
Hierarchical Precedential Constraint
Wijnand van Woerkom

Utrecht University
Department of Information and Computing Sciences

Utrecht, The Netherlands
w.k.vanwoerkom@uu.nl

Davide Grossi
University of Groningen

Bernoulli Institute for Math, CS and AI
Groningen, The Netherlands
University of Amsterdam

Amsterdam Center for Law and Economics
Institute for Logic, Language and Computation

Amsterdam, The Netherlands
d.grossi@rug.nl

Henry Prakken
Utrecht University

Department of Information and Computing Sciences
Utrecht, The Netherlands
University of Groningen

Faculty of Law
Groningen, The Netherlands

h.prakken@uu.nl

Bart Verheij
University of Groningen

Bernoulli Institute for Math, CS and AI
Groningen, The Netherlands

bart.verheij@rug.nl

ABSTRACT
In recent work, theories of case-based legal reasoning have been
applied to the development of explainable artificial intelligence
methods, through the analogy of training examples as previously
decided cases. One such theory is that of precedential constraint. A
downside of this theory with respect to this application is that it per-
forms single-step reasoning, moving directly from the case base to
an outcome. For this reason we propose a generalization of the the-
ory of precedential constraint which allows multi-step reasoning,
moving from the case base through a series of intermediate legal
concepts before arriving at an outcome. Our generalization revolves
around the notion of factor hierarchy, so we call this hierarchical
precedential constraint. We present the theory, demonstrate its ap-
plicability to case-based legal reasoning, and perform a preliminary
analysis of its theoretical properties.

CCS CONCEPTS
• Theory of computation → Automated reasoning; • Informa-
tion systems → Expert systems; • Computing methodologies
→ Knowledge representation and reasoning.

KEYWORDS
case-based reasoning, precedential constraint, factors, factor hier-
archy, explainable artificial intelligence

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICAIL 2023, June 19–23, 2023, Braga, Portugal

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0197-9/23/06. . . $15.00
https://doi.org/10.1145/3594536.3595154

ACM Reference Format:
Wijnand van Woerkom, Davide Grossi, Henry Prakken, and Bart Verheij.
2023. Hierarchical Precedential Constraint. In Nineteenth International Con-

ference on Artificial Intelligence and Law (ICAIL 2023), June 19–23, 2023,

Braga, Portugal. ACM, New York, NY, USA, 10 pages. https://doi.org/10.114
5/3594536.3595154

1 INTRODUCTION
There has been a lot of interest over the past years in making artifi-
cial intelligence (ai) more interpretable or explainable, as this kind
of technology is increasingly being applied to tasks with ethical,
social, or legal impact to end-users. This emerging field is often
called explainable artificial intelligence (xai).

It has been argued in the literature, e.g. in [19], that one approach
to tackle this problem is by considering the problems and solutions
studied in the field of ai & law, of which explainability has always
been a core aspect. Indeed, we have seen several xaimethods devel-
oped with their roots in argumentation and case-based reasoning,
such as [14, 6, 7, 8].

The recently developed method in [14] makes use of the for-
mal result model of precedential constraint first proposed by Horty
in [11], as the basis of its case-based reasoning mechanism. Exam-
ples from the ai’s training data are represented in a factor-based
approach in the style of hypo [3], and explanations for specific
decisions made by the ai are provided in the form of an argumenta-
tive dialogue about the decision at hand, starting with the citation
of a similar case from the training set.

In this model of precedential constraint a simplifying assumption
is made that the precedential reasoning involved moves directly
from the precedent to an outcome in the focus case, rather than
moving in multiple steps through intermediate legal concepts. This
limits the argumentative discourse that can be based on the theory,
which in turn limits the depth of the explanation that a method
such as the one developed in [14] can produce. To this end, in
the present work we propose a generalization of Horty’s theory

https://orcid.org/0009-0007-2641-9191
https://orcid.org/0000-0002-9709-030X
https://orcid.org/0000-0002-3431-7757
https://orcid.org/0000-0001-8927-8751
https://doi.org/10.1145/3594536.3595154
https://doi.org/10.1145/3594536.3595154
https://doi.org/10.1145/3594536.3595154
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3594536.3595154&domain=pdf&date_stamp=2023-09-07

ICAIL 2023, June 19–23, 2023, Braga, Portugal van Woerkom et al.

of precedential constraint which enables multi-step precedential
reasoning, primarily in the hope that it can form the basis of more
expressive xai methods. Central to this generalization is a move
from a plain factor-based representation of cases to the use of a
factor hierarchy as used in cato.

The hypo program starts with a simple representation of cases as
consisting of factors that favor either the plaintiff or the defendant.
In its successor, cato, a factor hierarchy is used instead, in which
factors do not simply express a preference towards either of the
outcomes but instead support or oppose each other in a hierarchical
fashion. Just as cato allowed multi-step inferences through the
use of a factor hierarchy compared to hypo, we wish to facilitate
multi-step inferences for precedential constraint through the use
of a factor hierarchy. This leads us to name our generalization
hierarchical precedential constraint.

Another source of inspiration for us is the work on precedential
constraint by Roth and Verheij in [15, 16]. In [15] Roth presents
a model which is similar in some ways to that of Horty, in that it
contains a comparable definition of what it means for a case base
to constrain future decision making; and different in other ways,
for instance in that it represents cases in a style that is closer to the
hierarchical representation used in the cato program.

