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Abstract. Multi-centre colonoscopy images from various medical cen-
tres exhibit distinct complicating factors and overlays that impact the
image content, contingent on the specific acquisition centre. Existing
Deep Segmentation networks struggle to achieve adequate generalizabil-
ity in such data sets, and the currently available data augmentation
methods do not effectively address these sources of data variability. As
a solution, we introduce an innovative data augmentation approach cen-
tred on interpretability saliency maps, aimed at enhancing the gener-
alizability of Deep Learning models within the realm of multi-centre
colonoscopy image segmentation. The proposed augmentation technique
demonstrates increased robustness across different segmentation mod-
els and domains. Thorough testing on a publicly available multi-centre
dataset for polyp detection demonstrates the effectiveness and versatil-
ity of our approach, which is observed both in quantitative and qualita-
tive results. The code is publicly available at: https://github.com/nki-
radiology/interpretability augmentation.

1 Introduction

The adoption of Deep Learning (DL) techniques has significantly advanced med-
ical image segmentation in recent years [4,12]. UNet and other U-shaped archi-
tectures have been pivotal in this revolution [11], remaining competitive even
with the introduction of newer models.

However, when DL models are applied to unseen datasets acquired from dif-
ferent scanners or clinical centers, their performance at inference time declines
noticeably [2,16]. This is due to domain shifts, caused by variations in data statis-
tics between different clinical centers, resulting from varying patient populations,
scanners, and scan settings [20,21]. These disparities in patient characteristics
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and imaging settings can significantly affect the model’s ability to generalize
effectively [10,21].

To further integrate DL models into clinical practice, it is crucial for them to
be robust against these changes and demonstrate a high level of generalizability.
The most straightforward approach to address domain shifts is by collecting
and annotating as many varied samples as possible. Nevertheless, acquiring and
labeling enough data to encompass real-world variation is prohibitively time-
consuming and costly.

Centre 1 Centre 2 Centre 3 Centre 4 Centre 5 Centre 6

Fig. 1. Illustration of examples of the “extra”-anatomical content across the different
centres in the PolypGen dataset and its impact on the GradCAM visualizations. The
first row depicts the original image, the second and third row show the GradCAM
visualizations and their binarization, respectively.

In recent years, Disentangled Representation Learning (DRL) has emerged
as a promising solution to address the aforementioned limitations. This method
encodes underlying variation factors into separate latent variables, capturing
valuable information relevant to the task at hand. By adopting DRL, DL mod-
els gain increased robustness against domain shifts, reducing the need for a
large number of meticulously labeled samples [13]. Various DRL models have
been employed for segmentation in the context of multi-centre datasets, yielding
state-of-the-art outcomes. One such model is the Spatial Decomposition Net-
work (SDNet), which decomposes 2-dimensional (2D) medical images into spa-
tial anatomical factors (content) and non-spatial modality factors (style) [3].
Expanding upon SDNet, Jiang et al. [8] have made additional advancements by
further disentangling the pathology factor from the anatomy, particularly when
the ground truth mask for anatomy is available. To further improve generaliz-
ability, Liu et al. [14] combined DRL with meta-learning, while Shin et al. [18]
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have effectively disentangled intensity and non-intensity factors to enable domain
adaptation in Computerised Tomography (CT) images.

Despite the significant advancements made by DRL methods in improving
model generalizability, it is important to acknowledge that these methods assume
that the shift introduced by unseen domains is embedded within the “style” fea-
tures. However, this assumption does not always hold true, especially in scenarios
like videos and images of colonoscopies, or other endoscopy applications. In such
cases, various confounding factors affect the content of the images, depending
on the domain, from hereon also referred to as centre, of acquisition. These fac-
tors include image miniaturization, anonymization, and depictions of the instru-
ment’s position during image acquisition, as shown in the first row of Fig. 1. As
illustrated in Sect. 3, both traditional methods, like UNet and DeepLabV3+ [5],
and DRL models like SDNet encounter challenges in generalizing to domains
heavily characterized by this additional content that is unrelated to the anatomy.

