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[1] A vertically integrated two-dimensional ice flow model was coupled to an elastic
lithosphere-Earth model to study the effects of lateral variations in lithospheric strength on
local bedrock adjustment. We used a synthetic bedrock profile and a synthetic climate to
model a characteristic ice sheet through an ice age cycle. Realistic differences in
lithospheric strength altered the local bedrock adjustment up to 100 m, the ice extent by
tens of kilometers, and the ice volume by several percent. Hence, when modeling ice
sheets, it is essential to include information on lithospheric structure. In addition, we used
the coupled ice flow–lithosphere model to construct synthetic bedrock motion time
series to assess their potential in resolving lithospheric structure. Inverse experiments
showed that the model can resolve lateral variations in lithospheric strength from these
bedrock motion time series, provided that we have data from both sides of a lateral
transition in lithospheric strength. The inversion that solved for a lateral transition was
able to find a solution that was consistent with all data, even if they were noisy. In the
presence of lateral variations in lithospheric strength, there was no solution to the inverse
problem for which all data were modeled correctly by a uniform lithospheric model.
The synthetic data showed no significant sensitivity to the location of the transition. Hence
we require information from independent sources, such as seismology or gravity, about the
locations of transitions in lithospheric strength.
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1. Introduction

[2] To understand the Earth’s climate and to predict future
climate change, it is essential to study the sensitivity of the
Earth’s system to change. The growth and decay of large ice
sheets were amongst the largest climate changes in the past
million years. The physical processes controlling the evo-
lution of ice sheets are generally studied with dynamical ice
flow models. Most studies consider the response of the ice
to the upper boundary conditions, i.e., climate and sea level.
However, in this paper we focus on the lower boundary, i.e.,
the lithosphere.
[3] Bending of the outer layers of the Earth as response to

the added weight of ice results in a isostatic adjustment of
the bedrock of up to one third of the ice thickness. This
effect influences surface temperature, basal topography, and
the stress field in the ice. To calculate the ice evolution as
accurately as possible, dynamical ice flow models incorpo-
rate this vertical displacement by assuming an Earth rheol-

ogy. Le Meur and Huybrechts [1996] have shown that a
simple Earth model, namely a purely elastic lithosphere
with uniform thickness and strength underlain by a uniform
mantle with a single relaxation time, works reasonably well
compared to more realistic, but also computationally more
demanding, viscoelastic Earth models, with several laterally
uniform layers.
[4] However, seismological and gravitational methods

have suggested large lateral differences in lithospheric
structure [Djomani et al., 1999; Bannister et al., 2003;
Darbyshire et al., 2004; Pérez-Gussinye and Watts, 2005].
For example, there are strong indications for a large
transition under the Trans Antarctic Mountains from weak
lithosphere in the western part of the continent to strong
lithosphere in the eastern part [Stern and Ten Brink, 1989;
Bannister et al., 2003]. Seismological and gravitational
methods are very useful in retrieving information on litho-
spheric structure, but they have some drawbacks as well.
For instance, seismological data are difficult to interpret in
terms of actual strength, since lithospheric strength is a
function of composition, structure, and tectonic history
[Braitenberg et al., 2002]. Gravitational methods experi-
ence difficulties when the bedrock is not in isostatic
equilibrium, or if the load is not well known or highly
variable, for example in regions with a glaciation history.
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[5] To be able to use gravitational methods in (formerly)
glaciated regions, an ice history, such as ICE-3G and its
descendants, was constructed from glacial isostatic adjust-
ment data [e.g., Tushingham and Peltier, 1991; Milne et al.,
2002]. This ice history was then assumed to be a known
loading history to study the rheological properties of the
Earth [e.g., Wolf, 1993; Vermeersen and Sabadini, 1999; Di
Donato et al., 2000; Kaufmann and Wu, 2002]. Such an ice
history is derived from (mostly sea level) observations and
does not include ice mechanics.
[6] Recently, experiments have been performed using

these ice loading histories on the occurrence of possible
lateral transitions in lithospheric strength. For example,
Kaufmann et al. [2000], Kaufmann and Wu [2002], and
Zhong et al. [2003] have experimented with the effects of
lateral variations in lithospheric strength on local glacial
isostatic adjustment data. Kaufmann et al. [2000] concluded
that realistic lateral variations in strength underneath these
prescribed ice loads (no ice dynamics) could give differ-
ences in local sea level data up to 10 m. Kaufmann et al.
[2005] showed that modeled isostatic adjustments strongly
depended on the chosen ice history. In this latter paper one
of the ice histories was based on a dynamical ice flow
model. To resolve lateral variations in lithospheric strength
both Kaufmann and Wu [2002] and Zhong et al. [2003]
proposed an inverse procedure with several laterally
homogeneous models and local data. Variations in local
estimates between different regions indicated variations in
lithospheric structure. In this paper we present a new
approach to retrieve information on lateral variations in
lithospheric strength. This new method is based on the
addition of a dynamical ice flow model to the inverse
procedure.
[7] Usually, ice evolution in a dynamical ice flow model

is forced by a climate model. Such a climate model is
derived from isotope measurements from ice and/or ocean
sediment cores. This procedure is completely independent
from the glacial isostatic adjustment data ice histories, such
as ICE-3G. Moreover, the ice thickness distribution in these
ice histories is generally based on optimization procedures,
whereas dynamical ice flow models use a description of ice
rheology. Hence ice histories, such as ICE-3G, and dynam-
ical ice flow models differ in both the underlying data set
and the modeling approach. Therefore dynamical ice
flow models provide an additional, independent source of
information, which can be used to invert for lithospheric
structure.
[8] As mentioned before, dynamical ice flow models

need to include isostatic adjustment calculations to reach
the most accurate understanding of the ice thickness and
extent throughout glacial cycles. Therefore we constructed a
new dynamically fully coupled ice sheet–Earth model. We
used a relatively simple Earth model based on a purely
elastic lithosphere including lateral variations in strength
underlain by a uniform mantle with a single relaxation time
as described in section 2. This Earth model was coupled to
an ice model based on the shallow ice approximation as
described in section 3. Section 4 shows a characteristic ice
sheet evolution for three different Earth models to illustrate
the full model. This ice-Earth model was then used in a
synthetic approach to assess an inverse procedure to resolve

lateral variations in lithospheric strength from vertical
isostatic bedrock adjustment data (section 5).

