for recurrence monitoring. Potentially, this modified panel would also be more suited to use for treatment response monitoring during frontline treatment.

#### RNA panel in rhabdomyosarcoma: future directions

During a follow-up liquid biopsy add-on study within the European paediatric Soft tissue sarcoma Study Group (EpSSG) multi-center clinical trial for Frontline and Relapsed Rhabdomyosarcoma (FaR RMS), which will include a larger number of patients, we plan to validate our findings on the added value for treatment stratification by the RNA panel for blood and BM at diagnosis, and the possible increase of sensitivity of RT-qPCR in BM to conventional immunohistochemistry. Furthermore, by standardized sampling of blood and BM during first line treatment and follow-up, we want to investigate the potential for response monitoring by the RNA panel in serial PB and BM samples, possibly with a modified RNA panel. Finally, we will study whether the novel markers have an added value, apart from the traditional *MYOD1*, *MYOG* and the fusion genes. If not, it would be more efficient to continue with a selection of the markers, probably thus consisting of *MYOG*, *MYOD1*, *PAX-FOXO* and *CDH11*.

#### Liquid biopsies in rhabdomyosarcoma: different approaches for cellfree DNA analysis

We also explored several DNA-based approaches for the detection of tumor-derived cell-free DNA (cfDNA) from plasma, also in relation to clinical features. Plasma represents a very attractive source for biomarkers, since it is sampled less invasively than BM. Furthermore, the genetic landscape of rhabdomyosarcoma tumors offers a myriad of potential targets.

We were one of the first to analyze cfDNA in a large cohort of 57 well-characterized patients with rhabdomyosarcoma, as presented in **Chapter 4**. The finding that total cfDNA levels at diagnosis were not significantly higher in the patients with more aggressive disease (e.g. larger tumor size, alveolar subtype or metastatic disease) was in agreement with what we found in **Chapter 5** and as previously published by Klega et al. for 7 patients with alveolar rhabdomyosarcoma.(19) This is in contrast with what was found in neuroblastoma. In 2 reports from the same research group on cfDNA from plasma from patients with neuroblastoma, they demonstrated that the total level of cfDNA was higher in patients with a higher tumor burden at diagnosis and in patients with relapse. (20,21) In these studies, total cfDNA was quantified using gPCR. Wang et al. compared levels of total cfDNA in 79 patients at initial diagnosis of neuroblastoma to 79 patients with stable disease almost 2 years after diagnosis and found a higher level of cfDNA in newly diagnosed patients (265.80 ng/ml  $\pm$  139.08 vs 23.70 ng/ml ± 23.90).(20) Furthermore, they also demonstrated that patients with metastatic disease and larger tumor size had higher cfDNA levels (respectively 1465.5 vs 113.6 ng/mL and 861.8 vs 296.0 ng/ml).(20) Su et al. measured total cfDNA levels in 116 patients every 3 months from the start of maintenance therapy, and at relapse. Thirty-six of the 116 patients suffered from relapse and the median total cfDNA concentration at relapse was significantly higher than in patients without relapse (29.34 ng/ml vs 10.32 ng/ml).(22) Moreover, on average half a month before

clinical evidence of relapse, the cfDNA concentration rose above 29 ng/ml.(22) These differences in findings for rhabdomyosarcoma and neuroblastoma illustrate that the dynamics of total cfDNA can vary in different tumor entities and that findings from one tumor type cannot simply be extrapolated to other tumor types.

In **Chapter 4** we analyzed the methylation profile of circulating tumor cfDNA from 26 diagnostic plasma samples from patients with rhabdomyosarcoma using cellfree reduced representation bisulphite sequencing (cfRRBS), as published in the study by van Paemel *et al.*(23) The discovery that in more than 90% of the samples a rhabdomyosarcoma-specific profile was detected and that in 20/26 (77%) the methylation profile aligned with the correct tumor subtype, demonstrated how robust this technique is. This underlines the potential of cfRRBS to assist in the initial diagnostic workflow, especially if a tumor biopsy is not possible and a diagnosis is essential to start effective treatment as soon as possible. A next step might be to explore the potential of cfRRBS as a technique to detect tumor-derived cfDNA during treatment, as a marker for residual disease. However, since we observed that the levels of tumor-derived cfDNA are low during treatment, it must be determined whether cfRRBS would be sensitive enough.

Detection of copy number aberrations (CNA) in cfDNA during or after therapy can also be used to study disease response in liquid biopsies. Shallow whole genome sequencing is mostly used for detection of CNA, but these can also be detected by cfRBBS.(23) In **Chapter 4**, we applied copy number profiling to diagnostic plasma of 30 patients, resulting in 16 samples with CNA. CNA were mostly detected in plasma of patients with metastatic disease. It would be interesting to explore the potential of CNA detection in follow-up samples further, however the sensitivity in relation to low levels of tumor-derived cfDNA could be limited.

#### Patient-specific droplet digital PCR assays

The fusion gene breakpoints are well suited for patient-specific droplet digital (ddPCR) assays. We present a concise approach to determine the patient-specific fusion breakpoint, based on targeted locus amplification (TLA) as discussed in **Chapter 6**. An alternative approach to obtain the patient-specific fusion breakpoint is a next generation sequencing (NGS) panel targeting the rhabdomyosarcoma-specific fusion partners (e.g., *PAX3*, *PAX7* and *FOXO1*), as we present in **Chapter 5**. Both TLA and NGS approaches can result in design of a patient-specific assay within weeks after initial diagnosis. Our results, and other studies,(19,24) have shown that these breakpoints remain stable throughout the entire course of the disease. This makes fusion breakpoint assays well suited for implementation in clinical practice for response

monitoring. For fusion-negative tumors, several options remain. These tumors have been shown to contain at least 1 single nucleotide variation (SNV) in 80% of cases, as well as structural chromosomal variations, with amplifications or deletions.(25,26) As we have shown in **Chapters 3**, **4**, **5**, and **6**, all these genetic aberrations can be used for patient-specific droplet digital (ddPCR) assays. However, this requires quite an extensive sequencing effort of the tumor at primary diagnosis. Furthermore, studies comparing genetic aberration in primary and relapsed tumors are lacking, but these are crucial for information on the stability of specific SNVs during the course of the disease. Currently, analysis through whole exome sequencing, methylation profiling and RNA sequencing of the primary tumor is standard of care at the Princess Máxima Center and is also often offered in relapsed tumors, with the goal of identifying targets for precision medicine. Similar initiatives have been launched internationally, so we expect that these data will become available within the coming years and can inform selection of liquid biopsy targets at the initial diagnosis.

#### Hypermethylated RASSF1A as a target for ddPCR

The most compelling finding described in **Chapters 3 and 4**, is on the detection of the hypermethylated tumor suppressor gene RASSF1A (RASSF1A-M) in plasma. RASSF1A is a tumor suppressor gene that is often hypermethylated in many tumors, both adult and pediatric, as shown in an impressive number of reports during the last two decades.(27–49) We found that RASSF1A-M positivity in plasma at diagnosis was associated with poor clinical outcome, especially in patients testing positive for RASSF1A-M and for the RNA panel in the matching cellular fraction. The limited number of patients did not allow for extensive multivariate analyses on the additional value of both molecular techniques to current treatment stratification. This is especially important since there seemed to be a tendency for double positivity in patients with metastatic disease. It is crucial to investigate the value of these liquid biopsy-based analyses further for their complementary value in a larger cohort of patients, which we will within the FaR RMS liquid biopsy add-on study. It is interesting to hypothesize whether the presence of hypermethylation of RASSF1A is a characteristic of more aggressive disease in rhabdomyosarcoma. This would also require analysis of the primary tumor itself. Within the previously mentioned FaR RMS add-on, we strive towards analysis of matched tumor and plasma, also including methylation.

