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1 Introduction

Cosmology is characterized by scale factor a(t), Hubble parameter H(t) and first slow roll
parameter ϵ(t),

ds2 = −dt2 + a2(t)dx⃗ · dx⃗ =⇒ H(t) ≡ ȧ

a
, ϵ(t) ≡ − Ḣ

H2 . (1.1)

Inflation is the special case for which both the first and second time derivatives of the
scale factor are positive (H(t) > 0 and 0 ≤ ϵ(t) < 1). It is the accelerated expansion of
inflation which produces the primordial spectra of scalars [1] and gravitons [2] by ripping
these quanta out of the vacuum.

At some level these quanta must interact with themselves and with other particles.
These interactions can change single particle kinematics and long range forces, and one
might expect that the changes grow because more and more quanta are ripped out of the
vacuum as time progresses. For example, a single loop of gravitons on de Sitter background
(ϵ(t) = 0) corrects the electric field strength of a plane wave photon [3] and the Coulomb
potential of a point charge [4] to,

F 0i(t, x⃗) = F 0i
tree(t, x⃗)

{
1 + 2GH2

π
ln(a) + O(G2)

}
, (1.2)

Φ(t, r) = Q

4πar

{
1 + 2G

3πa2r2 + 2GH2

π
ln(aHr) + O(G2)

}
. (1.3)

Similar results have been reported for fermions [5], for massless, minimally coupled
scalars [6], and for gravitons [7, 8].

A fascinating aspect of these results is that they continue to grow for as long as
inflaton persists. For sufficient inflation, the factors of ln[a(t)] must eventually overwhelm
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the loop-counting parameter GH2 causing perturbation theory to break down. Evolving
past this point requires a nonperturbative resummation technique of the sort recently
developed for nonlinear sigma models on de Sitter background [9–11]. The technique
combines a variant of Starobinsky’s stochastic formalism [12, 13], based on curvature-
dependent effective potentials, with a variant of the renormalization group, based on the
subset of counterterms which can be viewed as curvature-dependent renormalizations of
parameters in the bare theory. The latter part of the technique is not encountered in
renormalizable matter theories, where the curvature-independent renormalization group
explains large secular logarithms [14]. Even better, the technique can be generalized to
a arbitrary cosmological background (1.1) which has undergone primordial inflation [15],
and applying it transmits inflationary effects to late times [16].

It seems entirely possible to generalize this technique from nonlinear sigma models to
quantum gravity. The first step has been taken by using a variant of the renormalization
group to explain the large logarithm in the 1-graviton loop correction to the exchange
potential of a massless, minimally coupled scalar [6]. The purpose of this paper is to do
the same for the 1-graviton loop corrections (1.2)–(1.3) to electrodynamics. In section 2
we review the exact calculation. Section 3 uses the renormalization group to explain the
factors of ln[a(t)] in both results. We do not believe there is any curvature-dependent
effective potential for this system, and we suspect that the factor of ln(Hr) in (1.3) is
not a leading logarithm effect. The case for that is made in section 4. Our conclusions
comprise section 5.

2 The exact calculation

The purpose of this section is to review the exact calculation of the 1-graviton loop contri-
bution to the vacuum polarization i[µΠν ](x;x′) [17] from which the results (1.2)–(1.3) were
derived [3, 4]. These results were obtained by perturbatively solving the quantum-corrected
Maxwell equation,

∂ν
[√

−g gνρgσµFρσ(x)
]
+

∫
d4x′ [µΠν ] (x;x′)Aν(x′) = Jµ(x) , (2.1)

where Fµν ≡ ∂µAν − ∂νAµ is the field strength tensor and Jµ is the current density. We
begin by explaining how the vacuum polarization is represented and why de Sitter breaking
is unavoidable. Next the counterterms are given. The section closes by giving the structure
functions and isolating those terms which are responsible for the large logarithms in (1.2)–
(1.3). Throughout we employ conformal coordinates (based on dη ≡ dt/a(t)) so that the
de Sitter metric gµν = a2ηµν is proportional to Minkowski metric of flat space.

