
Generating Pragmatically Appropriate
Sentences from Logic: The Case
of the Conditional and Biconditional

Renhao Pei and Kees van Deemter

Abstract It is widely assumed that there exist mismatches between the connectives
of Propositional Logic and their counterparts in Natural Language. One mismatch
that has been extensively discussed is Conditional Perfection, the phenomenon in
which a conditional sentence is interpreted as a biconditional under some circum-
stances. The Pragmatics literature has provided valuable insights into the question
of whether Conditional Perfection will happen in a given context. In order to make
these insights more explicit and testable, we designed an algorithm to generate prag-
matically more appropriate sentences from propositional logical formulas involving
material implication and biconditional implication. This algorithm was tested in an
evaluation by human participants, inwhich generated sentences are compared against
those generated by a simple baseline algorithm. The evaluation results suggest that
the designed algorithm generates better sentences, which capture the semantics of
the logical formulas more faithfully.

Keywords Conditional perfection · Propositional logic · Natural language
generation

1 Introduction

Mathematical Logic has been extensively used for representing meaning of natural
language in Formal Semantics. This is not unproblematic, because a formula in
logic is rarely completely equivalent with a sentence of, for example, English. Even
in the simplest component of first-order logic (FOL), namely propositional logic,
mismatches between the logical connectives and their natural language counterpart
are known to exist. Thesemismatches have long been noticed and studied by logicians

R. Pei (B) · K. van Deemter
Utrecht University, Utrecht, The Netherlands
e-mail: renhaopei@gmail.com

K. van Deemter
e-mail: c.j.vandeemter@uu.nl

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Loukanova et al. (eds.), Logic and Algorithms in Computational Linguistics 2021
(LACompLing2021), Studies in Computational Intelligence 1081,
https://doi.org/10.1007/978-3-031-21780-7_8

171

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21780-7_8&domain=pdf
mailto:renhaopei@gmail.com
mailto:c.j.vandeemter@uu.nl
https://doi.org/10.1007/978-3-031-21780-7_8


172 R. Pei and K. van Deemter

and linguists, and from their studies, valuable insights about these mismatches have
been gained. However, these insights have often lacked the kind of formal detail
that makes them testable; consequently, they are difficult to make use of in practical
applications.

One relevant area of applications, which we will be looking at in this paper, is
Natural Language Generation (NLG) [8, 16]. Of particular relevance is a line of work
in which NLG programs take a logical formula as their input, and produce a clear and
intelligible English sentence as output. Applications of this kind are of substantial
present importance in connection with “explainable Artificial Intelligence”, whose
aim is to make the workings of Artificial Intelligence programs understandable to
human users and other stakeholders (see, e.g., [15]). Mismatches between natural
language and logic naturally also play a role in this field.

These two lines of study can complement each other well, as NLG from logic can
provide a practical framework for testing theoretical insights while these insights
can in turn improve the clarity of natural language sentences generated out of logical
formulas.

In the following Sects. 1.1 and 1.2, Condition Perfection and NLG from logic will
be explained in more details respectively, which serve as the theoretical background
for the rest of the paper.

1.1 Conditional Perfection

The term Conditional Perfection (henceforth referred to as CP) was coined by Geis
and Zwicky [9],1 it refers to the phenomenon that the conditional in the form of if
p, then q often invites an inference of if not p, then not q. Through the mediation
of this invited inference, the original conditional will express (‘be perfected into’)
its corresponding biconditional if and only if p, then q, as illustrated by the example
in [9]:

(1) a. If you mow the lawn, I’ll give you five dollars
b. If you don’t mow the lawn, I won’t give you five dollars
c. If and only if you mow the lawn, I’ll give you five dollars

Here, the sentence (1a) would also suggest (1b), thus conveying the meaning of (1c).
The phenomenon of (1a) inviting the inference of (1b) is called CP.2

With propositional logic, Table1 clearly illustrates how CP is derived through the
mediation of an invited inference: Here, the original proposition p → q invites an
inference of ¬p → ¬q, and the conjunction of p → q and ¬p → ¬q will have the

1 Geis and Zwicky [9] coined the term CP, but they were not the first to address this phenomenon
in linguistics. See [2] for a historic overview.
2 There have been two different usages of the term CP, the first one is that the invited inference of
(1b) constitutes CP, the other one is that the biconditional in (1c) constitutes CP. In this paper, the
term CP is used to refer to the invited inference itself.



Generating Pragmatically Appropriate Sentences from Logic: The Case … 173

Table 1 Truth table illustrating how CP is derived from an invited inference

p q p → q ¬p → ¬q (p → q) ∧
(¬p → ¬q)

p ↔ q

T T T T T T

T F F T F F

F T T F F F

F F T T T T

same truth table as p ↔ q. As a result, the original material implication p → q is
perfected into a biconditional implication p ↔ q.

Various explanations have been proposed concerning the nature of CP. Van der
Auwera [1] regarded CP as a scalar implicature. In that approach, CP invokes the
scale 〈(if p, q and if r, q and if s, q), (if p, q and if r, q), (if p, q)〉. The assertion of if
p, q then implicates there is no other antecedent (r, s, etc.) with q as a consequent,
thus expressing if and only p, q.

A second approach proposed by Horn [11] considers CP as an implicature moti-
vated by the R-based pragmatic strengthening. In this approach, CP is the result of
the secondMaxim of Quantity (do not make your contribution more informative than
is required) and the Maxim of Relation (be relevant). As the stipulated condition
p in if p, q must be taken to be informative and relevant, p would be interpreted as
necessary, hence the original sufficient condition is strengthened into a necessary
and sufficient condition.

Thirdly, Herburger [10] proposed the ‘whole truth theory’ to account for CP. In
this proposal, a sentence S can be silently conjoined with only S, resulting in the
conjunction S and only S, which is then taken to express ‘the truth and the whole
truth’. Therefore, a conditional sentence with if will be taken to express if and
only if.

