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Abstract

In this chapter, we explore assessment that is performed automatically by the
digital environment, what might be called assessment “through technology.”
Based on experience with the design of three innovative content-specific auto-
matic assessment platforms, the main goal of the chapter is to exemplify design
considerations to map the development of digital assessments. These digital
platforms use various methods to assess mathematics through student’s interac-
tion with digital learning resources. We address the fit between an assessment’s
task design and its goals, the analysis of student work by the platform, and the
report that is then produced. We want tasks to offer opportunities for students to
express mathematical ideas, to take advantage of the opportunities provided by
automatic assessment, as well as to meet the goals of assessments. In writing
tasks, designers must also take into account two other design considerations: How
can the digital assessment platform interpret and analyze student work in variable
and flexible ways? How can the platform “make sense” of student work, so as to
be able to generate feedback or to report on learning achievements? What are the
ways in which insights from this analysis will be made accessible and to whom?
Taken together, examination of the design of the tasks given to students to collect
data, how that data is analyzed by the machine, and how the machine reports on
that analysis allows us to map current digital assessment practices. We close by
emphasizing the importance of continued engagement of the mathematics edu-
cation community with the design of digital assessment platforms because math-
ematics education stakeholders bring with them a content-specific focus on
higher-level thinking in mathematics and on students’ conceptions and
misconceptions.

Keywords

Digital assessment · Open ended tasks automatics assessment · Digital platforms
for mathematics · Authentic assessment · Learning analytics

Introduction

Assessment is a key component of mathematics education, and using technology to
support assessment has a long and interesting history. With shifts to online assess-
ments and the inclusion of digital resources in assessments in large-scale assess-
ments like NAEP (Johnson 1992) or TIMSS (Mullis and Martin 2017), technology’s
role in influencing assessment is growing. Yet, as articulated by Drijvers et al.
(2016), the phenomenon of digital assessment is varied. Digital assessments may
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be paper and pencil assessments accomplished “with” machines, or they may be
assessments that are offered “through” the machine, where all of students’ engage-
ment with an assessment is mediated through technology.

Digital assessments, like any other forms of assessment, can have many goals. A
digital assessment could be aimed at providing comparative summative assessment
of students’ skills, or it could seek to provide support for formative assessment,
carried out by either teachers or the students themselves working as individuals or in
small groups. But there are other ways to capture differences in the goals of
platforms. For example, many digital assessment platforms are content neutral and
aim to give feedback on a range of different content (Dougiamas 2004). The design
of feedback mechanisms for such platforms is often driven by efficiency consider-
ations (Pardo et al. 2019).

As the last two sentences suggest, when students’ engagement with an assessment
is through a digital platform, the machine has direct access to student work and may
also automatically assess students’ work. This chapter examines that particular
aspect of the phenomenon of digital assessment: the design of digital automatic
assessment platforms where the “machine” analyzes student work. It is our view that
machine analysis of student work, though not yet ubiquitous, is likely to have ever
larger impacts over the coming years.

Rather than give this chapter the challenge of surveying the full range of
assessment goals and the full panoply of digital assessment platforms, we have
chosen a specific focus for this chapter; we focus on the design decisions found in
platforms whose aim is to assess specific mathematical work of students during and
after their work process. The platforms on which we are focusing are research-based
projects of design and development that are available to use in both laboratories and
in schools, in some cases internationally. The platforms we examine are designed to
support a range of end users including assessment designers, the students who are
being assessed, teachers who create assessments and use assessments created by
others, and educational stakeholders – like students, teachers, parents, school admin-
istrators, and policymakers – who receive and could generate reports of students’
performance on the assessments at various levels ranging from a single student to a
district. Specifically, we demonstrate challenges in designing automatic assessment
of student work with three platforms:

• The Numworx Digital Mathematics Environment (Numworx, Drijvers 2020) is a
digital mathematics platform for secondary school and university education that
provides a wide range of assessment options, including
– Autonomous tests which students can review themselves.
– Summative tests which can serve as exams.
– Automatic intelligent scoring and reports of student models.

• STACK (Sangwin 2013) is a computer-aided assessment (CAA) platform.
– The design emphasis of STACK is on formative assessment.
– The prototype interaction is that a student enters a mathematical answer in the

form of an algebraic expression and STACK evaluates the student’s answers
using computer algebra.
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• STEP (Olsher et al. 2016) aims to facilitate guided inquiry processes in the
mathematics classroom:
– Provide information that would involve students in feedback processes.
– Provide data for teacher’s decision-making: correctness, concept images,

collective example space, student grouping.
– Provide formative assessment processes involving different agents (teacher,

student, peers).

These digital assessment platforms are used to pinpoint specific authentic math-
ematical activities that are assessed in order to facilitate mathematical practices in the
mathematics classroom, providing teachers and learners with technological instru-
ments to both carry out the mathematical activity and means to collect analyzable
information used to create assessment insights. As a result of their focus on specific
content, the design of these technological platforms for digital assessment empha-
sizes aspects that might be overlooked or underdeveloped in other platforms.

We will use our knowledge of these platforms to illustrate three sets of interre-
lated design considerations that we will use to structure the chapter:

1. The design of platforms and tasks determines what work students will submit and
with what tools, how students will interact with the machine, and what informa-
tion will be stored and made available for the machine to analyze. The nature of
that information must fit the goals of the assessment.

2. The design of the automatic interpretation and analysis of student work is
influenced by what work is available and how it is stored. Data structures
influence how student work can be interpreted intelligently by the platform to
fit the goals of the assessment.

3. The presentation and reporting of the results of the automatic analysis to students,
teachers, and other stakeholders are influenced by the nature of the student work,
how it is analyzed by the machine, and perhaps most importantly by the goals of
the assessment itself. For example, is the assessment a formative assessment
predominantly intended for use by the teacher, or as a summative assessment
for use by other stakeholders, or as a learning resource for use by students?

