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Abstract—Predictive Process Monitoring aims to forecast the
future progress of process instances using historical event data. As
predictive process monitoring is increasingly applied in online set-
tings to enable timely interventions, evaluating the performance
of the underlying models becomes crucial for ensuring their
consistency and reliability over time. This is especially important
in high risk business scenarios where incorrect predictions
may have severe consequences. However, predictive models are
currently usually evaluated using a single, aggregated value
or a time-series visualization, which makes it challenging to
assess their performance and, specifically, their stability over
time. This paper proposes an evaluation framework for assessing
the stability of models for online predictive process monitoring.
The framework introduces four performance meta-measures: the
frequency of significant performance drops, the magnitude of
such drops, the recovery rate, and the volatility of performance.
To validate this framework, we applied it to two artificial and two
real-world event logs. The results demonstrate that these meta-
measures facilitate the comparison and selection of predictive
models for different risk-taking scenarios. Such insights are of
particular value to enhance decision-making in dynamic business
environments.

Index Terms—predictive monitoring, process outcome, event
stream, performance evaluation

I. INTRODUCTION

The pervasiveness of information systems in business pro-
cess execution, empowered in particular by IoT systems [1],
allows event data to be logged and become available for
process analytics in real-time. This has prompted the process
mining discipline to look into the online realization of typical
use cases, such as predictive process monitoring [2]. In online
settings, an event log is a stream of events becoming available
for analysis as soon as they are logged.

The use of predictive models in real-life settings requires ac-
curate performance evaluation to facilitate effective decision-
making and mitigate potential risks while adapting to changing
business environments. For example, in business scenarios
where the predictions may be used to make decisions with
high risk (e.g., selecting the proper treatment of a patient
in a hospital), incorrect predictions may lead to subopti-
mal decision-making, potentially with severe consequences.

In high-risk scenarios, the predictive model should perform
stably over time with minimal deviation on the performance
metrics from recent evaluations, considering that each decision
carries significant risk. Predictive models that have an unstable
performance or lose performance over time are to be avoided,
despite the fact that they may have a relatively higher average
performance over time. In online settings in particular, busi-
ness users may also want to prioritize models that demonstrate
quick recovery to their accustomed performance levels. For
example, if the process can be dynamically changed, the
predictive model should be capable of efficiently incorporating
newly arrived data, enabling rapid learning and adaptation.

Existing performance evaluation approaches often use a
single aggregated value or time-series visualization. While
they provide valuable performance diagnostics, they do not
provide measures for the long-term performance of the model
or its capability to adapt to dynamic changes. These are both
concerns that relate to the stability of the process monitoring
framework. Let us assume two example plots of performance:
Scenario 1 and Scenario 3 in Fig. 1. Despite having the
same average accuracy, each model can be analyzed from
various perspectives regarding their performance fluctuation.
For instance, the accuracy of Scenario 1 shows higher volatility
compared to Scenario 3, indicating unstable performance.
Scenario 1 can quickly adapt and learn from newly observed
data, allowing it to recover its accustomed performance levels.
This example shows that it is not trivial to determine which
model delivers the most desired level of stability.

This paper proposes an evaluation framework with four
meta-measures of performance for online process outcome
predictive monitoring, which can help to evaluate the perfor-
mance stability of an online predictive model in a balanced
way. These are: (1) the frequency at which the performance
of a model tends to drop from its average, (2) the average
magnitude of such performance drops, (3) the speed at which
the average performance levels can be recovered, and (4) the
volatility of the performance level over time. Given any of
the traditional confusion matrix-based measures for predictive
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model performance, the proposed meta-measures can generate
concrete measures to assess the performance stability of an
online outcome-oriented predictive monitoring model.

The proposed performance evaluation framework is evalu-
ated on two artificial event logs and two publicly available real-
life event logs. The results show that the performance measures
obtained can be used to assess the stability of the performance
of these predictive models and support the selection of models
depending on the scenario in which it is applied.

The paper is organized as follows. The research problem
and motivation are discussed in the next section. Section III
introduces related work. Section IV provides preliminaries,
while the performance metrics are presented in Section V. The
empirical analysis is reported in Section VI, while conclusions
are drawn in Section VII.

II. PROBLEM DESCRIPTION AND MOTIVATION

To highlight the need for more nuanced performance met-
rics in outcome-oriented predictive process monitoring, we
introduce a classification of business scenarios along two
dimensions: the frequency of the decisions taken using a
predictive monitoring model and the risk associated with these
decisions. The frequency dimension refers to the number of
decisions that must be taken in a given time unit during the
execution of a process with the support of a predictive model.
The risk dimension refers to the cost associated with taking
a wrong decision during the execution of a process case with
the support of a predictive model.