Of the ten graviton loops which have so far been evaluated on de Sitter background [17–
26],1 all but one of them [24] used the simplest gauge [29, 30]. The great thing about the
dimensionally regulated (spacetime dimension D) propagator in this gauge is that it consists
of three scalar propagators (with masses M2

A = 0, M2
B = (D−2)H2 and M2

C = 2(D−3)H2)
1See also the computation of graviton corrections to massless, conformally coupled scalars [27, 28] which

disagrees with our result [26].
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multiplied by constant tensor factors which are formed using the Minkowski metric ηµν and
δ0

µ (with ηµν ≡ ηµν + δ0
µδ0

ν),

i [µν∆ρσ] (x;x′) =
∑

I=A,B,C

i∆I(x;x′)×
[

µνT I
ρσ

]
, (2.2)

[
µνT A

ρσ

]
= 2ηµ(ρησ)ν −

2ηµνηρσ

D − 3 ,
[

µνT B
ρσ

]
= −4δ0

(µην)(ρδ0
σ) , (2.3)

[
µνT C

ρσ

]
=

2[ηµν + (D − 3)δ0
µδ0

ν ][ηρσ + (D − 3)δ0
ρδ0

σ]
(D − 3)(D − 2) . (2.4)

Another huge advantage of this gauge is that the D = 4 dimensional limits of the three
scalar propagators are simple,

i∆A(x;x′) −→ 1
4π2

[
1

aa′∆x2 − H2

2 ln
(1
4H2∆x2

)]
, (2.5)

i∆B(x;x′) −→ i∆C(x;x′) −→ 1
4π2

1
aa′∆x2 , (2.6)

where ∆x2 = −(|η − η′| − iϵ)2 + ∥x⃗ − x⃗ ′∥2, with ϵ > 0 infinitesimal.
Although the propagator (2.2)–(2.4) is the easiest to use, this gauge does break de Sit-

ter invariance, which means that noninvariant counterterms can and do occur. The in-
evitability of de Sitter breaking for the graviton propagator on de Sitter background has
been a contentious issue for decades [31–39]. However, the presence of noninvariant coun-
terterms seems to have been settled by the computation of the vacuum polarization in a
general class of de Sitter invariant gauges [40]. In spite of the de Sitter invariant gauge,
noninvariant counterterms still arise due to the unavoidable breaking in the time-ordered
interactions [24]. So we will just go ahead with the result [17] derived in the simplest gauge.

General relativity plus Maxwell is not perturbatively renormalizable [41, 42], how-
ever, the 1PI (one-particle-irreducible) n-point functions of any quantum field theory can
be renormalized, order-by-order in perturbation theory, using BPHZ (Bogoliubov, Para-
siuk [43], Hepp [44] and Zimmermann [45, 46]) counterterms. The ones needed to renor-
malize the 1-loop vacuum polarization on de Sitter background are [17, 24],

∆L = ∆CH2FijFkℓg
ikgjℓ√−g + CH2FµνFρσgµρgνσ√−g

+C4DαFµνDβFρσgαβgµρgνσ√−g , (2.7)

where Dα represents the covariant derivative operator. In the simplest gauge the divergent
coefficients are [17],

∆C = −1× κ2µD−4

16π2(D − 4) , C = 7
6 × κ2µD−4

16π2(D − 4) , C4 = 1
6 × κ2µD−4

16π2(D − 4) , (2.8)

where κ2 ≡ 16πG is the loop-counting parameter of quantum gravity and µ is the mass
scale of dimensional regularization.

Owing to the unavoidable breaking of de Sitter invariance, the vacuum polarization
requires two structure functions [47]. Various representations are possible [48], of which
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we chose the one first employed for the vacuum polarization induced by scalar quantum
electrodynamics [49, 50],

i [µΠν ] (x;x′) = [ηµνηρσ − ηµσηνρ] ∂ρ∂′
σF (x;x′) + [ηµνηρσ − ηµσηνρ] ∂ρ∂′

σG(x;x′) . (2.9)

