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Figure 1: Conceptual overview of the contact detection system. 

ABSTRACT 
We focus on a largely overlooked but crucial modality for parent-
child interaction analysis: physical contact. In this paper, we provide 
a feasibility study to automatically detect contact between a parent 
and child from videos. Our multimodal CNN model uses a combina-
tion of 2D pose heatmaps, body part heatmaps, and cropped images. 
Two datasets (FlickrCI3D and YOUth PCI) are used to explore the 
generalization capabilities across diferent contact scenarios. Our 
experiments demonstrate that using 2D pose heatmaps and body 
part heatmaps yields the best performance in contact classifca-
tion when trained from scratch on parent-infant interactions. We 
further investigate the infuence of proximity on our classifcation 
performance. Our results indicate that there are unique challenges 
in parent-infant contact classifcation. Finally, we show that con-
tact rates from aggregating frame-level predictions provide decent 
approximations of the true contact rates, suggesting that they can 
serve as an automated proxy for measuring the quality of parent-
child interactions. By releasing the annotations for the YOUth PCI 
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dataset and our code1, we encourage further research to deepen our 
understanding of parent-infant interactions and their implications 
for attachment and development. 

CCS CONCEPTS 
• Computing methodologies → Activity recognition and un-
derstanding; • Information systems → Video search; • Applied 
computing → Psychology. 
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1 INTRODUCTION 
Contact is a prominent component of nonverbal communication, 
and plays a fundamental role in the communication of emotion [16]. 
This is especially true for infants, whose speech understanding and 
production skills are only in early development. In parent-infant 
interactions, physical contact has an important function in early 
child development, encouraging attachment and emotional regu-
lation [1, 3]. The analysis of contact in parent-infant interactions 

1Code and annotations: https://github.com/dmetehan/ContactClassifcation.git. 
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is therefore valuable to assess the quality of the interaction. Yet, 
when considering contact between parent and infant, the predomi-
nant measurement method is self-report through questionnaires [4]. 
Such methods provide summary annotations at the level of the inter-
action and are inherently subjective. While several more objective 
observational measures have been developed and used, they lack 
consistency in their defnition and operationalization [25]. Specif-
cally, they either consider observable or functional touch and difer 
in the temporal granularity of the annotations. 

We argue in this paper that even a binary assessment of contact 
(i.e., there is contact or not) already provides a signifcant amount 
of insight into the interaction, especially when made continuously, 
i.e., at each frame. As providing such annotations manually is very 
time-consuming and error-prone, we consider automated methods. 
However, compared to other modalities in face-to-face co-located 
interactions, the detection of inter-personal contact has received 
surprisingly little attention [2]. 

Two prior works on contact detection in parent-infant interac-
tion videos are [7] and [8]. Both consider a fxed, seated interaction 
with limited freedom of movement for both interactants. In contrast, 
we focus on free play in a larger space with toys, see Fig. 1. Arguably, 
this constitutes a more complex scenario due to the more varied and 
dynamic positioning of both parent and infant. But especially in 
such dynamic interactions, subjective contact measurement meth-
ods are expected to be biased [4]. An automated, objective contact 
detection method is therefore a welcome alternative. 

In this paper, we investigate the feasibility of a vision-based 
method to automatically provide such frame-level contact annota-
tions. We use a multimodal convolutional neural network (CNN), 
adapted from [11], with three input modalities, namely 2D pose, 
image, and body parts. Our main contributions are: 

(1) We demonstrate the feasibility of using automatic contact de-
tection by providing both quantitative and qualitative results 
on a free play parent-infant interaction dataset. 

(2) We perform systematic experiments with our multimodal 
CNN model to understand the contribution of the various 
components. 

(3) We provide physical contact annotations for the YOUth PCI 
dataset [21] to encourage more research on automatic con-
tact detection of parent-infant interaction during free play. 
We also release our code base. 