# Towards implementation of liquid biopsies in the treatment of rhabdomyosarcoma

Considering the results presented in this thesis and in literature on the potential of liquid biopsies in rhabdomyosarcoma, the next step is incorporation of liquid biopsies in standard diagnostics. This requires dedicated validation studies consisting

of well-timed samples to also evaluate added value for response monitoring and relapse surveillance. Implementation of liquid biopsies in large international clinical trials is therefore essential. Apart from the liquid biopsy add-on within the FaR RMS trial, collaboration with the Northern American Children Oncology Group (COG) and the German Cooperative Weichteilsarkom Studiengruppe (CWS) would speed up this process and thereby presumably implementation in clinical practice of liquid biopsies. An important challenge in these collaborations are the distinct molecular platforms applied to analyze cfDNA and RNA from liquid biopsies across the different laboratories. This is often presented as hampering reproducibility, which results in slowing down of validation in independent cohorts. However, this supposed limitation might represent an opportunity. If laboratories would collaborate to validate each other's findings through their respective molecular platforms, this would underline the robustness of a finding.

Ultimately, the question is whether it would matter if tumor-derived cfDNA or RNA is detected by a targeted PCR or a sequencing platform? Within the EpSSG, we are now working on projects to validate the different molecular platforms of the collaborating laboratories and comparing their sensitivity, using so-called 'round robin sendings' which consist of well-characterized synthetic reference samples. Hopefully this effort will result in a more standardized and collaborative infrastructure for rhabdomyosarcoma liquid biopsies studies in Europe.

### Part II: Novel biomarkers from plasma

### Extracellular vesicles in pediatric solid tumors

In **Part II**, we explored novel sources of biomarkers from liquid biopsies. In the last decade, publications on extracellular vesicles (EV) have increased exponentially. These particles are very intriguing for their diagnostic potential and for their function in health and disease. Since it has been shown that EV are involved in all hallmarks of cancer, ranging from cell proliferation to preparation of the metastatic niche and the induction of therapy resistance, further research could result in novel therapeutic modalities.(50–55) However, the methods for EV isolation and subsequent analysis are extremely heterogeneous and result in diverse outcomes regarding data on EV characterization and content analysis, as we illustrate in the review in **Chapter 7**. EV-based studies validating previous results in large patient cohorts are absent, which keeps EV-based biomarker research from reaching clinical practice. A structured approach to EV isolation and analysis has already been advocated by the International Society for Extracellular Vesicles (ISEV), culminating

in the MISEV (Minimal Information required for Studies of Extracellular Vesicles) guidelines.(56,57) However, these are mostly intended for in vitro studies and for clinical samples collected from adults. As we also argue in **Chapter 7**, the field of pediatric oncology faces more challenges considering the low patient numbers and limited sample volumes. As illustrated in **Chapter 8**, the analysis of EV from pediatric patients cannot comply with an extensive quantification and characterization of EV from all patients, as well as all subsequent analyses. We could only perform a limited number of experiments for EV characterization due to low sample volumes. It is worth considering a pediatric-only initiative, similar to the MISEV guidelines, which specifies the minimal requirements for EV characterization and analysis of pediatric samples within studies. Pediatric EV research on clinical samples might benefit from a dichotomy within studies, one part focusing on a (limited) number of experiments for the quantification and characterization of the EV from the chosen enrichment method, as to confirm EV presence and characteristics; and a second part dedicated to the development and validation of EV-based markers in the clinical patient samples. This second part would also need to focus on feasibility within a clinical setting. For example, in **Chapter 8** we concluded that enrichment of EV did not result in a concentration of the targets. Follow up research for these specific targets would not need to involve EV enrichment, which would save time and means. In general, implementation of biomarkers in clinical practice would benefit from critical assessment of the techniques and platforms employed, and from studies reproducing findings and validating these in independent cohorts. Collaboration on an international level is crucial if liquid biopsy-based techniques are to reach the bedside, especially for pediatric oncology.

#### Analysis of cell-free RNA from plasma

**Chapter 8** offers an illustration of the challenges arising in the analysis of the cellfree plasma compartment. We performed an explorative study of cell-free RNA (cfRNA) from plasma from patients with neuroblastoma and the association of cfRNA to EV. To use the limited sample volumes efficiently, we employed a multiplexed ddPCR for cfRNA analysis. Pre-analytical conditions were suboptimal in this project due to platelet contamination of the plasma. Platelets contain RNA, and can by themselves form a biomarkers source, as is shown for adult malignancies by the group of Wurdinger.(58–61) However, when focusing on cell-free RNA, the presence of platelet-derived RNA affects RNA analysis. We attempted to reduce this effect by devising a correction formula, but this remains suboptimal and limits reproducibility.

Due to a lack of literature on the pediatric cell-free transcriptome, the choice of RNA markers, including reference genes, was based on our experience in the analysis

of the cellular compartment of blood for the neuroblastoma-specific markers. Pragmatically, we chose two reference genes that we already used for RT-gPCR analysis in the cellular compartment of blood, GUSB and B2M. However, an unbiased approach using sequencing of plasma-derived cfRNA, similar to the study in adults including healthy controls by Larson et al., (62) would result in a more comprehensive perspective on the plasma transcriptome. Notably, since the gene expression in cfRNA from pediatric plasma is probably very variable, reflecting the dynamics of a growing and developing child, this would require analysis of gene expression in plasma from differently aged children. Ultimately, a comparison of the cell-free transcriptome between age and gender-matched healthy children and children with different types of disease, e.g., malignancies, infectious and inflammatory diseases, would give the best overview. Rightfully, ethical dilemmas are raised if research in children is concerned and sampling healthy children for research that they do not directly benefit from is controversial. One way to overcome this hurdle, is the use of rest material from otherwise healthy children that undergo small surgical procedures or present in the emergency department. If thought out well enough, this effort could result in a cell-free atlas of the different plasma-derived particles, including the different types of RNA, proteomics and cfDNA, further elaborating on the different (epi-)genetic characteristics of these DNA fragments. Within the Princess Máxima Center, we are collaborating with different pediatric initiatives to set up the infrastructure to collect rest material of different body fluids, including blood, urine, and cerebro-spinal fluid.

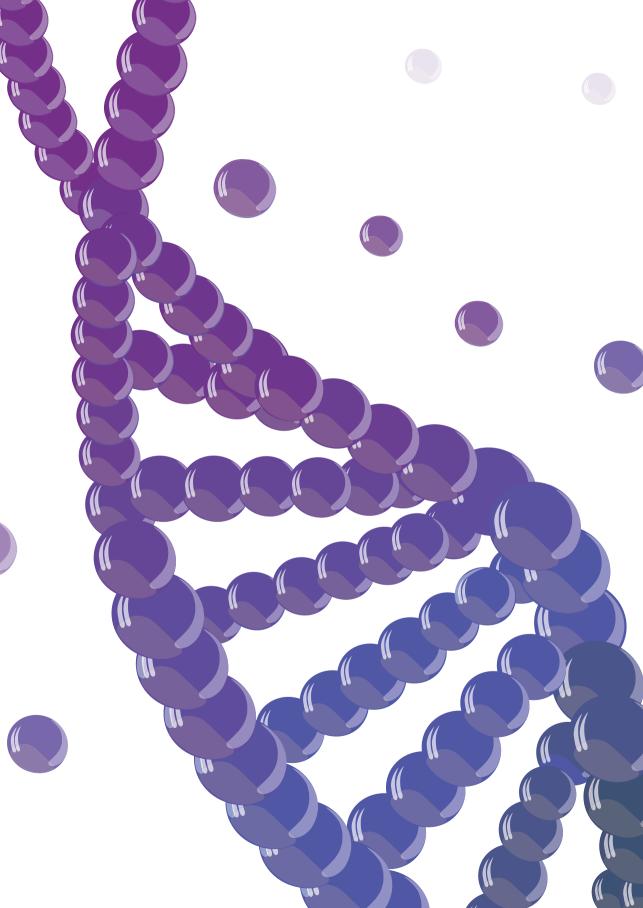
### Novel biomarkers for pediatric oncology: way forward

Research into novel biomarkers from plasma for application in pediatric oncology is very appealing but should also focus on cost-effectiveness and lead to a workflow suited for clinical practice. Although it is ethically challenging, studies into the characterization of the cell-free plasma compartment of healthy children are an essential starting point for further studies into clinical application of plasma-based biomarkers. This would also create the foundation for biomarker development for early detection of malignancy in patients with tumor predisposition syndromes.