We employed the Schwinger-Keldysh formalism [51–59] in order to keep the effective field
equations real and causal. With a convenient choice of the finite parts of ∆C, C and C4,
the Schwinger-Keldysh structure functions are [4],

iF (x;x′) = κ2H2

8π2

{
− ln

(
µa

2H

)
− ∂0

3aH
+

ln
( µa

2H

)
3H2 ∂µ

1
a2 ∂µ

}
δ4(x−x′)

+ κ2∂6

384π3aa′

{
θ(∆η −∆r)

[
ln[H2(∆η2 −∆r2)]− 1

]}
− κ2H2

128π3

{[
∂4 +4∂2∂2

0

]
×

[
θ(∆η −∆r) ln[H2(∆η2 −∆r2)]

]
−

[
∂4 − 4∂2∂2

0

]
θ(∆η −∆r)

}
, (2.10)

iG(x;x′) = κ2H2

6π2 ln
(

µa

2H

)
δ4(x−x′)+ κ2H2∂4

96π3

{
θ(∆η −∆r)

[
ln

(
H2(∆η2 −∆r2)

)
− 1

]}
,

(2.11)

where ∆η ≡ η − η′ and ∆r ≡ ∥x⃗− x⃗ ′∥. The flat space result [60] is recovered by the terms
which contain no net factors of H. The terms which contain factors of H represent the
new, de Sitter corrections which represent inflationary particle production.

It remains to comment on the gauge issue. Any quantity with a graviton propagtor,
such as the 1-graviton loop contribution to the vacuum polarization, is liable to depend on
the gauge fixing function. This dependence is easy to quantify in the flat space result [60]
and it must therefore be present at least in the flat space limit of the de Sitter results
we have just presented. Presumably there is also gauge dependence in the new, de Sitter
contributions [24]. Eliminating this gauge dependence is an important problem for the
physical interpretation of results such as (1.2)–(1.3), and a procedure has been developed for
accomplishing this which works in flat space [61, 62] and is being generalized to de Sitter [6,
63]. However, the issue of gauge dependence has no relevance for the study we are making
here, of how to explain the large logarithms which occur in a specific gauge.

3 Renormalization group explanation

The purpose of this section is to show how the factors of ln(a) in expressions (1.2)–(1.3) can
be explained as the renormalization group flow of a curvature-dependent renormalization
of the electromagnetic field strength. We accordingly identify the appropriate counterterm
and compute the associated gamma function. Then the Callan-Symanzik equation for
Green’s functions is written down.

The structure functions (2.10) and (2.11) include all information about 1-graviton
loop corrections to the linearized Maxwell equation (2.1). However, the factors of ln(a)

– 4 –



J
H
E
P
0
8
(
2
0
2
3
)
1
9
5

and ln(Hr) evident in expressions (1.2)–(1.3) derive from just two terms in F (x;x′),2

F (x;x′) −→ −κ2H2

8π2 ln
(

µa

2H

)
δ4(x − x′)− κ2H2∂4

128π3

{
θ(∆η −∆r) ln

[
H2(∆η2 −∆r2)

]}
,

(3.1)

G(x;x′) −→ 0 . (3.2)

The factors of ln(a) in (1.2)–(1.3) come entirely from the local term of (3.1), whereas it is
the nonlocal term at the end of (3.1) which produces the factor of ln(Hr) in the Coulomb
potential.

The Renormalization Group is associated with the dependence on the dimensional
regularization mass scale µ which enters through the coefficients (2.8) of the countert-
erms (2.7). To understand how this scale affects the structure functions F (x;x′) and
G(x;x′) we exploit conformal coordinates to exhibit the scale factors, and we expand the
covariant derivatives of the C4 counterterm so that they give ordinary derivatives plus
terms which can be combined with the ∆C and C counterterms,

∆L = [∆C − (D − 6)C4] aD−4H2FijFij

+
[
C − (3D − 8)C4

]
aD−4H2FµνF µν + C4aD−6∂αFµν∂αF µν . (3.3)

Note that we use the Minkowski metric to raise indices on the field strength (F µν ≡
ηµρησνFρσ) and the partial derivative operator (∂α ≡ ηαβ∂β).

