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Abstract
This chapter provides an overview of exploratory factor analysis (EFA)
from an applied perspective.We start with a discussion of general issues and
applications, including definitions of EFA and the underlying common
factors model. We briefly cover history and general applications. The
most substantive part of the chapter focuses on six steps of EFA. More
specifically, we consider variable (or indicator) selection (Step 1), comput-
ing the variance–covariance matrix (Step 2), factor-extraction methods
(Step 3), factor-retention procedures (Step 4), factor-rotation methods
(Step 5), and interpretation (Step 6). We include a data analysis example
throughout (with example code for R), with full details in an online supple-
ment. We hope the chapter will provide helpful guidance to applied
researchers in the social and behavioral sciences.
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Introduction

Exploratory factor analysis (EFA) has been an incredibly popular statistical
technique in the social and behavioral sciences for over a century (e.g., Goretzko et al.,
2021). In the first author’s field of psychological assessment, for instance, EFA has been
used to elaborate on the internal structure of psychological tests since its inception, and it
remains popular today. Open any issue of Psychological Assessment, Journal of
Personality Assessment, or Organizational Research Methods, to mention just a few,
and you are bound to see articles that used EFA as a method to develop and/or evaluate
operationalizations of various constructs. Although popular in psychology, the import-
ance of EFA has been identified in many other areas of the social and behavioral
sciences, such as sociology (e.g., Kirkegaard, 2016), education (e.g., Beavers et al.,
2013), organizational research (e.g., Conway et al., 2003), and communication science
(e.g., Park et al., 2002).
Precursors to contemporary EFA have been available almost as soon as correlation

matrices could be calculated (see Mulaik, 2010 for a review). As Sir Francis Galton
and Karl Pearson worked on mathematical models of correlation, that would
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ultimately yield the still-popular Pearson product moment correlation coefficient
(Pearson, 1909), other scholars used these methods to calculate intercorrelation
matrices to evaluate higher-order indices for interrelated variables. Charles
Spearman, for example, built a higher-order model of intelligence (Spearman,
1904). Spearman’s work was actually more reminiscent of the bifactor model
approach, which has become quite popular recently, than EFA (see e.g., Sellbom &
Tellegen, 2019). It was subsequent scholars who ultimately advocated for the EFA
principles and methods that are frequently used today (e.g., Cattell, 1943; Thurstone,
1938).
This chapter emphasizes EFA. There are several forms of data reduction tech-

niques, such as principal components analysis (PCA) and image factor analysis,
which make different assumptions about the variances in the variables (i.e., indica-
tors) being analyzed. We also focus specifically on latent variable models and do not
provide coverage of other related methods of evaluating structure of variables, such
as network analysis (e.g., exploratory graph analysis) or person-centered cluster
analytical approaches. Furthermore, we do not cover confirmatory factor analysis
(CFA) – a special case of structural equation modeling (SEM, see Chapter 25 in this
volume) – though many issues pertaining to indicator selection and estimators apply
to CFA as well. The “SEM Steps and Reporting Standards” in Chapter 25 of this
volume apply to specifying, estimating, and evaluating a CFA model; Figure 25.2
and its associated narrative discussion provides a good example in that chapter. We
further note that this chapter is mostly applied in nature, meaning that we do not take
a mathematical approach to explaining the conceptual and practical foundations of
EFA. Indeed, any reader interested in such foundations is referred toMulaik’s (2010)
excellent book on this topic.

Definitions and Contrasting from Other Methods

Readers may rightfully wonder how EFA is different from some of these
other data reduction methods just mentioned. We will contrast EFA from the two
most common other alternatives (PCA and CFA). First, PCA and EFA are often
confused as they are both similar forms of data reduction, and similar steps are
applied in selecting the optimal structure – rotating solutions to simple structure,
theoretical evaluation of competing structures, etc. However, it is important to note
that, even if PCA and EFA methods often yield similar solutions, they are based on
different assumptions about the underlying variances in the variables being analyzed.
EFA is based on the common factor model (e.g., Thurstone, 1947), which assumes

each variable in a set of observed or measured variables (i.e., indicators) is a linear
function of one or more unobserved (i.e., latent) factors as well as a residual factor
unique to each variable (i.e., a unique variance component). Each latent variable is
estimated through the variance common across the set of indicators (hence, common
factors) and, specifically, that is being predicted by the latent variable. In other
words, the underlying reason (or “cause”) for a particular value on any observed
indicator is the level of the underlying latent construct. The common factor model
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also considers residual factors that represent the unique variance of each indicator
when the common variance has been accounted for; this unique variance is
a combination of both systematic (or reliable) influences that are unrelated to the
latent variable(s) as well as unsystematic (or unreliable) variances.
PCA, on the other hand, is not based on the common factor model as it does not

parcel out shared and unique variances (Mulaik, 2010). Rather, PCA is a more
simplistic procedure that attempts to maximize the amount of variance for which
can be accounted in the indicators rather than making assumptions about causation.
Brown (2014) points out that some scholars nonetheless argue that PCA might be
advantageous to EFA because it is more simplistic mathematically, is less prone to
problematic solutions, is not hampered by factor indeterminacy (i.e., component
scores can be calculated more easily than factor scores), and PCA and EFA often
yield similar results. However, as also noted by Brown (2014), other scholars (e.g.,
Fabrigar et al., 1999; Floyd & Widaman, 1995; see also Schmitt, 2011) have
generally refuted these arguments because solutions are indeed dissimilar under
various conditions (e.g., few indicators per factor and small communalities – the
amount of variance accounted for in an indicator by all factors); more generally,
analyses should be applied based on the underlying theoretical assumptions made
about associations among variables. Moreover, because both EFA and CFA are based
on the common factor model, EFA results are more likely to be supported by
subsequent CFA in other samples (Floyd & Widaman, 1995; Schmitt, 2011).
The primary difference between EFA and CFA are in the names. Exploratory

