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Abstract: We consider the classical attractor regime of the spectator Abelian
Higgs model in power-law inflation, and compute the one-loop corrections to its evo-
lution. For computations we utilize dimensional regularization and the propagators
in the unitary gauge. The corrections to both the scalar condensate and the energy-
momentum tensor exhibit secular ultraviolet contributions, that tend to slow down
the rolling of the scalar down its potential, and drive it away from the classical attrac-
tor. These corrections need not be suppressed if the U(1) charge is much larger than
the scalar self-coupling, which is seen already in flat space. In addition, at late times
the secular corrections necessarily invalidate the perturbative loop expansion. We
find the late time secular corrections to be captured by the renormalization group,
which opens up the possibility to resum them past the breakdown of perturbativity.
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1 Introduction

The question of whether inflationary observables — expressed in terms of scalar and
tensor cosmological perturbations — can be significantly affected by quantum loop
corrections is still very much an open one. Quantum corrections to cosmological
perturbations can arise in different manners: (i) as indirect corrections descending
from the quantum corrections to the background fields, and (ii) as direct corrections
arising from interactions between evolving perturbations. On a technical level, the
indirect corrections descend from the corrections to the one-point functions (con-
densates), while the direct corrections are corrections to the connected two-point
functions. The computation of former type is simpler as typically the loop consists
of a single propagator.

While the understanding of the direct type of corrections to the cosmological per-
turbations is still marred by questions of gauge dependence [1], considerable progress
has been made in understanding the indirect type of corrections, to which this work
is devoted to as well. When it comes to corrections to condensates in cosmological ex-
panding and accelerating spaces distinctions should be made between ultraviolet and
infrared corrections. The former are in a sense universal as they depend on the ultra-
violet structure of the theory captured by modes that are not strongly coupled to the
background. That is why ultraviolet corrections in principle can be computed in any
curved space [2–4]. These have found applications in inflation, investigating quan-
tum corrections to the inflaton potential [5, 6], particularly in Higgs inflation [7–9] in
connection to the quantum corrections to the Higgs effective potential [10–15], and
in studies of how curvature corrections influence the Higgs potential stability [16–21]
in inflation and reheating (for a review see [22]).

Infrared corrections derive from the tree-level effect of gravitational particle pro-
duction [23–25] for fields non-conformally coupled to gravity, such as scalars or gravi-
tons. It should be emphasized that infrared corrections can be more important that
ultraviolet corrections. These effects are innate to accelerating expanding spacetimes,
and have no analogue in flat space, as they are in effect a consequence of the cosmo-
logical horizon. As opposed to ultraviolet corrections, infrared ones are not universal
and depend on the details of the model and the expanding spacetime, and it is much
more challenging to quantify them. That is the reason why most works in the lit-
erature make a simplifying assumption of approximating the expanding spacetime
by exactly de Sitter space, characterized by the constant Hubble rate. Such works
date back to [2, 26–28], and the investigations of curvature corrections to symmetry
breaking potentials and the study of phase transitions. Early results on corrections
to the inflaton evolution suggested that the corrections are tiny [29, 30], which is
due to the smallness of the couplings and the assumed perturbative regime. How-
ever, strong infrared effects for spectator fields can lead to symmetry restoration of
the scalar models with symmetry-breaking potentials [31, 32], but also to dynamical



symmetry breaking in massless scalar electrodynamics [33–35] and the generation of
a non-perturbatively large mass for the vector field [36–38]. When infrared effects
are large typically one needs to describe them using non-perturbative methods, the
Starobinsky’s stochastic formalism [31, 39] being perhaps the most prominent one.

The de Sitter space is a very often good approximation for the realistic slow-
roll inflationary background. However, primordial cosmological observables crucially
depend on the parameters measuring the deviation of primordial inflation from the
exact de Sitter space. This deviation is usually encoded in the slow-roll parameters,
where the principal one measures the rate of change of the Hubble rate, ϵ=−Ḣ/H2,
and the higher order ones encode the higher time derivatives. It was argued in
Ref. [40] that quantum corrections introduce an additional fine-tuning problem into
single scalar potential models of inflation, and presumably the same is true for spec-
tator fields. This is why it is paramount to understand how quantum corrections
depend on the slow-roll parameters. Efforts in that direction have been undertaken
in inflation for spectator scalars [41–44] and for the inflaton [45–50], and even for the
period of reheating [51, 52]. Particularly insightful are studies of quantum effects in
power-law inflation, characterized by constant principal slow-roll parameter ϵ, and
subsequently promoted to an adiabatic function of time. This is because analyti-
cally tractable computations are still feasible, both for the ultraviolet and for the
infrared, and one can get a clear picture of the effects that corrections can engender.
A particularly important reference for this work is [41] which considered a symmetry-
breaking scalar potential model in power-law inflation with the assumption of the
scaling solution, and it found that inclusion of quantum effects can significantly affect
the scalar potential by dynamically restoring the symmetry of the potential in the
small field regime, more rapidly than in de Sitter.

In this work we extend the analysis of Ref. [41] and compute one-loop correc-
tions to the condensate of the Abelian Higgs model — scalar electrodynamics with
a symmetry breaking potential. For the sake of clarity we adopt several simplify-
ing assumptions. We assume that the Abelian Higgs model is a spectator, in the
sense that it does not source the evolution of the expanding background. For the
background we assume it is exact power-law inflation, characterized by the constant
principal slow-roll parameter ϵ. This still allows for an analytically tractable anal-
ysis of the problem, at least at one-loop order. We consider the scalar modulus of
the non-minimally coupled Abelian Higgs model to be in the attractor regime in
power-law inflation, where it tracks the evolution of the decreasing background Hub-
ble rate, ϕ ∝ H. This scaling attractor can be seen as a dynamical generalization
of the symmetry breaking minimum in equilibrium theories, as it is formed by the
competition between the non-minimal coupling and the quartic self-coupling.

The main focus of this work are quantum corrections to the evolution of the
scaling attractor. We account for loop corrections to the attractor descending from
both the charged scalar and the vector. These are quantified by computing one-loop

– 2 –



corrections to the scalar one-point function, and to the graviton one-point function
(that is sourced by the energy-momentum tensor. Our analysis utilizes propagators
for power-law inflation, namely the scalar one thas was worked out in [53], and the
vector one that was constructed in [54] in the unitary gauge. An important difference
between the analysis performed in this work and that in [41] is in that the only
source of breaking of scaling we encounter descends from contributions connected
to the ultraviolet scale µ introduced by the counterterms. The non-vanishing scalar
condensate generates masses for scalar and vector perturbations, which regulates
their infrared sector and prevents large infrared efects from developing, except in the
small condensate limit which is beyond the scope of this work. Our finding show
that there is a secular ultraviolet effect that typically slows down the rolling of the
spectator scalar down its potential, and eventually drives the condensate away from
the classical attractor. Interestingly, this effect is completely absent in the de Sitter
limit, which again points to the importance of considering quantum effects in more
realistic inflationary backgrounds.

We perform the loop computations using dimensional regularization and we
adopt a rather conservative approach to renormalization. Namely we forbid coun-
terterm coefficients from depending on the principal slow roll parameter ϵ, that we
consider to be a geometric quantity, that describes a particular realization of the sys-
tem, and does not characterize the theory. This severely restricts which terms can be
subtracted by finite parts of the counterterms, thus making the results more robust
to renormalization prescription dependencies. Furthermore, we shy away from using
any initial state subtractions, as these introduce renormalization scheme dependence
to the initial state, and generate corrections which anyway decay at late times we
are interested in.

This work is organized as follows. In section 2 we present the model and set the
stage for the problem. Sections 3 and 4 are devoted to the calculation of the one-loop
scalar condensate and energy-momentum tensor, where we discuss in detail the coun-
tertems needed to renormalize the results in dimensional regularization. Section 5 is
devoted to studying various limits and comparing them to the literature. Particular
attention is paid to the analysis of secular effects and their growth, and to the condi-
tions under which pertubation theory breaks. In section 6 we present a preliminary
analysis of how to emply renormalization group tools to restore perturbativity of the
results. In particular, we show there that the RG resummation allows one to write
the complete one-loop results in the tree-level form, up to an additional term in the
energy-momentum tensor, which is due to the perturbative nonrenormalizability of
quantum gravity. In section 7 we discuss our main results.
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2 Preliminaries

The Abelian Higgs model is a commonly utilized as a toy model for the electroweak
sector of the standard model. In this work we consider its nonminimally coupled
variant, and the quantum corrections to its dynamics in power-law inflation. In
this section we summarize the properties of the background, and recount the main
properties of the model.

2.1 Power-law inflation

Spatially flat expanding cosmological spaces are well described by the Friedmann-
Lemâıtre-Robertson-Walker (FLRW) invariant line element,

ds2 = −dt2 + a2(t)dx⃗ 2 = a2(η)
[
−dη2 + dx⃗ 2

]
, (2.1)

where time is conveniently given either in physical time coordinate t or the conformal
time coordinate η, the two being related via the scale factor, dt=adη, and where equal
time spatial hypersurfaces are Euclidean spaces covered by Cartesian coordinates xi.
The expansion of the space is encoded by the scale factor a, and its first several
derivatives. The first derivative is usually given as the physical Hubble rate H, or
the conformal Hubble rate H,

H = 1
a

da

dt
, H = 1

a

da

dη
, H = aH , (2.2)

while in inflation the second derivative is encoded by the principal slow-roll param-
eter,

ϵ = − 1
H2

dH

dt
= 1 − 1

H2
dH
dη

. (2.3)

In this work we consider power-law inflation [55, 56] that is defined by the constant
slow-roll parameter,

ϵ = const. , 0 < ϵ < 1 . (2.4)

Even though this model is not a realistic model of inflation, as it is excluded by
observations [57] that favour an adiabatically evolving ϵ, it is more realistic than
the de Sitter space, ϵ= 0, often utilized to study quantum field theoretic effects in
inflation. In addition to being almost as mathematically tractable as de Sitter, power
law inflation incorporates the effect of the non-vanishing slow-roll parameter, and the
evolving Hubble rate H=H0a

−ϵ. The scale factor and the conformal Hubble rate in
power-law inflation take the form,

a(η) =
[
1 − (1−ϵ)H0(η−η0)

]− 1
1−ϵ

, H(η) = H0a
1−ϵ , (2.5)
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where η0 is the initial time at which a(η0)=1, and H0 =H(η0). The curvature tensors
in power-law inflation are,

Rµνρσ = 2H2gµ[ρgσ]ν + 4ϵ
(
a2δ0

[µgν][σδ
0
ρ]
)
, (2.6)

Rµν = (D−1−ϵ)H2gµν + (D−2)ϵH2(a2δ0
µδ

0
ν

)
, (2.7)

R = (D−1)(D−2ϵ)H2 . (2.8)

In addition, it is useful to note that the Weyl tensor,

Cµνρσ ≡ Rµνρσ − 4
(D−2)gµ][ρRσ][ν + 2R

(D−1)(D−2)gµ[ρgσ]ν . (2.9)