To address these limitations, we propose an innovative data augmentation
strategy based on interpretability techniques. Interpretability techniques have
already been successfully applied to improve DL models’ performance in med-
ical image analysis tasks: Silva et al. [19] exploited interpretability methods to
improve medical image retrieval in the radiological workflow; in [15], Gradien-
tweighted Class Activation Mappings (GradCAMs) are used to improve gener-
alized zero shot learning for medical image classification. Firstly, we pretrain a
classifier network to identify the respective centres to which the images belong,
using the same training set that will later be employed to train the segmentation
module. Thus, we ensure a fair assessment of the segmentation model. During
the training phase of the segmentation network, we employ the pre-trained clas-
sifier to generate visual explanations for the input batch. In this work, we use
GradCAM [17] to produce the visual explanations, a widely adopted technique
for visualizing and interpreting the decision-making process of Convolutional
Neural Networks (CNNs) in a wide variety of computer vision tasks. By lever-
aging gradients of the predicted class, GradCAM assigns importance weights
to different spatial locations within the last convolutional layer. This allows
us to identify the regions in the input image that significantly contribute to the
model’s decision-making process. Figure 1, specifically the second row, showcases
examples of the generated GradCAM visualizations for each centre. Notably, the
classifier predominantly focuses on areas where the “extra”-anatomical content
resides (indicated by darker regions). We binarize the generated GradCAMs, as
depicted in the third row of Fig. 1, and multiply them with a probability p with
the input to the segmentation network. Thus, this approach randomly blocks out
the additional information, enabling the segmentation network to place greater
emphasis on the anatomical regions.

The key contributions of our research can be summarized as follows:

– We introduce a novel data augmentation technique based on interpretability
techniques. By incorporating visual explanations, we develop a robust tech-
nique that can be readily applied to different and multiple domains. This
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Fig. 2. Illustration of the proposed method. In A, the pretraining of the classifier is
shown. B depicts the process of computing GradCAM visualizations. As for C and D,
they demonstrate the incorporation of the interpretability-guided augmentation in the
training phase of UNet and DeepLabV3+, and SDNet, respectively.

stands in contrast to standard augmentation techniques, which are limited in
their ability to capture the variability of non-synthetic data [21].

– We apply and adapt the proposed methodology to both two conventional
baseline models, UNet and DeepLabV3+ with ResNet101 as backbone, and
a DRL model, specifically SDNet. This showcases the versatility of our aug-
mentation strategy across different architectures.

– We conduct thorough testing of our method using an open-source multi-centre
dataset, PolypGen [1], to demonstrate the robustness of our technique and
its effectiveness in diverse domains.

2 Methodology

The proposed methodology is illustrated in Fig. 2, outlining the pretraining of
the classifier module, the generation process of the GradCAM visualizations and
their integration into the UNet, DeepLabV3+ and SDNet models.

2.1 Pretraining of Centres Classifier

For the classifier backbone, we employ a ResNet50 architecture [7] with pre-
training on ImageNet [6]. The module is trained on the same training set used
for subsequent training of the segmentation networks. Given an input image
xi, we initially apply Sobel filtering [9] to emphasize the edges characterizing
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Algorithm 1. Gradient-weighted Class Activation Mapping (GradCAM)
1: procedure GradCAM(xs

i , wc)
2: g ← Compute the gradient of the target class score c w.r.t the feature map a

of the last convolutional layer lc
3: iw ← Compute the importance vector of each feature channel by applying global

average pooling to g
4: cami ← Compute the class activation map by combining the importance vector

iw with the corresponding feature map a
5: cami ← ReLU(cami) � Apply ReLU activation to remove negative values
6: cami ← normalize(cami) � Normalize the class activation map
7: cami ← upsample(cami) � Upasample to match size of xs

i

8: return cami � Return the final GradCAM visualization

the extra-anatomical content and discard most of the anatomy. The resulting
filtered image xs

i is then passed through the ResNet50 to predict the original
centre to which the image belongs. The classification network is trained using
the Cross-Entropy (CE) Loss between the predicted ĉi and the original centre
label ci.

2.2 GradCAM Visualizations Generation Process

During the training process of the segmentation network, the pretrained weights
wc of the centres classifier are loaded and kept frozen. The classifier is then
used to perform inference on the Sobel-filtered input image xs

i . Subsequently,
the GradCAM visualization cami is generated following the steps outlined in
Algorithm 1. The GradCAM visualizations provide a coarse representation of
the areas in the input image xs

i that the classifier focused on to make its pre-
diction. To ensure that we do not inadvertently block useful content for the
downstream segmentation task, we binarize cami using a threshold th = 0.5 to
obtain cambin

i . This ensures that the augmentation procedure described in the
subsequent paragraphs masks only the most relevant “extra”-anatomical con-
tent.