Sections “Design of Tasks and Tools for Student Mathematical Work”, “Design
of Tasks and Tools for Student Mathematical Work,” and “Reporting/Presentation of
Results of Analysis” will rely on “windows,” presenting aspects of these three
platforms to support readers unfamiliar with the state of the field with respect to
such automatic assessment environments. Through the windows, we seek to artic-
ulate the interrelated nature of the three design considerations outlined in those
sections. In the concluding section of the chapter, we address resulting design
challenges and opportunities associated with automatic assessment of student work
accomplished through digital environments.

Throughout the chapter, our aim is to illustrate how automatic assessments might
constitute a resource for the mathematics education community, though one that will
require careful attention to design. The digital platforms we describe can be a
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resource for researchers doing research on student learning of particular content or
studying teachers’mathematical knowledge of particular content. Similarly, they can
be useful for educators seeking to assess the work of students to whom they teach
mathematics or the work of teachers who they interact with on improving mathe-
matics instruction.

Design of Tasks and Tools for Student Mathematical Work

When assessments are delivered in digital environments, students’ interactions with
the digital platform form the basis for the assessment. When designing or choosing to
use a certain digital platform, one should consider the types of interaction the platform
allows and in what modalities. Closed-ended questions are simple to imagine and are
limited in their authenticity. Textual inputs, whether typed as text, scribbled and
parsed, or perhaps inserted as parsable mathematical syntax, provide different and
possibly more elaborate information and insights about the student’s work that can be
produced automatically. Interactive diagrams (Naftaliev and Yerushalmy 2017) pro-
vide a range of representations that could be dynamically linked for exploiting the
unique benefits and focus that each representation provides about the different math-
ematical objects (an example for an interactive diagram can be found in Fig. 2).

The choice of the digital assessment platforms impacts on the goals and charac-
teristics of the assessment. For each digital assessment platform, the goals of the
assessment are connected with the characteristics of the interaction of the student
with the platform. Compared to a platform that views any assessment event as a
learning opportunity, an assessment platform aimed at summative assessment would
probably have a more restrictive interaction with the student. When choosing to
conduct a focused learning experiment, the assessment platform should support the
definition of well-constrained conditions of the context in order to provide a focused
assessment. Platforms could also support the assessment of the comparison of
mathematical objects in various registers and modalities to assess the broadness of
concept images and related concept definitions.

Student interaction with a digital platform is also greatly influenced by the nature
of the tasks set for learners: What is the learner required to do? First and foremost,
learners are asked to meet the requirements of the task. In many tasks, this can be
done through different answer types in a digital environment, each providing
different types of information: Select the correct answer/statement or type an answer
mathematically or textually; show a variety of examples that could demonstrate a
broad concept image; present argumentation about answer/example using various
modalities; graphically identify ideas in the constructed example; construct a script
describing a dynamic scenario with the constructed example; or reflect using meta-
cognitive, self-reflection tools.

Finally, the end result of the learner’s interaction with the digital platform is
information or data that is collected by the platform and used in the analysis to
provide insights. While technology constantly pushes the boundaries of the range
and quality of possibilities to collect data, the rationale for the type of information
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collected is not always technological. Platform designers’ choices are rooted in the
goals of the assessment. Simple selection of an answer could be just the right amount
of data needed to produce an in-class real-time poll. Submission of a carefully
constructed solution could be the choice of platform designers that provide students
with an inquiry-based sandbox or provide them with a notebook type of setting that
enables saving and working on tasks and projects over multiple sessions. Platforms
might also process intermediate stages in the solution process to provide a finer-
grained feedback process. There are platforms that analyze examples or processes
that are chosen by the student, promoting using the environment also as a notebook
to save drafts and curating what will be presented to the teacher or peers. On the
other hand, there are also platforms that log all of the student actions that they can
record, in order to enable a holistic analysis of work processes.

In Windows 1 and 2 we present two examples of how platforms organize
students’ interaction with a task: one example (Window 1) describes interaction
within the DME platform, and the other example (Window 2) makes use of the STEP
platform. These environments allow expression of individual ideas, not only by
providing open-ended tasks but also tools for writing and interaction that allow a
variety of expressions.

Window 1 Interactions in the Numworx Digital Mathematics
Environment

Thinking about humans interacting with tools for doing mathematics, let us first
reflect on the past. Historically, paper and pencil have been the traditional environ-
ment for doing mathematics. Even today, students’ experiences with doing mathe-
matics largely concern scribbling on paper or watching a teacher doing the same with
a marker on an (interactive) whiteboard. These environments offer ultimate freedom
in creating mathematical representations, diagrams, tables, geometrical drawing,
sketches, and in connecting them through reasoning in natural language. Together,
this freedom to act, and the idiosyncratic results this may lead to, turns the paper-
and-pencil environment into a strongly personalized environment, in which the user
is in full control and experiences ownership. It is natural to seek to replicate the
benefits of pencil and paper in a digital form. Therefore, an important requirement
for digital mathematics (assessment) environments is that the interaction resembles
the paper-and-pencil environment with respect to flexibility to use and freedom to
work. In online activities or assessments, students should be able to do mathematics
as if they are using paper and pen and in the meantime benefit from the additional
affordances of the technological tools. This criterion for digital assessment environ-
ments is an ambitious one to meet but essential.

Figure 1 illustrates this criterion and shows an implementation in the form of an
open answer workspace in the Numworx Digital Mathematics Environment. The
left-hand side contains the task, which concerns an optimization problem. The
window on the right-hand side initially is empty. It is an open answer window, in
which a student can work through adding different elements. The bottom menu
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shows, as icons, the options of entering text, a calculation, a table, a graph, a formula,
or an equation. The formula or equations can be entered through an equation editor
or in handwriting with a stylus. In the latter case, the handwriting recognition module
will display the formula in pretty print format.

In this case, the student chose to use the sketch to set up some expressions, and
he/she adds some text to explain his/her thinking. Based on this, he/she sets up the
equation and solves it.

