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Abstract. Preferences in abstract argumentation frameworks allow to
represent the comparative strength of arguments, or preferences between
values that arguments promote. In this paper, we reconsider the approach
by Amgoud and Vesic, which computes the extensions of a preference-
based argumentation framework by aggregating preferences and attacks
into a new attack relation in a way that it favors preferred arguments
in conflicts, and then simply applying Dung’s semantics to the resulting
graph. We argue that this approach is too rigid in some situations, as it
discards other sensible (even if less preferred) alternatives. We propose a
more cautious approach to preference-based argumentation, which favors
preferred arguments in attacks, but also does not discard feasible alterna-
tives. Our semantics returns a set of extensions and a preference relation
between them. It generalizes the approach by Amgoud and Vesic, in
the sense that the extensions identified by their semantics will be more
preferred than other extensions.
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1 Introduction

In the last couple of decades, argumentation has emerged as an increasingly
important field of artificial intelligence research [7,9,16]. It was used as a for-
malism for solving problems in various fields, like non-monotonic reasoning [14],
decision making [1,18], paraconsistent logics [12,17], and in the domains of law
and medicine [7]. The simplest, and in the same time the most popular formal
models are so called Dung’s (abstract) argumentation frameworks [11]. They
are just directed graphs where vertices represent the arguments and the edges
represent conflict between the arguments. Dung [11] proposed several semantics
for evaluating the arguments, whose goal is to identify jointly acceptable sets of
arguments (called extensions).

For some applications, Dung’s argumentation frameworks appear too simple
for proper modelling all aspects of an argumentation problem. One such short-
coming is the lack of ability to represent comparative strength of arguments, an
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aspect which typically occurs if an argument relies on certain information while
another argument relies on less certain ones [4], or when different arguments pro-
mote values of different importance [8]. This calls for augmenting argumentation
frameworks with preferences over arguments [2,4,5,8,10,13,15]. Whenever argu-
mentation frameworks are extended with preferences, the central question still
remains how arguments are evaluated.

In early papers on preference-based argumentation [2,8], an attack is ignored
if the target argument is preferred to its attacker. The extensions are then iden-
tified by applying Dung’s semantics to the reduced argumentation framework
with remaining attacks. This approach has been criticised in [4,6], as the result-
ing extensions are not necessarily conflict-free. Consider the following example,
essentially taken from [6].

Consider an individual who wants to buy a violin. An expert says that the
violin is made by Stradivari, which is why it’s an expensive violin (we represent
this with argument a). Suppose that the individual has brought their child along
to the store. This child then states that the violin was not made by Stradivari
(argument b). It is clear that b attac a. On the other hand, a is preferred to b,
since the expert should be a lot better at determining whether a violin is a proper
Stradivarius or not than a child.

Since b is preferred to a, the above mentioned method [2,8] will ignore the
attack from b to a, so every Dung’s semantics will accept both arguments, while
there is clearly a conflict between them. To overcome this issue, Amgoud and
Vesic [5] proposed a technical solution: to invert the direction of an attack in
the case that its target is more preferred than the attacker. This approach pre-
serves conflicts between pairs of arguments, thus ensuring conflict-freeness of
extensions. Moreover, in any conflict it favors preferred arguments. In the violin
example, any Dung’s semantics will accept a and discard b, which is sensible
given the disbalance between expertise levels.

Kaci et al. [13] argued that the proposal of Amgoud and Vesic [5] contains an
implicit strong constraint that an argument never never able to attack a preferred
argument. While we in general agree with the idea of Amgoud and Vesic that
the preferred arguments should be favored when involved in an attack, regard-
less of its direction, we also agree with Kaci et al. that in some situation original
direction of the attack should also be considered. To illustrate our position, let
us slightly modify the above violin example by replacing the child with another
expert, just slightly less reputed. In this situation, the argumentation graph
doesn’t change, but intuitively acceptance of {b} becomes a sensible alternative -
even if less preferred than acceptance of {a}. While ideally we would like distin-
guish between two scenarios by saying “how strongly” is one argument preferred
to another one, that is not possible due to purely qualitative nature of preference
relations. This calls for more cautions approach, which does not automatically
discard possibly sensible alternatives.

