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Abstract

This chapter considers the general question of how technology impacts mathe-
matical contents for the case of algebra and addresses it from the conceptual
notion of instrumental distance. It first provides an overview of perspectives on
the teaching and learning of algebra in primary and secondary education. Next, it
presents the theoretical lens of instrumental distance, used to study how these
algebraic contents are transformed by digital tools. Using three examples of
digital resources that cover different school levels and different types of design,
the chapter shows that this lens indeed reveals how digital technology may create
distance with respect to the regular algebraic contents and procedures carried out
in the paper-and-pencil environment. The results thus raise awareness not only of
new potentialities, but also of the complexity generated by technology. They
suggest that being aware of the instrumental distance would be beneficial while
developing digital resources and professional development programs that aim to
integrate digital technologies into the teaching and learning of algebra.
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Introduction

How do digital resources transform the mathematical contents that are to be taught?
In this chapter, we examine this general question for the specific case of algebra.
Since the late 1980s, many digital resources around the world have been specifically
created to enhance the learning of algebra. Some other tools, imported from outside
education, such as CAS (computer algebra systems) or spreadsheets have been
analyzed as also promoting algebra learning. Last, some educational tools designed
for other teaching areas, such as programming games like LightBot, have also been
considered as interacting with algebra learning (Bråting and Kilhamn 2021). In all
cases, research in mathematics education has shown potentialities and new possibil-
ities offered to algebra education. Therefore, one could wonder about the teachers’
slow uptake of these technologies in algebra education.
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In 2006, Ferrera, Pratt, and Robutti carried out a review over the three previous
decades of PME1 research focusing on the impact of technologies with respect to
three algebraic notions: expressions, variables, and functions. Their review raised
some research questions, among which was the way the use of technology tends to
re-define these school algebraic contents. Extending this question of the technology
impact on algebraic objects, examined in isolated ways, our study aims at taking into
account the relationships that these objects maintain in the teaching of algebra and
the fact that technology also affects these coherencies. Doing so, this chapter shows
the effects of technology not only through its didactic potentialities, but also through
that of the complexity and constraints it generates, a complexity that will have
consequences on teaching practices and may explain the difficulties of integrating
these technologies into the teaching of algebra.

To address this question, we use the notion of instrumental distance (Haspekian
2005) as a theoretical lens. It will be used to analyze three cases of digital resources
that may affect school algebra – bloc programming, spreadsheets, and dynamic
geometry – and that cover diverse school levels and types of design. The construct
of instrumental distance is based on Rabardel’s (2002) concept of instrumentation, a
process that highlights the non-neutrality of tools on subjects’ conceptualizations:
Using a tool to perform a mathematical activity affects the conceptualizations of the
mathematics at play. As a consequence, the didactic possibilities offered by a new
technology affect the usual ways of approaching the school mathematical contents.
The instrumental distance designates this qualitative gap between the ways of
approaching coherent school mathematical contents of traditional teaching in the
paper-and-pencil environment, compared to those in the digital environment. In the
teaching of algebra, as we shall see, different approaches currently coexist in
the paper-and-pencil environment. The distance generated by an instrument is
studied regarding these referential approaches. Therefore, before further developing
this theoretical notion (section “Instrumental Distance: Theorizing the Impact of
Digital Tools on Mathematics”), the following section gives an overview of the
objects and techniques’ characteristic of these algebraic approaches, discussing them
from each of these teaching perspectives. The ways Scratch, Excel, or GeoGebra
affect these various interconnected objects and techniques of school algebra are then
analyzed with respect to these different perspectives (Sections “Early Algebra with
Scratch,” “Generalized-Arithmetic Approach with Excel,” and “A Functional Per-
spective on Algebra: Equation Solving with GeoGebra”).

Algebra and Algebraic Thinking

While many characterizations of algebra (Carraher and Schliemann 2007; Kaput
2008; Kieran 2007; Mason et al. 1985), and algebraic thinking (Kieran 2004, 2018;
Stephens et al. 2017), have been advanced by researchers for the domain of school
algebra, the definition offered by Radford (2018, p. 8) is central to this chapter:

1Psychology of Mathematics Education
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Algebraic thinking

• Resorts to:
– Indeterminate quantities
– Idiosyncratic or specific culturally and historically evolved modes of

representing/symbolizing these indeterminate quantities and their operations
• Deals with:

– Indeterminate quantities in an analytical manner

The above definition reflects the historical development of algebra, with its equa-
tions containing letters that represent unknown numbers (e.g., x2 þ 10x ¼ 39),
solvable by syntactic methods inspired by Al-Khwarizmi and formalized by Viète
and Descartes. Radford’s use of the term indeterminate quantities comprises, more
broadly speaking, unknowns, variables, generalized numbers, and parameters (all of
these terms defined in section “Variables”). While Radford clearly includes alphanu-
meric symbolism for the representation of indeterminate quantities, he stresses that
such symbolism is not necessary – indeterminate quantities can be signified with
natural language, concrete materials, unconventional symbols, and even with numbers
used in a generic manner. Lastly, the assertion that algebraic thinking resorts to dealing
with indeterminate quantities in an analytical manner means that the indeterminate
quantities and their operations are handled as if they were known – they are added,
subtracted, multiplied, and divided, just as is done with determinates.

When algebra was incorporated into school curricula, it was referred to as
generalized arithmetic – the generalization of ways of operating with numbers, in
accordance with the basic properties of arithmetic and equality (Kilpatrick and Izsák
2008). The mathematical notion of function – associated with graphical curves –
which developed historically much later than that of algebra, was initially viewed as
a minor part of school algebra. With their gain in prominence in the 1960s – in the
aftermath of the Bourbaki and “new math” movements – and heightened further in
the 1980s with advances in graphing-capable digital tools (e.g., Fey 1984), functions
came to be a full-fledged component of school algebra. The result was that there
were now two rather different perspectives on the objects and techniques of school
algebra, albeit with each having its own internal coherence: a generalized arithmetic
perspective and a functional perspective.

The ensuing presence of these two components within school algebra created
challenges for students when moving from one perspective to the other. Sierpinska
(1992) has argued that, even if some objects are common to these two perspectives,
“the attention focuses on different aspects of them and assigns them different roles”
(p. 37).

The Objects and Techniques of Algebra

In elaborating on the various objects and techniques of school algebra, we discuss
each from the dual perspective of generalized arithmetic and function. The objects to
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be presented are variables, expressions, and equations; the techniques are those
related to equation solving – all within paper-and-pencil environments.

Variables
While the modern notion of variable, according to Wikipedia, refers simply to a
symbol representing a mathematical object that either is unknown, or may be
replaced by any element of a given set (e.g., the set of real numbers), algebra
educators and researchers have enlarged on this characterization so as to be able to
address more subtle distinctions and include the following under the umbrella term
of “variable” (e.g., Arcavi et al. 2017): unknown, placeholder, varying quantity,
parameter, and generalized number. (Note that, having opted for the umbrella term of
“variable” rather than that of “indeterminate,” we then decided to use the phrase,
varying quantity, in order to avoid the terminology of variables that vary.) As will be
seen, algebraic variables involve a shift in interpretation as one moves not only
between the two main perspectives on algebra, but also within a given perspective,
depending on the task at hand (Philipp 1992).

An unknown, usually represented by a letter that signifies a fixed value, is found
in an equation (e.g., 2xþ 5¼ x� 6), which upon being solved yields the sought-for,
specific, numerical value (or values, depending on the equation). However, it is also
the case that equations, such as the quadratic 3x2 þ 8x þ 5 ¼ 0, can be solved more
generally with the use of the placeholders a, b, and c to stand for the coefficients and
constants. These placeholders represent nonspecific values, as in ax2 þ bx þ c ¼ 0,
where the literal solution for the unknown x shows at once the solutions for an entire
set of equations (i.e., the quadratic formula), and where the process used to arrive at
that symbolic solution lays bare an underlying general method for solving such
equations (Ely and Adams 2012).