2.3 Interpretability-Guided Data Augmentation

We will now provide a detailed explanation of how the GradCAM visualiza-
tions are utilized as an augmentation technique to enhance the robustness and
generalizability of segmentation models.

UNet and DeepLabV3+. The integration of the GradCAM visualizations
into the UNet and DeepLabV3+ training process is straightforward. With a
probability p, we multiply the input image xi by the corresponding GradCAM
visualization cambin

i . We introduce a probability p for the multiplication step to
mitigate the risk of covering important areas for the downstream task. Figure 3
provides two examples of augmented samples in the UNet and DeepLabV3+
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Original Image Binarized GradCAM Augmentation Original Image Binarized GradCAM Content Channel Content Channel

Fig. 3. Examples of augmented samples with our interpretability-guided augmentation,
for UNet, DeepLabV3+ and SDNet.

training process. The models are trained by computing the Dice Loss between
the predicted segmentation mask ŷi and the ground truth yi.

SDNet. To gain a better understanding of how interpretability-guided augmen-
tation is integrated into the SDNet, it is necessary to provide a brief overview
of the model’s structure. Initially, the anatomy encoder Fanatomy encodes input
image xi into a multi-channel spatial representation, the anatomical features zi.
It is important to note that zi has shape N×H×W , where N represents a fixed
number of channels (e.g. 8), while H and W correspond to the height and width
of the original image, respectively. The modality encoder Es uses factor zi along
with the input image xi to produce the latent vector si, representing the style
features. These two representations, si and zi, are combined to reconstruct the
input image through the decoder network D. The anatomical representation zi is
then fed into the segmentation network S to produce the segmentation mask ŷi.
For a more detailed explanation of the SDNet and its associated losses, we refer
the reader to the schematic in Fig. 2(D) and to the original paper [3]. To per-
form the interpretability-guided augmentation, we multiply the multi-channel
anatomical representation zi with the binary GradCAM visualization cambin

i

using a probability p before feeding it as input to the segmentation module S.
Figure 3 provides two examples of augmented samples in the SDNet training
process, in particular we report the effect on only one of the N channels of
zi for synthesis purposes. We made the decision to apply the augmentation on
the anatomy representation zi and not on the input image xi. This approach
is intended to mimic the process used in the UNet and DeepLabv3+, where
we directly manipulate the input to the module dedicated to the downstream
segmentation task, while keeping the rest of the SDNet architecture intact.
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3 Results

Dataset and Implementation Details. To evaluate the proposed method-
ology, we utilized the publicly available PolypGen dataset, which comprises
colonoscopy data collected from 6 different centres, encompassing diverse patient
populations. Our analysis focused on single frame samples, resulting in a total of
1537 images (Centre 1: 256, Centre 2: 301, Centre 3: 457, Centre 4: 227, Centre
5: 208, Centre 6: 88). Notably, as illustrated in Fig. 1, the centres exhibit sub-
stantial variability in image content, both within and across centres. To assess

Table 1. The comparison results of the proposed method with the corresponding base-
line models. The best result concerning the specific baseline considered is highlighted
in bold. In the Dice column, the value of probability p that produced the best result in
terms of Dice score in the interpretability-guided augmentation is indicated in paren-
theses.

