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1 Introduction

Linear dynamics of a massless vector field — the photon — in expanding cosmological
spaces is considered to be particularly simple and well understood. The photon couples
conformally to gravity and thus effectively does not sense the expansion. This makes the
dynamics of its two physical polarizations no more complicated than in flat space. How-
ever, the conformal coupling of the photon can be broken via couplings to non-trivial field
condensates or other non-conformally coupled fields such as scalars or gravitons. Primor-
dial inflation is where these effects can be particularly important because of the huge scale
of the expansion rate. There are a number of cases where vector fields play an important
role in inflation, some of which are vector inflation [1–6], preheating after inflation [7, 8],
axion inflation [9–12], inflationary magnetogenesis from tree level dynamics [13–15] (for
a review see [16]) and from dynamically generated condensates during inflation [17, 18],
the Schwinger effect in inflation [19–26], and corrections to the standard model and infla-
ton effective potential [27–34]. Particularly interesting are cases where conformal coupling
is broken by quantum loop effects in inflation. This happens for interactions with light
spectator scalar fields [35–51] or with inflationary gravitons [52–59]. Both cases point to
large non-perturbative effects. A useful idealization of the slow-roll inflationary spacetime
is a rigid de Sitter space, which is one of the three maximally symmetric spacetimes, and
maximal symmetry implies considerable conceptual and computational simplifications. In
this work we consider D-dimensional photon two-point functions in the expanding patch of
de Sitter space, appropriate for dimensionally regulated, nonequilibrium perturbative com-
putations in the Schwinger-Keldysh (also known as in-in or closed-time-path) formalism.

While at the linear level we have the luxury of explicitly isolating the physical degrees
of freedom — the two transverse polarizations — this is no longer as straightforward at the
interacting level. Instead, it is preferable and considerably simpler to perform computations
in a particular gauge with gauge-dependent quantities, and only later project out the
physical information. Fixing the gauge can be done in a number of ways, but the choice
preferred for computations is the one where no field components are explicitly eliminated.
These are referred to as average gauges (or multiplier gauges), and are characterized by
adding a gauge-fixing term to the original gauge-invariant action. Arguably the most
natural choice for the gauge-fixing term is the general covariant gauge,

Sgf [Aµ] =
∫
dDx
√
−g

[
− 1

2ξ
(
gµν∇µAν

)2 ]
, (1.1)
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that comes with one free real parameter ξ, defining a one-parameter family of gauges. Any
physical quantity must be independent on ξ, which makes these gauges particularly useful.
It is commonly held that photon propagators in the general covariant gauge are de Sitter
invariant, which is supported by the existing literature. It his work we challenge this belief.

Covariant gauge propagators for different values of the gauge-fixing parameters have
been derived in several works, starting with the seminal work by Allen and Jacobson [60].
Among several different cases and spacetimes, they derived the photon propagator in de
Sitter space of arbitrary spacetime dimension D, in ξ = 1 covariant gauge. To this end
they made a de Sitter invariant ansatz for the propagator, solved the resulting simplified
equations of motion, and fixed the ambiguities by considering the singularity structure.
This method was used in several subsequent works to derive propagators in different co-
variant gauges. In [39] the propagator from [60] was rederived in a somewhat different form.
Tsamis and Woodard [61] used the method when considering a massive vector propagator
whose massless limit corresponds to the photon in Landau gauge ξ→ 0 in D-dimensional
de Sitter. To obtain the propagator they required their Ansatz to be transverse, in addi-
tion to being de Sitter invariant. The methods from [60] was also used by Youssef [62] to
derive the photon propagator for arbitrary gauge-fixing parameter in four space-time di-
mensions. The most general photon propagator, valid for arbitrary ξ and D, was reported
by Fröb and Higuchi [63]. Unlike the preceding works, they utilized canonical quantization
of the gauge-fixed vector sector of the Stueckelberg model, containing a massive vector
field. The resulting propagator they report was derived as a sum-over-modes, and its de
Sitter invariant massless limit encompasses all previous results as special cases.1

It would seem that little more could be said about covariant gauge photon propagators
in de Sitter. Nevertheless, it was pointed out recently [65] that photon propagators in so-
called average (or multiplier) gauges, in addition to solving the equations of motion, must
satisfy subsidiary conditions that are a consequence of gauge symmetry. These subsidiary
conditions derive from the quantization of the first-class constraints of the classical theory,
and amount to the condition that correlators of first-class constraints have to vanish in the
quantized theory. It was found that the photon propagators reported in the literature do
not satisfy all the subsidiary conditions [65], except in the gauge ξ→0. This is a problem
that needs to be addressed, and it motivates us here to consider the construction of the
photon propagator in covariant gauges from the first principles of canonical quantization.

The canonical quantization is based on the canonical structure only, and is conceptually
divorced from symmetries of the background spacetime. Even though making this distinc-
tion is often not necessary, here we find it important when trying to understand where the
problem with the propagators comes from and how to resolve it. We pay special attention
to how particular symmetry properties of quantum states are imposed, by considering con-
served charges from both the gauge-invariant and gauge-fixed formulations, that serve as
generators of de Sitter symmetry transformations. Our main result is rather surprising —
the physically de Sitter invariant quantum state of the photon does not admit a de Sitter

1In ref. [64] the method of making the de Sitter invariant Ansatz was considered for the case of general ξ
and D. The analysis there would have reproduced the de Sitter invariant result of [63], had the integrals in
the reported result been evaluated.
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invariant propagator in the general covariant gauge (except in the limit ξ→0). We derive
this result by representing the propagator as a sum-over-modes in momentum space, which
we subsequently solve to find the propagator in position space. The resulting expression
consists of a de Sitter invariant part, that corresponds to the massless limit of [63], and
a previously missed de Sitter breaking part which ensures that the subsidiary conditions
are respected. In a companion letter [66] we show how one can obtain the same result in
position space, starting from BRST quantization and utilizing Ward-Takahashi identities.

This paper is organized in eight sections, the first of which is concluding. The following
section collects definitions and results on propagators and scalar mode functions used
throughout the paper. The third section recounts the canonical formulation of the photon
in multiplier gauges and canonical quantization. The dynamics of field operators is solved
for in the fourth section, and the fifth section is devoted to the construction of the quantum
state and discussion of its symmetries. The main results are derived in the sixth section,
that gives the solution for the propagator satisfying all the required subsidiary conditions.
Checks of the propagator solution are performed in the seventh section by considering two
simple observables, while the concluding eighth section contains a discussion of the main
results. More technical details are relegated to two appendices.

2 Preliminaries

This section collects definitions and results frequently used in subsequent sections. First
the Poincaré patch of de Sitter space is defined, and then some useful results on scalar
two-point functions and scalar mode functions in de Sitter are recalled.

2.1 De Sitter space

The invariant line element of the D-dimensional Friedman-Lemaître-Robertson-Walker
(FLRW) spacetime,

ds2 = −dt2 + a2(t)d~x 2 = a2(η)
[
−dη2 + d~x 2] , (2.1)

defines the associated conformally flat metric gµν =a2(η)diag(−1, 1, . . . , 1), where the speed
of light is taken to be unity, c=1. Here Cartesian coordinates ~x span (D−1)−dimensional
flat spatial slices, while time is parametrized either by the physical time t, or by conformal
time η. The two times are related by dt=a(η)dη, where a is the scale factor that encodes
the dynamics of the expansion, which is usually expressed either in terms of the physical
Hubble rate, H = (da/dt)/a, or the conformal Hubble rate, H= (da/dη)/a, the two being
related by H=aH.

The expanding Poincaré patch of de Sitter space is defined as the FLRW spacetime
with a constant physical Hubble rate, H = const., and the conformal Hubble rate and the
scale factor take the following functional form,

H = H

1−H(η−η0) , a(η) = H
H
, (2.2)

where η0 is the initial time, for which a(η0) = 1. The conformal time ranges on the
interval η∈(−∞, η0+1/H).
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2.2 Scalar two-point functions

Two-point functions of scalar fields often appear as building blocks of two-point functions
for higher spin fields in de Sitter. This will be true for the photon propagator we construct
in this work, so here we summarize and recall some of the properties of scalar field mode
functions and the two-point functions constructed out of them.

The positive-frequency Wightman function2 can be taken as the elementary two-point
function. It satisfies a homogeneous equation of motion,

(
�−M2

λ

)
i
[

∆− +]
λ
(x;x′) = 0 , (2.3)

where � = gµν∇µ∇ν is the d’Alembertian, and where the effective mass, conveniently
parametrized by λ,

M2
λ =

[(
D−1

2

)2
− λ2

]
H2 , (2.4)

receives contributions from both the scalar field mass and its non-minimal coupling to the
Ricci scalar. The negative frequency Wightman function is just a complex conjugate of
the positive-frequency one, i

[
∆+ −
]
λ
(x;x′) =

{
i
[

∆− +
]
λ
(x;x′)

}∗, and satisfies the same ho-
mogeneous equation of motion. The Feynman propagator involves time-ordering, and is
expressed in terms of the Heaviside step function as,

i
[

∆+ +](x;x′) = θ(η−η′)i
[

∆− +](x;x′) + θ(η′−η)i
[

∆+ −](x;x′) . (2.5)

and satisfies a sourced equation of motion,

(
�−M2

λ

)
i
[

∆+ +]
λ
(x;x′) = iδD(x−x′)√

−g
. (2.6)

The Dyson propagator is its complex conjugate, i
[

∆− −
]
(x;x′)=

{
i
[

∆+ +
]
(x;x′)

}∗, and satisfies
a conjugate of eq. (2.6).

The scalar two-point functions admit a sum-over-modes representation,

i
[

∆− +]
λ
(x;x′) = (aa′)−

D−2
2

∫
dD−1k

(2π)D−1 e
i~k·(~x−~x ′) Uλ(η,~k)

[
Uλ(η′, ~k)

]∗
, (2.7)

in terms of the conformally rescaled scalar field mode function Uλ(η, k). We summarize
the properties of the scalar mode functions in the following subsection. The integral in
eq. (2.7) is generally divergent for real coordinates, and analytic continuation is called for.
The prescription η→η−iε/2 and η′→η′−iε/2 preserves its naive properties under complex
conjugation, and defines it as a distributional limit ε→ 0+. Depending on the value of
parameter λ solutions for two-point functions are qualitatively different. For λ<(D−1)/2
there are de Sitter invariant solutions, while for λ≥ (D−1)/2 they do not exist, see e.g.
refs. [67, 68]. We summarize these two cases for position space scalar two-point functions
in the two concluding subsections.

2Our naming for two-point functions follows the Keldysh polarity conventions.
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2.2.1 Scalar mode functions

The equation of motion for scalar mode functions in de Sitter is,[
∂2

0 + k2 −
(
λ2− 1

4

)
H2
]
Uλ(η,~k) = 0 , (2.8)

where λ is a constant defined in (2.4). Its general solution in de Sitter space,

U (η,~k) = α(~k)Uλ(η, k) + β(~k)U∗λ(η, k) , (2.9)

is given by the positive-frequency Chernikov-Tagirov-Bunch-Davies (CTBD) mode func-
tion [69, 70],

Uλ(η, k) = e
iπ
4 (2λ+1)e

−ik
H

√
π

4H H (1)
λ

(
k

H

)
. (2.10)

where H (1)
λ is the Hankel function of the first kind, and α(~k) and β(~k) are complex Bo-

golybov coefficients satisfying, |α(~k)|2 − |β(~k)|2 = 1. The flat space limit of the this mode
function is

Uλ(η, k)H→0∼ e−ik(η−η0)
√

2k

{
1 +

(
λ2−1

4

)[
iH

2k +
(
λ2−9

4 −4ik(η−η0)
)
H2

8k2 +O(H3)
]}

, (2.11)

where η0 is the initial time at which a(η0)=1. We make frequent use of recurrence relations
between contiguous scalar mode functions,[

∂0 +
(
λ+ 1

2

)
H
]
Uλ = −ikUλ+1 ,

[
∂0 −

(
λ+ 1

2

)
H
]
Uλ+1 = −ikUλ , (2.12)

which follow from the recurrence relations for Hankel functions (cf. (10.6.2) in [71, 72]).
Using these the Wronskian is conveniently written as,

Re
[
Uλ(η, k)U∗λ+1(η, k)

]
= 1

2k . (2.13)

We also use two identities that follow from the equation of motion (2.8),[
∂2

0 + k2 −
(
λ2− 1

4

)
H2
](
HUλ+1

)
= 2H3

[
2(λ+1)Uλ+1 −

ik

H
Uλ

]
, (2.14)[

∂2
0 + k2 −

(
λ2− 1

4

)
H2
]
∂Uλ
∂λ

= 2λH2Uλ , (2.15)

the former one by applying the recurrence relations (2.12), and the later by taking a
parametric derivative of (2.8).

