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The -calculus is, at heart, a simple notation for functions and application. The main ideas are applying a
function to an argument and forming functions by abstraction. The syntax of basic -calculus is quite sparse,
making it an elegant, focused notation for representing functions. Functions and arguments are on a par with
one another. The result is a non-extensional theory of functions as rules of computation, contrasting with an
extensional theory of functions as sets of ordered pairs. Despite its sparse syntax, the expressiveness and
flexibility of the -calculus make it a cornucopia of logic and mathematics. This entry develops some of the
central highlights of the field and prepares the reader for further study of the subject and its applications in
philosophy, linguistics, computer science, and logic.
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1. Introduction

The -calculus is an elegant notation for working with applications of functions to arguments. To take a
mathematical example, suppose we are given a simple polynomial such as . What is the value
of this expression when ? We compute this by ‘plugging in’ 2 for  in the expression: we get

, which we can further reduce to get the answer 5. To use the -calculus to represent the
situation, we start with the -term
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λx[x2 − 2 ⋅ x + 5].
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The  operators allows us to abstract over . One can intuitively read ‘ ’ as an expression
that is waiting for a value  for the variable . When given such a value  (such as the number 2), the value
of the expression is . The ‘ ’ on its own has no significance; it merely binds the variable ,
guarding it, as it were, from outside interference. The terminology in -calculus is that we want to apply this
expression to an argument, and get a value. We write ‘ ’ to denote the application of the function  to the
argument . Continuing with the example, we get:

The first step of this calculation, plugging in ‘2’ for occurrences of  in the expression ‘ ’, is the
passage from an abstraction term to another term by the operation of substitution. The remaining equalities
are justified by computing with natural numbers.

This example suggests the central principle of the -calculus, called -reduction, which is also sometimes
called -conversion:

The understanding is that we can reduce or contract  an application  of an abstraction term (the
left-hand side,  to something (the right-hand side,  by simply plugging in  for the occurrences of 
inside  (that’s what the notation ‘ ’ expresses). -reduction, or -conversion, is the heart of the

-calculus. When one actually applies -reduction to reduce a term, there is an important proviso that has to
be observed. But this will be described in Section 2.1, when we discuss bound and free variables.

1.1 Multi-argument operations

What about functions of multiple arguments? Can the -calculus represent operations such as computing the
length of the hypotenuse of a right triangle:

Hypotenuse of a right triangle with legs of length  and .

The length-of-hypotenuse operation maps two positive real numbers  and  to another positive real number.
One can represent such multiple-arity operations using the apparatus of the -calculus by viewing the
operation as taking one input at a time. Thus, the operation can be seen as taking one input, , a positive real
number, and producing as its value not a number, but an operation: namely, the operation that takes a positive
real number  as input and produces as output the positive real number . One could summarize the
discussion by saying that the operation, hypotenuse-length, that computes the length of the hypotenuse of
a right triangle given the lengths  and  of its legs, is:

hypotenuse-length 

By the principle of -reduction, we have, for example, that hypotenuse-length 3, the application of
hypotenuse-length to 3, is , which is a function of that is ‘waiting’ for another argument.
The -term hypotenuse-length 3 can be viewed as a function that computes the length of the hypotenuse
of a right triangle one of whose legs has length 3. We find, finally, that (hypotenuse-length 3)4—the
application of hypotenuse-length to 3 and then to 4—is 5, as expected.

Another way to understand the reduction of many-place functions to one-place functions is to imagine a
machine  that initially starts out by loading the first  of multiple arguments  into memory. If one
then suspends the machine after it has loaded the first argument into memory, one can view the result as
another machine M  that is awaiting one fewer input; the first argument is now fixed.

1.2 Non-Extensionality

λ x λx[x2 − 2 ⋅ x + 5]
a x a

a2 − 2 ⋅ a + 5 λ x
λ

Ma M
a

(λx[x2 − 2 ⋅ x + 5])2 ⊳ 22 − 2 ⋅ 2 + 5 ⟨Substitute 2 for x⟩

= 4 − 4 + 5 ⟨Arithmetic⟩

= 5 ⟨Arithmetic⟩

x x2 − 2 ⋅ x + 5

λ β
β

(β) (λx[M])N ⊳ M[x := N ]

(⊳) (λxM)N
λxM) N) N x

M M[x := N ] β β

λ β

λ

x y ⇒ √x2 + y2

x y

λ
x

y √x2 + y2

a b

:= λa[λb[√a2 + b2]]

β

λb[√32 + b2]
λ

M a a, b, …

a



2/9/24, 12:56 PM The Lambda Calculus (Stanford Encyclopedia of Philosophy)

https://plato.stanford.edu/entries/lambda-calculus/ 3/27

An important philosophical issue concerning the -calculus is the question of its underlying concept of
functions. In set theory, a function is standardly understood as a set of argument-value pairs. More
specifically, a function is understood as a set  of ordered pairs satisfying the property that  and

 implies . If  is a function and , this means that the function f assigns the value 
to the argument . This is the concept of functions-as-sets. Consequently, the notion of equality of functions-
as-sets is equality qua sets, which, under the standard principle of extensionality, entails that two functions
are equal precisely when they contain the same ordered pairs. In other words, two functions are identical if
and only if they assign the same values to the same arguments. In this sense, functions-as-sets are extensional
objects.

In contrast, the notion of a function at work in -calculus is one where functions are understood as rules: a
function is given by a rule for how to determine its values from its arguments. More specifically, we can view
a -term  as a description of an operation that, given , produces ; the body  of the abstraction
term is, essentially, a rule for what to do with . This is the conception of functions-as-rules. Intuitively,
given rules  and , we cannot in general decide whether  is equal to . The two terms might
‘behave’ the same (have the same value given the same arguments), but it may not be clear what resources
are needed for showing the equality of the terms. In this sense, functions-as-rules are non-extensional objects.

To distinguish the extensional concept of functions-as-sets from the non-extensional concept of functions-as-
rules, the latter is often referred to as an ‘intensional’ function concept, in part because of the ostensibly
intensional concept of a rule involved. This terminology is particularly predominant in the community of
mathematical logicians and philosophers of mathematics working on the foundations of mathematics. But
from the perspective of the philosophy of language, the terminology can be somewhat misleading, since in
this context, the extensional-intensional distinction has a slightly different meaning.

In the standard possible-worlds framework of philosophical semantics, we would distinguish between an
extensional and an intensional function concept as follows. Let us say that two functions are extensionally
equivalent at a world if and only if they assign the same values to the same arguments at that world. And let
us say that two functions are intensionally equivalent if and only if they assign the same values to the same
arguments at every possible-world. To illustrate, consider the functions highest-mountain-on-earth and
highest-mountain-in-the-Himalayas, where highest-mountain-on-earth assigns the highest mountain
on earth as the value to every argument and highest-mountain-in-the-Himalayas assigns the highest
mountain in the Himalayas as the value to every argument. The two functions are extensionally equivalent (at
the actual world), but not intensionally so. At the actual world, the two functions assign the same value to
every argument, namely Mt. Everest. Now consider a world where Mt. Everest is not the highest mountain on
earth, but say, Mt. Rushmore is. Suppose further that this is so, just because Mt. Rushmore is 30.000
feet/9.100 m higher than it is at the actual world, while Mt. Everest, with its roughly 29.000 feet/8.800 m, is
still the highest mountain in the Himalayas. At that world, highest-mountain-on-earth now assigns Mt.
Rushmore as the value to every argument, while highest-mountain-in-the-Himalayas still assigns Mt.
Everest to every object. In other words, highest-mountain-on-earth and highest-mountain-in-the-
Himalayas are extensionally equivalent (at the actual world) but not intensionally equivalent.

A function concept may now be called extensional if and only if it requires functions that are extensionally
equivalent at the actual world to be identical. And a function concept may be classified as intensional if and
only if it requires intensionally equivalent functions to be identical. Note that these classifications are
conceptually different from the distinctions commonly used in the foundations of mathematics. On the
terminology used in the foundations of mathematics, functions-as-sets are classified as extensional since they
use the axiom of extensionality as their criterion of identity, and functions-as-rules are classified as
intensional because they rely on the ostensibly intensional concept of a rule. In the present possible-worlds
terminology, function concepts are classified as extensional or intensional based of their behavior at possible-
worlds.

