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ABSTRACT 
Observing a child’s interaction with their parents can provide us 
with important information about the child’s cognitive develop-
ment. Nonverbal cues such as joint attention and mutual gaze can 
indicate a child’s engagement, and have diagnostic value. Since 
manual coding of gaze events during child-parent interactions is 
time-consuming and error-prone, there is a need for automatic as-
sessment tools, capable of working with camera recordings without 
specialized eye-tracking equipment. There are few studies in this 
setting, and accessing naturalistic parent-child videos is difcult. In 
this paper, we investigate the feasibility of detecting joint attention 
and mutual gaze in videos. We test approach on challenging data of 
a child and a parent engaged in free play. By combining multiple of-
the-shelf approaches, we manage to create a system that does not 
require much labeling and is fexible to use for view-independent 
interaction analysis. 

CCS CONCEPTS 
• Computing methodologies → Activity recognition and un-
derstanding; • Information systems → Video search; • Applied 
computing → Psychology. 
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1 INTRODUCTION 
The physical interaction between children and their parents has a 
signifcant impact on a child’s development and well-being [9]. Pos-
itive interactions between parents and their children can improve 
children’s self-esteem and social skills [11, 27], as well as children’s 
academic achievement and cognitive development [22]. Manual 
assessment of such interactions by experts can provide in-depth 
insights and indicators about the child’s development. However, 
it requires signifcant time and human resources, and subjective 
biases of researchers may afect the results. There is a need for 
accurate and scalable approaches to support the experts. 

There are a number of cues that are relevant for such analysis, 
including mutual gaze, joint attention, touching and body position-
ing, afective cues such as vocalizations and facial expressions. In 
this paper, we propose an automatic approach to determine mu-
tual gaze and joint attention during child-parent interactions (see 
Figure 1). Joint attention refers to the shared focus of attention 
between two individuals on an object or event, and has been shown 
to play a crucial role in children’s language development and social 
skills [35]. Mutual gaze refers to the visual exchange between two 
individuals, where they both look at each other’s faces. It has been 
linked to a range of positive outcomes in children such as increased 
social competence and empathy [15]. Dynamics of mutual gaze and 
joint attention can refect the quality of the relationship between 
parents and children, and provide diagnostics on developmental 
problems, such as Autism Spectrum Disorders [17]. 

Figure 1: Joint attention (left) and mutual gaze (right) 

Dedicated eye tracking systems are typically employed for atten-
tion studies, but such equipment may not be available in all settings 
or in legacy datasets. Furthermore, wearable eye trackers reduce the 
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Mutual gaze
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Figure 2: Conceptual overview of our approach. Based on 
the estimated visual focus of attention of parent and child, 
we estimate their mutual gaze and joint attention over the 
entire interaction. Stills are from an interaction not used in 
this study. Permission for reproduction granted. 

ecological validity of the interactions. In this paper, we therefore 
focus on freely recorded interaction videos, as this is an unobtrusive 
way of observation. We propose a novel approach that works in 
free parent-child play settings to estimate mutual gaze and joint 
attention. By leveraging of-the-shelf machine learning algorithms, 
our approach enables large-scale studies that are more accessible 
and cost-efective than traditional eye-tracking methods1. 

The remainder of the paper is organized as follows. We discuss 
related work on detection of nonverbal cues in parent-child interac-
tions, as well as on gaze attention estimation in Section 2. Details of 
our method are introduced in Section 3. In Section 4, the video data 
and annotations are described. Section 5 contains our experimental 
results and discussion. We conclude in Section 6. 

2 RELATED WORK 
Researchers have used both manual and automated methods to 
analyze parent-child interactions. Manual methods include cod-
ing schemes, observational techniques, and self-report measures. 
Coding schemes are based on various behavioral categories, which 
can include warmth, control, negativity, positive afect, negative 
afect, and communication patterns [1, 7, 18]. Observational tech-
niques systematically observe parent-child interactions and doc-
ument diferent aspects of the interaction, such as gaze direction, 
facial expressions, body language, and tone of voice. They are often 
used to capture the emotional tone of parent-child interactions and 
how parents and children interact with each other under various 
circumstances [10, 21]. Self-report measures involve collecting data 
directly from parents and children about their perceptions of their 
relationships and interactions. For example, questionnaires have 
been used to assess parental warmth or control [33]. 

1Our code is open source: https://github.com/Chelseapt/Joint-Attention-and-Mutual-
Gaze-in-Free-Play. 