2.2.2 De Sitter invariant scalar two-point functions

For λ< (D−1)/2, the positive-frequency Wightman function of the real scalar field (2.3)
in power-law inflation has a sum-over-modes representation (2.7),

i
[

∆− +]
λ
(x;x′) = (aa′)−

D−2
2

∫
dD−1k

(2π)D−1 e
i~k·(~x−~x ′) Uλ(η, k)U∗λ(η′, k). (2.16)

– 5 –
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This integral representation evaluates to,

i
[

∆− +]
λ
(x;x′) = Fλ(y−+) , (2.17)

where y−+ is the iε-regulated distance function appropriate for the positive-frequency
Wightman function,

y−+(x;x′) = HH′
(
∆x2

−+

)
= HH′

[
‖~x−~x ′‖2 −

(
η−η′−iε

)2]
, (2.18)

and the propagator function is expressed in terms of a hypergeometric function,

Fλ(y) = HD−2

(4π)D2
Γ
(
D−1

2 +λ
)

Γ
(
D−1

2 −λ
)

Γ
(
D
2
)

× 2F1

({
D−1

2 +λ, D−1
2 −λ

}
,

{
D

2

}
, 1− y4

)
, (2.19)

that satisfies the hypergeometric equation in a different guise,[
(4y−y2) ∂

2

∂y2 +D(2−y) ∂
∂y

+ λ2 −
(
D−1

2

)2 ]
Fλ(y) = 0 . (2.20)

The scalar Feynman propagator (2.5) — known as the Chernikov-Tagirov propagator [69]
— takes the same form as the Wightman function,

i
[

∆+ +]
λ
(x;x′) = Fλ(y++) , (2.21)

where the argument of the propagator function is substituted by the appropriate one ac-
cording to (2.5),3

y++ = HH′
(
∆x2

++

)
= HH′

[
‖~x−~x ′‖2 −

(
|η−η′|−iε

)2]
. (2.22)

Henceforth we suppress the polarity indices denoting different iε-prescriptions for distance
functions y that distinguish between two-point functions, as they should be clear from the
context. A useful representation of the propagator function in (2.19) is a power series
around y=0,

Fλ(y) =
HD−2 Γ

(
D−2

2
)

(4π)D2

{(
y

4

)−D−2
2

+
Γ
(4−D

2
)

Γ
(1

2 +λ
)

Γ
(1

2−λ
) ∞∑
n=0

(2.23)

×
[Γ
(3

2 +λ+n
)

Γ
(3

2−λ+n
)

Γ
(6−D

2 +n
)

(n+1)!

(
y

4

)n−D−4
2
−

Γ
(
D−1

2 +λ+n
)

Γ
(
D−1

2 −λ+n
)

Γ
(
D
2 +n

)
n!

(
y

4

)n]}
.

Furthermore, Gauss’ relations between hypergeometric functions (cf. (9.137) of [73]) allow
us to derive recurrence relations between contiguous propagator functions,

2∂Fλ
∂y

= (2−y)∂Fλ+1
∂y

+
(
λ−D−3

2

)
Fλ+1 , (2.24)

2∂Fλ+1
∂y

= (2−y)∂Fλ
∂y
−
(
λ+D−1

2

)
Fλ , (2.25)

that we utilize in section 6.
3The iε prescription for the Feynman propagator in (2.22) follows from the prescription for the Wightman

function in (2.18) and the definition (2.5), upon using the properties of the step function: θ(∆η)+θ(−∆η)=
1, [θ(∆η)]2 =θ(∆η), and θ(∆η)×θ(−∆η)=0, where ∆η=η−η′.

– 6 –
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2.2.3 De Sitter breaking scalar two-point functions

When the index of the scalar mode function is λ > (D−1)/2, the CTBD mode function
leads to an unphysical infrared divergent Wightman function. In such cases the physical
mode function must be modified in the infrared by introducing Bogolyubov coefficients
in (2.9) that suppress the singular behaviour, and lead to a well defined sum-over-modes
representation (2.16). Choosing them to preserve cosmological symmetries leads to the
following Wightman function [67],

i
[

∆− +]
λ
(x;x′) = Fλ(y) +Wλ(y, u, v) , (2.26)

composed of the de Sitter invariant part (2.19), and the de Sitter breaking part Wλ, that
depends on y and two other bi-local variables respecting spatial homogeneity and isotropy,

u = ln(aa′), v = ln(a/a′) . (2.27)

The general expression for the de Sitter breaking part can be found in [68], but here we
only need it for a restricted range of λ,

Wλ(u) = HD−2

(4π)D2
Γ(2λ) Γ(λ)

Γ
(
D−1

2
)

Γ
(1

2 +λ
) e(λ−D−1

2 )u

λ−D−1
2

(
k0
H

)D−1−2λ
,

D−1
2 < λ <

D+1
2 , (2.28)

where it depends on u only, and where k0 < H is some infrared scale. The Feynman
propagator is then inferred from the Wightman function in the same way as described in
section 2.2.2, by changing the implicit iε-prescription of y.

For our purposes the limiting case of the massless, minimally coupled scalar, λ →
(D−1)/2, is particularly important. In this limit the two-point function (2.26) repro-
duces the finite Onemli-Woodard two-point function [74], as the divergence in the de Sitter
breaking part cancels the one from the de Sitter invariant part, which is divergent in any
number of dimensions. Nevertheless, the quantity ∂Fλ/∂y is finite if first the derivative is
performed, and then the limit λ→ (D−1)/2 is taken. Another important expression that
we encounter is, (

D−1
2 −λ

)
Fλ(y)

λ→D−1
2−−−−−→ HD−2

(4π)D2
Γ(D−1)

Γ
(
D
2
) , (2.29)

which is valid for arbitrary y, and which allows us to use recurrence relations (2.24)
and (2.25) in this limit.

3 Photon in FLRW

The free photon in D-dimensional curved space is defined by the covariant action,

S[Aµ] =
∫
dDx
√
−g

[
−1

4g
µρgνσFµνFρσ

]
, (3.1)

where Fµν = ∂µAν−∂νAµ is the vector field strength. The action is invariant under U(1)
gauge transformations, Aµ(x)→Aµ(x)+∂µΛ(x), for some arbitrary function Λ(x). Quan-
tization of this free theory allows one to work out the two-point functions necessary for
perturbative loop computations in interacting theories containing massless vector fields.
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Canonical quantization of the photon, where all the components of the vector potential
are treated on equal footing, is based on the canonical formulation in the so-called multiplier
gauges (also known as average gauges and sometimes referred to as covariant gauges). We
begin by consider how the generally covariant gauge (1.1) is implemented in the classical
theory. This serves to transparently define canonical quantization, which is summarized in
the concluding part of this section.

3.1 Gauge-invariant photon

Our starting point is the canonical formulation of the gauge-invariant system (3.1), in which
we decompose the indices into spatial and temporal ones, and plug in the de Sitter metric,

S[Aµ] =
∫
dDx aD−4

[1
2F0iF0i −

1
4FijFij

]
. (3.2)

Henceforth in all expressions with decomposed indices we write them lowered, and adopt
the convention that all the repeated spatial indices are summed over. There is little advan-
tage in trying to maintain some sense of manifest covariance in the canonical formulation
when the time direction plays a preferred role.

The promotion of the first time derivatives of vector field components to independent
fields, F0i→Vi, ∂0A0→V0, and the introduction of the accompanying Lagrange multipli-
ers Π0 and Πi that ensure on-shell equivalence, defines an intermediate first-order action,

S
[
A0, V0,Π0, Ai, Vi,Πi

]
=
∫
dDx

{
aD−4

[1
2ViVi −

1
4FijFij

]
+ Πi

(
F0i − Vi

)
+ Π0

(
∂0A0 − V0

)}
, (3.3)

sometimes referred to as the extended action. Solving for as many velocity fields as possible
on-shell, which in this case means the spatial components,4

Vi ≈ V i = a4−DΠi , (3.4)

and plugging the solutions back into the action (3.3) then defines the canonical action,

S
[
A0,Π0, Ai,Πi, `

]
≡ S

[
A0, V0→`,Π0, Ai, V i,Πi

]
=
∫
dDx

[
Π0∂0A0 + Πi∂0Ai −H − `Ψ1

]
, (3.5)

where,

H = a4−D

2 ΠiΠi + Πi∂iA0 + aD−4

4 FijFij , (3.6)

is the canonical Hamiltonian density, and where we have relabeled V0→` to emphasize that
in the canonical action ` is a Lagrange multiplier responsible for generating the primary
constraint,

Ψ1 = Π0 ≈ 0 , (3.7)
4We use the Dirac notation ≈ to denote weak (on-shell) equalities that are valid at the level of equations

of motion, as opposed to = denoting strong (off-shell) equalities that are valid at the level of the action.
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which in turn generates a secondary constraint on-shell,

∂0Ψ1 ≈ ∂iΠi ≡ Ψ2 ≈ 0 . (3.8)

These two form a complete set of first-class constraints,
{
Ψ1,Ψ2

}
=0. The Poisson brackets

of the canonical variables5 follow from the symplectic part of the canonical action (3.5),{
A0(η, ~x),Π0(η, ~x ′)

}
= δD−1(~x−~x ′) ,

{
Ai(η, ~x),Πj(η, ~x ′)

}
= δijδ

D−1(~x−~x ′) . (3.9)

The dynamical equations descending from the canonical action do not fix the Lagrange
multiplier `, which can be chosen arbitrarily. This property is the canonical formulation
equivalent of the more familiar invariance under local transformations that the configura-
tion space action (3.1) possesses.

3.2 Gauge-fixed photon

One particularly convenient way to fix the gauge is the multiplier gauge, where we by
hand fix the Lagrange multiplier in the canonical action (3.5) to be a function of canonical
variables, which here we choose as,

`→ ` = −ξa
4−D

2 Π0 + ∂iAi − (D−2)HA0 , (3.10)

with ξ an arbitrary real parameter. This leads to the gauge-fixed action,

S?
[
A0,Π0, Ai,Πi

]
≡ S

[
A0,Π0, Ai,Πi, `

]
=
∫
dDx

[
Π0∂0A0 + Πi∂0Ai −H?

]
, (3.11)

where the gauge-fixed Hamiltonian is,

H? = a4−D

2 ΠiΠi−
a4−Dξ

2 Π0Π0 +Πi∂iA0 +Π0∂iAi−(D−2)HΠ0A0 + aD−4

4 FijFij . (3.12)

This gauge fixed canonical action now uniquely defines the gauge fixed dynamics, but it
no longer encodes the first-class constraints (3.7) and (3.8). We have to require them as
subsidiary conditions,

Ψ1 = Π0 ≈ 0 , Ψ2 = ∂iΠi ≈ 0 , (3.13)

in addition to the gauge fixed action. These are preserved if they are demanded on the
initial time hypersurface.6 Thus we split the description of the system into the dynamics
described by the gauge-fixed action (3.11), and kinematics given by the subsidiary condi-
tions (3.13). This structure is crucial when quantizing the system.

5Sometimes the canonical momenta are defined with upper indices so as to have Poisson brackets in
a seemingly covariant form. We find little use for notation, which clearly does not reintroduce manifest
covariance in the canonical formulation, and can be misleading at times.

6This property is guaranteed by the equations of motion the constraints satisfy,

∂0Ψ1 = Ψ2 + (D−2)HΨ1 , ∂0Ψ2 = ∇2Ψ1 .
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The utility of the particular choice (3.10) for the multiplier is revealed once we derive
the gauge fixed Lagrangian action, that takes the form,

S?[Aµ]=S[Aµ] + Sgf [Aµ] , (3.14)

where the gauge-fixing term,

Sgf [Aµ] =
∫
dDx
√
−g

[
− 1

2ξ
(
gµν∇µAν

)2 ]
, (3.15)

is precisely the general covariant gauge-fixing term 1.1. The two subsidiary conditions
substituting for first-class constraints in the Lagrangian formalism take the form,

∇µAµ ≈ 0 , ∂iF0i ≈ 0 . (3.16)

Implementing these at the initial value surface guarantees they are conserved for all times.