From expression (3.3) we can read off how the coefficient of each counterterm affects
the structure functions,

C − (3D − 8)C4=+1
2 × κ2µD−4

16π2(D − 4) =⇒ ∆F1=−κ2H2

8π2 ln
(

µa

2H

)
δ4(x−x′) , (3.4)

C4=+1
6 × κ2µD−4

16π2(D − 4) =⇒ ∆F2=+ κ2

24π2 ln
(

µa

2H

)
∂µ

1
a2 ∂µδ4(x−x′) ,

(3.5)

∆C − (D − 6)C4=−2
3 × κ2µD−4

16π2(D − 4) =⇒ ∆G=+κ2H2

6π2 ln
(

µa

2H

)
δ4(x−x′) . (3.6)

Comparison with (3.1)–(3.2) reveals that neither (3.5) nor (3.6) is responsible for the factors
of ln(a) in (1.2)–(1.3). The factors of ln(a) all come from (3.4), which can be regarded as
the coefficient of a curvature-dependent field strength renormalization,

δZ ≡ −4
[
C − (3D − 8)C4

]
H2 = −κ2H2

8π2 × µD−4

D − 4 + O(κ4H4) . (3.7)

The associated gamma function is,

γ ≡ ∂ ln(1 + δZ)
∂ ln(µ2) = −κ2H2

16π2 + O(κ4H4) . (3.8)

2For the Coulomb potential, see equation (30) of [4]; for the photon field strength, see table 1 of [3].
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The Callan-Symanzik equation for n-point Green’s functions is,3[
∂

∂ ln(µ) + βκ2
∂

∂κ2 + nγ

]
Gn

(
x1;x2; . . . ;xn;µ;κ2

)
= 0 . (3.9)

The beta function for this theory goes like βκ2 ∼ κ4H2, so it does not affect 1-loop results.
As one can see from (2.10)–(2.11), the factors of ln(µ) are always associated with factors
ln(a) in the form ln(µa). This is because primitive divergences produce no D-dependent
scale factors, whereas the counterterms which absorb them not only contain a factor of
µD−4 but also a factor of aD−4,

1
D − 4 − µD−4aD−4

D − 4 = − ln(µa) + O(D − 4) . (3.10)

Hence we can replace the derivative with respect to ln(µ) in expression (3.9) with a deriva-
tive with respect to ln(a). If we then regard the photon field strength (1.2) and the Coulomb
potential (1.3) as 2-point Green’s functions it will be seen that the Callan-Symanzik equa-
tion (3.9), with gamma function (3.8), explains the factors of ln(a) in both results.

4 Search for a stochastic explanation

The previous section demonstrated that the factors of ln(a) in the photon field strength (1.2)
and the Coulomb potential (1.3) can be explained using a variant of the Renormalization
Group. The purpose of this section is to explain why there seems to be no compelling
variant of the stochastic formalism which explains the factor of ln(Hr) in the Coulomb
potential. We begin by noting the characteristics of the ln(Hr) term. In particular, it may
not even count as a “leading logarithm” effect as the factors of ln(a) do. We then discuss
the problems with developing a compelling stochastic explanation for it.

4.1 Peculiarities of the ln(Hr) term

We have already mentioned that the factor of ln(Hr) in the Coulomb potential (1.3) derives
from the nonlocal part of the vacuum polarization on the second line of expression (3.1).
This descends from the “tail” part of graviton propagator [64]; that is, from the logarithm
part of i∆A(x;x′) visible in expression (2.5). Its origin from the finite, nonlocal part of the
graviton propagator means that the factor of ln(Hr) is not explainable by the Renormal-
ization Group. If it is to be understood as a “large logarithm” we must seek a stochastic
explanation based on a curvature-dependent correction to the electromagnetic field equa-
tion, similar to the curvature-dependent effective potentials which served to explain many
of the large logarithms in nonlinear sigma models [9].

Before searching for a stochastic explanation we should discuss whether or not the
factor of ln(Hr) qualifies as a “large logarithm” which should appear in the leading log-
arithm approximation. Many perfectly valid loop corrections are not recovered in this
approximation. One example is the fractional correction of 2G/(3πa2r2) in the Coulomb
potential (1.3). This is the de Sitter descendant of a well-known flat space correction which

3Change +nγ to −nγ for one-particle-irreducible n-point functions.
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was discovered by Radkowski in 1970 [65]. It has nothing to do with inflationary particle
production and clearly does not belong to the leading logarithm approximation.