2.1 Nonverbal cues for parent-child interaction 
Automatic coding methods are used to analyze both verbal and 
nonverbal components of human interactions, with the latter being 
especially important during infancy and toddlerhood, as they play 
a critical role in facilitating parent-child interactions during early 
stages of development [8, 13, 26]. Vocal behavior, face expression, 
body activity, proxemics, physical appearance, eye gaze, and visual 
focus of attention have been widely investigated. 

Facial expressions have been analyzed using computer vision, but 
infant faces are diferent compared to adults, and methods trained 
with adults perform poorly on infant facial expression recogni-
tion tasks [29]. Similarly, pose detection and body activity analysis 
needs to be adopted for infants. Body activity refers to physical 
movements and gestures. Body gestures and head movements can 
help understand the interaction styles between parents and chil-
dren, and thus provide insights into their relationship dynamics [2]. 
Proxemics refers to the physical distance between individuals dur-
ing the interaction. Avril et al. [3] used skeletal tracking to monitor 
the proximity between an interacting parent and child seated at 
a table. Physical appearance refers to the observable visual traits 
of an individual that are present during social interactions, such 
as height, weight, body shape, skin/hair color, clothing style, and 
the use of makeup or accessories. The appearance of individuals 
and contextual objects can be used to distinguish between various 
types of social relationships Liu et al. [20]. Vocal behavior refers 
to all aspects of speech, such as the use of vocalizations like fllers, 
laughter, and sobbing, as well as pauses and turn-taking in conver-
sation. Nguyen et al. [28] used Bayesian meta-analysis method to 
analyze the development of turn-taking in adult-child vocal inter-
actions. As it can be seen from this brief overview, there are plenty 
of non-verbal cues for interaction analysis. In this paper, we focus 
on two gaze-related indicators. 

2.2 Gaze attention estimation 
Eye gaze and visual focus of attention (VFOA) refer to the direction 
of individuals’ gaze during the interaction. Analyzing gaze behavior 
can help understand social dynamics in parent-child interactions 
and reveal individual diferences [12]. 

Head pose estimation is important for gaze estimation in free 
settings, but we will not focus on this task here. Liu et al. [20] pro-
vides a comprehensive overview of diferent head pose estimation 
techniques, including their advantages and limitations. Piccardi 
et al. [32] previously analysed an infant’s gaze patterns for the 
focus of attention, using a wearable camera. This decouples the 
gaze estimation from head pose estimation, but wearable cameras 
are difcult to use, and can cause ecological validity issues. 

Zhang et al. [39] provides a list of recent databases for gaze esti-
mation, but these are all focused on frontal face-based estimation, 
which is a common scenario in human-computer interaction, where 
a person is facing a screen. An example system that works in such 
a setting is EyeShopper [5], which is designed to track shoppers’ 
gaze in surveillance systems. Kodama et al. [14] employed two 
non-overlapping cameras fxed on opposite sides of an audience to 
identify the target of attention for multiple individuals. 

A technique for estimating and tracking visual focus of attention 
during multi-party social interactions is proposed in Massé et al. 
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[25]. The method uses head movements and Bayesian state-space 
modeling to infer VFOA and gaze, suggesting potential applications 
in situations where conventional eye-tracking techniques may not 
be practical. However, our experimental setting presents a more 
challenging task in which individuals can move around freely. Their 
eyes are also not always visible, so we cannot rely on precise esti-
mation of the gaze target. As a potential solution, Chong et al. [6] 
recently presented an approach for tracking individuals’ VFOA (in 
images) without explicitly relying on eye gaze, which is adopted 
here for estimating attention distribution. The method works even 
when the target is beyond the frame boundaries, and produces a 
heat map of VFOA estimations. 

For detecting and localizing joint attention, Sumer et al. [34] 
proposed a novel method called attention fow, which does not 
require the use of face detectors or head pose/gaze estimators and 
is based solely on the raw input image. Their data comes from TV 
programs, which may not represent real-world social scenes. 

Yücel et al. [37] analyzed the focus of attention of adults from 
frontal videos in a limited interaction setting, where joint attention 
is established with a robot on an object of interest. Because the video 
resolution in their setting was too low to track the eyes accurately 
-which is a common problem- they have used head pose estimation 
to interpolate the gaze, using a bottom-up computational model to 
fnd salient objects in the estimated gaze cone. If the object of focus 
can be determined for both participants of a dyadic interaction, joint 
attention can be established. Kwon et al. [16] proposed a method 
for inferring a common focus of attention based on visual (object 
and face detection) and linguistic clues. While our work shares 
similarities with this approach, our application domain is more 
challenging as people could move around freely. Moreover, we limit 
the analysis to only visual cues, as speech capibilities of the infants 
in our study are just developing. 