3.3 Quantized photon

The gauge fixed photon of the preceding section is readily quantized in the Heisenberg
picture. The dynamics is quantized by applying standard rules of canonical quantization
to the gauge fixed canonical action. Canonical variables are promoted to field operators,
and their Poisson brackets (3.9) are promoted to commutators,[

Â0(η, ~x), Π̂0(η, ~x ′)
]

= iδD−1(~x−~x ′),
[
Âi(η, ~x), Π̂j(η, ~x ′)

]
= δij iδ

D−1(~x−~x ′), (3.17)

where we set ~ = 1, and the canonical operator equations of motion,

∂0Â0 = −ξa4−DΠ̂0 + ∂iÂi − (D−2)HÂ0 , (3.18)
∂0Π̂0 = ∂iΠ̂i + (D−2)HΠ̂0 , (3.19)
∂0Âi = a4−DΠ̂i + ∂iÂ0 , (3.20)
∂0Π̂i = ∂iΠ̂0 + aD−4∂jF̂ji , (3.21)

take the same form as in the classical theory.
The constraints (3.13) of the classical theory require a more careful quantization. It

is straightforward to associate Hermitian operators associated to classical first-class con-
straints,

Ψ̂1 = Π̂0 , Ψ̂2 = ∂iΠ̂i , (3.22)

but the constraints clearly cannot be implemented at the operator level, as they would
contradict canonical commutation relations (3.17). This is of no consequence, since the
actual property that needs to be satisfied in the quantized theory is that all correlators
of the Hermitian constraint operators (3.22) have to vanish. In particular, for Gaussian
states we consider in this paper, this means that all the two-point functions of Hermitian
constraints must vanish,〈

Ω
∣∣Π̂0(x)Π̂0(x′)

∣∣Ω〉= 0 ,
〈
Ω
∣∣∂iΠ̂i(x)Π̂0(x′)

∣∣Ω〉= 0 ,
〈
Ω
∣∣∂iΠ̂i(x)∂′jΠ̂j(x′)

∣∣Ω〉= 0 . (3.23)

– 10 –



J
H
E
P
0
5
(
2
0
2
3
)
1
2
6

This implies that it is appropriate to implement the constraints as conditions on states.
The form that such quantum subsidiary conditions take is not immediately obvious, since
requiring Hermitian constraint operators (3.22) to annihilate the physical state would again
contradict canonical commutation relations (3.17). The consistent way of implementing
the constraints as subsidiary conditions on states is to require a non-Hermitian subsidiary
constraint operator K̂(~x) to annihilate the ket state vector, and its conjugate to annihilate
the bra state vector,

K̂(~x)
∣∣Ω〉 = 0 ,

〈
Ω
∣∣K̂†(~x) = 0 . (3.24)

This non-Hermitian constraint operator is constructed as an invertible linear combination
of Hermitian constraints,

K̂(~x) =
∫
dD−1x′

[
f1(η, ~x−~x ′)Ψ̂1(η, ~x ′) + f2(η, ~x−~x ′)Ψ̂2(η, ~x ′)

]
. (3.25)

This guarantees that physical conditions (3.23) are always satisfied in a way consistent
with canonical commutation relations (3.17). The structure of the subsidiary constraint
operator becomes clearer when considered in momentum space in section 4.4.

Since definition (3.25) is invertible, it implies that we can decompose the two Hermitian
constraints in terms of the non-Hermitian subsidiary constraint operator and its conjugate.
This will be used in section 5 to simplify expressions. It suffices here to define this inverse
symbolically as,

Ψ̂1(x) = K̂1(x) + K̂†1(x) , Ψ̂2(x) = K̂2(x) + K̂†2(x) , (3.26)

where K̂1(x) and K̂2(x) are linear in K̂(~x), and their conjugates are linear in K̂†(~x).

4 Field operator dynamics

The free theory defines the propagators for perturbative computations in the interacting
theory. The dynamics of the free theory is determined by solving the equations of motion
of the field operators, which we do in this section. The most convenient way to solve
for field operators is in spatial comoving momentum space. After decomposing field op-
erators into transverse and scalar sectors, we solve for the mode functions in momentum
space, and determine the accompanying commutation relations. The mode functions are
expressed in terms of CTBD scalar mode functions (2.10) and their parametric derivatives.
Our solutions are consistent with previously obtained solutions for photon mode functions
in D= 4 [75, 76], and for massive Stueckelberg vector field mode functions [63]. The sec-
tion concludes with a discussion of momentum space non-Hermitian constraint operators
defining the subsidiary condition on the space of states.

4.1 Decomposition of field operators

It is convenient to split the spatial components of field operators,

Âi = ÂT
i + ÂL

i , Π̂i = Π̂T
i + Π̂L

i , (4.1)
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into transverse parts, ÂT
i = PTijÂj and Π̂T

i = PTijΠ̂j , and longitudinal parts, ÂL
i = PLijÂj

and Π̂L
i =PLijΠ̂j , defined via the projection operators,

PTij = δij −
∂i∂j
∇2 , PLij = ∂i∂j

∇2 , (4.2)

where ∇2 =∂i∂i is the Laplace operator. The projectors are both idempotent, PTijPTjk=PTik
and PLijPLjk = PLik, and mutually orthogonal, PTijPLjk = PLijPTjk = 0. Thus ∂iAT

i = ∂iΠT
i = 0,

and ∂iAi=∂iA
L
i , ∂iΠi=∂iΠL

i . Given the isotropy of spatially flat cosmological spaces, it is
most convenient to examine operator dynamics in the comoving momentum space,

Â0(η, ~x) = a
2−D

2

∫
dD−1k

(2π)D−1
2

ei
~k·~x Â0(η,~k) , (4.3a)

Π̂0(η, ~x) = a
D−2

2

∫
dD−1k

(2π)D−1
2

ei
~k·~x π̂0(η,~k) , (4.3b)

ÂL
i (η, ~x) = a

2−D
2

∫
dD−1k

(2π)D−1
2

ei
~k·~x (−i)ki

k
ÂL(η,~k) , (4.3c)

Π̂L
i (η, ~x) = a

D−2
2

∫
dD−1k

(2π)D−1
2

ei
~k·~x (−i)ki

k
π̂L(η,~k) , (4.3d)

ÂT
i (η, ~x) = a

4−D
2

∫
dD−1k

(2π)D−1
2

ei
~k·~x

D−2∑
σ=1

εi(σ,~k) ÂT ,σ(η,~k) , (4.3e)

Π̂T
i (η, ~x) = a

D−4
2

∫
dD−1k

(2π)D−1
2

ei
~k·~x

D−2∑
σ=1

εi(σ,~k) π̂T ,σ(η,~k) , (4.3f)

where momentum space Hermitian operators behave as Ô†(~k) = Ô(−~k). Here we have
introduced transverse polarization tensors with the following properties,

ki εi(σ,~k) = 0 ,
[
εi(σ,~k)

]∗ = εi(σ,−~k) , (4.4a)

ε∗i (σ,~k) εi(σ′,~k) = δσσ′ ,
D−2∑
σ=1

ε∗i (σ,~k)εj(σ,~k) = δij −
kikj
k2 , (4.4b)

where k = ‖~k‖. The nonvanishing canonical commutators of the momentum space field
operators are,

[
Â0(η,~k), π̂0(η,~k ′)

]
=
[
ÂL(η,~k), π̂L(η,~k ′)

]
= iδD−1(~k+~k ′) , (4.5a)[

ÂT ,σ(η,~k), π̂T ,σ′(η,~k ′)
]

= δσσ′ iδ
D−1(~k+~k ′) . (4.5b)

The equations of motion for the transverse sector read,

∂0ÂT ,σ = π̂T ,σ + 1
2(D−4)HÂT ,σ , (4.6)

∂0π̂T ,σ = −k2ÂT ,σ −
1
2(D−4)Hπ̂T ,σ , (4.7)
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while the ones for the scalar sector are,

∂0Â0 = −ξa2π̂0 + kÂL −
1
2(D−2)HÂ0 , (4.8)

∂0π̂0 = kπ̂L + 1
2(D−2)Hπ̂0 , (4.9)

∂0ÂL = a2π̂L − kÂ0 + 1
2(D−2)HÂL , (4.10)

∂0π̂L = −kπ̂0 −
1
2(D−2)Hπ̂L . (4.11)

4.2 Transverse sector

Equations (4.6) and (4.7) combine into a single second order one,[
∂2

0 + k2 −
(
ν2− 1

4

)
H2
]
ÂT ,σ = 0 , (4.12)

π̂T ,σ =
[
∂0 −

(
ν+ 1

2

)
H
]
ÂT ,σ , (4.13)

where we introduce and henceforth make frequent use of the parameter,

ν = D−3
2 . (4.14)

It follows from comparing with the mode equation (2.8), and from recurrence rela-
tions (2.12) that the equations are solved by,

ÂT ,σ(η, k) = Uν(η, k) b̂T (σ,~k) + U∗ν (η, k) b̂†T (σ,−~k) , (4.15)
π̂T ,σ(η, k) = −ikUν−1(η, k) b̂T (σ,~k) + ikU∗ν−1(η, k) b̂†T (σ,−~k) . (4.16)

From the canonical commutation relations (4.5) it then follows that the initial condition
operators are the creation and annihilation operators b̂†T (σ,~k) and b̂T (σ,~k), respectively,
whose non-vanishing commutators are,[

b̂T (σ,~k), b̂†T (σ′, ~k ′)
]

= δσσ′ δ
D−1(~k−~k ′) . (4.17)

4.3 Scalar sector

The two equations (4.9) and (4.11) of the scalar sector decouple, and combine into a single
second order one, [

∂2
0 + k2 −

(
ν2− 1

4

)
H2
]
π̂L = 0 , (4.18)

π̂0 = −1
k

[
∂0 +

(
ν+ 1

2

)
H
]
π̂L , (4.19)

where ν is given in (4.14), so that solutions are readily read off from (2.8)–(2.10) and (2.12),

π̂L(η,~k) = kUν(η, k)b̂P (~k) + kU∗ν (η, k)b̂†P (−~k) , (4.20)
π̂0(η,~k) = ikUν+1(η, k)b̂P (~k)− ikU∗ν+1(η, k)b̂†P (−~k) . (4.21)
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The remaining equations (4.8) and (4.10) now combine into a second order one sourced by
homogeneous solutions (4.20) and (4.21),[

∂2
0 + k2 −

(
ν2− 1

4

)
H2
]
Â0 = (1−ξ)H

2k

H2 π̂L − 2ξH
3

H2 π̂0 , (4.22)

ÂL = 1
k

[
∂0 +

(
ν+ 1

2

)
H
]
Â0 + ξH2

H2k
π̂0 . (4.23)

The homogeneous parts of the solution are the same as before,

Â0(η,~k) = Uν(η, k)b̂H(~k) + U∗ν (η, k)b̂†H(−~k)
+ v0(η, k)b̂P (~k) + v∗0(η, k)b̂†P (−~k) , (4.24)

ÂL(η,~k) = −iUν+1(η, k)b̂H(~k) + iU∗ν+1(η, k)b̂†H(−~k)
− ivL(η, k)b̂P (~k) + iv∗L(η, k)b̂†P (−~k) , (4.25)

while the particular mode functions v0 and vL satisfy,[
∂2

0 +k2−
(
ν2−1

4

)
H2
]
v0 = −iξH

3k

(ν+1)H2

[
2(ν+1)Uν+1−

ik

H
Uν

]
+
(

1− ξ

ξs

)H2k2

H2 Uν , (4.26)

vL = i

k

[
∂0 +

(
ν+1

2

)
H
]
v0−

ξH2

H2 Uν+1 , (4.27)

where we introduced what we refer to as the simple covariant gauge,

ξs = ν+1
ν

= D−1
D−3 , (4.28)

which in the flat space limit corresponds to the D-dimensional Fried-Yennie gauge [77,
78]. The photon two-point function takes the simplest form in this gauge, as already
noted in [62]. The solutions for the particular mode functions are readily found from
identities (2.14) and (2.15),

v0 = −iξk
2(ν+1)H

[H
H
Uν+1 − Uν

]
−
(

1− ξ

ξs

)
ik

2H

[
ik

νH

∂Uν
∂ν

+ Uν

]
, (4.29)

vL = −iξk
2(ν+1)H

[H
H
Uν− Uν+1

]
−
(

1− ξ

ξs

)
ik

2H

[
ik

νH

∂Uν+1
∂ν

+ H
νH

Uν+ Uν+1

]
, (4.30)

where the homogeneous parts were fixed by requiring the Wronskian-like relation,

Re
(
v0U

∗
ν+1 + vLU

∗
ν

)
= 0 , (4.31)

and a regular flat space limit,

v0
H→0−−−→ 1

4
[
(1+ξ)+2(1−ξ)ik(η−η0)

]e−ik(η−η0)
√

2k
, (4.32a)

vL
H→0−−−→ 1

4
[
−(1+ξ) + 2(1−ξ)ik(η−η0)

]e−ik(η−η0)
√

2k
. (4.32b)
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Using the Wronskian-like relation above we can invert the momentum space field operators
for the initial conditions operators, and infer their commutation relations from the canonical
ones (4.5), with the non-vanishing ones being,[

b̂H(~k), b̂†P (~k ′)
]

=
[
b̂P (~k), b̂†H(~k ′)

]
= −δD−1(~k−~k ′) . (4.33)

These commutators are not canonical, in the sense that they are not the ones of cre-
ation/annihilation operators. It is actually advantageous to keep them in this form for the
purpose of constructing the space of states, as it simplifies matters and makes the structure
more transparent [65].