In the functional perspective, variables are typically interpreted as varying quan-
tities –more specifically, the idea of an independent variable varying freely while the
dependent variable changes in accordance with the value of the independent vari-
able, within a systematic functional relationship, such as y ¼ 2x þ 7 (Freudenthal
1982). Variables that are interpreted as parameters usually occur within the same
functional perspective on algebra – parameters being defined as nonspecific values
that identify a collection of distinct cases and that can take on particular numerical
values, such as the parameter a in the function y ¼ 2x þ a. In much of the graphing
activity involving linear functions, parameters are treated as constants; however,
activity exploring the role of parameters could require shifting the interpretation to
that of an unknown (Arcavi et al. 2017).

Variables that are interpreted as generalized numbers can occur in different
contexts. One context is the expression of fundamental properties of arithmetic
and equality (e.g., a þ b ¼ b þ a), and more generally any identity; another is
that of polynomial expressions (e.g., 3x2 + 2x þ 5) whose letter terms have no fixed
value. Note, however, that while the variables of a polynomial expression are usually
considered generalized numbers, if such an expression were part of an equation to be
solved, the variables would be interpreted as unknowns. Furthermore, within the
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functional perspective, the same expression might be viewed as an implicit function,
whose variable terms are interpreted as varying quantities.

Expressions and Equations
Algebraic expressions consist of variables, coefficients, and constants, along with
the operation signs of addition, subtraction, multiplication, division, and exponen-
tiation (e.g., 2x� 5, 3x2 � 14xþ 11, 4xþ 3y, and (xþ 5)(x� 3)), but no equal sign.
Rational expressions, which are a type of algebraic expression, are those expressions
that can be written as rational fractions (e.g., (x2 � 1)/(x3 � 1)). Note that arithmetic
expressions (e.g., 150 þ 23 � 17) do not contain variables.

Algebraic equations consist of two algebraic expressions (or an algebraic expres-
sion and an arithmetic expression), with an equal sign between them (e.g., 7x þ 5 ¼
2x � 3). As already mentioned, within the generalized arithmetic perspective,
equations are usually considered as objects to be solved. However, not all equations
are of the sort, “equations to be solved.” For example, well-known geometric
formulas are expressed in the form of equations, such as the formula for area of a
rectangle, A ¼ LxW, or for area of a square, A ¼ S2. In such formulas, the variables
can be considered as generalized numbers, or as varying quantities, or as unknowns,
depending on the nature of the task or problem situation. Then, there are also the
equations that are associated with the functional perspective, generally written in the
form of y¼“the expression of the functional relation” – the functional equation
typically being an object that is to be graphed, but also sometimes to be solved as
when two functional relations are equated. Research has documented (e.g., Chazan
and Yerushalmy 2003) the many challenges faced by algebra students in attempting
to sort out these various types of equations and the different meanings given to the
variables – dilemmas, in fact, exacerbated by the two very distinctive generalized
arithmetic and functional components of school algebra.

Equation Solving
Solving an equation in school algebra means finding all the values (numerical or
symbolic) for the unknown that satisfy the given equation. Finding the solutions to
an algebraic equation can involve several different methods, depending on the nature
of the equation. While we distinguish between arithmetic and algebraic methods of
equation solving – arithmetic methods including the use of known number facts,
“covering-up,” and trial-and-error step-by-step substitution (see Kieran 1992) – our
focus here is algebraic methods.

Maintaining equivalence is at the heart of equation solving. While equivalence
has both a computational and structural dimension (Kieran and Martínez-Hernández
2022), within the algebraic world the structural is at the forefront. The structural
transformations that maintain top-down equivalence from one step of the solving
process to the next are of two types: (i) Subexpressions on either side can be operated
upon by applying properties and (ii) the equation itself can be operated upon by
performing the same operation on both sides. Both types of structural transforma-
tions are often needed to arrive at the solution – a solution that when substituted back
into the initial equation yields a numerical identity. As Freudenthal (1983) reminds
us, even if the value of the unknown remains the same throughout the equation-
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solving process – as does the truth value of the equation – the application of the latter
type of transformation changes the numerical value of the left and right sides from
one equation to the next.

When, however, the functional perspective on algebra is dominant, the idea of
equation solving does not immediately present itself. In fact, graphing is the main
algebraic technique within the functional perspective – even if for certain types of
functions, some symbolic manipulation may be needed for determining salient
points to be graphed. The functional equation y ¼ 7x þ 5, for example, is not an
equation to be solved. It is an object to be graphed. If this function is to be compared
with another, such as y ¼ 2x � 3, it too is graphed. If one were then to ask, “What is
the point of intersection of these two graphs?,” one would usually try to locate within
the intersecting graphs of the two functions the value of x for which the two
functions have the same y-value – but we note that for non-integer values of x, it
is only an approximate value. For an exact solution to the point-of-intersection
problem, one would need to turn toward the solving techniques used within the
generalized arithmetic perspective (sometimes referred to as the symbolic approach,
so as to differentiate it from the graphing approach). This necessary interweaving of
perspectives would involve equating the expressions of the two functional relations
(e.g., 7xþ 5¼ 2x� 3) and solving for a variable that has now become an unknown.
Within the functional perspective, the solutions to such equations are sometimes
referred to as zeroes of the function (as would be illustrated if the eq. 7x þ 5 ¼ 2x �
3 were to be transformed to 5x þ 8 ¼ 0, such a transformation suggesting that this
equivalent equation can also be interpreted as the equating of the functions y¼ 5xþ
8 and y ¼ 0). In this somewhat unique example of bringing together the two main
perspectives on school algebra, although the solving technique is patently that of
generalized arithmetic, the interpretation of the expressions that form each of the
equivalently transformed equations is clearly that of the functional perspective.

Early Algebra

While the above content of school algebra is typically encountered in secondary
school (from about the age of 13 years), the recently emerging field of research and
practice, referred to as early algebra (e.g., Kaput et al. 2008; Kieran et al. 2016;
Kieran 2022), has aimed at finding ways to build meaning for the objects and ways
of thinking to be encountered within later algebra from the earliest years of primary
school (grades 1–6). More specifically, the instructional focus is oriented toward
moving students away from a purely arithmetical way of thinking by developing
awareness of the structural, relational, and general aspects of certain algebraic
objects and techniques – aspects that are often taken for granted within secondary
school algebra. Notwithstanding the argument by Carraher et al. (2008) that early
algebra is not algebra early, the essence of the objects and techniques being dealt
with is basically the same. While the representations and discourse may be more
accessible, young students do experience variables that are unknowns and variables
that are varying quantities, as well as equations that are to be solved and equations
that represent functional relations. A few examples will suffice to illustrate the nature
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of the connections of early algebra activity with the generalized arithmetic and
functional perspectives on algebra sketched above.

Both numerical and figural patterning have been used as a means of sensitizing
young students to the generalizing inherent to algebraic activity, with many studies
centering on growing figural patterns (Rivera 2013). With respect to numerical
patterning, some studies (e.g., Mason et al. 2009) have focused on pattern recogni-
tion and detecting underlying structures, such as 121, 1221, and 12,221. However,
most have been aimed at encouraging students to produce some form of expression
for the generalized functional relation underpinning the pattern. For example, Moss
and London McNab (2011) describe the use of a function machine (handmade out of
cardboard) where 8-year-old students took turns to try and figure out the rule created
by a classmate (e.g., “double the number and add 3 more”). The pattern of input and
output values was recorded in a T-table. The authors stress that when the values are
recorded in a sequence where the inputs increase by 1, students tend to guess an
arithmetically oriented recursive rule (e.g., “keep adding 2 as you go down”);
however, when the pairs of values are recorded in a non-sequential way, students
are more likely to deduce a correspondence rule for their generalization – that is, a
functional correspondence relating output to input.