An issue from which conceptual confusion might arise is that the two terminologies potentially pass different
verdicts on the function concept at work in the -calculus. To see this, consider the following two functions:

λ

f (x, y) ∈ f

(x, z) ∈ f y = z f (x, y) ∈ f y

x

λ

λ λx[M] x M M

x
M N λx[M] λx[N ]

λ

ADD-ONE := λx[x + 1]

ADD-TWO-SUBTRACT-ONE := λx[[x + 2] − 1]
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These two functions are clearly extensionally equivalent: they assign the same value to the same input at the
actual world. Moreover, given standard assumptions in possible worlds semantics, the two functions are also
intensionally equivalent. If we assume that mathematical facts, like facts about addition and subtraction, are
necessary in the sense that they are the same at every possible world, then we get that the two functions give
the same value to the arguments at every possible world. So, an intensional function concept would require
the two functions to be identical. In the -calculus, however, it’s not clear at all that we should identify the
two functions. Formally speaking, without the help of some other principle, we cannot show that the two -
terms denote the same function. Moreover, informally speaking, on the conception of functions-as-rules, it’s
not even clear that we should identify them: the two terms involve genuinely different rules, and so we might
be tempted to say that they denote different functions.

A function concept that allows for intensionally equivalent functions to be distinct is called hyperintensional.
The point is that in possible-worlds terminology, the function concept at work in the -calculus may be
regarded not as intentional but hyperintensional—in contrast to what the terminology common in the
foundations of mathematics says. Note that it’s unclear how an intensional semantic framework, like the
possible-worlds framework, could even in principle account for a non-intensional function concept. On the
semantics of the -calculus, see section 7. The point here was simply to clarify any conceptual confusions
that might arise from different terminologies at play in philosophical discourse.

The hyperintensionality of the -calculus is particularly important when it comes to its applications as a
theory of not only functions, but more generally -ary relations. On this, see section 9.3. It is effectively the
hyperintensionality of the -calculus that makes it an attractive tool in this context. It should be noted,
however, that the -calculus can be made extensional (as well as intensional) by postulating additional laws
concerning the equality of -terms. On this, see section 5.

2. Syntax

The official syntax of the -calculus is quite simple; it is contained in the next definition.

Definition For the alphabet of the language of the -calculus we take the left and right parentheses, left
and right square brackets, the symbol ‘ ’, and an infinite set of variables. The class of -terms is defined
inductively as follows:

1. Every variable is a -term.
2. If  and  are -terms, then so is .
3. If  is a -term and  is a variable, then  is a -term.

By ‘term’ we always mean ‘ -term’. Terms formed according to rule (2) are called application terms.
Terms formed according to rule (3) are called abstraction terms.

As is common when dealing with formal languages that have grouping symbols (the left and right
parenthesis, in our case), some parentheses will be omitted when it is safe to do so (that is, when they can be
reintroduced in only one sensible way). Juxtaposing more than two -terms is, strictly speaking, illegal. To
avoid the tedium of always writing all needed parentheses, we adopt the following convention:

Convention (association to the left): When more than two terms  are juxtaposed we can
recover the missing parentheses by associating to the left: reading from left to right, group  and 
together, yielding ; then group  with : , and so forth.

The convention thus gives a unique reading to any sequence of -terms whose length is greater than 2.

2.1 Variables, bound and free

The function of  in an abstraction term ) is that it binds the variable appearing immediately after it
in the term . Thus  is analogous to the universal and existential quantifiers  and  of first-order logic.
One can define, analogously, the notions of free and bound variable in the expected way, as follows.
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Definition The syntactic functions  and  (for ‘free variable’ and ‘bound variable’, respectively) are
defined on the set of -terms by structural induction thus:

For every variable , term , and term :

If  then  is called a combinator.

Clause (3) in the two definitions supports the intention that  binds variables (ensures that they are not free).
Note the difference between  and  for variables.

As is typical in other subjects where the concepts appear, such as first-order logic, one needs to be careful
about the issue; a casual attitude about substitution can lead to syntactic difficulties.[1] We can defend a
casual attitude by adopting the convention that we are interested not in terms themselves, but in a certain
equivalence class of terms. We now define substitution, and then lay down a convention that allows us to
avoid such difficulties.

Definition (substitution) We write ‘ ’ to denote the substitution of  for the free occurrences of
 in . A precise definition[2] by recursion on the set of -terms is as follows: for all terms , , and ,

and for all variables  and , we define

1. 
2.  (  distinct from 
3. 
4. 
5.  (  distinct from 

Clause (1) of the definition simply says that if we are to substitute  for  and we are dealing simply with ,
then the result is just . Clause (2) says that nothing happens when we are dealing (only) with a variable
different from  but we are to substitute something for . Clause (3) tells us that substitution unconditionally
distributes over applications. Clauses (4) and (5) concern abstraction terms and parallel clauses (1) and (2)
(or rather, clauses (2) and (1), in opposite order): If the bound variable  of the abstraction term  is
identical to the variable  for which we are to do a substitution, then we do not perform any substitution (that
is, substitution “stops”). This coheres with the intention that  is supposed to denote the
substitution of  for the free occurrences of  in . If  is an abstraction term  whose bound variable
is , then  does not occurr freely in , so there is nothing to do. This explains clause 4. Clause (5), finally,
says that if the bound variable of an abstraction term differs from , then at least  has the “chance ” to occur
freely in the abstraction term, and substitution continues into the body of the abstraction term.

Definition (change of bound variables, -convertibility). The term  is obtained from the term  by a
change of bound variables if, roughly, any abstraction term  inside  has been replaced by

.

Let us say that terms  and  are -convertible if there is a sequence of changes of bound variables
starting from  and ending at .

Axiom. -conversion (stated with a no-capture proviso):

,
provided no variable that occurrs free in  becomes bound after its substitution into .

Roughly, we need to adhere to the principle that free variables ought to remain free; when an occurrence of a
variable is threatened to become bound by a substitution, simply perform enough -conversions to sidestep

FV BV

λ

x M N

Free Bound

(1) FV(x) = {x} BV(x) = ∅

(2) FV(MN) = FV(M) ∪ FV(N) BV(MN) = BV(M) ∪ BV(N)

(3) FV(λx[M]) = FV(M) − {x} BV(λx[M]) = BV(M) ∪ {x}

FV(M) = ∅ M

λ
BV FV

M[x := N ] N

x M λ A B M
x y

x[x := M] ≡ M

y[x := M] ≡ y y x)
(AB)[x := M] ≡ A[x := M]B[x := M]
(λx[A])[x := M] ≡ λx[A]
(λy[A])[x := M] ≡ λy[A[x := M]] y x)

M x x
M

x x

z λz[A]
x

M[x := N ]
N x M M λx[A]

x x M
x x

α N M
λx[A] M

λy[A[x := y]]

M N α
M N

β

(λx[M])N ⊳ M[x := N ]
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α
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the problem. If we keep this in mind, we can work with -calculus without worrying about these nettlesome
syntactic difficulties. So, for example, we can’t apply the function  to the argument 
because upon substitution of “ ” for “ ”, the “ ” in “ ” would be captured by the variable-binding
operator “ ”. Such a substitution would yield a function different from the one intended. However, we can
first transform  to  by -conversion, and then apply this latter function to
the argument . So whereas the following is not a valid use of -conversion:

we can validly use -conversion to conclude:

This example helps one to see why the proviso to -conversion is so important. The proviso is really no
different from the one used in the statement of an axiom of the predicate calculus, namely: ,
provided no variable that is free in the term  before the substitution becomes bound after the substitution.

The syntax of -calculus is quite flexible. One can form all sorts of terms, even self-applications such as .
Such terms appear at first blush to be suspicious; one might suspect that using such terms could lead to
inconsistency, and in any case one might find oneself reaching for a tool with which to forbid such terms. If
one were to view functions and sets of ordered pairs of a certain kind, then the  in  would be a function
(set of ordered pairs) that contains as an element a pair  whose first element would be  itself. But no
set can contain itself in this way, lest the axiom of foundation (or regularity) be violated. Thus, from a set
theoretical perspective such terms are clearly dubious. Below one can find a brief sketch of one such tool,
type theory. But in fact such terms do not lead to inconsistency and serve a useful purpose in the context of 
-calculus. Moreover, forbidding such terms, as in type theory, does not come for free (e.g., some of the
expressiveness of untyped -calculus is lost).

2.2 Combinators

As defined earlier, a combinator is a -term with no free variables. One can intuitively understand
combinators as ‘completely specified’ operations, since they have no free variables. There are a handful of
combinators that have proven useful in the history of -calculus; the next table highlights some of these
special combinators. Many more could be given (and obviously there are infinitely many combinators), but
the following have concise definitions and have proved their utility. Below is a table of some standard -
terms and combinators.

Name Definition & Comments

Keep in mind that ‘ ’ is to be understood as the application  of  to  can thus
be understood as a substitute-and-apply operator:  ‘intervenes’ between  and : instead of
applying  to , we apply  to .

The value of  is the constant function whose value for any argument is simply 

The identity function.

Recall that ‘ ’ is to be understood as , so this combinator is not a trivial identity function.

Swaps an argument.

Truth value true. Identical to . We shall see later how these representations of truth values plays a
role in the blending of logic and -calculus.

Truth value false.