### **Concluding remarks**

This thesis demonstrates that liquid biopsy-based analysis is immensely versatile and can improve current diagnostic modalities in pediatric solid tumors, especially rhabdomyosarcoma. It intends to form a steppingstone towards the incorporation of liquid biopsy analyses in clinical practice. This goal requires further international collaboration and a shared vision that also focuses on clinical application as well as on the development of novel analytical techniques. Ultimately, the aim remains improving the survival of children with pediatric rhabdomyosarcoma while maintaining a good quality of life. Liquid biopsies have shown their potential and should proceed from bench to bedside.




## References

- Galili N, Davis RJ, Fredericks WJ, Mukhopadhyay S, Rauscher FJ, Emanuel BS, et al. Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat Genet. 1993 Nov 1;5(3):230–5.
- 2. Davis RJ, D'Cruz CM, Lovell MA, Biegel JA, Barr FG. Fusion of PAX7 to FKHR by the variant t(1;13) (p36;q14) translocation in alveolar rhabdomyosarcoma. Cancer Res. 1994 Jun 1;54(11):2869–72.
- 3. Kelly KM, Womer RB, Barr FG. Minimal disease detection in patients with alveolar rhabdomyosarcoma using a reverse transcriptase-polymerase chain reaction method. Cancer. 1996 Sep 15;78(6):1320–7.
- Sartori F, Alaggio R, Zanazzo G, Garaventa A, Di Cataldo A, Carli M, et al. Results of a prospective minimal disseminated disease study in human rhabdomyosarcoma using three different molecular markers. Cancer: Interdisciplinary International Journal of the American Cancer Society. 2006;106(8):1766–75.
- Michelagnoli MP, Burchill SA, Cullinane C, Selby PJ, Lewis IJ. Myogenin--a more specific target for RT-PCR detection of rhabdomyosarcoma than MyoD1. Med Pediatr Oncol [Internet]. 2003;40(1):1– 8. Available from: https://www.ncbi.nlm.nih.gov/pubmed/12426678
- Gallego S, Llort A, Roma J, Sabado C, Gros L, de Toledo JS. Detection of bone marrow micrometastasis and microcirculating disease in rhabdomyosarcoma by a real-time RT-PCR assay. J Cancer Res Clin Oncol [Internet]. 2006;132(6):356–62. Available from: https://www.ncbi.nlm.nih. gov/pubmed/16435141
- Oberlin O, Rey A, Lyden E, Bisogno G, Stevens MC, Meyer WH, et al. Prognostic factors in metastatic rhabdomyosarcomas: results of a pooled analysis from United States and European cooperative groups. J Clin Oncol [Internet]. 2008;26(14):2384–9. Available from: https://www.ncbi.nlm.nih.gov/ pubmed/18467730
- Bailey KA, Wexler LH. Pediatric rhabdomyosarcoma with bone marrow metastasis. Pediatr Blood Cancer [Internet]. 2020;67(5):e28219. Available from: https://www.ncbi.nlm.nih.gov/ pubmed/32100935
- Schoot RA, Chisholm JC, Casanova M, Minard-Colin V, Geoerger B, Cameron AL, et al. Metastatic Rhabdomyosarcoma: Results of the European *Paediatric* Soft Tissue Sarcoma Study Group MTS 2008 Study and Pooled Analysis With the Concurrent BERNIE Study. Journal of Clinical Oncology. 2022 Nov 10;40(32):3730–40.
- Chisholm JC, Merks JHM, Casanova M, Bisogno G, Orbach D, Gentet JC, et al. Open-label, multicentre, randomised, phase II study of the EpSSG and the ITCC evaluating the addition of bevacizumab to chemotherapy in childhood and adolescent patients with metastatic soft tissue sarcoma (the BERNIE study). Eur J Cancer [Internet]. 2017;83:177–84. Available from: https://www. ncbi.nlm.nih.gov/pubmed/28738258
- 11. Grünewald TG, Alonso M, Avnet S, Banito A, Burdach S, Cidre-Aranaz F, et al. Sarcoma treatment in the era of molecular medicine. EMBO Mol Med. 2020 Nov 6;12(11).
- 12. van Erp AEM, Versleijen-Jonkers YMH, van der Graaf WTA, Fleuren EDG. Targeted Therapy–based Combination Treatment in Rhabdomyosarcoma. Mol Cancer Ther. 2018 Jul 1;17(7):1365–80.
- Acanda De La Rocha AM, Fader M, Coats ER, Espinal PS, Berrios V, Saghira C, et al. Clinical Utility of Functional Precision Medicine in the Management of Recurrent/Relapsed Childhood Rhabdomyosarcoma. JCO Precis Oncol. 2021 Nov;(5):1659–65.
- 14. Langenberg KPS, Meister MT, Bakhuizen JJ, Boer JM, van Eijkelenburg NKA, Hulleman E, et al. Implementation of paediatric precision oncology into clinical practice: The Individualized Therapies for Children with cancer program 'iTHER'. Eur J Cancer. 2022 Nov;175:311–25.

- Krsková L, Mrhalová M, Hilská I, Sumerauer D, Drahokoupilová E, Múdry P, et al. Detection and clinical significance of bone marrow involvement in patients with rhabdomyosarcoma. Virchows Archiv. 2010;456(5):463–72.
- van Tilburg CM, Pfaff E, Pajtler KW, Langenberg KPS, Fiesel P, Jones BC, et al. The Pediatric Precision Oncology INFORM Registry: Clinical Outcome and Benefit for Patients with Very High-Evidence Targets. Cancer Discov. 2021 Nov 1;11(11):2764–79.
- 17. Berlanga P, Pierron G, Lacroix L, Chicard M, Adam de Beaumais T, Marchais A, et al. The European MAPPYACTS Trial: Precision Medicine Program in Pediatric and Adolescent Patients with Recurrent Malignancies. Cancer Discov. 2022 May 2;12(5):1266–81.
- Jones DTW, Banito A, Grünewald TGP, Haber M, Jäger N, Kool M, et al. Molecular characteristics and therapeutic vulnerabilities across paediatric solid tumours. Nat Rev Cancer. 2019 Aug 12;19(8):420– 38.
- Klega K, Imamovic-Tuco A, Ha G, Clapp AN, Meyer S, Ward A, et al. Detection of Somatic Structural Variants Enables Quantification and Characterization of Circulating Tumor DNA in Children With Solid Tumors. JCO Precis Oncol [Internet]. 2018;2018. Available from: https://www.ncbi.nlm.nih. gov/pubmed/30027144
- Wang X, Wang L, Su Y, Yue Z, Xing T, Zhao W, et al. Plasma cell-free DNA quantification is highly correlated to tumor burden in children with neuroblastoma. Cancer Med. 2018 Jul 14;7(7):3022–30.
- 21. Su Y, Wang L, Jiang C, Yue Z, Fan H, Hong H, et al. Increased plasma concentration of cell-free DNA precedes disease recurrence in children with high-risk neuroblastoma. BMC Cancer. 2020 Dec 6;20(1):102.
- 22. Su Y, Wang L, Jiang C, Yue Z, Fan H, Hong H, et al. Increased plasma concentration of cell-free DNA precedes disease recurrence in children with high-risk neuroblastoma. BMC Cancer. 2020;20(1):102.
- Paemel R Van, Koker A De, Vandeputte C, Van L, Lammens T, Laureys G, et al. Minimally invasive classification of paediatric solid tumours using reduced representation bisulphite sequencing of cell-free DNA : a proof-of-principle study. Epigenetics [Internet]. 2020;00(00):1–13. Available from: https://doi.org/10.1080/15592294.2020.1790950
- 24. Eguchi-Ishimae M, Tezuka M, Kokeguchi T, Nagai K, Moritani K, Yonezawa S, et al. Early detection of the PAX3-FOXO1 fusion gene in circulating tumor-derived DNA in a case of alveolar rhabdomyosarcoma. Genes Chromosomes Cancer [Internet]. 2019;58(8):521–9. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30739374
- 25. Seki M, Nishimura R, Yoshida K, Shimamura T, Shiraishi Y, Sato Y, et al. Integrated genetic and epigenetic analysis defines novel molecular subgroups in rhabdomyosarcoma. Nat Commun [Internet]. 2015;6:7557. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26138366
- 26. Hettmer S, Linardic CM, Kelsey A, Rudzinski ER, Vokuhl C, Selfe J, et al. Molecular testing of rhabdomyosarcoma in clinical trials to improve risk stratification and outcome: A consensus view from European paediatric Soft tissue sarcoma Study Group, Children's Oncology Group and Cooperative Weichteilsarkom-Studiengruppe. Eur J Cancer. 2022 Sep;172:367–86.
- Donninger H, Schmidt ML, Mezzanotte J, Barnoud T, Clark GJ. Ras signaling through RASSF proteins. Semin Cell Dev Biol [Internet]. 2016;58:86–95. Available from: https://dx.doi.org/10.1016/j. semcdb.2016.06.007
- Volodko N, Salla M, Zare A, Abulghasem EA, Vincent K, Benesch MGK, et al. RASSF1A site-specific methylation hotspots in cancer and correlation with RASSF1C and MOAP-1. Cancers (Basel). 2016;8(6).
- Malpeli G, Amato E, Dandrea M, Fumagalli C, Debattisti V, Boninsegna L, et al. Methylationassociated down-regulation of RASSF1A and up-regulation of RASSF1C in pancreatic endocrine tumors. BMC Cancer. 2011/08/16. 2011;11:351.