methods make no a priori assumptions about structure and are best suited for
contexts in which the underlying structure of a set of variables is unknown.
Confirmatory analyses, on the other hand, are explicitly testing one or several
competing theoretical structures that are indeed known. Both are based on the
common factor model, but one important difference in CFA is the reliance on the
independent clusters model. In other words, a standard CFAmodel typically assumes
one cause (i.e., latent factor) per indicator. EFA, on the other hand, makes no such
assumption and estimates all latent factors as predictors for all indicators in the
model; instead, it uses rotation methods (defined in a later section) to view
a particular solution from a simple structure perspective. Finally, unlike EFA, the
global evaluation of CFA models is largely based on the degree to which the
specified model is consistent with the observed data (i.e., model fit) and statistical
comparison to other theoretically plausible models. See Chapter 25 for detailed
coverage of these issues in the broader SEM context.

General Applications

EFA can be useful in any context in which higher-order explanations of
intercorrelations among a set of variables can be beneficial. Indeed, it has been used
to articulate the structure of major psychological constructs, including intelligence
(e.g., Thurstone & Thurstone, 1941) and personality (e.g., Cattell, 1945).
A particularly common application of EFA is the examination of the internal

24 Introduction to Exploratory Factor Analysis: An Applied Approach 515

https://doi.org/10.1017/9781009010054.025 Published online by Cambridge University Press

https://doi.org/10.1017/9781009010054.025


structure of psychological test items (Brown, 2014), especially when no clear a priori
theoretical structure exists. For instance, imagine a researcher has developed a new
self-report questionnaire for assessing educational learning strategy –
a multidimensional construct composed of multiple abilities (e.g., Berger &
Karabenick, 2016). Therefore, the researcher, who has developed 25 test items to
measure important features of learning strategies, conducts an EFA to determine the
underlying structure of the test.
As another recently published example, Jokiniemi et al. (2021) developed

a clinical nurse specialist core competency scale in a sample of nurses from
a variety of Nordic countries. Because the underlying structure of the scale was
unknown, they subjected 50 items to an EFA and decided on a four-factor structure.
The respective loadings of items on the factors indicated four competency spheres of
patient, nursing, organization, and scholarship, which formed a final scale.

Steps in Conducting EFA

In this section, we articulate the various steps in the applied use of EFA. For
each, we discuss important issues that EFA users should consider and the general
empirical literature to guide decisions. We also provide exemplary R code for practi-
tioners to illustrate how to conduct the steps 2–5. A more detailed data example can be
found in our Open Science Framework (OSF) repository (https://osf.io/srv8e/). The
data were provided by Schödel et al. (2018) and consist of 312 observations of 60
extraversion items (four-point Likert scale) from the Big Five Structure Inventory
(BFSI; Arendasy 2009); the BFSI measures the five-factor model of personality –
a popular personality perspective in psychology. Extraversion is conceptualized as
a broad individual differences trait domain with multiple specific trait facets (e.g.,
gregariousness, warmth, assertiveness), and thus, an extraversion item pool should be
multifactorial. Throughout this chapter, we use these data to walk the reader through
the basic steps of EFA; for a more detailed depiction, we encourage the reader to study
the supplemental material in our OSF repository.

Step 1: Variable Selection

Every EFA begins with variable (indicator) selection, which is dictated by the
purpose of the analysis. It is important to keep in mind that the results of EFA are
completely bound by the variables included; there is no magic that will reveal some
broad truth. Thus, EFA should not be used to articulate theory but, rather, thinking
carefully about variable selection should precede the analysis. Of course, for certain
applications, the researchers are bound to a particular variable pool. For instance, the
evaluation of the internal structure of a psychological test is directly linked to the
available items on that test.
It is very important that EFA users pay close attention to the nature of their

indicators (e.g., scaling, distribution, degree of unidimensionality), as these prop-
erties have important implications for the selection of factor-extraction methods
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discussed later. Indeed, considerations for scaling/distribution of indicators will be
covered under Step 3. In this first step, we consider some issues concerning the
nature of indicators to which we believe EFA users should pay particular attention.
In an excellent article on factor analysis, Schmitt (2011) argues that indicators that

are highly skewed can, for that reason alone, be highly correlated and indicative of an
artefactual factor (see also Sellbom & Tellegen, 2019). This can be illustrated through
a simple example. Let’s consider two scales from the Minnesota Multiphasic
Personality Inventory-2 – Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen,
2008). Substance Abuse (SUB; seven items) and Anxiety (AXY; five items) measure
two theoretically distinct constructs. We subjected its seven binary (true/false) items
to an EFA using a robust weighted least-squares estimator in the modeling software
Mplus 8.4 across two separate samples. The first sample consisted of 895 individuals
from a community mental health center (Graham et al., 1999). The median endorse-
ment frequency for these items was 27.5% (range: 9.3% to 51.6%). An EFA sup-
ported two factors (based on parallel analysis; see Step 4 later), with all seven SUB
items loading on the first factor (median = 0.70; range: 0.45 to 0.87) and all AXY
items loading on a second factor (median = 0.69; range: 0.48 to 0.79).
The second sample consisted of 336 individuals who had been administered the

MMPI-2-RF as part of a pre-employment evaluation for a law enforcement position
(Detrick et al., 2016) – a context in which endorsing substance abuse and anxiety
symptoms is unlikely to occur due to either good psychological adjustment in such
individuals or significant under-reporting. Indeed, the median endorsement frequency
of these 12 items was 0.8% (range: 0.3–18.1%). The EFA suggested a clear one-factor
solution with all but one of the items loading meaningfully on this factor (median =
0.84, range: 0.37–0.95); the only item that failed to reach a meaningful loading (0.28)
was associated with the highest response endorsement (18.1%), and the item with the
lowest meaningful loading (0.37) was associated with the second highest response
rate (14.8%). Forcing a two-factor solution would result in an improper solution, with
the single item left out of the one-factor model forming its own factor with a loading
of 1.06. Thus, this example clearly demonstrates the effect that similar and extreme
item skew can lead to theoretically inconsistent and artefactual factor solutions.
Indicator parceling is another important issue that EFA users should consider.