After having presented our generalization, we demonstrate its
behaviour through some examples, and we analyse its theoretical
properties. We do so in particular by considering whether the form
of reasoning thus described is monotonic or not; a property which
characterizes the defeasability of inferences and plays an important
role in the study of reasoning and argumentation [17].

This work is structured as follows. We begin by discussing some
related work in Section 2. Then, in Section 3, we describe the the-
ory of precedential constraint of [11]. In particular, we describe
the knowledge representation it uses in Section 3.1, the theory it-
self in Section 3.2, some examples in Section 3.3, and a discussion
on the topic of monotonicity in Section 3.4. In Section 4 we then
present our generalization, following the same layout as Section 3;
in Section 4.1 we present a knowledge representation in the style
of the cato factor hierarchy, in Section 4.2 we describe the notion
of constraint for cases in this representation, in Section 4.3 we
give some examples, and in Section 4.4 we consider whether this
form of reasoning is monotonic. We conclude with a discussion and
conclusion in Sections 5 and 6 respectively.

2 RELATEDWORK
In the final two paragraphs of [11] Section 7, Horty describes a pos-
sible generalization of his theory which allows multi-step reasoning.
In this modified version cases would be represented as linked sets
of precedent constituents, moving from the initial facts of the case
through a series of more abstract legal concepts to ultimately arrive
at a decision for the plaintiff or the defendant.

A work that has attempted to develop such a more general frame-
work, and which actually predates Horty’s [11], is found in Roth’s
dissertation [15] Chapter 3 and Roth and Verheij’s [16]. In this
work a formal theory is formulated which aims to describe the
conclusions that follow from the precedential reasoning method.
Roth’s theory notably differs from that of Horty in that cases are
not represented as sets of factors but as sentences in a language

of [20] with symbols for support and attack between these factors.
This way a case cannot only contain factors but can also contain
information on the internal relation between the factors in terms
of attack and support, inspired by the idea of the factor hierarchy
of [1]. A further difference, inspired by [20], is that sentences of the
form 𝑝 → (𝑞 → 𝑟) are also permitted, so that a factor can express
support for a support relation, and so on.

Based on these richer case representations a theory is then de-
veloped on the way in which precedent cases influence decisions in
a novel fact situation. Interestingly, Roth uses attack and support
relations to allow the a fortiori reasoning it models to be applied
not only to the final outcome of the case but also to intermediate
conclusions. This is done by using the attack and support relations
to identify components of the case that provide support or oppo-
sition to the claim at hand; if there is more support in the novel
case but less opposition, then the same decision should be made
in the novel case. This is very much akin to the ideas in Horty’s
work [11]. In fact, some of the essence of Horty’s formalization of
a fortiori constraint through [11] Definition 10 was already present
in Roth’s notion of dialectical support in [15] Definition 8 and [16]
Definition 5, and with some effort one can show that the former
definition can be stated in terms of the latter.

In the present work we opt to build directly on Horty’s theory
rather than follow that of Roth. This has the advantage that we
can make use of the theoretical and applied results that followed
[9], which has been studied more extensively than Roth’s theory.
In addition, we do not model Roth’s nesting of support and attack
relations, and instead focus on the hierarchy of factors.

However, we do take inspiration from Roth’s theory. Firstly,
we follow Roth by enriching the representation of cases relative
to Horty’s theory. In contrast to Roth, we do not do so directly,
by allowing case representations to contain sentences expressing
support or opposition between factors; but indirectly, by keeping
the case representation as in Horty’s theory, but assuming that the
set of factors has an underlying hierarchical structure. Secondly,
we follow Roth in allowing the forcing relation to operate not just
on the final outcome of cases (i.e. a decision for the plaintiff or the
defendant) but also on intermediate decisions. However, in contrast,
we do so not by use of what Roth calls a relevance relation, but rather
by applying recursion on the structure of the factor hierarchy.

3 PRECEDENTIAL CONSTRAINT
In this section we describe Horty’s formal account of the result
model of precedential constraint, first presented in [11]. We begin
by describing the factor-based knowledge representation it uses,
pioneered by the hypo program. We then give Horty’s definition
of the way in which a case base in this representation constrains
future decision making, and demonstrate it through some examples.
We conclude with some observations on whether the inferences
resulting from this notion of constraint are monotonic.

3.1 Factors, sides, and cases
A concept that permeates the ai & law literature is that of factors;
facts which are legally relevant in the sense that their presence or
absence influence the outcome of cases. A factor is traditionally
assumed to provide support for exactly one of the outcomes. This

Hierarchical Precedential Constraint ICAIL 2023, June 19–23, 2023, Braga, Portugal

support is defeasible rather than strict, and the weighing of factors
against each other is a key component of court cases. Factors were
first used as a knowledge representation device in the hypo pro-
gram [3], and this use has since become common practice in the
field of ai & law. More information about factors and their history
may be found in e.g. [3].