Fig. 1 Open answer workspace in the Numworx Digital Mathematics Environment (https://www.
numworx.nl/en/)

Digital Assessment and the “Machine” 7
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Window 2 Interactions in the STEP Environment

The STEP platform is built on the belief that interactions with technology should
focus on experimentation, exemplifying, conjecturing, and arguing. STEP also seeks
to have learners personalize their work. Because the designers of STEP believe that
example generation is a crucial aspect of inquiry, in STEP, learners personalize their
work by constructing examples in an interactive diagram that they then submit in
response to a task.

For example, engaging learners in generating and verifying examples of a
particular mathematical concept serves two central aims of assessment: we use
learner-generated examples as an indicator of the learners’ understanding (concep-
tualization, concept images they hold), and we use example generation as a catalyst
for enhancing students’ understanding and expanding their example space associated
with a new concept. Therefore, we design EETs (example-eliciting tasks) upon the
following articulated design principles: (1) task’s requirements: the example(s) are
constructed and submitted demonstrating the truth for given claim(s); (2) the context
of the example and its logical status is set by a given claim or by a set of constraining
conditions; and (3) the example is constructed using different mathematical modal-
ities, which are part of the design of the interactive diagram.

Figure 2 demonstrates a task where f is given by a function expression and graph:
f(x) ¼ � 2x2 þ 4x þ 5. g can be set using three independent sliders controlling the
coefficients of the function expression (a, b, and c, in the applet on the left part of
Fig. 2). In addition, the task lists four conditions (checkboxes on the right part of
Fig. 2): two conditions of relations between two quadratic functions f and g and two

Fig. 2 The quadratic multiple conditions task
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conditions of properties of g. The goal is to find and submit three examples where
g and f satisfy the maximum possible number of conditions. The answer consists of
the marked chosen statements and the examples that demonstrate the choice. The
conditions are (1) the graph of f intersects the graph of g in exactly one point; (2) the
two functions have the same symmetry axes; (3) g passes through the origin (0,0) of
the system; and (4) the function g has a minimum. There are three possible triplets
that fulfill the requirements.

To satisfy the requirements of maximum conditions on g(x), there are three
possible triads: 1,2,4, 1,3,4, and 1,2,3. The three submitted constructed examples
in Fig. 2 are an answer submitted to meet the requirements of conditions 1, 2, and
4 (g intersects f in a single point, f and g share a symmetry line, and g is a parabola
with a minimum point). Most often the work started by reading the given conditions
while using the sliders to change the parameters a,b,c and observe changes of the
g graph. While interactively observing the relations between the two functions, it
becomes clear that pairs of conditions can be easily met, e.g., a single intersection
and same symmetry line, a function with minimum that is passing through the origin.
This design intends to leave space for serious exploration that leads to many partial
answers. Finding the possible triads is more challenging, and finding three as
different as possible examples to the same triad is leading to exploring whether the
requirement of multiple examples to each of the triads can be met. Another type of
logical argumentation would be required when one considers the possibility of
fulfilling four conditions (a free-form explanation or free-form proof will be required
in this case as providing contradicting examples will not justify a universal answer).

Finding the exact position of the graph is not easy. The design that excludes
traditional direct symbolic input is a design choice made to support exploration and
promote non-prototypic examples. Note that the submission presented in the middle
“looks right” and might be filtered as a possible answer, whereas g(x)¼ � 10.5x2 þ
18.5x � 1 is incorrect (inaccurate) and suggests that the student attended visual
characteristics and did not compute or check the accuracy of the function expression.

As shown in this section, assessment platforms can offer a variety of mathemat-
ical interactions and different means to express mathematical ideas. These interac-
tions produce various kinds of information that requires careful analysis and
interpretation, so it will result in a meaningful feedback process. The next section
will focus on these processes.

Interpretation and Analysis of Student Work

In Section “Interpretation and Analysis of Student Work,” the main point is that
assessment platforms for mathematics should offer a variety of rich interaction
modes that allow students to engage in mathematical interactions and to express
their individual mathematical ideas. This should be made possible through facilities
to write, read, and do mathematics in a natural way, using appropriate mathematical
tools, representations, and interactions. However, when students engage in a broad
range of interactions with an assessment platform, new challenges arise: How can
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the digital assessment platform interpret and analyze student work in variable and
flexible ways? How can the platform “make sense” of student work, so as to be able
to generate feedback or to report on learning achievements? This is the topic of this
section.

This discussion of what a rich, interactive assessment platform makes of student
work focuses on the individual item level. What is the role of the machine in
assessing answers to an individual item (or part of a more complex task)? Depending
on the answer type of an item, student work can vary in both substantive and
superficial ways; platforms need to be able to distinguish the substantive from the
superficial. To outline the challenge of interpreting and analyzing student work, we
consider five different answer types, broadly sketching a spectrum of increasing
sophistication of the properties established:

1. Closed choice answer items
2. Algebraic expressions as answers
3. Configurations of interactive graphical diagrams as answers
4. Sequences of equivalent expressions as answers
5. Free-form open answer workspace for answers

(1) Closed Choice Answers

This answer type appears in traditional items with a limited number of choices to
make by the student, such as true/false, multiple choice, or multiple response items.
These answers are easy to score and to interpret – even if the cause of a student
mistake usually remains unclear. The answers can be scored with perfect reliability.
These answer types can be highly sophisticated, especially when sequences are
linked together, potentially with more complex question types. Meanwhile, the
design of learning materials requires great skill and care. In high-stakes situations,
or research applications where high validity is required, materials are typically
subject to trial and refinement before use. See Mejia-Ramos et al. (2017) for a
discussion of proof comprehension task development and others for concept inven-
tory development (Carlson et al. 2010; Lane-Getaz 2013).