Introducing the notion of variable has been another current of early algebra research
– variables that are either varying quantities/numbers or unknowns, and often involving
unconventional means of symbolizing. With respect to representing varying quantities,
Carraher and Schliemann (2018), for example, introduced fourth graders to situations
such as “Mike has $8 in his hand and the rest of his money is in his wallet; Robin has
exactly 3 times as much money as Mike has in his wallet. What can you say about the
amounts of moneyMike and Robin have?,”which led the study participants to generate
the expressions, “Mike’s money, M, is Nþ8, and Robin’s money, R, is 3xN.” For
studies acquainting students with unknowns, and the associated ideas of equations and
equation solving, some researchers have used simple, multi-operation equations, such
as 7þ6 ¼ □þ5, and have engaged students in expanding their views of the equal sign
from an operational to a relational symbol (e.g., Carpenter et al. 2003). Others have
employed word problems as a means of bringing forward not only the idea of
representing unknowns within an equation but also the notion of an equation describing
the word problem situation with the operations that have been stated in the problem. For
example, Usiskin (1988) has used the problem, “When 3 is added to 5 times a certain
number, the sum is 48; find the number,” to illustrate the shift required by young
students in moving from immediately finding the answer, often mentally, by subtracting
3 from 48 and then dividing by 5 (i.e., the arithmetical approach of inversing), toward
first representing the problem with an equation containing an unknown, along with the
problem’s given operations of addition and multiplication (e.g., 5x þ 3 ¼ 48), before
going about solving the equation. Still, other researchers (e.g., Radford 2022) have used
story problems represented by concrete and iconic semiotic systems to introduce
students as young as 8 and 9 years of age to the solving of equations having occurrences
of the unknown on both sides of the equation and to the technique of performing the
same operation on both sides.

As a closing remark to this section, we reiterate that the above discussion of the
different perspectives for thinking about, and acting with, the objects and techniques
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of algebra were situated within paper-and-pencil environments. The sections that
follow present the construct of instrumental distance and then study the distances
that Scratch, Excel, and GeoGebra present, respectively, to one or the other of these
perspectives, analyzing, within each, the impact of digital tools on ways of concep-
tualizing these same objects and techniques.

Instrumental Distance: Theorizing the Impact of Digital Tools
on Mathematics

Origin and Theoretical Roots

The handwriting and paper support environment invites the techniques described
above of literal transformations of equations, graphing of functions, and symbolic
manipulation of variables. Digital environments may change the conceptualizations
of these objects and techniques and disrupt the usual connections described in
section “Algebra and Algebraic Thinking,” which may then be reconfigured: New
ways to solve similar tasks are introduced, in addition to or replacing the usual ones,
and new tasks and objects may appear.

As Lagrange et al. (2003) noted, the changes introduced by technology were
precisely one of the initial arguments in the research literature for using technologies
in mathematics courses. Yet, from the 1990s, it became clear that the integration of
digital environments in mathematics education was far from simple, despite instruc-
tions and resources, and required new frameworks (Artigue 2020). The concepts of
instrumentation and instrumental genesis, developed in cognitive ergonomics
(Verillon and Rabardel 1995), then found favorable ground in didactic theories
(Trouche 2016). This led to the Instrumental Approach to Didactics (see also chapter
▶ “Introduction to Section: Roles of Theory, Methodology, and Design of Digital
Resources in Improving Mathematics Education” in this book) – a frame that diverse
authors have contributed to, such as Artigue, Drijvers, Lagrange, and Trouche. This
approach allowed the authors to shed light on some complex phenomena in the
instrumental geneses of computer algebra systems (CAS). The instrumentation of
CAS changes the usual algebraic concepts and moves the techniques far away from
the usual institutional techniques. Instruments are non-neutral on learners’ concep-
tualizations. For example, Drijvers (2003) showed that the students’ instrumental
geneses of CAS impact on their understanding of the notion of parameter. Similarly,
research revealed that using a graphing calculator leads to schemes that impact on
the students’ conceptualizations of the notions of limit (Guin and Trouche 1998) and
of tangent line (Guin et al. 2004).

Thus, in the domain of algebra learning, evidence of a certain distance was
beginning to emerge. For example, Tabach and Friedlander (2008) explored how
spreadsheets have an impact on algebraic transformational tasks and indicated that
spreadsheets may alter the early learning of symbolic transformations. For Hoyles
et al. (2020, p. 80): “the distance between the syntax of Spreadsheet formulas and
algebraic syntax may be a hallmark of weak mathematical fidelity.” A little later in
the text, they return to the idea of distance to emphasize that not only are the objects
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changed by spreadsheets, but also the techniques: “the spreadsheet method for
solving word problems (. . .) is far [our emphasis] from the Cartesian method of
solving problems” (p. 81).

Haspekian (2005), also addressing the gap between spreadsheet and paper-and-
pencil algebra, has used the same term “distance” and proposed, within the frame of
the instrumental approach to didactics, the construct of instrumental distance – a tool
that examines the impact of technology not only on mathematical contents but also
on the connections that these contents usually have in mathematics teaching.

The Notion of Instrumental Distance

The mathematical activity of a subject depends on the environment used to conduct
that activity. Solving a task with digital technology can differ and be quite distant
from solving the same task in the paper-and-pencil environment. This idea of
“distance” finds a theoretical basis in the instrumental approach framework, which
highlights, through the concept of instrumental genesis, the non-neutrality of instru-
ments on the subjects’ conceptualizations (Rabardel 2002). By applying this to
mathematical activity, the notion of instrumental distance (ID in the following)
points to the qualitative gap between the mathematics “living” within a digital
environment, compared to those in the usual paper-and-pencil one.

As seen in the case of algebra, school mathematics contents do not live in an
isolated way. They maintain connections between them, giving rise to different
coherent conceptual perspectives. To take into account the fact that technology
may affect these usual connections, the notion of ID also relies on Vergnaud’s
(2009) concept of mathematical conceptual field: a coherent network of mathemat-
ically interconnected tasks, techniques, and objects, with their vocabulary, defini-
tions, and representations – linguistic and symbolic. The perspectives described in
section “Algebra and Algebraic Thinking” are examples of portions of conceptual
fields for algebra learning. Each of them, as a whole, encompasses its coherent set of
tasks, objects, techniques, representations, etc., according to the institutional context
(grade level, culture, epoch, etc.). Using a digital environment may impact on these
conceptual fields, bringing out a different algebraic framework, with its own con-
tents and coherences. The ID aims at identifying and documenting all the differences
that may occur between the mathematical framework that the tool invites and the one
of the usual institutional conceptual field. These differences may appear at the level
of the field’s constituents (objects, representations, vocabulary, type of typical tasks,
and resolution techniques), as well as their connections. The ID of a new environ-
ment is thus examined relative to a given institutional context, with its usual
conceptual fields in the paper-and-pencil environment. In this context, the ID
between a digital environment and paper-and-pencil environment, or, more generally
between two environments, is defined as the overall technical and conceptual
differences that emerge in the instrumental geneses of these two environments.

For example, if we consider the conceptual perspective of the generalized arith-
metic approach to algebra (section “The Objects and Techniques of Algebra”), its
usual algebraic contents (the main concepts, symbolizations, vocabulary, and

10 M. Haspekian et al.



solving techniques) are all changed in spreadsheets (see section “Generalized-Arith-
metic Approach with Excel”). As a result, the whole algebraic framework offered in
Excel is quite distant from that in the paper-and-pencil environment.