2. Lithospheric Model

[9] The response of the solid Earth to an ice load can to
first order be described by the bending or flexure of an
elastic lithosphere combined with a time delay due to the
viscous properties of the mantle below. If we assume that
the elastic properties and the thickness of the lithosphere are
constant throughout the plate, the behavior of the litho-
sphere can be described by a well-known fourth-order
differential equation [e.g., Turcotte and Schubert, 2002;
Van der Veen, 1999; Brotchie and Silvester, 1969], which
can be solved analytically for a given load, qload:

Dr4w� q ¼ 0; ð1Þ

where w is the vertical deflection, r is the two-dimensional
biharmonic operator, q = qload � rmgw is the load minus the
buoyancy of the mantle, and D is called the flexural rigidity
and is a measure for the strength of the lithosphere. This is
defined as

D ¼ Eh3

12 1� n2ð Þ ; ð2Þ

where h is the thickness of the elastic lithosphere, and E and
n are elastic parameters, respectively Young’s modulus and
Poisson’s ratio.
[10] For the general case where the elastic properties are

not homogeneous, we cannot use the standard flexural
equation presented in equation (1). For those cases we have
to use a more general equation (see Appendix A for more
details),

Lrð ÞTD0Lrw� q ¼ 0; ð3Þ

where (Lr) is given by

Lrð Þ ¼ @2

@x2
@2

@y2
2

@2

@x@y

� �T
; ð4Þ

and the matrix D0 is given by

D0 ¼ D

1 n 0

n 1 0

0 0 1� nð Þ=2

2
4

3
5; ð5Þ

Note that when D is constant, equation (3) reduces to
equation (1); see also equation (A19) in Appendix A, which
is the equivalent of equation (3) without the matrix notation.
[11] As we are interested in lateral variations in litho-

spheric strength we use equations (3) to (5) to describe the
vertical motion of the lithosphere.
[12] Equations (3) to (5) describe an instantaneous

elastic response. The Earth however cannot respond instan-
taneously, since the mantle below has a nonzero viscosity.
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Therefore the temporal response has a time delay and is
calculated as [e.g., Van der Veen, 1999]

@b

@t
¼ � 1

t
bþ w� b0ð Þ: ð6Þ

This is a simple first-order approach in which we
characterize the response of the mantle with one single
relaxation time t, commonly used in glaciological applica-
tions with a value of 3000 years. The parameter w is the
total subsidence as calculated by the lithospheric model, b is
the height of the bedrock, and b0 is the initial topography,
hence topography without ice. The Earth was not adjusted
each time step of the ice model, but every ten years instead.
This is allowed, since this is much less than t.

2.1. Numerical Properties of the Lithospheric Model

[13] We have numerically solved equation (3) on a square
equidistant grid with first-order central differencing, result-
ing in a completely implicit procedure. At the boundaries

we set the deflection w as well as its gradient over that
specific boundary to zero.
[14] We performed several discretization tests for varying

grid point distances. For coarse grids (Dx > 40 km), the
solution was inaccurate. For fine grids (Dx < 20 km), the
solutions were numerically unstable because the ice sheet
surface was too smooth to calculate surface derivatives up
to fourth order within machine precision. Therefore we used
a grid point distance Dx of 30 km. Note that these results are
valid for the typically smooth, large ice sheets we used in
this manuscript. For specific applications the grid require-
ments could be different.
[15] We know from the analytical solution to equation (1)

that the response of the lithosphere to an arbitrary load is
characterized by a large deflection underneath the load and
a positive, and small peripheral bulge outside the load. The
total vertical movement is controlled by the flexural rigidity
(D). Since the boundary conditions require that the deflec-
tion is zero at the boundaries of the domain, the calculated
deflections are valid as long as the domain boundaries are
after the bulge, where the deflections are very small. For
this reason we used a domain of 3000 by 3000 km where
the ice load never had a radius larger than approximately
600 km.
[16] In this paper we modeled transitions in flexural

rigidity over several orders of magnitude. Several tests
with varying taper lengths showed that these very large
transitions require a horizontal scale of approximately
300 km width to avoid numerical instabilities. As our
interest is in the continental scales, this is not a severe
restriction.

2.2. Response of the Lithosphere to a Parabolic Load

[17] As an example of the lithospheric part of the algo-
rithm we show the response of three lithospheric models to
a radially symmetric parabolic load with a radius of 500 km
(Figure 1b). Figure 1a shows the flexural rigidities of the
three lithospheric models. We used two lithospheric models
with a constant flexural rigidity; one with D = 1022 Nm (a
typical value for oceanic lithosphere) and one with D = 1025

Nm (a typical value for strong, continental lithosphere). The
third model contained a transition with a width of 300 km
from D = 1025 Nm to D = 1022 Nm, with the center of the
transition at a radial distance of 500 km. As such, the ice
margin is directly located above the transition. This corre-
sponds to a situation where the ice margin is positioned on
the transition from continental to oceanic lithosphere. The
transition is modeled with a combination of two error
functions, characterized by a rapid change followed by a
more gradual asymptotic behavior toward the final values.
Figure 1c shows the resulting deflections as a function of
distance. We see differences up to 100 m between the
solutions. Underneath the load the curve for the variable
lithosphere resembles the one for the strong lithosphere,
which makes sense since the transition only occurs at
500 km distance from the center. At the transition however,
the curve for the variable lithosphere shifts toward the one
for the weak lithosphere; the bulge moves closer to the
margin of the load and is higher than for both other curves.
These results are generally in agreement with Kaufmann et
al. [2000] and Kaufmann and Wu [2002]. The result implies

Figure 1. (a) Flexural rigidity as a function of distance
from the center. (b) Height of load as a function of distance
from the center. (c) Deflection as a function of distance from
the center. The dashed and dash-dotted lines represent the
analytical solutions for D = 1025 Nm and D = 1022 Nm,
respectively.
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that the possible magnitude of a peripheral bulge strongly
depends on the lateral variation in lithospheric strength.