- Bin Y, Ding Y, Xiao W, Liao A. RASSF1A: A promising target for the diagnosis and treatment of cancer. Clinica Chimica Acta [Internet]. 2020;504(January):98–108. Available from: https://doi. org/10.1016/j.cca.2020.01.014
- 31. Vos MD, Ellis CA, Bell A, Birrer MJ, Clark GJ. Ras uses the novel tumor suppressor RASSF1 as an effector to mediate apoptosis. J Biol Chem. 2000/09/22. 2000;275(46):35669–72.
- 32. Dubois F, Bergot E, Zalcman G, Levallet G. RASSF1A, puppeteer of cellular homeostasis, fights tumorigenesis, and metastasis-an updated review. Cell Death Dis. 2019/12/06. 2019;10(12):928.
- 33. Levallet G, Creveuil C, Bekaert L, Peres E, Planchard G, Lecot-Cotigny S, et al. Promoter Hypermethylation of Genes Encoding for RASSF/Hippo Pathway Members Reveals Specific Alteration Pattern in Diffuse Gliomas. J Mol Diagn [Internet]. 2019/05/06. 2019;21(4):695–704. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31055025
- 34. Donninger H, Vos MD, Clark GJ. The RASSF1A tumor suppressor. J Cell Sci. 2007/09/20. 2007;120(Pt 18):3163–72.
- Lim S, Yang MH, Park JH, Nojima T, Hashimoto H, Unni KK, et al. Inactivation of the RASSF1A in osteosarcoma. Oncol Rep [Internet]. 2003;10(4):897–901. Available from: https://www.ncbi.nlm. nih.gov/pubmed/12792742
- Hesson LB, Cooper WN, Latif F. The role of RASSF1A methylation in cancer. Dis Markers. 2007;23(1– 2):73–87.
- 37. Wong IHN, Chan J, Wong J, Tam PKH. Ubiquitous Aberrant RASSF1A Promoter Methylation in Childhood Neoplasia. Clinical Cancer Research. 2004;10(3):994–1002.
- Tian Y, Hou Y, Zhou X, Cheng H, Zhou R. Tumor suppressor RASSF1A promoter: p53 binding and methylation. PLoS One. 2011/03/03. 2011;6(2):e17017.
- Schmidt ML, Hobbing KR, Donninger H, Clark GJ. RASSF1A Deficiency Enhances RAS-Driven Lung Tumorigenesis. Cancer Res [Internet]. 2018;78(10):2614–23. Available from: https://dx.doi. org/10.1158/0008-5472.can-17-2466
- 40. Grawenda AM, O'Neill E. Clinical utility of RASSF1A methylation in human malignancies. Br J Cancer [Internet]. 2015;113(3):372–81. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26158424
- 41. Malpeli G, Innamorati G, Decimo I, Bencivenga M, Nwabo Kamdje AH, Perris R, et al. Methylation Dynamics of RASSF1A and Its Impact on Cancer. Cancers (Basel). 2019/07/22. 2019;11(7).
- 42. Lázcoz P, Muñoz J, Nistal M, Pestaña Á, Encío I, Castresana JS. Frequent promoter hypermethylation of RASSF1A and CASP8 in neuroblastoma. BMC Cancer. 2006;6:1–10.
- 43. Honda S, Miyagi H, Suzuki H, Minato M, Haruta M, Kaneko Y, et al. RASSF1A methylation indicates a poor prognosis in hepatoblastoma patients. Pediatr Surg Int [Internet]. 2013;29(11):1147–52. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23989600
- 44. Avigad S, Shukla S, Naumov I, Cohen IJ, Ash S, Meller I, et al. Aberrant methylation and reduced expression of RASSF1A in Ewing sarcoma. Pediatr Blood Cancer. 2009/07/29. 2009;53(6):1023–8.
- Fu L, Zhang S. RASSF1A promotes apoptosis and suppresses the proliferation of ovarian cancer cells. Int J Mol Med [Internet]. 2014;33(5):1153–60. Available from: https://dx.doi.org/10.3892/ ijmm.2014.1671
- Xu G, Zhou X, Xing J, Xiao Y, Jin B, Sun L, et al. Identification of RASSF1A promoter hypermethylation as a biomarker for hepatocellular carcinoma. Cancer Cell Int [Internet]. 2020/12/10. 2020;20(1):547. Available from: https://www.ncbi.nlm.nih.gov/pubmed/33292241
- Astuti D, Agathanggelou A, Honorio S, Dallol A, Martinsson T, Kogner P, et al. RASSF1A promoter region CpG island hypermethylation in phaeochromocytomas and neuroblastoma tumours. Oncogene [Internet]. 2001;20(51):7573–7. Available from: https://www.ncbi.nlm.nih.gov/ pubmed/11709729