2.2 Nonminimally coupled Abelian Higgs model

The Abelian Higgs model consists of an Abelian gauge field Aµ interacting with a
charged complex scalar Φ. Its action in D-dimensional curved space is,

S
[
Aµ,Φ,Φ∗] =

∫
dDx

√
−g

[
−Z0

A

4 gµρgνσFµνFρσ − Z0
ϕg

µν
(
DµΦ

)∗(
DνΦ

)
− λ0

(
Φ∗Φ

)2 − ξ0RΦ∗Φ
]
, (2.10)

where gµν denotes the metric tensor [gµρgµν =δρ
ν , g=det(gµν)], R is the Ricci scalar,

and the bare couplings (denoted by sub/superscripts 0) in (2.10) are split into their
renormalized values plus counterterms (denoted by prefix δ),

Z0
A = 1+δZA , Z0

ϕ = 1+δZϕ , λ0 = λ+δλ , ξ0 = ξ+δξ , q0 = q+δq . (2.11)

The counterterms are necessary to absorb ultraviolet divergences of quantum loops,
and are organized as a power series in ℏ, the dependence on which is henceforth
suppressed by adopting the natural units ℏ=c=1. In the unitary gauge, defined by
the condition Im(Φ)=0, the action (2.10) reads [54],

S[Aµ, ϕ] =
∫
dDx

√
−g

[
−Z0

A

4 gµρgνσFµνFρσ − (q0ϕ)2

2 gµνAµAν

−
Z0

ϕ

2 gµν(∂µϕ)(∂νϕ) − λ0

4 ϕ
4 − ξ0

2 Rϕ
2
]
. (2.12)

where ϕ≡Re(Φ)/
√

2 is the canonically normalized real scalar field. Note that in the
limit q→ 0 the unitary gauge action reduces to the one for the self-interacting real
scalar field. This is the sense in which all the results presented here can be seen in
the limit of vanishing charge.

Following [54], we consider the Abelian Higgs model in rigid power-law inflation.
Only the scalar is supposed to have a homogeneous and isotropic condensate, which
satisfies the equation of motion,[

−ξR − λϕ
2
]
ϕ = 0 , (2.13)
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that admits an attractor solution,

ϕ = ϕ0
H0

H , (2.14)

with the amplitude set by the parameters of the model and the slow-roll parameter
of the background,

ϕ0
H0

= ±
√

1
λ

[
ϵ(D−1−2ϵ)−ξ(D−1)(D−2ϵ)

]
D→4−−−→ ±

√
1
λ

[
(1−6ξ)(2−ϵ)−2(1−ϵ)2

]
.

(2.15)
For this attractor solution to exist the amplitude above should be real, which puts
some bounds on the non-minimal coupling,

ξ <
ϵ(3−2ϵ)
6(2−ϵ) ≡ ξcr , (2.16)

dependent on the slow-roll parameter. We study scalar and vector fluctuations
around this background solution. The vector field Aµ is assumed not to have a clas-
sical condensate and is treated as a fluctuation, while the full scalar field, ϕ=ϕ+φ, is
expanded in fluctuations φ around the classical attractor condensate defined in (2.14)
and (2.15). We capture the nonlinear evolution of quantized fluctuations φ̂ and Âµ

perturbatively, by computing corrections to the evolution of the linearized (non-
interacting) fluctuations φ̂0 and Â0

µ. We organize the corrections in powers of the
linearized fields, which generates the usual loop expansion from the interaction pic-
ture. Each power of the linearized field counts as one power of

√
ℏ, which we hence-

forth suppress by adopting natural units ℏ=1.
Linearized perturbations around the attractor condensate (2.14) and their two-

point functions have been worked out in the unitary gauge in [54]. The linearized
scalar perturbations,

S(2)
S [Aµ, φ] =

∫
dDx

√
−g

[
−1

2g
µν(∂µφ)(∂νφ) − 3λ

2 ϕ
2
φ2 − ξ

2Rφ
2
]
. (2.17)

correspond to a spectator scalar with an effective mass 3λϕ2 and the nonminimal
coupling to gravity ξ. Since the tree-level condensate (2.14) scales as the Hubble
rate, for the purposes of dynamics we can consider the linearized scalar perturbations
to possess just an effective mass,

M2
S =3λϕ2+ξR =

[
3ϵ(D−1−2ϵ)−2ξ(D−1)(D−2ϵ)

]
H2 D→4−−−→3

[
−4ξ(2−ϵ)+ϵ(3−2ϵ)

]
H2,

(2.18)
or an effective non-minimal coupling,

ξS = M2
S

R

D→4−−−→ −2ξ + ϵ(3−2ϵ)
2(2−ϵ) . (2.19)
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Nevertheless, when computing the energy-momentum tensor, it is important to make
the distinction between the two commensurate contributions in (2.17). The latter of
the two quantities is bound by ξS > (3−2ϵ)ϵ/[6(2−ϵ)] due to (2.16), which ensures
there are no infrared divergences for CTBD states [58, 59].

Linearized vector perturbations,

S(2)
V [Aµ] =

∫
dDx

√
−g

[
−1

4g
µρgνσFµνFρσ −

(
qϕ

)2
2 gµνAµAν

]
(2.20)

behave as though massive, with the effective mass induced by the scalar condensate,

M2
V =

(
qϕ

)2 = q2

λ

[
ϵ(D−1−2ϵ)−ξ(D−1)(D−2ϵ)

]
H2 D→4−−−→ q2

λ

[
−6ξ(2−ϵ)+ϵ(3−2ϵ)

]
H2 ,

(2.21)
or as effectively non-minimally coupled,

ξV = M2
V

R

D→4−−−→ q2

λ

[
−ξ+ ϵ(3−2ϵ)

6(2−ϵ)

]
. (2.22)

Eq. (2.16) implies ξV > 0 and M2
V > 0, which ensures stability and infrared finiteness

of vector perturbations, and distinguishes our model from vector curvaton mod-
els [60].

In this work we compute the one-loop effects that interacting perturbations im-
part on the evolution of the scalar condensate in the attractor (2.14), and on the
energy-momentum tensor; the latter accounts for the backreaction onto the power-
law inflation. This computation requires the two-point functions of scalar and vector
perturbations, and in particular their coincidence limits collected in the following
subsection.

2.3 Two-point functions

The two-point functions for linearized fluctuations of the model in (2.12) in the uni-
tary gauge in power-law inflation have been worked out in [54]. They are expectation
values of linearized fields (denoted by superscript 0). In this work we compute the
one-loop corrections to the scalar condensate, and to the energy-momentum tensor.
These are simplest one-loop corrections, where the loop is formed by a single prop-
agator only. That is why we require only the dimensionally regulated coincidence
limits of the propagators from [54]. For the scalar this is,

〈
φ̂0(x)φ̂0(x)

〉
= Γ(νS)(1−ϵ)2H2

[(D−3
2

)2
− ν2

S

]
, (2.23)
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and for the vector,

〈
Â0

µ(x)Â0
ν(x)

〉
= Γ(νV )(1−ϵ)2H2

[(D−3
2

)2
− ν2

V

]
×

{
1
D

[
(D−1) +

(
D−1+ (D−4)ϵ

2(1−ϵ)

)(
2+ (D−4)(2−ϵ)

2(1−ϵ)

)
(1−ϵ)2H2

0

(qϕ0)2

]
gµν

+ (D−4)ϵ
2(1−ϵ)

(
2+ (D−4)(2−ϵ)

2(1−ϵ)

)
(1−ϵ)2H2

0

(qϕ0)2

(
a2δ0

µδ
0
ν

)}
, (2.24)

where we have defined a coefficient,

Γ(ν) ≡
Γ
(2−D

2

) [
(1−ϵ)H

]D−4

(4π)D
2

Γ
(

D−3
2 +ν

)
Γ
(

D−3
2 −ν

)
Γ
(1

2 +ν
)

Γ
(1

2 −ν
) (2.25)

D→4∼
Γ
(2−D

2

) [
(1−ϵ)H

]D−4

(4π)D
2

{
1 + (D−4)

2

[
ψ
(1

2 +ν
)

+ ψ
(1

2 −ν
)]

+ O
[
(D−4)2]} ,

divergent in D=4 on the account of Γ
(2−D

2

)D→4∼ 2/(D−4), that depends on indices
of scalar and vector perturbations, respectively,

ν2
S =

(
D−1−ϵ
2(1−ϵ)

)2

− ξS(D−1)(D−2ϵ)
(1−ϵ)2

D→4−−−→ 25
4 − 2(1−6ξ)(2−ϵ)

(1−ϵ)2 , (2.26)

ν2
V =

(
D−3−ϵ
2(1−ϵ)

)2

− ξV (D−1)(D−2ϵ)
(1−ϵ)2

D→4−−−→ 1
4 + 2q2

λ

[
1− (1−6ξ)(2−ϵ)

2(1−ϵ)2

]
. (2.27)

In four dimensions the range of these indices is limited by (2.16),

ν2
S ∈

(
−∞,

9
4

)
, ν2

V ∈
(

−∞,
1
4

)
. (2.28)

We also need a dimensionally regulated scalar kinetic term, which is easily computed
by first taking derivatives of the scalar Wightman two-point function and then using
expressions from Sec. 7.5.3 of [54], 1

〈
∂µφ̂

0(x) ∂νφ̂
0(x)

〉
= Γ(νS)(1−ϵ)4H4

[(D−3
2

)2
− ν2

S

]
×

{
− 1
D

[(D−1
2

)2
− ν2

S

]
gµν +

[
(D−2)ϵ
2(1−ϵ)

]2(
a2δ0

µδ
0
ν

)}
. (2.29)

1If the coincidence limit is defined in terms of the Feynman propagator instead care needs to
be taken to discard possible local terms resulting from derivatives acting on the time-ordeing. In
addition, in the unitary gauge attention must be paid to the fact that the Feynman propagator
is not the Green’s function of the theory [54], and to the difference between T and T ∗ ordered
products, similarly to what was pointed out in perturbative quantum gravity by Donoghue [61].
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Likewise we need the coincidence limit of the vector field strenght correlator, obtained
by taking the coincident limit of the correlator computed in Sec. 8 of [54],

〈
F̂ 0

µν(x)F̂ 0
ρσ(x)

〉
= Γ(νV )(1−ϵ)4H4

[(D−3
2

)2
− ν2

V

]
(2.30)

×

{
− 4
D

[(D−1
2

)2
− ν2

V

]
gµ[ρgσ]ν − 2(D−4)ϵ

(1−ϵ)

[
1 − (D−4)ϵ

2(1−ϵ)

](
a2δ0

[µgν][σδ
0
ρ]
)}

.