In the present study, no position regarding the nature of CP is taken. Whatever
the explanation of CP might be, for our purpose of building an NLG system, what
matters most is the distribution of CP, i.e., when CP is expected to occur, and when
CP is expected to not occur.

While the above-mentioned studies sought to propose a theory about the nature of
CP, Van Canegem-Ardijns andVan Belle [18] sought to provide a descriptive account
for CP. Van Canegem-Ardijns and Van Belle [18] identified three sub-types of CP:
two specific ones (only if p, q and only if not p, not q), and a more general one (if
not p, then not q), and showed the correlation between each of the three sub-types
of CP with various speech act or utterance types, as well as some utterance types
in which CP will not occur. Among the many utterance types that [18] discussed,
three of them are particularly relevant for the purpose of the present study, namely:
conditional promise, conditional threat and conditional warning.

According to [18], in a conditional promise, the speaker attempts to get the hearer
to do something by offering a potential reward. It involves examples as ‘If you get



174 R. Pei and K. van Deemter

me some coffee, I’ll give you a cookie.’ Conditional promises have the following
semantic characteristics: [A is desirable for S; H has control over A; S wants H to
do A; S considers C desirable for H because S assumes H wants C; S has control
over C] (Here the abbreviations follow the usage in [18]: A= action/event described
in the antecedent, C = action/event described in the consequent, S = speaker, H =
hearer).

In a conditional threat, the speaker attempts to refrain the hearer from doing
something by threatening with a potential consequent, such as ‘If you lie to me,
I’ll kill you.’ Conditional threats have the following semantic characteristics: [A is
undesirable for S; H has control over A; S wants H to do not-A; S considers C
undesirable for H because S assumes H does not want C; S has control over C]. It is
easy to see that the conditional threat and the conditional promise are parallel to each
other, the only difference is that the antecedent and the consequent in a conditional
promise are both desirable while they are both undesirable in a conditional threat.

The conditional warning resembles the conditional threat in many ways, as they
both share the semantic characteristics of [Hhas control overA; SwantsH to donotA;
S considers C undesirable for H because S assumes H does not want C]. One crucial
difference that sets them apart is that the conditional warning lacks the semantic
characteristic of [S has control over C]. For instance, in the conditional warning
of ‘If you park your car on private land, you will get your car wheel clamped,’ the
speaker does not have actual control over whether the car wheel will be clamped or
not.

According to [18], conditional promises readily invite an inference of only if p,
q (q in no event other than that p), which entails if not p, then not q. Conditional
threats invite an inference of only if not p, not q, which also entails if not p, then not
q. On the other hand, conditional warning does not invite the inference of only if not
p, not q, since the speaker does not have control over the consequent in a conditional
warning, she or he cannot justifiably guarantee whether the consequent will or will
not take place. Van Canegem-Ardijns and Van Belle [18] did not explicitly mention
whether conditional warning invites the more general inference of if not p, then not
q, while several experimental studies involving human judgements [5, 13, 14] have
shown that, conditional warning is indeed less likely to invite the inference of if not
p, then not q, compared to conditional threats and conditional promises.

In these experimental studies [5, 13, 14], apart from the already mentioned condi-
tional promise, conditional threat and conditionalwarning, a fourth type of condition-
als (or utterance type as in Van Canegem-Ardijns and Van Belle[18]’s terminology)
is involved, which is conditional tip. An example of conditional tip could be ‘If you
show up early for work, you will impress your boss,’ in which the consequent is
desirable for the hearer, while the speaker does not have control over the consequent.
The conditional tip resembles conditional promise, in the same way that conditional
warning resembles conditional threat, thus forming a complete tetrachoric table as
in Table2.

Conditional promise and conditional threat can be grouped together under the
umbrella term inducement, as their utterances offer inducements to alter people’s
behavior and only differ in that conditional promise encourages actions by potential



Generating Pragmatically Appropriate Sentences from Logic: The Case … 175

Table 2 Classification of conditionals into four sub-types using two features

Speaker having control over
the consequent

Speaker not having control
over the consequent

The consequent being
desirable for the hearer

Conditional promise Conditional tip

The consequent being
undesirable for the hearer

Conditional threat Conditional warning

desirable reward while the conditional threat deters actions by prospective undesir-
able punishment. On the other hand, conditional tip and conditional warning can be
grouped as advice, as their utterances offer advice and again only differ with regard
to whether the outcome is desirable or undesirable.

Note that in Table2, both features used for the classification are about consequent,
while for the antecedent, whether the antecedent is desirable and whether the hearer
has control over the antecedent are not mentioned. Similarly, in [18] the desirability
of the antecedent is always in accordance with the desirability of the consequent and
the hearer always has control over the antecedent. In the present study, we will follow
Table2 and omit the information whether the hearer has control over the antecedent
and whether the antecedent is desirable, since this kind of information can be easily
derived and is therefore redundant. The fact that only the consequent plays a role
in classification of the conditionals will be reflected in the design of the algorithm
discussed in Sect. 2.

Despite different experimental settings, all of the three studies [5, 13, 14] have
shown that inducements tend to invite the inference of if not p, then not q, while
advice is significantly less likely to invite such an inference. In other words, CP is
more likely to occur in inducements and less likely to occur in the advice.

1.2 Generating Natural Language from Logical Formulas

Natural Language Generation (NLG) refers to the domain of generating natural lan-
guage text from some non-linguistic representations of information. For example, a
weather forecast NLG system can generate weather forecast in text from raw meteo-
rological data. The present study, however, utilizes a different source of information,
namely the logical formula, as the input for an NLG system.

Logic is a useful tool in many different domains. It has been extensively used for
representing meaning in the Formal Semantics, as well as for representing argument
in formal argumentation. While logical formula has the advantage of being formal
and clearly defined, it is certainly not themost understandable format for representing
information, since not everyone knows logic.