The paper-and-pencil environment (p&p in the following) does not play a role
symmetrical to the others. It has a referential status in the traditional context of
mathematics teaching and learning. School knowledge is institutionally defined in
relation to p&p. The transformation of these referential contents into contents that
are more or less distant raises the question of their articulation, especially in the case
of too significant an ID. The contents can be transformed in a too complex way. They
can also, conversely, be too simplified; the environment can, for example, automate
and consequently eliminate the mathematical solving of some tasks, which were
formative in themselves. We may recall the example of the log tables that have
disappeared with calculators or the debates on the use of calculators, which supplant
the technique of division, whereas this technique is formative in itself (it allows, for
example, to understand why certain divisions never end, why certain rational
numbers are not decimal, and why their decimal part is periodic).

Thus, from a teaching and learning perspective, too great an ID helps to explain
teachers’ resistance to integrating new technologies. On the other hand, the
affordances and didactical potential of a tool depend on how the algebraic contents
are transformed by the tool. Therefore, a certain ID is needed for a tool to present
opportunities for learning.

Factors Generating Instrumental Distance

The ID carried by a tool has different sources and different ways of impacting the
mathematical activity. One source of ID is “computational transposition” (Balacheff
1994): a phenomenon that transformsmathematical concepts due to computers’ internal
and external (interface) representations. More generally, the instrumentalization of the
new environment could require technical knowledge that can also interfere with algebra
(due to the design of the tool, its functionalities, the new vocabulary, new objects, etc.).
Other sources are the algebraic techniques and associated schemes that may differ
within the instrumentation process.

Another source of ID arises from whether or not the environment has been
designed for the purpose of teaching mathematics. Thus, the use of a mathematical
tool such as a spreadsheet will generate a greater distance than the use of a dynamic
geometry software. A tool designed with a non-educational aim may have a distance,
for example, at the level of the vocabulary involved, which can be distant from the
usual mathematical vocabulary. This puts demands on the teacher in linking the
terms to the usual mathematical vocabulary. While the geometry software refers to
points, lines, circles, etc., the spreadsheet refers to cells, rows, and columns. How do
we relate them to the concept of variable in mathematics?

The mathematical domain that is considered is another factor. The use of a
dynamic geometry software to teach algebra will generate a greater distance than
its use for geometry. The use of a spreadsheet to teach algebra will generate a more
significant distance than its use in statistics.
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The ID carried by a tool, regarding a given conceptual field, manifests itself in
two ways. The tool can transform each of the components of this field with respect to
the usual algebraic contents: objects, vocabulary, symbolizations, etc. It can also put
forward contents, which, even if not modified, prove to be unusual with respect to
this specific field.

Resulting from the points above, we synthesize here the different directions in
which one can look for possible sources of ID, some very focused, others broader:

• The vocabulary
• The representations, symbolizations
• The tasks, the solving techniques
• The contents involved are as follows: Are the usual objects modified? Does the

environment introduce new objects? Are they interfering with the mathematics?
• The algebraic framework that the digital environment induces in general or when

solving some tasks

One could examine each of these points in the new environment and compare
them to the p&p. For example, one could compare the p&p technique with the
corresponding one in the new environment for the same mathematical task.

The comparisons between the main characteristics of the algebraic frameworks
invited by an environment with the p&p ones for the same tasks may be presented in
a table as in Table 1.

In the following, we will examine various tasks emblematic of these algebraic
perspectives: solving an arithmetic word problem, generalization/patterning task,
solving an equation (with parameters or not), and see how the contents, as much as
the connections usually put forward in p&p for these tasks, are affected.

Early Algebra with Scratch

Nowadays, the use of programming environments is requested in several countries’
curriculum. In early grade levels, block programming languages such as Scratch2

may be used for developing computational thinking but also mathematical thinking

Table 1 ID between algebraic frameworks in p&p and in another environment

Main characteristics of the algebraic framework p&p Other environment

Fostered objects

Fostered processes of solving tasks

Other relevant points (depending on the mathematics at stake) as:
Fostered representations
Pragmatic potential/major field of problems
Nature of solutions, etc.

2https://scratch.mit.edu
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as these languages bring certain important mathematical content into play (Benton
et al. 2017). Some of these contents strongly relate to algebra. Focusing on algebraic
concepts such as equality, variable, or function within three different types of
programming environments, Bråting and Kilhamn (2021) draw attention to a certain
critical distance between the domain of algebra and that of programming: “We reveal
potential conflicting interpretations when these concepts appear in the different
systems of representation of these domains” (p. 171). Here, we focus on Scratch
and illustrate the ID it generates in the context of algebra learning in the early grades.

At this school level, algebra teaching is often supported by the study of structures
and relationships arising in arithmetic, viewed in connection with the generalized
arithmetic or functional perspectives on algebra (see section “Early Algebra”). To
show the ID of Scratch regarding these views in p&p, we first focus on a simple
arithmetic word problem and thereafter a problem based on the Fibonacci sequence.

An Arithmetic Word Problem in Scratch

This part concerns the use of the equal sign and its mathematical formalization, the
concept of variable and its mathematical meaning, and the solving technique.

An Arithmetic Word Problem Involving a Two-Step Calculation
Anna buys three cookies for SEK 12 each. Then, she buys a glass of lemonade for
SEK 15. How much does she have to pay?

In p&p, young students sometimes solve this kind of task with calculations
written one after the other, employing what has been referred to (in Kieran 1981)
as a “running total” use of the equal sign:

3 � 12 ¼ 36þ 15 ¼ 51 ð1Þ
Answer: Anna pays SEK 51.
The answer is correct but mathematically the equal sign to the left in the solution

process is not used in the conventional way.
This points to a well-known difficulty for students in the passage from arithmetic

to algebra. In an arithmetical context, young students tend to consider the equal sign
from a computational or operational perspective (5 þ 3 gives 8) rather than relation-
ally or structurally (see section “Early Algebra”). In a teaching context, this error
could be an opportunity for a teacher to explain the meaning of the equal sign from a
structural dimension.

Yet, the solution process (1) above reflects how we in real life solve this kind of
task mentally: We would probably first have multiplied 3 by 12 which equals 36 and
then added 15 to 36. However, in mathematics there is no given syntax that directly
corresponds to these steps of solving. You do not erase “3 � 12¼”, which you actually
do when solving in your head. Instead, in mathematics the most common way to
write down the equality is in the synthesized form:
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3 � 12þ 15 ¼ 51 ð2Þ
Note that, unlike (1), this process does not include 36, the intermediate result,

coming from a first calculation used when calculating mentally. The point here is that
in real life, we solve this kind of task stepwise, which corresponds to the process (1)
but not to the mathematical equality (2).

A mathematical technique more similar to the stepwise approach (1) can be
written by dividing the synthesized calculation “3 � 12 þ 15” into two independent
calculations: In the first, the intermediate value 36 is calculated and then carried over
to the second that calculates the final result:

3 � 12 ¼ 36 ð3Þ
36þ 15 ¼ 51

Solving the Task in Scratch
In programming, everything is performed stepwise. Therefore, a programming
environment such as Scratch seems interesting for this kind of task. Let us examine
what a solution process can look like there.

Scratch is a block-based visual programming language adapted primarily for
children. Using a block-like interface, users can program a sprite (an object, or a
character) to perform functions controlled by scripts. Figure 1 shows a typical way of
solving our task. The program is simple in the sense that it uses only a succession of
one-step instructions. It uses a variable moneyToPay, which is initially given the
value 0 by the assignment block “set [variable] to.” By using the block “change

Fig. 1 A Scratch code for solving the task
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[variable] by,” the multiplication “3 � 12” is then added to 0 (and the result is
assigned to the same variable). Thereafter, the sprite displays the intermediate result
36 (Fig. 2a) before the program adds 15 (again assigning the result to the variable
moneyToPay). Finally, the sprite displays the last value stored in moneyToPay
(Fig. 2b).