Formally the factors of some legal domain are modelled as a finite
set 𝑃 of propositional variables. Additionally, we assume there are
two possible outcomes; 𝜋 , for plaintiff; and 𝛿 , for defendant. These
outcomes may also be referred to as sides, and we write S := {𝜋, 𝛿}
for the set of sides. Each factor is assumed to support exactly one
of the two outcomes. This is modelled by the assumption that 𝑃
is equal to a disjoint union 𝑃 = Pro∪Con. If 𝑝 ∈ Pro then 𝑝 is a
factor that provides support for a decision in favor of the plaintiff;
if instead 𝑝 ∈ Con then it provides opposition to a decision in favor
of the plaintiff. When a factor is pro-𝜋 it is assumed to be con-𝛿
and vice versa, so for a uniform treatment of the sides 𝜋 and 𝛿 it is
useful to define two functions Pro,Con : S → 2𝑃 by

𝑃𝑟𝑜 (𝑠) :=
{
Pro if 𝑠 = 𝜋,

Con if 𝑠 = 𝛿 ,
Con(𝑠) :=

{
Con if 𝑠 = 𝜋,

Pro if 𝑠 = 𝛿,
(1)

where 2𝑃 denotes the powerset of 𝑃 .
A fact situation is now a valuation, or also sometimes called an

interpretation, of the set of factors 𝑃 . This means that a fact situation
𝐹 is a function 𝐹 : 𝑃 → {t, f} that maps the factors to either true
(t) or false (f). Intuitively 𝐹 (𝑝) = t means the factor 𝑝 applies in
𝐹 , and 𝐹 (𝑝) = f means the factor 𝑝 does not apply in 𝐹 . Instead of
writing 𝐹 (𝑝) = t we will write 𝐹 ⊨ 𝑝 , and similarly 𝐹 ⊨ ¬𝑝 instead
of 𝐹 (𝑝) = f . If 𝐺 ⊆ 𝑃 then 𝐹 ⊨ 𝐺 means 𝐹 ⊨ 𝑝 for all 𝑝 ∈ 𝑃 . A
case is a fact situation that is decided for one of the two outcomes,
modelled as a pair (𝐹, 𝑠) with 𝐹 a fact situation and 𝑠 ∈ S a side.
Such a case will be denoted 𝐹 :𝑠 for brevity. A set of cases is called a
case base and usually denoted by CB.

We note that in [11] fact situations are represented as subsets 𝐹 ⊆
𝑃 , but formally speaking this is no different from using valuations 𝐹 :
𝑃 → {t, f} (simply regard those factors present in the fact situations
as being assigned true, and those absent as being assigned false).
We prefer to use valuations as they are more readily generalized
to partial fact situations, which are not used in the theory of [11],
but which will be useful to us in the present work. By partial fact
situation we mean a fact situations in which not all factors are true
or false, but a third ‘unknown’ or ‘undecided’ option is possible. We
will talk about such fact situations in the language of three-valued
logic, which has a rich history of study; see e.g. [9]. In the present
work we follow the notation and conventions of [4].

Formally we can view such a partial fact situation as a function
𝐹 : 𝑃 → {t, f, u}. Intuitively we interpret 𝐹 (𝑝) = u to mean that it
is not (yet) decided whether 𝑝 applies in 𝐹 or not. We will use the
same notation for partial fact situations as for regular fact situations
with respect to the entailment symbol ⊨.

Example 3.1. Both hypo and cato were applied to the domain
of trade secret law, and so we will use this domain as a running
example in this work. In Figure 1 some example factors are shown
for this domain, they are described in [1] Appendix 1 as follows.

F1 Plaintiff disclosed its product information in negotiations
with defendant.

π Misuse-of-Trade-Secret
F1 Disclosure-In-Negotiations
F2 Bribe-Employee
F4 Agreed-Not-To-Disclose
F6 Security-Measuresπ

F1 F2 F4 F6

Figure 1: An example of some factors for the domain of trade
secret law, from [2] Figure 4. The lines indicate whether the
factors support or oppose a decision for the plaintiff; solid
lines indicate support and dashed lines indicate opposition.

F2 Defendant paid plaintiff’s former employee to switch em-
ployment, apparently in an attempt to induce the employee
to bring plaintiff’s information.

F4 Defendant entered into a nondisclosure agreement with
plaintiff.

F6 Plaintiff adopted security measures.
All aside from F1 are pro-plaintiff factors, meaning that their pres-
ence offers defeasible support for a decision for the plaintiff.

3.2 The notion of constraint
Horty’s theory of precedential constraint, first proposed in [11],
builds on the factor-based method of case representation to give a
precise account of the way in which precedent constrains future
decisionmaking.We recall it here, but should note that our presenta-
tion differs slightly from the way it is usually done in the literature,
so as to emphasize similarities with the generalized version we
propose in Section 4.

The view of precedent adopted in Horty’s theory is that the
court’s decision in the precedent case represents an assessment
of the balance of the applying pro and con factors. Later courts
are then constrained to make decisions that are consistent with
this assessment. What it means to be consistent is made precise by
the theory: if a certain configuration of pro and con factors were
decided for a particular outcome, then any fact situation with the
same or more pro factors, and the same or fewer con factors, should
be decided for that same outcome. This is captured by the following
definition, which is [11] Definition 10.

