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[1] This study focuses on identifying physical mechanisms that lead to symmetric, tide-
dominated ebb-tidal deltas. An idealized morphodynamic model is developed and
analyzed to demonstrate that these deltas can be modeled as morphodynamic equilibria
(no evolving bathymetry). It is assumed that the large-scale alongshore tidal currents are
small compared to the cross-shore tidal currents, that waves have shore-normal incidence,
that the tidal velocity profile over the inlet is symmetric with respect to the midaxis,
and that the Coriolis force can be ignored. The modeled tidal hydrodynamics are
characterized by an ebb jet during the ebb phase of the tide and a radial inflow pattern
during flood. Two residual eddies are formed. The mechanism behind these current
patterns is explained with vorticity concepts. The modeled bottom patterns are similar to
those of observed symmetric tide-dominated ebb-tidal deltas. In the center of the tidal inlet
an ebb-dominated channel is observed that branches further offshore into two flood-
dominated channels. At the end of the ebb-dominated channel a shoal is present. Varying
the tidal prism, the width of the tidal inlet, the wave height, and the bed slope coefficient in
the sediment transport formulation within the range of observed values leaves these
patterns qualitatively unchanged. However, the exact extent and shape of the modeled
deltas are affected by these parameters. Compared to observations, the modeled ebb-tidal
delta is smaller and the ebb-dominated channel is shorter. The observed exponent in the
power law relation between sand volume of the delta and the tidal prism is recovered and
explained with the model.

Citation: van der Vegt, M., H. M. Schuttelaars, and H. E. de Swart (2006), Modeling the equilibrium of tide-dominated ebb-tidal

deltas, J. Geophys. Res., 111, F02013, doi:10.1029/2005JF000312.

1. Introduction

[2] Ebb-tidal deltas are complex, highly dynamic, mor-
phologic structures situated at the seaward side of tidal
inlets. They are observed in many parts of the world
[Ehlers, 1988; Sha, 1989; Oost and de Boer, 1994;
FitzGerald, 1996]. The deltas are located at the seaward
end of the main ebb-dominated channel (i.e., a channel
with stronger peak currents during the ebb phase than
during the flood phase) and are flanked by two adjacent
flood-dominated channels [Hayes, 1975]. The typical hor-
izontal extent of the ebb-tidal delta ranges from a mini-
mum of �200 m (inlets along the Florida coast [Davis,
1997; FitzGerald, 1996]) to a maximum of �5 km (Texel
delta, Dutch Wadden Sea [Oost and de Boer, 1994]). Field
data reveal an almost linear relationship between the tidal
prism (i.e., the volume of water entering the tidal inlet
during one tidal cycle) and the volume of sand stored in
the delta [Walton and Adams, 1976; Sha, 1989]. Necessary
conditions for the emergence of ebb-tidal deltas are a

sandy bottom and the presence of strong tidal currents.
Apart from tidal currents, waves are often an important
constituent of the water motion in the region of the ebb-
tidal delta [Ranasinghe and Pattiaratchi, 2003]. Analysis
of field data has resulted in three major classes of deltas
[Gibeaut and Davis, 1993]: tide-dominated, mixed-energy,
and wave-dominated deltas.
[3] The aim of the present study is to gain fundamental

knowledge about the physical mechanisms that cause the
presence of ebb-tidal deltas. To limit the scope of the study
the focus is on tide-dominated ebb-tidal deltas characterized
by small alongshore tidal currents compared to the cross-
shore currents. Such deltas have an almost symmetric shape
with respect to the midaxis of the inlet and therefore are the
simplest features that can be studied. Prototypes of such
inlets are found along the U.S. east coast, for example in
North Carolina, South Carolina, Georgia, and Florida
[FitzGerald, 1996; Davis, 1997].
[4] Field data of velocity profiles over an inlet reveal

maximum currents in the middle and vanishing currents
near the sides (for example, San Diego Inlet [Chadwick and
Largier, 1999]). Furthermore, laboratory experiments show
that the flow patterns during ebb and flood are quite
different [Wells and Van Heyst, 2003]. During ebb the
outflow from inlet to sea is jet-like, while during flood
the inflow is radial.
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[5] In only a few studies, process-based models have
been used to study the dynamics of ebb-tidal deltas. Most of
these studies focus on the hydrodynamics [Stommel and
Farmer, 1952; Awaji et al., 1980; van Leeuwen and de
Swart, 2002; Hench and Luettich, 2003]. These studies
identified and explained the observed asymmetry in flow
patterns seaward of tide-dominated inlets during flood and
ebb. They also demonstrated the existence of residual
circulation cells at the seaward side of the tidal inlet.
[6] The morphodynamics of ebb-tidal deltas have been

studied less extensively. Symmetric deltas are believed to
form when the ebb jet removes sediment from the entrance
of the inlet and deposits it on the seaward side [Oertel,
1972; FitzGerald, 1996]. State-of-the-art process-based
models have been used to study the morphodynamic evo-
lution of asymmetric ebb-tidal deltas under various forcing
conditions [Wang et al., 1995; Ranasinghe and Pattiaratchi,
2003; van Leeuwen et al., 2003; Siegle et al., 2004].
However, in these studies the concepts as discussed by
Oertel [1972] and FitzGerald [1996] were not reproduced
and the exact mechanisms that cause and maintain ebb-tidal
deltas were not identified.
[7] In view of the aim of the present study, the results of

van Leeuwen et al. [2003] are of special interest, since they
suggest that ebb-tidal deltas can be interpreted as morpho-
dynamic equilibrium solutions (no evolution in time of the
bottom), even in the absence of waves. They simulated the
temporal evolution of the bathymetry of a tidal inlet system,
starting from a state without a delta. During the simulation
an asymmetric ebb-tidal delta developed and after a long
time (�500 yr) the bathymetric changes decreased. Because
of numerical resolution problems a true morphodynamic
equilibrium was not reached.
[8] Motivated by these results, the specific objectives of

the present paper are twofold. The first is to develop a
morphodynamic model that contains only the physical
processes that are essential for the existence of an equilib-
rium bathymetry that resembles an ebb-tidal delta. The
bottom pattern together with the corresponding hydrody-
namics and sediment transport patterns comprises a so-
called morphodynamic equilibrium. The second objective
is to investigate the characteristics of the modeled bottom
patterns (e.g., channel-shoal pattern, sand volume, etc.) and
compare them with field data of ebb-tidal deltas. Since the
focus of this study is on gaining fundamental knowledge
rather than a detailed simulation of the features, an idealized
model will be developed and analyzed. The idealized model
describes explicit feedbacks between the water motion and
the sandy bottom in case of symmetric tide-dominated
inlets. All processes that cause asymmetry (Coriolis force,
obliquely incident waves, and large-scale pressure gradients
in alongshore direction) are ignored.
[9] To obtain equilibrium solutions of the model a con-

tinuation technique is used. This technique is often used in
dynamical systems theory to explore the dependence of
solutions on parameter values [Manneville, 1990]. It was
successfully applied by Schuttelaars and de Swart [2000]
and Schramkowski et al. [2004] to compute morphodynamic
equilibria in sheltered tidal embayments.
[10] The results of the idealized morphodynamic model

are compared with both the observations and the results of a
hydrodynamic modeling study of the Beaufort Inlet (North