Parceling refers to adding multiple indicators into a smaller set of aggregates to
reduce model complexity. There is debate in the field about whether parceling is
appropriate in factor analysis (e.g., Bandalos, 2008; Little et al., 2013; Marsh et al.,
2013). Proponents for parceling argue for parcels being more reliable and distribu-
tionally sound indicators than the original ones, as well as the benefits of reducing
model complexity and increase in statistical power (Little et al., 2013). Opponents,
however, argue that parceling can mask potential problems associated with individ-
ual indicators, as poor indicator performance could be indicative of problematic
content contributing construct-irrelevant variance (e.g., Bandalos, 2008; Marsh
et al., 2013). We do not take a strong stance other than to say that if the indicators
subjected to EFA meet the general goal of the analysis, and they are sufficiently
unidimensional/reliable, indicator parceling is generally appropriate.
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Step 2: Compute the Variance–Covariance Matrix

A factor analysis is a test of a variance–covariance matrix (or, in standardized terms,
a correlation matrix). Every statistical software will calculate a variance–covariance
matrix and subject this matrix to an EFA. In most cases, EFA users do not need to do
this themselves. The statistical program will automatically do the conversion based
on the instructions received. However, it is also possible for the applied user to
calculate a variance–covariance matrix and directly subject this matrix to EFA to
make adjustments to the correlations in a manner not possible when using raw
indicator data (e.g., dis-attenuating correlations for range restriction or converting
a correlation matrix to fit distributional assumptions); a full discussion of these issues
is beyond the scope of our chapter. Here, we focus on some important assumptions
about the variance–covariance matrix for EFA.
Prior to an EFA being conducted, the user should check whether the variance–

covariance matrix meets the assumptions necessary to be subjected to the
analysis. There are two common tests. First, the Kaiser–Meyer–Olkin (KMO)
index of sampling adequacy directly allows for the examination of whether the
variables to be included in the EFA are appropriate for factor analysis as a set. If
the common variance across the indicators is too small, it is not meaningful to
conduct an EFA. Hence, the KMO – a measure of the proportion of common
variance across all indicators – states how well the set of indicators is suited for
EFA. Values that are close to 1.0 are preferable (see Kaiser & Rice, 1974 for
more guidance on KMO interpretation). The R package psych provides
a function to calculate the KMO measure: psych::KMO(efa_data). For our
example data on 60 extraversion items, the KMO measure is 0.92 and suggests
that the data can be subjected to an EFA.
Another method to determine the suitability of an indicator set for EFA is the

Bartlett’s test of sphericity that can be used to ensure that the correlation matrix is not
an identity matrix. Specifically, if the indicators are not related to one another, no
informative structure can be detected. A chi-square test is calculated to test the null
hypothesis that the indicators are orthogonal; a significant test, therefore, is evidence
that they are not and that the underlying matrix has sufficient covariation to be
suitable for EFA. In R, users can apply the cortest.bartlett function of the
psych package – psych::cortest.bartlett(cor(efa_data), n = nrow(efa_data)), with
cor(efa_data) calculating the correlation matrix and nrow(efa_data) returning the
sample size. Bartlett’s test of sphericity rejects the null hypothesis in our data
example, so we deem our data suitable for an EFA.

Step 3: Factor Extraction

When conducting an EFA, researchers can choose between several factor-extraction
methods (i.e., estimation methods). This decision can have substantial influence on
the results – especially on the estimated factor loadings (Beauducel, 2001; DeWinter
& Dodou, 2012). Although it has often been argued that PCA relies on different
model assumptions (see earlier discussion on this topic) and, therefore, should not be
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treated as an alternative extraction method (e.g., Farbrigar et al., 1999) as it may
yield biased factor loadings (Widaman, 1993), it is not always clear which other
method is preferable (based on the common factor model).

Principal Axis Factoring

Historically, principal axis factoring (PAF) has been the most popular extraction
method and remains the preferred method for many researchers who use EFA
(Conway & Huffcutt, 2003; Goretzko et al., 2021; Henson & Roberts, 2006;
Howard, 2016). Its popularity may be explained by its conceptual resemblance to
PCA and its importance in the early days of EFA usage (e.g., Holzinger, 1946). The
basic idea of PAF is to adjust the PCA approach to the common factor model to
account for measurement error and to consider unique variance components. Instead
of decomposing the correlation (or variance–covariance) matrix to find principal
components, it works with a so-called “reduced” correlation matrix that contains
communality estimates on the diagonal. Hence, the principal axes (factors) obtained
from this procedure are not able to explain all the variance of the manifest variables
but only shared variances according to the common factor model (i.e., the variance
components that are explained by the underlying latent factors that represent, for
example, psychological constructs).
The initial estimation of the communalities used to generate the reduced correl-

ation matrix is usually based on the squared multiple correlations (SMCs) among the
indicators – the default in statistic programs (e.g., SPSS or R when using the psych
library: psych::fa(efa_data, nfactors = 6, fm = “pa”, SMC = TRUE)). After initially
“guessing” the communalities, an eigenvalue decomposition is performed on the
reduced correlation matrix (similar to PCA), and the resulting factor pattern can then
be used to re-estimate the communalities. This iterative procedure is continued until
a convergence criterion is fulfilled.