Scenario 3

Risk
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E.g., Predictive maintenance
E.g., Diagnosis and treatment in the 

emergency department

Non-critical

scenario

E.g., Diagnosis and treatment of 

critical diseases
Scenario 2

Fig. 1: Scenarios for motivating the performance meta-
measures.

Considering these two dimensions, business scenarios can
be classified in a 4-cell matrix resulting from the combination
of the values low and high for each dimension.

‚ Scenario 1 - High Frequency, Low Risk: These are critical
scenarios in which, while not being particularly risky,

decisions have to be taken frequently. Because decisions
have to be taken frequently in these scenarios, it is
important to use predictive models with a stable outcome,
i.e., for which the performance is on average accept-
able and relatively steady in time. A typical example
of this scenario is predictive maintenance of a large
fleet of mechanical installations (e.g., elevators or other
machinery). Online models in predictive maintenance are
relevant because the machinery operating conditions may
change abruptly over time and, therefore, it is advisable
to use predictive models that can be continuously updated
by new monitoring data. Still, predictive maintenance
decisions are taken routinely and can be very frequent,
particularly in scenarios where the machinery can sud-
denly degrade and it is therefore fundamental to have a
means to anticipate such a degradation effectively and
timely.

‚ Scenario 2 - Low Frequency, High Risk: These are critical
scenarios in which, while not being particularly regular
or frequent, incorrect decisions may result in excessive
costs. In these types of scenarios, it is important to have
online models with a good performance, i.e., for which
the performance drop is never too sharp, and that, even
when the performance drops, can recover to an acceptable
level. A typical example of this scenario is the diagnosis
and treatment of critical diseases like pancreatic cancer.
Online models in diagnosis and treatment are relevant
because the conditions under which such decisions are
taken may vary dramatically over time, e.g., patient load
at a hospital, availability of specialized expertise and
treatment options, vital signs of patients, etc. Moreover,
incorrect decisions are very risky, because they may result
in bad outcomes for patients, loss of reputation, and
financial loss. Therefore, it is important to equip decision-
makers in such scenarios with predictive models that are
highly reliable and stable.

‚ Scenario 3 - High Frequency, High Risk: There are highly
critical scenarios that combine the challenges of the two
cases discussed in Scenario 1 and Scenario 2. A typical
example of this scenario is the diagnosis and treatment
in the emergency department.

‚ Non-critical scenario: These are non-critical scenarios in
which decisions do not have to be taken often during
a process case and neither are these decisions too risky,
i.e., wrong decisions are generally recoverable and do not
entail high costs.

A straightforward way to adjust the performance measure-
ment in the case of streaming data is to apply a traditional
measure, e.g., accuracy or F1, to a sliding window of samples.
This certainly gives insights into the model performance vari-
ation over time. However, it does not directly measure other
performance aspects relevant to the scenarios of Fig. 1, like the
speed at which the performance may recover to an acceptable
level, or the frequency at which the performance of the model
falls below a certain threshold. To address these concerns, it is
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crucial to devise additional performance measures to capture
those aspects. In this paper, we propose four meta-measures.
Given a traditional performance measure obtained from the
analysis of a confusion matrix (e.g., accuracy or F-measures),
meta-measures allow us to derive a new performance measure
suitable for the evaluation of the stability of online outcome-
oriented predictive process monitoring models. The first two
meta-measures address the needs of high-frequency online
business scenarios, whereas the other two are introduced to
address the requirements of high-risk online business scenar-
ios:

1) Frequency of relevant performance drops, which cap-
tures the rate at which the performance of an online
predictive model drops below a certain level considered
acceptable.

2) Volatility of the performance, which captures the volatil-
ity over time of the performance of an online predictive
model.

3) Magnitude of performance drop, which captures how
much the performance of a model normally drops from
its expected acceptable level.

4) Recovery rate, which measures the speed at which an
online model normally recovers from a performance
drop.

The performance measures derived from the application
of the meta-measures can be used to compare competing
online outcome-oriented predictive monitoring models. Deci-
sion makers often face resource constraints, requiring them to
choose between a model that is, for example, more consistently
accurate (with minimal relevant performance drops) or one
that can quickly recover to an acceptable performance level
after a drop occurs. More in general, decision makers are
likely to train different predictive models in a given scenario.
The performance measures outlined in this paper will help
decisions regarding which model is more suitable in a specific
business scenario.

III. RELATED WORK

In this section, we discuss the performance evaluation
approaches in online predictive process monitoring techniques,
listed in Table I. We categorize existing approaches based
on two dimensions: (1) the evaluation approach and (2) the
evaluation level. We provide detailed discussions for each
category. Then, our contributions in relation to related works
are presented.