Even though for convenience we have introduced a number of parameters in this
section, it should be emphasized that there are only two independent coupling con-
stants in the problem, λ and q, and two background parameters, ϵ and H0. Neverthe-
less, we use the parameters introduced here interchangeably, to make the expressions
more compact. Six particularly useful combinations when presenting final results are
are,

(1−ϵ)2H2 D→4−−−→ − λϕ
2

2 + 1
2

(1
6 −ξ

)
R , (2.31a)

(1−ϵ)2
(1

4 −ν2
S

)
H2 D→4−−−→ 3λϕ2 −

(1
6 −ξ

)
R , (2.31b)

(1−ϵ)2
(9

4 −ν2
S

)
H2 D→4−−−→ 2λϕ2

, (2.31c)

(1−ϵ)2
(25

4 −ν2
S

)
H2 D→4−−−→ 2

(1
6 −ξ

)
R , (2.31d)

(1−ϵ)2
(1

4 −ν2
V

)
H2 D→4−−−→

(
qϕ

)2
, (2.31e)

(1−ϵ)2
(9

4 −ν2
V

)
H2 D→4−−−→

(
qϕ

)2 − λϕ
2 +

(1
6 −ξ

)
R . (2.31f)

3 Scalar tadpole

Expanding the unitary gauge action (2.12) to cubic order in perturbations,

S(3)[Aµ, φ] =
∫
dDx

√
−g

[
−ϕ

(
q2φAµAµ−λφ3

)
−φ

(
δλϕ

3+δξRϕ−δZϕ ϕ
)]

, (3.1)

defines the vertices and counterterms that generate the one-loop corrections to the
tadpole, whose diagramatic representation is given in Fig. 1. Note that the divergent
counterterm coefficients count as two powers of pertrubations.

The equation of motion for the one-loop correction to the scalar one-point func-
tion takes the form, [

−ξR − 3λϕ 2
]〈
φ̂
〉

= SS + SV + δS , (3.2)
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x x x

Figure 1. Diagrams depicting the one-loop corrections to the one-point function from the
scalar perturbation. Dashed line correspond to the scalar propagator, and wavy ones to
the vector propagator. The first two diagrams descend from the vertices defined in the
cubic action (3.1), which also defines the counterterms represented by the last diagram.

Where the scalar loop and the vector loop sources, corresponding to the first and the
second diagram in Fig. 1 respectively, are

SS = 3λϕ
〈
φ̂0φ̂0〉 , SV = q2ϕ gµν

〈
Â0

µÂ
0
ν

〉
, (3.3)

and the counterterms, corresponding to the last amputated diagram in Fig. 1 con-
tribute as,

δS =
(
δξ−ξδZϕ

)
Rϕ+

(
δλ−λδZϕ

)
ϕ

3

=
[(
δξ−ξδZϕ

)
(D−1)(D−2ϵ)H2 +

(
δλ−λδZϕ

)
ϕ

2
]
ϕ , (3.4)

where we have used the tree-level equation of motion (2.13) to write them in this
form. The counterterm coefficients will be chosen so as to absorb the divergences from
the scalar and the vector source (3.3). These divergences are absorbed independently
for each source, up to arbitrary finite parts. Accordingly, we split the counterterm
contribution to the source into three parts,

δS =
[
δS

]div.

S
+
[
δS

]div.

V
+
[
δS

]fin.
, (3.5)

and this split translates onto the analogous split of all the counterterm coefficients.
Since the renormalizability of the theory should not depend on the background space-
time, the counterterm coefficients ahould be independent of the packground param-
eters such as ϵ. This breaks some redundancy between the coefficients.

3.1 Scalar loop source

This is the simplest part to compute. Scalar tadpole source can be written as, using
the coincident scalar two-point function (2.23) and expressions from Sec. 2.2,

SS = ϕΓ(νS)
{

3D(D−2)(D−6)λ
32(D−1)

[
1− 4(D−1)ξ

(D−2)

]
(D−1)(D−2ϵ)H2

+ 3(D+2)(8−D)λ2

8 ϕ
2 + O

[
(D−4)2]} . (3.6)
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Comparing with the the counterterms (3.4), the simplest ϵ-independent choices are,

[
δξ−ξδZϕ

]div.

S
=
µD−4 Γ

(2−D
2

)
(4π)D

2
× 3D(D−2)(6−D)λ

32(D−1)

[
1− 4(D−1)ξ

(D−2)

]
, (3.7a)

[
δλ−λδZϕ

]div.

S
=
µD−4 Γ

(2−D
2

)
(4π)D

2
× 3(D+2)(D−8)λ2

8 . (3.7b)

Taking the D→4 limit of the scalar loop tadpole source produces a fully renormalized
result,

SS +
[
δS

]div.

S

D→4−−−→ 3λϕH2

16π2 (1−ϵ)2
(1

4 −ν2
S

)[
2 ln

[(1−ϵ)H
µ

]
+ Ψ(νS)

]
, (3.8)

where we defined,
Ψ(ν) ≡ ψ

(1
2 +ν

)
+ ψ

(1
2 −ν

)
, (3.9)

where ψ(z)= d
dz

ln[Γ(z)] denotes the digamma function.

3.2 Vector loop source

For the vector tadpole source we only need the fully contracted coincident vector
propagator from (2.24). Using some relations between parameters from Sec. (2.2) we
write it in the form,

SV = ϕΓ(νV )
{

(D−1)q2

2

[
2q2−(D−2)λ

]
ϕ

2 + 3(D−4)q2
[

3
4 − (1−ϵ)3H2

0

(qϕ0)2

]
ϵH2

+ (D−2)(8−D)q2

16

[
1− 8(D−1)ξ

(8−D)

]
(D−1)(D−2ϵ)H2 + O

[
(D−4)2]} . (3.10)

Comparing this source with the form of the counterterms it is clear that the two
divergent terms have the same structure. Therefore, the simplest ϵ-independent
choice for counterterm coefficients seems to be,

[
δξ−ξδZϕ

]div.

V
=
µD−4 Γ

(2−D
2

)
(4π)D

2
× (D−2)(D−8)q2

16

[
1− 8(D−1)ξ

(8−D)

]
, (3.11)

[
δλ−λδZϕ

]div.

V
=
µD−4 Γ

(2−D
2

)
(4π)D

2
× (D−1)q2

2

[
(D−2)λ−2q2

]
. (3.12)

This leads to the renormalized vector tadpole source,

SV +
[
δS

]div.

V

D→4−−−→ 3q2ϕH2

16π2

{
(1−ϵ)2

(9
4 −ν2

V

)[
2 ln

[(1−ϵ)H
µ

]
+ Ψ(νV )

]
+
[

3
2 − 2(1−ϵ)3H2

0(
qϕ0

)2 ]
ϵ

}
. (3.13)
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3.3 Solving tadpole equation

Here we solve equation (3.2) for the condensate correction
〈
φ̂
〉
, with sources com-

puted in (3.8) and (3.13). We can write the equation as,

−
[

1
a2∂

2
0 + 2H

a
∂0 + 6ξS(2−ϵ)H2

]〈
φ̂
〉

= 3ϕH2

16π2

[
2A ln

[(1−ϵ)H
µ

]
+ B

]
, (3.14)

where the coefficients are read off from the sources (3.8) and (3.13) computed in the
preceding sections. The first coefficient, A = AS +AV , receives contributions from
both the scalar and vector loop source, which are, respectively, succinctly written as,

AS = λ(1−ϵ)2
(1

4 −ν2
S

)
, AV = q2(1−ϵ)2

(9
4 −ν2

V

)
. (3.15)

Analogous is true for the second coefficient, B =BS+BV +δB, where scalar and vector
contributions are, respectively,

BS = λ(1−ϵ)2
(1

4 −ν2
S

)
Ψ(νS) , (3.16a)

BV = q2(1−ϵ)2
(9

4 −ν2
V

)
Ψ(νV ) + q2ϵ

[
3
2 − 2(1−ϵ)3H2

0(
qϕ0

)2 ]
, (3.16b)

but in addition it receives a contribution from the finite parts of the counterterms,

3 δB
16π2 = 6(2−ϵ)

[
δξ−ξδZϕ

]fin. + ϕ
2
0

H2
0

[
δλ−λδZϕ

]fin.
. (3.17)

The solution of equation (3.14) is not complicated,

〈
φ̂
〉

= 3ϕ
16π2

[
2A ln

[(1−ϵ)H
µ

]
+ B

]
+ 3ϕ

16π2

[
C+a

p+ + C−a
p−

]
, (3.18)

where the left term is a dynamical contribution, with the two coefficients fixed by
the sources of the equation of motion (3.14),

A = − H2
0

2λϕ 2
0

A , B = − H2
0

2λϕ 2
0

[
B − 6ϵ(1−ϵ)A

]
, (3.19)

while the right term contains two free constants of integration corresponding to
homogeneous solutions that redshift away, as their powers,

p± = −(1−ϵ)
(3

2 ± νS

)
, (3.20)

both have a negative real part (note that νS can be real or imaginary). Imposing ini-
tial conditions on

〈
φ̂
〉

and its derivative at the initial time η0 fixes the free integration

– 12 –



constants C+ and C− in (3.18). Requiring that the condensate corrections are mini-
mized at the initial moment η0, in the sense that both

〈
φ̂
〉
(η0)=0 and ∂0

〈
φ̂
〉
(η0)=0,

fixes the two constants, 2

C+ = p−

(p+− p−)

[
2A ln

[(1−ϵ)H0

µ

]
+ B + 2ϵA

p−

]
, (3.21a)

C− = p+

(p−− p+)

[
2A ln

[(1−ϵ)H0

µ

]
+ B + 2ϵA

p+

]
. (3.21b)

The choice of such coefficients amounts to a finite renormalization of the initial state,
and is important when discussing the fine-tuning issues in inflation [40]. However,
here we are primarily interested in corrections descending from dynamics. Given that
the state-dependent contributions decay in time in comparison, we shall henceforth
not consider them, and set C+ = C− = 0. Thus, the one-loop correction to the
condensate receives additive contributions,

〈
φ̂
〉

=
〈
φ̂
〉

S
+
〈
φ̂
〉

V
, from the scalar and

the vector loop, respectively,

〈
φ̂
〉

S
= − 3λϕ

16π2

[3λϕ2−
(1

6 −ξ
)
R

2λϕ 2

][
2 ln

[(1−ϵ)H
µ

]
+ Ψ(νS) + 3ϵ(1−ϵ)H2

λϕ
2

]
, (3.22)

〈
φ̂
〉

V
= − 3q2ϕ

16π2

{[(
qϕ

)2−λϕ2+
(1

6 −ξ
)
R

2λϕ2

][
2 ln

[(1−ϵ)H
µ

]
+ Ψ(νV )

+ 3ϵ(1−ϵ)H2

λϕ
2

]
+ 3ϵH2

4λϕ 2

}
+ 3λϕ

16π2 × ϵ(1−ϵ)3H4(
λϕ

2)2 , (3.23)

where the simplest choice for the finite parts of the counterterms in (3.17) is δB =0,
which implies, [

δξ−ξδZϕ

]fin. = 0 ,
[
δλ−λδZϕ

]fin. = 0 , (3.24)

that we henceforth assume. Note that in expressions above the argument of the
logarithms, and the mode function indices are expressed in terms of the scalar field
and curvature scalar using (2.31).