Carolina, United States) [Hench and Luettich, 2003]. The
bathymetry of Beaufort Inlet is shown in Figure 1. The inlet
has a width of B = 1 km. The ebb-tidal delta is almost
symmetric with respect to the midaxis through the inlet.
The ebb channel is maintained at a depth of 10 m. The region
of the ebb-tidal delta is shallowwith typical depth of 2–10m.
MaximumM2 cross-shore currents are in the order of 1 ms�1.
[11] The paper is organized as follows. In section 2 the

physical model is described. The methods that are used to
calculate the morphodynamic equilibria are introduced in
section 3. In section 4 the results are presented. The sensitivity
of results to model parameters is studied in both sections 4
and 5. The physical mechanisms are studied in section 6.
Section 7 contains the discussion and the conclusions.

2. Model

2.1. Domain

[12] The model domain consists of a coastal sea that is
bounded by a straight coast bisected by one inlet with
width B. A Cartesian coordinate system is chosen, with
the x, y, and z axes pointing in the cross-shore, alongshore
and vertical direction, respectively. The coastline is located
at x = 0, while the center of the inlet is located at (x, y) = (0,
0) (Figure 2a). The location of the bottom is denoted by
z = �H, where H is the water depth with respect to z = 0. In
the regions far away from the inlet the water depth is
assumed to be alongshore uniform with a constant depth
H0 at the coast and increasing exponentially to Hs > H0 at
the shelf break (Figure 2b). Figure 3 shows three cross-
shore profiles taken along stretches of the U.S. east coast
that are relatively far away from any tidal inlet. The profiles
can be approximated by

HR xð Þ ¼ H0 þ Hs � H0ð Þ 1� e�x=Ls
� �

: ð1Þ

Figure 1. Bathymetry of Beaufort Inlet, North Carolina,
United States. The depth is in meters. The solid lines denote
the zero contour line. The width of the inlet is B = 1 km.
The data are taken from NOAA’s coastal relief model
(available at http://www.ngdc.noaa.gov/mgg/gdas).

F02013 VAN DER VEGT ET AL.: EBB-TIDAL DELTAS AS MODEL SOLUTIONS

2 of 15

F02013



Equation (1) is fitted to the three profiles, which yields
values of H0 � O(1–10) m, Hs � O(15–25) m, and Ls �
O(10–25) km.

2.2. Hydrodynamics

2.2.1. Waves
[13] Waves stir sediment and thereby contribute to the net

(tidally averaged) transport of sediment. Furthermore, the
wave-orbital motion at the bed causes an increase of the
bottom friction experienced by the tidal currents. To de-
scribe these processes the magnitude of the wave-orbital
motion near the bottom is needed. It is assumed that the
waves are in shallow water, nearly linear and monochro-
matic. The waves enter shore-normal with a given period
and amplitude. While they travel inside the domain they
neither refract nor break. The wave orbital motion ~uw is
modeled as

uw ¼ vwex cos kx� swtð Þ þ . . . ; ð2Þ

where the dots represent small nonlinear corrections and vw
is the amplitude of the near-bed orbital velocity, given by

vw ¼
ffiffiffiffi
g

H

r
A: ð3Þ

Here A is the amplitude of the wave, which is assumed to be
constant in the domain. Furthermore, in equation (2), ex is
the unit vector in the x direction, k is the wave number, and
sw is the wave frequency.
2.2.2. Tidal Currents
[14] The tidal currents are described by the depth-aver-

aged shallow water equations. The water motion is forced
by the semidiurnal lunar (M2) tide, which has frequency s �
1.4 � 10�4 s�1. The characteristic wavelength is Lg �
2p

ffiffiffiffiffiffiffi
gH

p
/s � 300 km for H = 5 m. It is assumed that the

spatial scales of the ebb-tidal delta are small compared to
the wavelength of the tidal wave. The square Froude
number is very small (Fr2 = U2/gH = 0.02 for typical
velocity of 1 ms�1 and typical depth of 5 m). This allows
for a rigid lid approximation: the sea level variations
themselves are not important, but the spatial gradients result

in pressure gradients in the momentum equations [see, e.g.,
Huthnance, 1982; Calvete et al., 2001]. Furthermore, be-
cause the focus is on symmetric deltas, it is assumed that the
alongshore pressure gradient at the seaward side of the tidal
inlet is small (alongshore currents cause asymmetry [Sha,
1989]). The water motion through the inlet is forced by
prescribed cross-shore tidal currents in the inlet, which
oscillate with frequency s. A further simplification of the
hydrodynamics is introduced by assuming that the bed shear
stress depends linearly on the current. In this formulation a
friction coefficient r is chosen such that the dissipation of
kinetic energy during one tidal cycle is equal to the
dissipation that would be obtained with a standard quadratic
bottom friction law. This typically results in r = 8

3p CdU
[Lorentz, 1922; Zimmerman, 1992], where Cd(�0.0025) is a
drag coefficient and U the characteristic velocity scale in the
domain. The velocity scale is related to the intensity of the
tidal currents and the wave orbital motion and will be
defined later in this section. Because the local Rossby
number is large (Ro = U/fL � 10, with L the width of the
inlet and f the Coriolis parameter) the Coriolis force can be
neglected. With these assumptions, the hydrodynamic equa-
tions become

@u

@t
þ u

@u

@x
þ v

@u

@y
¼ �g

@z
@x

� ru

H
þ Ah

@2u

@x2
þ @2u

@y2

� �
ð4aÞ

@v

@t
þ u

@v

@x
þ v

@v

@y
¼ �g

@z
@y

� rv

H
þ Ah

@2v

@x2
þ @2v

@y2

� �
ð4bÞ

@ uHð Þ
@x

þ @ vHð Þ
@y

¼ 0: ð4cÞ

Figure 2. (a) Top view and (b) side view of model
geometry.