4.4 Subsidiary condition

Physical states have to satisfy the subsidiary condition (3.24) descending from the first-
class constraints. For this purpose we need to construct the non-Hermitian constraint
operator (3.25). It takes a considerably simpler, diagonal form in momentum space,

K̂(~x) = a
D−2

2

∫
dD−1k

(2π)D−1
2

ei
~k·~x K̂(~k) , K̂†(~x) = a

D−2
2

∫
dD−1k

(2π)D−1
2

ei
~k·~x K̂†(−~k) , (4.34)

where it is a simple linear combination of the momentum space Hermitian constraints,

K̂(~k) = c0(η,~k)π̂0(η,~k) + cL(η,~k)π̂L(η,~k) , (4.35)

so that the equivalent subsidiary conditions are,

K̂(~k)
∣∣Ω〉 = 0 ,

〈
Ω
∣∣K̂†(~k) = 0 , ∀~k . (4.36)

The non-Hermitian constraint is time-independent, which implies the following first order
equations of motion for the coefficient functions,

∂0c0 − kcL + 1
2(D−2)Hc0 = 0 , ∂0cL + kc0 −

1
2(D−2)HcL = 0 . (4.37)

These equations combine into a second order one,[
∂2

0 + k2 −
(
ν2− 1

4

)]
c0 = 0 , (4.38)

cL = 1
k

[
∂0 +

(
ν+ 1

2

)
H
]
c0 , (4.39)

whose general solution, according to (2.8)–(2.10), can be written as,

c0(η,~k) = α(~k)Uν(η, k) + β(~k)U∗ν (η, k) , (4.40)
cL(η,~k) = −iα(~k)Uν+1(η, k) + iβ(~k)U∗ν+1(η, k) , (4.41)

where α(~k) and β(~k) are some free functions of momenta with immaterial normalization.
We parametrize these coefficient functions so that they are consistent with homogeneity and
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isotropy7 of cosmological spacetimes [65], such that the non-Hermitian constraint reads,8

K̂(~k) = eiθ(~k)
(
e−iϕ(k)ch[ρ(k)] b̂P (~k) + eiϕ(k)sh[ρ(k)] b̂†P (−~k)

)
, (4.42)

where θ(~k), ϕ(k), and ρ(k) are real functions of momentum. It is also convenient to define
an accompanying operator,

B̂(~k) = eiθ(~k)
(
e−iϕ(k)ch[ρ(k)] b̂H(~k) + eiϕ(k)sh[ρ(k)] b̂†H(−~k)

)
, (4.43)

that preserves commutation relations (4.33),[
K̂(~k), B̂†(~k ′)

]
=
[
B̂(~k), K̂†(~k ′)

]
= −δD−1(~k−~k ′) , (4.44)

so that in this sense these definitions can be seen as Bogolyubov transformations between b̂P
and b̂H , and K̂ and B̂. We have to construct the space of states on which the algebra in (4.44)
is represented, such that it contains the kernel of K̂ as a subspace. The following section
is devoted to this task.

5 Constructing the state

The quantization of the dynamics outlined in the preceding two sections needs to be sup-
plemented by the construction of the space of states. Its construction in quantum field
theory is necessarily intertwined with the possible existence of global symmetries that the
vacuum is sought to respect. This section presents a detailed analysis of both physical and
gauge-fixed de Sitter symmetries of the photon in the general covariant gauge. Physical
symmetries are related to the gauge-invariant action (3.1) and are a property of physical
polarizations only, while gauge-fixed symmetries are related to the gauge-fixed action (3.14)
and are a property of the physical and gauge sectors alike. We define the vacuum state
in momentum space mode-by-mode, by requiring the state (i) to produce vanishing ex-
pectation values of all the physical de Sitter generators, and (ii) to be an eigenstate of all
the gauge-fixed de Sitter generators, with vanishing eigenvalues. This is a rather involved
section and for readers not interested in the technical details of the procedure we provide
a brief summary of the results in the concluding part 5.4 of this section.

5.1 De Sitter symmetries

There are 1
2D(D+1) isometries of the Poincaré patch of de Sitter space (see e.g. [79]). These

are the coordinate transformations that leave the de Sitter line element invariant. There is
7A more general parametrization is considered in [65],

K̂(~k) = N (~k)eiθ(~k)
(

e−iϕ(~k)ch[ρ(~k)] b̂P (~k) + eiϕ(−~k)sh[ρ(−~k)] b̂†P (−~k)
)
,

with N (~k)=
(
ch[ρ(~k)]ch[ρ(−~k)]−sh[ρ(~k)]shρ[(−~k)]

)− 1
2 , that reduces to the one in (4.42) when homogeneity

and isotropy are imposed.
8It is also possible to exchange the roles of b̂P (~k) and b̂†P (~k). The entire analysis can be repeated.

However, that choice would not be consistent with the requirements imposed in section 5.
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the same number of corresponding active vector field transformations that are symmetries
of both the gauge invariant (3.1) and the gauge fixed action (3.14). The isometries and the
associated infinitesimal active field transformations are:

• Spatial translations — (D−1) transformations,

η −→ η , xi −→ xi + αi , (5.1)

with the associated active field transformation,

Aµ(x) −→ Aµ(x)− αi∂iAµ(x) . (5.2)

• Spatial rotations — 1
2(D−1)(D−2) transformations,

η −→ η , xi −→ xi + 2ωijxj , (ωij = −ωji) , (5.3)

with the associated active field transformation,

Aµ(x) −→ Aµ(x) + 2ωijxi∂jAµ(x) + 2δiµωijAj(x) . (5.4)

• Dilation — one transformation,

η −→ η − δ

a
, xi −→ (1+Hδ)xi , (5.5)

with the associated active field transformation,

Aµ(x) −→ Aµ(x) + δ

a
∂0Aµ(x)− δHxi∂iAµ(x)− δHAµ(x) . (5.6)

• Spatial special conformal transformations — (D−1) transformations,

η −→ η + θjxj
a

, xi −→ xi −Hθjxjxi −
Hθi

2

[ 1
H2

( 1
a2−1

)
− xjxj

]
, (5.7)

with the associated active field transformation,

Aµ(x)−→Aµ(x)− θixi
a
F0µ(x)+

{
Hθjxjxi+

Hθi
2

[ 1
H2

( 1
a2−1

)
−xjxj

]}
∂iAµ(x) .

(5.8)

Note that the transformations above are written in such a way that in the Minkowski
limit, H → 0, they reduce to the Poincaré transformations. In particular, spatial trans-
lations and rotations do not change, while dilation (5.5) reduces to time translation, and
spatial special conformal transformation (5.7) reduces to Lorentz boosts.

In gauge theories one should distinguish between two sets of global symmetry gener-
ators — one set descending from the gauge-invariant action (3.2) that accounts for the
physical symmetries of the system, and another set descending from the gauge-fixed ac-
tion (3.14) that accounts for the symmetries of dynamics of the gauge-fixed system. The
two sets in general do not have to contain the same number of generators since gauge-fixing
is allowed to break global symmetries of the gauge-invariant system. In the case at hand
both the gauge-invariant action and the gauge-fixed action are invatiant under all the de
Sitter symmetry transformations above. Correspondingly, the two sets of generators we
compute next are of the same dimensionality.
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5.2 Physical symmetries

Physical symmetries of the photon in de Sitter are accounted for by the symmetry gener-
ators descending from the gauge-invariant action (3.1),

Pi =
∫
dD−1x

(
−ΠjFij

)
, (5.9)

Mij =
∫
dD−1x

(
2x[iFj]kΠk

)
, (5.10)

Q =
∫
dD−1x

(
a3−D

2a ΠiΠi + aD−5

4 FijFij −HxiFijΠj

)
, (5.11)

Ki =
∫
dD−1x

[
− xi2a

(
a4−DΠjΠj + aD−4

2 FjkFjk

)
+HxixjFjkΠk

+ 1
2H

( 1
a2 − 1−H2xkxk

)
FijΠj

]
, (5.12)

and they satisfy the de Sitter algebra weakly (up to constraints),{
Pi, Pj

}
≈ 0 ,

{
Pi,Mij

}
≈ 2P[iδj]k ,

{
Mij ,Mkl

}
≈ 4δi][kMl][j ,{

Q,Pi
}
≈ HPi ,

{
Q,Mij

}
≈ 0 ,

{
Q,Q

}
≈ 0 ,{

Ki, Pj
}
≈ −δijQ−HMij ,

{
Ki,Mjk

}
≈ 2δi[jKk] ,{

Ki, Q
}
≈ −Pi +HKi ,

{
Ki,Kj

}
≈Mij . (5.13)

In the flat space limit, H→0, this algebra reduces to the Poincaré algebra. Quantizing the
generators requires one to address operator ordering. Namely, every term containing a clas-
sical constraint should be ordered so that the non-Hermitian subsidiary constraint operator
is on the right of the product, and that its conjugate is on the left. This is accomplished
by writing them as (cf. eqs. (A.15a), (A.16a), (A.17a) and (A.18a) from appendix A.3),

P̂i = P̂ T
i +

∫
dD−1x

(
K̂†2Â

T
i + ÂT

i K̂2
)
, (5.14)

M̂ij = M̂T
ij +

∫
dD−1x

(
2K̂†2x[iÂ

T

j] + 2x[iÂ
T

j]K̂2
)
, (5.15)

Q̂ = Q̂T +
∫
dD−1x

(
−a

3−D

2 Ψ̂2∇−2Ψ̂2 −HK̂†2xiÂ
T
i −HxiÂT

i K̂2

)
, (5.16)

K̂i = K̂T
i +

∫
dD−1x

[
aD−3

2 xiΨ̂2
1
∇2 Ψ̂2 + a3−D

(
K̂†2

1
∇2 ΠT

i + Π̂T
i

1
∇2 K̂2

)
+ (D−3)H

(
K̂†2

1
∇2 Â

T
i + ÂT

i

1
∇2 K̂2

)
+Hxixj

(
K̂†2Â

T
j + ÂT

j K̂2
)

+ 1
2H

( 1
a2−1−H2xjxj

)(
K̂†2Â

T
i + ÂT

i K̂2
)]
, (5.17)

where the purely transverse parts are computed to be (cf. eqs. (A.15c), (A.16c), (A.17c)
and (A.18c) from appendix A.3),

P̂ T
i =

∫
dD−1k ki Ê†j (~k)Êj(~k) =

∫
dD−1k ki

D−2∑
σ=1

b̂†T (σ,~k) b̂T (σ,~k) , (5.18)

M̂T
ij =

∫
dD−1k

[
Ê†k(~k)

(
iki

∂

∂kj
−ikj

∂

∂ki

)
Êk(~k) + 2Ê†[i(~k)Êj](~k)

]
, (5.19)
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Q̂T =
∫
dD−1k

[
kÊ†i (~k)Êi(~k)− iHkj

2

(
∂Ê†i (~k)
∂kj

Êi(~k)− Ê†i (~k)∂Êi(
~k)

∂kj

)]
, (5.20)

K̂T
i =

∫
dD−1k

[
ik

2

(
∂Ê†j (~k)
∂ki

Êj(~k)− Ê†j (~k)∂Êj(
~k)

∂ki

)
− (D−3)2Hki

8k2 Ê†j (~k)Êj(~k)

+ H

2

(
∂Ê†i (~k)
∂kj

Êj(~k) + Ê†j (~k)∂Êi(
~k)

∂kj
− Ê†i (~k)∂Êj(

~k)
∂kj

−
∂Ê†j (~k)
∂kj

Êi(~k)
)

+ 2ki
∂Ê†k(~k)
∂kj

∂Êk(~k)
∂kj

− 2kj
∂Ê†k(~k)
∂kj

∂Êk(~k)
∂ki

− 2kj
∂Ê†k(~k)
∂ki

∂Êk(~k)
∂kj

]
, (5.21)

with the expressions written compactly using a short-hand notation,

Êi(~k) =
D−2∑
σ=1

εi(σ,~k) b̂T (σ,~k) , (5.22)

and where products have been normal ordered in the usual manner. Since none of
the generators (5.14)–(5.17) depends on either A0 or AL

i , they automatically qualify as
observables since all of them commute with the non-Hermitian constraint,[

K̂(~k), ĜI
]

= 0 , ĜI = {P̂i, M̂ij , Q̂, K̂i} , (5.23)

for any choice of the parameters in (4.42).
Firstly, we want to specify a physically de Sitter-invariant state. This is not imple-

mented as in theories without constraints by considering eigenstates of the generators, but
rather by computing expectation values of polynomials of generators and showing that the
values factorize. In other words, this means,〈

Ω
∣∣P(

P̂i, M̂ij , Q̂, K̂i
)∣∣Ω〉 = P

(
P i,M ij , Q,Ki

)
, (5.24)

where the arguments on the right-hand-side are expectation values of generators,

P i =
〈
Ω
∣∣P̂i∣∣Ω〉 , M ij =

〈
Ω
∣∣M̂ij

∣∣Ω〉 , Q =
〈
Ω
∣∣Q̂∣∣Ω〉 , Ki =

〈
Ω
∣∣K̂i

∣∣Ω〉 . (5.25)

Making this consistent with the generator algebra (5.13) then implies that all of the ex-
pectation values of generators (5.25) have to vanish,

P i = 0 , M ij = 0 , Q = 0 , Ki = 0 . (5.26)

Furthermore, only the fully transverse parts of the generators in (5.24) participate, as any
parts containing scalar sector operators annihilate either the ket or the bra state,〈

Ω
∣∣P(

P̂i, M̂ij , Q̂, K̂i
)∣∣Ω〉 =

〈
Ω
∣∣P(

P̂ T
i , M̂

T
ij , Q̂

T , K̂T
i

)∣∣Ω〉 . (5.27)

This means that requiring the state to be physically de Sitter symmetric puts conditions
on the transverse sector only. Clearly (5.26) is satisfied by the state defined as,

b̂T (σ,~k)
∣∣Ω〉 = 0 , ∀~k, σ . (5.28)
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The rest of the Hilbert space for the transverse sector is then defined in the usual manner
as a Fock space, by acting on

∣∣Ω〉 with the transverse creation operators. It should be
noted that de Sitter symmetries do not uniquely fix the state to satisfy (5.28). In fact
they allow for a two-parameter class of states analogous to α-vacua of the scalar [80, 81].
Nevertheless, we consider (5.28) to define our state, as it minimizes energy and, in addition,
it is the unique state with a regular flat space limit.