(Weighted) Least-Squares Approaches

With this procedure, PAF implicitly aims at finding the factor loadings that minimize
the squared deviation between the diagonals of the reduced correlation matrix (which
contains the communality estimates) and the reproduced correlation matrix (which
consists of the model-implied correlations calculated from the estimated factor load-
ings; see Jöreskog et al., 2016 formore details).While PAF uses the iterative procedure
to estimate loadings and communalities via eigenvalue decomposition, Harman and
Jones’s (1966) minimizing residuals factor analysis (Minres) determines the factor
loadings by reproducing the off-diagonal elements of the correlation matrix as closely
as possible (thus circumventing the problem of unique variance elements). The authors
demonstrate that Minres and PAF result in the same factor solution if the communal-
ities estimated by Minres are used for PAF (Harman & Jones, 1966).
As Minres minimizes the squared distance between the off-diagonal elements of

the correlation matrix and the respective correlations implied by the factor model
(i.e., the squared residuals), it provides the solution to the unweighted least-squares-fit
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function (Jöreskog et al., 2016). Accordingly, Minres yields equivalent results as an
ordinary least-squares method and can be seen as a representative of diverse least-
squares approaches, which all estimate the model parameters by optimizing a fitting
function that compares the actual correlation matrix with a model-implied matrix. The
different estimation methods – namely generalized least-squares, unweighted least-
squares, and maximum-likelihood (ML) methods – can be formulated as weighted
least-squares (WLS) approaches (Browne, 1977) and enable the researchers to test the
goodness of fit by calculating common model fit indices (e.g., the RMSEA). Robust
WLS or diagonally WLS methods have been developed in the context of SEM
research to address the problem of biased standard error estimation in WLS
approaches (for an overview, see DiStefano & Morgan, 2014). These approaches,
including, for example,WLSMV (weighted least-squaresmean and variance adjusted)
methods, can also be used in EFA. However, robust WLS is often not selected as an
extraction method, probably because EFA is usually used for exploring the data and
not for model testing (compared to CFA) and, hence, proper standard error estimation
is rarely considered by its users.
One of the advantages of these least-squares approaches is that they do not carry

distributional assumptions about the indicators and are, therefore, applicable to all
types of variables. As described later, research has indicated that these approaches
can be particularly useful for ordered categorical or binary variables (e.g., Rhemtulla
et al., 2012). However, a WLS analysis usually needs (slightly) larger sample sizes
(e.g., Li, 2016; Rhemtulla et al., 2012) and is not the preferred method when using
normally distributed indicators.

Maximum-Likelihood Estimation

While general least-squares approaches come without distributional assumptions,
ML estimation puts a stronger focus on the data-generating process and is, therefore,
arguably a more sophisticated approach to factor analysis – especially since it treats
the unique variances as formal model parameters that have to be also estimated
(Everitt & Hothorn, 2011). Usually, multivariate normality is assumed but, theoret-
ically, other distributional assumptions can also be made for ML estimation (e.g.,
Wedel & Kamakura, 2001).
For ML estimation, a fitting function that is closely related to the likelihood

function is minimized with respect to the loading parameters as well as the unique
variances. The likelihood function indicates how plausible specific parameter values
are given the observed data; in this case, that means the plausibility of specific factor
loadings and unique variances. Accordingly, the aim of this estimator is to maximize
the likelihood that the final set of parameters map onto the observed data (hence,
“maximum likelihood”). Moreover, even though the ML estimation of parameters is
fairly robust against violations of the normality assumption (e.g., Jöreskog et al.,
2016), standard errors and respective significance tests can deteriorate when the
actual data-generating process differs from the assumed one. Therefore, several
adjustments for robust ML estimation have been developed (e.g., Yuan & Bentler,
1998).
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Comparison of Factor-Extraction Methods

Selecting one of these estimation methods for an EFA can be challenging as their
precision and stability vary across different data conditions. PAF is sometimes
favored as it produces fewer Heywood cases (i.e., cases in which unique variances
are estimated to be negative or correlations estimated to be greater than one)
compared to ML estimation (De Winter & Dodou, 2012). PAF also does not require
multivariate normality underlying the indicators. However, the initial communality
estimates can heavily influence the outcome of PAF; using the complete variances as
communality estimates often yields inflated parameter estimates, while using the
SMC approach may cause negative eigenvalues (Gorsuch, 1983). Furthermore, PAF
does not allow for a direct replication with CFA (for which the default estimator is
typically ML) and does not provide fit indices to evaluate model fit. Hence, several
authors advocate not to rely on PAF (Conway & Huffcutt 2003; Fabrigar et al., 1999;
Goretzko et al., 2021) but rather to use ML estimation especially when multivariate
normality can be assumed. Because EFA results should typically be replicated and
validated using CFA on a new sample, a likelihood-based estimation procedure
seems to be the most suitable.
When the multivariate normality assumption is violated (e.g., when data are

based on indicators with few categories), WLS parameter estimation based on
polychoric correlations may be an appropriate alternative to ML estimation
(Barendse et al., 2015; Schmitt, 2011); it also can be used in CFA and, hence,
for direct cross-validation. EFA users should examine their data carefully
and evaluate whether a normality assumption holds. Regardless, when ordinal
indicators with fewer than five categories are used, WLS is preferred over ML
estimation – particularly robust weighted least squares or unweighted least squares
(Beauducel & Herzberg, 2006; Goretzko et al., 2021; Li, 2016; Rhemtulla et al.,
2012). The “fa” function of the psych package offers numerous estimation
methods. Users can select the preferred method by setting the argument “fm”,
for example, when performing WLS estimation: psych::fa(efa_data, nfactors = 6,
fm = “wls”). Since our example data set consists of four-point Likert items that
have to be considered as ordinal variables (see also Beauducel & Herzberg, 2006),
we decided to rely on WLS estimation (statistical tests and graphical inspection
also suggest that multivariate normality is questionable for our data, see https://osf
.io/srv8e/).