In this paper, we propose a more cautious approach to preference-based
argumentation, which favors preferred arguments in attacks, but also does not
discard feasible alternatives. In the violin example, it will return two exten-
sions, {a} and {b}, with the first one being more preferred to the second one.
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In general, it returns a set of extensions and a preference relation between them.
The extensions that fully favor preferred arguments in attacks (i.e., the exten-
sions identified by Amgoud and Vesic [5]) will be more preferred than any other,
and the remaining extensions which correspond to feasible, but less likely alter-
native scenarios will also be ordered according to their to feasibility.

Technically, we propose a two-step procedure for generating possible exten-
sions and preferences over them. In the first step, we extract multiple argumen-
tation graphs from the same preference-based argumentation framework, where
each of them corresponds to a feasible scenario, and we define an order over
them induced by the given preference order over arguments. In the example
from above, we will extract two graphs: one in which b attacks a, and one in
which the attack is inverted. The latter graph will be more preferred than the
former. We noted that in more complex graphs there is more than one sensible
way to define a preference order over the extracted graphs, so we first proposed
some guiding principles that each such order should satisfy. We then provided
two concrete orders that satisfy the principles. In the second step, we define a
preference relation over extensions of extracted graphs, using previously defined
order over the graphs as a starting point. We first deal with the case when the
preference order over graphs is total, in which case we employ a variant of lexi-
cographic order. Then we show that we can properly generalize that idea to the
case when the order over extracted graphs is partial.

2 Preference-Based Argumentation Frameworks

Dung [11] defined an abstract argumentation frameworks (AFs) as a pair con-
sisting of a set of arguments and attacks, a binary relation between arguments.

Definition 1 (Dung’s Argumentation Framework). A Dung’s Argumen-
tation Framework (AF) is a tuple: G = 〈A, def 〉, where A represents a set of
arguments and def ⊆ A × A is a set of attacks between arguments.

Note that we denote the attack relation by def (from defeat), in order to distin-
guish this relation from the “attack” relation in preference-based argumentation.

Definition 2. Let G = 〈A, def 〉 be an AF.

– A set of arguments S ⊂ A is said to be conflict-free if and only if there are
no a, b ∈ S such that (a, b) ∈ def .

– A set of arguments S ⊂ A is said to attack an argument b if and only if there
exists some a ∈ S such that (a, b) ∈ def .

– A set of arguments S ⊂ A defends an argument a if and only if ∀b ∈ A if
(b, a) ∈ def , then S attacks b.

Acceptable sets of arguments, called extensions are defined by acceptability
semantics proposed by Dung in [11].

Definition 3. Let G = 〈A, def 〉 be an AF and B ⊆ A a set of arguments.
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– An argument a ∈ A is acceptable with respect to B if and only if for ∀a′ ∈ A:
if (a′, a) ∈ def , then B attacks a′.

– B is admissible if and only if it is conflict-free and each element in B is
acceptable with respect to B.

– B is a preferred extension if and only if it is a maximal (with respect to ⊆)
admissible set

– B is a stable extension if and only if B is conflict-free and ∀a ∈ A\B, ∃b ∈ B
such that (b, a) ∈ def .

– B is a complete extension if and only if B is admissible and ∀a ∈ A, if B
defends a, then a ∈ B.

– B is the grounded extension if and only if B is the minimal (with respect
to ⊆) complete extension.

For σ ∈ {preferred, stable, complete, grounded}, we write E ∈ σ(G) to
denote that E is a σ extension of G.

In [2], Dung’s AFs were extended with preferences over arguments.

Definition 4 (Preference Argumentation Framework). A Preference
Argumentation Framework (PAF) is a tuple F = 〈A, att ,≥〉, where A is a set
of arguments, att ⊆ A × A is an attack relation between arguments and ≥ is the
preference relation.