4 Energy-momentum tensor

In order to have a well defined one-loop energy-momentum tensor, in addition to
the action for the model in (2.12), we need to consider purely geometrical higher-
derivative counterterms [62],

Sctm.[gµν ] =
∫
dDx

√
−g

[
αRR

2 + αCC2 + αGG
]
, (4.1)

2The choice of C± in (3.21) is valid both when p± are real or a pair of complex conjugate
numbers. In the latter case, (C+a

p+)∗ =C−a
p− such that ⟨φ̂⟩ in (3.18) remains real.
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where the first counterterm is the square of the Ricci tensor, the second is the square
of the Weyl tensor (2.9), C2 = CµνρσCµνρσ, and the last one is the Gauss-Bonnet
invariant G =RµνρσRµνρσ −4RµνRµν +R2. Only the first of these counterterms con-
tributes to renormalization on FLRW background. The variation of the C2 term is
proportional to the Weyl tensor which vanishes for conformally flat spacetimes (2.9),
and the Gauss-Bonnet part is only a surface term that does not contribute in the
bulk. Thus, the full energy-momentum tensor operator is defined as

T̂µν = −2√
−g

δS∗

δgµν

∣∣∣∣
ϕ→ϕ̂

A→Â

= ZA

[
δρ

(µδ
σ
ν)−

1
4gµνg

ρσ

]
gαβF̂ραF̂σβ (4.2)

+
(
q0ϕ̂

)2
[
δρ

(µδ
σ
ν)−

1
2gµνg

ρσ

]
ÂρÂσ + Zϕ

[
δρ

(µδ
σ
ν)−

1
2gµνg

ρσ

](
∂ρϕ̂

)(
∂σϕ̂

)
− λ0

4 ϕ̂
4gµν + ξ0

[
Gµν + gµν −∇µ∇ν

]
ϕ̂ 2 + αRH

R
µν ,

where the last term is,

HR
µν = 4∇µ∇νR − 4gµν R − 4RRµν + gµνR

2

ϵ=const.−−−−→ (D−1)(D−2ϵ)(D−4−6ϵ)H4
[
(D−1−4ϵ)gµν − 4ϵ

(
a2δ0

µδ
0
ν

)]
. (4.3)

We expand the energy-momentum tensor operator (4.2) up to quadratic order in
fluctuating fields,

T̂µν = T µν + t̂ (1)
µν + t̂ (2)

µν + . . . (4.4)

where higher orders do not contribute at one-loop level. The three parts are defined
and their expectation values computed in the following three subsections.

4.1 Tree-level part

The classical contribution to the energy-momentum tensor derives from the scalar
condensate (2.14) only,

T µν =
[
δρ

µδ
σ
ν − 1

2gµνg
ρσ

](
∂ρϕ

)(
∂σϕ

)
− λ

4ϕ
4
gµν + ξ

[
Gµν + gµν −∇µ∇ν

]
ϕ

2
. (4.5)

Evaluated on the attractor solution (2.14) it reads,

T µν = (1−6ξ)ϵ+ (D−4)ξ
4

[
−(D−1−4ϵ)gµν + 4ϵ

(
a2δ0

µδ
0
ν

)](
ϕH

)2
D→4−−−→ (1−6ξ)ϵ

4

[
−(3−4ϵ)gµν + 4ϵ

(
a2δ0

µδ
0
ν

)](
ϕH

)2
, (4.6)

and it is indeed covariantly conserved, ∇µT µν =0. It describes an effective ideal fluid
with an equation of state dependent on the background,

w = −1 + 4ϵ
3 . (4.7)
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The energy-momentum tensor of the condensate, which is a spectator from the per-
spective of the expansion, redshifts away faster (ρ ∝ H4 ∝ a−4ϵ) than some fluid
driving the expansion of the power-law inflation (ρ ∝ H2 ∝ a−2ϵ)

4.2 Part linear in fluctuations

Graviton couples to linearized fluctuations too. This would be the contribution to the
energy-momentum tensor coming from the correction to the scalar tadpole. However,
this split should only go so far on the account of it not being conserved by itself!
Therefore, contributions cannot be split in a physical way.

x x x

Figure 2. Diagrams depicting the one-loop corrections to the graviton one-point function
descending from the one-loop corrections to the scalar one-point function in Fig. 1. Curly
lines correspond to the graviton propagator, dashed line to the scalar propagator, and wavy
lines to the vector propagator, while encircled crosses stand for the classical condensate
insertions. The last diagram stands for counterterms. Amputating the graviton propagator
leaves the contribution to the one-loop energy-momentum tensor.

〈
t̂ (1)
µν

〉
=

[
2δρ

(µδ
σ
ν)−gµνg

ρσ
](
∂ρϕ

)
∂σ

〈
φ̂
〉

− λϕ
3〈
φ̂
〉
gµν + 2ξ

[
Gµν +gµν −∇µ∇ν

]
ϕ
〈
φ̂
〉
.

(4.8)
This contribution is not covariantly conserved by itself. In fact, from the tree-level
equation of motion (2.13), and the one-loop tadpole equation (3.2) it follows,

∇µ
〈
t̂ (1)
µν

〉
=

(
∂νϕ

)[
SS + SV + δS

]
. (4.9)

This non-conservation has nothing to do with quantum anomalies, or quantum
physics for that matter. Rather, it is a consequence of the part quadratic in fluc-
tuations, discussed in the following section, contributing to the energy-momentum
tensor at the same order as the part linear in fluctuations discussed in this section.

Plugging in the tree-level attractor solution for the condensate (2.14), and the
one-loop condensate correction (3.18) into (4.8) gives the tadpole contribution to the
one-loop energy-momentum tensor. Just like the condensate correction it receives
dynamically generated contributions, and the initial state dependent contributions,〈

t̂ (1)
µν

〉
=

〈
t̂ (1)
µν

〉
dyn.

+ T +
µν + T −

µν . (4.10)
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where the former contribution is,

〈
t̂ (1)
µν

〉
dyn.

= 3
8π2

[
2A ln

[(1−ϵ)H
µ

]
+ B

][
T µν − λ

4ϕ
4
gµν

]
(4.11)

−
(
ϕH

)2
ϵA

8π2

{[
(1−6ξ)(2−5ϵ)−2(1−ϵ)

]
gµν −

[
(1−6ξ)(1+5ϵ)−(1−ϵ)

](
a2δ0

µδ
0
ν

)}
,

while the latter contributions are,

T ±
µν =

3C±a
p±
(
ϕH

)2
16π2

{
gµν ×

(
3−3ϵ+p±

)[
2ξ
(
1+2ϵ−p±

)
−ϵ

]
+
(
a2δ0

µδ
0
ν

)
×2

[
ϵ
(
ϵ−p±

)
+ ξp± − ξ

(
3ϵ−p±

)(
2ϵ−p±

)]}
. (4.12)

These initial state dependent contributions are conserved by themselves, ∇µT ±
µν =0.

They redshift away compared to the dynamical contribution and we do not consider
them further.

4.3 Part quadratic in fluctuations

x x x

Figure 3. Diagrams depicting the one-loop corrections to the graviton one-point function
descending from vacuum fluctuations. Curly lines correspond to the graviton propagator,
dashed line to the scalar propagator, and wavy lines to the vector propagator. The last
diagram stands for counterterms. Amputating the graviton propagator leaves the contri-
bution to the one-loop energy-momentum tensor.

The renormalized expectation value of the quadratic part of the energy-momentum
tensor is a sum of all three contributions from Fig. 3,〈

t̂ (2)
µν

〉
=

〈
t̂ (2)
µν

〉
S

+
〈
t̂ (2)
µν

〉
S

+ δTµν , (4.13)

where the first contribution comes from the leftmost digram with a scalar loop,

〈
t̂ (2)
µν

〉
S

=
[
δρ

(µδ
σ
ν)−

1
2gµνg

ρσ

]〈
∂ρφ̂

0 ∂σφ̂
0〉 − 3λ

2 ϕ
2〈
φ̂0φ̂0〉gµν

+ ξ
[
Gµν +gµν −∇µ∇ν

]〈
φ̂0φ̂0〉 , (4.14)

the second contribution comes from the middle diagram with the vector loop,

〈
t̂ (2)
µν

〉
V

=
[
δρ

(µδ
σ
ν)g

αβ−1
4gµνg

ρσgαβ

]〈
F̂ 0

ραF̂
0
σβ

〉
+
(
qϕ

)2
[
δρ

(µδ
σ
ν)−

1
2gµνg

ρσ

]〈
Â0

ρÂ
0
σ

〉
, (4.15)
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and the remaining contribution comes from counterterms, denoted by the rightmost
diagram,

δTµν = δZϕ

[
δρ

(µδ
σ
ν)−

1
2gµνg

ρσ

](
∂ρϕ

)(
∂σϕ

)
− δλ

4 ϕ
4
gµν

+ δξ
[
Gµν + gµν −∇µ∇ν

]
ϕ

2 + δαRH
R
µν . (4.16)

This contribution is also not conserved on its own,

∇µ
〈
t̂ (2)
µν

〉
= −

(
∂νϕ

)[
SS + SV + δS

]
, (4.17)

but rather its non-conservation precisely cancels the one in (4.9), so that the entire
one-loop energy momentum tensor is covariantly conserved, as it should be,

∇µ
(〈
t̂ (1)
µν

〉
+
〈
t̂ (2)
µν

〉)
= 0 . (4.18)

The counterterm part, evaluated for power-law inflation reads,

δTµν = gµν ×
{

−δλ

4 ϕ
4 + ϵ2

2 δZϕ

(
ϕH

)2 + δαR(D−1)(D−2ϵ)(D−1−4ϵ)(D−4−6ϵ)H4

− δξ

2

[
(D−1)(D−2) − 6(D−2)ϵ+ 12ϵ2

]
H2ϕ

2
}

+
(
a2δ0

µδ
0
ν

)
×
{(
δZϕ−6δξ

)
ϵ2(ϕH)2 + 24δαR(D−1)(D−2ϵ)ϵ2H4

+ (D−4)δξϵ
(
ϕH

)2 − 4(D−4)δαR(D−1)(D−2ϵ)ϵH4
}
. (4.19)

Just as for the tadpole, the scalar and the vector loops are renormalized indepen-
dently in the energy-monetum tensor, and we split the contributions,

δTµν =
[
δTµν

]div.

S
+
[
δTµν

]div.

V
+
[
δTµν

]fin.
. (4.20)

4.3.1 Scalar loop contribution

For the scalar part the scalar parts of counterterms from before are enough. This is
because the vector parts of counterterms vanish for q→0.〈

t̂ (2)
µν

〉
S

= gµν × Γ(νS)(1−ϵ)2H2
[(D−3

2

)2
− ν2

S

]
(4.21)

× 1
D

{
−(D−2)2

4

[
1 − 4(D−1)ξ

(D−2)

]
(D−1−Dϵ)ϵH2 − 3λϕ 2

}

+
(
a2δ0

µδ
0
ν

)
× Γ(νS)

[
1− 4(D−1)ξ

(D−2)

]
(D−2)2ϵ2H2

32 ×

{
(D+2)(8−D)λϕ 2

− D(D−2)(6−D)
4

[
1− 4(D−1)ξ

(D−2)

]
(D−2ϵ)H2 + O

[
(D−4)2]} .
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Since the factor Γ(νS) defined in (2.25) is divergent in D = 4, so are most of the
contributions to the naive expectation value above. These need to be absorbed by the
counterterms in (4.19), by judiciously choosing four counterterm coefficients. Note
that we already have two conditions on these coefficients (3.7) from renormalizing
the scalar contribution to the tadpole. Therefore, there are only two independent
conditions that we can require here. They are most conveniently found by requiring
that the divergences of the

(
a2δ0

µδ
0
ν

)
part are absorbed, since that is accomplished

by a simple comparison with (4.19), and the simplest choice is

[
δZϕ−6δξ

]div.