First, we can notice that Scratch shows significant differences in the solving
technique and its representation, particularly concerning the equal sign. Unlike in
p&p, the solving approach does not provide the opportunity to discuss the meaning
of the equal sign since it is completely absent in the program. Instead, we find some
new objects, which do not exist in p&p solving approaches, as the variable blocks
“set [variable] to [value]” and “change [variable] by [value].” These two
instrumented notions do not transfer to p&p. The connection between the techniques
carried by the two environments is therefore weak.

Second, Scratch adds an algebraic content that is not present in p&p approaches
for this type of word problem: the variable concept. The code (Fig. 1) includes the
variable moneyToPay, whose value is updated throughout the program. In p&p
mathematics, we cannot update variables in that way. On the other hand, it is
possible to algebraically manipulate variables without any specific value being
assigned. This is not possible in programming languages such as Scratch, Python,
and JavaScript since every operation involving a variable operates on its assigned
value (Bråting and Kilhamn 2021).

In this kind of task, in p&p mathematics, we store intermediate values such as
36 as a part of the calculation. The variable moneyToPay can perhaps be seen as
hidden within these calculations. The point is that there is no mechanism in math-
ematics that temporarily can hold a value3; instead, a temporary value needs to be
explicitly included within the calculation. Thus, the Scratch solving approach pro-
vides an opportunity to introduce a variable concept already in early grades. How-
ever, it is not an easy task for the teacher as the vision of this concept offered by

Fig. 2 Sprite saying the cost for cookies (a) and sprite saying the total cost (b)

3If the solving process is more complex, we may need to introduce one or several variables
corresponding to important subgoals of the broader calculation.
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Scratch differs from that in p&p. As seen above, there is an ID between the variable
concept in Scratch and in p&p mathematics.

In conclusion, using Scratch to solve this task does not afford the occasion to
discuss students’ difficulties in understanding the equal sign. In addition, Scratch
brings new objects into the scene, in particular the concept of variable, which is
moreover considerably transformed compared to the mathematical concept of vari-
able. The variable concept is further discussed in our next example.

Pattern Generalizing and Variables

An important part of early algebra is to develop the idea of generalizing, where one
common way is to use patterns and number sequences (see section “Early Algebra”).
In our next example, we will consider a task based on a well-known number
sequence:

Consider the Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, . . .

I. How does the sequence of numbers continue?
II. Let the numbers in the sequence be denoted F1, F2, F3, . . ..

How can you get the next number in the sequence? Try to describe it
mathematically

III. Can you write a program in Scratch that calculates any number in the Fibonacci
sequence?

In the first task, the students are supposed to find out that each number in the
Fibonacci sequence is the sum of the two preceding ones. The second task is more
difficult since it can only be solved if the students are familiar with recursive
formulas, which in this case can be expressed as Fnþ2 ¼ Fnþ1 þ Fn for n > 1, and
F0 ¼ 0 and F1 ¼ 1 (where F is short for Fibonacci). Since the task is intended to be
solved by young students, we can assume that this is problematic due to the
complicated notation. Let us move on to the third task. In Fig. 3, we show an
example of what a program in Scratch that calculates a specified number of terms
in the Fibonacci sequence can look like.

The program includes five variables; prev, curr, next, countEnd, and the loop
variable count. Note that in programming the name of a variable often reflects its
content and gives the programmer a better understanding of the purpose of the
variable. In this case, we avoid the mathematical notation Fnþ2 ¼ Fnþ1 þ Fn and
instead use the more intuitive notation next ¼ curr þ prev. The program starts by
assigning the variables prev and curr and count their initial values 0, 1, and 0. Then,
the program asks how many numbers in the Fibonacci sequence are to be calculated
by using the sensing block “ask and wait.” Finally, the Fibonacci numbers are
calculated one after the other in the loop block “repeat until.” For each iteration,
in the loop the sprite writes the current Fibonacci number on the screen. Now, let us
take a closer look at the different characteristics of the variables in the program and
compare this with the mathematical view.
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The variable countEnd is assigned a value through the assignment block “set
countEnd to answer”where “answer” is the value entered by the user of the program.
The answer block is a temporary variable, although not identified as a Scratch
variable in an orange block since it is tightly bounded to the blue sensing block
“ask and wait.”Note that the value of countEnd is never reassigned, it keeps its value

Fig. 3 A program that calculates a specified number of terms in the Fibonacci sequence
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throughout the whole program; that is, it can be seen as a constant. This is different
from the other variables that are changing their values throughout the program. In the
loop, the next value in the Fibonacci sequence is calculated through the assignment
block “set next to curr + prev.” In order to prepare for the next iteration of the loop,
the values of prev, curr, and next are thereafter shifted. Finally, the variable count
increases its value by one in order to keep track of the number of iterations in the
loop. As in the previous task, these variables change value within the same solution
process which again differs from a mathematical variable.

Another difference is that in school mathematics the Fibonacci numbers cannot
be described without introducing an infinite sequence of indexed variables, where
each indexed variable can be calculated recursively from the initial conditions. This
clearly differs from our Scratch program where we only have three main variables
that are always well defined. That is, they are assigned initial values and then
reassigned several times as the procedure takes us stepwise through the Fibonacci
sequence.

Algebraic Framework Invited by Scratch for the Early Algebra
Contents

As seen in section “Early Algebra,” early algebra focuses on introducing algebraic
thinking, for example, by taking advantage of word problem situations and pattern-
ing tasks. Word problems are used by teachers to help build meaning for the objects
encountered within later algebra, especially those shared with arithmetic. This
concerns both the equal sign, for which the students’ conceptualizations must evolve
from operational toward structural aspects, and the idea of an equation to represent
not only unknowns but also a way of describing a word problem situation. As for
numerical and figural patterning tasks, they are exploited to develop the idea of
generalizing.

The Scratch analyses above show that these algebraic contents are strongly
impacted. The example of the “Anna and the cookies” word problem has no link
with the equal sign. Instead, new algebraic content is introduced, such as the use of
variables in the solving of an arithmetic word problem. The patterning of the
Fibonacci example introduces new objects linked to the computer science domain,
as in the concept of loop, and the multiple different meanings of the notion of
variable. Hence, building meaning for the objects encountered within later algebra is
not at all obvious, and developing the idea of generalizing must be done by finding
new ways, which exploit some computer science knowledge. Table 2 synthesizes the
ID to early algebra carried by Scratch.

Regarding the design, Scratch is an educational tool, but it is not designed for
algebra teaching. As shown in Table 2, the algebraic framework invited by Scratch is
distant from that of p&p in Early Algebra. If the task is oriented loosely toward the
generalized arithmetic perspective (section “An Arithmetic Word Problem in
Scratch”) or more directly toward the functional perspective with a patterning task
(section “Pattern Generalizing and Variables”), it requires important adaptations in
order to be used with the same goals as is usually the case for p&p.
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Generalized Arithmetic Approach with Excel

Using the list of ID elements given in section “The Notion of Instrumental Dis-
tance,” we examine here some elements of ID of the Excel spreadsheet, when
considering its use in the context of a generalized arithmetic approach to algebra.
The basic connection of cells by “formulas” links spreadsheets to algebra and is the
reason why many studies from different countries (see summary in Haspekian 2005)
gave spreadsheets a positive role for entering algebra, identifying them as arithmetic-
algebraic tools. However, Haspekian (2014) showed that spreadsheets modify alge-
braic contents and solving strategies by creating new action modalities and objects.
Spreadsheets impact algebraic concepts, solving techniques, symbolizations, nature
of solutions, and vocabulary, and these impacts interfere with usual teaching. The
algebraic world experienced in spreadsheets compared to p&p (variable and

Table 2 Different algebraic frameworks invited by p&p versus Scratch in early algebra

Main
characteristics p&p Scratch

Fostered objects Equal sign and operational signs
(particularly addition and subtraction
signs used in arithmetic) and meaning
of equality as a relation rather than a
sign indicating a process
Unknowns
Possible use of letters for unknowns

Equal sign used in loops for coding
conditions
Unknowns not apparent, instead:
introduction of different types of
variables
Possible use of letters for variables
Introduction of new instrumented
objects such as loops and blocks
and new notions such as
“assignment”

Pragmatic
potential/major
field of
problems

Introducing algebraic thinking as a
tool for representing and solving
Word problem situations, in relation

to arithmetical thinking (relation with
arithmetic, focus on structural aspects
of expressions, etc.)