Figure 3. Various cross-shore profiles along the east coast
of the United States. These are obtained via NOAA’s coastal
relief model (http://www.ngdc.noaa.gov/mgg/gdas). The
profile for Georgia started at (31.6�N, 81.1�W), for South
Carolina at (33.6�N, 78.9�W), and for North Carolina at
(34.4�N, 77.6�W). The profiles are taken perpendicular to
the coast.
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Here u is the cross-shore velocity, v the alongshore velocity,
H the water depth, z the surface elevation, g the acceleration
due to gravity, r the friction parameter, and Ah the horizontal
eddy viscosity coefficient (typical value of 10 m2s�1 for
1 ms�1 tidal currents). The eddy viscosity coefficient
depends on the amplitude of the tidal currents and is
modeled as Ah = lUt, with l (�10 m) a mixing length scale
and Ut a characteristic velocity scale related to tidal currents
which is chosen as the maximum current amplitude in the
center of the tidal inlet. This formulation accounts for both
mixing by small-scale turbulent eddies and vertical shear
dispersion [Zimmerman, 1986].
[15] The rigid-lid approximation allows for a convenient

way to solve the system. Taking the derivative of equation
(4b) with respect to x and subtracting the derivative of
equation (4a) with respect to y results in an equation for the
vorticity w = @v/@x � @u/@y,

@w
@t

þ u
@w
@x

þ v
@w
@y

¼� w
@u

@x
þ @v

@y

� �
� rw

H
þ r

H2
v
@H

@x
� u

@H

@y

� �

þ Ah

@2w
@x2

þ @2w
@y2

� �
: ð5Þ

Together with equation (4c) this system of equations is
solved. The sea surface gradient can be calculated after-
ward. Equation (5) states that the total change of vorticity is
caused by the four terms on the right-hand side. They
represent vortex stretching, dissipation of vorticity due to
friction, generation of vorticity by frictional torques due to
bottom gradients, and dissipation by diffusion of vorticity,
respectively. The imposed hydrodynamic boundary condi-
tions are

u ¼ 0; @v=@x ¼ 0 x ¼ 0; jyj > B=2 ð6aÞ

u ¼ Û yð Þ cos stð Þ; @v=@x ¼ 0 x ¼ 0; jyj < B=2 ð6bÞ

u; v ! 0 x2 þ y2
� �

! 1: ð6cÞ

Here Û (y) is a given cross-shore tidal current profile in the
inlet, which is assumed to be symmetric with respect to
y = 0. Furthermore, at x = 0 no interaction between the
nearshore zone and the inner shelf is allowed. Therefore a
free-slip condition is applied.
[16] With the present current and wave model the mag-

nitude of U is taken as the typical velocity scale in the center
of the tidal inlet,

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Û 0ð Þ2þ vw 0ð Þ2

q
; ð7Þ

where Û (0) is the maximum tidal velocity and vw(0) is the
amplitude of the wave orbital motion at the coast.

2.3. Sediment Transport

[17] For most ebb-tidal deltas the sediment is relatively
coarse (typical grain size of �0.3 mm). In these situations
suspended load sediment transport is not important. Previ-
ous modeling studies [van Leeuwen et al., 2003] show that

it is possible to model the evolution of a tide-dominated
ebb-tidal delta with the assumption that most sediment is
transported as bed load. Therefore only bed load transport is
considered. A Bagnold-Bailard sediment transport formula-
tion is used [Bagnold, 1966; Bailard, 1981]. It is easier to
transport the sediment in the downslope direction than in the
upslope direction. This is accounted for in a very simple
way by imposing a sediment transport component in the
direction of the bottom slope. The instantaneous bed load
sediment transport on the intrawave timescale is modeled as

qinst ¼ a juþ uwj2 uþ uwð Þ þ ĝjuþ uwjprH
� �

: ð8Þ

The constant a depends on sediment characteristics and for
a grain size of �0.3 mm has a value of a = 10�5 s2m�1. The
bed slope coefficient ĝ � 1 (m

s
)3�p in this model. The value

of the constant is p = 2 [Struiksma et al., 1985], or p = 3 as
given by Bailard [1981] and Sekine and Parker [1992].
Next, the wave-averaged sediment transport q is calculated,
assuming that the wave-averaged value of ĝ ju + uwjp is
ĝUp. Here ĝ is a constant and U is the characteristic velocity
scale inside the domain (equation (7)). Substituting
(2) in (8) and averaging over the wave period yields the
wave-averaged sediment transport,

q ¼ qasym þ a juj2uþ 1

2
v2wuþ v2w u � exð Þex þ ĝUprH

� �
: ð9Þ

The term qasym is caused by the asymmetry of the wave
orbital velocity due to nonlinear processes and will be
specified later.

2.4. Sediment Mass Balance

[18] Last, the sediment mass conservation is prescribed.
When the sediment transport is convergent the water depth
will decrease because the sediment is deposited at the bed.
For divergent sediment transport the total water depth will
increase. Furthermore, the timescale on which bottom
patterns evolve is much larger than the timescale of the
hydrodynamics (period of the M2 tide). This allows us to
calculate the hydrodynamics with a constant bathymetry
while the evolution of the bed is driven by the convergence
of the residual sediment transport (for mathematical details
about this tidal averaging method, see Sanders and Verhulst
[1985]). The bed evolution equation is therefore given by

@H

@t
�r � hqi ¼ 0: ð10Þ

Here the brackets h.i denote an average over the tidal period.
The boundary conditions for the sediment mass balance are

hqxi ¼ 0 x ¼ 0; jyj > B

2
ð11aÞ

H is finite x ¼ 0; jyj < B

2
ð11bÞ

H ! HR xð Þ x2 þ y2
� �

! 1 :; ð11cÞ
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where qx is the cross-shore component of q. At the coastline
no cross-shore sediment transport is allowed. In the tidal inlet
the regularity condition is imposed.

2.5. Morphodynamic Equilibrium Condition

[19] As explained in the introduction, the aim of this
paper is to study morphodynamic equilibrium solutions of
the model. They obey the condition

@H

@t
¼ 0; ð12Þ

which implies, according to equation (10), that the sediment
transport should have zero divergence. Henceforth we
assume that H(x, y) represents an equilibrium.

2.6. Reference Equilibrium

[20] Note that the equations still contain the unknown
sediment transport qasym. This transport is determined by
defining a so-called reference equilibrium solution for the
case of no tidal currents (hence no delta). In that case,
combining equations (9), (10), and (12) yields

r � hqasymi þ r � haĝUprHRi ¼ 0; ð13Þ

where HR is the reference bathymetry. Since the waves are
assumed to be alongshore uniform, HR is alongshore
uniform as well and is equal to the bathymetry prescribed
in the regions far away from the inlet (equation (1)).
Substituting this bottom profile in equation (13) determines
r � hqasymi. It is assumed that when tidal currents through
the tidal inlet are nonzero, balance (13) still holds, and the
reference bathymetry is unchanged.