For example, as has been put forward in [15], when an automatic system is asked to
give explanations to a human operator for why it takes a certain action or why it pro-



176 R. Pei and K. van Deemter

vides a certain plan for the user, then the best that many systems can do is to respond
in the form of logical formula, which is however opaque for most non-technical
human users. Mayn and Van Deemter [12] have also remarked that in Explainable
AI, there exists a focus on making algorithms in Artificial Intelligence transparent.
For that purpose, tools that can produce automatic English ‘translations’ from logical
formulas can offer a good way to convey information to users, especially if these
users are not familiar with Mathematical Logic. In this case, an NLG system that can
translate logical formula into natural language is needed to make the autonomous
system scrutable to non-technical users.

The task of NLG from logical forms dates from 1980s [20] and various kinds of
logical forms and different approaches have been used, targeting at different practical
applications.

Among them, one that is particularly relevant to the present study is the NLG
system of [7], which provides feedback to students of logic. The logic form used
as input in [7] is the first-order logic (FOL), which is one of the most basic forms
of logic and is widely used in domains such as Artificial Intelligence, Linguistics,
and Philosophy. FOL is also the logic most often taught [4, 6]. When students learn
the FOL, one crucial exercise is to translate between natural language sentences
and their corresponding FOL representations. For this kind of translation exercises,
an automated NLG system could greatly facilitate a student’s learning process by
generating natural language sentences from the student’s incorrect solution in FOL.
This generated natural language sentence could show the student what his or her
proposed solution actually says, as a way to prompt repair.

However, to build such an NLG system is not a trivial task. One important obsta-
cle for translating between natural language and FOL faithfully is that there are
many mismatches between the two. Even in the simplest component of FOL, namely
the propositional logic, mismatches between the logical connectives and their nat-
ural language counterpart exist, such as the phenomena Conditional Perfection and
exclusive/inclusive disjunction. These issues have long been noticed and studied by
logicians and linguists, and from their studies, valuable insights have been gained,
which could then be used to help building a successful NLG system.

The present study focuses on theConditional Perfection. As explained in Sect. 1.1,
the ideas drawn from theoretical and experimental studies about Conditional Perfec-
tion will then be used to improve an NLG system that deals with the two logical
connectives → and ↔.

1.3 Focus of the Paper

Under the general topic of testing the insights gained from Pragmatics literature in
the framework of NLG from logic, the present paper will revolve around how to
generate more appropriate sentences to deal with CP.

For the input of propositional logical formulas in the present study, only two
logical connectives are included, namely → for material implication and ↔ for



Generating Pragmatically Appropriate Sentences from Logic: The Case … 177

biconditional implication, as CP is only relevant to these two connectives. Notably,
[3] reported that students of logic were found to have difficulty with distinguishing
these two connectives, and the errors caused by confusing them account for 29.77%
of total error in the corpus of student translations of natural language into logic.
Since this type of error is so common, it would be very helpful to build an automatic
program that could show the students what their errored logical formulas containing
→ and ↔ really say in natural language. Therefore, a simple NLG system that
only focuses on these two connectives would already have great merits for practical
purpose.

What’s more, the present study only uses binary propositions, i.e., there is only
one connective for each propositional formula, and the formula would be in the form
of [literal3 + connective + literal]. This is only for convenience’s purpose and to
avoid potential interactions caused by multiple connectives within one proposition.
Among various kinds of conditionals, the present study only focuses on 4 types of
conditionals namely promise, threat, warning, and tip, as described in Sect. 1.1. And
lastly, the natural language used in this study is restricted to English.

2 A Pragmatic Algorithm for Expressing Propositional
Logic Formulas in English

2.1 Key Ideas Underlying the Algorithm

As explained in Sect. 1.1, the 4 types of conditionals under discussion (promise,
threat, warning, and tip) are distinguished by two features: 1.Whether the speaker has
control over the consequent, and 2. Whether the consequent is desirable or undesir-
able for the hearer. These two features, each having two values (positive or negative),
can be abbreviated as [±control] and [±desirability].

At the first stage of the algorithm, a set of binary logical propositions is randomly
generated by firstly selecting one connective from either→ or↔, and then selecting
one antecedent and one consequent from two pre-defined atomic proposition banks
(an antecedent bank and a consequent bank) respectively. Each atomic proposition in
the consequent bank is associated with its features of [±control] and [±desirability],
while the atomic propositions in the antecedent bank are not associated with these
two features. As explained in Sect. 1.1, this is because the antecedents do not play any
role in distinguishing the 4 types of the conditionals. In all the 4 types of conditionals
under discussion, the hearer would always have control over the antecedent, i.e., the
antecedent would always be [+control], thus making this information redundant.
In terms of desirability, the atomic propositions for antecedents are intentionally
constructed to be inherently neutral, so that within a binary proposition, the inher-

3 A literal is an atomic formula p or its negation ¬p.



178 R. Pei and K. van Deemter

Table 3 Truth table showing the effect of cancelling CP

p q p → q If p, q
(inducement)

If p, q, but if not
p, might still q

T T T T T

T F F F F

F T T F T

F F T T T

ently neutral antecedent could be interpreted to be either desirable or undesirable in
accordance with the consequent.

By utilizing the information from features of the consequent, each proposition can
then be classified as either a promise, a threat, a warning, or a tip. CP is expected to
occur in inducements (promises and threats) and not occur in the advice (warnings
and tips). After having classified the conditionals into the 4 types, we can have a
prediction of whether CP will occur or not.

For the input binary proposition of material implication p → q, the most straight-
forward way is to translate the connective as ‘if p, then q.’ But if the sentence is an
inducement, then CP will occur, which is not preferable since it would be a distor-
tion of the original meaning of the logical formula, and we want the NLG system
to faithfully express the logical meaning in natural language. Fortunately, when CP
is present, it can still be cancelled by adding an additional condition as noted by
Herburger [10]. As in the following example:

(2) a. If you buy him a drink, I will help you
b. If you buy him a drink, I will help you, and if you don’t, I might still do

Here the sentence (2a) is a conditional promise and would invite an inference of if
you don’t buy him a drink, I won’t help you, thus expressing if and only if you buy
him a drink, I will help you. However, this inference can be cancelled by adding and
if you don’t, I might still do as in (2b). The meaning of p → q (with p being ‘you
buy him a drink’ and q being ‘I will help you’) is faithfully preserved in (2b), but not
in (2a), in which CP occurs. As shown in the Table3.

