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Peer discussions play a major role in students’ collaborative problem-solving activity. These 
discussions provide researchers and teachers with a wealth of information about the students' 
reasoning. To analyse such discussions, different theoretical lenses are available, such as 
Schoenfeld’s problem solving model, the Florida Taxonomy of Cognitive Behaviour, and the Scheme 
for Educational Dialogue Analysis. The question is, however, how these three perspectives can 
complement each other. To investigate this, the discussion between four students was analysed 
through the three lenses. Results indicate that these frameworks are both complementary and 
connected. This connection allows an in-depth analysis of the discussion and reveals possibilities and 
limitations for an integration of the three models, which will guide future discussions’ analyses in 
our study. 
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Introduction 
In mathematics classrooms, students work together to solve mathematics problems. During these 
collaborations, students talk over their peers’ arguments or ask for clarification, and so on. Many 
studies have shown the effectiveness of peer discussion for students' conceptual development (Barth-
Cohen et al., 2016; Crouch & Mazur, 2001; Wang & Murota, 2016). Mathematical discussions have 
been analysed from different perspectives. Some authors focus on the cognitive and the sociocultural 
perspective (Sfard & Kieran, 2001). Others look at these discussions from a dialogic perspective 
(Kazak et al., 2015) and mainly study the form of the student contributions. However, the issue is that 
most analyses in the literature are fragmented because each framework has a different perspective. 
There is no integrative framework that can tell us what factors affect the success or failure of a peer 
discussion. Additionally, guidance is needed to improve discussions in mathematical problem 
solving. Our short-term goal is to develop a framework to analyse peer discussions integrally; the 
long-term goal is to design learning activities in which mathematically productive discussions are 
promoted, including higher-order thinking skills. The pilot study described here is the first step 
towards a more comprehensive model. An extensive review of the literature revealed that three 
frameworks capture crucial aspects of peer discussion in problem solving best: Schoenfeld’s problem-
solving model, the Florida Taxonomy of Cognitive Behaviour (FTCB) and the Scheme for 
Educational Dialogue Analysis (SEDA). These frameworks are used to analyse a discussion between 
students. The research question addressed is as follows: Which aspects from the three different 
frameworks co-emerge in the analysis of a peer discussion? 
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Theoretical framework 
The study's theoretical framework consists of the three frameworks mentioned above. First, 
Schoenfeld's (1985) framework for analysing problem-solving skills presents four categories of 
knowledge and behaviour for an adequate characterization of mathematical problem solving 
performance.  These categories are necessary and sufficient for the analysis of the success or failure 
of someone’s problem-solving attempt: (a) Resources: Mathematical knowledge possessed by the 
individual; (b) Heuristics: Strategies and techniques for making progress on unfamiliar or 
nonstandard problems; (c) Control: The individual’s monitoring and self-regulation; global decisions 
regarding the selection and implementation of resources and strategies; (d) The individual’s belief 
systems and their origins in the student’s mathematical experiences. It is important to highlight that 
with good control, problem solvers can make the most of their resources and solve rather difficult 
problems with some efficiency. Without it, they can waste their resources and fail to solve problems 
within their grasp (Schoenfeld, 1985). Therefore, in this article we focus on the category control. We 
have split this category into two sub-aspects called resources control (RC) and heuristics control (HC) 
because control cannot exist by itself, but is always related to resources or heuristics.  

The second framework (FTCB) can be used to measure the cognitive level of students’ input on all 
aspects of problem solving, regardless of content type. In this pilot study, we focus on the level of 
analysis students demonstrate when justifying their choice of mathematical content or strategy. FTCB 
is based on Bloom’s Taxonomy and is used as a tool to assign Bloom’s Taxonomy levels to utterances 
from the target audience. It was designed by Brown et al. (1966) and has been used frequently in 
different contexts, for example to investigate the level of cognitive behaviour exhibited by secondary 
agriculture teachers (Ulmer, 2005). While Bloom’s Taxonomy distinguishes six cognitive levels, 
FTCB uses seven. It is a hierarchical model, with each level of intellectual skills building on the 
previous. FTCB includes 55 behaviour descriptions, 21 of which are related to the three higher-order 
thinking codes: analysis, synthesis and evaluation. These descriptions indicate the observable 
behaviours that characterize each thinking level and help to classify the input in the dialogue. 