3. Methods

3.1. Finding Morphodynamic Equilibria

[21] We now discuss a method to find morphodynamic
equilibria of the model for arbitrary flow conditions. From
equations (9), (10), (12), and (13) it follows that

r � haĝUprH 0i ¼ �r � qf ; ð14Þ

where H0 = H � HR and

qf ¼ ahjuj2uþ 1

2
v2wuþ v2w u � exð Þexi: ð15Þ

Equation (14) is a nonlinear equation for H0(x, y). Because
the cross-shore component of qf vanishes at x = 0 for jyj >
B/2, equations (9), (11a), and (13) imply that at these
locations @H0/@x = 0. In the inlet the cross-shore component
of qf is nonzero, and the boundary condition on H0 does not
require that hqxi is locally zero. Hence a net local flux of
sediment is allowed in the inlet. However, integrated over
the whole inlet the total cross-shore sediment transport is
zero. This follows from integrating equation (14) over the
whole domain and applying the theorem of Gauss.
[22] Morphodynamic equilibria in the model are obtained

by using a continuation method (see Manneville [1990] for
discussion). Starting point is a known equilibrium solution
of the model (for example, the reference morphodynamic

equilibrium). The corresponding bottom pattern is denoted
by H = H(x, y; m), where m represents a parameter (e.g., the
magnitude of Û (0)). Next, the value of m is changed by a
small increment Dm and the tidal currents are computed
using the ‘‘old’’ bathymetry H = H(x, y; m). From this the
sediment flux vector qf is computed from equation (15).
Because the right-hand side of equation (14) can be calcu-
lated, this nonlinear equation for H0 has become a Poisson
equation. This equation is solved and a first guess for the
‘‘new’’ equilibrium bottom H = H(x, y; m + Dm) is obtained.
This is not yet the ‘‘true’’ bottom because qf was computed
with a previous guess of the bottom pattern. So an iteration
procedure is adopted which involves recomputation of the
tidal currents with the new guess of the bottom and finding
subsequent updates for qf and H = H(x, y; m + Dm) until
convergence is established. After this, the parameter m can
be changed again, resulting in a continuum of equilibrium
solutions obtained for different parameter values. The
success of this method was already demonstrated in the
context of one-dimensional models for tidal embayments by
Schuttelaars and de Swart [2000] and Schramkowski et al.
[2004].

3.2. Numerical Method to Solve the Hydrodynamic
Equations

3.2.1. Expansion of the Variables
[23] Equations (4c) and (5) are solved using a pseudo-

spectral method. The spatial variables are expanded in
Chebyshev polynomials (see Boyd [2001] for details). In
previous morphodynamic modeling studies these Cheby-
shev polynomials have been successfully used in resolving
spatial patterns [Falques et al., 1996], especially when
boundary layers have to be resolved. For the time-dependent
part aGalerkin approach is adopted. The velocity components
u and v are expanded in their harmonic agentsM0,M2,M4, and
so on. In this study the series is truncated after the M2

components, so nonlinear tides are not accounted for. Hence
the variables are expanded as

u x; y; tð Þ ¼
XNx

i¼1

XNy

j¼1

U0
ij þ Us

ij sin stð Þ þ Uc
ij cos stð Þ

h i
Ti ~xð ÞTj ~yð Þ

ð16aÞ

v x; y; tð Þ ¼
XNx

i¼1

XNy

j¼1

V 0
ij þ Vs

ij sin stð Þ þ Vc
ij cos stð Þ

h i
Ti ~xð ÞTj ~yð Þ

ð16bÞ

H x; yð Þ ¼
XNx

i¼1

XNy

j¼1

HijTi ~xð ÞTj ~yð Þ: ð16cÞ

Here Nx and Ny are truncation numbers in the x and y
directions, Ti and Tj are the Chebyshev polynomials, and
Uij
0, � � �, Vijc, Hij are coefficients. The subscripts i and j refer

to Chebyshev polynomials in the x and y directions, while
the superscripts denote the Fourier components. This means
that Uij

s represent coefficients of the cross-shore velocity
component which behaves as �sin(st). The transformation
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of the Chebyshev domain to the physical domain is x =
Lx(1 + ~x)/(1 � ~x) in the cross-shore direction and y =
Ly~y/

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~y2

p
in the alongshore direction, where Lx and Ly

are stretching parameters.
3.2.2. Solving the Hydrodynamic Equations
[24] The expansions of equation (16) are substituted into

equations (4c) and (5) and evaluated at the NxNy collocation
points. This results in a system of 6NxNy nonlinear algebraic
equations with 6NxNy unknown variables Uij

0, Uij
s , � � �, Vijc.

For given Hij and model parameters m this describes the
Flow Over Topography (FOT) problem. Using a previous
solution of this system of equations for given Hij and m, a
new solution can be found for different Hij or m by using the
Newton-Raphson method.

3.3. Method to Solve the Poisson Problem

[25] Because the domain is infinite it is difficult to solve
the Poisson equation (14) in Cartesian coordinates. There-
fore elliptic-cylindrical coordinates (r, q) are introduced.
This coordinate system is similar to the cylindrical coordi-
nate system, except that r = 0 is not a point but a line. Close
to the origin the lines of constant radius are ellipses, while
far from the origin the coordinate system is close to the
cylindrical coordinate system. It is relatively easy to apply
the boundary conditions in the elliptic-cylindrical coordi-
nates. Figure 4 shows the contour lines of constant angle
and radius for the elliptical cylindrical coordinate system.
The transformation from elliptic-cylindrical coordinates to
Cartesian coordinate reads

x ¼ a sinh rð Þ sin qð Þ y ¼ �a cosh rð Þ cos qð Þ: ð17Þ

Here y = a and y = �a for x = 0 denotes the outermost

positions of the line r = 0. Here the two foc: are at both ends
of the tidal inlet, a = B12. Equation (14) in elliptic-
cylindrical coordinates reads

@2

@r2
þ @2

@q2

� �
H 0 ¼ �a2 sinh2 r þ sin2 q

� �
F r; qð Þ ¼ G r; qð Þ: ð18Þ

F(r, q) is the divergence of the sediment transport
(equation (15)) in elliptic-cylindrical coordinates. This
differential equation is solved by expanding the solutions
and the nonhomogeneous part in a multipole series,

h r; qð Þ ¼ h0 rð Þ þ
XN
n¼1

hsn rð Þ sin nqð Þ þ hcn rð Þ cos nqð Þ ð19aÞ

G r; qð Þ ¼ G0 rð Þ þ
XN
n¼1

Gs
n rð Þ sin nqð Þ þ Gc

n rð Þ cos nqð Þ: ð19bÞ

[26] Substituting these expansions into equation (18)
yields differential equations in r for h0(r), hn

s(r) and hn
c(r)

which are subsequently solved. The boundary condition at
the coastline is that @H 0

@x = 0 (section 3.1) and therefore
hn
s(r) = 0. Furthermore, the application of the regularity
condition in r = 0 is quite straightforward. Details of the
solution procedure are given in Appendix A. The Poisson
equation is solved and this yields H0 for a given r � qf.