Mutual gaze is of particular interest when studying interactions. 
In an early work on social interactions, Ba and Odobez [4] detected 
mutual gaze based on head pose in meeting scenarios. More recent 
approaches with similar goals use deep neural networks that take 
detected and cropped head images as input [23, 24]. Zhang et al. 
[38] also considered a meeting scenario and used OpenFace and 
gaze inputs to detect whom of the other participants was looked 
at. When working with video data, the temporal duration of the 
interaction and spatial localization of the relevant individuals is a 
factor that can be helpful. Palmero et al. [31] focused on identifying 
mutual gaze occurrences in face-to-face dyadic interactions using 
two calibrated monocular RGB cameras, but, similarly to [4, 38], 
cameras are placed in front of each participant, which is a more 
restrictive setting than our free play application scenario. 

3 METHODOLOGY 

3.1 Overview of our approach 
Our approach is schematically visualized in Figure 3. Based on a 
video of a scene in which the interaction takes place, we detect the 
heads of the parent and child, and the objects in the scene. Heat 
maps of likely 2D gaze locations in the image are obtained from a 
video frame and corresponding head detection of both the parent 
and the child. Based on the heat maps, we calculate likelihood scores 
for the detected head and object regions. By combining these scores 

for the parent and child, we produce a fnal binary classifcation for 
both joint attention and mutual gaze. The only step that requires 
training in our current setup is object detection; of-the-shelf models 
are used for other modules. 

3.2 Head tracking 
We perform head detection on both parents and children, followed 
by head tracking. We employ LAEO-Net [23], which uses a head 
detector trained as Single Shot Multi-box Detector (SSD, [19]). The 
head detector was designed to detect the entirety of the head, not 
just the face, which is more robust with cases where the face is 
turned away from the camera, and has fewer missed detections 
compared to face detection. 

We use DeepSort [36] to track and consistently link the head 
detections to the parent or the child. DeepSort associates detec-
tions with existing tracks through a combination of position and 
appearance information. We use the trained model that was pro-
vided by the authors for a pedestrian tracking scenario, without 
making adjustments to the appearance term. As a result, DeepSort 
occasionally adds new tracks instead of prolonging existing ones. 
This typically happens when changes in the appearance of the head 
region are signifcant during quick changes in the head orientation, 
or when head occlusions occur. To perform detailed evaluations, 
we provide manual annotation for the tracks as coming from the 
parent or the child. This tracking can be automated relatively easily, 
for example by relying on the substantial signifcant age diference 
between our subjects or diferences in facial identity. 

Finally, we interpolate the missing head detections. Since we 
operate within an free-play setting, occlusions and turned heads 
will lead to missed head detections. Especially for children, more 
erratic head movements occasionally lead to detection or tracking 
failures. The vast majority of such gaps are short in duration, and 
the location diferences before and after the gap are modest. We 
linearly interpolate gaps less than two seconds (corresponding to 
50 or 60 frames in diferent videos) and with a Euclidean distance 
between the head detection centers of less than 45 pixels (with 
frames of 960 × 540 pixels). 

3.3 Object detection 
In this study, we are interested in joint attention to any of the toys 
that are present in the scene. To this end, we employ object detection 
to locate these toys. We consider 12 object categories, summarized 
in Table 2. The top part of the table contains independent toys; the 
objects in the lower part of the table are parts of a shape box that 
can be independently manipulated. Typically, objects in the latter 
category are smaller and are less often visible as they are frequently 
inside the shape box. Since the toys are specifc for our scene, we 
train object detectors for each class. We use YoloV52 as our convo-
lutional neural network (CNN) object detection model. YoloV5 is 
widely used and it shows competitive performance without com-
plex parameter tuning during the training process. Specifcally, we 
use the default training parameters with SGD optimization with a 
weight decay of 0.01 and a momentum of 0.937. 

2Online available at: https://github.com/ultralytics/yolov5 
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Figure 3: Schematic overview of our approach: heads and objects are detected frst. Heat maps for 2D gaze attention are estimated 
from a frame and the head regions using [6]. We then calculate the visual focus of attention by considering the heat map values 
for each region of interest. Finally, we combine the outcomes of parent and child to classify whether there is mutual gaze or 
joint attention to an object. 