As a third framework, we use SEDA to determine the type of input from individual students in the 
discussion. Many articles have been written about dialogue in education, and there is emerging 
consensus about the types of educational dialogue that seem to be productive for learning. These 
focus on atonement to others’ perspectives and the continuous co-construction of knowledge through 
sharing, critiquing, and gradually reconciling contrasting ideas (Littleton & Mercer, 2013). In SEDA 
the essence of dialogic interactions is operationalized as systematic indicators for these productive 
forms of educational dialogue (Hennessy et al., 2016). SEDA contains 33 codes, and the authors later 
developed a shorter version, named T-SEDA framework (Teacher Scheme for Educational Dialogue 
Analysis). T-SEDA focuses on key dialogue features, highlighting those that are known to be 
productive for learning (Kershner et al., 2020). We opted for the short version (T-SEDA) because it 
simplifies coding and allows us to see if further refinement is needed when coding the student 
discussion. Each category can be identified by words or short sentences that are uttered during the 
dialogue.  
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Methods 
The set-up 

Four first-year in-service student teachers (P, Q, R, S) from the Bachelor Mathematics Teacher 
Training Program at Utrecht University of Applied Sciences worked together to solve a mathematics 
problem from the Mathematics Olympiad training. Their curriculum included a course called 
problem-solving, in which the students were faced with mathematics problems in which various 
heuristics had to be applied. They are used to explaining things and it was expected that they would 
not give up easily since they had practiced enough with heuristics in the aforementioned course. We 
aimed to elicit a discussion with much interaction at different levels that could be analysed using the 
previously mentioned frameworks. The students were asked to solve the problem together and to 
interact with each other as much as possible. In the present paper, a fragment of the discussion that 
happened while the students worked on the problem is analysed. 

The students worked on the following problem (Stichting Nederlandse Wiskunde Olympiade, 2022): 
Figure 1 consists of a square ABCD and a semicircle with diameter AD outside the square. The sides 
of the square have length 1. What is the radius of the figure’s circumscribed circle? 

 
Figure 1: Problem situation 

The students were alone in a room with no teacher or researcher nearby. They were videotaped and 
they handed in their written work afterwards.  

The coding 

Table 1: The three frameworks with their associated codes 

Schoenfeld FTCB T-SEDA 

resources control 
(RC);  

heuristics control 
(HC) 

Knowledge (K); translation 
(T); interpretation (I); 
application (AP); analysis 
(A); synthesis (S); 
evaluation (E) 

invite to build on ideas (IB); build on ideas (B); challenge 
(CH); invite reasoning (IRE); make reasoning explicit (R); 
coordination of ideas and agreement (CA); connect (C); 
reflect on dialogue or activity (RD); guide direction of 
dialogue or activity (G), express or invite ideas (EI) 

 

The recording was transferred to Atlas TI for data analysis. Three researchers individually coded a 
fragment of this video using the three coding schemas, and then discussed their findings. The 
developers of T-SEDA were consulted to clarify the background and the choices made regarding their 
codes. Additionally, the three frameworks were presented to a focus group within the research group 
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‘Mathematical and analytical skills of professionals’ of the first author’s institute to search for 
potential theoretical connections between the codes and to identify typical examples of these codes 
in practice. These activities contributed to the validity of our application of the frameworks and the 
reliability of the coding of this fragment, which was subsequently coded by one of the authors. 

In the solution process, the students chose particular mathematical approaches or heuristics that 
determined the path to a possible solution. We describe these episodes as critical moments. 
Subsequently, three researchers separately determined the critical moments in the recording of the 
problem. In this paper we analyse one of these moments, which was identified by all three coders as 
particularly critical, since it sent the students on the wrong track for 80 percent of the time spent on 
this problem. The chosen episode of 16 minutes and 20 seconds was divided into clips. Each clip 
consists of one contribution in the form of a sentence or sentences per person. 

Results 
The mathematical approach and some examples of coding 

The problem was not solved, but several attempts were made. In the chosen episode a mathematically 
wrong approach was proposed by student P. The entire group engaged in this approach during this 
episode. Figure 2 shows that P draws the centre of the circumscribed circle and then makes a triangle 
by connecting this point to point B and the intersection of the vertical centreline of the circle and the 
circle itself. P assumes that angle B is 90°. P also chooses an unknown 𝑥𝑥 which she then tries to 
calculate using the Pythagorean theorem. This results in three equations with four unknowns. P then 
looks for a fourth equation to solve the problem. It does not work. The episode ends when P arrives 
at an, considering Figure 2, unlikely conclusion that 𝑦𝑦 = 𝑥𝑥/4 . 

 
Figure 2: Student P's scratch paper 

Student P is thinking aloud during the solution process. P says that angle B is 90° because of a 
mathematical rule that she cannot remember the name of. Q asks: Is that 90°?( RC; CH). Student P 
replies: Yes, that is 90° (A; R). Q does not continue questioning, and then this approach is worked 
out by P while Q, R and S watch. No one takes action to verify P's claim. Then P said: "Maybe my 
approach is too complicated, I don't know if I can solve this" (HC; RD) The rest of the group did not 
react to this. When P seemed to get stuck, Q and R suggested a different mathematical approach. P 
rejected these ideas through correct substantive arguments (RC; A; CH; R). Ten minutes later S 
mumbles "we are making things too complicated"; here again no response from the group (HC; RD). 
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The overlap between the three frameworks   

The tables 2 and 3 and the diagrams 1 and 2 give the co-occurrence between the codes of the three 
frameworks. This sheds light on the question how the three frameworks complement each other and 
how they overlap. For this study, we chose to focus on two codes: Schoenfeld’s Resources control 
(RC) and Heuristics control (HC) and their relations with the codes of T-SEDA and FTCB. The 
number after each code in parentheses in tables 2 and 3 shows how often the code is applied in the 
entire project. The number in the cell indicates the number of hits, how often the two codes co-occur. 
For example, the evaluation code was assigned 9 times throughout the project, and 3 of them 
coincided with the RC code. The row and column entities of the tables are represented in the 
corresponding charts (Fig 3 and 4) as nodes and edges, showing the strength of co-occurrence 
between the pairs of nodes. 