Relation with arithmetic differs
from that in p&p and is not as
obvious as it was in p&p with such
arithmetic word problems

Introducing algebraic thinking as a
tool for representing and solving
Numerical and figural patterning

tasks in relation with the idea of
generalizing

Scratch coding fosters
computational aspects rather than
structural
Pattern generalization can be
related to loops, yet this may
amplify the differences for the
notion of variable
Developing the idea of
generalizing must be done by
finding new ways

Fostered
processes of
solving tasks

Analysis/synthesis process
Applying syntactic rules respectful of
algebraic properties of the signs

Stepwise problem solving
Using an intermediary: the
programming of a sprite to make
the machine carry out the solution
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formulas arise, unknowns and equations disappear, new instrumental knowledge as
the copy functionality comes into use, etc.) is quite different. Next, we summarize
these analyses.

Variables and Copying Down Formulas

Haspekian (2014) highlighted different objects in Excel, such as the “variable-cell,”
that interferes with the p&p concept of a “varying quantity.” In Excel, cells but also
columns or rows may play such a role, while bringing new representations and
meanings. Moreover, a cell with a formula may have a two-faced status: both a
formula and a possible variable for the formula of another cell. The recopy func-
tionality complicates even more the situation. For instance, a formula, when recopied
downwards, generates a new object “variable column,” but also a “formula column,”
for which the usual operational invariance is not translated by a syntactic invariance
in the Excel. Then, how does this invariance make sense for the student? Is it through
the gesture of copying down?

It is also possible to name a group of cells, for instance, “n” for the group “A2:
A5,” and then use “n” in formulas, as “¼n^2” in B2. This generates another notion of
variable, this time closer to the traditional one. This variable refers to a finite number
of cells, having each the characteristics of a variable-cell. The fact that they are all
linked by this same name “n” gives a numeric multiplicity dimension to this notion
of variable.

Technique of Equation Solving

This usual p&p algebraic technique of solving equations is transformed in Excel into
a “trial-and-refinement” technique.4 Moreover, this technique presents some differ-
ences with the p&p trial and refinement: In Excel, it is organized in a table, planned,
and automated (for its calculations). Several organizations and functionalities
(inducing different formulas and instrumented knowledge) are possible. Figure 4
shows three possibilities for solving the eq. 2x þ 4 ¼ 3x � 10.

Fig. 4 Three examples of the instrumented trial-and-refinement technique in Excel

4We do not mention here the “solver” function of spreadsheets.
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In (a), the formula, copied downward in column B, uses a double “¼” sign – an
instrumental functionality rather unusual in resources, which raises difficulties about
the different meanings of the equal sign in the formula: “¼2*A5 þ 4 ¼ 3*A5 � 10.”
This syntax could also be misleading for students if we refer to the classic error
mentioned in the Scratch section of writing a wrong succession of equal signs. Yet,
unlike (b) and (c), the equation is here present and in a form that is close to its p&p
form (even if not usual). In (b) and (c), the equation is no longer present (if only in a
form splitting its two members). The (b) solution uses a cell with a value (playing the
role of x) and 2 cells (each having a formula) referring to this value. The trial and
refinement consist of testing different values in A1 until reaching equal results in B1
and C1. This technique is very close to the p&p one, yet it uses the algebraic
prerequisite of the notion of formula, which is not the case in the p&p arithmetic
technique. Compared to the (b) solution, (c) automatizes the technique using three
columns instead of three cells.

Algebraic Framework Invited in Excel for the Generalized Arithmetic
Approach

From an institutional point of view, the changes described above have different
impacts depending on the algebraic approach considered (section “Algebra and
Algebraic Thinking”). For example, in the French lower secondary curriculum,
spreadsheets are presented as good instruments to introduce algebra. Yet, this
introduction in France (as in many other countries) is mainly based on solving
equations in a generalized arithmetic approach. The algebraic contents usually
emphasized in this approach include equations, unknowns, and algebraic techniques
for solving equations in terms of exact solutions. In Excel, different elements come
into play such as variables (varying quantities), formulas, and trial-and-error tech-
niques that lead to approximate solutions (numerical or graphical). We move, here,
from algebra as a tool for solving word problems with well-defined rules toward a
more functional aspect of algebra, seen as an experimental tool of numerical or
graphical conjectures and approximate solutions. Table 3 summarizes the significant
ID between the generalized arithmetic approach to algebra and the algebraic frame-
work characteristic of Excel, mainly coming from its design (commercial tool, with
no link with the teaching of algebra) and from the computational transposition of the
mathematics in play.

A Functional Perspective on Algebra: Equation Solving
with GeoGebra

In section “Algebra and Algebraic Thinking,” we distinguished the generalized
arithmetic and the functional perspectives on algebra. In this section, the focus is
on the latter. In a function, the independent variable acts as a changing quantity that
runs through a domain set and causes covariation of the dependent variable in the
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range set. In school algebra, functions can be represented by algebraic expressions;
vice versa, algebraic expressions generate functions as soon as we assign one
variable as the independent one. In this way, algebraic expressions and functions
are closely connected, even if functions also come with other representations such as
graphs. A functional perspective on algebra, therefore, highlights the connections
between algebraic expressions, functions, and graphs.

In combining different representations of function, mathematics educational
software offers powerful tools. Digital technology such as GeoGebra5 integrates
an algebra module, a spreadsheet module, a graphing module, a CAS module, and a
geometry module. Together, these tools offer simultaneous, connected graphical and
algebraic representations. Clearly, this invites a functional perspective on algebra. In
this section, we explore the impact of these tools for the case of equation solving
with GeoGebra. First, we consider two tasks and compare the p&p approach of
algebraic manipulation to the functional perspective GeoGebra invites (leaving apart
the options for a functional perspective using p&p). Next, we describe the differ-
ences between these two approaches through the lens of instrumental distance.

Solving an Equation with GeoGebra

Suppose a fictional 15-year-old student is working on the task to solve the equation
x2 ¼ 2x þ 3. She knows how to factor quadratic expressions and how to use the
quadratic formula. Also, she has quite some experience in graphing functions with
GeoGebra (or a graphing calculator). In this task, she recognizes the variable x as the
unknown to be found and starts the usual p&p procedure: She first subtracts 2x þ 3

Table 3 Instrumental distance between the algebraic frameworks offered by p&p versus spread-
sheets for a generalized arithmetic approach

Main
characteristics p&p Excel

Fostered objects Symbolizations
Unknowns
Equations
Equal sign indicating a
relation of equivalence

Symbolizations not necessarily visible
Variables (cell/column/line),
Formulas (with loss of the syntactic
invariance)
New meaning of the equal sign
(indicating a formula) coexisting with the
standard one

Pragmatic
potential/major
field of problems

Tool for solving world
problems
(sometimes involving proof)

Tool for generalization or optimization
(problems of generalization/patterns,
problems of optimization or model)

Fostered processes
of solving tasks

Structural transformations
that maintain top-down
equivalence

No literal solving process, arithmetical
process of trial and refinement

Nature of solutions Exact Approximate

5https://www.geogebra.org
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from both sides of the equation, resulting in x2� 2x� 3¼ 0. Next, she either factors
the left-hand side or applies the quadratic formula. Both techniques lead to the
solutions x ¼ � 1 and x ¼ 3, which can be easily checked through substituting
the values back into the unknown. The functional approach, to graph the functions
defined by the left-hand side and the right-hand side of the equation and search for
intersection points of the two graphs, is somewhat laborious in paper-and-pencil and
is therefore not invited.