Because the initial manifold has coordinate radius comparable to the Hubble length [66],
we do not have access to the regime of Hr ≫ 1. Hence the factor of ln(Hr) can only become
large for Hr ≪ 1. That looks more like an ultraviolet effect than an infrared one. In the
same sense, the Radkowski correction only becomes significant for small r. On the other
hand, the two effects depend very differently on the physical separation length a(t)Hr,

Radkowski −→
[ 1

a(t)Hr

]2
versus Inflation −→ ln [a(t)Hr] . (4.1)

The Radkowski effect only becomes large when the physical separation is small, and for
aHr ≪ 1 it overwhelms the logarithm contribution, whereas the inflationary effect is large
when the physical separation becomes enormous.

4.2 Problems with a stochastic explanation

To understand our problems in deriving a stochastic formulation of electrodynamics it is
good to contrast the Lagrangian of electromagnetism plus gravity,

LEMGR = (R − 2Λ)√−g

16πG
− 1

4FρσFµνgρµgσν√−g , (4.2)

with the nonlinear sigma model [9, 10] for which a compelling stochastic formulation exists,

LAB = −1
2∂µA∂νAgµν√−g − 1

2
(
1 + λ

2A
)2

∂µB∂νBgµν√−g . (4.3)

Both theories involve two fields, one of which engenders large logarithms and the other not,

hµν −→ (Logs) , A −→ (Logs) , (4.4)
Aµ −→ (No Logs) , B −→ (No Logs) . (4.5)

(The graviton field hµν is defined by conformally transforming the metric, gµν ≡ a2(ηµν +
κhµν).) The stochastic formulation of the nonlinear sigma model (4.3) was derived by
integrating out the “No Logs” field B from the equation of the “Logs” field A in the
presence of a constant A background,

δS[A, B]
δA

= ∂µ
[√

−g gµν∂νA
]
− λ

2

(
1 + λ

2A

)√
−g gµν∂µB∂νB , (4.6)

−→ ∂µ
[√

−g gµν∂νA
]
− λ

2

(
1 + λ

2A

)√
−g gµν × ∂µ∂′

νi∆A(x;x′)|x′=x(
1 + λ

2 A
)2 , (4.7)

−→ ∂µ
[√

−g gµν∂νA
]
+

3λH4

16π2
√
−g

1 + λ
2 A

. (4.8)

This is a scalar potential model with potential Veff(A) = −3H4

8π2 ln
∣∣∣1 + λ

2 A
∣∣∣ and it can be

treated using Starobinsky’s stochastic formalism [12, 13]. Doing so recovers large logarithms

– 7 –
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in 1-loop corrections to the scalar mode function and the exchange potential [9], as well as
1-loop and 2-loop contributions to the expectation value of A [9, 10].

The analog of the reduction (4.6)–(4.8) for our model (4.2) would be to integrate out
the “No Logs” photon field from the “Logs” metric field equation,

16πG√
−g

δSEMGR
δgµν

= Rµν − 1
2gµνR + gµνΛ− 8πG

[
δα

µδβ
νgρσ − 1

4gµνgαβgρσ
]

FαρFβσ . (4.9)

This might describe large logarithms affecting the graviton field [67], but it cannot capture
the large logarithms (1.2)–(1.3) induced by the graviton in the photon field. A stochastic
explanation of those logarithms would presumably derive from integrating out the graviton
from the photon field equation,

δSEMGR
δAµ

= ∂ν
[√

−g gνρgµσFρσ
]

. (4.10)

In the nonlinear sigma model (4.3) this would be like integrating out the A field from the
B equation,

δSAB

δB
= ∂µ

[(
1 + λ

2A

)2 √
−g gµν∂νB

]
. (4.11)

That is exactly what was not done. Nor was there any stochastic explanation for the
explicit 1-loop and 2-loop results which were obtained for the field B [9]. These results
were all explained using the Renormalization Group. Moreover, integrating out the metric
field would result in an electromagnetic equation that still has derivative interactions,
precluding the stochastic formalism from being applied directly.