- van Zogchel LMJ, van Wezel EM, van Wijk J, Stutterheim J, Bruins WSC, Zappeij-Kannegieter L, et al. Hypermethylated RASSF1A as Circulating Tumor DNA Marker for Disease Monitoring in Neuroblastoma. JCO Precis Oncol [Internet]. 2020;4. Available from: https://www.ncbi.nlm.nih. gov/pubmed/32923888
- 49. Misawa A, Tanaka S, Yagyu S, Tsuchiya K, lehara T, Sugimoto T, et al. RASSF1A hypermethylation in pretreatment serum DNA of neuroblastoma patients: a prognostic marker. Br J Cancer [Internet]. 2009;100(2):399–404. Available from: https://www.ncbi.nlm.nih.gov/pubmed/19165202
- Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D. Extracellular Vesicles in Cancer: Cellto-Cell Mediators of Metastasis. Cancer Cell [Internet]. 2016;30(6):836–48. Available from: https:// www.ncbi.nlm.nih.gov/pubmed/27960084
- 51. Peinado H, Zhang H, Matei IR, Costa-Silva B, Hoshino A, Rodrigues G, et al. Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer. 2017 May 17;17(5):302–17.
- 52. Tamura T, Yoshioka Y, Sakamoto S, Ichikawa T, Ochiya T. Extracellular Vesicles in Bone Metastasis: Key Players in the Tumor Microenvironment and Promising Therapeutic Targets. Int J Mol Sci [Internet]. 2020;21(18). Available from: https://www.ncbi.nlm.nih.gov/pubmed/32932657
- Xavier CPR, Caires HR, Barbosa MAG, Bergantim R, Guimaraes JE, Vasconcelos MH. The Role of Extracellular Vesicles in the Hallmarks of Cancer and Drug Resistance. Cells [Internet]. 2020;9(5). Available from: https://www.ncbi.nlm.nih.gov/pubmed/32384712
- Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell [Internet]. 2011;144(5):646– 74. Available from: https://www.ncbi.nlm.nih.gov/pubmed/21376230
- 55. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell [Internet]. 2000;100(1):57–70. Available from: https://www.ncbi.nlm.nih.gov/pubmed/10647931
- 56. Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles [Internet]. 2018;7(1):1535750. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30637094
- 57. Lotvall J, Hill AF, Hochberg F, Buzas EI, di Vizio D, Gardiner C, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles [Internet]. 2014;3:26913. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25536934
- Wurdinger T, In 't Veld SGJG, Best MG. Platelet RNA as Pan-Tumor Biomarker for Cancer Detection. Cancer Res [Internet]. 2020 Apr 1;80(7):1371–3. Available from: https://aacrjournals.org/cancerres/ article/80/7/1371/647760/Platelet-RNA-as-Pan-Tumor-Biomarker-for-Cancer
- 59. Best MG, Vancura A, Wurdinger T. Platelet RNA as a circulating biomarker trove for cancer diagnostics. Journal of Thrombosis and Haemostasis. 2017 Jul;15(7):1295–306.
- 60. Best MG, Wesseling P, Wurdinger T. Tumor-Educated Platelets as a Noninvasive Biomarker Source for Cancer Detection and Progression Monitoring. Cancer Res. 2018 Jul 1;78(13):3407–12.
- Best MG, Sol N, In 't Veld SGJG, Vancura A, Muller M, Niemeijer ALN, et al. Swarm Intelligence-Enhanced Detection of Non-Small-Cell Lung Cancer Using Tumor-Educated Platelets. Cancer Cell. 2017 Aug;32(2):238-252.e9.
- Larson MH, Pan W, Kim HJ, Mauntz RE, Stuart SM, Pimentel M, et al. A comprehensive characterization of the cell-free transcriptome reveals tissue- and subtype-specific biomarkers for cancer detection. Nat Commun. 2021 Apr 21;12(1):2357.



# Appendices

English summary Nederlandse samenvatting Curriculum Vitae Acknowledgements

## **English summary**

In **Part I** of this thesis, the main focus was on liquid biopsies in patients with rhabdomyosarcoma. We reported on the first prospective collection of blood and bone marrow samples from Dutch patients treated for rhabdomyosarcoma in **Chapter 2.** We describe the development of a rhabdomyosarcoma-specific RNA panel for the use in multiplex real-time quantitative PCR (RT-qPCR) assays. To eliminate false positivity due to background expression in healthy blood and bone marrow cells, we established a threshold for positivity of our 11-marker panel in healthy hematopoietic cells. Subsequently, we proceeded to measuring the samples from 99 patients and demonstrate that presence of rhabdomyosarcoma-specific mRNA in blood and/or bone marrow at diagnosis is associated to poor prognosis.

The tumor suppressor gene *RASSF1A* has been shown to be silenced by hypermethylation in many tumors, adult as well as pediatric. In **Chapter 3**, we describe in detail how we designed a specific droplet digital (ddPCR) assay for the detection of hypermethylated *RASSF1A* (*RASSF1A*-M) in cell-free DNA (cfDNA) from plasma and cerebro-spinal fluid (CSF). We demonstrated its potential as a cfDNA marker at diagnosis in plasma of patients with neuroblastoma, renal tumors, rhabdomyosarcoma, and Hodgkin lymphoma, and in CSF of patients with medulloblastoma. Furthermore, *RASSF1A*-M levels reflected tumor burden in patients with neuroblastoma, decreasing in response to therapy and increasing at relapse or progressive disease.

We explored the feasibility of different approaches for the analysis of cfDNA from patients with rhabdomyosarcoma in **Chapter 4**, by methylation profiling (cell-free reduced representation bisulphite sequencing (cfRRBS), copy number aberration (CNA) analysis, and *RASSF1A-M* ddPCR. We show that cfRRBS can sensitively detect tumor-derived cfDNA as well as CNA at diagnosis. An important finding in this chapter is that the presence of *RASSF1A-M* in plasma at diagnosis is associated with poor clinical outcome, especially for patients with metastatic disease. This association was even more apparent in patients that were positive for both *RASSF1A-M* in plasma and for the RNA panel in the matching cellular fraction. On the contrary, patients that were negative for both techniques did remarkably well, even the patients with metastatic disease.

In **Chapter 5**, we present an example of successful international collaboration for the analysis of longitudinal cfDNA samples from patients with rhabdomyosarcoma. First, a rhabdomyosarcoma patient-derived xenograft (PDX) model in mice was established, which demonstrated that presence of human, tumor-derived cfDNA in mouse plasma

correlated to tumor burden. For pediatric patients with rhabdomyosarcoma, we then analyzed tumor samples for patient-specific genetic aberrations, yielding mutations, specific gene amplifications and patient-specific genomic sequences of PAX-FOXO translocations. We used these aberrations to design patient-specific ddPCR assays for diagnostic and follow-up cfDNA samples, resulting in a positive signal in more than 75% of patients at diagnosis and confirmation that presence of tumor-derived cfDNA during follow-up reflected treatment response. Moreover, whole exome sequencing (WES) of cfDNA at diagnosis in a subset of samples with sufficient cfDNA input, detected tumor-derived aberrations in 7/7 samples. We concluded that tumorderived cfDNA can be detected by both ddPCR and WES at diagnosis and that its presence can be used to monitor treatment response.

The potential of patient-specific ddPCR assays was further explored in different types of pediatric solid tumors in **Chapter 6**. This chapter illustrated that apart from fusion genes, regions with copy number aberrations can be employed for the design of patient-specific ddPCR assays. We present a workflow for the design of these assays using targeted locus amplification (TLA) on DNA from tumor-derived organoids or formalin-fixed paraffin-embedded (FFPE) tumor material in collaboration with Cergentis. We then proceeded to measure these patient-specific targets in cfDNA from diagnostic and follow-up samples from patients with neuroblastoma, rhabdomyosarcoma, and Ewing sarcoma. These targets were present in all diagnostic and relapse plasma samples. In neuroblastoma, the levels of the targets reflected tumor burden, with a decrease in patients with a good response to treatment and an increase in relapsed disease. In rhabdomyosarcoma and Ewing sarcoma, all sequential samples were negative, but well-timed samples, e.g., at progressive disease or relapse, were lacking.

In **part II**, we explored extracellular vesicles (EV) as novel cell-free markers from plasma. We first reviewed the studies on EV-derived biomarkers in different pediatric solid tumors in **Chapter 7**. We used a published scoring tool (EV-METRIC) and our own in-house PedEV score to grade studies for their in vitro/in vivo validation and reproducibility. After a systematic literature review, studies on desmoplastic small round cell tumors (DSRCT), neuroblastoma, hepatoblastoma, rhabdomyosarcoma, osteosarcoma and Ewing sarcoma were included. Ultimately, we concluded that implementation of EV-derived biomarkers in clinical practice is hampered by a lack of reproducibility in methodology and a scarcity of validation in clinically relevant cohorts.