However, mathematics education has particular problems with this choice answer
type. Some core processes in mathematics are reversible with one direction much
more difficult than another (Sangwin and Jones 2017). For example, it is much easier
to expand out the product (x2 þ x þ 1)(x3 � 1) than to factor x5 þ x4 þ x3 � x2 �
x � 1. No sensible student with an understanding of the relative difficulties of
reversible processes would tackle the multiple choice question “What is the factored
form of x5þ x4þ x3� x2� x� 1?” by factoring the polynomial. Instead they would
expand out the options presented to them, effectively reversing the process (expand
instead of factor) and subverting the intended purpose of the question. This threat to
the validity of the question, by reverse engineering, is particularly problematic for
mathematics.

10 S. Olsher et al.



(2) Algebraic Expressions as Answers

To avoid the validity issue of the choice answer type, automatic assessment of
mathematics has accepted answers from students which are mathematical expres-
sions and sought to establish objective properties of those expressions for over half a
century. A prototype property is to establish algebraic equivalence between the
student’s answer and the correct answer. Next, systems establish other properties
that are relevant, e.g., whether the student’s answer is in the correct form.

In the example above, we wanted a factored polynomial such as (x2 þ x þ 1)
(x3 � 1). A string match or regular expression match, even in apparently simple
situations, is completely inadequate. Here a student could also give (x3 � 1)(x2 þ
x þ 1) or (1 þ x þ x2)(x3 � 1), and both would (probably) be acceptable as factored
forms. There are many other ways of writing this polynomial as a product of powers
of distinct irreducible terms, i.e., factored. An automatic digital assessment system
must have some kind of computer algebra support to manipulate students’ expres-
sions and establish such properties.

The factoring example might appear rather complex and so consider this much

simpler task to calculate 1�i
ffiffi

2
p

� ��14

and write the answer in the Cartesian form. The

correct answer is �i. This item was used with year-one undergraduate students,
and over a tenth of the cohort answered with expressions such as 0 � i, 0 � 1 ⁎ i,
and �1 ⁎ i. Since students have just been told that the Cartesian form means they
should write the complex number as a þ ib, there is a very real potential conflict
between following instructions just given in a new area of mathematics and well-
established conventions that we typically do not write +0 and�1. If the purpose of
the question is to discuss and establish norms that we do not write +0, even with
Cartesian form, then all well and good: reject 0 � 1 ⁎ i as incorrect with feedback.
However, if the purpose of this question is to test whether students can calculate a
power using DeMoivre’s theorem, and then convert the answer back into the form
in which the terms in the question were stated, we should probably accept answers
such as 0 � 1 ⁎ i as basically correct but with feedback about conventions. While
we might want to accept 0 � i, 0 � 1 ⁎ i, and �1 ⁎ i, we probably don’t want to
accept 1

i or coscos
5
2
⁎PI

� �� sinsin 5
2
⁎PI

� �

⁎i in this situation. Most teachers also
want to provide feedback to students, and such feedback can only be effectively
provided if the software has tools to make subtle distinctions between expressions
such as 0 � i and�1 ⁎ i. In this case, we established the student’s answer belonged
to a particular equivalence class containing �i, using commutativity and associa-
tivity of addition and multiplication, together with rules for identity operators
which rewrite expressions 1 � x ! x, etc. An automatic digital assessment system
must have flexible computer algebra support which allows management of rule
sets, to manipulate students’ expressions and establish such properties. Such rule
sets even benefit from including incorrect rules such as (a þ b)n ! an þ bn to help
establish that a student’s particular answer is consistent with making a well-known
error.
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Many systems can establish such properties and do so effectively despite theo-
retical limits on what properties can be established automatically. For example,
establishing the algebraic equivalence of a mathematical expression with zero is
formally undecidable in general. Theoretical undecidability does not stop effective
and reliable equivalence checking of simple students’ answers. In Window 3 we
present an item in the STACK system that demonstrates assessment of such
properties.

Window 3 Algebraic Equivalence in STACK

Consider the item in the STACK system shown in Fig. 3. Clearly, there are many
potential correct answers. To establish the origin lies in the plane is a simple
calculation but is only one relevant property. We need p to be nonzero, and we
need the two direction vectors u and v to be linearly independent: typically in
automatic assessment many separate properties are needed for completely correct
answers. This item in STACK was attempted by 815 year-one undergraduate
students as part of the final assessment in a linear algebra class. This question proved
nontrivial. A total of 262 students (32.2%) answered “true” to the first part, i.e., they
think pmust equal the zero vector. A total of 91 (11.2%) students gave an example of
a plane with two parallel direction vectors, so not really defining a plane at all. Only

Fig. 3 Stack item using algebraic equivalence check
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329 (40.4%) were judged to have a completely correct answer, and no particular
example was given by more than 25 (3.1%) of the cohort.

There are limitations on establishing many important mathematical properties.
For example, it is difficult to reliably test whether a real function has a local
maximum at a particular point. As with algebraic equivalence, many apparently
limited situations work very reliably in practice, with students rarely actually
providing answers outside the limits of reliable assessment. Where this is more
likely, automatic assessment can be supplemented with a human check of the range
of answers being provided and the corresponding outcomes. Indeed, in practical
week-to-week teaching, it is much better to initially create a minimally working
algorithm to accept correct answers and then review students’ actual answers. The
temptation is to predict common mistakes or answers consistent with common
misconceptions. Time spent writing checks for predicted mistakes is wasted if
students never actually answer in ways which generate these outcomes. It is often
much better, especially in high-stakes situations with delayed feedback, to review
students’ answers before releasing outcomes. All online assessment systems record
students’ interactions and generate detailed statistics for review by a teacher. The
review can easily result in an updated, more reliable, assessment algorithm and a
better understanding of what students really do and the frequency with which they do
it. We find, especially at university, that students are genuinely interested in how the
assessment process works and are typically willing to live with its limitations,
provided these are rectified quickly.

In many teaching environments such limitations can be used, with students, to
explain interesting mathematics. Indeed, there are very good arguments in favor of
being highly explicit about the precise properties used to check if an answer is
satisfactory. For example, it is very rare to see a discussion of what factored actually
means in elementary algebra books.