The classical approach for evaluating model performance
involves using aggregated performance metrics. In the case of
conducting a prefix length level analysis, an online predictive
model can be assessed based on median accuracy. For instance,
Maisenbacher and Weidlich [3] have introduced the use of
incremental classifiers to handle event streams, with the goal
of developing outcome predictive models capable of adapting
to concept drift. They evaluate their approach by comparing
the median accuracy of the model under different concept drift
scenarios across various prefix lengths.

Regarding event log level analysis, overall prefix lengths are
used to calculate the average accuracy for model evaluation.
Pauwels and Calders [2] have introduced a deep neural net-
work with an incremental learning strategy that can be updated
over time to predict the next activity in an event stream. They
measure the performance of their methods under different
model training scenarios by calculating the average accuracy
on all updates. Baier et al. [4] have investigated the challenge
of determining the optimal data selection points for retraining
an offline predictive model when concept drift occurs in
an event stream. The data selection points are analyzed by
comparing the average accuracy of the entire data set. Other
than accuracy, the average F-score is used for the model
evaluation. Di Francescomarino et al. [5] evaluate incremental
classifiers in the context of process outcome prediction. They
evaluated the models at various prefix lengths, combining the
outcomes into a single value, and compared the aggregated
results to a baseline for performance comparison, utilizing both
average F-score and accuracy as evaluation metrics.

In the case of the evaluation approach for time-series visu-
alization, the prediction results obtained are often represented
in a graph where the x-axis corresponds to the frequency of
model updates. This visualization allows for the assessment
of performance changes over time. In some cases, prediction
approaches are evaluated not only based on a single aggregated
value but also by examining the visualized representation of
the results [2]–[4]. However, the visualization is only used to
compare their proposed methods to the baseline models.

Specially for event log level performance visualization, Lee
et al. [6] have introduced an evaluation framework for online
outcome process prediction. They specifically focus on real-
time model performance by analyzing the collected prediction
results across entire prefix lengths. The framework utilizes
average accuracy values from each prefix to generate a graph,
allowing for the observation of performance changes over
time. However, it primarily emphasizes the overall perfor-
mance of the model over time, without explicitly considering
the discovered performance fluctuations in relation to stability.

In summary, the existing evaluation approaches are not
specifically designed for streaming event logs, and they do
not assess the model’s fluctuation in performance as it is
updated. Using a single aggregated value for assessment may
not capture the performance fluctuations accurately. In the
case of time-series visualization, it has mainly focused on
highlighting the outperforming predictive model. In addition,
the discussion of model performance consistency along with
model updates has been limited. In this paper, we propose
meta-metrics for online predictive process outcome monitoring
to measure the stability of performance over time.

IV. PRELIMINARIES

A. Notations

Given the first n positive natural numbers N`
n and a target

set S, a sequence s is a function s : N`
n Ñ S mapping integer

indexes to the elements of S. Given a set of activity labels A,
the domain of timestamps, and a set of I attribute domains
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TABLE I: Comparison of performance evaluation approaches in online predictive process monitoring

Evaluation
approach

Evaluation
level

Maisenbacher
and Weidlich [3]

Pauwels
and Calders [2] Baier et al. [4] Di Francescomarino

et al. [5] Lee et al. [6]

Aggregated
value

Prefix length v
Event log v v v

Time-series
visualization

Prefix length v
Event log v v v

Di, we define the set of event attributes as E “ A ˆ N` ˆ

rD1 ˆ . . . ˆ Di ˆ . . . ˆ DI s. A trace σ is a sequence of n
events σ : N`

n Ñ E. We denote with E the event universe,
with E “ E ˆ J , where J is a set of possible case ids, and
with E˚ the universe of sequences of events. An event stream
is an infinite sequence Ψ : N` Ñ E .

For simplicity, we write events as ek,j , where k in-
dicates their position in a trace and traces as σj “

xe1,j , . . . , ei,j , . . . , eNj ,jy, where Nj is the number of events in
the trace σj . The function t : E Ñ N` returns the timestamp
of an event. The prefix function pref : E˚ ˆ N` Û E˚ is
a partial function that returns the first p events of a trace,
i.e., pref pσj , pq “ xe1,j , . . . , ep,jy, with p ď Nj . Note that,
for the evaluation, event streams are generated from event
logs in which multiple events may have the same timestamp.
For the events that have the same timestamp, we assume that
the ordering of the events in an event log reflects their true
ordering and use this order in the stream to calculate prefixes.