3. Ice Model

[18] The ice model is based on the vertically integrated
continuity equation [e.g., Van der Veen, 1999]:

@H

@t
¼ �r � H Uð Þ þ B ð7Þ

where H is the ice thickness, U is the vertically averaged
horizontal velocity, and B is the mass balance, which is the
net increase or decrease of local ice thickness in meters of
ice per unit time due to snow fall or ice melt at the surface of
the ice sheet. We used the shallow ice approximation [e.g.,
Hutter, 1983; Van der Veen, 1999], which assumes that the
horizontal extent is much larger than the ice thickness. For a
two-dimensional model without sliding, the expression for
the vertical mean horizontal velocity reduces to the
deformation velocity, which is given by

U ¼ �2

nþ 2
ri gð ÞnA @hs

@x

2

þ @hs
@y

2� �n�1
2

rhs H
nþ1; ð8Þ

where hs is the surface height, ri is the ice density, g the
gravitational acceleration, and A and n are rheological
parameters, where n is set to 3. The parameter A is assumed
to be constant throughout the ice.
[19] A good first-order approximation for the mass bal-

ance is a linear profile for which the only variable is height
above a reference level;

B ¼ min Bmax; b hs � ELAð Þð Þ ð9Þ

where b is the mass balance gradient in yr�1 and ELA the
equilibrium line altitude in meters. In general temperatures
decrease with increasing altitude. We assume that the total
precipitation is constant with altitude. The slope of the mass
balance profile is then caused by the net effect of decreasing
melt with altitude and the simultaneous increase of the snow
fraction of the precipitation. The part of the profile where B
approaches the value Bmax reflects the absence of melt at
high elevations where all precipitation falls as snow. At the
ELA the mass balance is zero, hence no net change in ice
thickness due to accumulation or melt.
[20] We solved the system, given by equations (7) to (9),

on a two-dimensional equidistant square grid with central
differencing in the spatial domain and a grid point distance
of 2 km for a total domain of 1500 by 1500 kilometers. The

Figure 2. Results after 100,000 years of ice growth. (a) Flexural rigidity for the three lithospheric
models: the variable rigidity (solid line), D = 1022 Nm (dash-dotted line), and D = 1025 Nm (dashed line).
(b) West-east cross section of an ice sheet at LGM. (c) Differences in bedrock height of the constant
lithospheric model with the variable lithospheric models, i.e., bconstant � bvariable, as a function of distance
from the center along the cross section. (d) Similar to Figure 2c but now for ice thickness differences.
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model corresponds to the type II ice models from the
EISMINT experiments [Huybrechts et al., 1996], which is
widely used by ice sheet modelers. For the time integration
an alternating direction implicit (ADI) method is used [e.g.,
Mahaffy, 1976; Huybrechts, 1992]. The ice thickness at all
boundaries is set to zero.
[21] The grid point distance and the domain size are not

the same as for the lithospheric model. We required a fine
grid for the ice to be calculated accurately. For details, see
van den Berg et al. [2006]. To obtain the response for a grid
point in the Earth domain, we applied an average of the
overlapping grid points in the ice domain. Once the Earth
response was calculated, we interpolated the calculated
bedrock elevation using bicubic splines to the ice domain.
This procedure works as long as the bedrock response is a
smooth function of x and y.

4. A Coupled Synthetic Ice Sheet–Bedrock
Evolution

[22] To illustrate the combined effect of the ice and
lithosphere model, we considered the development of an
ice sheet over a period of 100,000 years followed by partial
melt over a period of 20,000 years. We used three litho-
spheric models: two models with a constant rigidity; one
weak lithosphere with D = 1022 Nm, and one strong

lithosphere with D = 1025 Nm. The third lithospheric model
contained a transition of 300 km width from D = 1022 Nm in
the western (or left) half of the domain to D = 1025 Nm in
the eastern (or right) half of the domain (Figures 2a and 3a).
This synthetic geometry was inspired by the geological
structure of Antarctica, where there are strong indications
for a transition between weak lithosphere west of the Trans
Antarctic Mountains (TAM) and strong lithosphere to the
east. The values for the flexural rigidity are representative
for that transition [Stern and Ten Brink, 1989].
[23] We prescribed the initial bedrock profile as

b0 rð Þ ¼ bmax � g r; ð10Þ

with b0 the initial bedrock height in meters, bmax the
maximum initial bedrock height, g the initial bedrock
gradient, and r =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
the distance from the center in

kilometers. The parameterization of the mass balance as an
altitude-dependent parameter requires the introduction of a
surface slope. Without the surface slope, the ice model is
numerically unstable.
[24] Table 1 shows the parameter values for this experi-

ment. In spite of the lithospheric model, the prescribed mass
balance profile is not inspired by the climate on Antarctica,
making this a purely theoretical experiment. The equilibrium
line altitude ELA was 150 m during the first 100,000 years.