λ
λx[λy[x(y − 5)]] 2y

2y x y 2y
λy

λx[λy[x(y − 5)]] λx[λz[x(z − 5)]] α

2y β

(λx[λy[x(y − 5)]])2y ⊳ λy[2y(y − 5)]

β

(λx[λz[x(z − 5)]])2y ⊳ λz[2y(z − 5)]

β

∀xϕ → ϕτ
x

τ

λ xx

x xx
(x, y) x

λ

λ

λ

λ

λ

S λx[λy[λz[xz(yz)]]]
xz(yz) (xz)(yz) xz yz. S

z x y

x y xz yz

K λx[λy[x]]
KM M.

I λx[x]

B λx[λy[λz[x(yz)]]]
xyz (xy)z

C λx[λy[λz[xzy]]]

T λx[λy[x]]
K

λ

F λx[λy[y]]
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Self-application combinator

Self-application of the self-application combinator. Reduces to itself.
)]

Curry’s paradoxical combinator. For every -term , we have:

The first step in the reduction shows that X reduces to the application term
), which is recurring in the third step. Thus,  has the curious property

that X and X X) reduce to a common term.
)

Turing’s fixed-point combinator. For every -term ,  reduces to , which one can
confirm by hand. (Curry’s paradoxical combinator  does not have this property.)

Below is a table of notational conventions employed in this entry.

Notation Reading & Comments
The application of the function  to the argument .

Usually, parentheses are used to separate the function from the argument, like so: ‘ ’.
However, in -calculus and kindred subjects the parentheses are used as grouping symbols.
Thus, it is safe to write the function and the argument adjacent to one other.

The application of the function —which is itself the application of the function  to the
argument —to .

If we do not use parentheses to separate function and argument, how are we to disambiguate
expressions that involve three or more terms, such as ‘ ’? Recall our convention that we
are to understand such officially illegal expressions by working from left to right, always
putting parentheses around adjacent terms. Thus, ‘ ’ is to be understood as . ‘

’ is . The expression ‘ ’ is disambiguated; by our convention, it is
identical to . The expression ‘ ’ is also explicitly disambiguated; it is distinct
from  because it is the application of  to the argument  (which is itself the
application of the function  to the argument .

The  term that binds the variable  in the  term .

The official vocabulary of the -calculus consists of the symbol ‘ ’, left ‘(’and right ‘)’
parentheses, and a set of variables (assumed to be distinct from the three symbols ‘ ’, ‘(’, and
‘)’ lest we have syntactic chaos).

Alternative notation. It is not necessary to include two kinds of grouping symbols
(parentheses and square brackets) in the syntax. Parentheses or square brackets alone would
obviously suffice. The two kinds of brackets are employed in this entry for the sake of
readability. Given the two kinds of grouping symbols, we could economize further and omit
the parentheses from abstraction terms, so that ‘ )’ would be written as ‘ ’.

Some authors write ‘ ’ or ‘ ’, with a full stop or a centered dot separating the
bound variable from the body of the abstraction term. As with the square brackets, these
devices are intended to assist reading -terms; they are usually not part of the official syntax.
(One sees this device used in earlier works of logic, such as Principia Mathematica, where

ω λx[xx]

Ω ωω

Y λf[(λx[f(xx)])(λx[f(xx)]
λ X

YX ⊳ (λx[X(xx)])(λx[X(xx)])

⊳ X((λx[X(xx)])(λx[X(xx)]))

Y

(λx[X(xx)])(λx[X(xx)] Y

Y (Y

Θ (λx[λf[f(xxf)]])(λx[λf[f(xxf)]]
λ X ΘX X(ΘX)

Y

MN M N

M(N)
λ

PQR PQ P

Q R

PQR

PQR (PQ)R
PQRS ((PQ)R)S (PQ)R

PQR P(QR)
PQR P QR

Q R)

(λx[M]) λ x body M

λ λ
λ

(λx[M] λx[M]

λx.M λx ⋅ M

λ
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the function of the symbol . in expressions such as ‘ . ’ is to get us to read the whole of the
formula  as under the scope of the .)

Some authors write abstraction terms without any device separating the bound variable from
the body: such terms are crisply written as, e.g., ‘ ’, ‘ ’. The practice is not without its
merits: it is about as concise as one can ask for, and permits an even simpler official syntax of
the -calculus. But this practice is not flawless. In ‘ ’, is the bound variable  or is it ?
Usually the names of variables are single letters, and theoretically this is clearly sufficient.
But it seems unduly restrictive to forbid the practice of giving longer names to variables;
indeed, such constructions arise naturally in computer programming languages.

For the sake of uniformity, we will adopt the square bracket notation in this entry.
(Incidentally, this notation is used in (Turing, 1937).)

The -term that is obtained by substituting the -term A for all free occurrences of  inside
.

A bewildering array of notations to represent substitution can be found in the literature on -
calculus and kindred subjects:

Which notation to use for substitution seems to be a personal matter. In this entry we use a
linear notation, eschewing superscripts and subscripts. The practice of representing
substitution with ‘:=’ comes from computer science, where ‘:=’ is read in some programming
languages as assigning a value to a variable.

As with the square brackets employed to write abstraction terms, the square brackets
employed to write substitution are not officially part of the syntax of the -calculus.  and A
are terms,  is a variable;  is another term.

The -terms  and  are identical: understood as sequences of symbols,  and  have the
same length and corresponding symbols of the sequences are identical.

The syntactic identity relation  is not part of the official syntax of -calculus; this relation
between -terms belongs to the metatheory of -calculus. It is clearly a rather strict notion of
equality between -terms. Thus, it is not the case (if  and  are distinct variables) that

, even though these two terms clearly ‘behave’ in the same way in the sense
that both are expressions of the identity operation . Later we will develop formal
theories of equality of -terms with the aim of capturing this intuitive equality of  and

.

3. Brief history of -calculus

-calculus arose from the study of functions as rules. Already the essential ingredients of the subject can be
found in Frege’s pioneering work (Frege, 1893). Frege observed, as we did above, that in the study of
functions it is sufficient to focus on unary functions (i.e., functions that take exactly one argument). (The
procedure of viewing a multiple-arity operation as a sequence of abstractions that yield an equivalent unary
operation is called currying the operation. Perhaps it would be more historically accurate to call the operation
fregeing, but there are often miscarriages of justice in the appellation of mathematical ideas.) In the 1920s,
the mathematician Moses Schönfinkel took the subject further with his study of so-called combinators. As
was common in the early days of the subject, Schönfinkel was interested in the kinds of transformations that
one sees in formal logic, and his combinators were intended to be a contribution to the foundations of formal
logic. By analogy with the reduction that one sees in classical propositional logic with the Sheffer stroke,
Schöfinkel established the astonishing result that the all functions (in the sense of all transformations) could
be given in terms of the combinators  and ; later we will see the definition of these combinators.
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Theorem For every term  made up of  and  and the variable , there exists a term  (built only from
 and  such that we can derive .

(The proof that these two suffice to represent all functions is beyond the scope of this entry. For further
discussion, see the entry on combinatory logic.) One can prove the theorem constructively: there is an
algorithm that, given , produces the required . Church called this  ‘ ’ (Church, 1932).[3] From
this perspective, the -rule can be justified: if ‘ ’ is to be a function  satisfying , then 
x should transform to . This is just a special case of the more general principle that for all 
should transform to .

Although today we have more clearly delimited systems of abstraction and rewriting, in its early days -
calculus and combinatory logic (à la Schönfinkel) were bound up with investigations of foundations of
mathematics. In the hands of Curry, Church, Kleene, and Rosser (some of the pioneers in the subject) the
focus was on defining mathematical objects and carrying out logical reasoning inside the these new systems.
It turned out that these early attempts at so-called illative -calculus and combinatory logic were inconsistent.
Curry isolated and polished the inconsistency; the result is now known as Curry’s paradox. See the entry on
Curry’s paradox and appendix B of (Barendregt, 1985).

The -calculus earns a special place in the history of logic because it was the source of the first undecidable
problem. The problem is: given -terms  and , determine whether . (A theory of equational
reasoning about -terms has not yet been defined; the definition will come later.) This problem was shown to
be undecidable.

Another early problem in the -calculus was whether it is consistent at all. In this context, inconsistency
means that all terms are equal: one can reduce any -term  to any other -term . That this is not the case
is an early result of -calculus. Initially one had results showing that certain terms were not interconvertible
(e.g.,  and ; later, a much more powerful result, the so-called Church-Rosser theorem, helped shed more
light on -conversion and could be used to give quick proofs of the non-inter-convertibility of whole classes
of -terms. See below for more detailed discussion of consistency.