A trace σ is associated with a binary outcome label and,
without loss of generality, we assume that the value of this
label becomes known with the last event eNj ,j of a trace.
Therefore, we define a labeling function as a partial function
y : E Û t0, 1u, which returns the label of a trace in
correspondence with its last event. For clarity and with an
abuse of notation, we denote the label of a trace σj as yj .

A sequence encoder is a function f , with f : E˚ Ñ

X1ˆ. . .ˆXwˆ. . .ˆXW mapping a prefix onto a set of features
defined in the domains Xw. A process outcome prediction
model m is a function ŷ : X1 ˆ . . .ˆXw ˆ . . .ˆXW Ñ t0, 1u

mapping an encoded prefix onto its predicted label. The
prefixes may be divided into separate buckets. A different
predictive model may be maintained (trained/tested) for each
bucket of prefixes. In this work, we consider prefix-length
bucketing [7] of traces, which is commonly adopted in the
literature: a different predictive model mk is trained and tested
using a set of prefixes of length k “ 1, . . . ,K, where the
maximum prefix K may vary for each event log. Thus, we
define an outcome prediction framework f as a collection of
outcome predictive models mk, that is, f “ tmkuk“1,...,K .
Note that the performance evaluation framework proposed in
this paper does not depend on the method used to encode or
bucket the prefixes.

Next, we propose our methods to evaluate the performance
of an online outcome prediction framework f .

B. Moving Windows and Prediction Framework

While receiving a stream of events, a prediction framework
f can be updated, e.g., every time a new label (or a sufficient

number thereof) is received. Most importantly, when a new
label is received, a prediction framework can be re-evaluated.
This is the typical continuous evaluation scenario that we
consider in this paper.

Let t1, t2, ¨ ¨ ¨ , tk represent the points in time when the
corresponding outcome prediction frameworks f t1 , f t2 , ¨ ¨ ¨ ,
f tk are evaluated. We use a moving window approach, where
the window size is denoted by l. This moving window indexes
the last l labels received, which corresponds to the most recent
l completed cases. To clarify, we use Wt1 , Wt2 , ¨ ¨ ¨ , Wtk to
represent the sets of the last l completed cases at time t1, t2,
¨ ¨ ¨ , tk, respectively.

We introduce a performance measure θ, which can be any
metric like accuracy, error rate, F-score, AUC, or others.
This measure takes a prediction framework f ti and a set
of completed cases Wti to compute the performance of f ti ,
denoted as θpf ti ,Wtiq “ pti P r0, 1s. We extend the use of
θ to calculate a sequence of performance values associated
with the sequence of moving windows. Formally, let f˚ “

xf t1 , f t2 , ¨ ¨ ¨ , f tky be the sequence of prediction frameworks
and W˚ “ xWt1 ,Wt2 , ¨ ¨ ¨ ,Wtky the sequence of sets of
completed cases at t1, t2, ¨ ¨ ¨ tk, respectively; we overload
θpf˚,W˚q “ xθpf t1 ,Wt1q, θpf t2 ,Wt2q, ¨ ¨ ¨ , θpf tk ,Wtkqy “

xpt1 , pt2 , ¨ ¨ ¨ , ptky. For example, assuming θ computes the
AUC, and θ “ x0.75, 0.65, 0.85, ..., y, then 0.75 is the AUC
of the prediction framework f t1 on Wt1 , 0.65 is the AUC of
f t2 on Wt2 , etc.

V. CONTINUOUS PERFORMANCE EVALUATION

Traditionally, to compare two online prediction frameworks,
one tends to compute an aggregated measure of θ (e.g., the
average of AUC). In this paper, we propose the four meta-
measures of the performance measures based on the moving
average of θ to quantify the stability.

In the following, we briefly recap the moving av-
erage, the moving standard deviation, and the lower-
bound and upper-bound of the moving average over θ,
which we use to define the four performance meta-
measures later. First, given a sequence of performance values
θpf˚,W˚q “ xpt1 , pt2 , ¨ ¨ ¨ , ptky, and M P N` a natural
number, the moving average MAM pxpt1 , pt2 , ¨ ¨ ¨ , ptkyq “

xmat1 ,mat2 , ¨ ¨ ¨ ,matky where mati “ 1
M ¨

řk
i“k´M`1 pti

if k ą M ; otherwise, mati “ 1
k ¨

řk
i“1 pti

We now consider the moving standard deviation of the
moving average and use that to define the significant changes
in the performance sequence. To avoid confusion, we use φti

to denote the standard deviation associated with mati at ti.
Let θpf˚,W˚q “ xpt1 , ¨ ¨ ¨ , ptky “ p˚ be the sequence of
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performance measures, and MAM pp˚q “ xmat1 , ¨ ¨ ¨ ,matky