Figure 3. Results after 20,000 years of deglaciation. (a) Flexural rigidity for the three lithospheric
models: the variable rigidity (solid line), D = 1022 Nm (dash-dotted line), and D = 1025 Nm (dashed line).
(b) West-east cross section of an ice sheet at PD. (c) Differences in bedrock height of the constant
lithospheric model with the variable lithospheric models, i.e., bconstant � bvariable, as a function of distance
from the center along the cross section. (d) Similar to Figure 3c but now for ice thickness differences.
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Results are presented in Figure 2. Figure 2b shows an east-
west profile through the domain at this time, which we will
call Last Glacial Maximum (LGM). After these 100,000
years ELA was consecutively moved up to 500 m for a
duration of 20,000 years. Figure 3 shows the results after
this deglaciation. Figure 3b shows an east-west profile
through the domain after this total of 120,000 years, which
we will call present day (PD). Note that these profiles are
not steady state profiles, but time slices. Figures 2c and 3c
show the differences in bedrock heights between the differ-
ent Earth models. Figures 2d and 3d show the resulting
differences in ice thickness.
[25] For the case with the variable lithosphere, the ice

sheet resembles the ice sheet for the weak lithosphere on the
weak part of the domain. On the strong part of the domain,
the ice sheet resembles the ice sheet for the strong litho-
sphere. In the center of the domain the differences with the
variable lithospheric model are smallest for the strong
lithosphere. Since strong lithosphere has a larger region of
influence (or larger flexural wavelength) than weak litho-
sphere, the strong part of the lithosphere dominates the
transition region.
[26] Fast melting occurs during the final 20,000 years of

the cycle (Figure 3). The ice decreases more rapidly in ice
extent than in ice thickness. The resulting ice sheet is almost

as large as the transition in rigidity itself. As a result, the
transition is much more noticeable in the bedrock response,
giving more widespread differences between the three
lithospheric models.
[27] The ice extent is different for each Earth model,

causing the differences in ice height to be 100 m or more in
the sensitive marginal areas. The differences in ice extent
for the realistic strengths used in Figure 2 and 3 are tens of
kilometers, making this an important feature. This marks
the importance for ice modeling of taking into account the
dynamical response of the ice to the strength of the
lithosphere.
[28] Figure 4 shows the corresponding bedrock height

change for specific locations as a function of time together
with the resulting ice volume. Differences in bedrock
deflection between the different lithospheric models are
approximately 20–30%. We observe that not only the ice
extent, but also the ice volume is a function of lithospheric
strength. Differences in lithospheric strength lead to differ-
ences in resulting ice volume of up to ten percent. We
performed tests with different ice rheologies by varying the
flow parameter A by 30%. This did not influence these
relative volume differences between the different Earth
models. Varying the climate parameters such as the mass
balance b and the maximum mass balance gradient Bmax did
not have a large effect either. Again, this clearly marks the
importance of taking into account the dynamical coupling
between ice and Earth for the modeling of ice. Not just
taking into account changes in the rigidity, but also knowing
the absolute value of the strength is important.

5. Reconstruction of Lithospheric Strength
From Synthetic Bedrock Data

[29] Relative sea level curves contain both the signals
from actual sea level changes and information about the
bedrock motion. Close to the ice sheet they contain infor-
mation on the flexural behavior of the lithosphere [e.g.,
Milne et al., 2002]. The use of these data requires coupling
of the dynamical models presented here to a full gravita-
tional sea level model. We assume that we can extract the

Table 1. Parameters for the Experimentsa

Parameter Value

b, yr�1 0.005
ELA, m 150 (first 100,000 years),

500 (final 20,000 years)
Bmax, m yr�1 0.1
t, years 3000
bmax, m 400
g, m km�1 1.3

aHere b is the mass balance gradient, ELA is the altitude where the mass
balance is zero, Bmax is the maximum mass balance, t is the characteristic
relaxation time for the mantle, bmax is the highest point in the bedrock
topography without ice, and g is the gradient in the bedrock topography
without ice.

Figure 4. (a) Bedrock data at 250 km distance from the center for the eastern part of the variable
lithosphere (thick solid line), the western part of the variable lithosphere (thick dashed line), and the two
constant lithospheres (strong, thin dashed line, and weak, dash-dotted line). (b) Same as Figure 4a but for
a distance of 500 km from the center. (c) Ice volume curve for the variable lithosphere and the two
constant lithospheres (dash-dotted line and dashed line).
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isostatic adjustment of the bedrock from the sea level
curves. Hence we only use the data of the bedrock motion
and perform several experiments to assess their ability to
provide information on lithospheric strength.
[30] The climate, initial bedrock topography, and calcu-

lated bedrock height yield the ice thickness. This is in turn
input for the bedrock model. The output from the bedrock
model is bedrock height, which is used for the next time
step in the ice model and so on. Note the dynamical
coupling between ice and Earth. In the following experi-
ments the climate and initial bedrock topography are as-
sumed to be known and fixed to the values of the previous
section, presented in Table 1. The data are given by the
resulting bedrock height time series. This leaves only the
lithospheric strength model as unknown parameter, which
we aim to recover from the bedrock height data. The ice
sheet responds both to climate and to the lithosphere, hence
will differ in ice thickness and extent for different litho-
spheric models, as shown in section 4.
[31] Figure 5a shows the ‘‘true’’ synthetic geometry of the

lithosphere, with an eastern and western value for D with
the transition in the center of the continent (as indicated by
the thick solid line in the center of the domain), which we
aim to recover from synthetic bedrock data. We used a
square domain with a transition from weak to strong
lithosphere in the center, such that the western part of the
domain is weak (D1 = 1022 Nm), and the eastern part is
strong (D2 = 1025 Nm). The transition width is 300 km.
Figure 5a also shows a thin, vertical, solid line and an arrow.
We will come back to this in section 5.2.1.
[32] For this true lithospheric strength model we created

the true bedrock response data dt. Figure 5a shows the
locations; we took data dt from eight directions (north,
northeast, east, southeast, south, southwest, west, and
northwest) and at two distances from the center (250 and
500 km). In total we generated 16 bedrock height curves as
a function of time. A data point was calculated every
1000 years, hence we generated 120 data points for each
location for the glacial-interglacial run of 120 kyr. We only
used the last 20 time points of the total 120, since these are
from the deglaciation part of the curves, which in practice is
the only part of the bedrock curves we may expect to be
available from real observations.