It is nevertheless undeniable that the graviton infrared modes are hugely enhanced, and
one might try to apply a perturbative version of the stochastic approximation without inte-
grating out any fields. For scalar potential models this amounts to approximating the real
part of the A-type scalar propagator in (2.2) by the corresponding infrared stochastic sum,

Re
{
i∆A(x;x′)

}
−→

S(x;x′) ≡
∫

d3k

(2π)3 eik⃗·(x⃗−x⃗ ′) × θ(εHa− k)θ(εHa′− k)θ(k − δH)U(η, k)U∗(η′, k) , ε, δ ≪ 1 ,

(4.12)
where the Chernikov-Tagirov-Bunch-Davies mode funtion is [68, 69],

U(η, k) = H√
2k3

[1 + ikη] e−ikη −kη≪1−−−−→ H√
2k3

. (4.13)

This implies that the late time limit of (4.12) is,

S(x;x′) = H2

4π2 × ln(A) , A = min[a, a′] . (4.14)

The imaginary part of the propagator descends from inverting kinetic operators of the
equation of motion and should be kept as is. This approximation is known to capture the
leading infrared logarithms in massless scalar potential models to all loops [70–72], while

– 8 –
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the variant of this approximation adapted for light massive scalars is known to capture
leading H2/m2 ≫ 1 corrections to 2-loop order [73].

Applying this approximation to the one-graviton-loop correction to electromagnetism
on de Sitter first requires expanding the photon field equation (4.10) in powers of graviton
fluctuations,

−ηµ[ρησ]ν∂νFρσ − κ

2V µρνσαβ∂ν [hαβFρσ]−
κ2

2 Uµρνσαβγδ∂ν [hαβhγδFρσ] +O(κ3) = Jµ .

(4.15)
Here the 3- and 4-point vertex tensor structures are [17],

V µρνσαβ = ηµ[ρησ]νηαβ +4ηα)[µην][ρησ](β , (4.16)

Uµρνσαβγδ =
[
1
4ηαβηγδ − 1

2ηα(γηδ)β

]
ηµ[ρησ]ν + ηγ)[µην][ρησ](δηαβ

+ηα)[µην][ρησ](βηγδ + ηµ(αηβ)[ρησ](γηδ)ν + ηµ(γηδ)[ρησ](αηβ)ν + ηµ[ρησ](αηβ)(γηδ)ν

+ηµ[ρησ](γηδ)(αηβ)ν + ηµ(δηγ)(αηβ)[ρησ]ν + ηµ(αηβ)(γηδ)[ρησ]ν . (4.17)

We subsequently look for a perturbative solution of the field strength,

Fµν = F (0)
µν + κF (1)

µν + κ2F (2)
µν +O(κ3) . (4.18)

This is done by iterating the equation (4.15) to order κ2,4

−ηµ[ρησ]ν∂νF (2)
ρσ (x)= κ2

2 Uµρνσαβγδ∂ν

[
⟨hαβ(x)hγδ(x)⟩F (0)

ρσ (x)
]

(4.19)

− κ2

2 ∂ν

{∫
d4x′ ∂′

σ∂′
λG(x;x′)V µρνσαβηρκV κθλϕγδ⟨hαβ(x)hγδ(x′)⟩F (0)

θϕ (x′)
}

,

where the inverse of the flat space d’Alembertian ∂2 = −∂2
0 +∇2 is,

G(x;x′) = −θ(∆η)
4π

δ(∆η − ∥∆x⃗∥)
∥∆x⃗∥

. (4.20)

The stochastic approximation then affects the graviton 2-point function (2.2), where the
only contributing part is the one containing the A-type propagator,

⟨hµν(x)hρσ(x′)⟩ −→
[
2ηµ(ρησ)ν − 2ηµνηρσ

]
S(x;x′) , (4.21)

where the stochastic sum S(x;x′) is defined in (4.12). Applying this prescription to the
plane wave photon and to the Coulomb potential gives the following contributions,

F 0i
(2) = F 0i

(0) ×
κ2H2

2π2 ln(a) , Φ(2) = Φ(0) ×
κ2H2

2π2 ln(a) . (4.22)

in the limit ε ≪ 1. These contributions descend only from the first term on the right-hand-
side of eq. (4.19), while the remaining nonlocal term provides no leading order contributions.