Step 4: Factor Retention

Selecting the optimal number of factors to retain constitutes a key decision in EFA.
Before estimating the loadings and unique variances, the researcher needs to deter-
mine the dimensionality (or number of latent factors). Although theoretical consid-
erations should also be taken into account in this decision-making process, this
number is primarily inferred from objective data. Over the years, several factor-
retention criteria have been developed to estimate the number of latent factors
underlying the correlation matrix of the manifest indicators.
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Eigenvalues: Kaiser–Guttman and Empirical Kaiser Criterion

Eigenvalues are central characteristics of a matrix that, in the case of correlation
matrices, indicate how much variance in the manifest variables can be explained by
the respective eigenvectors (i.e., the principal components in PCA). Therefore,
eigenvalues of the correlation matrix (or the reduced correlation matrix in PAF)
play a central role in determining the number of factors to retain in EFA. The well-
known Kaiser–Guttman rule (Kaiser, 1960), often referred to as eigenvalue-greater-
one-rule, suggests retaining as many factors as there are eigenvalues greater than
one. At the population level, the correlation matrix under the null model (no
underlying factors) is simply an identity matrix and all eigenvalues are one.
Accordingly, the rationale of the Kaiser–Guttman rule is that an underlying factor
should explain more variance than a single variable and should have a corresponding
eigenvalue greater than one.
As Breaken and van Assen (2017) explain, this idea may be reasonable on

a population level, but is flawed on a sample level due to sampling error.
Therefore, the authors developed a new version of this rule – the empirical Kaiser
criterion (EKC) – that takes into account the sample size as well as the size of
previous eigenvalues when calculating reference eigenvalues that are compared with
the empirical eigenvalues (e.g., the second reference eigenvalue is adjusted to account
for a very large first eigenvalue corresponding to a dominant first factor). In other
words, EKC provides different reference values for each observed eigenvalue
(instead of comparing all eigenvalues with the fixed value of one) and promises to
be less prone to sampling error. It suggests retaining factors whose eigenvalues are
greater than the calculated reference eigenvalues, considering the sample size, the
number of indicators, and all previous eigenvalues. Braeken and van Assen (2017)
differentiate the restricted EKC (where the reference eigenvalues are at least one) and
an unrestricted version with reference eigenvalues that can be even smaller than one.

Scree Test

Another popular method of determining the number of factors is the scree test
(Cattell, 1966) and it is also based on the empirical eigenvalues. The idea behind
this method is to plot the eigenvalues in a descending order and to determine an
“elbow” in this plot, where the change from one eigenvalue to the subsequent
eigenvalue is considerably smaller than the difference between the two prior eigen-
values. The assumption is that all factors corresponding to the eigenvalues before
this “elbow” can explain substantial amounts of variance while all factors from this
position and onwards are insufficient for this purpose. Ultimately, the visual inspec-
tion and interpretation of this scree plot is quite subjective.

Parallel Analysis and Comparison Data

The improvement in computational resources have fostered the applicability of simu-
lation-based factor-retention approaches. Parallel analysis (PA; first implemented by
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Horn, 1965) is the best-known factor-retention approach that uses simulated data for
comparison. The basic premise of PA is to generate reference values for the empirical
eigenvalues based on several simulated data sets of the same size and number of
indicators as the empirical data set. After simulating B data sets based on the null
model (i.e., no underlying latent factors), the mean of the B first eigenvalues is
compared to the first empirical eigenvalue, the mean of the B second eigenvalues is
compared to the second empirical eigenvalue, and so on. PA suggests retaining factors
as long as the empirical eigenvalue is greater than the reference eigenvalue. Instead of
using the mean to aggregate the respective eigenvalues of the B data sets, arbitrary
percentiles of the eigenvalue distribution can be taken as the reference value (often the
95% percentile). There are also implementations of PA that are based on the eigen-
values of the reduced correlation matrix (see also the comparison of PCA and EFA)
and PA varieties using bootstrapped instead of simulated data. Lim and Jahng (2019)
provide amore detailed overview of the different versions of PA and their performance
under various data conditions.
Ruscio and Roche (2012) developed the comparison data (CD) approach that

combines the simulation of comparison data sets (similar to PA) with the model-
testing perspective of CFA (see also the section onmodel fit indices below). Contrary
to PA, the simulated data sets do not represent a null model but are based on different
factor models while also reflecting the marginal distributions of the indicators. For
each factor solution and each comparison data set, the root-mean-squared error
(RMSE) between the empirical eigenvalues and the respective comparison eigen-
values is calculated. That is, if B comparative data sets are simulated per factor
solution, B RMSE values per number of factors are obtained. The CD method then
tests whether the RMSE values of a two-factor solution are, on average, significantly
smaller than those of a one-factor solution. Mann–Whitney U tests are conducted
with subsequent numbers until no “significant” improvement is indicated. To avoid
underfactoring, the authors suggest an alpha level of 0.30 as a threshold for
significance.

Minimum Average Partial Test

Velicer (1976) developed the minimum average partial (MAP) test that aims at
determining the number of components to retain in PCA based on averaged, squared
partial correlations of the indicators. Although it was designed for PCA, the MAP
test is frequently used in the context of EFA (Goretzko et al., 2021). The basic
premise is to determine the number of components for which the squared correl-
ations of the indicators are minimal, on average, after the common variance
explained by the principal components is controlled for (“partialed out”).