The -calculus was a somewhat obscure formalism until the 1960s, when, at last, a ‘mathematical’ semantics
was found. Its relation to programming languages was also clarified. Till then the only models of -calculus
were ‘syntactic’, that is, were generated in the style of Henkin and consisted of equivalence classes of -
terms (for suitable notions of equivalence). Applications in the semantics of natural language, thanks to
developments by Montague and other linguists, helped to ‘spread the word’ about the subject. Since then the

-calculus enjoys a respectable place in mathematical logic, computer science, linguistics (see, e.g., Heim
and Kratzer 1998), and kindred fields.

4. Reduction

Various notions of reduction for -terms are available, but the principal one is -reduction, which we have
already seen earlier. Earlier we used the notation ‘ ’; we can be more precise. In this section we discuss -
reduction and some extensions.

Definition (one-step -reduction  For -terms  and , we say that  -reduces in one step to ,
written , just in case there exists an (occurrence of a) subterm  of , a variable , and -terms

 and  such that  and  is  except that the occurrence of  in  is replaced by
.

Here are some examples of -reduction:

1. The variable  does not -reduce to anything. (It does not have the right shape: it is simply a variable,
not an application term whose left-hand side is an abstraction term.)

2. .
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3. If  and  are distinct variables, then .

4. The -term  -reduces in one step to two different -terms:

and

Moreover, one can check that these two terms -reduce in one step to a common term: . We thus
have:

As with any binary relation, one can ask many questions about the relation  holding between -terms,
and one can define various derived notions in terms of .

Definition A -reduction sequence from a -term  to a -term  is a finite sequence  of -
terms starting with , ending with , and whose adjacent terms  satisfy the property that

.

More generally, any sequence —finite or infinite—starting with a -term  is said to be a -reduction
sequence commencing with  provided that the adjacent terms  of  satisfy the property that

.

1. Continuing with -reduction Example 1, there are no -reduction sequences at all commencing with
the variable .

2. Continuing with -reduction Example 2, the two-term sequence

is a -reduction sequence from  to . If  is a variable, then this -reduction sequence cannot
be prolonged, and there are no other -reduction sequences commencing with ; thus, the set of

-reduction sequences commencing with  is finite and contains no infinite sequences.

3. The combinator  has the curious property that . Every term of every -reduction sequence
commencing with  (finite or infinite) is equal to .

4. Consider the term . There are infinitely many reduction sequences commencing with this term:

If  is a variable, one can see that all finite reduction sequences commencing with  end at , and
there is exactly one infinite reduction sequence.
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Definition A -redex of a -term  is (an occurrence of) a subterm of  of the form . (‘redex’
comes from ‘reducible expression.) A -redex is simply a candidate for an application of -reduction.
Doing so, one contracts the -redex. A term is said to be in -normal form if it has no -redexes.

(Can a term have multiple -normal forms? The answer is literally ‘yes’, but substantially the answer is ‘no’:
If a  and  are -normal forms of some term, then  is -convertible to  Thus, -normal forms are
unique up to changes of bound variables.)

So far we have focused only on one step of -reduction. One can combine multiple -reduction steps into
one by taking the transitive closure of the relation .

Definition For -terms  and , one says that  -reduces to , written , if either  or
there exists a finite -reduction sequence from  to .

Definition A term  has a -normal form if there exists a term  such that  is in -normal form an
.

Reducibility as defined is a one-way relation: it is generally not true that if , then . However,
depending on one’s purposes, one may wish to treat  and  as equivalent if either  reduces to  or 
reduces to . Doing so amounts to considering the reflexive, symmetric, and transitive closure of the relation

.

Definition For -terms  and , we say that  if either  or there exists a sequence 
starting with , ending with , and whose adjacent terms  are such that either  or

.

4.1 Other notions of reduction

We have thus far developed the theory of -reduction. This is by no means the only notion of reduction
available in the -calculus. In addition to -reduction, a standard relation between -terms is that of -
reduction:

Definition (one-step -reduction) For -terms  and , we say that  -reduces in one step to , written
, just in case there exists an (occurrence of a) subterm  of , a variable , and -terms  and

 such that either

 and  is  except that the occurrence of  in  is replaced by 

or

) and  is  except that the occurrence of  in  is replaced by .

The first clause in the definition of  ensures that the relation extends the relation of one-step -
reduction. As we did for the relation of one-step -reduction, we can replay the development for -reduction.
Thus, one has the notion of an -redex, and from  one can define the relation  between -terms as the
reflexive and transitive closure of , which captures zero-or-more-steps of -reduction. Then one defines

 as the symmetric and transitive closure of .

If , then the length of  is strictly smaller than that of . Thus, there can be no infinite -
reductions. This is not the case of -reduction, as we saw above in -reduction sequence examples 3 and 4.

One can combine notions of reduction. One useful combination is to blend - and -reduction.

Definition (one-step -reduction)  and . A -term  -
reduces in one step to a -term  just in case either  -reduces to  in one step or  -reduces to  in
one step.
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Again, one can replay the basic concepts of reduction, as we did for -reduction, for this new notion of
reduction .

4.2 Reduction strategies

Recall that a term is said to be in -normal form if it has no -redexes, that is, subterms of the shape 
)N. A term has a -normal form if it can be reduced to a term in -normal form. It should be intuitively clear
that if a term has a -normal form, then we can find one by exhaustively contracting all all -redexes of the
term, then exhaustively contracting all -redexes of all resulting terms, and so forth. To say that a term has a

-normal form amounts to saying that this blind search for one will eventually terminate.

Blind search for -normal forms is not satisfactory. In addition to be aesthetically unpleasant, it can be quite
inefficient: there may not be any need to exhaustively contract all -redexes. What is wanted is a strategy—
preferably, a computable one—for finding a -normal form. The problem is to effectively decide, if there are
multiple -redexes of a term, which ought to be reduced.

Definition A -reduction strategy is a function whose domain is the set of all -terms and whose value on
a term  not in -normal form is a redex subterm of , and whose value on all terms M in -normal
form is simply .

In other words, a -reduction strategy selects, whenever a term has multiple -redexes, which one should be
contracted. (If a term is in -normal form, then nothing is to be done, which is why we require in the
definition of -reduction strategy that it does not change any term in -normal form.) One can represent a
strategy  as a relation  on -terms, with the understanding that  provided that  is obtained
from  in one step by adhering to the strategy S. When viewed as relations, strategies constitute a
subrelation of .

A -reduction strategy may or may not have the property that adhering to the strategy will ensure that we
(eventually) reach a -normal form, if one exists.

Definition A -reduction strategy  is normalizing if for all -terms , if  has a -normal form ,
then the sequence  terminates at .

Some -reduction strategies are normalizing, but others are not.

The rightmost strategy, whereby we always choose to reduce the rightmost -redex (if there are any -
redexes) is not normalizing. Consider, for example, the term KI . This term has two -redexes: itself,
and  (which, recall, is the term x[ x[ )). By working with left-hand -redexes, we
can -reduce KI  to  in two steps. If we insist on working with the rightmost -redex  we reduce
KI( ) to ( ), then ( ), ….
The leftmost strategy, whereby we always choose to reduce the leftmost -redex (if there are any -
redexes) is normalizing. The proof of this fact is beyond the scope of this entry; see (Barendregt, 1985,
section 13.2) for details.

Once we have defined a reduction strategy, it is natural to ask whether one can improve it. If a term has a -
normal form, then a strategy will discover a normal form; but might there be a shorter -reduction sequence
that reaches the same normal form (or a term that is -convertible to that normal form)? This is the question
of optimality. Defining optimal strategies and showing that they are optimal is generally considerably more
difficult than simply defining a strategy. For more discussion, see (Barendregt, 1984 chapter 10).

For the sake of concreteness, we have discussed only -reduction strategies. But in the definitions above the
notion of reduction  is but one possibility. For any notion  of reduction we have the associated theory of 
-reduction strategies, and one can replay the problems of normalizability, optimality, etc., for .

5. -theories
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We discussed earlier how the -calculus is a non-extensional theory of functions. If, in the non-extensional
spirit, we understand -terms as descriptions, how should we treat equality of -terms? Various approaches
are available. In this section, let us treat the equality relation = as a primitive, undefined relation holding
between two -terms, and try to axiomatize the properties that equality should have. The task is to identity
axioms and formulate suitable rules of inference concerning the equality of -terms.

Some obvious properties of equality, having nothing to do with -calculus, are as follows:

As is standard in proof theory, the way to read these rules of inference is that above the horizontal rule 
are the premises of the rule (which are equations) and the equation below the horizontal rule is the
conclusion of the rule of inference. In the case of the reflexivity rule, nothing is written above the horizontal
rule. We understand such a case as saying that, for all terms , we may infer the equation  from no
premises.

5.1 The basic theory 

The three rules of inference listed in the previous section governing equality have nothing to do with the -
calculus. The following lists rules of inference that relate the undefined notion of equality and the two term-
building operations of the -calculus, application and abstraction.