the corresponding sequence of moving average, we compute
the moving standard deviation φM pp˚q “ xφt1 , ¨ ¨ ¨ , φtky at

tk where φti “

b

ři
j“i´M`1pptj

´mati
q2

M if i ą M ; otherwise,

φti “

b

ři
j“1pptj

´mati
q2

i .
Let MAM pp˚q “ xmat1 ,mat2 , ¨ ¨ ¨ ,matky be the mov-

ing averages and φM pp˚q “ xφt1 , ¨ ¨ ¨ , φtky the standard
deviations, we define an upper-bound uppmatiq at ti as
uppmatiq “ mati `φti . Similarly, a lower-bound lbpmatiq “

mati ´ φti . When a performance value pti is below the
lower-bound lbpmati q, we say this pti is a drop point di,
i.e., di “ pti . For example, assume that the performance
values p˚

2 “ x..., 0.75, 0.65, 0.5, ...y, and the moving average
MAM pp˚q “ x..., 0.7, 0.69, 0.66, ...y and the moving standard
deviation φM pp˚q “ x..., 0.03, 0.03, 0.04, ...y. Then, the per-
formance values 0.65 and 0.5 in θ2 are two drop points, since
they are below the lower-bounds (0.66 and 0.62).

Using the drop points, we define a significant drop D “

xptu , ¨ ¨ ¨ , ptvy as a sequence of consecutive drop points.
Formally, let θpf˚,W˚q “ xpt1 , pt2 , ¨ ¨ ¨ , ptky “ p˚ be
the sequence of performance results, and MAM pp˚q “

xmat1 ,mat2 , ¨ ¨ ¨ ,matmy its sequence of moving average, we
define a significant drop D “ xptu , ¨ ¨ ¨ , ptvy as a sequence of
consecutive drop points, such that

‚ (1) for all tu ď ti ď tv , the performance pti P θ at ti is
below the lower-bound lbpmatiq, i.e., pti ă lbpmatiq

‚ (2) t1 ď tu ď tv ď tm, i.e., it is a subsequence of θ
‚ (3) the previous point is not a drop point (i.e., either
ptu´1 ě lbpmatu´1q or u “ 1 ), and

‚ (4) the next point is not a drop point (i.e., either pv`1 ě

lbpmav`1q or v “ m).
Taking the previous example of θ2, the two consecutive

significant drop points constitute a significant drop D “

x0.65, 0.5y. We use Dpθq “ tD1, D2, ...u to refer to the set
of all significant drops of a performance sequence.

A. The four meta-measures

Having defined the sequence of performance values, the
moving average, and the moving standard deviation, including
the lower bounds and upper bounds, we have defined the
significant drops. Based on these characteristics of the per-
formance values, we propose 4 meta-measures to continuously
monitor the performance and provide performance diagnostics
as discussed in Section II.

1) Frequency of significant performance drop: The first
meta-measure to analyze the volatility of the performance is
the frequency of significant drops. This measure is designed
to answer the question “How often the model performance
significantly deviated from (below) the moving average?” The
measure is defined as the number of observed significant drops.
Given the sequence of performance values θ “ xp1, ..., pny and
the drops Dpθq “ tD1, ..., Dmu, the (normalized) frequency
F of significant performance drops is defined as follows:

F “ |Dpθq|

When the frequency of the significant drop is low, the
prediction framework is stable and does not have a sudden
decrease in its performance.

2) Volatility of the performance: The next meta-measure is
the volatility of the performance, which answers the question
“How volatile are the performance values of the prediction
framework?” The standard deviation from the moving average
of the moving window is used to define this meta-measure.
Given the sequence of the standard deviations xφ1, ..., φny,
the average of the sequence of standard deviations Vperf is
defined as follows:

Vperf “

řn
i“1 φi

n

When the value of this measure is low, the variation
of the performance values is low, thus the performance of
the prediction framework is stable (or, in other words, less
volatile).

3) Magnitude of performance drop: This meta-measure
answers the question “How large is the absolute value of
the performance drops of the framework?” The magnitude of
performance drop is the difference between a drop point pi
and the moving average mai, i.e., |pi ´mai|. We then define
the maximum magnitude Mmax and the average magnitude
Mavg of performance drop as follows:

Mmax “ max
DPDpθq,piPD

|pi ´ mai|

Mavg “ avg
DPDpθq,piPD

|pi ´ mai|

When the maximum magnitude or the average magnitude
of the drop points is low (e.g., close to 0.1), then the absolute
decrease in the prediction performance is small, despite the
drops being significant.