Hull Method

The hull method by Lorenzo-Seva et al. (2011) consists of three major steps. First,
a set of factor solutions is selected for which a model fit index is calculated (the
authors suggest using the comparative fit index). Then, the fit index is plotted against
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the corresponding degrees of freedom for each factor solution. Subsequently, an
elbow in the upper boundary of the convex hull of the plotted points is detected to
determine at which point increasing the number of factors does not substantially
improve upon the model fit. Unlike the scree test, the position of the elbow in the
upper hull can be calculated, making this a less subjective approach. Due to its
model-comparison perspective, the hull method necessitates the use of ML or least
squares estimators to calculate model fit indices.

Sequential Chi-Square Tests

When using ML EFA, it is possible to test whether a specific number of factors k is
sufficient to explain the common variance of an indicator set. If that is the case, a test
statistic proportional to the ML fitting function is approximately chi-square distrib-
uted (e.g., Everitt & Hothorn, 2011) and the null hypothesis that k factors are
sufficient can be tested. This procedure is repeated with subsequent numbers of
factors (k = 1, 2, 3, . . .) until the null hypothesis holds.

Fit Indices and Information Criteria

There are also authors who view factor retention as a model selection problem (e.g.,
Preacher et al., 2013) and, therefore, rely on relative and absolute measures of model
fit. When likelihood-based EFA is conducted, information criteria, such as the
Akaike information criterion (Akaike, 1987) or the Bayesian information criterion
(Schwarz, 1978), can be used to determine which number of factors represents the
empirical relations more accurately. As an alternative to information criteria, fit
indices known from model testing in the context of CFA (or structural equation
modeling; see Chapter 25 in this volume) can also be used to compare different factor
solutions with each other (see Preacher et al., 2013 for more details). Some recent
scholars have published simulation data that question the utility of model fit indices
for the purposes of factor retention, however (Auerswald & Moshagen, 2019;
Montoya & Edwards, 2021).

Factor Forest

Recently, a new simulation- and machine learning-based approach for factor reten-
tion has been developed by Goretzko and Bühner (2020). The basic idea of the factor
forest is to simulate data under all important data conditions of an application context
(i.e., considering common sample sizes, realistic ranges for the number of latent
factors and the number of manifest indicators, common loading patterns and com-
munalities, etc.) and then to extract specific data characteristics for each simulated
data set (e.g., eigenvalues and matrix norms of the correlation matrix). These data
characteristics, and the known number of latent factors (the true dimensionality is
known since the data are simulated), are then treated as input (independent variables)
and target variables (dependent variable or criterion) of a machine learning model
that “learns” how the data characteristics and the number of factors are interlinked.
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The trained model is then able to predict the number of factors given the observed
data characteristics of an empirical data set. As this procedure is computationally
very costly, Goretzko and Bühner (2020) provide a pre-trained model that was
trained on nearly 500,000 data sets based on multivariate normality and between
one and eight latent factors; the trained model and the analysis scripts can be
retrieved from an OSF repository – https://osf.io/mvrau/ or from our repository
with a simplified R script – https://osf.io/srv8e/).

Comparison of Factor-Retention Criteria

Although the Kaiser–Guttman rule, the scree test, and PA are the most popular
methods to determine the number of factors (Goretzko et al., 2021), simulation studies
suggest that only the latter provides comparably good estimates, and the other methods
are often not able to retain the correct number of factors (Auerswald & Moshagen,
2019; Fabrigar et al., 1999; Goretzko et al., 2021; Schmitt et al., 2018). Therefore, PA
is seen as the “gold standard” of factor retention (e.g., Braeken & van Assen, 2017;
Schmitt et al., 2018); this may also be explained by its relative robustness against
distributional assumptions (Dinno, 2009). However, some modern alternatives (e.g.,
the CD method, EKC, or hull method) have shown advantages over PA in some data
conditions (Braeken & van Assen, 2017; Lorenzo-Seva et al., 2011; Ruscio & Roche,
2012). This is why several authors agree on consulting more than one factor-retention
criterion (Fabrigar et al., 1999; Goretzko et al., 2021) or using combination rules (e.g.,
Auerswald &Moshagen, 2019). The pre-trained factor forest model showed very high
accuracy in Goretzko and Bühner’s (2020) study and may be a more convenient
alternative for practitioners as it internally weighs different methods (PA, EKC, CD).
As mentioned earlier, the use of model fit indices in factor retention is less defensible
(Auerswald & Moshagen, 2019; Montoya & Edwards, 2021). Ultimately, searching
for a perfect factor solution in a myriad of available criteria may sometimes be an
exercise in futility (e.g., Cattell, 1966). EFA users might, therefore, also consider (in
addition to the aforementioned objective recommendations) theoretical utility and
a strive towards parsimony in this venture (e.g., Schmitt et al., 2018).
The R packages psych and EFAtools provide functions for the most common

criteria (e.g., PA: psych::fa.parallel(efa_data, fm = “wls”) or CD: EFAtools::CD
(efa_data, n_factors_max = 8)). For our data example, we compared several factor-
retention criteria (see https://osf.io/srv8e/ for the full R code). The most reliable
methods (see, Auerswald & Moshagen, 2019; Goretzko and Bühner, 2020) – PA,
EKC, CD, MAP test, and the factor forest – suggested between five and six factors.
Since theoretical considerations (the BFSI claims to measure six facets of the
extraversion trait domain with ten items each) speak in favor of a six-factor solution,
we retained six latent variables.