Dice Recall Accuracy Dice Recall Accuracy

Out-dist set UNet UNet interpretability augmentation

centre 1 0.7257 0.7725 0.9589 0.7353 (60%) 0.7716 0.9587

centre 2 0.5762 0.6454 0,9440 0.6062 (60%) 0.5948 0.9530

centre 3 0.7054 0.6724 0.9619 0.7470 (40%) 0.6966 0.9658

centre 4 0.4223 0.3804 0.9594 0.4519 (40%) 0.3757 0.9607

centre 5 0.4725 0.4934 0.9581 0.4893 (40%) 0.5369 0.9583

centre 6 0.6423 0.5597 0.9593 0.6574 (60%) 0.6132 0.9634

Dice Recall Accuracy Dice Recall Accuracy

Out-dist set Deeplabv3+ Deeplabv3+ interpretability augmentation

centre 1 0.6003 0.6284 0.9482 0.6155 (60%) 0.6195 0.9545

centre 2 0.5498 0.5358 0.9398 0.5679 (60%) 0.5159 0.9496

centre 3 0.5696 0.5407 0.9585 0.6314 (40%) 0.6745 0.9561

centre 4 0.3424 0.2471 0.9483 0.3592 (50%) 0.2166 0.9493

centre 5 0.3867 0.4171 0.9543 0.4046 (60%) 0.4479 0.9533

centre 6 0.6268 0.5932 0.9631 0.6342 (40%) 0.6126 0.9658

Dice Recall Accuracy Dice Recall Accuracy

Out-dist set SDNet SDNet interpretability augmentation

centre 1 0.7130 0.7583 0.9551 0.7226 (40%) 0.7726 0.9575

centre 2 0.5489 0.5794 0.9328 0.5579 (50%) 0.5482 0.9464

centre 3 0.7151 0.7082 0.9620 0.7208 (40%) 0.7245 0.9603

centre 4 0.3981 0.3254 0.9591 0.3841 (50%) 0.3360 0.9557

centre 5 0.4312 0.4293 0.9587 0.4546 (40%) 0.4722 0.9588

centre 6 0.6398 0.6195 0.9610 0.6626 (60%) 0.5977 0.9621
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the generalizability of the models, we conducted 6 distinct experiments for each
tested model: we trained and validated the models using 5 centres while reserv-
ing one centre as an out-of-distribution test set. Throughout the experiments, a
patient-level split was applied for the in-distribution frames, with 80% of patients
allocated for training, 10% for validation, and 10% for the in-distribution test
set.

Standard preprocessing techniques were applied to the images, including
resizing them to a dimension of 256×256 and normalizing the pixel values. Fur-
thermore, additional augmentations were performed exclusively on the training
set. These augmentations comprised rotation, horizontal and vertical flips (with
a 50% probability), which were also applied to the ground truth and binary
GradCAM visualizations. Additionally, colour jitter was applied to the images
with a 30% probability. The models were trained for 300 epochs, except for the
centres classifier which was trained just for 10 epochs, on an NVIDIA RTX

TM

A6000 GPU, utilizing a batch size of 4 and a learning rate of 10−5.

Results and Discussion. The experimental results are presented in Table 1,
where we evaluate segmentation outcomes using as metrics the Dice Score
(DSC), recall, and accuracy. To determine the best-performing augmented mod-
els based on DSC, we conduct a parameter study on the probability value p,
as elaborated in the following paragraph, and subsequently compare them with
the corresponding baseline models. Concerning the DSC, the models trained
with interpretability-guided augmentation demonstrate superior performance in
nearly all experiments. Particularly noteworthy is the substantial improvement
in Centre 3 for the UNet, with an increase of 4.16%. Additionally, the SDNet
exhibits an increment of 2.57% in Centre 5, and for DeepLabV3+, there is a
significant 6.18% increase in Centre 3. The results also consistently demonstrate
improvements in terms of accuracy and recall in nearly all experiments. Figure 4
presents several qualitative examples of the segmentation results. Notably, the
masks obtained using our proposed methodology exhibit reduced noise levels,
and our approach demonstrates greater performance in detecting smaller polyps.

Parameters Study. We delve deeper into the effectiveness of our proposed
technique, conducting a detailed study of the parameters for the all the ana-
lyzed architectures. Our augmentation method was employed with probabilities
of 40%, 50% and 60%. The results of this study are displayed in the Supplemen-
tary Material. The study proves that the fine-tuning of the probability value p
within our augmentation approach plays a pivotal role in enhancing the models’
generalizability. Indeed, when the suitable probability p is applied, the aug-
mented architectures surpass the performance of the baseline models in nearly
all the tests.
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Fig. 4. Examples of qualitative results for the baselines and the interpretability-guided
augmentation approach.

4 Conclusion

We have introduced an interpretability-guided augmentation technique aimed at
improving the generalizability of DL models to unseen domains in colonoscopy
segmentation tasks. We have demonstrated the strength and reliability of this
proposed technique by successfully adapting it to three distinct architectures:
UNet, SDNet and DeeplabV3+. Our future work will involve testing the pro-
posed augmentation in low-data and semi-supervised settings, where DRL mod-
els, and in particular SDNet, significantly outperform conventional models.
Moreover, we plan to investigate the adaptability of our methodology to other
multi-centre endoscopy images, such as cystoscopy or laparoscopy, as they
exhibit the same instrumentation-specific and User Interface (UI) overlays as
colonoscopy data. Consequently, our method could improve models’ generaliz-
ability to such data.
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