3.4 Joint attention and mutual gaze estimation 
As a frst step to assess joint attention or mutual gaze between 
parent and child, we examine where either is looking at. We obtain 
heat maps of the gaze attention for the parent and the child indepen-
dently, using the method presented in [6]. When provided with an 
image frame and the region of the head, the algorithm determines 
the likelihood that a 2D location in the frame is attended to. Since 
depth information is lost, particular attention is paid to salient re-
gions, building on the assumption that we tend to attend to objects. 
At the core of this method is a spatio-temporal model based on a 
CNN, consisting of two main components: a head feature extractor 
and a scene feature extractor, respectively. 

The head feature extractor extracts facial regions from video 
frames and generates feature vectors related to the head. To take 
advantage of the temporal continuity in head movement when 
analyzing videos, we use our interpolated head regions instead of 
the head detection in [6]. The scene feature extractor extracts scene 
regions from video frames and generates feature vectors related 
to the gaze. The outputs of these two components are fed into a 
multi-layer perceptron (MLP) to predict where a person is looking 
in each frame. The output of this process is a gaze likelihood heat 
map. 

Since we are interested in the visual focus of attention, we com-
bine the heat map with the regions of the objects and the other’s 
head. To this end, we combine the heat map values within each 
region. We average the heat map values within the region to cal-
culate the VFOA value: VFOA��� . To determine whether a region 
containing a head or toy is attended to, we apply a threshold on the 
VFOA values. For VFOA��� , we empirically determined a threshold 
of 80 on the normalized heat maps produced from [6]. 

By fnally combining the VFOA of both parent and child, we 
obtain a binary indication of mutual gaze and joint attention. For 
mutual gaze, the parent should look at the child, and vice versa. 
Joint attention at a toy requires that both parent and child look at it, 
determined by the VFOA classifcation. For each object that we con-
sider, we calculate the joint attention. We adopt a multiple-attention 
strategy. During manual annotation and automated detection, we 

allow parents or children to attend to several targets simultaneously. 
We choose this strategy since it proved to be difcult to confdently 
identify one target when other toys were close. For joint attention, 
our output is therefore a vector of binary indicators for each object. 

Note that the processing of the parent’s and child’s VFOA to clas-
sify joint attention and mutual gaze is identical. Strictly speaking, 
we therefore do not need to know which head belongs to the parent 
and which to the child. It’s only for reporting the performance 
separately here that we distinguish between the two. 

4 DATA COLLECTION AND ANNOTATION 

4.1 Video data description 
For analyses, we use parent-child interaction videos from the YOUth 
Cohort study [30], which are freely available to researchers after 
an ethical approval process3. In each video, a parent and a child of 
approximately 10 months old play together with toys of diferent 
sizes in the playground. Parent occasionally introduce a new toy, 
but the interactions are relatively unstructured, as the use of specifc 
toys is not required, and show signifcant variation in play. 

Recordings in the YOUth Cohort are currently still ongoing. 
Each interaction is recorded from four cameras, but we restrict our 
analyses to a single overhead view, see Figure 2. We selected 20 
interactions from a pool of videos that have been recorded with the 
highest spatial resolution (i.e., 960 × 540 pixels). The total length 
of 20 videos is around 250 minutes. In 18 videos, the parent is the 
mother. In the remaining 2 videos, the father plays with the child. 

We have temporally segmented the videos to start when the 
experimenter left the scene, and stopped our analyses when the 
experimenter returned. The part of the interaction that we analyze 
is approximately 12–13 minutes per video. For the manual anno-
tations, we select a frame every 10 seconds. In total, our analyses 
cover 1522 frames of which 1486 contain two heads. 

3More information at: https://www.uu.nl/en/research/youth-cohort-study 
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Table 1: Number of head annotations and detections with 
either child or parent, or both. Agreement is the number of 
frames in which manual annotation and interpolated detec-
tion overlap. 

Type Manual Detected Agreement 

Both 1486 1026 990 
Child only 2 31 2 
Parent only 20 413 3 

4.2 Annotation and detection of heads 
We provide detailed manual annotations to compare automatic and 
manual estimation approaches, as well as to assess accuracy. For 
the manual annotation of the heads of parent and child, we used the 
DarkLabel 2.4 annotation tool4, which allows for drawing bounding 
boxes for a number of pre-specifed classes. We distinguished be-
tween the head of the parent and the head of the child, to facilitate 
subsequent analyses for each. A single coder annotated all heads, 
and a second coder verifed the annotations. 