In short, assessing whether an algebraic expression answer is precisely correct or
is absolutely incorrect is relatively simple and often robust. In many situations,
however, there is a range of acceptable answers and a penumbra of acceptability
involving a range of issues, e.g., the conventions of written form, for which a teacher
would like to provide specific feedback. So though we now have a wide range of
highly sophisticated tools for automatic digital assessment, which are used exten-
sively for formative assessment of elementary mathematical tasks, a human teacher,
ultimately, remains responsible for choosing the outcomes.

(3) Configurations of Interactive Graphical Diagrams as Answers

Interactive mathematics diagrams are now well-established components in learning
mathematics. Many systems enable students to manipulate the configuration of a
geometric figure, and the student’s answer is the final configuration (Yerushalmy and
Olsher 2020). For example, students are invited to drag a point on a predefined
diagram or to construct a figure from scratch. In such items, the final diagram acts as
the answer to be interpreted and analyzed.
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These interpretations and analyses of interactive graphical diagrams share many
issues with dealing with algebraic expressions as answers, highlighted in the previ-
ous category. In particular, the teacher remains responsible for deciding what
properties are relevant and deciding what action to take when properties are (or are
not) established. Example properties include deciding if two lines are perpendicular
or whether a point lies on a particular line. This area of automatic assessment is less
well developed than algebraic assessment but no less important and is likely to be the
area of most significant development in the near future. We have already seen an
example in Fig. 2, where the student’s answer was the configuration of a quadratic
graph. Another example is shown in Fig. 4. The response shown in this diagram is
only partially correct because the range of the function is [0,0.9] and not [0,1] as
required. Since the student drags the points A-D on-screen, the required properties of
the piecewise linear graph can readily be calculated from the position of the four
points.

(4) Sequences of Equivalent Expressions as Answers

Establishing objective properties of a single algebraic expression or diagram is a
necessary starting point for dealing with a student’s sequences of algebraic

Fig. 4 Item checking students’ algebraic decision-making
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expressions as an answer. That is, automatically assessing students’ complete line-
by-line equivalence reasoning. In school mathematics this is one of the most
important forms of reasoning (Nicaud et al. 2004; Sangwin 2019). The last
10 years has seen a rapid expansion of the tools available for automatically assessing
students’ line-by-line work. In Window 4 we present two examples of algebraic
expressions as an answer fromMathXpert and STACK. These environments provide
the learner with different levels of calculations that could be performed by the
system.

Window 4 Item Checking in MathXpert

A unique opportunity with systems assessing line-by-line reasoning is the ability to
separate out decision-making processes from the ability to undertake calculation.
Separating decision-making from calculation can be particularly useful in formative
settings. An early example is MathXpert in which users are presented with a
mathematical problem. Students select part (or all) of an expression, and the system
suggests which operations can be performed on that selection. Having picked an
option, MathXpert then performs that operation automatically, i.e., students are not
also required to perform their selected calculation (Beeson 1998). In Fig. 5, the user
has partially solved a calculus problem. In the last line, part of the expression has
been selected, and the system has shown what rules might be applied to this part. The
user chooses which rule should be applied, and the software performs the
calculation.

When designing sequences of items, there are opportunities to mix between
(i) specifying what students should do and (ii) actually performing the operations.
This approach can be followed until students do both and reach the level of
independent competence required. For example, the opposite to MathXpert would
be to provide a model answer with specified operations and gaps for students to fill in
until they had a complete solution. A very simple example from the STACK system

Fig. 5 Item checking a dynamic graphical diagram in MathXpert
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is shown in Fig. 6. In this example, a template is provided for the students, and the
last box contains a “syntax hint” to suggest the expected final form. Individual
questions, such as this, have minimal value; however, coherently organized
sequences of such materials have been found to be highly effective; see (Kinnear
et al. 2022).

(5) Free-Form Open Answer Workspace for Answers

As the final and most sophisticated answer type, we now consider free-form open
answer workspaces, in which students can provide complete solutions that reflect
their problem-solving process, reasoning, or proof, through different mathematical
representations. An example of this answer type is provided in Fig. 1
(Section “Interpretation and Analysis of Student Work”) from the Numworx
environment.

Clearly, the interpretation and analysis of complete solutions, including proof,
are much more difficult than assessment of a final answer. While there are proto-
type systems which assess proofs in specific subject areas, such as discrete
mathematics, assessment of free-form proof cannot currently be done. When
faced with trying to automatically assess understanding of a complete solution,
including proof, the design of sequences of questions can play a valuable role.
Design strategies include using faded worked examples, e.g., with judicious gaps
in proofs for students to fill. Explicit assessment of separated concerns tries to
ensure students’ are fully prepared for writing proofs in particular topics (Sangwin
and Bickerton 2021). Lastly, reading comprehension tasks have become much
more popular in recent years, such as those by Mejia-Ramos et al. (2017), but these
tasks are actually quite difficult to write.

It is likely that a complete change in the way we write proofs will be required
before reliable automatic checking of students’ proofs can be done. As a minimum,
we need standard ways to type a proof into a machine which captures meaning and
not just presentation of mathematics. Indeed, at this point students would effectively
use a proof assistant, or proof checker, and this technology is right at the forefront of
contemporary research (Thoma and Iannone 2021).

Taken together, this section shows that digital assessment platforms’ capacities to
interpret and analyze student work are growing. Much progress has been made for
the case of relatively simple answer formats, whereas more sophisticated answer

Fig. 6 Template item in STACK
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formats, such as open answer types with complete solutions, remain challenging or
even impossible. These interpretation and analysis capacities determine to a large
extent the opportunities for report and feedback to students on their work, which is
the topic of the next section.