The remainder of this paper is as follows. We frst discuss related 
work on parent-child interaction analysis, with a focus on physical 
contact. In Section 3, we introduce the YOUth PCI dataset and detail 
our contact annotations. Our methodology, including the discussion 
of the architecture and training of our CNN model, appears in 
Section 4. We quantitatively and qualitatively evaluate our approach 
in Section 5 and discuss the results in Section 6. Section 7 concludes 
the paper. 

2 RELATED WORK 
Our work builds upon several areas of research, including parent-
child interaction studies, contact classifcation, pose detection, and 
body part segmentation. In this section, we discuss the relevant 
literature in these areas and highlight the contributions of our work 
in addressing the challenges in parent-child contact analysis. 

Contact in parent-child interactions. Parent-infant interac-
tion has been widely studied in the context of psychology, child 
development, and attachment theory [1, 3]. Inter-personal touch 
is also widely recognized to maintain a crucial role in a child’s life 
during development [24], setting the groundwork for other com-
munication forms that emerge later in life [16]. Touch infuences 
physiological states, supports healthy biological growth, and serves 
a vital role in social development [20]. 

Contact classifcation. Despite the importance of touch in 
parent-child interactions, very little work has been done to analyze 
physical contact detection in parent-child interactions from a com-
puter vision perspective, with the exception of [7, 8]. In both [8] 
and [7], a computer vision-based approach was used to detect touch 
events between a parent’s hand and a child’s body in a restricted 
interaction setting, where both infant and parent are seated facing 
each other. In [7], a precision of about 48% is obtained with a good 
recall (99%) for such a scenario, and an additional classifcation 
is made for the location of the touch on the infant’s body. Our 
work is similar, in that a multi-step analysis is made for detecting 
touch events, but the scenarios we investigate are more challenging. 
We do not only consider hand-to-body touch events, therefore no 
specifc attention is devoted to hand segmentation in this work. 

Fieraru et al. [11] developed a novel approach for detecting and 
analyzing physical contact between people from visual data, ad-
dressing a critical gap in the literature. Although their main focus 
was 3D reconstruction, their methodology successfully enabled the 
classifcation of contact between adults in various settings, predom-
inantly from the sports domain. Their dataset, FlickrCI3D, is used 
in our transfer learning experiments in Section 5. 

2D pose estimation. Our proposed methodology in this paper 
leverages pose detection to facilitate contact classifcation. Several 
works have made signifcant advancements in this problem, such 
as OpenPose [5], AlphaPose [10], PoseNet [17], DarkPose [30], and 
HRNet [27]. These pose detectors have been widely used in various 
computer vision applications, including human activity recognition 
and human-object interaction analysis. In our work, we employ 
DARK Pose with HRNet to derive meaningful features for con-
tact classifcation. Our early pilot experiments (not reported here) 
showed that these models work better than others for detecting the 
poses of infant bodies. 

Body part segmentation. Body part segmentation has been 
a much-researched task in computer vision, with state-of-the-art 
models like DeepLab [6] and U-Net [23] reaching good perfor-
mances. More recently, the Segment Anything Model (SAM, [18]) 
is developed with a massive training set of a billion segmentation 
masks for 11 million images, indicating that the improvements in 
visual segmentation will continue soon. 

Lin et al. [19] proposed a cross-domain adaptation method for 
body part segmentation, highlighting its potential in improving the 
performance of related tasks. Segmentation allows more semanti-
cally structured modeling for interaction analysis, by distinguishing 
between diferent body parts which are used in diferent contexts. 

Human-human interactions. Several studies have been con-
ducted to analyze and predict human-human interactions [13, 14, 22, 
28]. These works explore diferent aspects of pose forecasting, pose 
refnement, and instance segmentation in physically close human-
human interactions. In addition to strong deep neural network 
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Figure 2: Pipeline of our approach. YOLOx is used to detect the human bounding boxes in the video. This is followed by DARK 
Pose with HR-Net to generate heatmaps for body parts, and human body part segmentation to enable a tri-modal classifcation. 

backbones, they use attention mechanisms, diferent initialization 
procedures, and network architectures to improve the performance 
and stability of interaction analysis (see [26] for a review). Research 
on contact detection might beneft from human-human interaction 
classifcation, and vice versa. 