Therefore, for the binary proposition in the form of p → q, if the proposition is
classified as an inducement, then CP is expected to occur and would be translated as
‘if p, q, but if not p, might still q.’ On the other hand, if p → q is advice, then CP is
not expected to occur and there is no need to add ‘but if not p, might still q.’

As for the biconditional implication p ↔ q, the most straightforward way is to
translate it as ‘if and only if p, q.’ But if the proposition is classified as an inducement,
thenCP is expected to happen, whichmeans ‘if p, q’ would express the samemeaning
as ‘if and only if p, q.’ In this case, we can simply use ‘if p, then q’ for expressing
p ↔ q, which would be a better choice of words, since ‘if and only if’ is not a very
natural expression and people typically do not use this phrase outside the domain of
mathematics or logic. On the other hand, if p ↔ q is advice, then CP will not happen



Generating Pragmatically Appropriate Sentences from Logic: The Case … 179

and we have no other choice but to use ‘if and only if,’ if we want to faithfully
preserve the meaning of the original logical formula.

2.2 The Pragmatic Algorithm and the Baseline

In this section, to demonstrate what the designed algorithm really does, a comparison
will be made between two algorithms: one so called ‘pragmatic algorithm’ that tries
to generate pragmatically more appropriate sentences following the ideas explained
in Sect. 2.1, and another baseline algorithm that does nothing pragmatic and only do
the most straightforward realization.

Below are some pseudo-codes illustrating the baseline algorithm, in which l is a
logical formula that is in the form of either p → q or p ↔ q, and r is the realized
sentence for the logical formula.

Algorithm 1 The baseline algorithm
if l is in the form of p → q then

r ← ‘If p, q.’
else if l is in the form of p ↔ q then

r ← ‘If and only if p, q.’
end if

The input for the baseline algorithm is a list of randomly generated binary logical
formulas that are in the form of either p → q or p ↔ q. If the logical formula l is a
material implication (i.e., in the form of p → q), it will be realized into ‘If p, q’. If
the logical formula l is a biconditional implication (in the form of p↔ q), it will be
realized into ‘If and only if p, q’.

What the baseline algorithm essentially does here, is simply translate the logi-
cal connectives → and ↔ into their commonly used natural language counterparts
‘if…then’ and ‘if and only if…then’, while the pragmatic algorithm does a more
sophisticated realization.

The pragmatic algorithmalso takes the list of logical formulas as an input. Besides,
it also takes in a label dictionary, which contains the information about the corre-
sponding label for each logical formula. These labels include promise, threat, tip, and
warning, and furthermore, promise and threat are under the umbrella label induce-
ment, while tip andwarning are under the label advice. These labels are automatically
obtained by a label detector that can label a binary proposition according to the prede-
fined features ([±control] and [±desirability]) of the consequent, with the rationale
explained in Sect. 2.1 and Table2.

Below are some pseudo-codes illustrating the pragmatic algorithm, with a basic
setting similar to Algorithm1.

The pragmatic algorithm realizes the logical formulas differently depending on
their labels. Compared to the baseline algorithm, the improvement lies in the situation



180 R. Pei and K. van Deemter

Algorithm 2 The pragmatic algorithm
if l is in the form of p → q then

if l has the label ‘inducement’ then
r ← ‘If p, q, but if not p, might still q.’

else if l has the label ‘advice’ then
r ← ‘If p, q.’

end if
else if l is in the form of p ↔ q then

if l has the label ‘inducement’ then
r ← ‘If p, q.’

else if l has the label ‘advice’ then
r ← ‘If and only if p, q.’

end if
end if

where the logical formula is labeled as ‘inducement’. If a logical formula of material
implication p → q is labeled as ‘inducement’, some extra words ‘but if not p, might
still q’ will be appended after the basic sentence ‘If p, q’, in order to cancel the
expected CP. If a logical formula of biconditional implication p ↔ q is labeled as
‘inducement’, the connective will be translated as ‘If…then’ rather than ‘If and only
if…then’, in order to make the realized sentence shorter and more natural. On the
other hand, when the logical formula is labeled as ‘advice’, the pragmatic algorithm
will do exactly the same realization as the baseline algorithm does.

2.3 Example of Input and Output

Before showing the input and output example, it is important to note that although
the algorithm can inherently work for any proposition of promises, threats, tips,
and warnings, it also has some other general requirements in practice. Since the
binary logical propositions are all generated by randomly selecting one antecedent
and one consequent, it is important to ensure that all the random combinations of
an antecedent and a consequent make sense. Not any two atomic propositions can
form a good proposition in which the connection between the antecedent and the
consequent can be easily inferred through common sense. A bad example (in natural
language) could be ‘If you drink this bottle of milk, I will book a ticket to Iceland.’
The connection between drinking milk and booking a ticket is hard to establish, thus
making this sentence soundweird. To ensure that all the generated binary propositions
make sense, a good practice is to limit the atomic propositions within some specific
domain.