For the automated detection, we used [23] and interpolated miss-
ing frames. Interpolation increased parents’ head frames by 2.57% 
and children’s head frames by 15.14%. The total number of manually 
annotated and automatically detected frames are given in Table 1. 
The automated detection misses a number of heads and occasion-
ally generates false positives. From the table, it can be observed 
that the majority of the missed head detections are from the child. 

Table 2: Number of object annotations and detections. Agree-
ment is the number of frames in which manual annotation 
and interpolated detection overlap. Percentage is relative to 
the manual annotations. 

Type Manual Detected Agreement 

Car 
Doll 
Switch box 
Flower 
Book 
Baby bottle 

1182 
1173 
1126 
988 
507 
203 

1154 
1034 
1080 
841 
438 
59 

1124 (95.09%) 
996 (84.91%) 
1053 (93.52%) 
770 (77.94%) 
363 (71.60%) 
37 (18.23%) 

Shape box 
Green star 
Yellow cylinder 
Blue cube 
Red triangle 
Shape box lid 

700 
234 
246 
188 
562 
583 

646 
167 
139 
110 
228 
248 

618 (88.29%) 
143 (61.11%) 
101 (41.06%) 
78 (41.49%) 
188 (33.45%) 
126 (21.61%) 

4.3 Annotation and detection of objects 
We annotated all the toys in the 1522 frames used in this study. A 
single coder made the annotations, which were checked by a second 
coder. To train the YoloV5 model for toy detection, we annotated a 
non-overlapping set of 10 videos in the same interaction setting and 

4Online available at: https://github.com/darkpgmr/DarkLabel 

with the same resolution. Our training set consisted of 3K training 
and 1.5K test images. 

A summary of the manually labeled and automatically detected 
toys appears in Table 2. We consider a manual and detected region 
to be in agreement if they have the same label and their Intersection 
over Union (IoU) overlap is at least 0.5. 

The agreement is generally high for the larger objects but is sig-
nifcantly lower for smaller shapes in the shape box and for the baby 
bottle. This efect is partly due to the difculty in detecting partly 
occluded small objects, and partly because inaccurate localization 
has a larger efect on the IoU for smaller objects. 

4.4 Annotation of the visual focus of attention 
Two coders independently annotated mutual gaze and joint atten-
tion to specifc toys. In each frame, multiple VFOA annotations 
per person could be made, for example when toys were in close 
proximity or when a person attended to a larger area. Because the 
VFOA annotations are based on the head and object detections, the 
number of targets is the same for both coders. Moreover, a VFOA 
annotation per target is binary. We can therefore calculate the agree-
ment between the two coders as the percentage of matching VFOA 
labels per frame, averaged over all frames. For joint attention and 
mutual gaze, the inter-annotator agreement (Cohen’s kappa) are 
82.93% and 73.51%, respectively. 

Car Doll

Switc
h 

bo
x

Flow
er

Sha
pe

 b
ox

Boo
k

Bab
y b

ot
tle

Red
 tr

ian
gle

Blue
 cu

be

Yell
ow

 cy
lin

de
r

Gre
en

 st
ar

Sha
pe

 b
ox

 lid
Hea

d
0

5%

10%

15%

20%

25%

30%

Parent
Child

Figure 4: Percentage of time attending to each object and 
head. Percentages from Coder 1 for parent (blue) and child 
(orange). 

Since the annotations of the two coders are largely similar, we 
focus on Coder 1 in this section. The percentage of frames with 
mutual gaze is 1.46%. This is a relatively low number but it can be 
understood by observing the percentage of time that parent and 
child spend looking at each other. In Figure 4, it becomes clear that 
parents look at their child in 26.33% of the time, whereas children 
only look at their parents 2.35% of the time. From Figure 4, no large 
diferences in the VFOA for diferent toys are observed. 
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Table 3: Joint attention and mutual gaze evaluation results (%) for combinations of labeled/detected heads/objects and baselines. 
C1/C2: Coders 1 and 2. GT: ground truth, manually labeled. D: automatically detected. 