3 PARENT-INFANT INTERACTION DATASET 
For our analyses, we use parent-child interaction (PCI) videos from 
the YOUth Cohort study [21]. In each video, a parent and a child 
freely play2. We focus on a set with 10-month-old children (average 
11.4 months old with a standard deviation of 1.2 months) and use 
the terms child and infant interchangeably. 

Recordings are made in a room with a play area and a box of toys. 
Parents and infants are free to play with toys on the ground (see 
Fig 1). Sometimes infants and parents play together and sometimes 
infants ignore the parents and play by themselves. Occasionally, 
infants crawl out of the play area and leave the view of the cameras, 
to be brought back by their parents. The interactions are unstruc-
tured as there are no requirements about which toy to play with 
and the variability of the toys available (car, doll, switch box, fower, 
book, baby bottle, shape box with four diferent colored shapes). 
This setup allows for a wide variety of interactions, ranging from 
infants playing with their parents, sitting on their parent’s laps to 
look at a book, or playing individually with toys. 

The YOUth Cohort study is ongoing, with interactions recorded 
each week. Interactions are recorded from four cameras close to 
ground level to capture the interaction more closely. We limit our 
analysis to a single view, to address a setting that is more com-
mon and does not require a synchronized multi-camera setup. A 

2Access to these videos is granted to researchers following an ethics screening process. 

total of 94 interactions with unique parent-child pairs were ran-
domly selected from the available pool. The videos were temporally 
segmented to begin when the experimenter exits the scene and con-
clude upon the experimenter’s return. This resulted in an average 
video duration of 12:33 minutes (standard deviation of 31 seconds). 
Our data covers almost 20 hours of interaction. 

3.1 Physical Contact Annotations 
Our defnition of contact includes both intentional and uninten-
tional contact. Intentional contact mostly concerns touch with the 
hand (such as grabbing, caressing, hitting, or supporting), whereas 
unintentional contact can be between any two body parts, such as 
a foot touching a leg. The annotation considers only the 2D view of 
the selected camera. Annotations are provided for individual frames 
so that the annotators are not informed of temporal information. In 
this way, our automated approach is not put at a disadvantage when 
being presented with a single frame, without temporal context. 

For manual annotation of contact, a frame was selected every 
5 seconds. The frames are annotated by a single coder. A second 
coder annotated a subset of 200 frames sampled randomly from 
the dataset to have an equal number of contact and no contact 
classes. The inter-annotator agreement between the two coders 
is calculated using Cohen’s Kappa coefcient and results in an 
85% agreement. The annotations included contact, no contact, and 
ambiguous classes following the convention from the FlickrCI3D 
dataset. Since annotations are made from a single view, frames of 
free play parent-infant interaction can include signifcant occlu-
sion scenarios such as an infant sitting between the legs of the 
parent or a parent hugging the infant. Also, the scale diference 
between parents and infants causes infants to be partly occluded 
by their parents regularly. In cases where the annotator cannot 
judge whether there is contact or not between parent and infant, 
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the frames are annotated as ambiguous. Consequently, after dis-
carding 7, 185 ambiguous frames (similar to [11]), our experiments 
and analysis include 6, 915 frames, with 2, 983 (43.13%) of those 
frames containing instances of physical contact between the parent 
and the infant, and the rest of the frames (56.87%) being labeled as 
no contact. The data is divided into training, validation and test set 
based on the parent-child pairs considering the gender of the child. 
All the frames from each parent child pair are in either training (50 
videos), validation (20 videos) or test set (20 videos). 

Figure 3: Contact ratio per parent-infant pair, in decreasing 
order. Colors indicate to which set an interaction belongs. 