It is important to note that the gauge sector of the space of states is not fixed by the
requirement of the physical de Sitter invariance, and can in fact be chosen freely without
interfering with it. However, it is advantageous to fix the gauge sector to also respect de
Sitter symmetries. This is discussed and implemented in the following subsection.

5.3 Gauge-fixed symmetries

The dynamics of the gauge-fixed theory is determined by the gauge-fixed action (3.14). We
have chosen the gauge-fixing term to respect general covariance, and hence it respects de
Sitter symmetries of section 5.1. Therefore, the full gauge-fixed action respects de Sitter
symmetries, and accordingly it engenders the associated symmetry generators,

P ?i =
∫
dD−1x

(
−Πj∂iAj −Π0∂iA0

)
, (5.29)

M?
ij =

∫
dD−1x

(
2Π0x[i∂j]A0 + 2Πkx[i∂j]Ak + 2Π[iAj]

)
, (5.30)

Q? =
∫
dD−1x

{
1
a

[
a4−D

2 ΠiΠi −
a4−Dξ

2 Π2
0 −A0∂iΠi + Π0∂iAi − (D−2)HΠ0A0

+ aD−4

4 FijFij

]
−H

[
Πj
(
1+xi∂i

)
Aj + Π0

(
1+xi∂i

)
A0

]}
, (5.31)

K?
i =

∫
dD−1x

{
−xi
a

[
a4−D

2 ΠjΠj −
a4−Dξ

2 Π2
0 −Aj∂jΠ0 −A0∂jΠj − (D−2)HΠ0A0

+ aD−4

4 FjkFjk

]
+HxjAjΠi +H

[
xixk∂kAj + 1

2H2

( 1
a2−1−H2xkxk

)
∂iAj

+ xiAj − xjAi
]
Πj +H

[
xixj∂jA0 + 1

2H2

( 1
a2−1−H2xjxj

)
∂iA0 + xiA0

]
Π0

}
. (5.32)

These generators satisfy de Sitter algebra (5.13) strongly, since the gauge-fixed action
does not possess local symmetries any more. Quantizing these generators requires us
to address operator ordering. The purely transverse part will be the same as for the
gauge-invariant generators, while the remainder warrants a closer look. We need to order
operators so that all the non-Hermitian constraints are on the right in the products, and
their conjugates on the left. This is a tedious task, and here we report the results (cf.
eqs. (A.15b), (A.16b), (A.17b) and (A.18b) from appendix A.3),

P̂ ?i = P̂ T
i +

∫
dD−1x

(
K̂†2Â

L
i + ÂL

i K̂2 − K̂†1∂iÂ0 − ∂iÂ0K̂1
)
, (5.33)

M̂?
ij = M̂T

ij +
∫
dD−1x

(
2K̂†1x[i∂j]Â0 + 2x[i∂j]Â0K̂1 − 2K̂†2x[iÂ

L

j] − 2x[iÂ
L

j]K̂2
)
, (5.34)
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Q̂? = Q̂T + 1
a

∫
dD−1x

[
−a

4−D

2 Ψ̂2∇−2Ψ̂2 −
a4−D

2 ξΨ̂1Ψ̂1 − K̂†2Â0 − Â0K̂2

+ K̂†1∂iÂ
L
i + ∂iÂ

L
i K̂1 +Hxi

(
K̂†2Â

L
i + ÂL

i K̂2 + ∂iK̂
†
1Â0 + Â0∂iK̂1

)]
, (5.35)

K̂?
i = K̂T

i + 1
a

∫
dD−1x

[
a4−DK̂†2∇

−2Π̂T
i + a4−DΠ̂T

i ∇−2K̂2 − K̂†1Â
T
i − ÂT

i K̂1

+ (D−3)H
(
K̂†2∇

−2ÂT
i + ÂT

i ∇−2K̂2
)

+ a4−D

2 xi
(
Ψ̂2∇−2Ψ̂2 + ξΨ̂1Ψ̂1

)
+ xi

(
∂jK̂

†
1Â

L
j + ÂL

j ∂jK̂1 + K̂†2Â0 + Â0K̂2 + (D−1)H
(
K̂†1Â0 + Â0K̂1

))
+ a

2H

( 1
a2−1−H2xjxj

)(
K̂†1∂iÂ0 + ∂iÂ0K̂1 − K̂†2Â

L
i − ÂL

i K̂2
)

+Hxixj
(
K̂†1∂jÂ0 + ∂jÂ0K̂1 − K̂†2Â

L
j − ÂL

j K̂2
)]
, (5.36)

where the transverse parts are given in (5.18)–(5.21). The next step is requiring that all the
generators commute with K̂ (modulo K̂ itself). This requirement has two interpretations.
The first is that it makes the gauge-fixed generators into observables; the second is that it
puts a condition on the non-Hermitian constraint operator to be consistent with de Sitter
symmetries. For spatial translations and spatial rotations this is accomplished by taking
coefficients as in (4.42),

[
K̂(~k), P̂ ?i

]
= kiK̂(~k) ,

[
K̂(~k), M̂?

ij

]
= ieiθ(~k)

(
ki

∂

∂kj
−kj

∂

∂ki

)(
e−iθ(~k)K̂(~k)

)
. (5.37)

For dilations this is no longer the case,

[
K̂(~k),Q̂?

]
=
(
1+2sh2[ρ(k)]

)(
k−Hk∂ϕ(k)

∂k

)
K̂(~k)+eiθ(~k)iHki

∂

∂ki

(
e−iθ(~k)K̂(~k)

)
(5.38)

+(D+1)iH
2 K̂(~k)−eiθ(~k)+iθ(−~k)

[
sh[2ρ(k)]

(
k−Hk∂ϕ(k)

∂k

)
+iHk∂ρ(k)

∂k

]
K̂†(−~k),

as the conjugate of the non-Hermitian constraint operator appears on the right hand side.
Requiring that its coefficient vanishes selects two options:

option 1: ρ(k) = 0 , (5.39)

option 2: ρ(k) = ρ = const. , ϕ(k) = k

H
. (5.40)

The second option does not have a well defined flat space limit, as the Hubble rate appears
in the denominator of the phase. This option would lead to the α-vacuum-equivalent
for photons. We do not consider this option in the remainder of the paper. Rather, we
consider only the first option (5.39), which has a regular flat space limit, consistent with the
choice (5.28) for the transverse sector. Taking ρ= 0 allows one to also absorb phase ϕ(k)
into θ(~k) since it becomes redundant; effectively we are taking ϕ(k)=0. Moreover, we can
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dispense with the irrelevant phase altogether,9 and simply take,

K̂(~k) = b̂P (~k) , B̂(~k) = b̂H(~k) . (5.41)

Computing the remaining commutator with the generator of spatial special conformal
transformations,

[
K̂(~k), K̂?

i

]
= Hkj

∂2K̂(~k)
∂ki∂kj

− Hki
2

∂2K̂(~k)
∂kj∂kj

− ik
(

1 + (D+1)iH
2k

)
∂K̂(~k)
∂ki

− iki
2k

(
3− (D−3)(D+1)iH

4k

)
K̂(~k) , (5.42)

reveals it to be consistent with that requirement. The generators take the form,

P̂ ?i = P̂ T
i +

∫
dD−1k ki

(
K̂†(~k)B̂(~k) + B̂†(~k)K̂(~k)

)
, (5.43)

M̂?
ij = M̂T

ij −
∫
dD−1k

[
B̂†(~k)

(
iki

∂

∂kj
−ikj

∂

∂ki

)
K̂(~k)

+ K̂†(~k)
(
iki

∂

∂kj
−ikj

∂

∂ki

)
B̂(~k)

]
, (5.44)

Q̂? = Q̂T −
∫
dD−1k

[
k

(
1+ (D+1)iH

2k

)
B̂†(~k)K̂(~k) + k

(
1− (D+1)iH

2k

)
K̂†(~k)B̂(~k)

− (1−ξ)k
2 K̂†(~k)K̂(~k) + iHki

(
B̂†(~k)∂K̂(~k)

∂ki
− ∂K̂†(~k)

∂ki
B̂(~k)

)]
, (5.45)

K̂?
i = K̂T

i +
∫
dD−1k

[
iK̂†(~k)Êi(~k)− iÊ†i (~k)K̂(~k)

+ i(1−ξ)
4 k

(
∂K̂†(~k)
∂ki

K̂(~k)− K̂†(~k)∂K̂(~k)
∂ki

)
+ ik

(
1+ (D+1)iH

2k

)
B̂†(~k)∂K̂(~k)

∂ki

− ik
(

1− (D+1)iH
2k

)
∂K̂†(~k)
∂ki

B̂(~k) + iki
2k

(
3− i(D−3)(D+1)H

4k

)
B̂†(~k)K̂(~k)

− iki
2k

(
3+ i(D−3)(D+1)H

4k

)
K̂†(~k)B̂(~k)−Hkj

(
∂2K̂†(~k)
∂ki∂kj

B̂(~k) + B̂†(~k)∂
2K̂(~k)
∂ki∂kj

)

+ Hki
2

(
∂2K̂†(~k)
∂kj∂kj

B̂(~k) + B̂†(~k)∂
2K̂(~k)
∂kj∂kj

)]
. (5.46)

Having ensured that the subsidiary non-Hermitian constraint operator is consistent with
de Sitter invariant dynamics, we may finally define a de Sitter invariant state. This is
implemented by requiring the state to be annihilated by all the gauge-fixed de Sitter sym-
metry generators (5.43)–(5.46). Given the subsidiary condition (4.36), this is possible only
if the state satisfies,

B̂(~k)
∣∣Ω〉 = 0 ,

〈
Ω
∣∣B̂†(~k) = 0 , ∀~k , (5.47)

9The phase θ(~k) does not affect the propagator. An interested reader can easily reintroduce it to
expressions (5.41)–(5.46) by taking K̂(~k)→e−iθ(~k)K̂(~k) and B̂(~k)→e−iθ(~k)B̂(~k).
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Together with (5.39) these completely define the state, which serves as the vacuum for
constructing the indefinite inner product space of states [65].

5.4 Summary: momentum space de Sitter invariant state

The most important result of this rather technical section is the momentum space con-
struction of a de Sitter invariant quantum state. Such construction is considerably simpler
than in position space since the spatial momentum modes do not couple at the linear level.
Here we briefly summarize the results relevant for subsequent sections.

The physical properties of the system are described by the gauge-invariant action (3.1),
which is invariant under de Sitter transformations from section 5.1. The associated gener-
ators (5.9)–(5.12) of these transformations are the conserved Noether charges that charac-
terize the state. Requiring that all expectation values of these charges and their products
vanish defines a class of physically de Sitter invariant states, and puts conditions on the
transverse sector of the state only. The minimum energy state in this class is defined by,

b̂T (σ,~k)
∣∣Ω〉 = 0 , ∀~k, σ , (5.48)

which is the state we consider as the vacuum. The remainder of the transverse space of
states is then constructed as a Fock space. The gauge fixed dynamics is given by the gauge
fixed action (3.14), which is chosen to preserve all the de Sitter symmetries. Accordingly,
there are conserved Noether charges (5.29)–(5.32) that generate the gauge fixed symmetries.
Requiring that the full state, that includes both the transverse and scalar sectors, is de
Sitter symmetric requires (i) that the non-Hermitian constraint operator (4.42) commutes
with all the gauge fixed generators, which fixes K̂(~k) = b̂P (~k), and (ii) that the state is an
eigenstate of all the gauge fixed de Sitter generators mode-by-mode, which fixes,10

b̂P (~k)
∣∣Ω〉 = 0 , b̂H(~k)

∣∣Ω〉 = 0 , ∀~k . (5.49)

The scalar sector space of states is then necessarily an indefinite inner product space, and
is constructed by acting repeatedly with b̂†P and b̂†H on

∣∣Ω〉. Conditions (5.48) and (5.49)
fully define the state whose two-point functions we compute in the following section. The
position space two-point function ultimately decides whether the state we had defined
in momentum space makes physical sense. This attitude is informed by the case of the
massless, minimally coupled scalar, for which the CTBD mode function (2.10) defines a
de Sitter invariant state in momentum space, but whose respective two-point function in
position space diverges in the infrared [81, 82], failing to describe a physically sensible state.

6 Two-point function

The basic building blocks of nonequilibrium perturbation theory for interacting vector
fields in de Sitter are the various two-point functions determined in the free theory. In this
section we first briefly introduce these two-point functions and the properties they must
satisfy. We then proceed to compute the two-point functions by evaluating the integrals

10This is true up to the freedom in (5.40), defining the α-vacuum states of the scalar sector.
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over the mode functions obtained in section 4. Rewriting the results in a covariant form
reveals the existence of one de Sitter breaking structure function, which is the principal
result of this work. The section concludes by examining particular limits of the two-point
functions and comparing them with known results.