Following [2], in this paper we use term preference relation for a (partial or
total) preorder (i.e., a reflexive and transitive binary relation). We use a > b as
an abbreviation for a ≥ b ∧ ¬(b ≥ a).

In [5] attacks are referred to as critical attacks if it is an attack from a less
preferred to a more preferred argument.

Definition 5 (Critical Attack). The set of all critical attacks in any PAF
F = 〈A, att ,≥〉 is defined as follows:

Critical(F) = {(a, b) | ∀a, b ∈ A : (a, b) ∈ att ∧ b > a}.

Amgoud and Vesic [5] proposed a method which takes a PAF and uses the
attacks and preferences over arguments to identify which arguments defeat which
other arguments. The method entails inverting the direction of critical attacks.

Definition 6. Let F = 〈A, att ,≥〉 be a PAF. Then, G = 〈A, def 〉 is the reduced
AF of F if def = {(a, b) | (a, b) ∈ att ∧ b ≯ a} ∪ {(b, a) | (a, b) ∈ att ∧ b > a}.

After applying this method to a PAF, Dung’s acceptability semantics are
applied to the reduced AF to identify the extensions of the PAF.

3 Extracting Multiple AFs from a Single PAF

In this section, we propose a method for extracting multiple AFs from a single
PAF, and determining preferences between these AFs. In the case of violin and
example, two different AFs will be created: one in which the direction of the
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critical attack has been inverted, and the other in which its direction is main-
tained. The former graph will be preferred to the latter one. Our method for
extracting AFs from a PAF based on the reduction method proposed in [5], but
differs from it in that not necessarily the direction of all critical attacks will be
inverted.

Definition 7 (Extracting AFs from a PAF). Let F = 〈A, att ,≥〉 be a
PAF. If R ⊆ Critical(F) is a set of critical attacks, then G = 〈A, def 〉 is an AF
extracted from F , where

def = {(a, b) | (b, a) ∈ R} ∪ (att\R).

Let IG denote the set of attacks in AF G which are obtained by inverting the
direction of attacks in PAF F , i.e., IG = {(a, b) | (b, a) ∈ R}. Let S(F) denote
the set of all of the AFs that can be extracted from PAF F .

Next we develop a method to define preferences over S(F). This method, called
an AF preference method, is a function which maps each PAF F to a prefer-
ence order over AFs extracted from F . While multiple of these methods can be
defined, some basic conditions state that any AF preference method should be
a transitive and reflexive order.

Definition 8. An AF preference method (AFpm) is a function m that maps
each PAF F into �F

m, where �F
m⊆ S(F)×S(F), and �F

m is a preference relation.

We use the following abbreviations: G1 F
m G2 is the conjunction G1 �F

m G2

and G2 ��F
m G1, while G1 ≈F

m G2 denotes G1 �F
m G2 and G2 �F

m G1. If F is
clear from context, we will write G1 �m G2 instead of G1 �F

m G2. We will also
omit m whenever it is clear from context or it is irrelevant.

The above definition is not very restrictive, as the only constraint is that any
AF preference method has to be a reflexive and transitive relation. Following
the general approach of Amgoud and Vesic [4] which favors preferred arguments
in conflicts, we use principle based approach to describe the subclass of AF
preference methods which enforces that it is preferable to invert the direction of
critical attacks rather than maintain their direction.

Our first principle formalizes that idea in the case of simplest setting that
roughly correspond to the violin example: there are only two arguments, which
means that they can only contain one critical attack. However, we show that
our two principles already ensure that the idea will be respected by all extracted
graphs (see Theorem 1).

Principle 1 (Inversion Preference). Let F = 〈{a, b}, att ,≥〉 be a PAF such
that (a, b) ∈ Critical(F). Let G1, G2 ∈ S(F) such that IG1 = {(b, a)} and
IG2 = ∅. Then G1 F

m G2.