Fig. 3 shows the ratio of physical contact per video, colored per 
set (training, validation, test). The contact ratio varies signifcantly 
with an average of 21.97% (standard deviation 15.96%). The maxi-
mum contact ratio in a video is 73.61% and the minimum contact 
ratio is 1.29%. These statistics also include the frames where the 
contact could be judged and was annotated as ambiguous. 

Figure 4: 2D proximity distribution in pixels for training and 
test sets. The resolution of a frame (see Fig. 2) is 960 × 540. 

To increase our understanding of the variation in the dataset, we 
investigate the proximity between the parent and the infant. From 
the output of our 2D pose detection, explained in detail in Section 4, 
we calculate the minimum distance in pixels between all pairs of 
joints between the parent and the infant. Distances are measured 
in the original frame, with a resolution of 960 × 540. Fig. 4 shows 
the 2D proximity distribution across training and test sets, which 
follow a similar trend. Close interactions make up a signifcant part 
of the data, which provides evidence for the challenging nature of 

the dataset. Fig. 10 shows a random sample of poses for diferent 
proximity ranges. We discuss it in detail in Section 6. 

4 CNN-BASED CONTACT CLASSIFICATION 
For our automated contact classifcation, we develop and train a 
convolutional neural network (CNN). The architecture of our CNN 
largely follows [11], but since there is no public code for this ap-
proach, we re-implemented it and replaced some sub-modules with 
recent alternatives. We provide an open-source implementation of 
our code to allow other researchers to replicate our results, and to 
build on our work. 

The pipeline of our method appears in Fig. 2. We consider three 
modalities extracted from a 960 ×540 frame: (1) RGB image cropped 
around the two interactants, (2) 2D pose heatmap, and (3) body 
part segmentation maps. We start by detecting the two interacting 
people. Unlike [11], we do not use a bottom-up body pose estimator. 
Our preliminary experiments showed that bottom-up pose detec-
tion methods struggle with close parent-infant interaction frames, 
whereas top-down pose detectors have fewer problems with the 
intertwined nature of individuals in the YOUth PCI dataset. In our 
pipeline, we replace the human detection with a YOLOx human 
bounding box detector [12]. 

In the pre-processing stage of our pipeline, we select the two 
bounding boxes with the highest confdence, as detected by the 
human detector. We then crop the tightest region that includes the 
bounding boxes of both people and add a margin of 11% in each 
direction (top, bottom, left, right) to alleviate issues with cropping. 
These cropped images are resized and padded to � × � (112 × 112) 
and used as our frst input modality. 

We process each of the two bounding boxes to estimate the 2D 
locations of the key joints of the persons. We use the DARK Pose 
model [29] with an HR-Net (W48) backbone [27] to obtain 17 body 
landmark heatmaps per person (i.e., 34 maps). A heatmap refects 
the probability that a specifc body joint is found at each location 
in the image. These heatmaps are transformed and scaled to match 
the spatial dimensions of the crop. Unlike [11], we did not use 
landmark locations to generate new pose heatmaps with normal 
distributions around the landmark locations. Our preliminary ex-
periments showed superior results when the 2D pose heatmaps are 
directly used as our second input modality. 

To extract semantic human features, we replaced the 2D body 
part labeling of [11] with a recent, state-of-the-art model [19]. The 
output of this process is a labeled segmentation of each body part. 
A map contains the body parts of both interactants, which is the 
common output of body part segmentation algorithms if no masking 
step is applied. The segmentation maps provide information about 
the visibility and shape of the body parts. By considering all body 
part segmentations, information about proximity and overlap in the 
image is revealed. 2D body part labels are calculated on the crop, 
resulting in one background and 14 body part heatmaps. These 
heatmaps are binary encoded and used as our third input modality. 

A modifed ResNet-50 [15] is used as the backbone for our contact 
classifer. The frst layer is adjusted to take not only the cropped 
image as the input but also the 34 body landmark heatmaps and 
the 15 body part heatmaps. The frst layer convolutional weights 

201



Embracing Contact: Detecting Parent-Infant Interactions ICMI ’23, October 09–13, 2023, Paris, France 

corresponding to the image input are copied from a ResNet pre-
trained on the ImageNet dataset [9]. The last layer of the ResNet is 
replaced by a fully connected layer with two outputs, for contact 
and no contact, respectively. 