Joint attention 

C1 C2 Average 
Heads Objects Recall Precision F1 score Recall Precision F1 score F1 score 
GT GT 63.52 38.92 46.57 63.65 35.84 44.13 45.35 
Baseline_GT 50/50 26.27 14.52 16.77 26.86 13.44 15.92 16.35 
Baseline_GT Prior 0.72 5.95 1.24 0.79 5.91 1.36 1.30 
GT D 45.11 44.15 41.99 44.17 40.79 39.74 40.87 
D GT 46.18 38.41 40.27 47.46 36.24 39.27 39.77 
D D 30.42 40.31 33.25 31.19 39.41 33.24 33.25 
Baseline_D 50/50 10.32 13.06 10.20 10.52 12.32 10.11 10.16 
Baseline_D Prior 0.29 4.80 0.74 0.33 4.73 0.76 0.75 

Mutual gaze 
C1 C2 Average 

Heads Recall Precision F1 score Recall Precision F1 score F1 score 
GT 25.00 4.00 6.90 11.54 2.40 3.97 5.44 
Baseline_GT 50/50 30.00 1.68 3.18 34.62 2.52 4.70 3.94 
D 20.00 4.00 6.67 11.54 3.00 4.76 5.72 
Baseline_D 50/50 20.00 1.56 2.89 15.38 1.56 2.83 2.86 

5 EXPERIMENT AND RESULTS 
In this section, we discuss our baselines and metrics, followed by 
the results for joint attention (Section 5.1) and mutual gaze (Sec-
tion 5.2). A discussion appears in Section 5.3 and we present quali-
tative results (Section 5.4) and an analysis at the level of the entire 
interaction (Section 5.5), to further understand the potential of our 
approach. 

Baselines. We are predicting the visual focus of attention for 
each object and head, from both the child and the parent perspective. 
This corresponds to a series of binary decisions. We conducted two 
types of baseline experiments for comparison. The frst was based 
on a 50% probability of visual focus of attention to a given target 
(50/50). Since there are many potential targets, this naive baseline 
will be a signifcant over-representation of the actual amount of 
VFOA. To this end, we use a second baseline using a prior (Prior), 
incorporating prior knowledge about the proportion of diferent 
objects and heads viewed from the parent’s and the child’s perspec-
tives, respectively. 

We divided each baseline experiment into two groups based on 
the diferent input data: manually provided ground truth annota-
tions (GT) and automated detections (D). For the manual annota-
tions (GT), more heads and objects are available. Consequently, 
we expect higher recall rates compared to the baseline based on 
automated detections (D). 

It’s important to note that the results from the prior baseline ex-
periments were quite poor due to low probabilities of actual VFOA. 
For mutual gaze, the results of the prior baseline becomes zero so 
we don’t report it. Therefore, in subsequent comparisons, we only 
compare our results with the random baseline. For completeness, 
we report the evaluation metrics to both coders individually, as 
well as the average over both. 

Metrics. We utilized recall, precision, and F1 scores as our eval-
uation metrics. For joint attention, we calculated these metrics 
individually for each of the 12 objects, obtained from a coder and 
from automatically processing with our approach. Then, we aver-
aged the results across all 12 objects to obtain an overall measure of 
joint attention performance For each frame, we only consider the 
objects that were actually annotated, since the set of visible objects 
is possibly diferent. Moreover, diferent numbers of objects can 
be attended to by each person. F1 scores proved to be efective in 
handling the issue of sample imbalance, providing a comprehensive 
objective measure of performance. Regarding mutual gaze, we had 
a single binary output. Therefore, by iterating through all frames, 
we directly obtained the results for recall, precision, and F1 scores. 

5.1 Joint attention 
Results for joint attention are given in Table 3 (top part). Our ap-
proach was evaluated using manually annotated (GT) heads and 
objects, yielding an average F1 score for joint attention classif-
cation of 45.35%. The diference between the VFOA annotations 
of Coder 1 and Coder 2 is also minimal. Although the results are 
not as high as we might have wished, we outperform the base-
line (Baseline_GT 50/50) at 16.35%. Compared to the baseline, we 
have achieved an improvement of 30% in F1 score, indicating that 
the adopted algorithm has a fairly efective performance in joint 
attention detection. 

When changing the manual labels to automated detections, we 
observe that the results are slightly more afected by the detection 
of heads than objects. When head detections are used together with 
manually annotated objects, the score decreases to 39.77%. This 
decrease is predominantly caused by the lack of two detected heads. 
In Table 1, we already observed that many heads, especially of 
the child, are not detected automatically. Consequently, we cannot 
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make joint attention classifcations. This is refected is the much 
lower recall. 

When we use manually labeled heads but automatically detected 
objects, the score compared to ground truth input decreases to 
40.87%. This decrease is caused by the missing detections. Still, the 
decrease is not dramatic, and mainly because both parent and child 
are predominantly looking at the larger objects, see Figure 4. These 
objects are also better detected (see Table 2). 