Together, these rules of inference say that = is a congruence relation on the set of -terms: it ‘preserves’ both
the application and abstraction term-building operations

The final rule of inference, -conversion, is the most important:

As before with the reflexivity rule, the rule  has no premises: for any variable  and any terms  and ,
one can infer the equation  at any point in a formal derivation in the theory .

5.2 Extending the basic theory 

A number of extensions to  are available. Consider, for example, the rule ( ), which expresses the principle
of -reduction as a rule of inference:

Rule  tells us that a certain kind of abstraction is otiose: it is safe to identify  with the function that, given
an argument , applies  to . Through this rule we can also see that all terms are effectively functions. One
can intuitively justify this rule using the principle of -reduction.
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One can view rule  as a kind of generalization principle. If we have derived that , but 
figures in neither  nor , then we have effectively shown that  and  are alike. Compare this principle
to the principle of universal generalization in first-order logic: if we have derived  from a set  of
hypotheses in which  is not free, then we can conclude that  derives .

Another productive principle in the -calculus permits us to identify terms that ‘act’ the same:

The rule  has infinitely many hypotheses: on the assumption that , no matter what  may be,
then we can conclude that . The  rule is an analogue in the -calculus of the rule of inference under
the same name in formal number theory, according to which one can conclude the universal formula 
provided one has proofs for  . Note that unlike the rule , the condition that 
not occur freely in  or  does not arise.

6. Consistency of the -calculus

Is the -calculus consistent? The question might not be well-posed. The -calculus is not a logic for
reasoning about propositions; there is no apparent notion of contradiction  or a method of forming absurd
propositions (e.g., . Thus ‘inconsistency’ of the -calculus cannot mean that , or some formula
tantamount to , is derivable. A suitable notion of ‘consistent’ is, however, available. Intuitively, a logic is
inconsistent if it permits us to derive too much. The theory  is a theory of equations. We can thus take
inconsistency of  to mean: all equations are derivable. Such a property, if it were true of , would clearly
show that  is of little use as a formal theory.

Early formulations of the idea of -calculus by A. Church were indeed inconsistent; see (Barendregt, 1985,
appendix 2) or (Rosser, 1985) for a discussion. To take a concrete problem: how do we know that the
equation  is not a theorem of ? The two terms are obviously intuitively distinct.  is a function of
two arguments, whereas  is a function of one argument. If we could show that , then we could show
that , whence  would be a theorem of , along with many other equations that strike us
as intuitively unacceptable. But when we’re investigating a formal theory such as , intuitive unacceptability
by no means implies underivability. What is missing is a deeper understanding of -reduction.

An early result that gave such an understanding is known as the Church-Rosser theorem:

Theorem (Church-Rosser) If  and  R, then there exists a term  such that both  and
.

(The proof of this theorem is quite non-trivial and is well-beyond the scope of this entry.) The result is a deep
fact about -reduction. It says that no matter how we diverge from  by -reductions, we can always
converge again to a common term.

The Church-Rosser theorem gives us, among other things, that the plain -calculus—that is, the theory  of
equations between -terms—is consistent, in the sense that not all equations are derivable.

As an illustration, we can use the Church-Rosser theorem to solve the earlier problem of showing that the
two terms  and  are not identified by . The two terms are in -normal form, so from them there are no -
reduction sequences at all. If  were a theorem of , then there would be a term  from which there is
a -reduction path to both  and . The Church-Rosser theorem then implies the two paths diverging from

 can be merged. But this is impossible, since  and  are distinct -normal forms.

The Church-Rosser theorem implies the existence of -reduction sequences commencing from  and from 
that end at a common term. But there are no -reduction sequences at all commencing from , because it is in
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-normal form, and likewise for .

Theorem  is consistent, in the sense that not every equation is a theorem.

To prove the theorem, it is sufficient to produce one underivable equation. We have already worked through
an example: we used the Church-Rosser theorem to show that the equation  is not a theorem of . Of
course, there’s nothing special about these two terms. A significant generalization of this result is available: if

 and  in -normal form but  is distinct from , then the equation  is not a theorem of . (This
simple condition for underivability does not generally hold if we add additional rules of inference to .)

The theories  and  are likewise consistent. One can prove these consistency results along the lines of the
consistency proof for  by extending the Church-Rosser theorem to the wider senses of derivability of these
theories.

7. Semantics of -calculus

As we’ve said at the outset, the -calculus is, at heart, about functions and their applications. But it is
surprisingly difficult to cash this idea out in semantic terms. A natural approach would be to try to associate
with every -term  a function  over some domain  and to interpret application terms  using
function application as  But this idea quickly runs into difficulties. To begin with, it’s easy to see
that, in this context, we can’t use the standard set-theoretic concept of functions-as-sets (see section 1.2 of
this entry). According to this concept, remember, a function  is a set of argument-value pairs, where every
argument gets assigned a unique value. The problem arises in the context of self-applications. Remember
from section 2.1 that the untyped -calculus allows -terms such as , which intuitively apply  to itself.
On the semantic picture we’re exploring, we can obtain the associated function  for the term  by
taking the function  for  and applying it to itself:

But following functions-as-sets, this would mean that the set  needs to contain an argument-value pair that
has  as its first component and  as the second:

But this would make  a non-well-founded object: defining  would involve  itself. In fact, sets like this
are excluded in standard axiomatic set theory by the axiom of foundation (also known as the axiom of
regularity). —This is further semantic evidence that the concept of a function underlying the -calculus can’t
be the extensional functions-as-sets concept.

But the problem runs even deeper than that. Even when we use a non-extensional notion of a function, such
as the functions-as-rules conception (see again section 1.2), we run into difficulties. In the untyped -
calculus, everything can both be function and an argument to functions. Correspondingly, we should want our
domain  to include, in some sense, the function space , which contains all and only the functions with
both arguments and values from . To see this:

Every element of  can be a function that applies to elements of , and what’s returned can then be
again be an argument for elements of . So, every element of  intuitively corresponds to a member
of .
If, in turn, we take a member of , i.e., a function with arguments and values from , this is
precisely the kind of thing we want to include in our domain . So, intuitively, we want every member
of  to correspond to a member of .

In short, we want there to be a one-to-one correspondence between our domain and its own function space,
i.e., we want them to satisfy the ‘equation’ . But this is impossible since it contradicts Cantor’s
theorem.
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Given these difficulties, the question arises whether it’s possible to give a set-theoretic model for the -
calculus in the first place? It turns out that it is. D. Scott was the first to describe such a model in an
unpublished manuscript from 1969. This model, , solves the aforementioned problems with Cantor’s
theorem by suitably restricting the function space , by only letting some members of  correspond to
members of . Covering Scott’s construction goes beyond the scope of this entry, since it involves advanced
tools from algebra and topology; see (Meyer 1982), (Barendregt, 1985, chapter 18.2), or (Hindley and Seldin,
2008, chapter 16) for details. Instead, we’ll discuss the more general question: What is a model for the -
calculus? That is, leaving aside for a moment the question whether sets are functions, rules, or something
altogether different, we ask what kind of mathematical structure a model for the -calculus is in the first
place.

7.1 -Models

It turns out that there are multiple, essentially equivalent, ways of defining the notion of a model for the -
calculus; see (Barendregt, 1985, chapter 5) or (Hindley and Seldin, 2008, chapter 15). In the following, we’ll
discuss what we consider the most palatable notion for philosophers familiar with the standard semantics for
first-order logic (see, e.g., the entry on Classical Logic ), the so-called syntactical -models. These models
first appear in the work of (Hindley and Longo, 1980), (Koymans, 1982), and (Meyer 1982). They derive
their name from the fact that their clauses closely correspond to the syntactic rules of the calculus . This is
somewhat unsatisfactory and motivates ‘syntax-free’ definitions (see below). At the same time, the
syntactical -models provide a fairly transparent and accessible route into the world of -models. In addition,
despite their conceptual shortcomings, syntactical models have proven a technically useful tool in the
semantical study of the -calculus.

In order to avoid the set-theoretic problems mentioned above, most definitions of -models use so-called
applicative structures. The idea is to treat the denotations of -terms not as set-theoretic functions, but as
unanalyzed, first-order ‘function-objects’, instead. Correspondingly, then, we treat function application as an
unanalyzed binary operation on these function-objects:

Definition An applicative structure is a pair , where  is some set and  a binary operation on . To
avoid trivial models, we usually assume that  has at least two elements.

Applicative structures are, in a sense, first-order models of function spaces that satisfy the problematic
equation . -models, in turn, are defined over them.

For the definition of our -models, we work with valuations—a concept familiar from first-order semantics.
Valuations assign denotations to the variables and are used primarily in the semantic clauses for the -
operator. Additionally, they can be used to express general claims over the domain, in a way that is familiar
from the semantics for the first-order quantifiers  and .

Definition A valuation in an applicative structure  is a function  that assigns an element 
to every variable .