Reporting/Presentation of Results of Analysis

Once student work is recorded and analyzed, reporting is meant to inform students/
teachers/parents/school administration/national educational systems on proceedings
and state-of-the-art learning. The communication of insights to various stakeholders
relies on the types of reports and presentation methods available in an automatic
assessment platform. There are many important details to consider about how results
of analysis are presented: What is the form that a report takes (e.g., is an analysis
presented in words or in numbers?)? Do reports only look backwards or do they look
forward, offering hints, or suggestive alternative strategies? Are reports given while
a student is working, or are they given only after students have completed a task?
Finally, what level of aggregation do reports use as their level of analysis; are they
reports about individual learners, small groups of learners, whole classes, or larger
units of analysis? In this section, we begin by considering these aspects of reports
and then illustrate these differences with two windows.

Reporting information to the learner while working or after submitting solutions
is traditionally termed as feedback, aiming to close the gap between where the
student is and where the learner should be (Hattie and Timperley 2007). The reported
insights intend to build awareness to learning performance in the targeted outcome
content, and in some cases, these insights aim at providing general awareness to
learning progress, patterns and strategies. Such personal reports are often designed to
be a one-way transfer of information from an agent to the learner (Shute 2008). By
way of contrast, the dialogic interaction in making sense of the reported information
is considered to be an essential feedback process to enhance student’s learning.
Carless (2015) described feedback in the classroom as “a dialogic process in which
learners make sense of information from varied sources and use it to enhance the
quality of their work or learning strategies” (p. 192).

Reports can take different forms, depending on the goal and the targeted audi-
ence. One form of commentary on work (particularly for formative practices) is
didactical feedback. Didactical feedback is considered to be verbal or textual
information about the student’s work and is delivered in the form of comments
(told or written). There have been research and development attempts of
technology-based textual reports to students. These were most often verbal reports
provided, with or without technology, aimed at assessing and supporting direct
acquisition of a concept or concept-related skills. Usually, these reports are promot-
ing correct answers and the procedures leading to correct answers. Other systems
seek to simulate a mathematical conversation using prepared hints or comments that
address the performance of the learner compared to the envisioned or expected
performance.
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Forms of assessment that require adopting a comparative view of assessed
learners or of different parts of the learning process, concepts, and skills have a
wide choice of forms in which to present the result of the assessment, in aggregated
reports commonly referred to as dashboards. While verbal comments can be com-
pared to one another by the audience of the report, numerical summaries enable the
learners to compare themselves to a required benchmark or to one another. These
numerical results could also be used to provide statistical markers such as average,
mean, standard deviation, and other measures that describe groups of learners. They
could be incorporated as part of a dashboard, provided using a visual/graphical
representation of insights or results. These dashboards could have interactive com-
ponents that enable the viewers to focus on various aspects depending on their level
of proficiency with the platform, offering different levels of independence from a
ready-made report to fully interactive query mechanisms. Results from log data
analysis, which could demonstrate, for example, learning curve analysis require
careful consideration in their format of representations.

Studies of feedback (Hattie and Timperley 2007; Shute 2008) being information
given to the student concern the effects of immediate vs. delayed feedback on
learning outcomes or more specifically as providing online personal feedback at
the pre-submission phase and most often as post-submission. Among the positive
effects of immediate feedback in both phases, studies indicate helping students in
their decision or motivation to practice the tasks and providing an explicit associa-
tion between outcomes and causes during problem-solving. A negative effect of
immediate feedback may be that it leads to dependence on information that is not
available during transfer tasks, and it may lead to less care in the choice of answers
and may impede metacognitive activities. On the positive side, delayed feedback
may encourage learners’ engagement in active cognitive and metacognitive pro-
cessing, creating a sense of autonomy but may be a source for struggling and
frustrating, mainly for less motivated learners. Another aspect of timing is affected
by the goal of the assessment. The nature of formative assessment is in the ongoing
process in which assessment informs the learning process; thus it requires frequent
and smaller units of assessment. Summative assessments, on the other hand, provide
the learners and other stakeholders with a snapshot of a certain point in the learning
process, which requires a valid and reliable body of assessment items or events to
produce meaningful insights.

In taking into consideration the insights that the analysis provided, technological
platforms are not confined to presenting information only about the work that has
already been completed or that is now in progress. Looking ahead, and providing
suggestions for further work, or adaptation of further items for the learner to interact
with is also part of the presentation that is informed by the preceding learning
process. In some cases the entire process is captured in the presentation. Presentation
of results connected to learning goals could appear in the form of student models or
learning goal landscapes (see also Fig. 8 for an example).

Reports and feedback are often used to describe and engage with information
regarding aspects of a learner’s performance or understanding. These aspects may
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include corrective information, an alternative strategy, information to clarify ideas,
encouragement, or simply the correct answer. Generalizing the types of informa-
tion provided, feedback needs to provide information specifically relating to the
task or process of learning that fills a gap between what is understood and what is
aimed to be understood. In some cases the reporting can also relate to more general
aspects of learning that could also be used in different contexts, such as meta-
cognitive skills.

In Windows 5 and 6 we present two examples of innovative personal reports, in
which STEP and Numworx platforms are reporting back to students. STEP auto-
matically points out whether or not requirements and additional characteristics are
present in the student’s submission. Numworx creates an overlay mapping of student
achievements and may present students a model of their achievement level to inform
them on further steps.

Window 5 Characterizing Student Responses in STEP

The analysis of the submission in STEP is reported to students by means of the
different types of reports that students receive at different stages of their work:
pre-submission information provided during exploration and post-submission infor-
mation. The post-submission report consisted of a list of task requirements and a list
of additional mathematical characteristics of the submissions (exemplified in
Table 1). As part of authoring a task, designers provide the platform direction
about the characteristics of student submissions to be checked and associated with
examples. The role of the characteristics is both to articulate mathematical ideas in a
mathematical way and to introduce a competing discourse about the phenomena that
the students could interact with, which they can either reject or use to refine their
submissions. These characteristics can provide information that goes beyond
whether students’ submissions are right or wrong and can be used to describe
where in the example space each of the submitted examples resides. These charac-
teristics have the potential to challenge the students’ current perspectives and are
designed to create a dialogic feedback process. The report includes information on
characteristics of each student’s constructed and submitted example. Especially
when students are asked to submit multiple examples, the software has a window
into what Watson and Mason (2005) call student “response spaces,” collections of
learner-generated examples that fulfill a given requirement. When examining the
responses of individual students, STEP can help characterize a personal example
space.