6.1 Generalities

The positive-frequency Wightman two-point function of the photon is defined as an expec-
tation value of a product of two vector field operators,

i
[

∆− +
µ ν

]
(x;x′) =

〈
Ω
∣∣Âµ(x)Âν(x′)

∣∣Ω〉 . (6.1)

We compute this two-point function using the mode functions obtained in section 4.
Its complex conjugate defines the negative-frequency Wightman function, i

[
∆+ −
µ ν

]
(x;x′) ={

i
[

∆− +
µ µ

]
(x;x′)

}∗, and the two together define the Feynman propagator,

i
[

∆+ +
µ ν

]
(x;x′) = θ(η−η′) i

[
∆− +
µ ν

]
(x;x′) + θ(η′−η) i

[
∆+ −
µ ν

]
(x;x′) . (6.2)

and its conjugate, i
[

∆− −
µ ν

]
(x;x′) =

{
i
[

∆+ +
µ ν

]
(x;x′)

}∗, known as the Dyson propagator.
The field operators in the definitions of the two-point functions above satisfy equations

of motion (3.18)–(3.21), that can be written in a more familiar covariant form,

Dµν Âν(x) = 0 , Dµν = ∇ρ∇ρgµν −
(

1− 1
ξ

)
∇µ∇ν −Rµν . (6.3)

These equations of motion are inherited by the Wightman function (6.1),

Dµρ i
[

∆− +
ρ ν

]
(x;x′) = 0 , D′ν

σ
i
[

∆− +
µ σ

]
(x;x′) = 0 , (6.4)

while the Feynman propagator (6.2) picks up a delta function source on the account of the
time-ordering in its definition and the canonical commutation relations (3.17),

Dµρ i
[

∆+ +
ρ ν

]
(x;x′) = gµν

iδD(x−x′)√
−g

, D′ν
σ
i
[

∆+ +
µ σ

]
(x;x′) = gµν

iδD(x−x′)√
−g

, (6.5)

The two-point functions we construct via the sum-over-modes ultimately satisfy these equa-
tions of motion.

In addition to satisfying the equations of motion, the photon two-point functions have
to satisfy identities stemming from gauge invariance of the theory. These can be understood
as the two-point functions of Hermitian constraints (3.23), which have to vanish according
to the principles of canonical quantization. We can express them directly in terms of
the two-point functions of vector potential fields since the two Hermitian constraints are
given by ∇µÂµ=ξa2−DΠ̂0 and ∂iF̂0i=a4−D∂iΠ̂i. The subsidiary conditions thus take the
following form for the Wightman function,

∇µ∇′νi
[

∆− +
µ ν

]
(x;x′) = 0 , (6.6a)(

2gijδµ[i∂0]∂j
)
∇′νi

[
∆− +
µ ν

]
(x;x′) = 0 , (6.6b)
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∇µ
(
2g′klδν[k∂′0]∂

′
l

)
i
[

∆− +
µ ν

]
(x;x′) = 0 , (6.6c)(

2gijδµ[i∂0]∂j
)(

2g′klδν[k∂′0]∂
′
l

)
i
[

∆− +
µ ν

]
(x;x′) = 0 . (6.6d)

while for the Feynman propagator they also receive a local contribution due to the time-
ordered product of operators in its definition,

∇µ∇′νi
[

∆+ +
µ ν

]
(x;x′) = −ξ iδ

D(x−x′)√
−g

, (6.7a)(
2gijδµ[i∂0]∂j

)
∇′νi

[
∆+ +
µ ν

]
(x;x′) = 0 , (6.7b)

∇µ
(
2g′klδν[k∂′0]∂

′
l

)
i
[

∆+ +
µ ν

]
(x;x′) = 0 , (6.7c)(

2gijδµ[i∂0]∂j
)(

2g′klδν[k∂′0]∂
′
l

)
i
[

∆+ +
µ ν

]
(x;x′) = −∇2 iδ

D(x−x′)√
−g

. (6.7d)

6.2 Sum over modes

Given the mode decompositions (4.3), and the solutions for the momentum space field op-
erators (4.15), (4.24), and (4.25), and the definition of the physical state (5.28) and (4.36),
components of the photon two-point function can be expressed as the following integrals
over the mode functions,

i
[

∆− +
0 0

]
(x;x′) (6.8)

= (aa′)−
D−2

2

∫
dD−1k

(2π)D−1 e
i~k·(~x−~x ′)

[
−Uν(η, k)v∗0(η′, k)− v0(η, k)U∗ν (η′, k)

]
,

i
[

∆− +
0 i

]
(x;x′) (6.9)

= (aa′)−
D−2

2

∫
dD−1k

(2π)D−1 e
i~k·(~x−~x ′)ki

k

[
Uν(η, k)v∗L(η′, k) + v0(η, k)U∗ν+1(η′, k)

]
,

i
[

∆− +
i j

]
(x;x′) = (aa′)−

D−4
2

∫
dD−1k

(2π)D−1 e
i~k·(~x−~x ′)

(
δij−

kikj
k2

)
Uν(η, k)Uν(η′, k) (6.10)

− (aa′)−
D−2

2

∫
dD−1k

(2π)D−1 e
i~k·(~x−~x ′) kikj

k2

[
Uν+1(η, k)v∗L(η′, k) + vL(η, k)U∗ν+1(η′, k)

]
,

where we made use of eqs. (2.13) and (4.31), and where the iε-prescriptions are implicit in
the same way as for the scalar propagator (2.16). In the following two sections we solve
these integrals using the solutions for the mode functions found in section 4. Plugging in
the particular mode functions (4.29) and (4.30) into the sum over modes expressions (6.8)–
(6.10), using recurrence relations for mode functions (2.12), and recognizing the scalar
two-point functions (2.16) produces expressions,11

i
[

∆− +
0 0

]
(x;x′) = −ξ

2(ν+1)H2

[
H∂0 +H′∂′0 + (D−2)

(
H2+H′2

)]
Fν(y)

+
(

1− ξ

ξs

) ∇2

2νH2
∂

∂ν
Fν(y) , (6.11)

11Function Fν+1(y) appearing in expressions (6.11)–(6.13) is divergent in any dimension, but it is implied
that all the derivatives acting on it, including the parametric one, are to be taken first, and only then the
index set to ν=(D−3)/2, which produces a well defined finite result.
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i
[

∆− +
0 i

]
(x;x′) = ∂′i

2νH2

[
HFν+1(y)−H′Fν(y)

]
−
(

1− ξ

ξs

)
∂′i∂0

2νH2
∂

∂ν
Fν+1(y) , (6.12)

i
[

∆− +
i j

]
(x;x′) = δijHH′

H2 Fν(y)−
(

1− ξ

ξs

)
∂i∂
′
j

2νH2
∂

∂ν
Fν+1(y)

− 1
2νH2

∂i∂
′
j

∇2

[
H∂′0 +H′∂0 + (D−1)HH′

]
Fν(y) . (6.13)

It is advantageous to rewrite these expressions by using the identity [83],[
H′∂0 +H∂′0 + (D−1)HH′

]
f(y) = 1

2∇
2I[f ](y) , (6.14)

to eliminate the inverse Laplacian in the last component, and by acting some derivatives
explicitly to obtain,

i
[

∆− +
0 0

]
(x;x′) = 1

2νH2
ξ

ξs

{(
H2+H′2

)[
(2−y) ∂

∂y
−(D−2)

]
− 4HH′ ∂

∂y

}
Fν(y)

+ 1
2νH2

(
1− ξ

ξs

){
4
(
H2+H′2

) ∂
∂y
− 2HH′

[
2(2−y) ∂

∂y
−(D−1)

]}
∂

∂y

∂

∂ν
Fν(y) , (6.15)

i
[

∆− +
0 i

]
(x;x′) =

(
∂′iy
)

2νH2

[
H ∂

∂y
Fν+1(y)−H′ ∂

∂y
Fν(y)

]
−
(
∂′iy
)

2νH2

(
1− ξ

ξs

){
2H′ ∂

∂y
+H

[
1−(2−y) ∂

∂y

]}
∂

∂y

∂

∂ν
Fν+1(y) , (6.16)

i
[

∆− +
i j

]
(x;x′) = δijHH′

H2 Fν(y)−
∂i∂
′
j

2νH2

[1
2I
[
Fν
]
(y) +

(
1− ξ

ξs

)
∂

∂ν
Fν+1(y)

]
. (6.17)

In this way we have accomplished expressing the photon two-point function in terms of
scalar two-point functions and their derivatives. However, this form of the two-point func-
tion is not practical, as it is not covariant, and moreover its properties are not obvious. In
what follows we derive a more systematic, covariant representation.

6.3 Covariantization: de Sitter invariant ansatz

At this point there is nothing that motivates us to consider anything else than a de Sitter
invariant ansatz,

i
[

∆− +
µ ν

]dS(x;x′) =
(
∂µ∂

′
νy
)
CdS

1 (y) +
(
∂µy

)(
∂′νy

)
CdS

2 (y) , (6.18)

where C1 and C2 are the two scalar structure functions. We have to compare this expression
to (6.15)–(6.17) to solve for the structure functions. Writing out the components of (6.18)
gives,

i
[

∆− +
i j

]dS(x;x′) = 2δijHH′
[
I[CdS

2 ]−CdS
1

]
+∂i∂

′
jI

2[CdS
2 ] , (6.19)

i
[

∆− +
0 i

]dS(x;x′) = (∂′iy)
{
H
[
CdS

1 −(2−y)CdS
2

]
+2H′CdS

2

}
, (6.20)

i
[

∆− +
0 0

]dS(x;x′) =2
(
H2+H′2

)[
CdS

1 −(2−y)CdS
2

]
+HH′

[
−(2−y)CdS

1 +
(
8−4y+y2)CdS

2

]
. (6.21)
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Comparing just the (ij) component immediately yields the solution for the two structure
functions,

CdS
1 (y) = 1

2νH2

[
−
(
ν+ 1

2

)
Fν(y)−

(
1− ξ

ξs

)
∂

∂y

∂

∂ν
Fν+1(y)

]
, (6.22)

CdS
2 (y) = 1

2νH2

[
−1

2
∂

∂y
Fν(y)−

(
1− ξ

ξs

)
∂2

∂y2
∂

∂ν
Fν+1(y)

]
. (6.23)

These two de Sitter invariant structure functions, that multiply the two de Sitter invariant
tensor structures in (6.18), completely account for all the previous results on the photon
two-point functions reported in the literature [60–63]. Nonetheless, it is important to
show that this solution correctly reproduces the remaining components. Identity (2.25)
implies this is true for the (0i) component. However, a judicious comparison of the (00)
components gives,

i
[

∆− +
0 0

]
(x;x′)− i

[
∆− +

0 0
]dS(x;x′) = − HH

′

2νH2
ξ

ξs

[(
ν−D−3

2

)
Fν+1(y)

]
ν→D−3

2

= ξ × aa′H
D−2

(4π)D2
Γ(D−1)

(D−1) Γ
(
D
2
) , (6.24)

upon applying equation (2.20), recurrence identities (2.24) and (2.25), and the limit (2.29).
The fact that the de Sitter invariant ansatz (6.18) does not reproduce all the components
of the would-be de Sitter invariant propagator means that there is no de Sitter invariant
propagator, except in the limit ξ→0.

6.4 Covariantization: de Sitter breaking ansatz

Having discovered that there cannot be a de Sitter invariant solution, we make the following,
more general, Ansatz,12

i
[

∆− +
µ ν

]
(x;x′) =

(
∂µ∂

′
νy
)
C1(y, u) +

(
∂µy

)(
∂′νy

)
C2(y, u) (6.25)

+
[(
∂µy

)(
∂′νu

)
+
(
∂µu

)(
∂′νy

)]
C3(y, u) +

(
∂µu

)(
∂′νu

)
C4(y, u) ,

where u=ln(aa′). Writing out the components of the tensor structures in (6.25),

i
[

∆− +
i j

]
(x;x′) = 2δijHH′

{
I[C2]− C1

}
+ ∂i∂

′
jI

2[C2] , (6.26)

i
[

∆− +
0 i

]
(x;x′) = (∂′iy)

{
H
[
C1 − (2−y)C2 + C3

]
+ 2H′C2

}
, (6.27)

i
[

∆− +
0 0

]
(x;x′) =2

(
H2+H′2

)[
C1 − (2−y)C2 + C3

]
+HH′

[
−(2−y)C1+(8−4y+y2)C2 − 2(2−y)C3 + C4

]
, (6.28)

12Strictly speaking we could have made a more general Ansatz including a dependence on v= ln(a/a′),
but this would lead to the same result.
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results in a form that is straightforward to compare to (6.15)–(6.17). Comparing first
the (ij) components yields for the first two structure functions,

C1(y) = 1
2νH2

[
−
(
ν+ 1

2

)
Fν(y)−

(
1− ξ

ξs

)
∂

∂y

∂

∂ν
Fν+1(y)

]
, (6.29)

C2(y) = 1
2νH2

[
−1

2
∂

∂y
Fν(y)−

(
1− ξ

ξs

)
∂2

∂y2
∂

∂ν
Fν+1(y)

]
, (6.30)

and comparing the (0i) component yields,

C3 = 0 . (6.31)

Lastly, comparing the (00) components yields an unexpected result for the last structure
function,

C4 = − 1
2νH2

ξ

ξs

[(
ν−D−3

2

)
Fν+1(y)

]
ν→D−3

2

= ξ × HD−4

(4π)D2
Γ(D−1)

(D−1) Γ
(
D
2
) , (6.32)

which does not vanish! This is in accordance with section 6.3, where we showed that a fully
de Sitter invariant form cannot reproduce all the components obtained from mode sums.

