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The students of my generation had to survive without the internet and mobile
phones, and depended on books and real paper to write on. As undergraduates
in mathematics, we were always carrying yellow books around, and Springer-
Verlag had a big part in our mathematical development. A little later, when I
was a PhD student, two Springer Lecture Notes had a lasting influence on my
own mathematical work: Homotopy Invariant Algebraic Structures on Topological
Spaces by Boardman and Vogt [1] and The Geometry of Iterated Loop Spaces by
Peter May [6]. These two books together shaped the foundation of the theory of
operads about which I will write below.

My contacts with Catriona go back to the preparation and publishing of “Sheaves
in Geometry and Logic” with Saunders MacLane in the early 1990s. This period
was also the beginning of the use of e-mail, and it is interesting and entertaining to
see how e-mail customs and etiquette have changed over the years. I had my first
e-mails to Catriona typed by a secretary, and Catriona had several people working
for her who wrote on her behalf, all using an e-mail account and address under the
name “Byrne”. A few years after that, together with Albrecht Dold, Catriona helped
me to get SLN 1616 into publishable shape. In more recent years, she remained
most helpful in several matters, and I wish to thank her for that.

Now I would like to come back to Boardman and Vogt, and May, and talk about
some mathematics. To begin with, let me remind you that a (coloured) operad P

consists of a setC = colours(P ) of colours, and for each sequence (c1, . . . , cn; c) of
elements of C (where n � 0) a set of operations P(c1, . . . , cn; c), to be thought of
as taking inputs of “types” c1, . . . , cn, respectively, to an output of type c. Moreover,
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P is equipped with several structure maps for symmetry and composition, such as

P(c1, c2; c)
∼→ P(c2, c1; c)

P (c1, c2; c) × P(d1, d2, d3; c1) × P(e1, e2; c2) → P(d1, d2, d3, e1, e2; c)

1

1 2 3

2

1 2

and a unit element 1c ∈ P(c; c) for each colour c. These are to satisfy several
natural conditions, such as an associativity law for composition. If P(c1, . . . , cn; c)

is empty unless n = 1, this simply defines the notion of a (small) category. And
if C consists of just one element ∗, one calls P uncoloured and writes P(n) for
P(c1, . . . , cn; c) where each ci and c are necessarily ∗.

For a coloured operad P , a P -algebra A is a family of sets {Ac : c ∈ C} equipped
with maps

P(c1, . . . , cn; c) × Ac1 × · · · × Acn → Ac,

(for all sequences of colours c1, . . . , cn, c), compatible with the structure of P

mentioned above (symmetry, associativity, units). For example, if P is the
uncoloured operad for which each P(n) consists of a single point, a P -algebra is
simply a commutative monoid, and one usually writes Comm for this operad. The
collection �n, n � 0 of symmetric groups also has the structure of an operad; the
composition�n×�k1×· · ·×�kn → �k for k = k1+. . .+kn is defined by replacing
the non-zero entries in an n×n permutation matrix representing an element of�n by
the permutation matrices representing given elements of �k1, . . . , �kn respectively,
thus yielding a k×k-permutation matrix. An algebra for this operad is an associative
monoid, and one usually writes Ass for this operad (although � would obviously
have been a good name as well).

These P -algebras form a category Alg(P ), or Alg(P,Sets) to emphasize that
we consider algebras in the category of sets. One can similarly define a category
Alg(P, E) of algebras in any category with products, as long as expressions like
“P(c1, . . . , cn; c)×Ac1 × · · ·×Acn” occurring in the definition of P -algebra make
sense in E . (This is the case, for example, when it is possible to view the set
P(c1, . . . , cn; c) as an object of E through a suitable embedding of sets as “discrete



A Mysterious Tensor Product in Topology 211

objects” in E .) So, if Q is another operad with set of colours D = colours(Q), one
can construct a category Alg(P,Alg(Q,Sets)). This category is itself a category of
algebras over a new operad P ⊗ Q with set of colours C × D; in other words,

Alg(P ⊗ Q,Sets) = Alg(P,Alg(Q,Sets)).

This operad P ⊗ Q is known as the “Boardman–Vogt tensor product” of P and Q

and was first introduced in SLN [1]. It is possible to describe P ⊗ Q explicitly by
generators and relations. In particular, if P and Q are free operads defined by trees
S and T , i.e. P = Free(S) and Q = Free(T ), then P ⊗ Q is defined by glueing
free operads Free(R) together, where R ranges over all the shuffles of the two trees
S and T . A minimal example can be pictured as follows:

= Free( ) = Free( )

P ⊗ Q = Free(R1) ∪ Free(R2) ∪ Free(R3)

See [5] for details. The case of categories (viewed as operads with unary operations
only, as above) corresponds to shuffling linear trees. For two trees with n and m

vertices, respectively, there are
(
n+m

n

)
such shuffles, as everybody who encountered

products of simplicial complexes will be aware of. However, it seems impossible to
find a nice closed formula for the number of shuffles of trees that aren’t linear (see
loc. cit.)