4Note that in (4.19) we have not included the contribution formally of the same order descending from
the Einstein equation (4.9). This contribution corresponds to the gravitational response to the photon, and
does not harbor any large logarithms.
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Not only does the Coulomb potential contribution in (4.22) fail to capture the ln(Hr)
term, but both contributions overestimate the ln(a) corrections (1.2)–(1.3) from the full
computation, that are completely captured by the RG explanation of section 3. Upon
closer examination, this discrepancy can be attributed to the lack of control over the cutoff
parameter ε. While for scalar potential models taking the limit ε ≪ 1 remarkably works
out to capture the leading contributions, in theories with derivative interactions this is not
so,5 and the Hubble scale modes contribute relevant corrections, that for the system at
hand have to cancel the contributions in (4.22).

The issue with applying the stochastic sum approximation to the graviton propagator
is ultimately tied to derivative interactions, that are ubiquitous in gravity. The issues
arising from derivative interactions are well illustrated by the mixed second derivative of
the coincident propagator. The dimensionally regulated computation gives,

⟨∂µϕ(x)∂νϕ(x)⟩ = − HD

(4π)D
2

Γ(D)
2 Γ

(
D+2

2

)gµν
D→4−−−→ − 3H4

32π2 gµν . (4.23)

However, when we apply the stochastic sum truncation to this quantity one finds,

⟨∂µϕ(x)∂νϕ(x)⟩ a→∞−−−→ H4

8π2

[1
2a2δ0

µδ0
νε4 + 1

3gµνε2
]

, (4.24)

where gµν = gµν + a2δ0
µδ0

ν . Whereas the exact result (4.23) has a negative definite µ = i,
ν = j component, any stochastic mode sum such as (4.24) must produce positive definite
results for the squares of operators. Derivative interactions prevent the affected fields
from carrying infrared logarithms, in which case these fields make nonzero contributions of
order one such as (4.23) that come as much from the ultraviolet as from the infrared. No
stochastic mode sum can correctly describe these effects.

Another signal of problems in expression (4.24) is its strong dependence on the cutoff.
This arises in the stochastic formalism when the approximate scale invariance of the super-
Hubble modes is either not present at tree level, or is suppressed by derivative interactions.
For example, applying the stochastic formalism to vector fields in axion inflation results in
a truncation which is sensitive to the cutoff [75, 76]. Capturing large logarithms in these
cases requires a systematic approach such as [9–11, 70–72, 77, 78].

5 Conclusions

The continuous production of gravitons during inflation is responsible for the tensor power
spectrum [2] and for secondary effects involving interactions with themselves and other
particles. In chronological order there have so far been six secondary, 1-loop effects reported
on de Sitter background:

• Enhancement of the fermion field strength [5];

• Growth of the Coulomb potential in space and time [4];
5Another example is 1-scalar loop corrections to the photon wave function of scalar quantum electrody-

namics [50, 74].
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• Enhancement of the photon field strength [3];

• Enhancement of the graviton field strength [7];

• Spatial suppression of the massless, minimally coupled scalar exchange potential [6];
and

• Suppression of the Newtonian potential [8].

Prior to this work only the penultimate result had been given a Renormalization Group
interpretation analogous to the stochastic-RG synthesis that was recently developed for
nonlinear sigma models [9]. The terrific advantage of such an interpretation is that it
permits an all-orders re-summation of the series of leading logarithms. So it is wonderful
news that we have here been able to provide a Renormalization Group explanation for the
factors of ln(a) discovered in 1-graviton loop corrections to the Coulomb potential (1.3)
and the photon field strength (1.2). This was done in section 3.