Definition 3.2. Let CB be a case base for a set of factors 𝑃 , and
𝑠 ∈ S a side. We say CB forces the decision of a fact situation 𝐹 for
𝑠 , written CB, 𝐹 ⊨ 𝑠 , if and only if there exists 𝐺 :𝑠 ∈ CB such that:

(1) for all 𝑞 ∈ Pro(𝑠): if 𝐺 ⊨ 𝑞 then 𝐹 ⊨ 𝑞, and
(2) for all 𝑞 ∈ Con(𝑠): if 𝐹 ⊨ 𝑞 then 𝐺 ⊨ 𝑞.

Remark 3.3. The notation we use here for forcing is copied from
the one used for the notion of semantic consequence in logic. When
a formula 𝜙 entails another formula 𝜓 this is written as 𝜙 ⊨ 𝜓 ,
and if this relation only holds in the presence of an ambient set of
formulas Γ then this is denoted by Γ, 𝜙 ⊨ 𝜓 . In our setting the role
of Γ is filled by the case base CB, as the presence of these cases may
allow us to derive additional conclusions for a given fact situation.

The primary aim of the present work is to define an appropriate
version of Definition 3.2 for a variation of this model where the fac-
tors form a hierarchy, and this attempt culminates in Definition 4.8.

ICAIL 2023, June 19–23, 2023, Braga, Portugal van Woerkom et al.

Before proceeding we look at some examples, and consider whether
this form of reasoning is monotonic or not.

3.3 Examples
We briefly illustrate the workings of the forcing relation through
two examples, based on the model depicted in Figure 1.

Example 3.4. Let the set of factors 𝑃 be given by the two sets
Pro = {F2, F4, F6} and Con = {F1}. Now suppose that the fact
situation 𝐺 ⊨ {F1, F2, F4,¬F6} was decided in favor of the plaintiff,
meaning it was decided that the pro-𝜋 factors F2 and F4 together
outweigh the con-𝜋 factor F1. Now for any fact situation 𝐹 we have

{𝐺 :𝜋}, 𝐹 ⊨ 𝜋
iff (1) for all 𝑞 ∈ {F2, F4, F6}: if 𝐺 ⊨ 𝑞 then 𝐹 ⊨ 𝑞, and

(2) for all 𝑞 ∈ {F1}: if 𝐹 ⊨ 𝑞 then 𝐺 ⊨ 𝑞
iff 𝐹 ⊨ {F2, F4}.

Note that clause (2) is trivially satisfied here because the consequent
of the implication, 𝐺 ⊨ F1, is true; it does not matter whether 𝐹
satisfies F1 or not. So, in the presence of the case 𝐺 :𝜋 any fact
situation 𝐹 to which at least F2 and F4 apply will have its decision
for 𝜋 forced.

Example 3.5 (Inconsistency). Note that nothing prevents both
sides 𝜋 and 𝛿 from being forced simultaneously for a particular fact
situation 𝐹 . In [11] a case base within which such a disagreement
occurs is said to be inconsistent. For example, consider the case
𝐻 :𝛿 with fact situation 𝐻 ⊨ {F1, F2, F4, F6}. Then, with 𝐺 as in
Example 3.4, we have {𝐺 :𝜋, 𝐻 :𝛿},𝐺 ⊨ 𝛿 ; despite the fact that𝐺 was
decided for 𝜋 in the case base {𝐺 :𝜋,𝐻 :𝛿}.

3.4 Monotonicity
It was remarked by the authors of [12] that this theory of preceden-
tial constraint is essentially monotonic. In fact, there are two ways
in which this type of precedential reasoning could be monotonic:
with respect to the case base or with respect to the fact situation. It
is easy to see that the theory is monotonic in the case base, because
the addition of more cases to a case base does not obstruct a pre-
existing precedent case from acting as a witness to Definition 3.2.
This is formalized by the following proposition, which – to the best
of our knowledge – does not appear elsewhere in the literature.

Proposition 3.6. For case bases CB and CB
′
with 𝐶𝐵 ⊆ CB

′
, a

fact situation 𝐹 and a side 𝑠 , if CB, 𝐹 ⊨ 𝑠 then CB
′, 𝐹 ⊨ 𝑠 .

Proof. By the assumption CB, 𝐹 ⊨ 𝑠 there is𝐺 :𝑠 ∈ CB satisfying
(1) and (2) of Definition 3.2, and so since CB ⊆ CB

′ we have that
𝐺 :𝑠 ∈ CB

′ and therefore CB′, 𝐹 ⊨ 𝑠 . □

What about the second kind of monotonicity, with respect to the
fact situation under consideration? In the theory as we have just
described it this question cannot be phrased since a fact situation
is defined as assigning true or false to all factors, and so there is
no way in which additional information can be added to a fact
situation. Note that the same applies to the representation of fact
situations as subsets 𝐹 ⊆ 𝑃 used in [11]; adding a factor 𝑝 ∈ 𝑃

to such a subset can change a decision made about 𝑝 . Consider,
for instance, the factor F6 from the factors of Figure 1. If it was

decided that precautions taken by the plaintiff were insufficient to
constitute security measures, so that F6 ∉ 𝐹 , then adding F6 to 𝐹

would not add an assumption but modify an existing assumption.
This changes when we allow fact situations to be partial in the