5.1. Single Strength Inversion

[33] In the first experiment we investigated whether we
could find a single strength for the entire continent
(Figure 5b, D1e = D2e = De) which provides approximately
the same bedrock adjustment data as obtained from the true
lithospheric strength model with a transition from weak to
strong lithosphere. We modeled bedrock adjustment data de

for several single strengths De at the same times and
locations as the true data dt. We then compared these
different data de with the true data dt. For the comparison
we used a cost function based on the c-square test:

c2 ¼ 1

N T

X
n

X
k

dtn;k � den;k


 �2

stn;k

 �2

0
B@

1
CA ð11Þ

where the sum n is over all the data locations (N = 16) and
the sum k is over all times (T = 20). The value for c2 is
different for each single strength De and has a minimum for
that value of De where the modeled bedrock data de are
closest to the true data dt. Once c2 is equal to one, the
modeled bedrock data de match the true data dt within one
standard deviation.

Figure 5. Geometry of the inversion. (a) Geometry of the true model with D1 = 1022 Nm and D2 =
1025 Nm. Figure 5a also shows the locations of the bedrock data in eight directions from the center (north,
northeast, east, southeast, south, southwest, west, and northwest) and at two distances from the center (r =
250 and 500 km). In total, there are 16 bedrock curves as a function of time. (b) Geometry of the
inversion. We invert for two parameters (D1e and D2e). The generated bedrock data are in the same
locations as in Figure 5a.

Figure 6. The c2 distribution as a function of De for
bedrock data for 5% noise (solid line), 10% noise (dashed
line), and 20% noise (dotted line).
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5.1.1. Results
[34] Figure 6 shows c2 as a function of De for an addition

of either 5, 10, or 20% Gaussian noise in the true data dt.
The resulting best estimate De is roughly at the average of
both true rigidities. An uncertainty of 20% is not uncommon
for sea level data, but the resulting estimate for the litho-
spheric strength is quite robust; the minimum in misfit
remains significant.
[35] Figure 7a shows c2 for data from a specific direction

only. We do not show results from the southeast and the
northwest, because these data are the same for the northeast
and the southwest respectively due to symmetry. The data
from the western part of the domain yield as best estimate
for De the true value D1. Similarly, for data from the eastern
part of the domain, the best estimate for De is equal to the
true value D2. If the direction is not perpendicular (i.e.,
northeast or southwest) to the transition, the resulting best
estimate De does not change much compared to the per-
pendicular directions east and west; the strong estimate is
not affected, the weak estimate is a little different, but the
minimum is very flat, which is a result of the logarithmic
scale. When the data from the north are used, we find the
average between D1 and D2. This value is also equal to the
local value, but it is not possible to distinguish whether the
result is based on the local value or the average. The values
of c2 in Figure 7a do approach one unlike the values for
low noise levels in Figure 6. This implies that there is no
single value De for the entire domain for which data on both
sides of the transition are modeled well. This means that it is
not possible to perform a good inversion for a single
strength in a consistent model if the true situation has a
variable lithospheric strength.
[36] Figure 7b shows c2 for data from one distance only,

but using all directions. The curve with the clearest mini-
mum is the one for a distance of 250 km from the center.
The bedrock at these locations is covered by ice for a large
part of the ice history, but is located near the ice margin for
the present-day situation (Figure 3). Further from the
margin, not much happened to the bedrock, hence a value

for c2 close to one, but also hardly a minimum. This implies
that, as expected, we need data as close to the ice as possible
in order to discriminate between several values for litho-
spheric strength.
5.1.2. Effects of Uncertainties in the Ice and
Earth Model
[37] To assess the effects of uncertainties in the ice model,

we also performed the experiment without the full dynam-
ical coupling of ice and lithosphere. To acquire an ice
history, we calculated, with the dynamical coupling, for a
uniform lithospheric strength the corresponding ice sheet
evolution. For this specific ice history, we saved the ice
thicknesses every 500 years. These ice thicknesses were
then used as a prescribed ice history. Hence the modeled
bedrock adjustment data de for each lithospheric strength De
now shared the same input, namely this ice history pre-
scribed every 500 years, instead of the dynamically
corresponding ice sheet. This procedure did not influence
the true data dt, these were kept the same as in the previous
experiments. Only the estimates De were assessed with the
new ice history.
[38] Figure 7c shows the resulting c2 for an ice history

corresponding to a lithospheric strength De of 1022 Nm. We
repeated this experiment with several ice histories
corresponding to several lithospheric strengths, but the
results were similar to the result in Figure 7c. A few things
can be observed. First, when the uncertainties in the true
data are high, there is no change in the c2 values compared
to the fully coupled results (Figure 6). Only for small (5–
10%) uncertainties in the true data dt there is a difference.
The minimum is unaffected. However, the c2 values sur-
rounding the minimum are higher. Interestingly, the c2

value for De = 1022 Nm is also higher than with the full
dynamical coupling, even though this value was used to
calculate the ice history. This indicates the effect of adjust-
ing the ice history only every 500 years instead of each time
step.
[39] To further assess the influence of uncertainties in the