As a useful piece of notation, for  a valuation in some applicative structure ,  a variable, and 
an object, we define the valuation  by saying that:

That is,  is the result of changing the value of  to be , while leaving all other other values under 
unchanged.

Definition A syntactical -model is a triple , where  is an applicative structure and 
is a function that assigns to every -term M and valuation  a denotation  subject to the
following constraints:

1. 

λ

D∞

DD DD

D

λ

λ

λ

λ

λ

λ

λ λ

λ

λ
λ

(D, ⋅) D ⋅ D

D

X ≅XX λ

λ
λ

∃x ∀x

(D, ⋅) ρ ρ(x) ∈ D

x

ρ (D, ⋅) x d ∈ D

ρ[x ↦ d]

ρ[x ↦ d](y) = { d  if y = x

ρ(y) otherwise

ρ[x ↦ d] x d ρ

λ M = (D, ⋅, [[ ]]) (D, ⋅) [[ ]]
λ ρ [[M]]ρ ∈ D

[[x]]ρ = ρ(x)
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2. 
3. , for all 
4. , whenever for all , we have 
5. , whenever  for all 

Intuitively, in a model ,  is the function-object denoted by the -term  under the valuation .

It is now straight-forward to define what it means for a -model  to satisfy an equation ,
symbolically :

Definition (satisfaction).

In words: an equation  holds in a model  just in case the -terms  and  have the same
denotation under every valuation in the underlying applicative structure.

Note that clauses 3. and 4. from the definition of a syntactical -model directly mirror the -rules  and ,
respectively (see section 5.1 above). This is the ‘syntactic’ nature of our models. While this might be
semantically unsatisfactory (see below), it makes it relatively straight-forward to prove a soundness theorem
for the semantics provided by the syntactical -models; see (Barendregt, 1985, Theorem 5.3.4) and (Hindley
and Seldin, 2008. Theorem 15.12):

Theorem For all terms , if  is derivable in , then for all syntactical -models , we have
that .

This theorem provides a first ‘sanity-check’ for the semantics. But note that, so far, we haven’t shown that
there exist any syntactical -models at all.

This worry is addressed by constructing so-called ‘term models’, which are not unlike the well-known
Henkin constructions from first-order semantics. In order to define these models, we first need the notion of a

-equivalence class for a given -term . This class contains precisely the terms that  proves identical to
:

We then define the term model for , , by setting:

, where  and

It is easily seen that this indeed defines a syntactical -model. In fact, it is easily checked that in the term
model for , we have that:

This paves a way for a very simple completeness proof for  with respect to the class of syntactical -
models; see (Meyer, 1982, 98–99) for one of the few explicit mentions of this kind of result in the literature:

Theorem For all terms , if for all syntactical -models , we have that , then
 is derivable in .

The proof is a simple proof by contraposition, which uses the term model  as a countermodel to any non-
derivable identity in .

[[MN ]]ρ = [[M]]ρ ⋅ [[N ]]ρ
[[λxM]]ρ ⋅ d = [[M]]ρ[x↦d] d ∈ D

[[λxM]]ρ = [[λxN ]]ρ d ∈ D [[M]]ρ[x↦d] = [[N ]]ρ[x↦d]

[[M]]ρ = [[M]]σ ρ(x) = σ(x) x ∈ FV(M)

M [[M]]ρ λ M ρ

λ M M = N
M ⊨ M = N

M ⊨ M = N  iff for all ρ, we have [[M]]ρ = [[N ]]ρ

M = N M λ M N

λ λ β ξ

λ

M,N M = N λ λ M

M ⊨ M = N

λ

λ λ M λ
M

[M]λ = {N : λ proves M = N}

λ T

D = {[M]λ : M  is a λ-term}
[M]λ ⋅ [N ]λ = [MN ]λ
[[M]]ρ = [M[x1 := N1] … [xn := Nn]]λ FV(M) = {x1, … ,xn}
ρ(x1) = N1, … , ρ(xn) = Nn

λ
λ

T ⊨ M = N  iff λ derives M = N .

λ λ

M,N λ M M ⊨ M = N

M = N λ

T

λ
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But there are reasons to be dissatisfied with the syntactical -models as a semantics for the -calculus. For
one, by virtue of clauses 3. and 4. mirroring rules  and , the soundness result is ‘baked into’ the semantics,
as it were. This is unsatisfactory from a semantic perspective since it means that via the syntactical -models,
we don’t really learn anything directly about what conditions an applicative structure needs to satisfy in order
to adequately model the -calculus.

A related worry is that the clauses 3. and 4. are not recursive in nature. That is, they don’t allow us to
compute the denotation of a complex -term from the denotations of its parts and information about the
syntactic operation used to combine them. In our syntax (see section 2), there are two ways of constructing
complex -terms: application terms of the form  and abstraction terms of the form . Clause 1. of
our syntactical -models is a recursive clause for the syntactical application operation, but we don’t have a
recursive clause for the syntactical operation of -abstraction. Clauses 3. and 4. are rather conditions on the
denotation function  than recursive clauses. This is unsatisfactory since it means that we’re not really given
a compositional semantics for the -operator by the syntactical -models.

These worries are taken care of in the development of syntax-free -models. A comprehensive discussion of
syntax-free models goes beyond the scope of this entry; but see (Barendregt, 1985, chapter 5.2) and (Hinley
and Seldin, 2008, chapter 15B) for the details. Suffice it to say that the definition of syntax-free -models
involves determining precisely under which conditions an applicative structure is suitable for interpreting the

-calculus. The resulting -models, then, indeed provide (something much closer to) a recursive,
compositional semantics, where the syntactical operation of -abstraction is interepreted by a corresponding
semantic operation on applicative structures.

It is worth noting, however, that syntactical -models and the syntax-free -models are, in a certain sense,
equivalent: every syntactical -model defines a syntax-free -model and vice versa; see (Barendregt, 1985,
theorem 5.3.6) and (Hinley and Seldin, 2008, theorem 15.20) for the details. From a technical perspective,
this result allows us to freely move between the different presentations of -models and to use, in a given
context, the notion of a model that is most expedient. At the same time, there may be philosophical reasons to
prefer one presentation over the other, such as the semantic worries about syntactical -models mentioned
above.

Before moving to model constructions, let us briefly mention that there are various ways of approaching -
models. One particularly interesting approach we’ve neglected so far is from the perspective of category
theory and categorical logic. There are well-known model descriptions using so-called ‘Cartesian closed
categories’; see (Koymans, 1982). Covering these model descriptions goes beyond the scope of the present
entry since it requires a familiarity with a wide range of concepts from category theory; see the entry
Category Theory for a sense of the machinery involved. For the details of these model descriptions, instead,
(Barendregt, 1985, sections 5.4–6). In recent years, there has been a renewed interest in categorical
approaches to the -calculus, which have mainly focused on typed versions of the -calculus (see sections
8.2 and 9.1.2 below) but also include the untyped -calculus discussed in this article. See, for example,
(Hyland, 2017) for a recent discussion.

7.2 Model Constructions

The term model we’ve seen in section 7.1 is rather trivial: it directly reflects the syntactic structure of the -
terms by modeling precisely syntactic equality modulo -provable equality. This makes the term model
mathematically and philosophically rather uninteresting. The construction and study of more interesting
concrete -models is one of the principal aims of the model theory for the -calculus.

We’ve already mentioned what’s perhaps the most important, but was definitely the first non-trivial model for
the -calculus: Scott’s . But there are also other interesting model constructions, such as Plotkin and
Scott’s graph model , first described in (Plotkin 1972) and (Scott, 1974). These model constructions,
however, usually rely on fairly involved mathematical methods, both for their definitions and for verifying
that they are indeed -models. Consequently, covering these constructions goes beyond the scope of this
entry; see (Hinley and Seldin, 2008, chapter 16F) for an overview of various model constructions and
(Barendregt, 1985, chapter 18) for many of the formal details.
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One of the advantages of having different models is that one sees different aspects of equality in the -
calculus: each of the different models takes a different view on what -terms get identified. An interesting
question in this context is: What is the -theory of a given class of models? In this context, we call a class 
of -models complete just in case every (consistent) -theory is satisfied by some model in . See (Salibra,
2003) for an overview of various completeness and incompleteness results for interesting classes of -
models.

8. Extensions and Variations

8.1 Combinatory logic

A sister formalism of the -calculus, developed slightly earlier, deals with variable-free combinations.
Combinatory logic is indeed even simpler than the -calculus, since it lacks a notion of variable binding.

The language of combinatory logic is built up from combinators and variables. There is some flexibility in
precisely which combinators are chosen as basic, but some standard ones are  and . (The names
are not arbitrary.)