In **Chapter 8** we studied the feasibility of cell-free RNA (cfRNA) analysis from plasma of patients with neuroblastoma by ddPCR, and the association of cfRNA and cfDNA to EV. For this purpose, we developed several multiplex ddPCR assays, including neuroblastoma-specific mRNA markers (PHOX2B, CHRNA3 and TH) and introduced a novel cell cycle panel, consisting of genes involved in cell proliferation: CDC6, ATAD2, E2F1, H2AFZ, DHFR and MCM2. We tested these markers on a cohort of 40 neuroblastoma patients, with localized and metastatic disease, and studied the location of cfRNA and cfDNA in relation to EV. The EV were isolated using size exclusion chromatography (SEC) which leads to separation of particles based on size. Applying SEC to plasma results in different SEC fractions, with larger particles, including EV, eluting in earlier fractions ('EV-enriched' fractions) and smaller particles eluting later, containing smaller particles which are mostly proteins ('proteinenriched' fractions). Along the way, we encountered challenges arising from platelet contamination in the plasma for which we introduced correction formulas based on baseline expression of the cell cycle genes in healthy platelets. Finally, we observed that neuroblastoma-specific genes were only present in cfRNA from patients with metastatic disease and that DHFR had a higher expression in these patients, compared to patients with localized disease and healthy controls. Most cfRNA markers were concentrated in EV-enriched SEC fractions of plasma, whereas cfDNA was more prevalent in the protein-enriched SEC fractions.

## **Nederlandse samenvatting**

In **Deel 1** van deze thesis richten we ons op het gebruik van vloeibare biopsieën in patiënten met rhabdomyosarcoom. Wij verzamelden bloed en beenmerg van 99 Nederlandse patiënten. In **Hoofdstuk 2** beschrijven wij de ontwikkeling van een panel bestaande uit 11 genen om rhabdomyosarcoom RNA te detecteren in bloed en beenmerg van patiënten. Om zeker te zijn dat we geen vals-positief signaal detecteerden, hebben we eerst het achtergrond signaal van deze genen vastgesteld in gezond bloed en beenmerg. Daarna hebben we bloed en beenmergcellen van patiënten met rhabdomyosarcoom, allemaal verzameld voordat behandeling was gestart, ook getest met dit panel. Toen bleek dat patiënten bij wie dit RNA aanwezig was in bloed of beenmerg, een aanzienlijk kortere ziektevrije overleving hadden, deze patiënten kregen sneller een terugval en hadden ook een grotere kans om te overlijden aan de ziekte.

In veel tumoren is het tumor suppressor gen *RASSF1A* gehypermethyleerd waardoor het niet meer tot expressie komt. Dit zorgt ervoor dat kankercellen onbeperkt kunnen delen en de tumor groeit. We beschrijven in **Hoofdstuk 3** hoe we een droplet digital PCR (ddPCR) hebben gemaakt om gehypermethyleerd *RASSF1A* (*RASSF1A-M*) op te sporen in het celvrije DNA (cfDNA) uit plasma en hersenvocht (liquor). We laten zien dat deze ddPCR succesvol *RASSF1A-M* kan aantonen in cfDNA uit plasma van patiënten met neuroblastoom, niertumoren, rhabdomyosarcoom en Hodgkin lymfoom en ook in de liquor van patiënten met een medulloblastoom, een type hersentumor.

In **Hoofdstuk 4** onderzoeken we verder de mogelijkheid voor analyse van cfDNA uit plasma van patiënten met rhabdomyosarcoom bij diagnose. We laten zien dat dit mogelijk is door te kijken naar het gehele genoom met betrekking tot het aantal kopieën van een bepaald gen (copy number aberration, CNA). In totaal hadden 16/30 samples CNAs. We hebben ook de methylatieprofielen van het cfDNA geanalyseerd. Hiermee kon in 20/24 het correcte rhabdomyosarcoom profiel worden aangetoond. Met de *RASSF1A*-M ddPCR analyseerden we 57 diagnostische cfDNA samples waarvan er 21 positief testten. Hiermee toonden we aan dat patiënten waar *RASSF1A*-M aanwezig was in plasma bij diagnose, een verminderde ziektevrije en absolute overleving hadden, vooral als deze patiënten ook positief waren voor rhabdomyosarcoom-specifiek mRNA in bloed of beenmerg (zoals onderzocht in **Hoofdstuk 2**). Dit was het duidelijkste te zien in patiënten met metastases: patiënten die positief testten voor het RNA panel en RASSF1A-M hadden een slechte overleving, terwijl patiënten die negatief waren voor beide testen een hele goede uitkomst hadden.

Binnen een internationale samenwerking onderzochten we de mogelijkheid voor het opsporen van patiënt-specifieke genetische afwijkingen in het cfDNA uit bloed van patiënten met rhabdomyosarcoom. Dit laten we zien in Hoofdstuk 5. Eerst keken we in muizen die een menselijk rhabomyosarcoom ingespoten hadden gekregen of we menselijk DNA konden terugvinden in het bloed. Dit was inderdaad mogelijk en de hoeveelheid cfDNA kwam overeen met de grootte van de tumor bij de muizen. Hierna analyseerden we tumor materiaal van kinderen met een rhabdomyosarcoom om genetische afwijkingen op te sporen, waarbij we mutaties, CNA en breukpunten van het PAX-FOXO fusiegen vonden. Deze informatie gebruikten we om voor iedere patiënt persoonlijke ddPCR tests te ontwikkelen om cfDNA in plasma op te sporen. Hiermee vonden we bij meer dan 75% van de patiënten een tumor-specifiek signaal in het plasma bij diagnose en bleek dat de aanwezigheid van dit signaal tijdens therapie overeenkwam met behandelrespons. In een klein deel van de patiënten waarbij er genoeg cfDNA was, keken we ook in detail naar het hele DNA door whole exome sequencing (WES). Bij 7/7 van de cfDNA samples die we met WES analyseerden, vonden we afwijkingen die van de tumor afkomstig waren. We concludeerden hieruit dat ddPCR en WES allebei geschikt zijn om de aanwezigheid van rhabdomyosarcoom DNA aan te tonen in cfDNA uit plasma, en dat de aanwezigheid van dit signaal gebruikt kan worden om het effect van de behandeling te monitoren.

In **Hoofdstuk 6** hebben we verder gewerkt aan op maat gemaakte ddPCR tests voor kinderen met neuroblastoom, rhabdomyosarcoom en Ewing sarcoom. We hebben ontdekt dat niet alleen de specifieke breukpunten van fusiegenen hier geschikt voor zijn, maar dat ook regio's met CNA gebruikt kunnen worden om een patiëntspecifieke ddPCR te ontwikkelen. De specifieke DNA sequenties hebben we binnen dit project met hulp van het bedrijf Cergentis vastgesteld, door gebruik te maken van hun 'targeted locus amplification' (TLA) techniek die kan worden toegepast op vers tumor materiaal of cellen gekweekt daaruit, maar ook op formaline gefixeerd, paraffine ingebed (FFPE) materiaal. Met de patiënt-specifieke tests hebben we een tumor signaal aangetoond in al het plasma dat bij diagnose was afgenomen. Bij neuroblastoom zagen we dat de aanwezigheid van dit signaal ook het beloop van de ziekte volgde, het verdween als de behandeling succesvol was en verscheen weer bij een terugval. Bij de patiënten met rhabdomyosarcoom en Ewing sarcoom zagen we dit patroon niet, maar mogelijk dat de afwezigheid van samples die op cruciale momenten waren afgenomen daar een rol in speelde.

In **Deel 2** van deze thesis onderzochten we nieuwe celvrije markers uit plasma. We zetten de literatuur over het gebruik van extracellulaire vesikels (EV) als markers bij kinderen met verschillende soorten solide tumoren op een rij in **Hoofdstuk 7**. We

beoordeelden of de methodologie in deze studies goed te reproduceren was en of er een klinische en/of in vitro validatie was verricht. Dit deden we met behulp van de reeds gepubliceerde EV-METRIC score en onze eigen PedEV score. We includeerden studies over desmoplastisch small round cell tumoren (DSRCT), neuroblastoom, hepatoblastoom, osteosarcoom, rhabomyosarcoom en Ewing sarcoom. Op basis van de literatuur concludeerden we dat biomarkers uit EV vooralsnog niet kunnen worden toegepast in de kliniek omdat in de meeste studies de methode niet gedetailleerd genoeg is beschreven, waardoor studies niet goed te reproduceren waren. Bovendien ontbrak vaak validatie in klinische cohorten.