4. Results

4.1. Default Case

[27] In the first experiment values of parameters are
chosen that are representative for a typical inlet along the
U.S. coast. The width of the inlet is 1 km. The reference
equilibrium bathymetry is characterized by a depth of H0 =
5 m at the coastline, an offshore depth of Hs = 25 m, and an
e folding length scale of Ls = 10 km (equation (1)). This is
within the range of observed values along the east coast of
the United States (section 2.1). Furthermore, the profile of
the cross-shore M2 tidal currents over the inlet is

Û yð Þ ¼ Û 0ð Þ 2
y

B
� 1

� �3

2
y

B
þ 1

� �3
� �

: ð20Þ

Here Û (0) is the maximum current amplitude in the center
of the inlet. As can be seen from the definition of vorticity
and equation (6), this models a time-oscillating vorticity
dipole in the inlet. The profile has been chosen such that
both velocity and vorticity vanishes at the boundaries y =
±B/2. This is consistent with observations which show that
the velocity in the center of the tidal inlet is larger than at
both sides of the tidal inlet [Chadwick and Largier, 1999].
[28] No waves are considered in this reference experiment

(vw = 0). The drag coefficient Cd = 0.0025, the mixing length
scale l = 10 m, p = 2 and the bed slope parameter ĝ = 1 ms�1.
Note that equations (14) and (15) imply that the magnitude of
the bottom patterns does not depend on the value of a. The
number of collocation points is Nx = 40 and Ny = 60 and
the stretching parameters are Lx = 5 km and Ly = 2 km. These
choices were based on extensive convergence tests.

Figure 4. Elliptical cylindrical coordinates. The dotted
lines represent contour lines of constant r. The solid lines
represent the contour lines of constant q. Note that r = 0 is a
line from (0, �a) to (0, a) instead of a point (0, 0) in
cylindrical coordinates. Close to r = 0 the lines of constant r
(dashed lines) are ellipses, while for large r the elliptic-
cylindrical coordinate system resembles cylindrical coordi-
nates. The line q = 0 is the line for x = 0 and y < a, and the
line q = p is the line x = 0 and y > a.
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[29] The maximum tidal current amplitude Û (0) was
gradually increased from 0 to 1 ms�1. The calculated
equilibrium bathymetry for a maximum outflow of
1 ms�1 is shown in Figure 5a. The contour lines are drawn
every 0.5 m. Clearly, an ebb-tidal delta can be seen, which
is located at the end of a deep channel that originates from
the middle of the inlet. The delta is �1.5 m higher than its
surroundings and the minimum water depth is 6 m. It
extends from about 1–2 km offshore. At 4 km offshore
the contour lines are still curved because of the presence of
the tidal inlet. In the center of the inlet a deep channel is
present. The depth of the channel increases in the cross-
shore direction (Figure 5b). The channel branches into two
channels protruding in the seaward direction along both
sides of the ebb shoal (Figure 5c). In the center of the inlet
the maximum depth is 10 m, while along both sides of the
ebb shoal the depth is about 7 m. For smaller tidal current
amplitudes bottom patterns with similar but less pronounced
characteristics are found. The modeled bottom patterns are
robust for different profiles of HR. Changing the magnitudes
of H0, HS, and LS between the values that are observed
along the east coast of the United States resulted in deltas
with the same qualitative characteristics as the one shown in
Figure 5a. Furthermore, the results are robust for the
prescribed outflow profile Û (y) provided that the currents
are maximum in the center of the inlet and vanish at both
sides.
[30] The channel in the center can be identified as an ebb

channel, i.e., with ebb-dominated currents. At both sides the
channels are flood dominated. This can be traced back from
Figure 6, which shows the residual current pattern for
Û (0) = 1 ms�1. Two residual circulation cells are present.
During the ebb phase these residual currents enhance the
cross-shore current in the center of the inlet and reduce the
cross-shore flow at both sides of the inlet. As a result,
during maximum ebb an ebb jet is clearly seen (Figure 7a)
while during the flood phase the inflow is radial (Figure 7b).
The presence of the ebb jet and radial inflow is consistent

with the theory of tidal flushing described by Stommel and
Farmer [1952] [see also Wells and Van Heyst, 2003].

4.2. Sensitivity to Width of the Inlet

[31] The width of tidal inlets along the U.S. coast varies
between �100 m and �5 km [FitzGerald, 1996]. Therefore
in this section the influence of the width on the character-
istics of the equilibrium bathymetry is studied. The results
of inlets with B = 500 m and B = 2000 m are compared,
keeping the tidal prism approximately fixed. For the exper-
iment with B = 500 m Û (0) = 0.8 ms�1 and for B = 2000 m

Figure 5. (a) Equilibrium bathymetry for an inlet of 1 km width. Maximum M2 current through the inlet
is 1.0 ms�1. Other parameter values are specified in the text. The contour lines (solid) are drawn every
0.5 m. (b) Cross section of equilibrium bathymetry through the center of the tidal inlet. (c) Alongshore
transects of equilibrium bathymetry at two different cross-shore positions.

Figure 6. Residual flow pattern for Û (0) = 1 ms�1. The
width of the tidal inlet is 1 km. Other parameter values are
specified in the text. Two residual circulation cells can be
seen with maximum currents in the order of 0.13 ms�1.
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Û (0) = 0.2 ms�1. The width of the inlet has no influence on
the modeled equilibrium channel shoal pattern, but does
influence the spatial scales of the ebb-tidal delta (Figure 8).
For B = 500 m the spatial scales of the ebb-tidal delta are
much smaller than for B = 2000 m.

4.3. Influence of Waves

[32] In this section the sensitivity of the equilibrium
bathymetry to monochromatic, linear, shore-normal waves
is studied. Because of the wave-orbital motion, sediment is
stirred and subsequently transported by the currents. Hence
vw 6¼ 0 in equation (9). It is assumed that the wave orbital
velocity amplitude does not change when H0 6¼ 0. In
Figure 9 the equilibrium bathymetry for Û (0) = 1.0 ms�1

and vw(0) = 0.25 ms�1 and vw(0) = 1.0 ms�1 are shown.

Again, a large ebb shoal is present. This ebb shoal is larger
than in the case without waves and protrudes further
seaward. In the center of the inlet a channel is present, as
in the experiment without waves. The two flood channels
are more pronounced than in the experiment without waves.
The areas at both sides of the inlet are shallower compared
to those found in the reference experiment.

5. Comparison of Model Results With
Observations

5.1. Beaufort Inlet

[33] An experiment is performed with settings based on
the observations of the Beaufort tidal inlet. The reference
bathymetry is taken from the work of Hench and Luettich

Figure 7. (a) Ebb jet flow pattern during maximum ebb for Û (0) = 1 ms�1. The width of the tidal inlet
is 1 km. Other parameter values are specified in the text. (b) Same as Figure 7a but for the radial inflow
pattern during maximum flood.