Our second principle ensures that an AF preference method orders AFs in a
consistent way in different PAFs,m i.e., that its strategy does not change when
we switch from one framework to another one. Consider two AFs G1 and G2
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that are extracted from the same PAF F such that G1 �F
m G2. By adding an

argument a to both G1 and G2 and to add the same attacks from and to a,
two new AFs are created, G′

1 and G′
2. The second principle then enforces that

G′
1 �m G′

2. However, since G′
1 and G′

2 no longer contain the same arguments as
F , they can no longer be extracted from F . Instead, a new PAF, F ′ needs to
be defined which contains all the arguments of F and a. To go towards a formal
definition of the second principle, a notion of reducing a PAF or AF with respect
to a set of arguments is required.

Definition 9 (Reduction with respect to a set of arguments).
Let G = 〈A, def 〉 be an AF. The reduced AF of G with respect to arguments
A′ ⊂ A is G|A′ = 〈A′, def ′〉, where def ′ = def ∩ (A′ × A′).

Let F = 〈A, att ,≥〉 be a PAF. The reduced PAF of F with respect to argu-
ments A′ ⊂ A is F|A′ = 〈A′, att ′,≥′〉, where att ′ = att ∩ (A′ × A′) and
≥′=≥ ∩(A′ × A′).

With the notation of a reduction with respect to a set of arguments present,
it is possible to define the second principle formally.

Principle 2 (Expansion). Let PAF F = 〈A, att ,≥〉. For any A′ ⊂ A, let Q
be a PAF such that Q = F|A′ . Let Q1, Q2 ∈ S(Q) and let G1, G2 ∈ S(F) such
that Q1 = G1|A′ , Q2 = G2|A′ and IG1\IQ1 = IG2\IQ2 . If Q1 �Q

m Q2, then
G1 �F

m G2.

Now that these two principles have been defined, we are ready to propose a
class of AF preference methods that all capture the intuition properly that it is
preferable to invert critical attacks rather than maintaining the critical attacks
in extracted AFs.

Definition 10 (Inversion-based AFpm). An Inversion-based AFpm is an
AFpm that respects Principle 1 and Principle 2.

We now show that for any two AFs that are extracted from the same PAF,
if they are ordered using an inversion-based AFpm, it is preferred to invert the
direction of any critical attack rather than to maintain its direction.

Theorem 1. Let m be an inversion-based AFpm. Let F be a PAF, where (a, b) ∈
Critical(F). Let G1, G2 ∈ S(F) such that (b, a) /∈ IG2 and IG1 = IG2 ∪ {(b, a)}.
Then, G1 F

m G2.

The previous result provides the most and the last preferred extracted graph
of a PAF, regardless of the choice of the inversion-based AFpm.

Corollary 1. Let m be an inversion-based AFpm and let F = 〈A, att ,≥〉 be a
PAF.

1. If G1 is the reduced graph of F (according to Definition 6) and G ∈ S(F)
such that G1 �= G, then, G1 F

m G.
2. For every G ∈ S(F) if G �= 〈A, att〉 then G F

m 〈A, att〉.
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Definition 10 does not determine a unique inversion-based AFpms. Now we pro-
pose two different methods, both of them guided by the idea that we prefer
graphs in which we invert “more”, but with two different interpretations of
“more”: first using the subset relation, and then using cardinality.

Definition 11. Let F be a PAF. Then s maps F to a preference relation �F
s

such that for any AFs G1, G2 ∈ S(F) G1 �F
s G2 if and only if IG1 ⊇ IG2 .

This method obviously gives birth to preference relations that are partial
preorders. On the other hand, the following method defines a total preorder over
S(F) for every PAF F .

Definition 12. Let F be a PAF. Then c maps F to a preference relation �F
c

such that for any AFs G1, G2 ∈ S(F), G1 �F
c G2 if and only if |IG1 | ≥ |IG2 |.

Both mappings defined above satisfy Definition 10.

Theorem 2. Both s and c are inversion-based AF preference methods.