The form of the photon two-point function (6.25) with the scalar structure func-
tions (6.29)–(6.32) comprises our solution for the Wightman function. The Feynman prop-
agator is obtained simply by changing every y−+ to y++.

6.5 Various limits

Four-dimensional limit. In the D→4 limit we have that ν→ 1
2 , and ξs→3, and that

the rescaled propagator functions reduce to,

Fν(y) D→4−−−→ H2

4π2y
,

∂

∂y

∂

∂ν
Fν+1(y) D→4−−−→ H2

(4π)2

[
−3
y

+ 1
4−y + 2(6−y)

(4−y)2 ln
(
y

4

)]
. (6.33)

Therefore, the photon two-point function (6.25) in D=4 is given by,

C1(y) D→4−−−→ 1
(4π)2

{
−4
y
−
(

1− ξ

ξs

)[
−3
y

+ 1
4−y + 2(6−y)

(4−y)2 ln
(
y

4

)]}
, (6.34a)

C2(y) D→4−−−→ 1
(4π)2

{ 2
y2 −

(
1− ξ

ξs

)[ 3
y2 + (12−y)

y(4−y)2 + 2(8−y)
(4−y)3 ln

(
y

4

)]}
, (6.34b)

C4
D→4−−−→ 1

(4π)2 ×
2ξ
3 . (6.34c)

Flat space limit. The three tensor structures from (6.25) in flat space reduce to,(
∂µ∂

′
νy
)H→0∼ − 2H2ηµν ,

(
∂µy

)(
∂′νy

)H→0∼ − 4H4∆xµ∆xν ,
(
∂µu

)(
∂′νu

)H→0∼ H2δ0
µδ

0
ν ,

(6.35)
while from the power series representation (2.23) we infer that the propagator function
reduces to the flat space scalar two-point function, and that its relevant derivatives are
also proportional to it,

Fν(y) H→0−−−→
Γ
(
D−2

2
)

4πD2
(
∆x2)D−2

2
,

∂

∂y

∂

∂ν
Fν+1(y) H→0−−−→ −(D−1)

4 ×
Γ
(
D−2

2
)

4πD2
(
∆x2)D−2

2
, (6.36)
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while the derivative with respect to y reduces to,

∂

∂y
H→0∼ 1

H2
∂

∂(∆x2) . (6.37)

Thus the vector two-point function in (6.25) reproduces the correct flat space limit,

i
[

∆− +
µ ν

]
(x;x′) H→0−−−→

[
ηµν −

(1−ξ)
2

(
ηµν−(D−2)∆xµ∆xν

∆x2

)] Γ
(
D−2

2
)

4πD2
(
∆x2)D−2

2
, (6.38)

that can be also written in a more familiar form as,

i
[

∆− +
µ ν

]
(x;x′) H→0−−−→

[
ηµν−(1−ξ)∂µ∂ν

∂2

] Γ
(
D−2

2
)

4πD2
(
∆x2)D−2

2
, (6.39)

as a projector acting on the Minkowski space scalar two-point function.

7 Simple observables

The two-point functions worked out in the preceding section are appropriate to use in loop
computations. Here we demonstrate their consistency by computing two simple observables
at leading orders. The first is the field strength correlator whose leading contribution comes
in at tree level. The second is the expectation value of the energy momentum tensor which is
an example of a simple one-loop observable where a single two-point function forms the loop.

7.1 Field strength correlator

The tree-level correlator of the field stress tensor is conveniently expressed as antisym-
metrized derivatives acting on the Wightman function (6.1),〈

Ω
∣∣F̂µν(x)F̂ρσ(x′)

∣∣Ω〉 = 4
(
δα[µ∂ν]

)(
δβ[ρ∂

′
σ]
)
i
[

∆− +
α β

]
(x;x′) . (7.1)

It clearly constitutes an observable since the field strength tensor is gauge independent. It
is immediately clear that the de Sitter breaking part does not contribute to this quantity
on the account of anti-symmetrized derivatives. Acting the derivatives above onto the
covariantized representation of the two-point function (6.25) gives,

〈
Ω
∣∣F̂µν(x)F̂ρσ(x′)

∣∣Ω〉 = − 2
H2

[(
∂µ∂

′
[ρy
)(
∂′σ]∂νy

)∂Fν
∂y

+
(
∂[µy

)(
∂ν]∂

′
[σy
)(
∂′ρ]y

)∂2Fν
∂y2

]
. (7.2)

The fact that the correlator does not depend on the gauge-fixing parameter ξ reflects that
this correlator is indeed an observable. The de Sitter invariance of the correlator reflects
the fact that the state is physically de Sitter invariant.13 In four spacetime dimensions

13The phenomenon when the one-point or two-point function breaks the symmetry of the background,
but the corresponding energy-momentum tensor does not, is known as symmetry non-inheritance, one
example of which is discussed in ref. [84] (see also refs. [85, 86]) where it was shown that, even though the
scalar one-point function of a massless scalar field sourced by a point charge breaks dilation symmetry, the
corresponding energy-momentum tensor does not.
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it also becomes obvious that the physical photon couples conformally to gravity. In fact,
using (6.33) it follows that in D→4 the correlator reduces to the flat space result,

〈
Ω
∣∣F̂µν(x)F̂ρσ(x′)

∣∣Ω〉 D→4−−−→ 2
π2∂µ]∂

′
[ρ

[∆xσ]∆x[ν(
∆x2)2

]

= 2
π2(∆x2)2

[
ηµ[ρησ]ν − 4ηα[µην][σηρ]β

∆xα∆xβ
∆x2

]
. (7.3)

7.2 Energy-momentum tensor

The energy-momentum tensor of the photon field is defined as a variation of the action
with respect to the metric tensor. Two definitions are thus possible since we can either
consider the gauge-invariant action (3.1), or the gauge-fixed action (3.14) that in addition
contains the gauge-fixing part (1.1). The two definitions give the same answer at the level
of expectation value, as they should.

Gauge-invariant energy-momentum tensor. The energy-momentum tensor defined
from the gauge-invariant action,

Tµν = −2√
−g

δS

δgµν
=
(
δρµδ

σ
ν −

1
4gµνg

ρσ
)
gαβFραFσβ , (7.4)

is manifestly gauge-independent as it depends on the field strength tensor only. All of its
components consist only of transverse fields and of the secondary first-class constraint [65].
This is why we need not worry about operator ordering of constraints when constructing
the operator associated with the observable. It is defined by Weyl-ordering the products,
and consequently its expectation value is,

〈
Ω
∣∣T̂µν(x)

∣∣Ω〉 =
(
δρ(µδ

σ
ν) −

1
4gµνg

ρσ
)
gαβ × 1

2
〈
Ω
∣∣{F̂ρα(x), F̂σβ(x)

}∣∣Ω〉 . (7.5)

Computing this calls for a dimensionally regulated coincidence limit of the field strength
correlator (7.2). The tensor structures in this limit reduce to,

(
∂µy

) x′→x−−−→ 0 ,
(
∂νy

) x′→x−−−→ 0 ,
(
∂µ∂

′
νy
) x′→x−−−→ −2H2gµν , (7.6)

while the only relevant derivative of the propagator function is inferred from (2.23),

∂Fν
∂y

x′→x−−−→ −H
D−2

(4π)D2
Γ(D−1)
4 Γ
(
D+2

2
) . (7.7)

This results in a finite coincidence limit of the field strength correlator in D→4,

〈
Ω
∣∣F̂µν(x)F̂ρσ(x′)

∣∣Ω〉 x′→x−−−→ HD

(4π)D2
2 Γ(D−1)
Γ
(
D+2

2
) × gµ[ρgσ]ν

D→4−−−→ H4

8π2 × gµ[ρgσ]ν , (7.8)

which implies a vanishing expectation value of the gauge-invariant energy-momentum ten-
sor. 〈

Ω
∣∣T̂µν ∣∣Ω〉 = 0 . (7.9)
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Gauge-fixed energy-momentum tensor. When defined as a variation of the gauge-
fixed action, the classical energy momentum tensor,

T ?µν = −2√
−g

δS?
δgµν

= Tµν + T gf
µν , (7.10)

contains an additional part descending from the gauge-fixing term (1.1),

T gf
µν = −2

ξ
A(µ∇ν)∇ρAρ + gµν

ξ

[
Aρ∇ρ∇σAσ + 1

2
(
∇ρAρ

)2]
. (7.11)

Classically this piece vanishes on-shell [65] as its every term contains at least one power of
the primary first-class constraint from (3.16). When promoting this quantity to an operator
it should be noted that some terms contain longitudinal and temporal components of the
vector potential. This is why special attention needs to be given to operator ordering.
Products containing constraints should not be Weyl-ordered, but rather written in a way
that the non-Hermitian constraint operator K̂(~x), defined in sections 3.3 and 4.4, should
be on the right of the product, and its conjugate on the left of the product. This is
conveniently accomplished by using the decomposition of Hermitian constraints in terms
of he non-Hermitian ones from (3.26),

T̂ gf
00 = −a2−D

[
K̂†2Â0 + Â0K̂2 +

(
∂kK̂

†
1
)
Âk + Âk

(
∂kK̂1

)
+ ξa4−D

2 Ψ̂1Ψ̂1

]
, (7.12a)

T̂ gf
0i = −a2−D

[(
∂iK̂

†
1
)
Â0 + Â0

(
∂iK̂1

)
+ K̂†2Âi + ÂiK̂2

]
, (7.12b)

T̂ gf
ij = −a2−D

[
2
(
∂(iK̂

†
1
)
Âj) + 2Â(i

(
∂j)K̂1

)
+ δij

(
K̂†2Â0 + Â0K̂2 (7.12c)

−
(
∂kK̂

†
1
)
Âk − Âk

(
∂kK̂1

)
− ξa4−D

2 Ψ̂1Ψ̂1

)]
.

For the terms containing only products of the Hermitian constraint operators this ordering
is immaterial since the non-Hermitian constraint and its conjugate commute. From (7.12a)–
(7.12c) then immediately follows that,〈

Ω
∣∣T̂ gf
µν

∣∣Ω〉 = 0 , (7.13)

for all physical states satisfying subsidiary constraints (3.24). Thus, the expectation value
of the energy momentum tensor for a physically de Sitter invariant state vanishes, and it is
immaterial which one of the two definitions, (7.4) or (7.10), one uses to obtain this result.
This mirrors the property that the two definitions give the same answer on-shell.

In refs. [75, 87, 88] the question of operator ordering of the gauge-fixed energy mo-
mentum tensor operator was not addressed, and consequently the results reported there
contradict the requirement (7.13). Recently the same issue was tackled in [76], but again
without addressing the operator ordering. They concluded that it has to vanish, but only
after regularization and renormalization implemented by adiabatic subtraction. While we
agree with the conclusion, the rationale is quite different. One either needs to consider op-
erator ordering carefully, leading identically to (7.13), or one can obtain the answer (7.13)
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by Weyl-ordering operators and introducing compensating Faddeev-Popov ghost fields, as
we have done in a companion letter [66]. The latter approach is consistent with other
findings for the energy-momentum tensor expectation value, see e.g. [89, 90].

8 Discussion

Photon propagators are essential building blocks for any quantum loop computation in-
volving massless vector fields. Here we are concerned with photon propagators in de Sitter
space, which is a maximally symmetric idealization of more realistic slow-roll primordial
inflation. The expectation for maximally symmetric spaces, such as de Sitter, is that the
general covariant gauge is conceptually and practically the simplest and most convenient
one to use,14 on the account of two reasons:

(i) it produces maximally symmetric two-point functions allowing for preservation of
manifest covariance at intermediate steps of the computation, and

(ii) it contains a free gauge-fixing parameter defining a one-parameter family of covariant
gauges, that can be used to check computed observables that cannot depend on it.

Both of these expectations are of great utility in de Sitter space loop computations. The
first provides an organizational principle for computations that are notoriously more diffi-
cult than their flat space counterparts. The second is particularly useful for studying gauge
dependence and quantum observables in inflation, the understanding of which has still not
reached maturity, especially for perturbative quantum gravity [92].

In this work we have shown that the two commonly held expectations stated above are
in general not consistent with each other. It is possible for the photon propagator to be de
Sitter invariant only in the Landau gauge ξ→0, in which case we reproduce the result due
to Tsamis and Woodard [61]. For all other values of the gauge-fixing parameter it is not
possible to maintain de Sitter symmetry of the propagator, while simultaneously satisfying
the equations of motion and subsidiary conditions. It is the latter that was not checked
for the covariant gauge photon propagators reported in the literature previously [65], and
it is responsible for breaking of the de Sitter symmetry. The de Sitter breaking part
pertains to the pure gauge sector of the free theory, and in that sense it has no physical
content for non-interacting photons. However, when interactions are considered this is not
as straightforward, and gauge-fixing has to be implemented correctly in order to guarantee
correct results for loop corrections.