way described in Section 3.1, and apply Definition 3.2 to partial fact
situations just as we would to regular fact situations, as information
can be added to a partial fact situation by changing the truth value
from factors assigned ‘undecided’ to true or false instead. This can
be expressed formally as follows. We order the values {t, f, u} by the
information order <𝑖 as in [4]: u <𝑖 t and u <𝑖 f , while t and f are
incomparable. The reflexive closure of <𝑖 is denoted by ≤𝑖 , which is
extended to partial fact situations 𝐹,𝐺 by 𝐹 ≤𝑖 𝐺 iff 𝐹 (𝑝) ≤𝑖 𝐺 (𝑝)
for all 𝑝 ∈ 𝑃 . The relation 𝐹 ≤𝑖 𝐺 indicates that if 𝐹 (𝑝) ∈ {t, f}
then 𝐹 (𝑝) = 𝐺 (𝑝). We now have the following proposition.

Proposition 3.7. For a case base CB, if 𝐹 and 𝐺 are partial fact

situations such that 𝐹 ≤𝑖 𝐺 , then CB, 𝐹 ⊨ 𝑠 does not imply CB,𝐺 ⊨ 𝑠 .

Proof. For a counter example, consider again the set of factors
depicted in Figure 1. Let 𝐻 :𝜋 be a case of which the fact situation
𝐻 assigns true only to F2, and false to the other factors. Now let
𝐹 be a partial fact situation assigning true to F2 and undecided to
the other factors. Applying Definition 3.2 we have {𝐻 :𝜋}, 𝐹 ⊨ 𝜋
since 𝐹 ⊨ F2 true and 𝐹 ⊭ F1. Now, let𝐺 be the partial fact situation
assigning true to F2 and F1 and unknown to the other factors. Then
𝐹 ≤𝑖 𝐺 , but {𝐻 :𝜋},𝐺 ⊭ 𝜋 since 𝐺 ⊨ F1 while 𝐻 ⊨ ¬F1. □

This proposition shows that, for partial fact situations, we should
think of the forcing relation as tentative, and its conclusions as
contingent on what has been decided thus far.

4 HIERARCHICAL PRECEDENTIAL
CONSTRAINT

An important way in which the cato program innovated over its
predecessor hypo was through the introduction of hierarchical
structure on the set of factors on which it operates. We wish to
enrich the representation of factors laid out in Section 3.1 in a similar
way and, in doing so, indirectly enrich our case representations.

This section follows the same structure as Section 3. We begin by
describing the factor hierarchy used in the cato program, and then
give a formal definition of what a factor hierarchy is composed of in
general. For more information about cato and its factor hierarchy
the reader is referred to e.g. [1] or [15] Chapter 4. We then define
what it means for a set of cases in this representation to constrain
future decisionmaking, demonstrate it by looking at some examples,
and then consider whether this form of reasoning is monotonic.

4.1 Factor hierarchy
Like hypo the cato program assumes the existence of a set of
factors that each provide support for exactly one of the two case
outcomes. However cato further assumes there is an additional
case-independent structure on the set of factors which details the
way in which the factors relate to each other, in addition to the way
in which they relate to the case outcomes. This structure, together
with the set of factors, is called the factor hierarchy.

Example 4.1. The prototypical example of a factor hierarchy is
the one used in the cato program for the trade-secret domain. It

Hierarchical Precedential Constraint ICAIL 2023, June 19–23, 2023, Braga, Portugal

was constructed through knowledge engineering, and a portion of
it is depicted in Figure 2. Note that since the hierarchy in Figure 2
depicts only a part of the complete cato factor hierarchy it is not
necessarily the case that what is indicated here as a basic factor is
also a basic factor in the original cato hierarchy.

The links in the hierarchy indicate a generic relation of support,
and can be either positive or negative depending on whether the
linked factors support the same outcome or not.1 Factors become
increasingly abstract the further they are up in the hierarchy, up to
those in the penultimate layer which in [1] are called legal issues.
The factors that are lowest in the hierarchy are called basic or base-
level factors, and are assumed to be determined directly by the plain
facts of the case. The factors above the base-level factors are called
abstract factors. A positive link indicates (defeasible) support for
a more abstract factor, and a negative link indicates (defeasible)
opposition. Lastly, links can be strong or weak, indicating their
level of support, which is not visualized in Figure 2.

Before we formalize this hierarchical structure we note that we
do not attempt to replicate it as closely as possible. For instance,
we will not model that links can be weak or strong. We do this
for the sake of simplicity and because this distinction does not
seem to be directly relevant for our purposes; we simply let the
precedent fully decide what the relative strength of the support
links is. Furthermore, we drop the assumption that all factors have
a preference towards one of the two case outcomes. Instead, we
assume only the presence of a hierarchical structure indicating
the preference that factors have for each other. This relaxation
allows for more structure in the hierarchy, although it remains to
be seen whether this offers any benefit in practice. Lastly, we add a
layer on top of the legal issues indicating support for either of the
case outcomes, so that the hierarchy is a single entity rather than
consisting of separate components as in the cato hierarchy.