In case, this student would decide to use her GeoGebra experience, and the
equation-solving procedure might look different. The functionalities in GeoGebra
directly orient the attention toward a graphical approach, rather than algebraic
transformations. Therefore, she considers the left-hand side and the right-hand side
of the equation as functions of x and enters them in GeoGebra’s algebra window. If
the graph window is properly set, the two graphs appear immediately. Solving an
equation is considered finding the intersection points of the two graphs, or, to phrase
it more algebraically, to find input values for which the two function values are
equal. In this case, this comes down to intersecting a parabola and a line. The
intersection points can be approximated with the dynamic trace option and are
automatically generated through a geometric intersection procedure, which shows
the solutions in the algebra window. As was the case for the p&p approach, the
solutions may be checked through substitution, either by-hand or in the algebra
window. Figure 5 summarizes this approach.

Fig. 5 A graphical approach to equation solving using GeoGebra
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As an aside, the expression x2 can be entered using the equation editor, or as x^2,
as is the case of Excel (see section “A Functional Perspective on Algebra: Equation
Solving with GeoGebra”). Both ways are more cumbersome than writing the
expression on paper. Also, if the equation is more exotic, setting the dimensions of
the graphing window might not be straightforward, as would be the case for p&p
graphing.

What new light can the graphical approach through GeoGebra shed on the p&p
method presented above? After the first by-hand step, the software’s speed and ease
to graph a function might invite the student to also graph the left-hand side of the
new equation x2 � 2x � 3 ¼ 0. Apparently, the algebraic manipulation graphically
comes down to intersecting the graph of the difference in the two initial functions
with the x-axis. The equivalent equation results from “pushing down intersection
points to become zeroes.” The next step, the by-hand factoring to (xþ 1)(x� 3)¼ 0,
suggests that the parabola representing the difference function is the product of two
linear functions. Therefore, the solutions are the zeroes of the two lines, which once
more can be checked through substitution.

To summarize, using a digital tool such as GeoGebra invites a functional per-
spective on equation solving. Solving an equation, in this view, means intersecting
the two graphs. The variable is still an unknown to be found through an intersect
procedure, but can also be seen as a varying quantity moving toward the intersection
point. The two sides of the equation are considered as algebraic function represen-
tations. Even the p&p transformation of the equation through subtracting 2xþ 3 can
be graphically understood as moving from the intersection points of two graphs to
the zeroes of the graph of the difference function.

Extending to a Parametric Equation

Now the next task is to change 3 into 8 and to solve the equation x2 ¼ 2x þ 8. Our
student could repeat the above procedures and find x¼ � 2 and x¼ 4, but she might
also generalize the task and look at the parametric case: x2 ¼ 2x þ a. The p&p
algebraic method would be to first subtract 2x þ a and then apply the quadratic
formula or complete the square. This is not an easy job, as she needs to carefully
distinguish the different roles of the two variables involved. The graphical method is
hardly doable through p&p, as it would require a three-dimensional graph.

In GeoGebra, a functional perspective invites an extension of the procedure for
the specific case through the introduction of a parameter a. This generates a slider bar
(see Fig. 6), suggesting that the parameter is a varying quantity acting at a higher
level than x. Changing the value of a through this slider bar moves the line up or
down. Similar to the previous task, GeoGebra easily finds the intersection points of
the two graphs for a ¼ 8.

Problem solved, but the environment invites new explorations. For example, one
might notice that the graph of the difference function always seems a parabola with a
vertex for x ¼ 1 and that the two solutions seem to coincide for a ¼ � 1. This
suggests symmetrical zeroes in x ¼ 1.
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To check this symmetry conjecture, our student realizes that GeoGebra’s CAS
module seems a better tool for working with more variables. Therefore, she opens
a CAS window. There she enters the solve command, adds the parametric
equation, and specifies the unknown with respect to which to solve – even if
the latter is not needed in this case, as GeoGebra considers x as the default
unknown. This initially may give numerical solutions, based on the slider value
of parameter a. However, once the slider is removed, or a different parameter is
used, GeoGebra gives parametric solutions, which are no longer numbers but
algebraic expressions. She adds up the two solutions and divides the sum by
2. The result is 1 indeed (see Fig. 7), which confirms that the two zeroes are
always symmetric in x ¼ 1.

Finally, the symmetry can be confirmed graphically: Let us trace the midpoint of
the two intersection points while moving the line vertically. To do so, the geometry
embedded in GeoGebra is used once more through constructing the midpoint of the
two intersection points. The result shown in Fig. 8 is a vertical trace indeed.

To summarize, solving this parametric equation with GeoGebra invites the
integration of different tools, including graphing options, slider use, CAS com-
mands, and geometrical construction tools. The parameter is represented as a

Fig. 6 Slider use suggesting symmetrical zeroes for x ¼ 1
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quantity changing through a slider bar, and the symbolic work that might be done
by-hand can be outsourced to the CAS module. Also, the environment may stimulate
further exploring the mathematical situation beyond just solving the equation, in this
case on the position of the solutions for different parameter values.

Fig. 7 Using the CAS to prove the symmetry of the zeroes algebraically

Fig. 8 Vertical trace of the midpoint of the two intersection points while the line moves up
and down
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GeoGebra’s Instrumental Distance to Paper-and-Pencil Equation
Solving

The two equation tasks show the different techniques that emerge in GeoGebra and
that are used in conventional p&p strategies. GeoGebra may offer new views on
regular by-hand procedures and also invites a functional perspective.

To capture GeoGebra’s instrumental distance to p&p, Table 4 summarizes differ-
ences between equation solving with p&p and with GeoGebra, and distinguishes
between different views on algebraic objects and different techniques.

Overall, the p&p column in Table 4 reflects the symbolic approach to equation
solving, whereas the GeoGebra column reflects a functional approach. Some rows
show aspects of considerable instrumental distance. For example, the constraints of

Table 4 GeoGebra’s instrumental distance to p&p equation solving: objects and techniques

Algebraic
objects

Paper-and-pencil GeoGebra

Equation The question to find (exact) values
of the unknown that make true
<expr1> ¼ <expr2>

The question to find (approximate)
intersection points of the graphs of
f(x) ¼ <expr1> and g(x) ¼ <expr2>

Solution An exact value for the unknown that
makes the equation true

Graphing view: An approximate value
of the first coordinate of an intersection
point of two graphs CAS view: an exact
value or expression

Equivalent
equations

Transform an equation into another
one according to algebraic
transformation rules

Transform two graphs into two easier
ones, for example, one being the x-axis,
so that intersection points turn into
zeroes

Parameter A second-order variable A slider bar; its dragging affects the
graphs. Option of automated animation

Parametric
equation

An equation in more than one
variable, in which you treat the
parameter(s) as constant

An equation in which solutions are not
numbers but algebraic expressions

Solution of a
parametric
equation

A solution is an algebraic expression Graphing view: a solution depends on
the value of the parameter; CAS view: a
solution is an algebraic expression

Algebraic
technique

Paper-and-pencil GeoGebra

Equation
solving

Primarily a matter of algebraic
transformation of the equation

Graphical intersection technique or
CAS solve command

Entering an
expression

Hand writing Using a formula editor or linear input,
with possible mistakes

Algebraic
manipulation

Is laborious and sensitive to
mistakes

Is quick in the CAS module and free of
errors, but involves syntax

Variation and
generalization

Usually is hard work Is easy to do and requires automated
recalculation of previous steps

Exploring
new
situations

Requires starting over the work Is relatively easy to do
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entering expressions are typically a form of instrumental distance. Another example
concerns the nature of solutions, which in p&p algebra usually are exact solutions,
whereas the graphical approach in GeoGebra may lead to approximate numerical
results. Most of the rows in Table 4, however, show that GeoGebra techniques may
offer new views on the algebra at stake in a natural way. The shift from symbolic to
functional (e.g., see the row Equation) and the changing nature of solutions impact
on students’ view on algebra.