ice model we calculated new true data dt corresponding to a

Figure 7. The c2 distribution as a function of De for the bedrock data with 5% noise. (a) Cost function
when all data in one specific direction (stars for north, pluses for northeast, squares for east, circles for
southwest, and diamonds for west) are used. (b) Misfit when all data at specific distances are used (stars
for 250 km and pluses for 500 km). (c) Similar to Figure 6, but now the estimates De are calculated with a
prescribed ice history.
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different climate. We then used the original climate to
estimate the lithospheric strength De, this time with the full
dynamical coupling between ice and Earth. In the case of a
warmer true climate, this meant that the estimated values of
De were assessed with an ice sheet that was too large. In the
case of a colder true climate, the estimated ice sheets were
too small. The resulting c2 values were very sensitive to the
climate used to calculate the ice sheets. This is in agreement
with the results of Kaufmann et al. [2005], who found that
modeled crustal motions depended strongly on the specific
ice history. The minimum value was shifted to a smaller
value for De for the colder true climate, and to a larger value
for De for the warmer true climate. This shift was associated
with the bedrock adjustment near the ice margin. This is as
expected since large ice sheets are generally not sensitive to
the lithosphere in the center of the ice sheet.
[40] To assess the influence of uncertainties in the Earth

model, we calculated new true data dt corresponding to a
different relaxation time t and performed the experiment
similarly to the different climate scenario, hence with the
fully coupled model. The resulting c2 values were again
very sensitive to this parameter. The resulting best estimate
of the lithospheric strength was influenced, indicating the
well known strong sensitivity of bedrock data to the
viscosity of the mantle. This is in agreement with Kaufmann

and Wu [2002], who found a trade-off between lithospheric
structure and asthenospheric viscosity. The current litho-
sphere model however, is not adequate to study mantle
viscosities. Therefore we assume the relaxation time is
known.

5.2. Variable Strength Inversion

5.2.1. Fixed Location of Transition
[41] We continue the experiments with an inversion for

variable strength of the lithosphere. Figure 5a again shows
the geometry of the true model, which is the same as in the
previous section. Instead of estimating a single value D1e =
D2e = De, our objective is to find estimates for both a
western value D1e for the left part of the domain and an
eastern value D2e for the right part of the domain. We
modeled data de with the full lithospheric model for several
transitions in strengths from D1e to D2e and compared
these data with the true data dt with equation (11). The ice
sheets were again calculated with the dynamical coupling
between ice and Earth. Figure 8a shows the cost function c2

for each value of D1e and D2e for a 5% Gaussian noise
level in the true data dt. The minimum reflects the true
values D1 and D2. The values for c2 are much closer to one
than in Figure 6 (solid line), indicating that, as expected,
this inversion leads to a better result.
[42] Figure 5 also shows the geometry of the next

experiment. Figure 5a again depicts the geometry of the
true model. The transition from weak (west) to strong (east)
lithosphere no longer coincides with the highest point on the
domain. Instead, the transition is shifted to the west by
200 km as indicated by the arrow and the thin solid line in
Figure 5a. Otherwise all parameters remain unchanged.
Figure 5b shows the geometry of the model we used to
estimate D1e and D2e. Notice that in this figure the
transition still coincides with the highest point of the
domain. Thus, in this experiment we have changed the true
data dt rather than changing the estimated data de. Since no
combination of D1e and D2e equals the true geometry, we
expect the c2 distribution from this inversion to be worse
than the c2 distribution from the second experiment.
Figure 8b shows the resulting c2 for the third experiment
for a 5% Gaussian noise level. Indeed we see that the
minimum value for c2 is slightly higher than in the previous
experiment (1.5 compared to 1). More significantly how-
ever, the minimum is at different values for D1e and D2e.
5.2.2. Moving Transition
[43] To examine this further, we performed the same

experiment for varying locations of the transitions from
weak to strong lithosphere. Furthermore, we added more
noise to the true data dt to address the robustness of the
results. Figure 9a shows the minimum values of the indi-
vidual c2 distributions as a function of location of the
transition. The solid curve is the curve calculated with 5%
noise in the true data dt. The curves show that we only find
a value c2 equal to one if the location of the transition used
to estimate D1e and D2e agrees with the position of the
transition used for the calculation of the true data. However,
if we add more noise to the true data, the differences in the
values of the misfit at their minima turn out to be insignif-
icant. Each inversion is equally good. Figure 9b shows the
corresponding allocated values of D1e (west) and D2e (east)
as a function of location of the transition. Whereas each

Figure 8. (a) The c2 distribution as a function of D1e and
D2e for the case where the transition is in the center of the
domain. (b) Similar to Figure 8a, but now the transition is
moved 200 km to the west. The inversion, however, is still
performed with the boundary between cells in the center of
the domain, Figure 5. The contour lines are drawn at
intervals of 1.5 starting at zero.
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estimate for D1e and D2e is equally good given the value of
the misfit functions, the allocated values for the strength do
change as a function of location of the transition (see also
Figure 8b). If the transition lies more to the west, the
allocated value in the west will be slightly larger.
[44] So, we cannot distinguish between different locations

of the transition given the values of the misfit functions, but
we do have different estimates for D1e and D2e. Hence we
conclude that we need some a priori information on the
position of transitions in lithospheric strength from inde-
pendent sources to estimate the rigidity of the lithosphere in
the presence of lateral variations.

6. Discussion and Conclusions

[45] To resolve the strength of the lithosphere from sea
level data we coupled a vertically integrated two-dimen-
sional ice model to an Earth model. The Earth model
consisted of an elastic lithosphere, where we incorporated
lateral variations in lithospheric strength, with a single
relaxation time due to the viscosity of the mantle.
[46] To illustrate the performance of the model we used a

synthetic bedrock profile and a synthetic climate to model a
characteristic ice sheet through an ice age cycle. The ice
sheet had a maximum radius of about 600 km and was
completely land based. The example demonstrated the

importance for ice modeling of including the coupling
between ice and Earth. Both the ice extent and the ice
thicknesses were influenced resulting in significant differ-
ences in bedrock motions and ice volume. The ice volume
differences resulting from different lithospheric strengths to
calculate the isostatic bedrock adjustment, are about 10%.
[47] To exclude numerical instabilities, variations in D