When applying our VFOA method using only automatically 
detected heads and objects, so using only automated detections, the 
score is lowest, at 33.15%. The missing heads and missing object 
detections both contribute to the missing VFOA detections, which 
consequently lower the detection of mutual attention. 

5.2 Mutual gaze 
We now proceed to the detection of mutual gaze, which is a binary 
classifcation task. Since our analysis is solely focused on heads, 
the presence of objects is not relevant. The F1 score when using 
manually annotated heads is 5.44%. This result might seem poor, 
which is largely due to the physical setting. When parent and child 
look at each other, typically they are facing each other. In this 
setting, at least one of the heads cannot be well observed. This has 
consequences for the estimated VFOA, as well as for the annotations. 
Upon inspection of the annotation, we found that both coders 
were conservative indicating VFOA when the face of the parent or 
child was not visible. Since this was true for both coders, the inter-
annotator agreement for mutual gaze was good at 73.51%. At the 
same time, this consequently lowers the precision for our approach 
because VFOA at the other’s face might have been classifed for 
heads that are signifcantly turned away from the camera view. Still, 
when compared to the baseline, which has an F1 score of 3.94%, our 
experimental results show an improvement in accuracy. The small 
percentage of actual mutual gaze complicated drawing stronger 
conclusions, as is also witnessed by the signifcantly diferent recall 
values between the two coders. 

Interestingly, when using detected heads as input, the score for 
mutual gaze actually increases. This is because in the case of using 
GT (ground truth) heads, there are more false positives compared 
to using D (detected) heads (heads not detected are recorded as no 
gaze attention), resulting in a slight overall accuracy increase of 
0.28%, bringing it to 5.72%. 

5.3 Discussion 
Overall, we see that a deterioration in the quantity (more than 
quality) of the detections causes the largest drop in VFOA detection, 
for both joint attention and mutual gaze. If one of the heads is not 
detected, it is not possible to obtain VFOA estimations. Missing 
object detections have a smaller efect, especially since the detection 
performance for the most common objects is relatively good. 

Several factors caused diferences between the results of our 
automated approach and the manually coded joint attention and 
mutual gaze. First, heads were sometimes turned away signifcantly, 
complicating the estimation of the gaze heat map. Second, some 
objects were barely visible, for example, due to occlusions by either 
a person or other toys. From the manual annotation, we could 
make out the presence of the object. But, in certain cases, the object 

appeared too small to be reliably detected. This often happened for 
the shapes in the shape box. If these are in a person’s hand, it’s 
very difcult to detect them automatically. Third, we used only a 
single view of a cluttered play area. From the perspective of the 
camera, toys would typically be overlapping, thus complicating the 
distinction between them. Finally, while the agreement between 
the two coders was high, it was not perfect. 

The results of joint attention and mutual gaze scores show a 
high variation between diferent videos, for which there are various 
reasons. First, each interaction has a diferent distribution of joint 
attention and mutual gaze, causing diferent baselines for both 
measures. Second, there is a signifcant diference in the seating 
arrangement. Both parent and child could be standing, crawling, 
or sitting. Not every situation allows for a good assessment of the 
visual focus of attention. Third, some videos showed more dynamic 
interactions, with more frequent switching of attention for diferent 
toys, the parent, and other targets in the environment. Especially 
when parent and child would observe an area with toys, rather 
than focusing on a specifc toy, we observed lower inter-annotator 
agreement and lower agreement with the automatically estimated 
VFOA. 

Mutual gaze

Joint attention

Mutual gaze

Joint attention

Figure 5: Joint attention (green) and mutual gaze (orange) dis-
tribution in two videos show the diferences across sessions. 

5.4 Qualitative analysis 
We have analyzed our VFOA detection approach on a collection of 
1522 frames from 20 videos. Our analyses have provided insights 
into the performance of diferent components. Here, we addition-
ally demonstrate how our approach can be used to understand the 
nature of parent-child interactions. To this end, we have selected 
two out of the 20 videos. We summarize the joint attention and 
mutual gaze annotated by Coder 1 for these videos over time in Fig-
ure 5. Similar visualizations could be produced based on automatic 
detections of heads and objects. These visualizations would have a 
higher temporal resolution but would be less accurate due to the 
missing detections. 