Figure 8. Equilibrium bottom pattern for approximately the same values of the tidal prism. Contour
lines are drawn every �0.5 m. (a) B = 500 m and Û (0) = 0.8 ms�1. (b) B = 2000 m and Û (0) = 0.2 ms�1.
Other parameter values are specified in section 4.2.
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[2003]. This is a sloping bathymetry with a depth H0 �
5 m at x = 0 and Hs � 14 m at 20 km offshore. From
thereon a flat bottom is used. All other parameter values
were as in the default case. For Û (0) = 1 ms�1 two
residual circulation cells are found and residual currents
have a typical magnitude of 0.1 ms�1. Consequently,
during ebb there is an ebb jet and during flood the water
flows radially into the basin. Similar residual current
patterns and magnitudes are obtained by Hench and
Luettich [2003].
[34] The modeled equilibrium bathymetry for Û (0) =

1.0 ms�1 is shown in Figure 10. A qualitative comparison
is made with the observed bathymetry of Beaufort inlet (see
Figure 1). The model predicts the presence of an ebb-tidal
delta with a spatial extent of about 2 km and a minimum
depth of 5 m. The observed delta that is located seaward of
Beaufort Inlet has a similar size, but the minimum depth is a
bit smaller (2 m). The maximum depth of the ebb-
dominated channel obtained with the model is 9 m, while
the observed channel has a depth of 10 m. At both sides of
the ebb delta the model predicts the presence of two flood
channels. These features seem to be absent in the observa-
tions (Figure 1), but are believed to be an essential part of
the ebb-tidal delta [Hayes, 1975]. The seaward extent of the
ebb-channel is much shorter in the modeled Beaufort inlet
as observed. This is partly due to the dredging of the main
channel in this area. This dredging might also explain the
absence of the flood-dominated channels. The modeled tidal
prism (TP) is 5.2 � 107 m3 and the modeled ebb-tidal sand
volume (ESV) is 3.9 � 106 m3, while from observations TP =
2.8 � 107 m3 and ESV = 3.5 � 106 m3 (data are available at
http://cirp.wes.army.mil/cirp/structdb).

5.2. Observed and Modeled Sand Volumes

[35] Field data of ebb-tidal deltas discussed by Walton
and Adams [1976] and Sha [1989] suggest an almost linear
relation between ESV and TP. Within the model that is used
in this study the tidal prism is defined as the amount of

water that flows in and out the tidal inlet during one tidal
cycle; that is,

TP ¼
Z T

0

Z B=2

�B=2

ju 0; y; tð ÞjH 0; yð Þdydt; ð21Þ

where T is the tidal period. The ebb-tidal delta sand volume
is defined as the amount of sand that is above the reference
bathymetry. In terms of the model description adopted here
it is defined as

ESV ¼ �
Z
W

H � HRð ÞQ HR � Hð ÞdW; ð22Þ

Figure 9. Equilibrium bathymetry for B = 1 km with shore-normal waves. Contour lines are drawn
every 0.5 m. (a) Here vw(0) = 0.25 ms�1 and Û (0) = 1.0 ms�1, and (b) vw(0) = 1.0 ms�1 and Û (0) =
1.0 ms�1.

Figure 10. Modeled equilibrium bathymetry for parameter
setting that represents the idealized Beaufort Inlet of Hench
and Luettich [2003]. Contour lines are drawn every 0.5 m.
The maximum M2 tidal current amplitude in the inlet is
Û (0) = 1.0 ms�1.
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where Q is the Heaviside function, and W is the model area.
So only areas where the depth is smaller than HR contribute
to the sand volume of the ebb-tidal delta. Figure 11 shows
the modeled ESVas a function of TP for B = 500 m, 1000 m,
and 2000 m. In addition, the field data ofWalton and Adams
[1976] of observed ESV and TP are shown (diamonds).
Walton and Adams [1976] fitted a power law relation
between ESV and TP,

ESV ¼ c1TP
c2 : ð23Þ

This fit is also shown in Figure 11. The tidal prism and ebb-
tidal sand volume have been made dimensionless and c1
and c2 have been determined. The fitted parameters for the
field data are c1 = 0.0066 and c2 = 1.23. The modeled
relation between ESV and TP is similar to that observed.
However, the modeled sand volumes are smaller than
observed ones. The best fit for B = 500 m is c1 = 0.0018 and
c2 = 1.11. For B = 1000 m it is c1 = 0.00095 and c2 = 1.22
and for B = 2000 m it is c1 = 0.0024 and c2 = 1.18. This
yields that for B = 1000 m the modeled sand volumes are
about a factor 10 smaller than observed ones.
[36] The behavior of ESV as a function of TP will be

further discussed in section 6.3. For approximately the same
TP the ESV of a narrower inlet is smaller compared to that
of a broader inlet (Figure 11). Walton and Adams [1976]
make no differentiation in width.

6. Physical Interpretation

[37] In this section a physical interpretation of the model
results is presented. First, the presence of two residual
circulation cells is explained with vorticity concepts. Next,
the physics behind the presence of the ebb-tidal delta is

studied. Last, the physics behind the almost linear relation
between ESV and TP is studied.

6.1. Hydrodynamics

[38] Noticeable hydrodynamic features in the region
seaward of the tidal inlet are the two residual circulation
cells. Their presence explains the different flow patterns
during maximum ebb and maximum flood. In a study by
Zimmerman [1981], vorticity concepts have been used to
explain the generation of residual circulation cells. There-
fore, to understand the physics behind the presence of the
two residual circulation cells, the tidally averaged vorticity
balance is analyzed. The velocity components u, v and the
vorticity w are split into a tidally averaged part (denoted
by hi) and a part that is varying on the tidal (M2) timescale
(denoted by primes). These variables are substituted in
equation (5) and next averaged over the tidal cycle. This
yields the tidally averaged vorticity balance,

@

@x
hu0w0i þ @

@y
hv0w0i þ @

@x
huihwi½ � cð Þþ @

@y
hvihwi½ � � r

H2
hui @H

@y

�

� hvi @H
@x

�
þ rhwi

H
� Ah

@2hwi
@x2

þ @2hwi
@y2

� �
¼ 0: ð24Þ

Here @
@x hu

0w0i + @
@y hv

0w0i + @
@x [huihwi] + @

@y [hvihwi] models
the divergence of the mean vorticity flux. The vorticity flux
is the transport of vorticity by the velocity. Furthermore,
r
H2 (hui @H

@y � hvi @H
@x ) models the frictional torque,

rhwi
H

models
the dissipation of mean vorticity by friction, and Ah (

@2hwi
@x2 +

@2hwi
@y2 ) models the diffusion of mean vorticity. The mean
vorticity flux has components due to the transfer of tidal
vorticity by the tidal velocity ( @@x hu0w0i + @

@y hv0w0i) and
components due to the transfer of tidally averaged vorticity
by the tidally averaged velocity ( @@x[huihwi] + @

@y [hvihwi]).
Because both tidally averaged vorticity and velocity are 1

Figure 11. Modeled ebb-tidal sand volume as function of tidal prism for B = 500 m, 1000 m and
2000 m. Diamonds indicate field data of ebb-tidal delta sand volume and tidal prism from Walton and
Adams [1976].
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order of magnitude smaller than the tidal vorticity and
velocity, the tidally averaged vorticity flux is mainly
determined by @

@x hu0w0i and @
@y hv0w0i. Another production

term of tidally averaged vorticity is the frictional torque
r
H2 (hui @H

@y � hvi @H
@x ), but this term is much smaller than @

@x
hu0w0i and @

@y hv
0w0i because the residual currents are small.