To conclude this section, our analysis of the use of GeoGebra for solving
equations shows mixed results about the consequences of the instrumental distance
the software offers to p&p conventional mathematics. On the one hand, this distance
is small: GeoGebra does support the conventional concepts and techniques, even if
they may be slightly changed. On the other hand, GeoGebra use invites extending
the landscape of concepts and the repertoire of techniques and in this way reshapes
the “world of algebra.” It invites new views through the availability of tools for
connecting and integrating symbolic and graphical representations. As such, rather
than a purely symbolic perspective, the use of GeoGebra invites a functional
perspective on algebra, which benefits from the interplay between the symbolic,
graphical, and even geometrical techniques the software offers.

Discussion

In this chapter, we address the question of how digital tools impact on the teaching and
learning of algebra through the lens of instrumental distance, which highlights the
changes generated by the use of technology on the contents of school algebra. In the
case of algebra, instrumental distance deals with algebraic objects (expressions, equa-
tions, variables, etc.), algebraic techniques (solving an equation symbolically or graph-
ically, etc.), symbolic representations (of equal sign, of variables, etc.), but also with the
way these contents are usually connected in p&p activities. We illustrated this with
three cases of digital resources – Scratch, Excel, and GeoGebra – that provide an
overview of different algebraic contents, from primary to lower and upper secondary
school levels, while covering themain perspectives relating to the teaching and learning
of algebra.

The results raise awareness of new potentialities, but also the complexity, con-
straints, and difficulties generated by technology, indicating that using the didactic
opportunities coming from technology is neither easy nor straightforward. As
illustrated with the examples herein presented, the usual connections and coherences
in algebra teaching can be more or less disrupted depending on the tool in question.
They can be recast, as in the case of GeoGebra , which, when faced with an equation-
solving task in a symbolic approach, invites rather a functional approach. They can
also be recomposed by mixing different approaches, as in the case of Excel, which
combine elements of a generalized arithmetic approach with elements of other
approaches such as the “variable quantity” object, rather linked to the functional
approach, and the trial-and-error technique, usually associated with the arithmetical
domain. Finally, they can also be disrupted either with elements from outside of
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mathematics (like computer objects as the loop in Scratch, or the slider in
GeoGebra), or with the transformation of some crucial usual contents (as the new
uses of the equal sign in spreadsheets for equation solving), or even with the
disappearing of crucial contents (as the equal sign in Scratch for an arithmetic
problem). We suggest that such ID differences may be dependent on the design:
whether the digital tool is educational (like GeoGebra or Scratch), or not (like Excel),
but also, whether its educational aims purposely include algebra (GeoGebra was
specifically designed with the purpose of linking geometry and algebra; see
Hohenwarter 2006), or not (like Scratch, designed with the purpose of developing
algorithmic thinking).

The above analyses highlight different degrees of ID. For the chosen tasks, there
is a significant distance for Excel and Scratch, consisting of substantial modifications
of the usual objects and techniques. In contrast, GeoGebra presents less ID. Favoring
the visual aspects, it invites a functional approach to algebra, in which the contents
are quite close to their p&p analogs. The mathematical framework invited by Excel
also tends to favor a functional interpretation of the objects of algebra. As for
Scratch, as we have seen, this environment favors a step-by-step computational
approach that is close to a form of arithmetic thinking rather than algebraic. By its
design, Scratch is not specifically oriented toward one or the other of the two main
perspectives on algebra. Its potential algebraic character would seem to depend
strongly on the choice of tasks. In our Scratch examples, the tasks were illustrative
of some early algebra tasks with the solving of an arithmetic problem and the
generating of a recursive rule for a particular numerical sequence. With other types
of tasks, Scratch activity with young students could be tied more explicitly to either
the generalized arithmetic or functional perspectives on algebra. Indeed, the setting
up of an equation with an unknown could be approached as a process of generalizing
an algebraic problem situation (see Hoyles et al. 2020) – despite the solving being
carried out computationally by means of successive numerical substitutions to
calculate the trials. Kilhamn et al. (2022) provide an example, where Scratch activity
is oriented toward the development of functional thinking, with a task involving
variables, functional correspondence rule, and table of values. With tasks such as
these, it is possible to reduce the Scratch ID with respect to the two main perspectives
on algebra, within the context of early algebra.

The current study clearly has its limitations. We have focused on three digital
environments and a limited number of tasks. Obviously, this calls for its extension in
the direction of other types of tasks, emblematic of the teaching and learning of
algebra, or other environments for algebra learning, specifically for other types of
new technologies, incorporating additional new functionalities, for instance, linked
to body (gestures, embodiment, virtual reality, etc.), but also the consideration of
multiple environments and the resulting ID. Likewise, analyzing other domains of
mathematics via the ID lens is another extension. A recent example is the study by
Bakos (2022), who uses ID to analyze TouchTimes, a software for teaching and
learning multiplication, which provides visual, tactile, and symbolic retroactions to
the fingertip actions of young students on a digital screen.
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Lastly, the different impacts on mathematical school contents shown in this
chapter naturally turn in the direction of teachers, asking the question of how to
manage the ID and the transformed contents. Responding to this question resonates
with Hoyles et al. (2020, p. 87) who conclude that a central problem of integrating
technology in school mathematics is the issue that there are “many teachers, who
(. . .) don’t see how technology matches with official curricula.” Our three modest
studies help to understand teachers’ difficulties in integrating digital technologies
into the mathematics classroom. These difficulties are often explained by the insti-
tution or research, by a lack of equipment, funding, personal investment, or time.
The notion of ID shows that the reasons are more complex and go beyond these
usual reasons to reach directly the mathematics itself, here algebra, for which the
usual school contents and coherences are modified by technology. It draws attention
to the fact that integrating a new environment requires reconsidering the way in
which these contents are taught and learned: New mathematical and didactic orga-
nizations have to be created, more or less distant from the usual organizations of
teachers. This new workload is underestimated by both curricula decision-makers
and designers. Official prescriptions present technologies as transparent with respect
to mathematics, bringing forward content that is assumed to be of high fidelity to the
usual targeted content. The ID makes us aware that these contents, on the contrary,
are “detached” from the targeted content by a greater or lesser distance. This
disruption on the one hand and its non-consideration by the institution on the other
hand are essential factors that constitute the difficulties teachers have in integrating
technologies into mathematics teaching. Our study calls for a better awareness of the
kind of ID that a tool presents regarding the mathematical contents it is supposed to
serve. It suggests that it could be beneficial to develop both professional training
programs and resources that incorporate analyses of tools in terms of ID with respect
to the given tasks and to the aim of the teaching, and use these analyses so as to help
teachers integrate digital technologies into the teaching and learning of algebra.
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