5 EXPERIMENTS AND RESULTS 
To evaluate the performance of our model on parent-child interac-
tions, we perform our experiments on the YOUth PCI data. 

Metrics. To quantitatively assess our approach, we use three dif-
ferent metrics: accuracy, balanced accuracy, and F1 score. Accuracy 
can be misleading for datasets with imbalanced class distribution, 
whereas balanced accuracy is calculated by taking the average ac-
curacy across each class without counting how often the classes 
occur in the dataset. We also use the F1 score for the contact class 
to identify if the method is successful in detecting contact cases. 

Model verifcation. To verify that our implementation pro-
duces predictions in line with the models presented in [11], we 
frst train and evaluate our model on the FlickrCI3D dataset. The 
dataset contains 55, 095 images, where each image contains two 
or more people and each pair of people are annotated for contact, 
no contact, and uncertain contact. The training set includes 49, 372 
pairs annotated as contact, 14, 733 pairs annotated as no contact, 
and 17, 197 pairs discarded for ambiguity. 

Our best model achieves a test accuracy of 82.79%. When we 
check the balanced accuracy (75.28%) and the F1 score (62.08%), 
however, we make two observations. First, the balanced accuracy is 
notably lower than the 84.6% that was reported in [11]. Second, this 
diference is caused by a lower accuracy for contact, with 84.4% and 
61.4% for [11] and our model, respectively. Our model scores better 
on no-contact interactions, with 89.2% compared to 84.8% in [11]. 
The diferences in performance between our model and that in [11] 
could be due to the diferent algorithms to produce the multimodal 
inputs, or due to diferent hyper-parameters such as batch size. 

Baselines. We include three baselines in our main comparison. 
All No Contact is the result of always predicting the majority class: 
no contact. Random Guess predicts contact or no contact each with 
50% probability. Informed Guess uses the prior training probabilities, 
41.81% and 58.19% for contact and no contact, respectively. 

Table 1: Performance comparison on the YOUth PCI dataset. 
The last three rows are the baselines. The standard deviation 
of 10 runs for each setting is given between parentheses. 

Training Acc. Bal. Acc. F1 Score 

FlickrCI3D 57.68 (4.98) 58.31 (3.35) 54.71 (4.07) 
FlickrCI3D+YOUth 79.95 (0.80) 79.77 (0.78) 76.63 (0.95) 

YOUth 80.41 (1.89) 80.42 (2.07) 77.39 (2.51) 

All No Contact 58.19 50.00 0 
Random Guess 50.00 50.00 50.00 
Informed Guess 51.34 50.00 41.81 

Main results. For our main results, we compare the aforemen-
tioned network that was only trained on FlickrCI3D to the same net-
work that was subsequently fne-tuned on the YOUth PCI dataset, 
and to a network that was trained on YOUth PCI from scratch. 

A summary of the results, collected over 10 runs for each setting 
to minimize the efects of random initialization and batch order, 
appears in Table 1. 

The cross-dataset test results on YOUth PCI with only FlickrCI3D 
as the training set demonstrate a performance that is above all three 
baselines, except the accuracy score that is comparable to the All 
No Contact baseline. Given that no YOUth PCI data was used in 
the training, it becomes clear that the model trained on FlickrCI3D 
generalizes to some extent, most specifcally for the contact class. 
This also informs us that the two datasets have similarities. 

However, these results are largely surpassed when domain-speci-
fc data from YOUth PCI is involved. Comparing the second model 
(training on FlickrCI3D and fnetuning on YOUth PCI) and the third 
model (training on YOUth PCI from scratch) shows that training 
from scratch on YOUth PCI yields slightly better results, whereas 
the fne-tuned model has more robust performance in terms of a 
lower standard deviation. 