This domain of propositions in our example, is the communication between play-
ers in a strategic video game, in which promises, threats, tips, and warnings could
often bemade. Suppose we have three atomic propositions: 1. You destroy the bridge,
2. I will attack you and 3. Player C will attack you, in which the first one is antecedent



Generating Pragmatically Appropriate Sentences from Logic: The Case … 181

and the latter two are consequents. Here, the first proposition is inherently neutral
regarding desirability. The second and the third propositions are both undesirable
for the hearer, and they differ in that the speaker has control in I will attack you, but
lacks control in Player C will attack you. Together with two connectives → and ↔,
four binary logical formulas can be generated:

(3) a. You destroy the bridge → I will attack you
b. You destroy the bridge → Player C will attack you
c. You destroy the bridge ↔ I will attack you
d. You destroy the bridge ↔ Player C will attack you

Based on the information of control and desirability of the consequent, they can be
easily labeled as:

(4) a. You destroy the bridge → I will attack you:‘inducement(threat)’
b. You destroy the bridge → Player C will attack you:‘advice(warning)’
c. You destroy the bridge ↔ I will attack you:‘inducement(threat)’
d. You destroy the bridge ↔ Player C will attack you:‘advice(warning)’

Taking a list containing the four formulas in (3) as the input, the baseline algorithm
will yield:

(5) a. If you destroy the bridge, I will attack you
b. If you destroy the bridge, player C will attack you
c. If and only if you destroy the bridge, I will attack you
d. If and only if you destroy the bridge, player C will attack you

With a list containing the four formulas in (4), alongside with the information about
the corresponding labels as input, the pragmatic algorithm will yield output as:

(6) a. If you destroy the bridge, I will attack you, but if you don’t, I might still do
b. If you destroy the bridge, player C will attack you
c. If you destroy the bridge, I will attack you
d. If and only if you destroy the bridge, player C will attack you

Comparing (6)with (5), the advantage of the pragmatic algorithm can be clearly seen.
While both algorithms take the list of logical propositions as input, the pragmatic
algorithm yield more appropriate natural language sentences as output by also taking
the extra information from the labels. (6a) would express the original semantics of
the logical formula more faithfully than (5a), and (6c) would sound more natural
compared to (5c), while (6c) and (5c) convey the same meaning.



182 R. Pei and K. van Deemter

3 Evaluating the Algorithm

3.1 Design and Materials

As shown in Sects. 2.2 and 2.3, the pragmatic algorithm is designed to be a better algo-
rithm than the baseline algorithm. For material implication, the pragmatic algorithm
should express the logical meaning more faithfully by adding some extra phrases to
cancel CP. For biconditional implication, the pragmatic algorithm should generate
more natural sentences by using ‘if…then’ instead of ‘if and only if…then’, while
also preserving the logical meaning faithfully. On the other hand, we also hypothesis
that the extra phrases added for of material implication would make the sentences
longer and therefore slightly more unnatural, as the cost of making the sentences
more faithful.

But so far, the merits of the pragmatic algorithm have been purely theoretical. For
validation, an evaluation is made by asking human participants to evaluate the natural
language output from both algorithms. The evaluation has two metrics: naturalness
and faithfulness.

To evaluate the naturalness of the output, the participants are asked to mark a
number on a linear scale from 1 to 5 (from ‘very unnatural’ to ‘very natural’) for
how natural they think the generated natural language sentence sounds.

To evaluate whether generated natural language sentence faithfully conveys the
original semantic meaning of the logical formula, an adapted version of truth table
task is used. As in [17], the truth table task refers to the task in which ‘participants
are given a rule and asked to indicate which cases are consistent with that rule.’ In our
adapted version, this task is placed within the setting of the communication between
players in a hypothetic strategy game,4 as described in Sect. 2.3. The rule comes in
the form of a message sent by one player to another player, and the participant are
asked to select all the cases where both players’ actions are true and consistent with
that message.

To prepare the cases in the checkbox for each logical formula, the antecedent
and the consequent in the original formula can be either true (unchanged) or false
(negated), and then they are combined through conjunction. Thus, 4 cases (TT, TF,
FT, FF) will be automatically created for each logical formula. For example, from a
logical formula like You destroy the bridge → I will attack you, the four cases are:
You destroy the bridge ∧ I will attack you (TT), You destroy the bridge ∧ ¬I will
attack you (TF), ¬You destroy the bridge ∧ I will attack you (FT), ¬ You destroy
the bridge ∧ ¬I will attack you (FF). These four cases will be realized into natural
language sentences, and then be presented in a random order within each question.

Below is an example question demonstrating how the truth table task is used in
the evaluation:

4 The settings of this strategy game are very intuitive and should be easily understood through
common sense (See Appendix for the game settings). The settings are presented to the participants
before the evaluation begins, to ensure that all the participants will have a unified world knowledge
about how the game works.



Generating Pragmatically Appropriate Sentences from Logic: The Case … 183

In a game, one player Sophie sent a message to another player Hans: ’If you
destroy the bridge, I will attack you, and if you don’t, I might still do.’

Having received the message,
(Tick all that apply)

� Hans didn’t destroy the bridge, and Sophie attacked him
� Hans destroyed the bridge, and Sophie attacked him
� Hans destroyed the bridge, and Sophie didn’t attack him
� Hans didn’t destroy the bridge, and Sophie didn’t attack him

If the participant ticks the checkbox of a particular case, it means that the par-
ticipant judges this case to be true for the message, and if the participant leaves the
box unchecked, it means that the participant judges this case to be false for the mes-
sage. Similar to the naturalness score, a faithfulness score can be derived, through
comparing the participant’s answers with the truth table value of the original logical
formula.

For instance, according to the truth table value of the material implication You
destroy the bridge → I will attack you, if the participant’s understanding of the
generated natural language message ’If you destroy the bridge, I will attack you, and
if you don’t, I might still do.’ is the same as the meaning of the logical formula, the
checkbox would be ticked as:

V Hans didn’t destroy the bridge, and Sophie attacked him
� Hans destroyed the bridge, and Sophie attacked him
V Hans destroyed the bridge, and Sophie didn’t attack him
V Hans didn’t destroy the bridge, and Sophie didn’t attack him

If the participant leaves any checkbox unticked where it should be ticked, or ticks
any checkbox which should not be ticked, it would mean that the participant has a
different understanding of the generated natural language sentence, as compared to
the semantics of the logical formula, thus making the natural language generation
unfaithful. If the judgment of the participant is completely in accordance with the
truth table value of the original logical formula, then the participant can receive 4
points. For each checkbox containing a different value than the truth table of the
original logical formula, 1 point would be deducted, thus making the faithfulness
score in a range of 0–4. The greater the difference, the lower the faithfulness score
will be.