4) Recovery rate: The recovery rate meta-measure aims at
measuring the speed of recovery of a prediction framework
from significant drops to an acceptable performance level.
This meta-measure is designed to answer the question “How
quickly can the model recover from a sudden change in the
prediction ability?” The recovery rate of a significant drop Di

is calculated by counting the number of drop points in a drop,
i.e., |Di|. Having defined the recovery rate of a significant
drop, the recovery ability of the prediction framework is
measured by the average of the recovery rate of all drops, given
the performance result θ. It is calculated using the average of
the collected recovery rate. The average recovery rate (Ravg)
of the performance result θ is defined as follows:

Ravg “

ř

DiPDpθq|Di|
|Dpθq|

The predictive model has a better ability to recover from
the drops with lower recovery rate values.

In essence, our proposed meta-measures enable decision-
makers to assess the performance stability of predictive pro-
cess models in event streams. Users can evaluate whether the
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predictive models exhibit a sufficiently stable performance for
their specific business scenarios. Let us assume the example
performance graphs by three different scenarios as in Fig. 1,
where the average performances of the models are comparable.
If the decision has to be made frequently or the process
can be frequently and dynamically changed, the predictive
model should be able to quickly adapt and recover the perfor-
mance. In addition, the performance drops should preferably
not deviate significantly from the moving average. This can
be assessed through the recovery rate and the magnitude
of performance drops, respectively; both should have a low
value. For example, in scenarios 1 and 3, the recovery rate
is relatively better (lower) than in Scenario 2, indicating a
faster restoration of performance. Additionally, scenarios 1
and 3 exhibit smaller magnitudes of performance drops than
scenario 2. For business scenarios that require a high level of
risk control, the predictive model should show less fluctuating
performance to reduce the potential risk of incorrect predic-
tions, i.e., having a low value on the frequency of performance
drops and the volatility of performance. Scenarios 2 and 3 are
better models for high-risk control than Scenario 1 due to the
relatively smaller number of performance drops and a lower
value on the volatility of the performance.

VI. EMPIRICAL ANALYSIS AND RESULTS

For the evaluation, we demonstrate the use of the proposed
meta-measures for assessing and comparing the stability of dif-
ferent types of online frameworks. We implemented both the
frameworks and the meta-measures. The code and data to re-
produce the experiments presented in this paper are available at
https://github.com/ghksdl6025/online ppm stability. The ob-
jectives of the evaluation are threefold: (O1) demonstrate
that the meta-measures assess the stability of each individual
prediction framework; (O2) use the meta-measures to compare
the stability of the frameworks; and (O3) select a suitable
framework for each of the three business scenarios.

a) Datasets: For the evaluation, we consider four pub-
licly accessible event logs. We reused two preprocessed and
labeled event logs from the existing outcome prediction bench-
mark [8]: the BPIC 20151 and the BPIC 20172. The other
two event logs are synthetic logs generated by processes
in which concept drift has been applied. We consider the
IRO5K and OIR5K3 event log, synthetic logs regarding the
assessment of loan applications [9]. Both synthetic datasets,
IRO5K and OIR5K, differ based on the type of concept drift in
processes considered. The outcome label evaluates to 1 (true)
if a request is accepted, and 0 otherwise. The two BPIC logs
have been chosen because they are real-world event logs that
have been used in the previous research on outcome predictive
monitoring [8], and they differ greatly in terms of variability;
Tab. II lists some descriptive statistics of the four event logs.

1at: https://data.4tu.nl/articles/dataset/BPI Challenge 2015 Municipality 1/
12709154/1

2at: https://data.4tu.nl/articles/dataset/BPI Challenge 2017 - Offer log/12705737
3at: https://data.4tu.nl/articles/dataset/Business Process Drift/12712436

TABLE II: Descriptive statistics of event logs used in the
evaluation

# cases # events # activity # variants Avg
events/case

Median
events /case

# true
labels

# false
labels

BPIC 2015 1199 52217 289 1100 44 42 506 693
BPIC 2017 1878 23941 22 376 13 15 576 1302
IRO5K 1000 10756 20 111 11 12 237 763
OIR5K 1000 11042 20 121 11 12 243 757

b) Setup: In this evaluation, we use three different types
of online predictive models: (i) an incremental classifier, the
Hoeffding adaptive tree classifier (HATC) [10], [11], (ii) a
classical, light-weighted classifier, i.e., the eXtreme gradient
boosting (XGB), and (iii) a deep learning model, i.e., Long
Short-Term Memory (LSTM) neural network. We show that
the proposed meta-measures can be used to assess and com-
pare the stability of different types of predictive models.