The predictions are statistically signifcantly above all base-
lines. As an indication, for the frst run, paired t-tests between the 
model trained from scratch and the All No Contact (t(1575)=29.50, 
p<0.001), Random Guess (t(1575)=-9.25, p<0.001), and Informed 
Guess (t(1575)=-6.79, p<0.001) baselines demonstrate signifcantly 
higher performance for our model. 

Figure 5: Confusion matrices for the models; pre-trained on 
FlickrCI3D and fne-tuned on YOUth PCI (left), trained on 
YOUth PCI from scratch (right). 

When comparing the two confusion matrices in Fig. 5 the model 
trained from scratch learned to identify the no contact class better, 
while maintaining a comparable accuracy for the contact class. 
However, the results are quite close to each other and no conclusive 
judgments can be made. 

Efect of input modality. Our second quantitative analysis 
focuses on using diferent combinations of input modalities. Results 
are shown in Table 2. To minimize the efects of random initializa-
tion and batch order, we report the mean and standard deviations 
over 10 runs for each combination of the three input modalities. For 
each of the three evaluation metrics, the best performance on the 
YOUth PCI dataset is the model trained with a combination of 2D 
pose heatmaps and body part heatmaps. It’s also the most robust 
confguration compared to the others based on the lower standard 
deviations per evaluation metric. 

The additional availability of the image crops reduces the per-
formance and makes the training less stable demonstrated by a 
higher standard deviation. Similar observations can be made when 
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Table 2: Efect of diferent input modalities on the YOUth PCI dataset. The standard deviation for 10 runs is in parentheses. 

2D Pose Heatmaps Cropped Image Body Part Maps Accuracy Balanced Accuracy F1 Score 

✓ 

✓ 
✓ 

✓ 

✓ 

✓ 

✓ 
✓ 

✓ 

✓ 
✓ 
✓ 

80.39 (2.04) 
76.74 (2.42) 
80.98 (1.36) 
77.96 (2.01) 
81.88 (1.20) 
79.83 (1.91) 
80.41 (1.89) 

80.47 (1.87) 
76.27 (2.10) 
80.09 (1.38) 
78.34 (1.81) 
81.72 (1.10) 
79.74 (1.25) 
80.42 (2.07) 

77.54 (2.08) 
72.44 (2.62) 
76.60 (1.83) 
75.35 (2.07) 
78.82 (1.34) 
76.65 (1.29) 
77.39 (2.51) 

comparing the performance of 2D pose heatmaps and body part 
heatmaps individually, with and without the availability of image 
crops. In both cases, the performance is lower when image crops are 
available. This fnding is valuable and shows the difculty of train-
ing models on small datasets using raw inputs such as the cropped 
image in our case. Processed input modalities consistently outper-
form the results of the raw image modality. Overall, the diferences 
between the models are modest, especially in terms of accuracy. 
Higher scores for the balanced accuracy and F1 require that the 
minority class (in our case, the contact class) is better predicted. 

Figure 6: Efects of using decreasing amounts of training data 
on the performance of the model. Graphs show means and 
standard deviations of 10 runs for each setting. 

Infuence of the amount of data. We perform a systematic 
evaluation of the efect of using less training data when training 
the model on the YOUth PCI dataset from scratch. Again, we aggre-
gate results from 10 runs for each confguration. Results in Fig. 6 
show the means and standard deviations. As expected, using less 
training data yields gradually worse performance. This is because 

more training data allows the model to learn more patterns and 
relationships within the dataset, resulting in better generalization 
to unseen data. However, it is surprising to see that the perfor-
mance diference between models trained with 100% and 10% of the 
training data is only around 8% across all metrics. With at least 50% 
of the training data, the decrease in performance is limited to 2%. 
This suggests that the model may be robust to smaller training data 
sizes or that the data may contain redundant information. Sampling 
every 5 seconds might have resulted in similar frames. 