S
=
µD−4 Γ

(2−D
2

)
(4π)D

2
× (D−2)2(D+2)(D−8)λ

32

[
1− 4(D−1)ξ

(D−2)

]
, (4.22)

[
δαR

]div.

S
=
µD−4 Γ

(2−D
2

)
(4π)D

2
× D(D−2)2

768(D−1)

[
1− 4(D−1)ξ

(D−2)

]2

. (4.23)

In addition to fixing δαR, this fixes the three counterterms,

[
δξ
]div.

S
=
µD−4 Γ

(2−D
2

)
(4π)D

2
×

3Dλ
[
1−(D−1)(D−2)ξ

]
8(D−1) , (4.24a)

[
δλ

]div.

S
=
µD−4 Γ

(2−D
2

)
(4π)D

2
×
[
−9Dλ2

4

]
, (4.24b)

[
δZϕ

]div.

S
=
µD−4 Γ

(2−D
2

)
(4π)D

2
×
[
−3(D−4)λ

]
, (4.24c)

which agrees (up to finite contributions) with the counterterms found in [41]. Note
that the wavefunction renormalization is finite, which agrees with what was also
found in Ref. [63] in a different setting. Now we have for the renormalized scalar
part of the energy-momentum tensor,

〈
t̂ (2)
µν

〉
S
+
[
δTµν

]div.

S

D→4−−−→ −gµν × 3λϕ 2

64π2 (1−ϵ)2H2
(1

4 −ν2
S

)[
2 ln

[(1−ϵ)H
µ

]
+ Ψ(νS)− 1

2

]
− (1−6ξ)H4

64π2 (1−ϵ)2
(1

4 −ν2
S

){
gµν ×

[
(3−4ϵ)ϵ

(
2 ln

[(1−ϵ)H
µ

]
+ Ψ(νS)

)
+1− 17ϵ

6

]

−
(
a2δ0

µδ
0
ν

)
×4ϵ

[
ϵ

(
2 ln

[(1−ϵ)H
µ

]
+ Ψ(νS)

)
+ 1

3

]}
. (4.25)

The covariant contribution in the first line accounts for the non-conservation, while
the remainder is conserved by itself.
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4.3.2 Vector loop contribution

〈
t̂ (2)
µν

〉
V

= gµν × Γ(νV )(1−ϵ)4H4
[(D−3

2

)2
−ν2

V

]
×

{
−(D−1)

D

(9
4 − ν2

V

)
− 3(D−4)(3−ϵ)

8(1−ϵ) + O
[
(D−4)2]} . (4.26)

As before, the two remaining conditions for the counterterm coefficients are most
easily read off from the

(
a2δ0

µδ
0
ν

)
part, and the most convenient choice seems to be,[

δZϕ−6δξ
]div.

V
= O

[
(D−4)0] , [

δαR

]div.

V
= 0 , (4.27)

which then uniquely fixes all the divergent parts of the counterterm coefficients tied
to vector loops, [

δξ
]div.

V
=
µD−4 Γ

(2−D
2

)
(4π)D

2
× (D−2)(D−8)q2

16 , (4.28a)

[
δλ

]div.

V
=
µD−4 Γ

(2−D
2

)
(4π)D

2
×
[
−(D−1)q4

]
, (4.28b)

[
δZϕ

]div.

V
=
µD−4 Γ

(2−D
2

)
(4π)D

2
×
[
−(D−1)(D−2)q2

2

]
, (4.28c)

[
δαR

]div.

V
=
µD−4 Γ

(2−D
2

)
(4π)D

2
× 0 , (4.28d)

such that
[
δZϕ−6δξ

]div.=−7/(32π2), in agreement with (4.27). Inserting the values
for these coefficients in (4.19) and adding it to (4.26) produces a finite renormalized
result upon taking the four-dimensional limit,

〈
t̂ (2)
µν

〉
V

+
[
δTµν

]div.

V

D→4−−−→ −
3
(
qϕ

)2
64π2 H2

{[
(1−ϵ)2

(9
4 −ν2

V

)(
2 ln

[(1−ϵ)H
µ

]
+Ψ(νV )− 1

2

)

− 2ϵ
(

(1−ϵ)3H2(
qϕ

)2 − 3
4

)
− (3−4ϵ)(2+7ϵ)

6

]
×gµν + 2(2+7ϵ)ϵ

3 ×
(
a2δ0

µδ
0
ν

)}
. (4.29)

4.3.3 Full one-loop results

Adding up the scalar loop contribution to the linear (4.11) and quadratic (4.25) parts
of the energy-momentum tensor, and writing them in terms of the scalar perturbation
mass (2.18) gives,

〈
t̂µν

〉
S

= − λ

4π2

[3λϕ2−
(1

6 −ξ
)
R

2λϕ 2

]{[
2 ln

[(1−ϵ)H
µ

]
+ Ψ(νS) + 2+15ϵ

6ϵ

− (1−ϵ)
2ϵ(1−6ξ) + 9ϵ(1−ϵ)H2

2λϕ 2

]
T µν −

gρσT ρσ

8(1−ϵ)gµν

}
. (4.30)
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and adding up the vector loop contributions from (4.11) and (4.29), and writing them
in terms of scalar and vector masses (2.18) and (2.21) gives,

〈
t̂µν

〉
V

= − 3q2

8π2

{[(
qϕ

)2−λϕ 2+
(1

6 −ξ
)
R

2λϕ 2

][
2 ln

[(1−ϵ)H
µ

]
+ Ψ(νV ) + 1+5ϵ

3ϵ

− (1−ϵ)
3ϵ(1−6ξ) + 3ϵ(1−ϵ)H2

λϕ
2

]
T µν +

[
(2+7ϵ)

12ϵ(1−6ξ) + 3ϵH2

4λϕ 2

]
T µν

−
[(
qϕ

)2−λϕ 2+
(1

6 −ξ
)
R

2λϕ 2

]
gρσT ρσ

8(1−ϵ)gµν

}
+ 3λ

8π2 × ϵ(1−ϵ)3H4(
λϕ

2)2 T µν , (4.31)

where T µν is the tree level result given in (4.6). Recalling that ∇µT µν = 0, one can
easily check that both (4.30) and (4.31) are separately covariantly conserved, 3 as
they should be. We emphasize this is true only after linear and quadratic contribu-
tions are added up. The final expressions (4.30) and (4.31) are rather complicated,
and one may be tempted to subtract some of the terms by a judicious choice of
finite counterterms. A closer look at the finite part of the energy-momentum tensor
counterterms in (4.19),[

δTµν

]fin. =
{[
δZϕ

]fin. + 144λ(2−ϵ)
(1−6ξ)

H2

λϕ
2
[
δαR

]fin.
}

×T µν . (4.32)

where we took account of the simple choice for the condensate correction (3.24),
reveals that further simplifications are rather limited if we restrict ourselves to coun-
terterm coefficients being independent of ϵ. Therefore, we shall not pursue this, and
instead we shall focus our analysis on the role of secular effects, and perturbativity
of the one-loop results (4.30)–(4.31).

5 Various limits

In this section we discuss various limits of the one-loop corrections to the conden-
sate (3.22) and (3.23), and to the energy momentum tensor (4.30), and (4.31), and
compare them with the results from the literature when possible.

5.1 De Sitter limit

The de Sitter limit is defined by the constant physical Hubble rate, H=H0, obtained
in the limit of vanishing principal slow-roll parameter, ϵ→0, where the Ricci scalar
is R0 = 12H2

0 . At tree level the condensate (2.15) is constant, while the energy-
momentum tensor (4.6) vanishes,

ϕ
ϵ→0−−→ ϕ0 = ±H0

√
−12ξ
λ

, T µν
ϵ→0−−→ 0 . (5.1)

3Useful relations are ∇ν

(
gρσT ρσ

)
=−4ϵaHδ0

ν

(
gρσT ρσ

)
, and ∇µ

[
ln(a)Tµν

]
=−(H/a)T 0ν .
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The effective masses of fluctuations are also constant in de Sitter,

M2
S

ϵ→0−−→ m2
S = −24ξH2

0 , M2
V

ϵ→0−−→ m2
V = −12ξq2

λ
H2

0 = q2m2
S

2λ . (5.2)

Consequently, the condensate one-loop corrections (3.22) and (3.23) are also constant,
and reduce to,〈

φ̂
〉

S

ϕ0
= − 3λ

16π2

[3λϕ2
0 −

(1
6 −ξ

)
R0

2λϕ 2
0

][
2 ln

(H0

µ

)
+ Ψ

(
ν0

S

)]
, (5.3)〈

φ̂
〉

V

ϕ0
= − 3q2

16π2

[(
qϕ0

)2 − λϕ
2
0 +

(1
6 −ξ

)
R0

2λϕ2
0

][
2 ln

(H0

µ

)
+ Ψ

(
ν0

V

)]
, (5.4)

where the mode function indices are,

ν2
S

ϵ→0−−→
(
ν0

S

)2 = 9
4 − 24ξ = 9

4 − m2
S

H2
0
, ν2

V

ϵ→0−−→
(
ν0

V

)2 = 1
4 − 12q2ξ

λ
= 1

4 − m2
V

H2
0
.

(5.5)
For some purposes it is more convenient to express the de Sitter limit in terms of the
effective masses of fluctuations,〈

φ̂
〉

S

ϕ0

ϵ→0−−→ − 3λ
16π2

[
m2

S −2H2
0

m2
S

][
2 ln

(H0

µ

)
+ Ψ

(
ν0

S

)]
, (5.6)〈

φ̂
〉

V

ϕ0

ϵ→0−−→ − 3q2

16π2

[
m2

V + 2H2
0

m2
S

][
2 ln

(H0

µ

)
+ Ψ

(
ν0

V

)]
. (5.7)

Note that no secular corrections remain, as they are proportional to ϵ and vanish
in the exact de Sitter limit. For the energy-momentum tensor we first observe that,
even though the classical tree-level contribution vanishes in the de Sitter limit, the
the singular limit,

1
ϵ
T µν

ϵ→0−−→ −3(1−6ξ)
4

(
ϕ0H0

)2
gµν , (5.8)

is finite, so that de Sitter limits of one-loop corrections (4.30) and (4.31) are,〈
t̂µν

〉
S

ϵ→0−−→ 1
128π2

(
m2

S − 2H2
0

)2
gµν , (5.9)〈

t̂µν

〉
V

ϵ→0−−→ 3
128π2m

2
V

(
m2

V + 4H2
0

)
gµν . (5.10)

Curiously, the de Sitter limit of the one-loop energy-momentum tensor exhibits no
dependence on the renormalization scale µ, which implies the absence of UV diver-
gences. This is a peculiarity of the nonminimally coupled Abelian Higgs model (2.1)
that we consider here, where it is the typically negative non-minimal coupling, satis-
fying Eq. (2.16), that allows for the existence of the symmetry-breaking condensate
in the attractor regime.
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One-loop energy momentum tensors of spectator scalars and vectors have been
computed in the literature, but only in the limit of vanishing condensate. Therefore
they cannot be compared directly to our result (5.9) and (5.9), that comprise of the
tadpole contribution from Sec. 4.2 and the quadratic perturbation contribution of
Sec. 4.3. Each of the contributions are separately conserved in the de Sitter limit, as
opposed to the general case when only their sum is conserved. We can only compare
the quadratic parts to the existing results in the literature.