In conclusion, the main tidally averaged vorticity balance is
between @

@x hu
0w0i + @

@y hv
0w0i, rhwi

H
, and Ah(

@2hwi
@x2 +

@2hwi
@y2 ).

[39] Generation of residual circulation cells can be
explained as follows. The starting point is the situation that
no ebb-tidal delta is present and only M2 tidal currents are
present. During the ebb, the tidal vorticity in the tidal inlet is
transported seaward ( @@x hu

0w0i and @
@y hv

0w0i in equation 24).
The tidal vorticity in the tidal inlet is prescribed by the
velocity profile over the inlet, w0 = �@Û /@y. In the area y >
0 (y < 0) the tidal vorticity is positive (negative). Because the
magnitude of tidal velocity and vorticity is decreasing in the
seaward direction, positive (negative) residual vorticity is

generated in the region y > 0 (y < 0). During flood, the water
flows from the sea to the tidal inlet and both tidal vorticity and
tidal velocity change sign. Hence the resulting residual
vorticity flux has the same sign as during the ebb phase. In
conclusion, in the area where y > 0 positive residual vorticity
is created and in the region y < 0 negative residual vorticity.
This results in two residual eddies. These residual circulation
cells in their turn affect the M2 tidal currents. This leads to
small modifications of the residual and M2 tidal currents.

6.2. Equilibrium Bathymetry

[40] According to equation (14), the convergence of the
flow-induced qf in morphodynamic equilibrium is balanced
by the convergence of the slope-induced sediment transport.
Consider the default experiment for Û (0) = 0.1 ms�1 and
HR(x) as the first estimate for the equilibrium bathymetry.
After solving the hydrodynamic equations, qf and r � qf are
known. In Figure 12a a vector plot of qf is shown. Sediment

Figure 12. (a) Tidally averaged sediment flux qf in first iteration step for Û (0) = 0.1 ms�1. Avalue of a =
10�5 s2m�1 is used. Other parameter values are as in the default case (section 4.1). (b) Contour plot ofr � qf
at first iteration step for Û (0) = 0.1 ms�1. Negative values indicate deposition and positive values indicate
erosion.Multiply values with 10�12 to obtain erosion deposition rate inms�1. (c) Same as Figure 12b but for
contour plot of r � qf1 as defined in equation (24). (d) Same as Figure 12c but for r � q f 2.
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is transported onshore from the sides to the center of the
inlet. From the center of the tidal inlet it is transported
offshore. A contour plot of r � qf is shown in Figure 12b.
Close to the inlet r � qf is positive, while further seaward it
is negative.
[41] Splitting the currents in a time-dependent part u0 and

a time-independent part hui, qf can be written as

qf ¼ qf 1 þ qf 2 ¼ a hju0j2i þ hui2
h i

hui þ 2ah u0 � huið Þu0i: ð25Þ

The first term describes tidally averaged stirring of sediment
by the tidal and residual currents and its transport by the
residual current. Contrary toqf1, the transport q f 2 is generally
not in the direction of the residual current. The negative values
for r � qf further seaward is mainly caused by r � qf1
(Figure 12c), the positive values close the center of the tidal
inlet results from the divergence of q f 2 (Figure 12d).
[42] According to equilibrium condition (14), r2H0 is

positive (negative) in areas where r � qf is negative
(positive). Using the boundary condition that H0 must
vanish at large distance from the inlet, the bottom pattern
that balances r � qf has a channel near the inlet and a shoal
at some distance from the inlet. From this it can also be
concluded that the presence of the shoal is mainly explained
by the convergence of qf1, while the presence of a deep ebb
channel can only be explained by the divergence of q f 2.
[43] Comparing the hydrodynamics of the morphody-

namic equilibrium state with the hydrodynamics at the first
iteration step, shows that the presence of the ebb-tidal delta
results in a slight enhancement of the two residual circula-
tion cells. Furthermore, the difference between qf in mor-
phodynamic equilibrium and at the first iteration step are
small. The same holds for r � qf and H0. Hence analyzing
r � qf for H0 = 0 yields a clear clue of the final equilibrium
bottom pattern that will be found.

[44] Waves influence the pattern of qf, r � qf and H0.
Instead of vw(0) = 0 ms�1 in the previous case, now the case
vw(0) = 1.0 ms�1 and Û (0) = 0.1 ms�1 is considered. A
vector plot of qf is shown in Figure 13a. The sediment
transport is much larger than in the case that waves were
absent (Figure 12a). The transport is organized in two cells.
The divergence of qf is shown in Figure 13b. There is one
area where its values are positive. This area extends to the
sides. There are three areas where r � qf has negative
values. In the case without waves there was only one area
with negative values. In morphodynamic equilibrium the
presence of two extra areas with negative values of r � qf
results in a bottom which is shallower at both sides of the
inlet. Furthermore, the two flood channels are more pro-
nounced because in these areas r � qf is positive, whereas it
is negative in the case that no waves are taken into account.

6.3. Relation Between ESV and TP

[45] The modeled relation between the ebb tidal sand
volume and tidal prism is almost linear if p = 2. This
relation is explained in two steps. In the first step the
behavior of H0 as a function of the prescribed outflow
amplitude is explained for the default case. In the second
step the first step is used to explain the behavior of ESVand
TP as a function of Û (0) and thereby the relation between
ESV and TP. First of all, r � qf is cubic in the prescribed
outflow amplitude Û (0). This can be seen from
equation (15). Furthermore, r � qf is in morphodynamic
equilibrium balanced by ĝU2r2H0 (equation (14)). Because
U scales linearly in Û (0) the magnitude of H0 has to scale
linearly in Û (0).
[46] Second, because the depth in the inlet is increasing

for increasing Û (0), the tidal prism will increase more than
linearly (equation (21)). Also the ebb-tidal sand volume
increases more than linearly with linearly increasing Û (0)
because the spatial scales of the ebb-tidal delta increase with

Figure 13. (a) Vector plot of qf at first iteration step for Û (0) = 0.1 ms�1 and vw(0) = 1.0 ms�1. A value
of a = 10�5 s2m�1 has been used. (b) Contour plot r � qf. Negative values indicate deposition and
positive values indicate erosion. Multiply values with 10�11 to obtain erosion deposition rate in ms�1.
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increasing Û (0). Figure 14 shows the log10 of ESV and TP
as function of the log10 of Û (0) for B = 1000 m. From
Figure 14 it can be concluded that ESV increases at a greater
rate with increasing Û (0) than TP does. In conclusion, the
relation between ESV and TP must be slightly more than
linear. Experiments showed that for p = 3 the relation
between ESV and TP tends to a constant and for p = 0
the modeled ESV depends cubically on TP (results not
shown).