Since the pragmatic algorithm and the baseline algorithm yield the same output
for advice (tips and warnings), these identical sentences are naturally not included in
the evaluation, as the purpose of the evaluation is to see whether the outputs of these
two algorithms are evaluated differently in terms of naturalness and faithfulness. For
each algorithm, the evaluationmaterial includes both promise and threat, and for each
type, one conditional and one biconditional are included. Therefore, the evaluation
form has 2 (baseline and pragmatic) × 2 (promise and threat) × 2 (conditional and
biconditional) = 8 target sentences, plus 8 filler sentences, hence 16 sentences in total.
The filler sentences are some conditionals containing disjunction and conjunction,
and a concessive conditional with ‘Even if’, which are not the topic of this present



184 R. Pei and K. van Deemter

Table 4 Mean naturalness score comparison between baseline algorithm and pragmatic algorithm

Baseline algorithm Pragmatic algorithm

Material implication 4.54 3.35

Biconditional implication 3.95 4.6

study. Each sentence in the evaluation form has 2 evaluation tasks: (a) a truth table
task for evaluating faithfulness and (b) a linear scale for evaluating naturalness.

3.2 Participants and Procedure

40 participants5 took part in the evaluation. Unlike grammatical judgment, this eval-
uation relies more on conscious thinking and less on linguistic intuition, therefore
being a native speaker of English was not required. Nonetheless, all participants were
proficient in English (having degree courses taught in English and/or being native
English speaker).

The evaluationwas done online by asking participants to firstly fill in their personal
information of gender, age, and English proficiency, and to read the instructions, and
then to fill in the actual evaluation form. No time limit was posed for the evaluation.

3.3 Results and Discussion

The naturalness score results confirmed the theoretically motived hypothesis stated
in Sect. 3.1, as shown in Table4: For biconditional implication, the pragmatic algo-
rithm achieved a higher mean naturalness score 4.6 compared to the 3.95 of the
baseline algorithm. To test the statistical significance of this difference, a paired t-
test is performed, showing a statistical significance between the naturalness scores
for biconditional implication of baseline (M = 3.95, SD = 1.03) and that of the
pragmatic algorithm (M = 4.6, SD = 0.61), t (39) = 6.00, p < 0.001. On the other
hand, for the material implication, the mean naturalness score of the pragmatic algo-
rithm is only 3.35, less than the 4.54 of the baseline algorithm. This difference is
also tested using a paired t-test, also showing a statistical significance between the
naturalness score for material implication of baseline (M = 4.54, SD = 0.65) and
that of the pragmatic algorithm (M = 3.35, SD = 1.13), t (39) = 8.76, p < 0.001.
Therefore, the evaluation results show that the pragmatic algorithm generates more
natural sentences for biconditional implication. It generates less natural sentences

5 Of the 40 participants, 20 were male, 18 were female, and 2 indicated as ‘other’ in the form. The
average age of the participants was 37.6years.



Generating Pragmatically Appropriate Sentences from Logic: The Case … 185

Table 5 Mean faithfulness score comparison between baseline algorithm and pragmatic algorithm

Baseline algorithm Pragmatic algorithm

Material implication 2.9 3.44

Biconditional implication 3.56 3.78

Table 6 Truth table of material implication and biconditional implication

p q p → q p ↔ q

T T T T

T F F F

F T T F

F F T T

for material implication, but it can be argued that their lack of naturalness is offset
by their substantially enhanced faithfulness, as we shall see.

For the faithfulness score, the means are shown in Table5. The results show
that the pragmatic algorithm has achieved a higher mean faithfulness score for
both material implication and biconditional implication. For both material impli-
cation and biconditional implication, the paired t-test is performed to test whether
the difference has statistical significance. The result indicates that there is a sta-
tistical significance between the faithful scores for material implication of base-
line (M = 2.9, SD = 0.44) and that of the pragmatic algorithm (M = 3.44, SD =
0.74), t (39) = 6.60, p < 0.001. And there is also a statistical significance between
the faithful scores for biconditional implication of baseline (M = 3.56, SD =
0.74) and that of the pragmatic algorithm (M = 3.78, SD = 0.48), t (39) = 2.76,
p = 0.007.

These results show that the pragmatic algorithm can express the logical mean-
ing more faithfully for both material implication and biconditional implication. This
confirmed our expectation about material implication, while exceeding our expec-
tation about biconditional implication. As prior to the evaluation, the pragmatic
algorithm is designed to only improve the naturalness for biconditional, rather than
being designed to improve the faithfulness. But the evaluation results suggest that
‘if…then’ is not only more natural, but also expresses the biconditional connective
more faithfully compared to ‘if and only if…then’.

Apart from the faithfulness scores and naturalness scores calculated for each
question, we can take a closer look at the results of the all the four cases (TT, FF, FT,
FF) in the truth table task separately. For each of the four rows in the truth table, if the
participant’s judgement is the same as in the truth table of the logical connectives,
it will be interpreted as the semantic meaning is faithfully convey to the participant,
otherwise, it means the meaning is conveyed unfaithfully (Table6).

Table7 show the results of material implication for both algorithms. The numbers
in the columns of T T , T F , FT , FF stand for the accuracy score for each case



186 R. Pei and K. van Deemter

Table 7 Results of accuracies of TT, TF, FT, and FF in truth table task for material implication

p → q

TT TF FT FF Average
accuracy

Baseline
algorithm

0.99 0.95 0.08 0.86 0.72

Pragmatic
algorithm

0.95 0.83 0.88 0.79 0.86

Table 8 Results of accuracies of TT, TF, FT, and FF in truth table task for biconditional implication

p ↔ q

TT TF FT FF average
accuracy

Baseline
algorithm

0.94 0.89 0.9 0.84 0.89

Pragmatic
algorithm

0.99 0.94 0.94 0.91 0.94

separately, and the average accuracy is the average score of all four cases. All the
numbers presented are averaged across all participants.