Expression (2.17), from which the one-loop energy-momentum tensor descends
from, suggests that the proper comparison for the scalar loop contribution is com-
paring the de Sitter limit of (4.25),

〈
t̂ (2)
µν

〉
S

+
[
δTµν

]div.

S

D→4−−−→ (1+12ξ)H4
0

32π2

{
−36ξ

[
2 ln

(H0

µ

)
+ Ψ

(
ν0

S

)]
+ (1+12ξ)

}
gµν .

(5.11)
to the result for the spectator scalar field with non-minimal coupling ξ and mass m2 =
3λϕ2

0 =−36ξH2
0 . This was first computed in [64], and the reported results agree with

our, up to renormalization scheme ambiguities, and the conformal anomaly. The de
Sitter limit of the vector loop contribution to the quadratic part in (4.15) suggests
we should compare the de Sitter limit of the expectation value (4.29),

〈
t̂ (2)
µν

〉
V

+
[
δTµν

]div.

V

D→4−−−→ − 3m2
V

64π2

{(
m2

V +2H2
0

)[
2 ln

(H0

µ

)
+Ψ

(
ν0

V

)]
−m2

V

2 −2H2
0

}
gµν .

(5.12)
to the Stueckelberg model with mass m2

V =
(
qϕ0

)2 computed in [65, 66], where the
same result was reported, up to renormalization scheme ambiguities, and the confor-
mal anomaly.

5.2 Flat space limit

The Minkowski limit is strictly speaking not accessible naively. However, we can
take it by expressing the results in terms of effective scalar masses first, and then
take H0 →0 with keeping mS constant. It is most convenient to do this from the de
Sitter limit of the preceding subsection. Taking into account that digamma functions
in reduce to the following forms in the flat space limit, 4

Ψ
(
ν0

S

) H0→0∼
mS=const.

2 ln
(mS

H0

)
, Ψ

(
ν0

V

) H0→0∼
mS=const.

2 ln
(mV

H0

)
, (5.13)

4This follows from ν0
S

H0→0∼ imS/H0 and ν0
V

H0→0∼ imV /H0, and the limit,

Ψ(i|z|) = ψ
(1

2 +i|z|
)

+ ψ
(1

2 −i|z|
)

z→∞∼ 2 ln(|z|) .
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the one-loop tadpole corrections are,〈
φ̂
〉

S

ϕ0

H0→0−−−−−−→
mS=const.

− 3λ
8π2 ln

(mS

µ

)
,

〈
φ̂
〉

V

ϕ0

H0→0−−−−−−→
mS=const.

− 3q2

8π2
m2

V

m2
S

ln
(mV

µ

)
. (5.14)

These correspond to the results of Minkowski space computations [67], up to renor-
malization scheme dependent terms.

While we are able to infer the flat space limit from the condensate correction in de
Sitter space, we are not able to do so for the energy-momentum tensor. The reason
is that the mass term and the non-minimal coupling term are not distinguishable
in de Sitter for the evolution of the scalar. However, they are distinguished by the
energy-momentum tensor which involves the variational derivative with respect to the
metric, which treats the mass term and the non-minimal coupling terms differently.

5.3 Large field limit/large non-minimal coupling/large masses

The large field limit ϕ/H≫1 in our model corresponds to the limit of large negative
nonminimal coupling ξ≪−1.5 Here we have for the tree-level condensate (2.15) and
the energy-momentum tensor (4.6),

ϕ

H

ξ≪−1∼ ±
√

−6ξ(2−ϵ)
λ

, T µν
ξ≪−1∼ −3ξϵ

2

[
−(3−4ϵ)gµν + 4ϵ

(
a2δ0

µδ
0
ν

)](
ϕH

)2
.

(5.15)
For fluctuations this is essentially the limit of large effective masses,

M2
S

H2
ξ≪−1∼ −12ξ(2−ϵ) ≫ 1 , M2

V

H2
ξ≪−1∼ − 6ξq2(2−ϵ)

λ
≫ 1 , (5.16)

provided the ratio of couplings q2/λ is not hierarchical. Given that the mode function
indices in this limit reduce to,

ν2
S

ξ≪−1∼ 12ξ(2−ϵ)
(1−ϵ)2 ≪ −1 , ν2

V

ξ≪−1∼ q2

λ
× 6ξ(2−ϵ)

(1−ϵ)2 ≪ −1 , (5.17)

which implies that,

Ψ(νS) ξ≪−1∼ 2 ln
[ MS

(1−ϵ)H

]
, Ψ(νV ) ξ≪−1∼ 2 ln

[ MV

(1−ϵ)H

]
, (5.18)

and produces the result for the one-loop condensate corrections,〈
φ̂
〉

S

ϕ

ξ≪−1∼ − 3λ
8π2 ln

(MS

µ

)
,

〈
φ̂
〉

V

ϕ

ξ≪−1∼ − 3q2

8π2
M2

V

M2
S

ln
(MV

µ

)
. (5.19)

5We still assume the non-minimal coupling is small enough not to induce significant backreaction
on the expansion rate.
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that are a direct non-equilibrium generalization of the Coleman-Weinberg result [68]
with time-dependent effective masses.

For the one-loop energy-momentum tensor the large field limit is,

〈
t̂µν

〉
S

ξ≪−1∼ − λ

2π2 ln
(MS

µ

)
×T µν ,

〈
t̂µν

〉
V

ξ≪−1∼ − 3q2

4π2
M2

V

M2
S

ln
(MV

µ

)
×T µν , (5.20)

where we neglected constant corrections to the logs (that can nonetheless be enhanced
by a relative factor 1/ϵ in comparison when ϵ≪ 1.) The expressions above are not
conserved on the account of time dependence of masses of fluctuations. However, the
non-conservation is only at the subleading limit that is countered by the subleading
terms we neglected.

5.4 Small field limit

The small field limit ϕ/H ≪ 1 is implemented by taking the critical value limit for
the nonminimal coupling,

ξ = ξcr − ∆ξ = ϵ(3−2ϵ)
6(2−ϵ) − ∆ξ , 0 < ∆ξ ≪ 1 , (5.21)

such that the condition (2.16) is close to saturation, where the tree-level condensate
field value is vanishing small,

λϕ
2

H2
∆ξ→0∼ 6(2−ϵ)∆ξ . (5.22)

The mode function indices in the small field limit are,

ν2
S = 9

4 − 12(2−ϵ)∆ξ
(1−ϵ)2 , ν2

V = 1
4 − q2

λ

6(2−ϵ)∆ξ
(1−ϵ)2 , (5.23)

so that the digamma functions contribute as,

Ψ(νS) ∆ξ→0∼ − (1−ϵ)2

4(2−ϵ)∆ξ+7
3−2γE , Ψ(νV ) ∆ξ→0∼ − λ

q2
(1−ϵ)2

6(2−ϵ)∆ξ+1−2γE . (5.24)

This sufficies to evaluate the limiting behaviour of our results. The condensate
corrections (3.22) and (3.22) diverge in this limit,〈

φ̂
〉

S

ϕ

∆ξ→0∼ − λ(1−3ϵ)(1−ϵ)3

128π2(2−ϵ)2∆ξ2 + O
(
1/∆ξ

)
, (5.25)〈

φ̂
〉

V

ϕ

∆ξ→0∼ (λ−3ϵq2)(1−ϵ)3

192π2(2−ϵ)2∆ξ2 + O
(
1/∆ξ

)
, (5.26)

which is actually a consequence of the singular definition of the variable. In the
unitary gauge we emply here the scalar field is actually the modulus of the complex
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scalar field, which is not defined at the origin. In fact, a closer look at the leading
relative condensate correction above reveals it to be negative, meaning that the
meaningful description breaks down before the singular point. Similar behaviour is
observed for the energy-momentum tensor corrections,〈

t̂µν

〉
S

∆ξ→0∼ − ϵ(1−ϵ)5(1−4ϵ)
32π2(2−ϵ)2∆ξ H

4
[
−(3−4ϵ)gµν +4ϵ

(
a2δ0

µδ
0
ν

)]
+ O

(
∆ξ0) , (5.27)

〈
t̂µν

〉
V

∆ξ→0∼ ϵ(1−ϵ)5

32π2(2−ϵ)2∆ξ

[
1− 3ϵq2

λ

]
H4

[
−(3−4ϵ)gµν +4ϵ

(
a2δ0

µδ
0
ν

)]
+ O

(
∆ξ0) ,

(5.28)

that are finite only in the de Sitter limit,〈
t̂µν

〉
S

∆ξ→0−−−→
ϵ→0

H4

32π2 gµν ,
〈
t̂µν

〉
V

∆ξ→0−−−→
ϵ→0

0 , (5.29)

where the scalar loop contribution reduces to the contribution of the massless, min-
imally coupled scalar, supplemented by the finite contribution obtained from taking
the singular limit ξ → 0 of the nonminimally coupled case (consistent with [69–
71]), while the vector loop contribution reduces to the vanishing one of a massless
photon [72–74]. However, behaviour of the results for nonvanishing ϵ points to the
need of examining this regime in a different gauge, that is adapted to the vanishing
condensate limit, unlike the unitary gauge we use here.