In Hoofdstuk 8 onderzochten we of het mogelijk is om celvrij RNA (cfRNA) te onderzoeken met de ddPCR in plasma van kinderen met neuroblastoom en of cfRNA geassocieerd is met EV. Hiervoor ontwikkelden we 2 soorten panels: een panel met genen die hoog tot expressie komen in neuroblastoom tumoren (PHOX2B, CHRNA3 en TH) en een panel met genen die betrokken zijn bij de regulatie van de celdeling (CDC6, ATAD2, DHFR, E2F1, MCM2, H2AFZ). Eerder onderzoek heeft namelijk aangetoond dat dit soort genen ontregeld zijn in kankercellen, met name in neuroblastoom. We ontdekten dat neuroblastoom-specifieke genen alleen aanwezig waren in het cfRNA van patiënten met uitgezaaide ziekte. Daarnaast zagen we dat DHFR, verhoogd was bij dezelfde patiënten. We isoleerden EV met 'size exclusion chromatography' (SEC) uit plasma. Hierbij worden deeltjes uit plasma van elkaar gescheiden op basis van grootte, door ze door een kolom te laten druppelen wat leidt tot 'fracties' van het plasma. De grote deeltjes, waar de EV onder vallen, lopen sneller door de kolom heen en worden geconcentreerd in de eerdere fracties, de EVverrijkte fracties. De latere fracties bevatten de kleinere deeltjes en daarom vooral eiwitten, de eiwit-verrijkte fracties. Wij ontdekten dat in plasma van patiënten met neuroblastoom de EV-verrijkte fracties vooral de cfRNA markers bevatten, en dat de eiwit-verrijkte fracties vooral het cfDNA bevatten.

340 | Appendices



## **Curriculum Vitae**

Nathalie Saskia Marguerite Lak was born in Paris, France, on the 17<sup>th</sup> of April 1985. After only a few weeks, she moved back to The Hague with her parents where she spent her early childhood. When she was 6 years old, her family relocated to Bonn, Germany, where she visited a French primary school. In 1996, they moved back to The Hague where she attended Gymnasium Sorghvliet.

After graduation and a year in Spain to study the language, she started her medical studies at the University of Utrecht. During these years, she performed research at the lab of dr. Stephane Hatem at INSERM in Paris, and with dr. Marije Bartels at the lab of prof. Paul Coffer at the Wilhelmina Children's Hospital in Utrecht. After graduating as a medical doctor, she first worked in the pediatrics department of the Meander Medical Center in Amersfoort and at the Wilhelmina Children's Hospital. Nathalie was accepted as a resident for the pediatrics program at the Wilhelmina Children's Hospital in 2012. In 2018, she paused her pediatric training to join a PhD program in the group of dr. Lieve Tytgat and prof. Ellen van der Schoot, on Liquid biopsies in pediatric rhabdomyosarcoma. Within this project, she investigated the potential of both RNA and DNA-based assays in blood and bone marrow to improve risk stratification in patients with pediatric rhabdomyosarcoma. Her study on the development and validation of a rhabdomyosarcoma-specific RNA panel won her the SIOP Young Investigator Award in 2020. She joined the European Pediatric Soft tissue sarcoma Study Group (EpSSG) and became an active member of the EpSSG Biology spin-off group which focuses on liquid biopsies. She set-up collaborations with several groups, amongst them the groups of prof. Marca Wauben, Veterinary Institute, Utrecht University and Kendra Maass, Hopp Children's Tumor Center (KiTZ) and German Cancer Research Center (DKFZ), Heidelberg, Germany.

After finishing her pediatrics training, she started as a fellow in Pediatric Oncology at the Princess Máxima Center in Utrecht in 2023, combining clinical work with research. Her research revolves around liquid biopsies, with the ultimate aim to bring the findings of this thesis to daily clinical practice for patients with pediatric rhabdomyosarcoma. Furthermore, she is working on implementation of liquid biopsies for patients with central nervous system tumors at the Princess Máxima Center.

At home, Nathalie has 2 daughters, Violet and Aster, a husband, Juliaan, and her pets Lucy the labradoodle and Yoyo the cat. In her scarce spare time she likes to meet up with friends, read and go for a run.

# Acknowledgements

Bij het ontstaan van dit proefschrift heb ik veel steun gehad van veel mensen waar ik erg dankbaar voor ben. Ik ga proberen jullie allemaal aan bod te laten komen, maar ik vrees dat het onmogelijk is om niemand te vergeten. Mijn oprechte excuses mocht je jezelf hier verwachten, maar toch niet zien staan.

Allereerst de **patiënten en ouders**: zonder jullie vertrouwen had dit proefschrift niet bestaan. Ik hoop dat de uitkomsten uit dit onderzoek uiteindelijk (en binnen niet al te lange tijd!) kunnen bijdragen aan verdere verbetering van kwaliteit van leven en overleving.

**Lieve**, ontzettend veel dank voor je steun tijdens dit hele proces. Het is indrukwekkend om te zien hoe jij kliniek en onderzoek combineert terwijl je ook nog een fijn mens blijft. Alle gesprekken die we ondanks onmogelijke agenda's hebben over alle belangrijke dingen in het leven (familie, patiënten, onderzoek ...). Je bent een voorbeeld voor me en ik hoop dat we nog lang samen blijven werken.

Janine, heel veel dank dat je het hebt aangedurfd me aan te nemen voor dit project. Ik bewonder hoe je vervolgens bij iedere stap mee hebt gedacht, terwijl je inmiddels bij de hemato-oncologie was blijven hangen. Het blijft een bizar idee dat ik iets meer dan 6 jaar geleden nog niets eens wist wat liquid biopsies precies waren. Dat is me inmiddels wel enigszins duidelijk geworden.

**Ellen**, vanaf het begin ben ik onder de indruk van je kennis en ervaring. Jij kan in één blik de fout in een experiment zien of een onjuiste aanname in een artikel doorzien. Ik hoop dat er in de loop van de jaren een klein sprankje van jouw genialiteit op mij is afgestraald. Heel veel dank voor je begeleiding en ik hoop dat ik in de toekomst nog steeds 'wilde ideeën' met jou kan blijven bespreken, zodat jij me kan helpen ze echt geniaal te maken.

**Max**, veel dank voor de steun bij het afronden van het manuscript en bij mijn traject om kinderoncoloog te worden. Het is een geruststellende gedachte dat jij de liquid biopsies een warm hart toedraagt, nu de rest van de wereld nog.

Beste **beoordelingscommissie**, veel dank dat jullie de tijd nemen om mijn proefschrift te beoordelen. Ik kijk uit naar de verdediging zodat we verder over liquid biopsies kunnen filosoferen. **Lieke**, veel dank dat jij me vanaf het begin aan het handje hebt meegenomen naar al die enge PCR apparaten en me hebt geïntroduceerd in de wondere wereld van de ddPCR. Gelukkig raken we nooit uitgepraat, van nieuwe ontwikkelingen binnen de ddPCR tot waanzinnige kindergeneeskunde avonturen. Heel fijn dat je mijn paranimf wilt zijn!

**Mirthe**, herinner je je nog de eerste dag van geneeskunde dat we elkaar voor het eerst ontmoetten? Inmiddels al 20 jaar geleden (!). We lopen dus al een tijdje mee in elkaars leven. Wat een toeval dat we ook nog een fascinatie voor het moleculaire en kwaadaardige delen... Daarom ben ik vereerd dat je mijn paranimf wilt zijn!

**Lily**, jij hebt me alles geleerd wat ik van RNA isolatie moet weten en ook hoe ik een zalm zelf moet roken. Alles met hetzelfde enthousiasme. Sorry dat mijn enthousiasme er steeds weer toe leidde dat we belachelijk vroeg op maandagochtend gingen pipetteren.

**Ahmad**, jij bent de rustige kracht achter al het rondvliegende enthousiasme. Dank voor je geduld en je hulp als mijn gebrek aan scheikundige kennis te schrijnend werd. (C=M/V toch?)

**Nina**, jouw vastberadenheid en veelzijdigheid vind ik jaloersmakend. De afgelopen jaren heb ik je zoveel (nieuwe) skills zien oppakken: marathon lopen, Stilla ddPCR, skiën, schrijven van meerdere boeken (Compendium ddPCR binnenkort?). Ik heb het vermoeden dat jouw veelzijdigheid nog veel groter is.