In the following design (Fig. 7), we show an extract of a post-submission report
that focuses on the relations between f and g. Thus the reports for two of the
individual examples (out of the three submitted, due to space limitations) and for
the submission as a whole are restricted to characteristics out of this category in order
to produce a focused report for the learner to interact with.
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Window 6 Knowledge Landscape in the DME

At the basis of reporting back to students on their progress lie knowledge models,
representations of the targeted learning goals within a domain. These knowledge
models form the “learning landscape” in which the students move. Figure 8 (left)
shows an extract of such a knowledge model for the subdomain within geometry on
points, lines, and intersections in a seventh-grade mathematics textbook in the
Netherlands, implemented in the Numworx Digital Mathematics Environment.
The yellow nodes refer to knowledge and the blue ones to skills that students are
expected to master. The arrows in this oriented graph depict the dependency

Table 1 Analyzed characteristics in a student’s submitted answer

Task requirements

Additional characteristics

Example’s
characteristics Personal example space characteristics

Marked three valid
triplets

Function g: “Peculiar” example (extreme, degenerate)

Three different examples g is a function with
minimum

Each example
demonstrates all marked
conditions

The graph of g
intersects the origin

Sketch (looks right but not correct
symbolically)

Relations between f
and g

Easy to compute coefficients

Functions share
symmetry line

Example demonstrating part of marked
conditions [wide concept image]

f ¼ g at exactly one
point

Graphs do not
intersect

Example demonstrating marked and
additional conditions [narrow concept
image]Graphs intersect in

two points

Graphs intersect in
the extremum

Intersection not in
the extremum

Does not meet
requirements:

Marked invalid
triplet

Marked four
conditions

Partially meets the
requirements:

Marked two
conditions or one
condition
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relationships between the knowledge components: to master a node, mastering the
corresponding nodes at the tails of the incoming arrows is needed. The incoming
arrows, therefore, start from nodes that can be considered preliminary knowledge.
Making explicit the dependency relationships between knowledge components not
only is informative in offering an overview of the learning goals landscape but also
allows for efficient assessment of progress: if there is evidence of a student mastering
a particular knowledge component, one can assume that the “incoming nodes” will
also be mastered.

After such a knowledge model is set up, the common next step is to link learning
activities or tasks to specific knowledge components. Once these connections are
established, student achievements on these tasks inform and load the student model
according to this mapping. These “overlay models” (Brusilovsky and Millán 2007)
may be presented to students as a model of their achievement level and may inform
them on further steps. Figure 8 (right) provides an exemplary implementation of
such an overlay student model: nodes become green if there is evidence that the

Fig. 7 Post-submission personal report characterizing a personal example space based on require-
ments (top) and additional characteristics (bottom)
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student masters the nodes, as well as the incoming arrows and the related preliminary
knowledge. Both teachers and students have access to this information. Individual
student reports can be provided at the level of each of the knowledge components.
This informs them on where they are in the landscape and what to do next. Thanks to
the dependency relations, there is no need to assess all knowledge elements in detail,
but tasks can be more complex and cover more of these elements at once.

While the focus of this chapter is reports designed for the learner, presentation of
the insights is not restricted to an individual learner, and the various forms of
presentation span over a wide range of audiences.

For example, the knowledge landscape in Fig. 8 concerns feedback to an indi-
vidual learner. One could consider further elaboration toward more sophisticated
feedback and toward other audiences. As for the former, it would be interesting to
explore opportunities for including the learning setting (individual, pairs, groups)
and the support level (parents, teacher, peers) in the feedback design. If the audience
also includes teachers, who want to have an overview of their class’ proceedings, the
overlay in Fig. 8 could easily be extended to a class level. And, thinking further, why
not to a teacher, school, or district level? While such reports carry a great potential to
improve education, we should also take into consideration their inherent potential
threat they may form in assessing teachers or teaching methods, as to implement
superficial forms of “evidence-informed” educational practice.

Conclusion and Discussion

Automatic assessment can create effective means to support the implementation of
mathematical practices that are widely promoted by the mathematics education
community, but only if it is reliable and valid. The authors of this chapter have
been designing and using automatic assessment platforms whose aim is to assess
students’ mathematical work to report on learning progress on specific mathematics
content, as described in Sections “Design of Tasks and Tools for Student

Fig. 8 A knowledge landscape including intrinsic dependencies (left) and a student model overlay
(right) in the Numworx Digital Mathematics Environment (https://www.numworx.nl/en/)
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Mathematical Work”, “Design of Tasks and Tools for Student Mathematical Work,”
and “Reporting/Presentation of Results of Analysis” of this chapter. In closing this
chapter, we underscore how our commitments to mathematics education influence
our designs and argue that as a mathematics education community, it is important to
have mathematics educators or any stakeholders that take into account the specific
nature of mathematics, continue to engage with advances in automatic assessment,
and continue to push such tools to support goals important to the mathematics
education community. In particular, it is important that stakeholders in mathematics
education engage in the design of techniques for automatic assessment. We close the
chapter with four remarks on the current status of automatic assessment of students’
mathematical work and three recommendations for future directions that we see
emerging and seek to encourage.

There is an irony with current online assessment; the tasks which are easiest to
assess automatically are often the tasks related to calculations which the computer
can readily perform, e.g., tasks involving students’ competence with symbolic
manipulation, such as factoring or symbolic integration. What is the point of student
fluency when computers exceed any reasonable demand of practical fluency? A risk
is that digital assessment is not commonly testing competencies that match what it
means to “do mathematics” in the twenty-first century.