Turning to operads in topological spaces, the most famous ones are probably the
(uncoloured) operads Cd of “little d-cubes” (for d � 1 the dimension of the cubes
involved). Specifically, Cd(n) is the space of sequences of n rectilinear embeddings
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of a d-dimensional cube into the unit cube [0, 1]d , with disjoint interiors. Here is a
picture of a point in the space C2(3):

By composing such embeddings, one obtains maps

Cd(n) × Cd(k1) × · · · × Cd(kn) → Cd(k)

for k = k1 + . . . + kn, representing the composition operation of the operad Cd .
These operads derive their fame from the fact that Cd -algebras (in spaces) describe
d-fold loop spaces, as discussed in detail in [6]. Since the d-fold loop space of a
space which is itself an e-fold loop space is evidently a (d + e)-fold loop space,
it is natural to expect that Cd ⊗ Ce is closely related to Cd+e. This is indeed the
case, as these two operads have been proved to be equivalent up to homotopy, a
result known as Dunn’s additivity theorem [3]. Although a positive result, Dunn’s
additivity theorem show at the same time that the tensor product of topological
spaces behaves rather badly under weak homotopy equivalence. For example, there
is a map C1 → Ass or operads, assigning to a point in C1(n), i.e. a sequence of
n numbered disjoint intervals in the unit interval, the permutation representing the
order in which there intervals occur:

This map is weak homotopy equivalence of operads, i.e. each C1(n) → Ass(n) =
�n is one of spaces. On the other hand, Ass ⊗ Ass = Comm by the Eckmann–
Hilton trick, while C1 ⊗ C1 � C2 describes double loop spaces and is very different
from Comm.

There are variations of the operad Cd which also describe d-fold loop spaces up
to homotopy, leading to a notion of “Ed -operad”: An operad P is said to be an
Ed -operad if it can be related to Cd by a zigzag of weak homotopy equivalences
between operads,

Cd ← · → · ← · → . . . ← P.

These Ed -operads often arise as combinatorial versions of Cd , for example the one
used by McClure and Smith in their proof of the Deligne conjecture [7, 8]. From a
mathematical point of view, however, the notion of an Ed -operad is a rather unusual
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one, as it does not give any structural properties for an operad to be an Ed -operad.
This becomes particularly awkward when one considers the tensor product of Ed -
operads, since the tensor product is not invariant under weak equivalence, as we
have just seen. So one may ask for which particular “models” of Ed -operads the
additivity of Dunn holds. This is problem to which Rainer Vogt devoted much of
his work (see e.g. [4]), but which remains largely unsolved.

An alternative approach is to replace the Boardman–Vogt tensor product of
topological operads by a “derived” one which is invariant under weak equivalence.
Denoting such a derived tensor product by ⊗̂, one way to construct it explicitly is
as the pushout

Here P and Q are topological operad with sets of colours C and D, say, and
P ∨ Q denotes the coproduct in the category of operads with C × D as set of
colours (where we first pull P and Q back along the two projections). Furthermore,
the adjoint functors w! and w∗ are the ones establishing a Quillen equivalence
between topological operads and dendroidal sets [2]. The symbol ⊗ in the diagram
refers to the tensor product of dendroidal sets. Since this tensor product is much
better behaved, especially for “closed” operads like Cd where there is a unique
nullary operation (of each colour), one can prove that P ⊗̂Q is invariant under
weak equivalence in each variable separately, at least for operads with free �n-
action on P(n) (respectively Q(n)), for each n; see [2]. So P ⊗̂Q describes quite
a good tensor product, from the point of view of topology. It comes equipped with
a map P ⊗̂Q → P ⊗ Q expressing that P ⊗̂Q is a “thick” version of the original
Boardman–Vogt tensor product. It would be interesting to know for which operads
this derived tensor product is equivalent to the original one of Boardman and Vogt.
(This is the case for “cofibrant” operads P and Q, but cofibrant operads are hard to
come by and rarely occur naturally.) It would also be interesting to know whether
this derived tensor product ⊗̂ satisfies Dunn’s additivity property for certain types
of models of Ed -operads.

Thus, natural as the tensor product may seem from the point of view of
algebra (remember the equation Alg(P,Alg(Q,Sets)) = Alg(P ⊗ Q,Sets)), it is
surrounded by many unanswered questions: combinatorial ones about the number
of shuffles, questions about invariance under weak equivalence, and questions about
additivity.
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