Infuence of proximity. One possible reason for the modest 
increase in performance when using more data is the existence of 
inputs that are particularly easy to classify. In this case, no sub-
stantial amount of data is required for training. We expect that 
proximity might be an infuential variable in this respect. When 
the two interactants in our videos are far apart, there is likely no 
contact. However, when their joints are close together in the image, 
it becomes more difcult to predict whether they are in contact. 
In particular, the lost depth information might render distances 
between body parts small in 2D, whereas they are sizeable in 3D. 

Figure 7: Accuracy per proximity bin for two models trained 
with 100% and 10% of the training data, respectively. 
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Figure 8: Contact and no contact class counts per proximity 
bin in the test set. Higher than 60-pixel distance examples 
only include no contact class and are omitted from the plot. 

From the proximity levels in Fig. 10, we can see diferent types of 
poses between parents and infants. The fgure also shows depth or-
dering problems for some of the frames since the poses are detected 
in 2D. To investigate the role of proximity in our results, we have 
calculated the accuracy over each of a range of 2D proximity values, 
calculated as in Section 3 by dividing the range of distances into 50 
bins and visualized in Fig. 4. A visualization of the accuracy scores 
per proximity bin appears in Fig. 7, for two models trained from 
scratch on 100% and 10% of the YOUth PCI data, respectively. The 
accuracy of the model trained with 10% training data is consistently 
lower than the model that uses all available data. 

We obtain perfect accuracy for the 100% data model when the 
distance between the two people is at least 60 pixels. These cases 
are less likely to contain contact. The model that used only 10% of 
the data occasionally has a low accuracy for these proximity values. 
We assume that this is caused by severe undersampling, as there 
are not too many distant cases (see Fig. 4). 

Figure 9: Contact prediction and true counts per parent-
infant pair. Test videos are numbered to allow referencing. 

We also observe high scores when the proximity is very low. 
These cases correspond to close proximity, in which physical con-
tact is likely. Between these extremes, we observe lower accuracy 
scores for both the model trained on 100% of the data and the model 
that was trained with only 10% of this data. These cases, which 
may involve occlusions between the parent and the infant, can be 
considered more difcult to predict. 

In Fig. 8, we inspect proximity by visualizing class distribution 
per proximity bin. Between 80-90% of the close proximity frames 
contain physical contact. In contrast, the samples of parent-infant 
pairs with 10 to 30-pixel distances show similar amounts of contact 
and no contact classes, which explains the dip in the performance 
of the 100% data model around those bins in Fig. 7. 

Video-level classifcation. To characterize the interaction be-
tween a parent and a child, one might look at the percentage of 
contact over an entire video. In this case, since we aggregate frame-
level classifcations, confusion between the contact and no contact 
class might be partly mitigated if there is no systematic bias. 

In Fig. 9, the predicted and true percentage of contact frames 
are shown for each test video. Most videos are relatively accurately 
predicted. The mean diference between the ratio of contact predic-
tions and true labels across the test set is 10.74% with a standard 
deviation of 10.25%. There are only 3 videos out of 20, which have 
a diference of more than 20%. The correlation between predicted 
and true contact rates is 0.89 (Pearson’s r: � (18) = .89, � < 0.01). 

Figure 10: Example poses for diferent proximity ranges. ‘d’ 
is the minimum pixel distance between 2D pose landmarks 
of the two interactants. Red: infant, blue: parent. 

For several videos, e.g., 3, 6, and 11, a much higher number of con-
tact frames is predicted. These videos contain frames in which the 
interactants are usually occluding each other or in very close prox-
imity without making contact. The frst two rows of Fig. 11 show a 
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variety of such false predictions. In the frst row, second column, 
only a few landmarks of the infant are detected behind the parent, 
and they are further apart from each other in the depth ordering. 
Similarly, in the frame in the second row, the fourth column, the 
infant is occluding the parent. Fig. 11 shows a selection of frames 
where none of the 7 best models (selected from the input modality 
experiment, Table 2) were able to make a correct classifcation. 