over several orders of magnitude are modeled over distan-
ces of 300 km. We cannot model local anomalies. However,
since our objective is to have a good representation of ice on
continental scales, this is not considered to be a drawback of
this approach. For example, the Trans Antarctic Mountains,
which served as inspiration for the examples in this paper
and cover a transition in flexural rigidity over several orders
of magnitude, are about 300 km wide.
[48] The inverse method presented in this paper yields

comparable results to previous studies based on prescribed
ice histories [e.g., Kaufmann and Wu, 2002; Zhong et al.,
2003]. Our results indicate that it is possible to constrain
lateral variations in lithospheric strength from vertical
bedrock motions, as long as there are data on both sides
of the transition and a priori indications of the location. We
stress that dynamical ice flow models are based on different
assumptions and data sets than the generally used ice
histories, such as ICE-3G. In addition, our inverse proce-
dure, yields the best fitting ice history for the most likely
lithospheric model.
[49] Our results show little sensitivity to Gaussian noise

in the data, as long as the noise levels do not exceed about
20%. The algorithm is most sensitive to data from under-
neath former ice sheets. The method is sensitive to system-
atic biases due to for example insufficient knowledge on
mantle viscosities, i.e., relaxation times, or past climate
conditions. However, the current lithospheric model is not
suitable to study the effect of viscosity structure of the
mantle. For example, the model only uses one relaxation
time, while viscoelastic Earth models generally have a
spectrum of relaxation times. Therefore more sensitivity
studies should be done in practical applications, for example
Antarctica and Scandinavia.
[50] The model contains a purely elastic lithosphere. In

reality, the lithosphere is probably viscoelastic and anoma-
lies are more complicated than only a change in rigidity.
The thin plate model remains a mechanical tool which is
able to model the accurate deflection underneath loads. The
elastic thickness has no proven connection to the actual
thickness of the lithosphere. Thus the derived material
properties are by no means the actual material properties
of the lithosphere. Therefore geodynamical implications
should be examined critically. For now, if the elastic
properties can be resolved this is enough to correctly model
the ice sheets.
[51] The method described here can be applied every-

where, provided that there are good constraints on the local
climate as a function of time. Possible interesting applica-
tions include for example Antarctica, where indications
exist for a large transition in lithospheric strength across
the Trans Antarctic Mountains [e.g., Bannister et al., 2003;
Stern and Ten Brink, 1989]. Another possible application is
Scandinavia where we expect an increase in lithospheric
strength from the Atlantic coast toward cratonic Eurasia

Figure 9. (a) Minimum of the c2 distributions for each of
the locations of the transition for 5% noise (solid line), 10%
noise (dash-dotted line), and 20% noise (dotted line).
(b) Corresponding allocated strengths for the eastern half of
the domain (stars) and the western half (solid circles) for the
same noise levels.
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[e.g., Djomani et al., 1999; Pérez-Gussinye and Watts,
2005].

Appendix A: Thin Plate Theory

[52] Figure A1 shows a one-dimensional infinite plate
subjected to a pressure load. We assume that the bending is
cylindrical and that sections which are originally normal to
the middle plane remain plane during deformation, thus
only experience rigid translations and rotations. The total
deformation can thus be described as

u x; y; zð Þ ¼ u0 x; yð Þ � zqx x; yð Þ; ðA1Þ

v x; y; zð Þ ¼ v0 x; yð Þ � zqy x; yð Þ; ðA2Þ

w x; yð Þ ¼ w0 x; yð Þ; ðA3Þ

where u0, v0 and w0 are rigid translations and qx,y are
rotations of the normals to the middle plane.
[53] We finally assume that the thickness of the plate is

small compared to the horizontal dimensions of the load.
We can then assume that the vertical shear forces are small
[Zienkiewicz and Taylor, 2000].
[54] Figure A1 shows the stress resultants Mx (bending

moment), Sx (shear stress) and Px (normal stress). These
stress resultants can be calculated using

Mx ¼ �
Z h=2

�h=2

zsxx dz; ðA4Þ

Sx ¼
Z h=2

�h=2

sxz dz; ðA5Þ

Px ¼
Z h=2

�h=2

sxx dz: ðA6Þ

where the integration is over the entire thickness of the plate
h. The bending moment Mx can be regarded as a leverage,
the other resultants are total stresses.
[55] In two dimensions, in addition to Mx, Sx and Px, we

also have My, Sy, Py,Pxy and a twisting moment Mxy. These
are defined similarly to Mx, Sx and Px.

[56] We can solve for the deformation by writing down
the equilibrium equations. These equations can be formu-
lated by integration of the local equilibrium equations
[Zienkiewicz and Taylor, 2000; Van der Veen, 1999]:

Z h=2

�h=2

@sxx
@x

þ @sxy
@y

þ @sxz
@z

� �
dz ¼ @Px

@x
þ @Pxy

@y
¼ 0; ðA7Þ

Z h=2

�h=2

@syx
@x

þ @syy
@y

þ @syz
@z

� �
dz ¼ @Pxy

@x
þ @Py

@y
¼ 0; ðA8Þ

Z h=2

�h=2

@sxz
@x

þ @syz
@y

þ @szz
@z

� �
dz ¼ @Sx

@x
þ @Sy

@y
þ q ¼ 0; ðA9Þ

where q is the loading. Notice that in q not only the load,
but also the buoyancy at the bottom of the plate is
incorporated as q = qload � qbuoy, where qbuoy = rmgw, where
rm is the density of the mantle.
[57] Three equations are insufficient to solve the defor-

mation problem, so we use the bending moments:

Z h=2

�h=2

z
@sxx
@x

þ @sxy
@y

þ @sxz
@z

� �
dz ¼ @Mx

@x
þ @Mxy

@y
þ Sx ¼ 0;

ðA10Þ

Z h=2

�h=2

z
@syx
@x

þ @syy
@y

þ @syz
@z

� �
dz ¼ @My

@y
þ @Mxy

@x
þ Sy ¼ 0:

ðA11Þ

The equations containing P describe the horizontal
deformation and decouple from the rest of the equations.
[58] Since the vertical normal stress in the plate is small

compared to the other stresses [Zienkiewicz and Taylor,
2000], it is neglected except for the formulation of the upper
and lower boundary conditions, where we need the loading
pressure. We assume all deformation is elastic, which results
in the following expression for the stress tensor

S ¼ E

1þ n

1

1� n
�xx þ n�yy
� �

�xy �xz

�xy
1

1� n
n�xx þ �yy
� �

�yz

�xz �yz 0

0
BBB@

1
CCCA;

ðA12Þ

where E and n are Young’s modulus and Poisson’s ratio.
The deformation tensor �ij is defined as

�ij ¼
1

2

@ui
@xj

þ @uj
@xi

� �
: ðA13Þ

[59] If we now integrate the expressions for the stress
resultants to find the resulting expressions with deforma-
tion, we find q 	 rw, and this results in

Lrð ÞTD0Lrw� q ¼ 0; ðA14Þ

Figure A1. Geometry of a one-dimensional bending plate
with directions of deformation and stress resultants.
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where (Lr) is given by

Lrð Þ ¼ @2

@x2
@2

@y2
2

@2

@x@y

� �T
: ðA15Þ

The matrix D0 is given by

D0 ¼ D

1 n 0

n 1 0

0 0 1� nð Þ=2

2
4

3
5; ðA16Þ

where D is called the flexural rigidity and given by

D ¼ Eh3

12 1� n2ð Þ : ðA17Þ

If we now assume the flexural rigidity or bending stiffness
D0 to be constant throughout the medium, we find the
equation widely used for the calculation of flexure in
geophysics

D
@4w

@x4
þ 2

@4w

@x2@y2
þ @4w

@y4

� �
� q ¼ 0: ðA18Þ

This equation can be solved analytically [e.g., Turcotte and
Schubert, 2002; Van der Veen, 1999; Le Meur and
Huybrechts, 1996; Brotchie and Silvester, 1969].
[60] For situations where D is not constant however, the

equation is given by [see also Van Wees and Cloetingh,
1994]

@2

@x2
D
@w2

@x2

� �
þ n

@2

@y2
D
@2w

@x2

� �
þ n

@2

@x2
D
@2w

@y2

� �

þ @2

@y2
D
@2w

@y2

� �
þ 2 1� nð Þ @2

@x@y
D

@2w

@x@y

� �
� q ¼ 0: ðA19Þ

[61] Acknowledgments. The calculations were performed on the
RADON cluster of IMAU, which was partly funded by the Utrecht Center
for Geosciences. This work was financed by the Spinoza Award of NWO of
J. Oerlemans. We thank John Wahr and an anonymous reviewer for their
valuable comments.

References
Bannister, S., J. Yu, B. Leitner, and B. Kennett (2003), Variations in crustal
structure across the transition from West to East Antarctica, Southern
Victoria Land, Geophys. J. Int., 155, 870–884.

Braitenberg, C., J. Ebbing, and H. Gotze (2002), Inverse modelling of
elastic thickness by convolution method: The eastern Alps as a case
example, Earth Planet. Sci. Lett., 202, 387–404.

Brotchie, J., and R. Silvester (1969), On crustal flexure, J. Geophys. Res.,
74(22), 5240–5252.

Darbyshire, F., T. Larsen, K. Mosegaard, T. Dahl-Jensen, O. Gudmundsson,
T. Bach, S. Gregersen, H. Pedersen, and W. Hanka (2004), A first de-
tailed look at the Greenland lithosphere and upper mantle using Rayleigh
wave tomography, Geophys. J. Int., 158, 267–286.

Di Donato, G., L. Vermeersen, and R. Sabadini (2000), Sea-level
changes, geoid and gravity anomalies due to Pleistocene deglaciation
by means of multilayered, analytical Earth models, Tectonophysics,
320, 409–418.

Djomani, Y. P., J. Fairhead, and W. Griffin (1999), The flexural rigidity of
Fennoscandia: Reflection of the tectonothermal age of the lithospheric
mantle, Earth Planet. Sci. Lett., 174, 139–154.

Hutter, K. (1983), Theoretical Glaciology, Springer, New York.
Huybrechts, P. (1992), The Antarctic ice sheet and environmental change:
A three-dimensional modelling study, Rep. Polar Res., 99, 241 pp.

Huybrechts, P., T. Payne, and The EISMINT Intercomparison Group
(1996), The EISMINT benchmarks for testing ice-sheet models, Ann.
Glaciol., 23, 1–12.

Kaufmann, G., and P. Wu (2002), Glacial isostatic adjustment in Fennos-
candia with a three-dimensional viscosity structure as an inverse problem,
Earth Planet. Sci. Lett., 197, 1–10.

Kaufmann, G., P. Wu, and G. Li (2000), Glacial isostatic adjustment in
Fennoscandia for a laterally heterogeneous Earth, Geophys. J. Int., 143,
262–273.

Kaufmann, G., P. Wu, and E. Ivins (2005), Lateral viscosity variations
beneath Antarctica and their implications on regional rebound motions
and seismotectonics, J. Geodyn., 39, 165–181.

Le Meur, E., and P. Huybrechts (1996), A comparison of different ways of
dealing with isostasy: Examples from modelling the Antarctic ice sheet
during the last glacial cycle, Ann. Glaciol., 23, 309–317.

Mahaffy, M. (1976), A three-dimensional numerical model of ice sheets:
Tests on the Barnes ice cap, Northwest Territories, J. Geophys. Res.,
81(6), 1059–1066.

Milne, G., J. Mitrovica, and D. Schrag (2002), Estimating past continental
ice volume from sea-level data, Quat. Sci. Rev., 21, 361–376.
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