Note that the strategy of c is to “weight” every critical attack equally: only
the number of inversions matters. We might also search for other methods which
violates that assumption; for example one might prefer to invert the attack from
the weakest argument in a framework to the strongest one, than to invert some
other critical attack.

On the other hand, the strategy of s is more cautious. It is easy to see that
the total order defined by c extends the partial order defined by s. In fact, we
can show that s is the most cautious inversion-based AFpm, in the sense that
any other inversion-based AFpm is a further refinement of s.

Theorem 3. For any inversion-based AFpm m and any PAF F , if G1 �F
s G2,

then G1 �F
m G2.

4 Preferences over Extensions of a PAF

In the previous section a single PAF F was used to generate multiple differ-
ent AFs and to generate preferences between these different AFs based on an
inversion-based AFpm. In this section, preferences over extensions of elements of
S(F) will be defined. In the following two subsections, different definitions will
be given to determine the preferences over extensions depending on whether the
preference order over S(F) is a total order or not. Throughout this section, we
write E1 �F E2 to denote that E1 is an extension that is at least as preferred
as E2 (according to some considered semantics σ). If F is clear from context, it
may be omitted for convenience, which means E1 � E2 will be used.
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4.1 Preferences over Extensions When � over S(F) It Total

In this subsection we define preferences over extensions when there exists a total
preference order over S(F), using a variant of lexicographical order. To illustrate
the idea, imagine that for some PAF F , G1, . . . , G4 ∈ S(F) are all extracted
graphs of F that contain some of E1, . . . , E4 as an extension of given semantics
σ. Let the total preference order over S(F) rank G1, . . . , G4 as represented by
Fig. 1. Below each of the AFs, extensions of that specific AF according to σ are
written.

G1

E1

E2

G2

E1

G3

E3

G4

E2

E4

Fig. 1. Representation of total order

For instance, since E1 ∈ σ(G1) and E2 ∈ σ(G1), we need to look at the
extensions of the next most preferred AF, G2. Since E1 ∈ σ(G2) but E2 /∈ σ(G2),
it must be the case that E1 is preferred to E2. In Table 1, the extensions are
ordered according to lexicographical order of the sequences of numbers, where 1
means that Ei is an extension of Gj , and 0 that it is not.

Table 1. Lexicographical order of Fig. 1.

G1 G2 G3 G4

E1 1 1 0 0

E2 1 0 0 1

E3 0 0 1 0

E4 0 0 0 1

Since any extension may only appear once in an AF, all of the values in
Table 1 are either 1 or 0. This is the case because there are only strict preferences
between AFs in Fig. 1. However, it is possible for AFs extracted from the same
PAF to be equally preferred. In that case we will “group” some AFs together.

Definition 13 (Class of all equally preferred AFs). For any PAF F and
AF G ∈ S(F), let [G]Fm represent the class of all AFs in S(F) that are equally
preferred to G according to AFpm m, i.e., [G]Fm = {G′ ∈ S(F) | G ≈F

m G′}.
Informally, in such case we would replace the individual graphs in the first row

of Table 1 with the classes defined above, and ordered according to the assumed
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total order. Then the remaining rows would contain positive integers that indi-
cate how many AFs from a class contains Ei as an extension. Lexicographic
order of those rows will define preference order over Ei’s.

We now introduce a notion that will also be useful in the rest of this section.

Definition 14. Let σ be a Dung’s semantics. For two sets of arguments E and
E′ and for any set of AFs S, we say that E is preferred to E′ wrt. S, and we write
Prσ(E,E′, S), if and only if |{G ∈ S | E ∈ σ(G)}| > |{G′ ∈ S | E′ ∈ σ(G′)}|.

In other words, if the amount of times E is an extension of elements of S is
higher than the amount of times E′ is an extension of the elements of S under
acceptability semantics σ, then Prσ(E,E′, S).