Step 5: Factor Rotation

In EFA, all indicators are explained by the set of retained latent factors as dependent
variables in a linear regression system. The factor loadings (i.e., the regression
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parameters) are standardized and expressed in a correlation metric. However, in the
initial, unrotated solution, the matrix containing these loadings (factor–indicator correl-
ations) often does not adhere to a clean pattern andmakes the interpretation of the factor
solution quite difficult. For this reason, factor-rotation methods have been developed to
elucidate amore interpretable solution, the so-called simple structure (i.e., each indicator
loads high on its associated factor and low on all other factors – ideally all cross-loadings
are zero) – an idea that was originally presented by Thurstone (1947).More specifically,
when estimating the factor loadings and unique variances, the problem of rotation
indeterminacy arises (Mulaik, 2010). That is, the loading pattern or loading matrix is
only determined up to an arbitrary rotation, and, therefore, selecting an appropriate
rotation method solely depends on theoretical considerations and the interpretability of
the resulting factor solution. In other words, there is no data-drivenway to decide how to
rotate the factor solution (see also Browne, 2001; Goretzko et al., 2021).

Orthogonal vs. Oblique Rotation

To obtain such an interpretable solution, two different types of rotations can be
used – orthogonal and oblique rotation techniques. Historically, orthogonal rotation
methods, which yield uncorrelated factor solutions (all between-factor correlations
are constrained to be zero), have been applied more frequently. An advantage of
orthogonal or uncorrelated factors is that the respective constructs are clearly
distinguishable and that relations between them and third variables can be evaluated
independently from each other. However, this process might, in many instances,
distort the natural structure of the data when constructs are indeed correlated.
Accordingly, oblique rotations, allowing factors to correlate, may be a more appro-
priate assumption for most social and behavioral research phenomena.

Varimax

The most popular orthogonal rotation method is called varimax (Kaiser, 1958). As the
name suggests, the varimax criterion rotates the initial factor solution in a way that
maximizes the variance of the squared loadings by columns (i.e., the variance of the
squared loadings is maximized for each factor). Hence, this rotation yields rather
extreme loadings (either high loadings or very small loadings on each factor).

Quartimax and Equamax

Quartimax is another member of the orthomax family of criteria (Harman, 1976),
which includes several orthogonal rotation techniques (e.g., inter alia varimax).
Contrary to varimax, it focuses on the row-wise complexity and favors patterns for
which each variable has as many zero-loadings as possible. This process leads to an
insensitivity to a strong first factor; this is why quartimax often yields a general factor
(or a strong first factor and smaller or more trivial second and third factors, etc.).
Equamax (see, for example, Kaiser, 1974) is a combination of varimax and quarti-
max criteria that tries to minimize the number of large loadings per factor and the
number of large loadings per variable at the same time.
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Promax

One of the most prominent oblique rotation methods is promax (Hendrickson &
White, 1964) – a two-stage method that first applies an orthogonal rotation (e.g.,
varimax) and then subsequently performs the actual oblique rotation. In this process,
larger loadings are enhanced compared to smaller loadings by matching the factor
loading pattern as closely as possible to an exponentiated version of itself. Usually,
the orthogonal loadings are raised to the power of four (e.g., the default setting in the
psych package in R; see also the discussion of Hendrickson & White, 1964 on why
four was chosen as the default setting for promax), but the exponent can be changed
depending on theoretical considerations. It is important to note that a larger exponent
will result in larger between-factor correlations.

Oblimin (Family)

Another oblique rotation method that is frequently used in psychological research is
called oblimin (Clarkson & Jennrich, 1988). Strictly speaking, it is a family of oblimin
methods that includes different rotation techniques, such as quartimin (the oblique
generalization of quartimax) or covarimin (the oblique generalization of varimax) as
special cases (Clarkson & Jennrich, 1988). A parameter (often named δ [in SPSS] or γ
[in R]), which controls the “obliqueness” of the rotated factor solution, determines
which rotation of the oblimin family is applied. Jennrich (1979) demonstrated that
positive parameter values can be inadmissible when performing oblique rotation; this
is why the default value in statistical programs like SPSS and R (we refer to the psych
package and the GPArotation package) is zero and corresponds to the quartimin
criterion. Quartimin rotation yields a more oblique solution as it minimizes the
row-wise complexity by introducing higher inter-factor correlations; decreasing the
parameter value (selecting a more negative value) yields a less oblique or more
orthogonal solution. Oblimin is selected as the default rotation method in psych.

Geomin

Geomin (Yates, 1987) is a newer oblique rotation technique (there is an orthogonal
version as well, e.g., Browne, 2001) that minimizes an objective function based on
row-wise geometric means of the squared factor loadings. Thus, geomin focuses on
row-wise complexity (i.e., it tries to minimize the number of factors that are needed
to explain the variance of each indicator variable). Geomin is the default rotation in
Mplus and shows comparably good results when little is known about the true
loading pattern (Asparouhov & Muthén, 2009).

Crawford–Ferguson Family

Crawford and Ferguson (1970) presented a general objective function or rotation
criterion that is a weighted sum of row and column complexity. Several well-known
rotation techniques can be integrated in their general framework. In fact, the
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Crawford–Ferguson (CF) family is equivalent to the orthomax family in the orthog-
onal case (Crawford & Ferguson, 1970) but yield different results when oblique
rotations are considered (Browne, 2001). As a counterpart of quartimax (focus on
row-wise complexity), Crawford and Ferguson (1970) introduced CF–facparsim that
aims at factor parsimony (focus on column-wise complexity) and, therefore, tries to
minimize the number of variables that load on each factor.