To formally define the factor hierarchy, we assume as before
that the factors are given by a finite set 𝑃 of propositional letters.
However, as mentioned, we now follow Roth’s practice and Horty’s
suggestion to regard the outcomes 𝜋 and 𝛿 as special factors. This
change is not intended to degrade the status of the case outcomes to
mere factors, but rather to elevate the status of factors as themselves
being subject to decision making. Additionally, we do not assume
that 𝑃 is equal to a disjoint union, meaning that we do not assume
that all factors favor exactly one of the two case outcomes. The
hierarchical structure on 𝑃 is given by a relation 𝐻 on 𝑃 , where
𝐻 (𝑝, 𝑞) indicates that 𝑝 is (directly) below 𝑞 in the hierarchy.

The question now is what further structure we should impose on
𝐻 . We could, for instance, demand that 𝐻 (regarded as a graph) is a
tree, meaning that between each factor there should be exactly one
path to any other factor through the hierarchy. However, looking
at Figure 2 we see that it violates this assumption; from F4 there are
two paths up to F114, one through F115 and one through F121. To
our knowledge there is no exact specification given in the literature
on what shape a factor hierarchy should have in general, so we
suggest such a specification here.

1There is one exception to this rule in [2] Figure 4 in the link between F15 and F111
which are both pro-𝜋 factors but have a negative link. As this was likely a typo the
link is made positive in Figure 2.

While the condition that 𝐻 is a tree is too strict, we would
still expect it to have some tree-like properties. For example, the
hierarchy should connect all the factors within it rather than consist
of separate disconnected components. It should also not be possible
for a factor to be above itself in the hierarchy, which is to say the
hierarchy should not contain cycles.

Furthermore, the hierarchy should culminate in a single factor
representing the binary outcome of the case. The choice for the side
corresponding to this factor is arbitrary, in what follows we choose
to associate it with the plaintiff. The other side is then represented
as the negation of this factor, in our case the defendant.

Lastly, the links between factors in the hierarchy should each
have a polarity, indicating whether the link is expressing support
(positive) or opposition (negative).

Grouping these conditions yields the following definition, which
is foundational to our notion of hierarchical precedential constraint.

Definition 4.2. A factor hierarchy is a tuple (𝑃, 𝐻) with 𝑃 a finite
set of propositional letters and 𝐻 a relation on 𝑃 satisfying

(1) the transitive closure of 𝐻 is irreflexive;
(2) 𝑃 contains exactly one 𝐻 -maximal element;
(3) 𝐻 is equal to a disjoint union Pro∪Con.

Some remarks on the notation and terminology used here in
Definition 4.2 are in order.

(1) The transitive closure 𝑅+ of a relation 𝑅 is the smallest ex-
tension of 𝑅 which satisfies the property that if 𝑅+ (𝑥,𝑦) and
𝑅+ (𝑦, 𝑧) then𝑅+ (𝑥, 𝑧). Irreflexivity of𝑅+ means that𝑅+ (𝑥, 𝑥)
does not hold for any 𝑥 , so if 𝑅 is defined on a finite set then
this property is a succinct formal way of saying that 𝑅 does
not contain cycles.

(2) An element 𝑥 is said to be 𝑅-maximal if for no element 𝑦 the
relation 𝑅(𝑥,𝑦) holds; in other words there are no elements
above 𝑥 in the relation. In general a set can have more than
one maximal element, or none at all, so we require hierar-
chies to have exactly one. This condition also ensures that
𝐻 , considered as a graph, is connected.

(3) The edges in the hierarchy must denote either a support
or an opposition relation, but not both. This is expressed
succinctly by requiring that the relation𝐻 (which is formally
a set of ordered pairs) is equal to a disjoint union Pro∪Con.
Note that these are not the sets of propositions as in the
factor-based representation of Section 3.1: in this context
Pro and Con are both relations which together make up 𝐻

and do not overlap. We suggestively name them Pro and Con
to highlight the very similar purpose they serve compared
to the eponymous sets of Section 3.1. So, concretely, if for
two factors 𝑝, 𝑞 ∈ 𝑃 the relation 𝐻 (𝑝, 𝑞) holds then either
Pro(𝑝, 𝑞), meaning 𝑝 is a pro-𝑞 factor; or Con(𝑝, 𝑞), meaning
𝑝 is a con-𝑞 factor; but not both.

Despite grouping all factors into a single set 𝑃 we can still differ-
entiate them in the usual language of case-based reasoning accord-
ing to their role in the hierarchy 𝐻 .

Definition 4.3. A factor 𝑝 ∈ 𝑃 is basic if it is𝐻 -minimal, meaning
there is no 𝑞 ∈ 𝑃 with𝐻 (𝑞, 𝑝). We write 𝐵 for the set of basic factors.
Factors that are not basic are called abstract. We write 𝐴 for the set
of abstract factors, so 𝐴 := 𝑃 \ 𝐵.

ICAIL 2023, June 19–23, 2023, Braga, Portugal van Woerkom et al.