As has been shown in this section, whenever a preference order over AFs
is a total order, we can use those AFs to create a table counting the amount
of times an extension is an extension of AFs that are equally preferred to each
other. The extension that is counted the most often in the most preferred AF
then becomes the most preferred extension. In the case of a tie, the second
most preferred class of AFs is counted, until a difference has been observed. If
there are no differences in any of the classes of equally preferred AFs between 2
extensions E1 and E2, they are equally preferred to each other. ?In terms of a
formal definition, Definition 14 can be used to help express this.

Definition 15. Extension E is preferred to extension E′, E �F E′ if and only
if ∃G : Prσ{E,E′, [G]Fm}, ∀G′ if G′  G, then it is cannot be the case that
Prσ{E′, E, [G′]Fm}.

In other words, if E �F E′, there needs to exist a group of equally preferred
AFs, [G], where E is an extension more often than E′ (Prσ{E,E′, [G]}). Note
that the preference relation over extensions is a transitive relation. Moreover,
for any AF G′ which is preferred to G, in that class of equally preferred AFs,
[G′], E′ is not allowed to be an extension more often than E.

4.2 Preferences over Extensions When � over S(F) Is Partial

The previous method is only applicable if the underlying AFpm always provides
a total order. In particular, it can’t be applied to s (Definition 11).

Let F be any random PAF such that Critical(F) = {(a, b), (c, d)}. Let IG1 =
{(b, a), (d, c)}, IG2 = {(b, a)}, IG3 = {(d, c)} and IG4 = ∅. We use inversion-
based AFpm s to determine the preferences between these four different AFs.
It is clear that G2 and G3 are incomparable. The AFs are represented in Fig. 2
with preferences between them.

Since G2 and G3 are incomparable AFs, the preference order ‘branches’.
Similarly to preferences over extensions when S(F) is totally ordered, we

would like to prefer extension E1 over extension E2 if we cannot find a reason
why E2 is preferred to E1. In other words, if for any AF G2 such that E2 ∈ σ(G2),
there exists an AF G1 such that G1  G2 and E1 ∈ σ(G1), then E1 would be
preferred to E2. Compared to the case where S(F) is totally ordered by some
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G1

E1

G2

E2

G3

E3

G4

E2

E4

s

s s

s

Fig. 2. Representation of partial order

�F , AFs being incomparable makes the method a bit more complex, as different
‘branches’ can exist (such as in Fig. 2). To be able to express that an extension
E is preferred to another extension E′, it needs to be checked that whenever
E′ is an extension of an AF G′, that E is an extension of an AF G such that
G  G′.

Since that it could be possible that some AFs extracted from the PAF F are
equally preferred under some AF preference method, we employ Definition 14.

Definition 16. For any PAF F and all AFs extracted from F , S(F), E is
preferred to E′, denoted by E �F E′, if and only if ∀G′ : Prσ(E′, E, [G′]Fm) →
∃G : (Prσ(E,E′, [G]Fm) ∧ G  G′).

Theorem 4 (Transitivity). If E1 � E2 and E2 � E3 then E1 � E3.

At the end of the section, we prove that the method proposed for partial
order properly generalize the method for the total order proposed in the previous
subsection. In other words, if S(F) is totally ordered, both methods will give
the same preferences over extensions.

Theorem 5. For any PAF F such that S(F) is totally ordered, the order of
extensions found by using Definition 16 is exactly the same as found by using
Definition 15.

Finally, from Corollary 1 it follows that the extensions identified by Amgoud
and Vesic [4] will be more preferred than other extensions.

5 Conclusion

This paper proposes a cautious approach to preference-based argumentation,
which favors preferred arguments in attacks, but also does not discard feasible
alternatives. Our semantics returns a set of extensions and a preference relation
between them. We generalize the proposal by Amgoud and Vesic [4], which avoid
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the problem of conflicting extensions present in early approaches to preference-
based argumentation [3,8,15]. There are two more reduction approaches in the
literature [13]. Similarly as [4], those approaches reduce a PAF to an AF and
return the extensions of that AF, therefore they discard all other possible AFs
and they do not define preferences over extensions.
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