Table 2: Co-occurrence between the two control codes and five FTCB codes 
 

Resources control (19) Heuristics control (3) 

Evaluation (9) 3 0 

Analysis (22) 6 0 

Application (16) 1 0 

Translation (1) 0 1 

Knowledge (11) 1 0 

 

FTCB               Schoenfeld 

 
Figure 3: Co-occurrence between the two control codes and five FTCB codes 
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Table 3: Co-occurrence between the two control codes and six T-SEDA codes 
 

Resources control (19) Heuristics control (3) 

Invite to build on ideas (15) 3 0 

Build on ideas (4) 1 0 

Challenge (15) 6 0 

Invite reasoning (7) 3 0 

Make reasoning explicit (61) 5 1 

Reflect on dialogue/activity (9) 0 2 

 

T-SEDA               Schoenfeld 

 
Figure 4: Co-occurrence between the two control codes and six T-SEDA codes 

 

Conclusion 
Three frameworks were used to analyse a discussion between four students. Schoenfeld describes the 
categories that play a role in mathematical problem-solving. The thinking level of the students was 
studied through the lens of FTCB and the character of the personal input was classified with T-SEDA. 
We focused on one of the most important factors that determine the success or failure of mathematical 
problem-solving (Schoenfeld, 1985), namely: resources control and heuristics control. We observed 
that resources control in our data was more prevalent than heuristics control. That means that more 
mathematical knowledge was discussed and thereafter applied or rejected, during the search for the 
solution, than strategies or heuristics.  

It should also be noted that the level of thinking displayed during the moments when students rejected 
different mathematical approaches was generally high. The expressions that were observed linked to 
resources control were: points out unstated assumption, shows interaction or relation of elements, 
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points out particulars to justify conclusions, checks hypotheses with given information, distinguishes 
relevant from irrelevant statements and detects error in thinking. Several moments were observed in 
which the mathematical results were evaluated from evidence and from criteria. The code translation 
is connected to heuristics control only once. That is a lower order thinking skill according to FTCB. 
In this case, the students translate verbalization into graphic form.  

The moments in the discussion when doubts about the approach came to light were, unfortunately, 
not further analysed by the students. The opportunity to take a different, more promising path, was 
lost as a result of the approach not being evaluated. In this case, these doubts were caused by the fact 
that the students did not make any progress with the problem because the mathematical fallacy at the 
start had not been discovered sooner. It appears that if this particular mathematical approach had been 
evaluated earlier, it might have led to a change in strategy. Whereas when the students focussed their 
evaluation on resources, they failed to evaluate heuristics, leading to ineffective, time-consuming 
problem-solving behaviour. This study therefore shows the need to investigate further how we can 
teach students to assess their problem-solving approach earlier in order to improve their problem-
solving skills. The analysis of the connections of resources control and heuristics control to the T-
SEDA codes may provide insights to address this issue. 

Figure 4 illustrates a striking phenomenon about the relation between T-SEDA and the control codes. 
The codes: invite to build on ideas, build on ideas, challenge, and invite reasoning were only linked 
to resources control. The moments of analysis and evaluation described earlier were often started 
when a student challenged others, asked them to build on ideas, or explained their reasoning more 
clearly. These invitations to encourage others to actively participate in the discussion were followed 
by explicit reasoning. Consequently, thinking errors were discovered and hypotheses were tested, 
only referring, however, to the manipulation of mathematical knowledge but not about the approach. 
It is remarkable that heuristics control is linked to the T-SEDA code reflection. Indeed, those 
moments of reflection were individual expressions that provoked no response from the rest of the 
group. These seem to be missed opportunities to change the approach. Therefore, it seems plausible 
that moments of reflection (T-SEDA) should naturally cause moments of evaluation (FTCB), but in 
this case, they did not. 

According to the literature (Kershner et al., 2020), T-SEDA offers an opportunity to teach students 
how to discuss constructively, for example, by challenging others or inviting others to express ideas. 
This pilot research indicates that the kind of contributions classified by T-SEDA are strongly 
connected to the level of thinking (FTCB) involved when students respond to the expressions of 
others. For example, inviting someone to reason implies a certain level of analysis. However, there 
are also striking missing connections between T-SEDA and FTCB, for example, reflecting on the 
dialogue is not necessarily accompanied by evaluation. By understanding these connections, it may 
be possible to improve mathematical problem-solving, in particular Schoenfeld’s crucial category 
heuristics control. Then we conclude that the three frameworks are complementary. We also suspect 
that they are connected at a deeper level where different aspects of these frameworks may influence 
each other. More research is needed to explore these connections further. 
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