π Misuse-of-Trade-Secret
F1 Disclosure-In-Negotiations
F2 Bribe-Employee
F4 Agreed-Not-To-Disclose
F5 Agreement-Not-Specific
F6 Security-Measures
F15 Unique-Product
F16 Info-Reverse-Engineerable
F21 Knew-Info-Confidential
F23 Waiver-Of-Confidentiality
F25 Info-Reverse-Engineered
F26 Deception
F101 Info-Trade-Secret
F102 Efforts-To-Maintain-Secrecy
F104 Info-Valuable
F105 Info-Known-Or-Available
F106 Info-Known
F108 Info-Available-Elsewhere
F110 Improper-Means-Conclusion
F111 $estionable-Means
F114 Confidential-Relationship
F115 Notice-Of-Confidentiality
F120 Info-Legitimately-Obtained-or-Obtainable
F121 Express-Confidentiality-Agreement
F122 Efforts-To-Maintain-Secrecy-Vis-A-Vis-Defendant

π

F114 F101 F120 F110

F115 F121 F102 F104 F105 F111

F21 F5 F4F23

F122 F106 F108

F1

F6

F15 F16 F26 F2 F25

Figure 2: A part of the factor hierarchy on trade secret misappropriation, repeated from [2] Figure 4 but with a final layer added
expressing support or opposition to the outcome. The basic factors are shown in light gray, the abstract factors in gray, and the
outcome in black. Support and opposition edges are indicated by solid and dashed lines respectively.

Definition 4.4. By assumption there is exactly one 𝐻 -maximal
element, which we denote by 𝜋 . The factor 𝜋 means the case was
decided in favor of the plaintiff.

Remark 4.5. Note that there is no factor directly corresponding
to a decision in favor of the defendant. This role will be filled by
the negation of 𝜋 . In other words, a fact situation 𝐹 is decided for
the defendant if it assigns false to 𝜋 , which is denoted by 𝐹 ⊨ ¬𝜋 .

Now we can define (partial) fact situations and cases just as we
did in Section 3.1; a partial fact situation 𝐹 is a function 𝐹 : 𝑃 →
{t, f, u}, and a case is a partial fact situation 𝐹 which is defined
on 𝜋 , i.e. such that 𝐹 (𝜋) ∈ {t, f}. Again we write 𝐹 ⊨ 𝑝 instead of
𝐹 (𝑝) = t, 𝐹 ⊨ ¬𝑝 instead of 𝐹 (𝑝) = f , and now 𝐹 ⊨ ?𝑝 instead of
𝐹 (𝑝) = u. If𝐺 ⊆ 𝑃 we write 𝐹 ⊨ 𝐺 to mean 𝐹 ⊨ 𝑝 for all 𝑝 ∈ 𝐺 . The
relation 𝐹 ⊨ 𝑝 should be understood as saying 𝐹 was decided for 𝑝 .

Remark 4.6. Notice the difference between 𝐹 ⊨ ¬𝑝 and 𝐹 ⊭ 𝑝;
these statements are only equivalent for a fact situation 𝐹 that does
not assign u to any factor, i.e. when 𝐹 : 𝑃 → {t, f}.

In what follows we focus on partial fact situations, which wemay
refer to as just fact situations. This is because we will now assume
that precedent may need to be consulted in order to determine
whether a factor should apply in the focus situation. Just as how
the forcing relation of Definition 3.2 applies to fact situations, which
may be considered partial fact situations that lack an answer for the
𝜋 factor, the relation of forcing in the hierarchical case should be
applicable to fact situations that are missing a decision for factors
that may be forced by the case base. Allowing fact situations to be
partial in this way is common practice in ai & law, see e.g. [13] for
a discussion and relevant literature on this topic.

Example 4.7. Let us consider how the factor hierarchy depicted
in Figure 2 relates to Definition 4.2. We let 𝑃 denote the set of factors

{𝜋, F114, F120, F110, F115, F121, . . . , F2, F25}.
The hierarchy 𝐻 for this example is given by the lines in the fig-
ure, where the direction of the links is determined by vertical

order. So for instance, 𝐻 (F6, F102) and 𝐻 (F23, F121). Each link
is expressive of support or of opposition. So we have in partic-
ular that Pro(F6, F102), indicating that F6 is a pro-F120 factor; and
Con(F23, F121), indicating that F23 is a con-F121 factor. A case 𝐹 is
now a partial fact situation 𝐹 : 𝑃 → {t, f, u} which assigns true or
false to the outcome factor 𝜋 , i.e. 𝐹 (𝜋) ∈ {t, f}. For instance, wemay
have 𝐹 ⊨ {F101, F120, ?F110, 𝜋}, indicating that it has been decided
in the case 𝐹 that F101 and F120 apply, while no decision has been
made about whether F110 applies (leaving the decisions in 𝐹 about
the other factors unspecified). Intermediate decisions are modelled
in the sameway; if we have in addition that 𝐹 ⊨ {F102,¬F104, F105},
then this means that it was decided in 𝐹 that while F104 does not
apply, the factor F102 does and outweighs the applying con-F101
factor F105, because the factor F101 does hold.

4.2 The notion of constraint
Having enriched the factor-based representation of cases with hi-
erarchical structure as per cato’s factor hierarchy, we proceed in
this section to define a notion of precedential constraint analogous
to Definition 3.2, which takes into account this additional struc-
ture. In what follows we will frequently compare and contrast our
approach to Horty’s theory, outlined in Section 3; so to facilitate
this discussion we will refer to Horty’s theory by the abbreviation
pc (for precedential constraint), and to our generalization by the
abbreviation hpc (for hierarchical precedential constraint).