The results show that the participant generally had high accuracies for both algo-
rithms in the cases of T T , T F and FF , showing a good understanding of the seman-
tics of p → q in these three cases. However, the sentences generated by the baseline
algorithm seems to pose a great difficulty for participant in the case of FT , scoring
an accuracy of only 0.08, which means for 92% of the time the participants believe
p → q should be false in the case of FT . This is exactly what we predict, because
of the effect of CP.

On the hand, the pragmatic algorithm can greatly improve the accuracy from 0.08
to 0.88, result in a higher average accuracy of 0.86, compared to the 0.72 of the
baseline algorithm. This shows that the pragmatic algorithm has a great advantage
for faithfully expressing the semantics of p → q, especially for the FT case.

Similar to the Tables7, 8 shows the results for biconditional implication, that both
algorithms have achieved high accuracies for biconditional implication across the
four cases of T T , T F , FT , and FF . The accuracies of the pragmatic algorithm are
slightly higher, which is in line with the results of faithfulness scores.

To summarize, the evaluation results have shown that for material implication,
the pragmatic algorithm can indeed generate sentences that are more faithful at the
cost of being less natural. And for biconditional implication, the sentences generated
by the pragmatic algorithm are both more faithful and more natural compared to
the baseline algorithm. All these differences between the pragmatic and baseline
algorithm are statistically significant.



Generating Pragmatically Appropriate Sentences from Logic: The Case … 187

4 Conclusion and Future Work

In this study of Conditional Perfection, we started from insights drawn from the
pragmatic literature [5, 13, 14, 18]. Although these insights are interesting and plau-
sible, they are also less than fully explicit, and have never been formally evaluated
or implemented in an algorithm that expresses logical information in natural lan-
guage. In the present work, we have provided an algorithmic formalisation of some
pragmatic insights and subjected these to experimental testing with human subjects.

Inspired by the insight that Conditional Perfection (CP) is more likely to happen
in inducements and less likely to happen in advice, an algorithm was designed to
generate pragmatically more appropriate sentences from propositional logical for-
mulas involving the two connectives → and ↔. The merits of our algorithm have
been tested in an evaluation by human participants, in which the sentences generated
by the pragmatic algorithm are compared with the sentences generated by a simple
baseline algorithm.

The theoretically motivated expectations behind the pragmatic algorithm have
been confirmed in the evaluation.The results suggested that, by adding as ‘if p, q, but if
not p, might still q,’ the effect of CP can be canceled, resulting in a great improvement
for the FT case in the truth table (the rowwhere the antecedent is false and consequent
is true), thus improving the faithfulness of the sentence. The evaluation results also
confirmed that by using ‘If…then’ instead of ‘If and only if…then’, the pragmatic
algorithm improves the naturalness of the generated sentences.

Furthermore, the evaluation results indicated that the pragmatic algorithm using
‘If…then’ instead of ‘If and only if…then’ is not only more natural, but also more
faithful. This suggests that, although ‘If and only if…then’ is conventionally used as
the natural language counterpart for ↔, it actually leads to more misunderstanding
compared to simply using ‘If…then’ for↔. A possible explanation is the fact that ‘if
and only if’ is not really a common expression outside logic and mathematics, and it
may cause confusion to people who are not very familiar with logic or mathematics.

As expected, the pragmatic algorithm also has a disadvantage when it comes to
the naturalness of the sentences involving material implication. Saying ‘if p, q, but
if not p, might still q’ boosts the faithfulness, but it also makes the sentence longer
and a bit stilted.

As summarized in Table9 (the symbol ‘>’ represents ‘surpass’, ‘being better
than’), we can see that the pragmatic algorithm is superior to the baseline algorithm
in three ways and is inferior in only one way. In practical NLG applications such as
providing automatic feedback to the translation between FOL and natural language
(see Sect. 1.2), faithfulness tends to be more important than naturalness. Therefore,
it seems fair to conclude that our pragmatic NLG algorithm would be a worthwhile
alternative for use in practical NLG applications, for example when NLG is used to
clarify logical expressions in Artificial Intelligence applications [15].

Our study has addressed two problems: (1) under what precise circumstances
does Conditional Perfection arise, and (2) how an NLG algorithm might optimize
the wording of the natural language expression to take Conditional Perfection into



188 R. Pei and K. van Deemter

Table 9 Summarized comparison between pragmatic and baseline algorithm

Biconditional implication Material implication

Faithfulness pragmatic > baseline Pragmatic > baseline

Naturalness pragmatic > baseline Baseline > pragmatic

account. We believe that this work paves the way for a number of further investiga-
tions. First, the present study has only considered four types of conditionals namely
promises, threats, tips, and warnings, as the relations between them are systematic
and they can form a complete tetrachoric table through two features. In the future,
the question of how to generate pragmatically appropriate sentences for other types
of conditionals such as background conditionals and concessive conditional (which
have also been discussed in [18]) should be further investigated to see whether they
can be handled along the lines of the present paper.

Second, the present study has only dealt with the two logic connectives → and
↔. Future work could be done to investigate other connectives such as ∨ and ∧,
thus covering all the connectives used in propositional logic. An important question
for further research is to what extent our findings are sensitive to the choice of con-
nectives. For example, ¬p → q and p ∨ q are logically equivalent, but these two
logically equivalent formulations may not be pragmatically equivalent. Other con-
straints governing the natural language formwill need to be taken into consideration.
For example, a conditional of the form¬p → q can make both promises and threats,
whereas the logically equivalent disjunction p ∨ q can only make threats, but not
promises [19]. If more connectives are to be added into the NLG system, then these
issues should be taken into account.