As with the -calculus, with combinatory logic one is interested in reducibility and provability. The principal
reduction relations are:

Combinator Reduction Axiom

There is a passage from -calculus to combinatory logic via translation. It turns out that although
combinatory logic lacks a notion of abstraction, one can define such a notion and thereby simulate the -
calculus in combinatory logic. Here is one translation; it is defined recursively.

Rule Expression Translation Condition
1 (unconditional)
2 M N (unconditional)
3 M  does not occur freely in M
4 (unconditional)
5 M  does not occur freely in M
6  does not occur freely in M
7 N  does not occur freely in 
8  occurs freely in both  and 

This translation works inside-out, rather than outside-in. To illustrate:

1. The translation of the term , a representative of the identity function, is mapped by this translation
to the identity combinator  (because of Rule 4), as expected.

2. The -term  that we have been calling ‘ ’is mapped by this translation to:

3. The -term  that switches its two arguments is mapped by this translation to:

λ
λ

λ C

λ λ C

λ

λ
λ

I, K, S, B C

λ

I Ix = x

K Kxy = x

S Sxyz = xz(yz)

B Bxyz = x(yz)

C Cxyz = xzy

λ
λ

x x

MN ∗ ∗

λx[M] K x

λx[x] I

λx[Mx] x

λx[MN ] BM(λx[N)]∗ x

λx[MN ] C(λx[M])∗ x N

λx[MN ] SM ∗N ∗ x M N

λy[y]
I

λ λx[λy[x]] K

λx[λy[x]] ≡ λx[Kx] ⟨Rule 1⟩

≡ K ⟨Rule 3⟩

λ λx[λy[yx]]



2/9/24, 12:56 PM The Lambda Calculus (Stanford Encyclopedia of Philosophy)

https://plato.stanford.edu/entries/lambda-calculus/ 20/27

We can confirm that the -term  and the translated combinatory logic term  have
analogous applicative behavior: for all -terms  and  we have

likewise, for all combinatory logic terms  and  we have

We can give but a glimpse of combinatory logic; for more on the subject, consult the entry on combinatory
logic. Many of the issues discussed here for -calculus have analogues in combinatory logic, and vice versa.

8.2 Adding types

In many contexts of reasoning and computing it is natural to distinguish between different kinds of objects.
The way this distinction is introduced is by requiring that certain formulas, functions, or relations accept
arguments or permit substitution only of some kinds of objects rather than others. We might require, for
example, that addition + take numbers as arguments. The effect of this restriction is to forbid, say, the
addition of 5 and the identity function .[4] Regimenting objects into types is also the idea behind the
passage from (unsorted, or one-sorted) first-order logic to many-sorted first-order logic. (See (Enderton,
2001) and (Manzano, 2005) for more about many-sorted first-order logic.) As it stands, the -calculus does
not support this kind of discrimination; any term can be applied to any other term.

It is straightforward to extend the untyped -calculus so that it discriminates between different kinds of
objects. This entry limits itself to the type-free -calculus. See the entries on type theory and Church’s type
theory for a detailed discussion of the extensions of -calculus that we get when we add types, and see
(Barendregt, Dekkers, Statman, 2013) for a book length treatment of the subject.

From a model-theoretic perspective, it’s interesting to add that (Scott, 1980) uses the semantic fact that
categorical models for the untyped -calculus (see section 7.1) derive from the categorical models of the
typed -calculus to argue for a conceptual priority of the typed over the untyped calculus.

9. Applications

9.1 Logic à la 

Here are two senses in which -calculus is connected with logic.

9.1.1 Terms as logical constants

In the table of combinators above, we defined combinators  and  and said that they serve as
representations in the -calculus of the truth values true and false, respectively. How do these terms function
as truth values?

It turns out that when one is treating -calculus as a kind of programming language, one can write
conditional statements “If  then  else ” simply as , where of course , and  are understood as

-terms. If , that is, P is ‘true’, then we have

(recall that, by definition, ) and if , that is,  is ‘false’, then

λx[λy[yx]] ≡ λx[C(λy[y])∗x] ⟨Rule 8⟩

≡ λx[CIx] ⟨λy[y] ≡ I,  by Rule 4⟩

≡ BCI)(λx[x])∗ ⟨Rule 7⟩

≡ B(CI)I ⟨(λx[x])∗ ≡ I,  by Rule 4⟩

λ λx[λy[yx]] B(CI)I

λ P Q

(λx[λy[yx]])PQ ⊳ (λy[yP ]) ⊳ QP ;

P Q

B(CI)IPQ ⊳ (CI)(IP)Q ⊳ IQ(IP) ⊳ Q(IP) ⊳ QP

λ

λx.x

λ

λ
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λ
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λ

λ

λ

T F

λ

λ
P A B PAB P ,A B

λ P ⊳ T

if-P -then-A-else-B := PAB ⊳ TAB ⊳ A,

T ≡ K P ⊳ F P
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(recall that, by definition,  which is just what we expect from a notion of if-then-else. If  reduces
neither to  nor , then we cannot in general say what  is.

The encoding we’ve just sketched of some of the familiar truth values and logical connectives of classical
truth-table logic does not show that -calculus and classical logic are intimately related. The encoding shows
little more than embeddibility of the rules of computation of classical truth-table logic in -calculus. Logics
other than classical truth-table logic can likewise be represented in the -calculus, if one has sufficient
computable ingredients for the logic in question (e.g., if the logical consequence relation is computable, or if
a derivability relation is computable, etc.). For more on computing with -calculus, see section 9.2 below. A
more intrinsic relationship between logic and -calculus is discussed in the next section.

9.1.2 Typed -calculus and the Curry-Howard-de Bruijn correspondence

The correspondence to be descried here between logic and the -calculus is seen with the help of an
apparatus known as types. This section sketches the beginnings of the development of the subject known as
type theory. We are interested in developing type theory only so far as to make the so-called Curry-Howard-
de Bruijn correspondence visible. A more detailed treatment can be found in the entry on type theory; see
also (Hindley, 1997) and (Barendregt, Dekkers, Statman, 2013).

Type theory enriches the untyped -calculus by requiring that terms be given types. In the untyped -
calculus, the application  is a legal term regardless of what  and  are. Such freedom permits one to
form such suspicious terms as , and thence terms such as the paradoxical combinator . One might wish
to exclude terms like  on the grounds that  is serving both as a function (on the left-hand side of the
application) and as an argument (on the right-hand side of the application). Type theory gives us the resources
for making this intuitive argument more precise.

Assigning types to terms The language of type theory begins with an (infinite) set of type variables
(which is assumed to be disjoint from the set of variables of the -calculus and from the symbol ‘ ’ itself).
The set of types is made up of type variables and the operation . Variables in type theory now come
with a type annotation (unlike the unadorned term variables of untyped -calculus). Typed variables are
rendered ‘ ’; the intuitive reading is ‘the variable  has the type ’. The intuitive reading of the
judgment ‘ ’ is that the term  is a function that transforms arguments of type  into arguments of
type . Given an assignment of types to term variables, one has the typing rules:

and

The above two rules define the assignment of types to applications and to abstraction terms. The set of
terms of type theory is the set of terms built up according to these formation rules.

The above definition of the set of terms of type theory is sufficient to rule out terms such as . Of course, ‘
’ is not a typed term at all for the simple reason that no types have been assigned to it. What is meant is

that there is no type  that could be assigned to  such that ‘ ’ could be annotated in a legal way to make a
typed term. We cannot assign to  a type variable, because then the type of the left-hand  would fail to be a
function type (i.e., a type of the shape ‘ ’). Moreover, we cannot assign to  a function type ,
because then then  would be equal to , which is impossible.

As a leading example, consider the types that are assigned to the combinators , , and :

Combinator   Type[5]

if-P -then-A-else-B := PAB ⊳ FAB ⊳ B,

F ≡ KI) P

T F if-P -then-A-else-B
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λ
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λ
x : σ x σ
t : σ → τ t σ

τ

(M : σ → τ)(N : σ) : τ
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(See Hindley (1997) Table of principal types for a more extensive listing.) If we read ‘ ’ as implication and
type variables as propositional variables, then we recognize three familiar tautologies in the right-hand
column of the table. The language used is meager: there are only propositional variables and implication;
there are no other connectives.

The table suggests an interesting correspondence between the typed -calculus and formal logic. Could it
really be that the types assigned to formulas, when understood as logical formulas, are valid? Yes, though
‘validity’ needs to understood not as classical validity:

Theorem If  is the type of some -term, then  is intuitionistically valid.

The converse of this theorem holds as well:

Theorem If  is an intuitionistically valid logical formula whose only connective is implication , then
 is the type of some -term.

The correspondence can be seen when one identifies intuitionistic validity with derivability in a certain
natural deduction formalism. For a proof of these two theorems, see (Hindley, 1997, chapter 6).