7. Discussion and Conclusions

[47] In this paper an idealized process-based model has
been developed and analyzed which describes the interac-
tions between tidal currents, waves and the sandy bottom in
the area located seaward of an inlet. A summary of all the
restrictions and approximations is as follows: (1) rigid lid
approximation, (2) linearized shear stress formulation,
(3) only bed load sediment transport, (4) symmetric tidal
current profile at inlet, (5) shallow water waves, (6) shore-
normal incident waves, (7) no wave refraction, (8) no wave
breaking, (9) no radiation stresses, (10) effects of waves on
mean shear stress is parameterized, (11) no large-scale
shore-parallel currents, (12) no littoral drift, and (13) no
Coriolis force.
[48] Forcing of the system is due to a prescribed tidal

current profile in the inlet (symmetric with respect to the
midaxis of the inlet) and due to incoming shore-normal
waves. The model allows for so-called morphodynamic
equilibrium solutions that have a steady bottom pattern.
This pattern consists of a shallow delta located at the
seaward end of an ebb channel that originates near the inlet.
Two shallower flood-dominated channels flank this ebb
channel. The pattern resembles that of observed, nearly
symmetric, ebb-tidal deltas as found for example along the
coasts of the United States [FitzGerald, 1996; Davis, 1997].
The modeled hydrodynamics is in close agreement with
observations [Wells and Van Heyst, 2003] and previous
modeling studies [Hench and Luettich, 2003]. This includes
an ebb jet during outflow and a radial inflow pattern during
flood. In addition, two residual circulation cells are mod-
eled. The model also yields an explicit relationship between
the volume of sand stored in the delta and the tidal prism of
the inlet. It appears that, using well-accepted formulations
for sand transport, this relationship is almost linear, in
agreement with empirical relationships deduced from field
data [Walton and Adams, 1976].
[49] A physical analysis of the model has revealed that

the equilibrium bottom pattern is the result of a local
balance between the divergence of two types of sand
transport. The first is caused by the joint action of waves
and tides, which stir sand from the bottom and transport it.
The second transport type is that induced by local bed
slopes, where its magnitude depends on the intensity of both
tidal currents and wave orbital motion. The presence of the
delta is caused by the tidally averaged stirring of sediment
by waves and tides and the transport by the residual
currents. The channels are caused by the part of the
sediment transport which is not in the direction of the
residual currents.
[50] There are also noticeable differences between the

modeled and observed ebb-tidal deltas. Observed ebb chan-

nels are much deeper than modeled ones. In addition, the
delta only has aweak tendency to fold around the ebb channel,
as is commonly observed. The modeled ESV is a factor 5–10
smaller than the observed values. Probably, these discrep-
ancies result from negligence in the model of a number of
processes that might affect the results. First, the tidal currents
in the model are described by depth-averaged shallow water
equations that include a linearized bed shear stress. Only
residual currents and the semidiurnal tidal currents are ex-
plicitly solved. This might affect the generation of nonlinear
tides and residual currents,with possible consequences for the
sand transport and morphologic patterns.
[51] Second, in the formulation for Ah = lUt and in r =

8/3pCdU and ĝUp, Ut and U are constants. However, Ut

and U are related to the intensity of tidal currents and can
therefore vary 1 order of magnitude in the region of the tidal
inlet. The velocity scale Ut and U was such that it represents
the maximum velocity in the inlet. Consequently, away
from the inlet damping and diffusion of vorticity and the
bed slope induced sediment transport are overestimated.
This results in bottom patterns with relatively small ampli-
tudes and in much smaller values of the modeled ESV. A
first test has been performed which used a spatially depen-
dent U. This resulted in an increase by a factor 5 of the
modeled ESV. However, the modeled channel shoal pattern
did not change significantly.
[52] Third, the model uses a fixed velocity profile in the

inlet with no residual currents. There is no dynamic inter-
action between the tidal basin and the ebb-tidal delta. The
way to investigate this is to extend the model with a tidal
basin.
[53] Fourth, the wave module in the present model is

highly simplified. It describes only the shoaling of normally
incident waves and ignores processes like refraction and
breaking of waves, and no spatial variations in the radiation
stresses are taken into account. Although these processes are
not expected to be crucial in the present system, because the
minimum depths obtained are quite large (more than 4 m),
in reality waves break near the delta and generate along-
shore currents because of spatial variations of radiation
stresses.

Figure 14. Ebb-tidal sand volume (dotted line) and tidal
prism (solid line) as a function of Û (0).
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[54] Fifth, a bed load formulation is used with only one
grain size. In reality, grains have different shapes and sizes
and many of them will be in suspension.

Appendix A: Solving the Poisson Problem

[55] The solution for n = 0 is the monopole, the solution
for n = 1 is the dipole, and so on. Equation (18) for the
monopole becomes

d2h0 rð Þ
dr2

¼ G0 rð Þ: ðA1Þ

Applying the method of variation of constant yields the
general solution,

h0 rð Þ ¼ a1 þ a2r þ
Z r

0

r0G0 r0ð Þdr0 � r

Z r

0

G0 r0ð Þdr0: ðA2Þ

The constants a1, a2 are determined with the boundary
conditions. For r ! 1 the total solution (equation (A2))
must vanish while for r = 0 the solution has to be finite. This
determines the two unknown constants,

a1 ¼ �
Z 1

0

r0G0 r0ð Þdr0 a2 ¼
Z 1

0

G0 r0ð Þdr0: ðA3Þ

A similar solution procedure holds for the other poles
except that these poles have a dependency on the angle. The
Poisson equations for all other poles for both sine and
cosine components are given by

d2

dr2
� n2

� �
hsn rð Þ ¼ Gs

n rð Þ; d2

dr2
� n2

� �
hcn rð Þ ¼ Gc

n rð Þ: ðA4Þ

Because the solutions have to satisfy boundary conditions
(11), hn

s(r) = 0. Again, the solution for the cosine part of
every pole is obtained using the method of variation of
constants, and the results are

hcn rð Þ ¼ cn;1e
�nr þ cn;2e

nr þ e�nr

2n

Z r

0

enr
0
Gc

n r0ð Þdr0

� enr

2n

Z r

0

e�nr0Gc
n r0ð Þdr0: ðA5Þ

The boundary condition is used that for r ! 1 the solution
must vanish and for r = 0 the solution has to be finite.
Applying these conditions yields that cn,1 = 0 and

cn;2 rð Þ ¼ 1

2n

Z 1

0

e�nr0Gc
n r0ð Þdr0: ðA6Þ

The solution of equation (18) is the sum over all poles.
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