For the frst video in Figure 5 (top), we notice multiple periods 
of joint attention. In the frst period, the child is exploring the toys. 
In the second period, roughly halfway into the interaction, the 
parent and the child play with the shape box. In the fnal minutes 
of the interaction, the parent reads a soft book to the child. The 
joint attention is mainly on this book. There are also two periods 
in which there is mutual gaze. In the frst period, the parent holds 
up the toy and proposes how they could play with it. The second 
period is marked by the parent explaining that she will read a book. 

In the second video in Figure 5 (bottom), we didn’t observe 
any mutual gaze. The child is predominantly focused on the toys. 
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Similarly, the parent follows the actions of the child. We see roughly 
the same periods of increased joint attention as in the frst video. 
These correspond to the phases of initial exploration, playing with 
the shape box, and reading a book. 

Here, we didn’t distinguish between the joint attention for the 
various objects. Moreover, we didn’t look at the timing of the indi-
vidual visual focus of attention. We expect that a more fne-grained 
temporal analysis could reveal patterns of exploration. Moreover, 
we expect such analyses will allow for the investigation of leading 
and following, for example when a parent shows how a toy can be 
used. 

Figure 6: Correlation between the joint attention predictions 
based on ground truth head and object annotations, and the 
visual focus of attention annotations of Coder 1 (C1, in red) 
and Coder 2 (C2, in blue), respectively. Trendlines are super-
imposed. 

5.5 Whole-interaction analysis 
Finally, we explore the potential of our automated joint attention 
estimation at the level of an entire interaction. While predictions 
at the frame level can be inaccurate, when there is no systematic 
bias, these could be averaged out over an entire interaction and still 
yield accurate estimates of the overall amount of joint attention. 

To investigate whether our method can be used to predict joint 
attention over an entire interaction, we have aggregated the joint 
attention values over all objects and frames as the average number 
of objects that is attended to by both parent and child per frame. In 
Figure 6, we visualize these joint attention predictions in relation 
to the VFOA annotations of Coder 1 and Coder 2, respectively. 

We observe that the predictions follow the annotations. The 
Pearson correlation between the predictions and the annotations 
of both coders is (marginally) signifcant, respectively r(19) = 0.410, 
p = 0.051 and r(19) = 0.447, p = 0.037 for C1 and C2. 

The trendlines of the two coders are similar, with slightly higher 
VFOA scores for C1. The trendlines for C1 and C2, respectively, 
are 0.300 + 0.461� and 0.331 + 0.447� , with the � the annotated 
average number of objects per frame that receive joint attention. 
We observe that the correlation is mainly skewed by one interac-
tion with a relatively high predicted score (81.58%), whereas the 

averaged annotated VFOA of all objects is markedly lower with 
35.53% and 32.89% for C1 and C2, respectively. In this interaction, 
the father looks down in a signifcant part of the interaction. The 
attention heat map is more difuse due to the limited visibility of 
the face. Therefore, the object that the child interacts with typically 
is predicted as being looked at by the father. Instead, both coders 
have predominantly annotated gaze at the child’s face. 

The correlation between predictions and ground truth shows 
that our method might be suitable for screening of interactions that 
contain a lot or, conversely, little joint attention. As such, it can be 
a proxy to understand the quality or type of interaction. 

6 CONCLUSIONS 
In this paper, we propose an automatic method to detect joint 
attention and mutual gaze during free play parent-child interactions. 
Our approach combines head detection, object detection, and visual 
focus of attention classifcation. Our experiments are conducted on 
naturalistic parent-child videos, which do not require specialized 
eye-tracking equipment. We manually annotate and analyze 250 
minutes of interaction videos to evaluate our approach and compare 
our results with those obtained from automated face and object 
detection methods. Finally, we ofer qualitative insights into how 
continuously measured visual focus of attention can improve our 
understanding of parent-child interactions. Our approach requires 
minimal training and overcomes some of the challenges of fnding 
and annotating large amounts of interaction data. 

Our work also has some limitations. In terms of the setting, sig-
nifcant head movements make it difcult to precisely estimate the 
gaze heat map. Additionally, detecting small objects (like shapes 
within the shape box) is seen to be unreliable using automated 
methods. Regarding our approach, using a single-view camera in-
troduces difculties due to toys overlapping with each other. In 
future work, we plan to technically improve the VFOA prediction 
by including multiple viewpoints and actively take into account 
the confdence of the head detection in promoting the best view. 
In addition, we expect that leveraging temporal continuity will 
also aid in improving the predictions. Finally, we plan to combine 
the VFOA estimations with a notion of human action, in particular 
regarding object use. We expect that these advances help us to more 
thoroughly measure the nature of parent-child interactions. 
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