Figure 11: Failure cases. First two rows show false detection 
of contact, last two rows show missing contact detections. 

For videos 4 and 19, we see the opposite efect: a lower number of 
predicted frames compared to the actual number of contact frames. 
Visual inspection of the videos reveals that the frames include close 
proximity interaction but the body parts of the interactants are not 
signifcantly overlapping each other. The last two rows in Fig 11 
show such examples where contact could not be predicted by the 
models. These frames look similar to one mode of error in the frst 
two rows where there are false contact detections. 

6 DISCUSSION 
Compared to previous work on automated contact detection from 
images of interactions between adults [11], there is a fundamen-
tal diference in the nature of interaction between an infant and 
their parent compared to the interaction between two adults. In 
this paper, we have examined the feasibility of contact detection 
in free play interactions between an infant and a parent. We can 
detect their physical contact with reasonable accuracy using convo-
lutional neural networks and processed input modalities such as 2D 
pose heatmaps and body part heatmaps. The performance achieved 
even with smaller amounts of training data (10%) demonstrates the 
potential for applying these models in real-world applications. Ag-
gregation at the interaction-level showed good correlation between 
predicted and true contact rates. 

Challenges. Several challenges remain in detecting contact in 
parent-child interactions. First, performance dips were observed 
when the parent and child were somewhat close. These situations 
include occlusions (Fig. 10, columns 2 and 3), which make it harder 
for the model to distinguish between contact and non-contact. One 
important cause is the use of a single view. During classifcation, no 
information about distances in depth is readily available. Similarly, 
by relying on a single view for the annotation, many challenging 
frames were labeled as ambiguous. Second, the diferences between 
datasets, such as FlickrCI3D and YOUth PCI, highlight the need to 
consider domain-specifc factors when training models for parent-
infant contact detection. Models pre-trained on one dataset may 
not perform optimally when applied to another dataset. 

Solutions. Several strategies can be employed to address the 
challenges in detecting physical contact in parent-child interactions. 
To handle difcult cases involving bodily occlusions, more advanced 
techniques, such as incorporating temporal information, using mul-
tiple diferent views, or reconstructing parent-infant interactions in 
3D could be employed. Exploring additional input modalities such 
as eye gaze detection may also enhance the model’s performance in 
detecting contact by informing models about the interaction dynam-
ics. To account for the diferences between datasets and domain-
specifc factors, more diverse and representative datasets can be 
developed. To tackle the time-consuming and costly annotation 
process, researchers could explore automated or semi-automated 
annotation methods, leveraging existing annotations or knowledge 
from related domains, ultimately resulting in larger and more com-
prehensive datasets for training. By publicly releasing our contact 
annotations and code, we hope to encourage more researchers to 
focus on this largely overlooked communication channel. 

7 CONCLUSION 
We have presented an approach to detect physical parent-infant 
contact in videos using CNNs. We examined the performance on 
the YOUth Parent-Child Interaction (PCI) dataset. As the frst to 
target contact detection in parent-infant interaction in a free play 
setting, our fndings provide valuable insights into the prospects 
and challenges and highlight avenues for improvement. 

Our experiments highlight the importance of using processed 
input modalities such as 2D pose heatmaps and body part heatmaps. 
The results also emphasize the need to consider domain-specifc 
factors when training models for parent-infant contact detection. 
An analysis of the proximity between the interactants revealed 
that medium-close interactions are the most challenging. Lower 
proximity or higher proximity levels are easier to predict since 
contact and no contact distributions are more distinct. Future work 
should be aimed at improving distinction for these arrangements. 
Also, we should address distinguishing between intentional and 
unintentional contact, potentially using temporal information or 
additional modalities such as eye gaze. 

Our video-level aggregation experiment further demonstrates 
the feasibility of automatically classifying contact levels over an 
entire interaction. Such a measure can readily be used as a measure 
for the quality of parent-child interaction. Future research should 
investigate potential correlations and causality between physical 
contact and indicators of cognitive, and social development. 
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