5.5 Hierarchal couplings

Interesting limit is provided by a hierarchy between the scalar self-coupling constant
and the U(1) charge,

q2/λ ≫ 1 , (5.30)
when the vector loop provides a parametrically larger contribution than the scalar
one. Furthermore, given that in this limit,

Ψ(νV ) q2≫λ∼ 2 ln
[ qϕ

(1−ϵ)H

]
, (5.31)

the dominant contribution to the condensate correction,〈
φ̂
〉

V

ϕ

q2≫λ∼ − 3q4

16π2λ
ln
(qϕ
µ

)
, (5.32)

and to the energy-momentum tensor correction,〈
t̂µν

〉
V

= − 3q4

8π2λ
ln
(qϕ
µ

)
×T µν . (5.33)

derive from the vector loop. We see that the hierarchy (5.30) of coupling constants
can lead to a big enhancement of the loop corrections. This is a feature of the model
that is present already in flat space. However, the secular logarithm multiplying this
correction is innate to curved spacetimes, which is discussed in detail in Sec. 6.
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5.6 Vanishing U(1) charge

Even though the limit q→ 0 is a singular limit of the unitary gauge [54], the scalar
field ϕ in the unitary gauge is a gauge-independent observable, and it is not sensitive
to the singularity of the this limit. Therefore, we may infer the result in the limit
of vanishing U(1) charge. Interestingly, the vector loop contributions do not vanish,
neither for the condensate,〈

φ̂
〉

V

ϕ

q→0−−→ 3λ
16π2 × ϵ(1−ϵ)3H4(

λϕ
2)2 , (5.34)

nor for the energy-momentum tensor,〈
t̂µν

〉
V

q→0−−→ 3λ
8π2 × ϵ(1−ϵ)3H4(

λϕ
2)2 ×T (0)

µν . (5.35)

Nevertheless, inorder to be sure of this limit the computation should be redone in a
gauge regular in the vanishing U(1) charge limit.

6 Late time limit and an RG explanation

The time dependence of the Hubble rate in the logarithms of the one-loop corrections
implies the secular breakdown of perturbation theory after long enough time, when,

ln
[(1−ϵ)H

µ

]
a→∞∼ − ϵ ln(a) ≫ 1 , (6.1)

becomes large enough. This term dominates when a≫e1/ϵ. In inflation this number
is very big, but our results are valid for finite ϵ. Therefore, the late time limit of the
one-loop corrections are,〈
ϕ̂
〉

= ϕ×
[
1 + 3λ

16π2Cϕ × ϵ ln(a)
]
,

〈
T̂µν

〉
= T µν ×

[
1 + 3λ

8π2CT × ϵ ln(a)
]
, (6.2)

where the the scalar and vector loops contribute differently to each constant factor,

Cϕ =
3λϕ2−

(1
6 −ξ

)
R

λϕ
2 + q2

λ

[(
qϕ

)2−λϕ2+
(1

6 −ξ
)
R

λϕ
2

]
= q4

λ2 + 1
Ξ−1

(q2

λ
− 1

)
+ 2 ,

(6.3)

CT = 2
3

[3λϕ2−
(1

6 −ξ
)
R

λϕ
2

]
+ q2

λ

[(
qϕ

)2−λϕ 2+
(1

6 −ξ
)
R

λϕ
2

]
= q4

λ2 + 1
Ξ−1

(q2

λ
− 2

3

)
+ 4

3 .

(6.4)

where Ξ=(1−6ξ)(2−ϵ)/[2(1−ϵ)2]. It is worth noting that had we applied the effective
potential approximation for our computation, and was utilized in [50], we would have
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missed the terms of order O(ϵ) in the coefficients above that appear in the dominant
late-time contribution. This can be tracked down to the classical equation (2.13) that
the tree-level condensate is assumed to satisfy. The effective potential approximation
in our case would correspond to neglecting the d’Alembertian term in that equation.
Even though this drops the time derivatives, the condensate is still time-dependent
because of the non-minimal coupling, and retains the same scaling, but its amplitude
does not account correctly for the O(ϵ) terms.

The factors (6.3) and (6.4) that multiply the secular corrections in (6.2) depend
only on the two independent combinations of model parameters, q2/λ and Ξ, and
this dependence is depicted in Fig. 4. The case of hierarchal couplings q2 ≫ λ
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Figure 4. Density plots of the coefficient (6.3) multiplying the late time correction of
the condensate (left), and of the coefficient (6.4) multiplying the late time correction of the
energy-momentum tensor (right). Thin black curves denote points of equal value of the
coefficient; curves are equidistant in values of the coefficients. The value increases from the
dark shading to the light shading. The thick, black, nearly straight lines denote where the
coefficient vanishes, and the values the coefficients to the left of these lines are negative,
while values to the right are positive.

from Sec. (5.5) is particularly interesting. It is captured by a simple expression
independent of the non-minimal coupling,

〈
ϕ̂
〉 a≫1∼ ϕ

[
1 + q4

λ

3ϵ
16π2 ln(a)

]
,

〈
T̂µν

〉 a≫1∼ T µν

[
1 + q4

λ

3ϵ
8π2 ln(a)

]
, (6.5)

where the hierarchy of coupling constants can make up for the ϵ-suppression in in-
flation.

Looking at the late time-expressions (6.3), in particular the condensate correction
on the left, it might be tempting to resum the secular correction,

〈
φ̂
〉

→ ϕ0a
−ϵ(1−δ)

into a renormalized slow-roll parameter ϵ→ ϵ(1−δ), where δ = 3λCϕ/(16π2). This
resummation would be correct provided that the equation of motion for

〈
φ̂
〉

is linear
and autonomous, and that the secular logarithm is an artifact of the time-dependent

– 27 –



perturbation theory. This is very often what is implicitly or explicitly assumed
when the so-called Dynamical renormalization group is invoked to resum the secular
corrections (see e.g. [75, 76]). However, the original construction of the Dynamical
renormalization group [77] is essentially a reformulation of multiple scale analysis,
and consequently necessitates knowing the dynamical equation before anything can
be resummed, and not only the first few perturbative corrections. The fact that this
resummation does not work here is obviated by the energy-momentum correction
that cannot be resummed by the same slow-roll parameter correction on the account
of the coefficients in (6.3) and (6.4) being different. In fact, the secular correction
in (6.2) is an effect of ultraviolet physics in a nonequilibrium setting. The appropriate
framework to describe (and eventually resum) them is the standard renormalization
group formalism, implemented in a nonequilibrium setting. The following section is
devoted to discussing some aspects of it.

6.1 Renormalization group explanation

The secular corrections in (6.2) at late times dominate over the tree-level result,
and thus invalidate the perturbative approach. The first step towards extending the
results past this point is to understand which equation governs these secular correc-
tions. It is that equation that ultimately provides the resummation scheme. Here we
demonstrate that, at the perturbative level, the secular corrections are governed by
the standard renormalization group equations applied to a nonequilibrium setting.

The utility of the renormalization group hinges on our ability to recognize the
relevant reference scale µ0 that appears together with the arbitrary renormalization
scale µ, as a logarithm of a dimensionless ratio, ln(µ0/µ). The appropriate choice of
the reference scale ultimately allows the renormalization group formalism to effec-
tively resum all such logarithms, thus extending the validity of perturbative results.
For systems with multiple physical scales, such as the one we consider here, different
regimes will have different reference scales [4]. Moreover, for dynamical systems the
reference scale will in general be time-dependent. Looking at the final one-loop correc-
tions (3.22)–(3.23) for the condensate, and (4.30)–(4.31) for the energy-momentum
tensor, the natural choice for the reference scale seems to be µ0 =(1−ϵ)H. However,
as various limits considered in Sec. 5 demonstrate, the relevant reference scale de-
pends on the parameter regime. It is the digamma functions, that are inextricably
tied to the logarithms they appear with, that set the correct reference scale, without
having to choose it by hand. This is perhaps most evident in the hierarchal limit of
Sec. 5.5, where the reference scale is recognized as µ0 =qϕ.

The system at hand is a multiscale problem, for which in general it is not possible
to choose a single reference scale which captures the large logarithms in all regimes.
Here this is essentially due to corrections descending from two independent loops
— the scalar and the vector one. Potentially large logarithms are captured by the
reference scale if it accounts for the digamma function accompanying the logarithm.
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In our case we can make two choices which capture either the full large logarithms
descending from the scalar loop, or ones descending from the vector loop, respectively,

ln
[(1−ϵ)2H2

µ2

]
+ Ψ(νS) −→ ln

(µ2
0
µ2

)
, or ln

[(1−ϵ)2H2

µ

]
+ Ψ(νV ) −→ ln

(µ2
0
µ2

)
,

(6.6)
where (1−ϵ)2H2 = 1

2

[(1
6 −ξ

)
R − λϕ

2]
> 0. However, we cannot do both simultane-

ously. That would require utilizing the full machinery of multiscale renormalization
group [78–81]. Nevertheless, this is not necessary for our purposes, as the late time
behaviour is not marred by such subtleties. In fact, there is universality in the late-
time secular corrections (6.2). This is because the tree-level quantities that make
up different reference scales all scale like the Hubble rate. Therefore, whatever µ0
precisley is, at late times we always have,

ln
(µ0

µ

)
a→∞∼ − ϵ ln(a) ≪ −1 , (6.7)

even if mS ≫H or mV ≫H.
The observations above can be formalized using the renormalization group ma-

chinery. Our results depend on the arbitrary renormalization scale µ,〈
ϕ̂
〉

=
〈
ϕ̂
〉(
H,

{
λn

}
, ln

[
µ0
µ

])
,

〈
T̂µν

〉
=

〈
T̂µν

〉(
H,

{
λn

}
, ln

[
µ0
µ

])
, (6.8)

where
{
λn

}
= {λ, ξ, Zϕ, αR} stands for all the coupling constants. Note that we

have chosen to treat the scalar wavefunction renormalization as a coupling constant
with its associated β-function for convenience, instead of treating it as the anomalous
dimension γ of the field; this distinction is essentially immaterial [68]. The renormal-
ization scale µ does not have a physical meaning by itself. What does have physical
sense is performing several measurements at some scale µ∗. This process determines
the couplings as functions of the ratio µ/µ∗

λn → λn

(
ln
[

µ∗
µ

])
, (6.9)

such that the dependence on µ completely disappears from the result,

µ
d

dµ

〈
ϕ̂
〉(
H,

{
λn

(
ln
[

µ∗
µ

])}
, ln

[
µ0
µ

])
= 0 , (6.10)

µ
d

dµ

〈
T̂µν

〉(
H,

{
λn

(
ln
[

µ∗
µ

])}
, ln

[
µ0
µ

])
= 0 , (6.11)

which is guaranteed by the running couplings satisfying the running equations,

µ
d

dµ
λn = βn

(
{λm}

)
, (6.12)

where βn are the β-functions associated to couplings λn, that are determined by the
structure of divergences. The one-loop β-functions are obtained by acting −µ ∂

∂µ
on
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the counterterm coefficients given in sections 4.3.1 and 4.3.2, and taking the limit
D→4,

βξ = −λ(1−6ξ)
16π2 + q2

16π2 , βλ = 9λ2

8π2 + 3q4

8π2 , βZϕ
= 3q2

8π2 , βαR
= −(1−6ξ)2

1152π2 .