For the trace bucketing and encoding, we use the index-
based encoding and consider a different maximum prefix
length for each event log: 42 for BPIC 2015, 15 for BPIC
2017, and 12 for IRO5K and OIR5K as well, which corre-
sponds to the median number of events per case in each log.
The minimum prefix length is set to 2 for all event logs.

Regarding the training of the prediction frameworks, we
use the first 200 labels received as a grace period in all
experiments. Until the 200th label is observed, the events
without labels in the stream are not processed, and the labels
are used only to update the predictive models.

After the grace period, each predictive model can be
retrained and updated over time when the model training
condition is triggered. Regarding the model updated policies,
HATC is updated when a new label is observed, whereas XGB
takes a sliding window [12], which manages new labels, as a
training set and has been trained from scratch. For LSTM,
we train the model only once with the labels from the grace
period without further updates.

For the performance measure θ, we used the accuracy, the
recall, the precision, and the F1-score [13]. For computing the
moving average, we set M to 30.

To implement the online predictive model, we used the
Python package River [14], while the Scikit-learn [13] and
PyTorch [15] packages are used to implement the offline
predictive models.

c) Results: In total, we run 3 [frameworks] * (41 + 14
+ 11 + 11) [buckets] * 4 [performance measures, i.e., ACC,
Recall, precision, f1] = 924 configurations where we calculated
the four meta-measures. We structure the experiment results
with respect to the three evaluation objectives to ease the
discussion.

Prefix Average F1 score
from streaming Drops Volatility of

performance Max. Magnitude Avg. Magnitude Recovery rate

2 0.536 54 0.074 0.418 0.115 8.556
7 0.690 67 0.114 0.433 0.166 6.776

14 0.860 31 0.037 0.396 0.068 13.194

TABLE III: F1-score and meta-measures of BPIC 2017 log
with XGB classifier, for a short, medium, and long prefix
length.
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Prefix 2 Prefix 7 Prefix 14

Model update countModel update countModel update count

Fig. 2: F1-score updates and performance drops for BPIC 2017
log with XGB classifier, for a short, medium, and long prefix
length.

Predictive
model

Average F1 score
from streaming Drops Volatility of

performance Max. Magnitude Avg. Magnitude Recovery rate

HATC 0.646 57 0.058 0.382 0.095 5.825
XGB 0.824 72 0.082 0.431 0.123 6.653

LSTM 0.639 33 0.076 0.444 0.135 9.364

(a) Meta-measures: BPIC2017 log with prefix length 10

Predictive
model

Average F1 score
from streaming Drops Volatility of

performance Max. Magnitude Avg. Magnitude Recovery rate

HATC 0.694 44 0.058 0.290 0.088 6.568
XGB 0.778 44 0.113 0.347 0.152 5.455

LSTM 0.569 28 0.069 0.323 0.111 8.429

(b) Meta-measures: IRO5K log with prefix length 7

TABLE IV: F1-score and meta-measures for the F1-score
comparison by predictive models

Firstly, we would like to show that (O1) the meta-measures
can help to assess the stability of predictive models obtained
with a given model at different prefix lengths, enriching the
information given by the average F1-score over time.

Table III lists the average F1 scores and the values of
the four meta-measures for the XGB model obtained on the
BPIC17 log. We selected prefix lengths 2, 7, and 14, when
using the BPIC17 log. Fig. 2 shows the detailed moving
average and drop points of the F1 score of the XGB model,
for prefix lengths 2, 7, and 14, respectively. As far as the
average F1-score is concerned, the performance is higher at the
longest prefix length, mainly due to the additional information
available in the prefixes to train the predictive model. However,
a longer prefix would not always guarantee an improvement in
the prediction stability. For example, all the stability measures,
except the recovery rate, increase, when the prefix length
changes from 2 to 7, showing that the predictive model has
become more unstable when the prefix length increases in this
case.

As indicated by the volatility of the performance, the XGB
at prefix length 7 is much more volatile than the other two,
with a value of 0.114, almost twice as much when compared
to 0.074 at prefix length 2, and almost three times when
compared to 0.037 at prefix length 14. The moving averages
shown in Fig. 2 confirm and demonstrate this high volatility
visually. On the other hand, the recovery rates indicate that the
XGB at prefix length 7 recovers much faster, while at prefix
lengths 2 and 14, the XGB takes more time to recover to the
moving average.

Second, (O2) we compare the stability of different predictive

models for a given event log, to show that the proposed meta-
measures can be used to compare the stability of different
frameworks.