Thirdly, the present study has only considered the binary proposition in which
two atomic propositions are connected through a single connective. In future work,
more complex propositions involving multiple connectives can be tested, to see if
the conclusion based on binary propositions still hold when the proposition becomes
more complex. This direction could also lead to further investigating of the interac-
tion between different kinds of connectives when they are present within the same
complex proposition.

Finally, it would beworth investigating how our workmay be extended to enhance
existing Natural Language Processing work in paraphrasing and text simplification
[21]. The idea would be to take an input text T that contains conditional statements,
and to convert it into a clearer and more explicit output text T ′ in which these con-
ditionals are rendered in a more explicit way, for instance by replacing conditionals
by biconditionals if and when this is appropriate, analogous to our pragmatic NLG
algorithm. To make this work, an NLP algorithm would first have to detect whether
the relevant texts in T express promises, threats, and so on because, as we have seen,
these pragmatic factors affect the way in which conditionals are interpreted.



Generating Pragmatically Appropriate Sentences from Logic: The Case … 189

Appendix: Instructions for Participants in our Experiment

This study is about testing people’s understanding about some sentences. The target
sentences will be embedded in the setting of the communication between players in
a strategy game.

In case you haven’t played any strategy game, this is a multiplayer game, in
which buildings like castles and bridges can be built to gain advantage. Players can
attack other players and destroy other players’ buildings to beat them in the game.
Players can also form alliance with each other against a common enemy. Resources
(including food, wood, and stone) and gold coins are valuable in the game and can
be exchanged among players.

In one game, one player Sophie has sent some messages to another player Hans.
In the following sections, each message will be accompanied with 4 scenarios.

After you have read the sentence, please identify all the possible scenarios in
which the actions of both Sophie and Hans are consistent to the message. In other
words, if you think the scenario follows the message, tick the box; if you think the
scenario is impossible given the message of Sophie, don’t tick the box.

Afterwards, please rate the wording of the message in terms of how natural the
message sounds to you.

References

1. Van der Auwera, J.: Conditional perfection. Amst. Stud. Theory Hist. Linguist. Sci. Ser. 4,
169–190 (1997)

2. Van der Auwera, J.: Pragmatics in the last quarter century: the case of conditional perfection.
J. Pragmat. 27(3), 261–274 (1997)

3. Barker-Plummer, D., Cox, R., Dale, R., Etchemendy, J.: An empirical study of errors in trans-
lating natural language into logic. In: Proceedings of the Annual Meeting of the Cognitive
Science Society, vol. 30 (2008)

4. Enderton, H.B.: A Mathematical Introduction to Logic. Elsevier (2001)
5. Evans, J.S.B., Twyman-Musgrove, J.: Conditional reasoning with inducements and advice.

Cognition 69(1), B11–B16 (1998)
6. Fitting, M.: First-Order Logic and Automated Theorem Proving. Springer Science & Business

Media (2012)
7. Flickinger, D.: Generating English paraphrases from logic. In: From Semantics to Dialectom-

etry (2016)
8. Gatt, A., Krahmer, E.: Survey of the state of the art in natural language generation: core tasks,

applications and evaluation. J. Artif. Intell. Res. 61, 65–170 (2018)
9. Geis, M.L., Zwicky, A.M.: On invited inferences. Linguist. Inq. 2(4), 561–566 (1971)
10. Herburger, E.: Conditional perfection: the truth and the whole truth. In: Semantics and Lin-

guistic Theory, vol. 25, pp. 615–635 (2016)
11. Horn, L.R.: From if to iff: conditional perfection as pragmatic strengthening. J. Pragmat. 32(3),

289–326 (2000)
12. Mayn, A., van Deemter, K.: Evaluating automatic difficulty estimation of logic formalization

exercises (2022). arXiv:2204.12197
13. Newstead, S.E.: Conditional reasoning with realistic material. Think. & Reason. 3(1), 49–76

(1997)

http://arxiv.org/abs/2204.12197


190 R. Pei and K. van Deemter

14. Ohm,E., Thompson,V.A.: Everyday reasoningwith inducements and advice. Think.&Reason.
10(3), 241–272 (2004)

15. Oren, N., van Deemter, K., Vasconcelos, W.W.: Argument-based plan explanation. In: Knowl-
edge Engineering Tools and Techniques for AI Planning, pp. 173–188. Springer (2020)

16. Reiter, E., Dale, R.: Building Natural Language Generation Systems. Studies in Nat-
ural Language Processing. Cambridge University Press (2000). https://doi.org/10.1017/
CBO9780511519857

17. Sevenants, A.: Conditionals and truth table tasks the relevance of irrelevant (2008)
18. Van Canegem-Ardijns, I., Van Belle, W.: Conditionals and types of conditional perfection. J.

Pragmat. 40(2), 349–376 (2008)
19. Van Rooij, R., Franke, M.: Promises and threats with conditionals and disjunctions. Discourse

and Grammar: From Sentence Types to Lexical Categories, pp. 69–88 (2012)
20. Wang, J.-t.: On computational sentence generation from logical form. In: COLING 1980 Vol-

ume 1: The 8th International Conference on Computational Linguistics (1980)
21. Xu, W., Callison-Burch, C., Napoles, C.: Problems in current text simplification research: new

data can help. Trans. Assoc. Comput. Linguist. 3, 283–297 (2015)

https://doi.org/10.1017/CBO9780511519857
https://doi.org/10.1017/CBO9780511519857

	 Generating Pragmatically Appropriate Sentences from Logic: The Case of the Conditional and Biconditional
	1 Introduction
	1.1 Conditional Perfection
	1.2 Generating Natural Language from Logical Formulas
	1.3 Focus of the Paper

	2 A Pragmatic Algorithm for Expressing Propositional Logic Formulas in English
	2.1 Key Ideas Underlying the Algorithm
	2.2 The Pragmatic Algorithm and the Baseline
	2.3 Example of Input and Output

	3 Evaluating the Algorithm
	3.1 Design and Materials
	3.2 Participants and Procedure
	3.3 Results and Discussion

	4 Conclusion and Future Work
	References