The correspondence expressed by the previous two theorems between intuitionistic validity and typability is
known as the Curry-Howard-de Bruijn correspondence, after three logicians who noticed it independently.
The correspondence, as stated, is between only propositional intuitionistic logic, restricted to the fragment
containing only the implication connective . One can extend the correspondence to other connectives and
to quantifiers, too, but the most crisp correspondence is at the level of the implication-only fragment. For
details, see (Howard, 1980).

9.2 Computing

One can represent natural numbers in a simple way, as follows:

Definition (ordered tuples, natural numbers) The ordered tuple  of -terms is defined as
. One then defines the -term  corresponding to the natural number  as:  and,

for every , .

1. The -term corresponding to the number 1, on this representation, is:

2. The -term corresponding to the number 2, on this representation, is:

3. Similarly,  is .

Various representations of natural numbers are available; this representation is but one.[6]

Using the ingredients provided by the -calculus, one can represent all recursive functions. This shows that
the model is exactly as expressive as other models of computing, such as Turing machines and register
machines. For a more detailed discussion of the relation between these different models of computing, see the
section comparing the Turing and Church approaches in the entry on the Church-Turing Thesis.

Theorem For every recursive function  of arity , there exists a -term  such that

S (a → (b → c)) → ((a → b) → (a → c))

→

λ

τ λ τ

ϕ (→)
ϕ λ

→

⟨a0, … an⟩ λ

λx[xa0 … an] λ ┌n┐ n ┌0┐ = I

k ┌k + 1┐ = ⟨F, ┌k┐⟩

λ

┌1┐ ≡ ⟨F, ┌0┐⟩

≡ ⟨F, I⟩

≡ λx[xFI]

λ

┌2┐ ≡ ⟨F, ┌1┐⟩

≡ λx[xFλx[xFI]]

┌3┐ λx[xFλx[xFλx[xFI]]]

λ

f n λ f ∗
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for all natural numbers :  iff 

For a proof, see the appendix.

Since the class of recursive functions is an adequate representation of the class of all computable (number-
theoretic) functions, thanks to the work above we find that all computable (number-theoretic) functions can
be faithfully represented in the -calculus.

9.3 Relations

The motivation for the -calculus given at the beginning of the entry was based on reading -expressions as
descriptions of functions. Thus, we have understood ‘ ’ to be a (or the) function that, given , gives 
(which generally, though not necessarily, involves x). But it is not necessary to read -terms as functions.
One could understand -terms as denoting relations, and read an abstraction term ‘ ’ as the unary
relation (or property)  that holds of an argument  just in case  does (see Carnap 1947, p. 3). On the
relational reading, we can understand an application term  as a form of predication. One can make sense
of these terms using the principle of -conversion:

which says that the abstraction relation , predicated of A, is the relation obtained by plugging in A for
all free occurrences of  inside .

As a concrete example of this kind of approach to -calculus, consider an extension of first-order logic where
one can form new atomic formulas using -terms, in the following way:

Syntax: For any formula  and any finite sequence  of variables, the expression ‘ ’
is a predicate symbol of arity n. Extend the notion of free and bound variables (using the functions  and

 in such a way that

and

Deduction Assume as axioms the universal closures of all equivalences

where  denotes the simultaneous substitution of the terms  for the variables 
.

Semantics For a first-order structure  and an assignment  of elements of  to variables, define

According to this approach, one can use a  to treat essentially any formula, even complex ones, as if they
were atomic. We see the principle of -reduction in the deductive and semantic parts. That this approach
adheres to the relational reading of  terms can be seen clearly in the semantics: according to the standard
Tarski-style semantics for first-order logic, the interpretation of a formula (possibly with free variables)
denotes a set of tuples of elements of the structure, as we vary the variable assignment that assigns elements
of the structure to the variables.

One can ‘internalize’ this functional approach. This is done in the case of various property theories, formal
theories for reasoning about properties as metaphysical objects (Bealer 1982, Zalta 1983, Menzel 1986, 1993,

a1, … an f(a1, … an) = y λ ⊢ f ∗⟨ā1, … , ān⟩ = ȳ
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FV(λx1 …xn[ϕ]) = FV(ϕ) − {x1, …xn}

BV(λx1 …xn[ϕ]) = BV(ϕ) ∪ {x1, …xn}

λx1 …xn[ϕ](t1, … tn) ↔ ϕ[x1, …xn := t1, … tn]

ϕ[x1, …xn := t1, … tn] tk xk
(1 ≤ k ≤ n)

A s A

A ⊨λx1 …xn[ϕ](t1, … tn)[s] iff 

A ⊨ ϕ[x1, …xn := t1, … tn][s]

λ
β

λ
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and Turner 1987). This kind of theory is employed in certain metaphysical investigations where properties
are metaphysical entities to be investigated. In these theories, metaphysical relations are (or are among) the
objects of interest; just as we add term-building symbols + and  in formal theories of arithmetic to build
numbers,  is used in property theory to build relations. This approach contrasts with the approach above.
There,  was added to the grammar of first-order logic by making it a recipe for building atomic formulas; it
was a new formula-building operator, like  or  or the other connectives. In the case of property theories,
the  plays a role more like + and  in formal theories of arithmetic: it is used to construct relations (which,
in this setting, are to be understood as a kind of metaphysical object). Unlike + and , though, the  binds
variables.

To give an illustration of how  is used in this setting, let us inspect the grammar of a typical application
(McMichael and Zalta, 1980). One typically has a predication operator (or, more precisely, a family of
predication operators) . In a language where we have terms  and  and a binary relation
loves, we can formally express:

John loves Mary: 
The property that John loves Mary:  (note that the  is binding no variables; we
might call this ‘vacuous binding’. Such properties can be understood as propositions.)
The property of an object  that John loves it: .
The property that Mary is loved by something:  (another instance of vacuous
binding, viz., proposition)
The predication of the property of  that John loves  to Mary: .
The (0-ary) predication of the property that John loves Mary: .
The property of objects  and  that  loves : .
The property of an objects  that  loves itself: .
The predication of the property of objects  and  that  loves  to John and Mary (in that order):

.

We reason with these -terms using a -conversion principle such as:

Formally, the predication operator p  is a -ary predicate symbol. The first argument is intended to be a
-term of  arguments, and the rest of the arguments are intended to be the arguments of the body of the -

term. The -principle above says that the predication of an -ary -term  to  terms holds precisely when
the body of  holds of those terms.

It turns out that in these theories, we may or may not be able to be fully committed to the principle of -
conversion. Indeed, in some property theories, the full principle of -conversion leads to paradox, because
one can replay a Russell-style argument when the full principle of -conversion is in place. In such settings,
one restricts the formation of -formulas by requiring that the body of a -term not contain further -terms or
quantifiers. For further discussion, see (Orilia, 2000).

One of the reasons why property theories formulated in the -calculus are of a particular philosophical
importance is the hyperintensional nature of the calculus (see section 1.2). A property concept may be called
‘hyperintensional’ if and only if it does not identify necessarily coextensional properties, i.e., properties that
are instanciated by exactly the same objects at every possible world. The properties and relations described
by the theories of Bealer, Zalta, Menzel, and Turner have exactly this characteristic. In other words, the
theories are hyperintensional property theories. Recent years have seen a significant rise of interest in
hyperintensional concepts of properties in metaphysics (Nolan 2014), and correspondingly property theories
formulated in the -calculus will likely experience a rise of interest as well.

In the context of the foundations of mathematics, Zalta and Oppenheimer (2011) argue for the conceptual
priority of the relational interpretation of -terms over the functional one.

×
λ

λ
∨ →

λ ×
× λ

λ

pk(k ≥ 0) MARY JOHN

loves(JOHN, MARY)
λ[loves(JOHN, MARY)] λ

x λx[loves(JOHN,x)]
λ[∃x(loves(x, MARY))]

x x p1(λx[loves(JOHN,x)], MARY)
p0(λx[loves(JOHN, MARY)])

x y x y λxy[loves(x, y)]
x x λx[loves(x,x)]

x y x y
p2(λxy[loves(x, y)], JOHN, MARY)

λ β

pn(λx1, …xn[A], t1, … , tn) ↔

A[x1, …xn := t1, … , tn]

k (k + 1)
λ k λ

β n λ L n

L

β
β

β

λ λ λ

λ

λ
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The Lambda Calculator, a tool for working with -terms with an eye toward their use in formal
semantics of natural language.
Lambda Evaluator, for visualizing reductions. Standard combinators and Church numerals are
predefined.
Lambda calculus reduction workbench, for visualizing reduction strategies.
“ -Calculus: Then and Now,” useful handout on the milestones in, contributors to, and bibliography on
the -calculus, presented at the several Turing Centennial conferences. There also exists a video
recording of the lecture given on the occasion of Princeton University’s celebration of the Turing
Centennial in 2012.

In addition, see the very helpful discussion in (Zerpa 2021) on the use of e-learning tools for teaching and
learning the untyped -calculus.
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