(6.13)
It is straightforward to check that our one-loop corrections satisfy the Callan-Symanzik
equations to the given order,

µ
∂

∂µ

〈
φ̂
〉

= −βn

∂

∂λn

ϕ , µ
∂

∂µ

〈
t̂µν

〉
= −βn

∂

∂λn

T µν , (6.14)

where we have reintroduced an arbitrary Zϕ and αR dependence in the tree-level
expressions,

ϕ
(
H, ξ, λ, Zϕ

)
= ±H

√
1
λ

[
Zϕϵ(3−2ϵ) − 6ξ(2−ϵ)

]
, (6.15)

T µν

(
H, ξ, λ, Zϕ, αR

)
=

[
−1

4(3−4ϵ)ϵgµν + ϵ2(a2δ0
µδ

0
ν

)]
×
[
(Zϕ−6ξ)

(
ϕH

)2 + 144αR(2−ϵ)H4
]
. (6.16)

Then, having correctly identified the relevant late-time reference scale, as described
at the beginning of this section, we immediately infer the late-time limit,〈

φ̂
〉 a→∞∼ ϵ ln(a) × βn

∂

∂λn

ϕ ,
〈
t̂µν

〉 a→∞∼ ϵ ln(a) × βn

∂

∂λn

T µν . (6.17)

Apart from efficiently reproducing the late-time correction obtained from the
loop computation, the real power of the renormalization group is in its ability to
resum the large logarithms. This is accomplished by first making a variable substi-
tution, and adopting the dimensionless ratio that includes the reference scale µ0 as
the new variable,

s = ln
(µ0

µ

)
, (6.18)

such that the Callan-Symanzik equations read,

d

ds

〈
ϕ̂
〉(
H, λn

(
ln
[

µ∗
µ0

]
+s

)
, s
)

= 0 , d

ds

〈
T̂µν

〉(
H,λn

(
ln
[

µ∗
µ0

]
+s

)
, s
)

= 0 , (6.19)

and the equations for the running couplings,

d

ds
λn = βn

(
{λm}

)
. (6.20)

Once we have solved for the running couplings as functions of s, the Callan-Symanzik
equations allow us to express the results choosing any s. Particularly useful is the
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choice that removes as much of the explicit s-dependence from the results, and trans-
lates it to the s-dependence of the couplings. This choice corresponds to the following,〈

ϕ̂
〉

=
〈
ϕ̂
〉(
H, λn

(
ln
[

µ∗
µ0

])
, 0
)
,

〈
T̂µν

〉
=

〈
T̂µν

〉(
H, λn

(
ln
[

µ∗
µ0

])
, 0
)
. (6.21)

provided we had identified the relevant reference scale µ0. What (6.21) accomplishes
when compared with (6.19) is that the explicit dependence on the Hubble rate via
s is moved to the coupling constants. Working at the one-loop level corresponds to
solving Eqs. (6.20) to linear order in s,

ξ(s) = ξ(0) −
[
λ(0)

[
1−6ξ(0)

]
16π2 − q2(0)

16π2

]
s , (6.22a)

λ(s) = λ(0) +
[

9λ2(0)
8π2 + 3 q4(0)

8π2

]
s , (6.22b)

Zϕ(s) = Zϕ(0) + 3 q2(0)
8π2 s , (6.22c)

αR(s) = αR(0) −
[
1−6ξ(0)

]2

1152π2 s . (6.22d)

It is straightforward to see that when these solutions are plugged into the tree-level
result they reproduce exactly the late-time behaviour,〈

ϕ̂
〉

= ϕ+
〈
φ̂
〉

≡ ϕ
(
H, ξ(s), λ(s), Zϕ(s)

)
, (6.23)〈

T̂µν

〉
= T µν +

〈
t̂µν

〉
≡ T µν

(
H, ξ(s), λ(s), Zϕ(s), αR(s)

)
. (6.24)

Note that, even though all of the time-dependence has been absorbed into effec-
tive running of the coupling constants, this does not imply that the effect is not
observable. On the contrary, quantum corrections will cause the ratio

〈
ϕ̂
〉
/H to

acquire time dependence, which is a physical effect. We emphasize that the clas-
sical form in (6.23)–(6.24) is in general achieved only at asymptotically late times.
At intermediate times, other logarithmically enhanced contributions can in general
occur. However, since we are here primarily interested in the question of restoring
perturbativity at late times, this analysis suffices.

The analysis of this section opens up an exciting possibility of resumming the
corrections past the breakdown of the perturbative expansion, and obtaining reliable
late-time behaviour utilizing the machinery of the renormalization group. Accom-
plishing this requires supplementing the equations for the running couplings (6.20)
with an additional two for the U(1) charge q, and for the vector wavefunction renor-
malization ZA, and then solving the entire system exactly. For this we first need the
one-loop β-functions for q and ZA in the unitary gauge, which do not appear at the
level of one-loop analysis we performed here, but are important for resumming the
late-time behaviour correctly. This is left for future work. Finally, we emphasize that
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the renormalization group can explain the large ultraviolet logarithms, but not the
infrared logarithms [82], which in inflation are captured by a variant of Starobinsky’s
stochastic formalism [31, 39], as was accomplished in [83, 84].

7 Discussion

Quantum effects in inflation are widely studied utilizing de Sitter space as an ideal-
ized model space for inflation, and quantum loop corrections have been calculated
in many models of interest. On the other hand, comparatively little is known about
quantum effects in more realistic models of inflation, where the expansion rate is
an adiabatic function of time. Of particular interest are models which exhibit novel
secular effects that do not occur in de Sitter limit, and this work is devoted to one
such system. We consider power-law inflation, characterized by a constant principal
slow-roll parameter ϵ = −Ḣ/H2, as a mathematically tractable model of inflating
background, on which we studied the behaviour of a spectator non-minimally cou-
pled Abelian Higgs model. The Abelian Higgs model is considered to be in a classical
attractor regime, characterized by the scaling behaviour, ϕ/H=const., in which the
condensate tracks the evolution of the Hubble rate. This attractor can be seen as a
dynamical generalization of a symmetry-breaking minimum. We computed dimen-
sionally regulated one-loop corrections to the condensate depicted in Fig. 1, and
to the energy-momentum tensor depicted in Figs. 2 and 3. The tadpole contribu-
tions to the energy-momentum tensor in Fig. 2 are often not considered, but are of
essential importance because, only when they are added to the contributions from
vacuum fluctuations in Fig. 3, is the one-loop energy-momentum tensor conserved.
The computations are performed in the unitary gauge,6 in which both quantities
of our interest are manifestly gauge-independent observables. Our results (3.22)–
(3.23) and (4.30)–(4.31) capture both the infrared and ultraviolet effects, and they
go beyond the effective potential approximation, in that they descend from the full
one-loop effective action corrections, which include kinetic term corrections that need
not be small for finite ϵ backgrounds.

Particularly interesting are the secular corrections to both the condensate and
the energy-momentum tensor given in (6.2)–(6.4), which dominate at late times. The
corrected late time result takes the form of the tree-level result multiplied by a time-
dependent amplitude. Since this amplitude grows in time, the corrections can be seen
as driving the evolution away from the classical attractor given in (2.14) and (2.15),
pointing to the quantum instability of the attractor. Classically the condensate rolls

6We find no obstacle in computing dimensionally regulated loop correction in the unitary gauge,
conforming with the experience from flat space equilibrium computations [67]. However, Ref. [10]
reports problems with the unitary gauge for dynamical scalar condensates, when compared to the
covariant gauge computations. This issue should be resolved by repeating the explicit computations
of this paper in some analogue of the Rξ gauge.
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down the potential tracking the evolution of the Hubble rate. The late time one-loop
correction is enhanced by a logarithm of the scale factor (the number of e-foldings)
multiplied by the coefficient that takes positive values for the most range of the
model parameters, as seen from Fig. 4. Thus the one-loop correction tends to slow
down the rolling of the spectator scalar down its potential.

It is interesting that the secular corrections we find are multiplied by the principal
slow-roll parameter ϵ, and thus are suppressed in inflation, and vanish in the exact de
Sitter limit ϵ=0, that is often employed as a tractable model of inflation. This points
to the fact that power-law inflation, and other classes of inflating spacetimes closer to
more realistic slow-roll inflation can harbour qualitatively different, and potentially
important effects. While in inflation the slow-roll parameter acts as a suppression
factor, our results are valid for finite constant (or adiabatically evolving) ϵ, including
instances where it does not act as a suppression. Nonetheless, given enough time
the secular correction will necessarily overcome the possible suppressions coming
from the slow-roll parameter or the coupling constants, leading to the breakdown
of perturbation theory. Similar types of corections have also been noticed 7 in [41,
50, 85, 86]. This serves as a very good motivation for further studies of quantum
corrections to observables in power-law inflation, using both perturbative [41, 87],
and non-perturbative [42–44] methods.

Another observation to be made is that the possible hierarchy between the cou-
pling constants, q2 ≫λ, discussed in Sec. 5.5, leads to an unsuppressed loop correc-
tion. This correction is furthermore made bigger at late times by the secular loga-
rithm, exacerbating the problem of applying perturbation theory. Unlike the secular
correction, the coupling hierarchy enhancement survives in the de Sitter limit. In
fact it is already seen in flat space [68], where the vector loop moves the minimum of
the effective potential by an amount larger than tree-level. Despite that one expects
perturbativity to be respected at two- and higher loops [88, 89]. In cosmological
expanding spaces, on the other hand, this perturbativity will necessarily be spoiled
at late times due to secular corrections we report here.

The secular corrections we find are an ultraviolet effect, and can ultimately
be accounted for by the renormalization group, as we show in Sec. 6.1. This is
because the secular logarithm always appears together with the logarithm of the
renormalization scale µ in the form ln

[
(1− ϵ)H/µ

]
given in (6.1). Consequently,

the secular correction can be captured by an effective time-dependent running of
the coupling constants given by the renormalization group equations. Note that

7It is interesting that for quantum-gravitational corrections found in [85, 86] the one-loop cor-
rection is actually decaying with respect to the tree-level result. Even though there is a ln(a)
enhancement factor descending from the UV corrections, just like the one we find here, the correc-
tion decays as a power law as it is additionally multiplied by a decaying H2 that has to be there to
form a dimensionless product with the dimensionful loop-counting parameter κ2 = 16πGN , where
GN is the Newton’s constant.
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this does not imply that all the physical scales are simply rescaled differently at
different points in time. It is the fact that the quantum-corrected condensate no
longer scales as the Hubble rate, and it is their ratio that has a physical meaning.
It would be interesting to investigate the full power of the renormalization group to
resum the late time behaviour, and provide reliable results beyond the breakdown
of perturbation theory. For the case at hand, that would first require computing the
beta functions for the U(1) charge and the vector field wavefunction renormalization,
which do not appear in the strictly perturbative computation at hand. Early efforts
in this direction are undertaken in Refs. [83, 84], but a lot more is needed to fully
develop the formalism, especially for its higher loop implementation.

It would, furthermore, be interesting to examine quantum corrections to the con-
densate when the scalar field is the inflaton [90] as well as the quantum backreaction
from cosmological perturbations [91–95]. A notable model is Higgs inflation [7, 8],
and stability of the quantum model is of particular interest, which can be addressed
without [9], or with taking into account the background curvature corrections [17–19]
and additional fine tuning problems [40, 45–50]. Important questions to be addressed
are how the secular corrections discussed in this work affect stability of Higgs infla-
tionary models, as well as the amplitude of the scalar and tensor spectra. Secular
corrections to the reheating period following Higgs inflation is also of great inter-
est [18, 19, 51, 52].
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