Sanquin: zoveel mensen hebben mij in de loop van de jaren geholpen met alle praktische en moleculaire zaken. Heel veel dank voor jullie geduld en steun. Vooral Marion K., Aicha, Anita, Herbert, Carlijn V. en Masja. En daarnaast natuurlijk iedereen bij IHE, Immuuncytologie en Moleculair Platform!

The sarcoma crew at thePrincess Maxima: **Hans M.**, thank you for your support. It is great to be able to fall back on your tremendous knowledge and experience in rhabdomyosarcoma. **Reineke, Roelof, Rutger, Lianne, Stephanie and Annemarie:** it is great working with you, in research, clinic and on our karaoke skills.

**'Sarcoma meeting**-crew' we started out with a small group in 2018 but it is now a thriving group of sarcoma-fanatics. Specifically I would like to thank **Michael, Frank, Jeff, Marian G. K., Laura H.-J. and Claudia** for sharing experiences and the great discussions. **Marta F.**, thank you very much for your statistical support.

'ddPCR-expert team' Pieter, Roy, Wim, Mieke, Rogier, Astrid van H, Nelleke: onze wekelijkse meetings op donderdag waren (en zijn) iets om naar uit te kijken. Het is heerlijk om ervaringen te delen en vragen te kunnen stellen aan een groep mensen die echt begrijpt wat je aan het doen bent en net zo geniet van eindeloos over ddPCR details te praten.

Tytgat group, aka Totally Tytgat with Astrid B, Arjan, Atia, Carlijn K, Carolina, Caro, Ilse, Julia, Leron, Lotte, Marieke, Thomas, Reno, Yvette, Zeinab, Nicky and of course Maaike: I think everyone is (or should be) jealous of us. We belong to a very lucky group of people to have such funny, helpful and 'gezellige' colleagues. I hope to continue working with you guys for many years to come!

**Michelle**, je begon ooit als een 'appendix' bij de Tytgat groep, maar bent inmiddels uitgegroeid tot een belangrijke vriendin. Veel dank voor je steun gedurende dit hele traject en ik kijk uit naar nog vele decennia vreemde verhalen uit de kindergeneeskunde delen en bierproeverijen!

Veel dank aan de studenten die mij hebben geholpen, variërend van pipetteren tot literatuur screenen en klinische data bij elkaar schrapen: Lotte, Elvera, Sarah en Fleur.

**Staf van de solide tumoren en verpleegkundig specialisten in het Máxima:** dank voor de steun en heel fijn om te zien dat liquid biopsies steeds meer gaan leven. Hopelijk snel echt te gebruiken in de kliniek!

**'RMS database meeting'-groep**: in de loop van de jaren hebben veel mensen hier hun steentje aan bijgedragen, en dan denk ik specifiek aan **Jaap, Ellen en Carin.** Ergens in een parallel universum is er vast een RMS database die daadwerkelijk online is! Op naar die dimensie!

**Molenaar groep:** thank you very much for letting me, as a 'non-NBL' person join the discussions, especially **Jan, Marlinde, Kim, Emmy and Judith**.

At the veterinary institute in Utrecht: I am very grateful for the wonderful collaboration with great discussions on EV and cfRNA with **Marca**, **Estefania**, **Anne**, **Anneloes and Alain**. Alain, also great to have you on my reading committee.

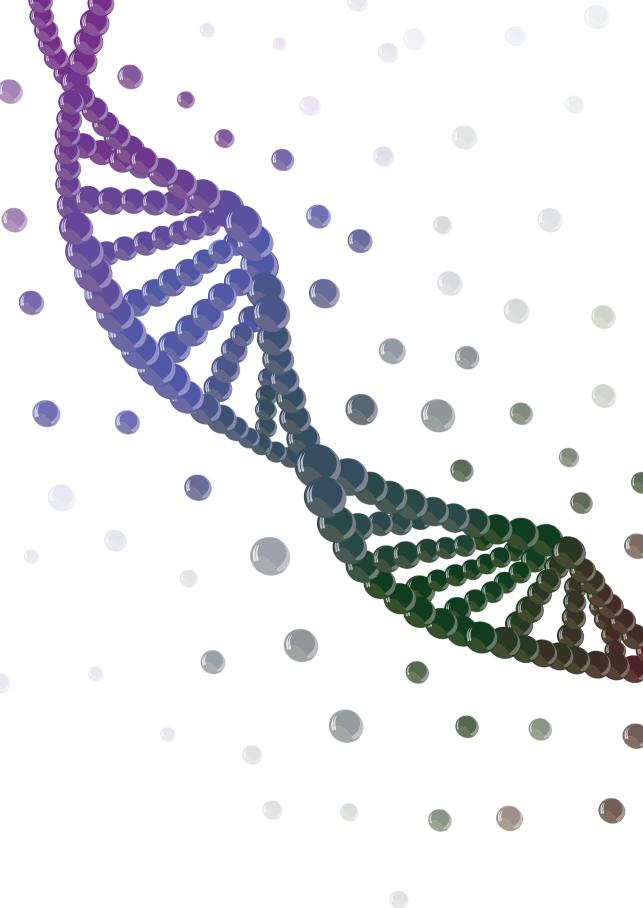
Of course, **Agustin, Armagan and Cees** from Enschede, thank you very much for our collaborations on EV.

Collaborators abroad: many thanks to the team in Ghent, with **Bram, Ruben**, **Charlotte**, **Jill**, **Lotte** and of course **Katleen**, thank you very much for being on my reading committee.

In the UK: **Janet, Olivia, Ajla, Susanne and Supriti,** thank you for the great collaboration through the years, and looking forward to hopefully further projects in the future.

In Paris: the team at Institut Curie with **Gudrun, Yasmine and Matthieu,** many thanks for the nice collaboration.

And of course everybody from the **EpSSG Biology group: Beat, Willemijn, Michaela and everyone else!** I look forward to further collaboration in the future.


**Kindergeneeskunde in het Wilhelmina Kinderziekenhuis:** veel dank aan heel veel mensen, maar specifiek aan **Edward N.** en **Joost F.** Jullie steun aan mijn bedrijfstechnisch onaantrekkelijke plan om tijdens mijn opleiding tot kinderarts een full-time PhD project te gaan doen, was ongelofelijk. Dat ik daardoor nog wat langer als 'eeuwige AIOS' mocht rondlopen was mooi meegenomen.

**Lieve vrienden en vriendinnen,** heel veel dank voor jullie geduld en steun! Hopelijk maakt dit feest alles een beetje goed :D.

**Julie**, veel dank voor je steun in de vorm van gezelligheid, entertainment voor de kinderen en je kookkunsten tijdens het ontstaan van dit proefschrift. **Ron**, dank voor je interesse in dit onderwerp.

**Pap**, doctor is misschien niet zo hoog in hiërarchie als de paus, maar ik denk toch dat ik niet zo ver was gekomen zonder jouw hulp. **Mam**, wie had gedacht dat je toch gelijk zou krijgen dat ik eigenlijk van binnen een echte onderzoeker ben. Je hebt nooit mee mogen maken dat ik onderzoek ging doen, maar ik denk dat je er ontzettend van had genoten dat je ook hierover gelijk had. Ik mis je.

Juliaan, deze promotie was niet mogelijk geweest zonder jouw steun om het huis met al zijn bewoners en huisraad draaiende te houden. Dan te bedenken dat fulltime onderzoek doen ooit aantrekkelijk leek omdat ik dan meer thuis zou kunnen zijn. Dat is toch geheel onverwacht helemaal uit de hand gelopen. **Violet en Aster**, kijk ik heb echt een boek geschreven! Veel dank voor jullie geduld als ik me weer eens verschanste achter mijn laptop of naar het buitenland moest voor een congres. En ik vrees dat dat geduld nog nodig zal zijn, dus op naar het volgende avontuur met z'n vieren! Ik hou van jullie!