Our main result is the photon two-point function in the general covariant gauge on the
expanding Poincaré patch of de Sitter space,15 that takes the following covariantized form,

i
[

∆− +
µ ν

]
(x;x′) =

(
∂µ∂

′
νy
)
C1(y) +

(
∂µy

)(
∂′νy

)
C2(y) +

(
∂µu

)(
∂′νu

)
C4 , (8.1)

14There exists a photon propagator in de Sitter in a non-covariant gauge due to Woodard [91], that is
simpler than any covariant gauge propagator. This suggests that covariant gauges need not be the simplest
choice in de Sitter.

15We do not consider here spatially compact global coordinates on de Sitter, where the problem of
linearization instability arises [93].
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The first two terms comprise the de Sitter invariant part, where both the tensor structures
and the scalar structure functions given in (6.29) and (6.30) are constructed from the de
Sitter invariant distance y only. This part was already obtained in previous works [60–63].
The contribution of our analysis is the unexpected third term, composed out of the de Sitter
breaking tensor structure constructed from variable u=ln(aa′), multiplied by a constant,

C4 = ξ × HD−4

(4π)D2
Γ(D−1)

(D−1) Γ
(
D
2
) , (8.2)

that vanishes only in the exact gauge limit ξ → 0. This contribution is a homogeneous
solution of the equation of motion, and would never be seen by considering a de Sitter
invariant Ansatz for the two-point function. It indeed is true that the de Sitter invariant
part of (8.1) satisfies the equation of motion independently, as was shown in [60–63].
However, the quantum subsidiary conditions from section 3.3 and 4.4. are not satisfied
unless the de Sitter breaking term is added. These subsidiary conditions are equivalent
to the Ward-Takahashi identity for free two-point functions one obtains from BRST
quantization, that we considered in a companion letter [66].

We derived our result (8.1)–(8.2) starting from the first principles of canonical quanti-
zation. This required us to first impose the general covariant gauge for the photon field as
the multiplier gauge in the classical theory in section 3, which treats all components of the
vector field on equal footing, and preserves general covariance. Such gauge fixing implies
that the dynamics is given by the gauge-fixed action, and kinematics by the subsidiary
first-class constraints. The quantization, outlined in section 4, contains two aspects as
well — the gauge-fixed dynamics is quantized by the usual rules of canonical quantization,
while the constraints are implemented as conditions on the space of states that physical
states have to satisfy. In that respect the construction structurally parallels Gupta-Bleuler
quantization, but is formulated only in terms of the canonical structure and is divorced
from the symmetries of the theory.

The symmetries of the quantum state are considered separately from quantization in
section 5, where we construct the state by requiring it to be physically de Sitter invariant,
meaning that the expectation values of de Sitter generators descending from the original
gauge invariant action must all vanish. This fixes only the transverse part of the state that
describes the physical polarizations only. Then we construct the scalar sector of the state
by requiring the full state to be an eigenstate of the de Sitter symmetry generators of the
gauge-fixed action. All of this was implemented in momentum space. Nevertheless, the
integrals over all the modes have to be performed to obtain the two-point function. When
performed, integrals yield a de Sitter breaking two-point function in position space. While
somewhat unintuitive, this is not the first example of position-space two-point functions
breaking de Sitter invariance that was imposed in momentum space. The best known
example is the massless, minimally coupled scalar for which the CTBD mode function is
associated to the state that is an eigenstate of all the de Sitter symmetry generators, but
that fails to produce an infrared-finite two-point function, implying that it does not exist.
For the massless photon we consider here de Sitter breaking is finite.
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Our propagator in (8.1)–(8.2) and (6.29)–(6.30) is suitable for perturbative calcula-
tions in de Sitter space, for Abelian and non-Abelian theories alike, and can be also used
to estimate the perturbative effects of interactions in general inflationary spacetimes.16

Among the simplest such applications are the field strength correlator and the one-loop
energy-momentum tensor discussed in section 7.

We expect that understanding of the gauge field quantization in inflation [65], and
the construction of the two-point functions in de Sitter presented in this work and in
the companion letter [66], will allow us to tackle the questions faced when constructing
propagators in realistic inflationary spacetimes and when investigating the effects of in-
teractions. Already in power-law inflation the situation is more complicated as there is
no enhanced symmetry, just the cosmological ones, and the construction of propagators is
more involved [67, 83, 94]. The goal is to put such propagators to use and quantify how
departures from exact de Sitter space influence the effects of quantum loop corrections.
The understanding of this issue is important, but it is still in its early stages [33, 51, 95].
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A Noether currents and charges

Here we supply additional intermediate expressions for section 5.

A.1 Noether currents for gauge invariant action

The global transformations from section 5.1 indeed are symmetries of the gauge invariant
action (3.1). However, these are defined up to gauge transformations, which do not carry
any information about global de Sitter symmetries. Therefore, there are ambiguities in
the definition of global symmetries for the gauge-invariant action. However, there is a
convenient way to fix these ambiguities by requiring that the currents associated with the
de Sitter symmetries be gauge-invariant off-shell (they are invariant on-shell always, and
currents are conserved on-shell only anyway). To this end, it is more convenient to write
the transformations (5.2), (5.4), (5.6), and (5.8), respectively, in the following form,

Aµ → Aµ − αiFiµ , (A.1)
Aµ → Aµ + 2ωijxiFjµ , (A.2)

Aµ → Aµ + α

a
F0µ − αHxiFiµ , (A.3)

Aµ → Aµ −
θixi
a
F0µ +

[
Hθjxjxi + θi

2H

( 1
a2−1−H2xjxj

)]
Fiµ . (A.4)

16See refs. [41–43] for how to tackle the problem of interactions beyond perturbation theory.
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The Noether currents associated with these transformations are now gauge invariant off-
shell,

(Pi)µ = ∂L

∂(∂µAν)
(
−Fiν

)
+ δµi L , (A.5)

(Mij)µ = ∂L

∂(∂µAν)
(
2x[iFj]ν

)
+ δµ[ixj]L , (A.6)

(Q)µ = ∂L

∂(∂µAν)

(1
a
F0ν −HxiFiν

)
−
(
δµ0
a
− δµi Hxi

)
L , (A.7)

(Ki)µ = ∂L

∂(∂µAν)

[
−xi
a
F0ν +HxixjFjν + 1

2H

( 1
a2−1−H2xjxj

)
Fiν

]
+
[
δµ0
xi
a
− δµjHxixj −

δµi
2H

( 1
a2−1−H2xjxj

)]
L , (A.8)

where the gauge invariant Lagrangian and its derivative in expressions above are,

L = −
√
−g
4 gµρgνσFµνFρσ ,

∂L

∂(∂µAν) = −
√
−g gµρgνσFρσ . (A.9)

Whether the conserved currents are defined as off-shell gauge invariant or not, they lead
to the same conserved charges, given in (5.9)–(5.12).

A.2 Noether currents for gauge-fixed action

The Noether currents associated with the global transformations from section 5.1 are,

(P?
i )µ = ∂L?

∂(∂µAν)
(
−∂iAν

)
+ δµi L? , (A.10)

(M ?
ij)µ = ∂L?

∂(∂µAν)
(
2x[i∂j]Aµ + 2δµ[iAj]

)
+ 2δµ[ixj]L? , (A.11)

(Q?)µ = ∂L?

∂(∂µAν)

[1
a
∂0Aν −Hxi∂iAν −HAν

]
−
(
δµ0
a
− δµi Hxi

)
L? , (A.12)

(K ?
i )µ = ∂L?

∂(∂µAν)

[
−xi
a
∂0Aν +Hxixj∂jAν + 1

2H

( 1
a2−1−H2xjxj

)
∂iAν

+HxiAν −
1
a

(
δ0
νAi + δiνA0

)
+H

(
δiνxjAj − δjνxjAi

)]
+
[
δµ0
xi
a
− δµjHxixj −

δµi
2H

( 1
a2−1−H2xjxj

)]
L? , (A.13)

where the gauge fixed Lagrangian and its derivative in the expressions above are,

L? = L −
√
−g
2ξ

(
gµν∇µAν

)2
,

∂L?

∂(∂µAν) = ∂L

∂(∂µAν) −
√
−g
ξ

(
gρσ∇ρAσ

)
gµν . (A.14)

and where the gauge-invariant parts are already given in (A.9). The gauge-fixed conserved
charges associated to the gauge-fixed conserved currents are then given in (5.29)–(5.32).
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A.3 Scalar-transverse decomposition of charges

Both the gauge invariant charges (5.9)–(5.12) and the gauge fixed charges (5.29)–(5.32)
reveal more of their structure when the fields comprising them are decomposed into the
transverse and longitudinal parts. In particular, it becomes clear how to order products of
field operators when defining quantum symmetry generators as observables in (5.14)–(5.17)
and (5.33)–(5.36). These decompositions are for spatial translations,

Pi = P T
i +

∫
dD−1x

(
Ψ2A

T
i

)
, (A.15a)

P ?i = P T
i +

∫
dD−1x

(
Ψ2A

L
i −Ψ1∂iA0

)
, (A.15b)

P T
i =

∫
dD−1x

(
−ΠT

j ∂iA
T
j

)
, (A.15c)

for spatial rotations,

Mij = MT
ij +

∫
dD−1x

(
2x[iA

T

j]Ψ2
)
, (A.16a)

M?
ij = MT

ij +
∫
dD−1x

(
2Ψ1x[i∂j]A0 − 2Ψ2x[iA

L

j]

)
, (A.16b)

MT
ij =

∫
dD−1x

(
2x[iF

T

j]kΠT
k

)
, (A.16c)

for dilations,

Q = QT +
∫
dD−1x

[
−a

3−D

2 Ψ2∇−2Ψ2 −HΨ2xiA
T
i

]
, (A.17a)

Q? = QT + 1
a

∫
dD−1x

[
−a

4−D

2 Ψ2∇−2Ψ2 −
a4−D

2 ξΨ2
1 −Ψ2A0

+ Ψ1∂iA
L
i +H

(
Ψ2xiA

L
i + ∂iΨ1xiA0

)]
, (A.17b)

QT =
∫
dD−1x

[
a3−D

2 ΠT
i ΠT

i + aD−5

2 (∂iAT
j )(∂iAT

j )−HΠT
i (1+xj∂j)AT

i

]
, (A.17c)

and for spatial special conformal transformations,

Ki = KT
i +

∫
dD−1x

[(
a3−D

2 xiΨ2a
3−DΠT

i + (D−3)HAT
i

) 1
∇2 Ψ2

+HxixjA
T
j Ψ2 + 1

2H

( 1
a2−1−H2xjxj

)
AT
i Ψ2

]
, (A.18a)

K?
i = KT

i +
∫
dD−1x

[(
a3−D

2 xiΨ2 + a3−DΠT
i + (D−3)HAT

i

)
∇−2Ψ2 −

1
a
AT
i Ψ1

+ a3−Dξ

2 xiΨ1Ψ1 + 1
a
xiA

L
j ∂jΨ1 + 1

a
xiA0Ψ2 + (D−1)HxiA0Ψ1 −HxixjAL

jΨ2

+Hxixj∂jA0Ψ1 + 1
2H

( 1
a2−1−H2xjxj

)(
∂iA0Ψ1 −AL

i Ψ2
)]
. (A.18b)
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KT
i =

∫
dD−1x

[
− xi2a

(
a4−DΠT

j ΠT
j + aD−4(∂jAT

k )(∂jAT
k )
)

+Hxixj(∂jAT
k )ΠT

k

+ 1
2H

( 1
a2−1−H2xjxj

)
ΠT
k∂iA

T
k +HxjA

T
j ΠT

i +HxiA
T
j ΠT

j −HxjAT
i ΠT

j

]
, (A.18c)

where the first-class constraints are Ψ1 =Π0 and Ψ2 =∂iΠL
i .

B Identities for tensor structures

Checking that the solution for the two-point function (6.25) satisfies the appropriate equa-
tion of motion and the subsidiary conditions from section 6.1 is facilitated by the following
covariant identities for derivatives,(

∇µ∇νy
)

= H2gµν(2−y) ,
(
∇µ∇νu

)
= −H2gµν −

(
∂µu

)(
∂′νu

)
, (B.1)

and tensor structure contractions,

gµν
(
∂µy

)(
∂νy

)
= g′ρσ

(
∂′ρy

)(
∂′σy

)
= H2(4y−y2) , (B.2a)

gµν
(
∂µy

)(
∂ν∂

′
ρy
)

= H2(2−y)
(
∂′ρy

)
, (B.2b)

g′ρσ
(
∂µ∂

′
ρy
)(
∂′σy

)
= H2(2−y)

(
∂µy

)
, (B.2c)

gµν
(
∂µ∂

′
ρy
)(
∂ν∂

′
σy
)

= 4H4g′ρσ −H2(∂′ρy)(∂′σy) , (B.2d)
g′ρσ

(
∂µ∂

′
ρy
)(
∂ν∂

′
σy
)

= 4H4gµν −H2(∂µy)(∂νy) . (B.2e)

These are applicable regardless of the iε prescription in the distance functions, except in
one relevant case,

(
∇µ∇νy++

)(y++

4

)−D2
= H2gµν

(
2−y++

)(y++

4

)−D2
+
(
a2δ0

µδ
0
ν

) 4(4π)D2
HD−2Γ

(
D
2
) iδD(x−x′)√

−g
,

(B.3)
that accounts for how the solution for the photon Feynman propagator produces local
terms in (6.5) and (6.7).
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