Comparison of Rotation Methods

In current research, many EFA users rely on varimax criteron for orthogonal rotation
as well as on promax and oblimin/quartimin criteria for oblique rotation (Fabrigar
et al., 1999; Goretzko et al., 2021). As pointed out earlier, there is no “correct”way of
rotating the initial factor solution. However, many researchers recommend oblique
rotation techniques since ruling out between-factor correlations in advance seems to
be less plausible in social and behavioral science research (Conway&Huffcutt 2003;
Fabrigar et al. 1999; Goretzko et al., 2021).
There are very few recommendations when it comes to choosing an oblique

rotation method, though. Simulation studies (e.g., Sass and Schmitt, 2010) suggest
that researchers should rely on CF–equamax or CF–facparsim when they expect
factor loading patterns with high complexity (i.e., several substantial cross-
loadings), whereas geomin or CF–quartimin seem to be more appropriate when
patterns closer to simple structure can be assumed. Browne (2001) advocates for
trying out different rotation methods (ideally on different subsamples if the data set is
large enough for splitting) and to compare the results with regard to stability (if more
than one subsample is used) and interpretability. He further suggests comparing
a member of the CF family (e.g., CF–equamax) and geomin.
In modern software solutions, a variety of these rotation methods are imple-

mented. The fa function of the psych package, for example, offers numerous
options that users can select via the “rotate” argument – psych::fa(efa_data,
nfactors = 6, fm = “wls”, rotate = “Promax”). For our data example (https://osf
.io/srv8e/), we also illustrated the two-step approach – first estimating all param-
eters for an unrotated solution and then applying a rotation method to increase
the interpretability of the factor solution. Comparing the results of orthogonal
varimax and oblique quartimin, inter-factor correlations seem to foster interpret-
ability for our exemplary data; in other words, it seems to be reasonable to
assume correlated facets, especially as all 60 items are considered to be indica-
tors of the same personality trait (extraversion).

Step 6: Interpretation

The final step in the EFA process is to provide a theoretical interpretation of the
solution. Because the analysis is, by definition, exploratory, the theoretical evalu-
ation comes last and is needed to provide meaning to the resulting structure. There
are three common vectors of information that EFA users consider in interpretation:
factor loadings, communalities, and factor correlations.
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Factor Loadings

The first consideration is the factor loadings; these represent the relationship between
the latent factor and an indicator and, more specifically, the degree of variance that the
factor accounts for in the indicator. Considering the initial, unrotated factor solution,
squared factor loading represents the explained variance in the indicator. The pattern of
factor loadings is used to provide meaning to the latent factors in EFA. The indicators
with the largest andmost distinct loadings are typically considered in the interpretation
of the theoretical underpinnings of the latent variable.
There is no universally agreed upon threshold for what constitutes a sufficiently

large factor loading for it to be considered meaningful. In psychology, and specific-
ally evaluation of psychological tests at the item level, approximately 0.30–0.40
tends to be considered the lower bound for a meaningful loading; 0.50+ is considered
large and substantial (e.g., Gorsuch, 1983). Furthermore, factors that are defined by
many cross-loadings (or solely defined by them) are usually not meaningful and
signal to the EFA user that too many factors have been extracted or some indicators
are poor. A more extreme manifestation of this phenomenon is a “bloated specific”
factor (Cattell & Tsujioka, 1964), with one or two very large loadings of indicators
on one factor when a broader group of the similar variables are already represented
in the remainder of the factor solution. Finally, indicators that have large loadings
on more than one factor, unless theoretically indicated as representing variables
with clear multiple causes identified in the factor solution (e.g., interstitial vari-
ables; see Krueger, 2013, for an example discussion in the personality literature),
should also be candidates for elimination as poorly functioning variables (e.g.,
Brown, 2014).

Communalities

The second consideration on the overall evaluation of a factor solution is the
communalities. A communality (h2) is the total proportion of variance explained in
an indicator by all retained factors, whereas 1 – h2 is the residual – the proportion of
the systematic and unsystematic variance that is unique to the indicator. High
communalities typically mean that the factor solution can account for most of the
systematic variance in the indicators, whereas low communalities might reflect that
the indicators are of lesser importance to the structure being evaluated – these should
be considered for removal from the analysis (e.g., Brown, 2014) unless counter-
indicated for theoretical reasons (e.g., reduces critical content coverage).

Factor Correlations

As for the final consideration, factor correlations indicate the degree of overlap
between the latent factors that have been extracted in the EFA and rotated with an
oblique method. These correlations should also be interpreted with theory in mind
as there are no thresholds for what constitutes a meaningful correlation. If the
emerging latent constructs in an EFA are conceptually expected to be relatively
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distinct (e.g., positive and negative emotions), smaller correlations are expected. On
the other hand, if the constructs are conceptually expected to converge (e.g., impul-
sivity and risk taking), larger correlations are expected. Extremely high correlations
(e.g., 0.80–0.90+) likely reflect significant redundancies in latent constructs and
point towards a factor solution with a smaller number of factors.
In our data example, we found that individual items predominantly loaded mean-

ingfully and relatively distinctly onto six latent factors reflecting warmth, gregari-
ousness, assertiveness, drive, adventurousness, and cheerfulness. The latent
factors were intercorrelated, as expected, but also distinct (all inter-factor correlations
rs < 0.47 when applying quartimin rotation). Communality estimates also indicated
that a meaningful proportion of variance was captured in each of the items, with only
one exception. Overall, this structure was consistent with theoretical expectations
associated with the extraversion trait domain.

Conclusion

This chapter has provided an introduction to the basics of applied EFA. Our
goal was to review foundations for and steps associated with conducting an EFA in
research. Specifically, we carefully considered each EFA step and described various
considerations of which the EFA user should be mindful, including the fact that
numerous options and, therefore, researcher degrees of freedom exist for each of
these steps. Users should also be aware that many choices they have to make are not
only of statistical nature but highly depend on the research questions being
addressed, theoretical considerations in general, and the nature of the measured
indicators. We believe that EFA is a powerful statistical method for the exploration
of higher-order structure, but it is not straightforward and requires many decisions,
with the incorrect ones possibly yielding biased results. We hope this guide will
therefore be useful to the reader as they choose to apply this method in their research.
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