Using contemporary terminology, it is automatic assessment that creates infor-
mation for learning analytics. It is common for traditional practices to evolve and
progress when they move toward data-driven practices, whether it is production
processes or even the use of complex statistical formulas in sports. We see merit in
such analytic processes and understand the potential benefits from the integration of
learning analytics into the educational world in general and into mathematics
education specifically. Yet the quality of the insights provided by data analytics
depends on the fit between the information collected and the processes to be
improved. When assessment practices are narrowly focused on whether students’
answers are right or wrong, they are not likely to produce insights that will improve
the learning of mathematics in classrooms.

By contrast, mathematics educators leading development of technological plat-
forms in mathematics teaching, learning, and assessment usually take either a
mathematical or a didactical approach as a starting point. Led by the potential
added value of these perspectives, the technological tools developed are usually
novel. This approach is not necessarily aligned with the common developmental
approach that is led by harnessing a tool’s existing capabilities into meaningful
resources. The most trivial example is “time on task,” which is quite easy to measure
within technological platforms, which led to studies of possible benefits (e.g.,
cheating, motivation). This is an example of the data driving the questions rather
than questions driving the collection of data.

Mentioning technological developments, it is fair to say that, at the time of our
writing, artificial intelligence has made almost no impact whatsoever on automatic
assessment of mathematics. In practice, an assessment platform establishes only
what a teacher has decided are relevant properties, typically properties decided in
advance. The teacher, or task designer, ultimately remains responsible for outcomes,
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feedback, and all judgments of value. On reflection, the difficulty of using artificial
intelligence in mathematics assessments is hardly surprising: teachers are called
upon to make many subtle judgments even in very simple-looking situations. In
mathematics, a single misplaced symbol often significantly changes the meaning,
and macrolevel decisions (e.g., the style of proof) can result in radically different
correct solutions to a particular problem. Furthermore, the judgments required
actually turn out to be surprisingly context dependent, and the judgments change
over time as students progress in their mathematical career. Given the nature of
mathematics as an exact science, that criteria change over time might be a surprise.
The change in assessment criteria is an example of the expert reversal effect, a well-
established phenomenon that what is useful for a beginner is quite different, perhaps
the opposite, of what is useful for an expert; see (Kalyuga et al. 2012). A completely
trivial example: early in a student’s mathematical career writing fractions in lowest
terms, that is to say without common factors in the numerator and denominator, is the
whole point of the work. Later, in more advanced work, use of syntactic conventions
(representing a rational number as a fraction in lowest terms) is important but is
normally much less important relative to other issues, and at times postponing such
reductions can be an important solution strategy.

Currently, adaptive testing is also not as widely used as one might expect;
sequences of questions, such as faded worked example sequences or a proof
comprehension task, are typically a fixed sequence of questions. Computers offer
the opportunity for adaptive testing where the response to the current question, or
history of previous answers, is used to select the next question. Adaptive testing is
not new; adaptive testing is an idea going back to the earliest teaching machines, the
history of which was told recently in Watters (2021). Indeed, adaptive testing does
not require computer technology at all, and an interesting example of adaptive
materials can be found in Crowder and Martin (1960). In their algebra book, students
answer simple questions, and based on their answer the student moves to a specific
page in a nonlinear fashion. What adaptive testing requires is good design, and the
significant difficulty of good design is ultimately why so little progress appears to
have been made in this direction. There are multiple examples of adaptive testing
(Anderson et al. 1995; Appleby et al. 1997) that are based on mapping dependencies
between different skills and models of student thinking. Yet ultimately automatic
digital assessment does not make routine use of adaptive testing outside rather large
specific projects.

As a first recommendation for future development, the continued development of
technology has the potential to address some challenges in current assessment
practices. For example, there are other considerations of design that cause devel-
opers who are members of the mathematics education community to choose spe-
cialized and uncommon technological functions or innovative solutions in
mathematics assessment. Designers often seek to make the interaction between the
students and tools as convenient as possible in supporting student expression of, and
communicating, their ideas. Yet, convenient modalities may have drawbacks in
terms of the ability of a platform to identify and analyze the mathematics in students’
work. On the other hand, solutions that require severe effort from the students in
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doing mathematics such as writing symbolic expressions with an equation editor
present a burden that limits the expressivity of the ideas due to the efforts of
communicating them. Here technological developments such as optical character
recognition (OCR) may provide useful solutions.

Second, the complex thinking that is usually the focus of mathematics educators
is commonly best assessed by interviews, rather than through online automatic tools.
The development of technological solutions for assessment of higher-order thinking
usually requires specific focus and design and is not covered by the standard mass
production educational tools, which target greater audiences and potential cus-
tomers. This leads to a state in which general platforms and tools are either not
compatible or not connectable with other technological solutions. One possible path
to extend the level of expertise available in automatic assessment is to increase the
connectivity of different platforms, to harness existing technology as a baseline for
further development, enable to embed additional functionalities into an existing
platform, or enable the integration of a novel instrument through use of different
application programming interfaces (APIs) available to developers.

When looking into the future of digital assessment, there is one concern that
lingers: who has control over the assessment platforms? For example, to what extent
can individual teachers write their own assessments, to what extent is data available
to research, and how does innovation take place? Another tension relates to the
choice of general tools and mathematics-specific tools. Both require teacher
resources, and if teachers use their resources on general technology, they use less
math-focused technology (Drijvers et al. 2021), a general finding that is also relevant
to the case of assessment.

As researchers leading development of technological platforms in mathematics
teaching, learning, and assessment, we should acknowledge that this type of devel-
opment is a complex endeavor. Complex, but also possible, as demonstrated in this
chapter and also essential for the evolution of the field of mathematics education. We
should continue to pursue solutions that are custom-made for the specific needs of
assessment of complex mathematical activity. Keeping in mind that we also tend to
adopt the simple solutions that are broader in their aims and audiences, these
solutions and design ideas should be kept and developed/incorporated into main-
stream platforms in order to enhance their sustainability.
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