We were not able to achieve a similar explanation for the factor of ln(Hr) in the
Coulomb potential (1.3). Because this term derives from the nonlocal part of the vacuum
polarization (see the second line of equation expression (3.1) for the structure function
F (x;x′)) the ln(Hr) does not appear to be associated with the mass scale µ, the way
the scale factor a(t) is through relation (3.10). In section 4 we searched for a compelling
stochastic explanation for the factor of ln(Hr). We concluded that none exists. The suc-
cessful stochastic formulation of nonlinear sigma models [9] was derived by integrating out
the derivative interactions (4.6)–(4.8), whereas it is the vector potential which is differenti-
ated in the electromagnetic field equation (4.10). Derivative interactions resist a stochastic
interpretation because they mediate order one effects which derive from all parts of the
dimensionally regulated mode sum, rather than just from the leading infrared part. On the
other hand, we cannot integrate the vector potential out of its own equation (4.10), both
because we want the resulting equation to describe electromagnetic effects and because the
equation is linear in the vector potential. We suspect that the lack of an explanation for the
factor of ln(Hr) may indicate that it should not be considered a leading logarithm effect.

In nonlinear sigma models, which show both stochastic and RG effects [9–11], there
are really three things going on:

• The generation of curvature-dependent, effective forces by integrating out differenti-
ated fields in the presence of an approximately constant background;

• The generation of stochastic jitter in the approximately constant background by the
continual redshift of sub-horizon modes to the super-horizon; and

• The generation of secular logarithms through the incomplete cancellation (3.10) be-
tween curvature-dependent primitive divergences and counterterms.

As noted above, the first of these receives contributions from both ultraviolet and infrared,
whereas the second is a purely infrared effect. We lump them both under the rubric of
“stochastic” because the second cannot occur without the first, and we note again that there
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is no mechanism for producing the first thing in the present analysis. The third thing does
happen in our analysis and it is driven by the combination of ultraviolet electromagnetic
modes with the ultraviolet “tail” part of graviton modes.

The next step in our program is to attempt a similar explanation for the three remain-
ing 1-graviton loop enhancements: the growing fermion field strength [5], and the effects on
gravitational radiation [7] and on the force of gravity [8]. We anticipate that the fermionic
effect will have a Renormalization Group explanation, as did the electromagnetic effects
we considered here. However, explaining the two gravitational results may well require a
stochastic analysis. That is as it should be because the graviton field is analogous to the
single field Φ in the nonlinear sigma model analysis, and the factors of ln(a) in its mode
function, exchange potential and expectation value all had a stochastic origin [9].

Another step in our program is deriving the beta function βκ2 ≡ µ∂δκ2

∂µ so that we can
use the Renormalization Group to derive all-orders results. This requires the portion of
δκ2 determined by a single loop of photons. A single matter loop of any sort induces two
gravitational counterterms [79, 80],

∆LGR = c1R2√−g + c2CαβγδCαβγδ
√
−g , (5.1)

where R is the Ricci scalar and Cαβγδ is the Weyl tensor. The counterterm proportional
to c2 makes a higher derivative contribution term of no relevance to leading inflationary
logarithms, however, the counterterm proportional to c1 can be rewritten so that it contains
a part proportional to the Einstein-Hilbert Lagrangian,

R2 =
[
R − D(D − 1)H2

]2
+2D(D−1)H2

[
R − (D − 1)(D − 2)H2

]
+D(D−1)2(D−4)H4.

(5.2)
Just as we regarded the middle term of (3.3) as a curvature-dependent field strength renor-
malization so too we can think of the middle term of (5.2) as a curvature-dependent renor-
malization of Newton’s constant,

δκ2 = −2D(D − 1)c1κ4H2 . (5.3)

Because the factors of ln(µ) are associated with ln(a) according to relation (3.10), it should
be noted that physical significance of our beta function differs from the usual sense in which
a negative sign means that the theory becomes perturbative at high energy scales. For us
it is the positive sign which betokens a perturbative theory at late times.

A final point is that this analysis has been made in the context of the simplest graviton
gauge [29, 30]. We did not resolve the gauge problem, nor must we do so in order to explain
the large logarithms generated within a single gauge. Of course we should eventually employ
the procedure for purging gauge dependence [61, 62] to establish that the large logarithms
are real, and to fix their numerical coefficients. Work on this is far advanced [6, 63] but
analyses in quantum gravity are so difficult that it is best to report on one at a time.
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