Table IV compares the performance and stability of the
three considered models for the BPIC 2017 and IRO5K event
logs. Among the three models, XGB outperforms the other
two models in both event logs for the average F1-score
from streaming. However, it is not the most stable predictive
model according to the meta-measures. XGB has higher values
on the meta-measures (more volatile) than the other two
models. These findings from Tab. IV emphasize that if a stable
predictive model is desired, which can recover quickly from
performance drops albeit with slightly lower accuracy, HATC
should be the preferred choice. As far as the performance
drop is concerned, the deep learning model (LSTM) is also
highly stable for the IROK5K log. However, LSTM appears
not to have been trained well enough to achieve a high average
performance (F1-score).

Finally, we show (O3) the selection of three configurations
in Tab. V that match the three critical business scenarios of
Fig. 1. We used the results on the event logs with concept drift
as an example.

Configuration Average F1 score
from streaming Drops Volatility of

performance Max. Magnitude Avg. Magnitude Recovery rate

C1 0.69 44 0.058 0.290 0.088 6.568
C2 0.95 26 0.018 0.096 0.032 7.692
C3 0.94 24 0.024 0.251 0.041 11.042

TABLE V: F1-score and meta-measures for the F1-score of
three selected configurations for the demonstration

F
re

q
u
e

n
c
y

Risk

Non-critical

scenario

C1: C2:

C3:

Fig. 3: Three configurations selected based on the meta-
measures, one for each critical scenario shown in Fig. 1

Figure 3 illustrates three configurations, each tailored to
one of the three critical business scenarios. We use them
to demonstrate how the proposed meta-measures can help to
highlight the performance results that better fit each scenario.
In terms of C1, the configuration exhibits higher volatility in
performance, as indicated by the meta-measures, except for
the recovery rate, which stands at 6.568. This high recovery
rate makes C1 suitable for low-risk high-frequency scenarios.
The next configuration, C2, has the lowest value of volatility

111
Authorized licensed use limited to: University Library Utrecht. Downloaded on November 15,2023 at 11:17:58 UTC from IEEE Xplore.  Restrictions apply. 



of performance with a value of 0.018. Moreover, the other
meta-measures of C2 are either the lowest or relatively lower
compared to the other configurations, making it appropriate
for high-risk high-frequency scenarios. For the high-risk low-
frequency scenario, C3 can be considered. This configuration
displays stable performance, characterized by the low value of
performance drops and volatility. However, the recovery speed
is comparatively slower than the other two configurations,
measuring at 11.042, making it suitable for low-frequency
scenarios. These findings illustrate how the proposed meta-
measures aid in identifying performance results that align with
specific business scenarios.

d) Discussion and Limitations: In the evaluation, we
have shown that the meta-measures capture the stability of
the performance in an intuitive way. For example, when the
volatility of performance is high, the performance is likely to
be unstable. We have also shown that we can use the meta-
measures to compare the stability of the performance.

An important remark is that the meta-measures are defined
using the moving average, which is computed based on the
moving window size M . Thus, changing M would have a
large effect on the meta-measures. In this paper, we keep
M consistent across the configurations to be able to compare
the meta-measures. In future work, we aim to investigate the
change of M and its influence on the meta-measures.

VII. CONCLUSIONS

In this paper, we have proposed a performance measurement
framework for outcome-oriented predictive process monitoring
in online settings. The framework contains four performance
meta-measures, which concern (1) the frequency of significant
drops, (2) the volatility of performance, (3) the magnitude
of performance drops, and (4) the recovery rate of the pre-
dictive model. Given a basic performance measure, i.e., any
confusion matrix-derived performance measure for prediction,
the proposed meta-measures can be used to derive additional
performance measures.

The application of the performance meta-measures allows
us to characterize and evaluate the performance stability of
an outcome-oriented predictive process monitoring model in
online settings. These meta-measures serve as valuable tools
to assess the appropriateness of a predictive model in various
business scenarios that differ in terms of decision-making
frequency and risk. For instance, a business scenario character-
ized by a high frequency with low-risk decision-making will
require a predictive process outcome model with a minimum
magnitude of significant performance drops and, most impor-
tantly, quick recovery to an acceptable performance level after
such drops. By employing performance meta-measures, we
can determine the suitability of predictive models for different
business contexts and make informed decisions accordingly.

For future work, the proposed framework can be extended
with various performance evaluation methods. For example,
instead of the prefix-length perspective, we may also comple-
ment the framework with a method that evaluates the accuracy
from the last-state perspective. In addition to our in-depth

exploration of the framework, we also intend to conduct an
analysis aimed at uncovering the underlying causes behind
instances of performance drops. Providing performance evalu-
ation from multiple perspectives may provide comprehensive
knowledge and explainability of online predictive monitoring
models, which also merits further investigation.
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