In principle we could now formulate a straightforward adapta-
tion of Definition 3.2 to factors, by stating that the decision of a fact
situation 𝐹 for some proposition 𝑝 ∈ 𝑃 is forced if there is some
precedent𝐺 with𝐺 ⊨ 𝑝 containing fewer or equal pro-𝑝 factors, as
well as more or equal con-𝑝 factors. However, this approach has
two shortcomings which we will now consider.

Firstly, this naive approach overlooks a subtlety introduced by
the levelwise support and opposition that factors can have for each
other. For instance, considering the fact situations 𝐹 and𝐺 as before,
it may be that 𝐹 is missing a pro-𝑝 factor 𝑞 which is true in 𝐺 , but

Hierarchical Precedential Constraint ICAIL 2023, June 19–23, 2023, Braga, Portugal

that there is a precedent case 𝐻 which forces the decision of 𝐹 for
𝑞. We will address this by defining forcing for hpc using recursion.

Secondly, in pc there is an implicit notion of negation for sides;
if a case is not decided for the plaintiff then it must have been
decided for the defendant, and vice versa. This negation operates by
switching the roles of the Pro and Con sets. Therefore, to generalize
this behaviour we should not just consider the factors in 𝑃 but also
their negations, so that the forcing relation operates not only on
factors but also on their negations.

To this end we define P := 𝑃 ∪ {¬𝑝 | 𝑝 ∈ 𝑃}. We let B and
A respectively denote the closures of 𝐵 and 𝐴 under the negation
operation, so e.g. B := 𝐵 ∪ {¬𝑝 | 𝑝 ∈ 𝐵}. We extend the operation
of a partial fact situation 𝐹 : 𝑃 → {t, f, u} to P in the evident way:
𝐹 (¬𝑝) := ¬𝐹 (𝑝) where ¬t := f , ¬f := t and ¬u := u (again, in
accordance with [4]). The negation of 𝜋 is denoted by 𝛿 := ¬𝜋 .

Finally, as in Eq. (1), we will make use of auxiliary functions
Pro,Con : P → 2𝑃 mapping a factor to its sets of pro and con
factors, given by its preimages under the Pro and Con relations
respectively, and switching Pro and Con factors for negations:

Pro(𝑝) := {𝑞 | Pro(𝑞, 𝑝)}, Con(𝑝) := {𝑞 | Con(𝑞, 𝑝)},
Pro(¬𝑝) := Con(𝑝), Con(¬𝑝) := Pro(𝑝) .
At last we have the required vocabulary to phrase a definition

of forcing for hpc, analogous to Definition 3.2 of pc.

Definition 4.8. Let CB be a case base for a factor hierarchy (𝑃, 𝐻),
and 𝑝 ∈ P a factor. We say CB forces the decision of a fact situation
𝐹 for 𝑝 , written CB, 𝐹 ⊨ 𝑝 , if and only if either:

• 𝐹 ⊨ 𝑝 , or
• 𝑝 ∈ A and there is 𝐺 ∈ CB with 𝐺 ⊨ 𝑝 such that:
(1) for all 𝑞 ∈ Pro(𝑝), if 𝐺 ⊨ 𝑞 then CB, 𝐹 ⊨ 𝑞, and
(2) for all 𝑞 ∈ Con(𝑝), if CB, 𝐹 ⊨ 𝑞 then 𝐺 ⊨ 𝑞.

The base case of the recursion is that 𝐹 ⊨ 𝑝 . Informally this says
that a case base (trivially) forces the decision of 𝐹 for 𝑝 if 𝐹 is already
decided for 𝑝 . The general case is only applied to abstract factors
and requires the existence of a precedent case 𝐺 which forces the
decision of the focus case for 𝑝 in the manner of Definition 3.2,
but where a recursive call to CB, 𝐹 ⊨ 𝑝 takes the place of 𝐹 ⊨ 𝑝 .
Since 𝐹 ⊨ 𝑝 implies CB, 𝐹 ⊨ 𝑝 as per the base case, the general case
can be understood as first expanding the decisions made in 𝐹 with
all possible decisions forced by the case base, before considering
whether the existentially quantified 𝐺 has the same or fewer pro-𝑝
factors and more or equal con-𝑝 factors.

That the recursion in Definition 4.8 ends – and so that the defi-
nition is valid – is ensured by the assumptions that 𝑃 is finite and
that𝐻 contains no cycles. Clause (2) applies only to abstract factors
𝑝 ∈ A, which prevents the case base from vacuously forcing basic
factors: if 𝑝 ∈ B then Pro(𝑝) = Con(𝑝) = ∅ by definition, so any
𝐺 ∈ CB with 𝐺 ⊨ 𝑝 would trivially satisfy conditions (1) and (2).
The idea of basic factors is not that they are decided on the basis of
precedent, but that they are determined directly by the plain facts
brought to the court.

We conclude this section with some lemma’s that follow trivially
from Definition 4.8 but which are worth stating separately.

Lemma 4.9. For any 𝑝 ∈ P, if 𝐹 ⊨ 𝑝 then CB, 𝐹 ⊨ 𝑝 .

Lemma 4.10. For any 𝑝 ∈ B, if CB, 𝐹 ⊨ 𝑝 then 𝐹 ⊨ 𝑝 .

4.3 Examples
Let us now consider a series of examples to illustrate and justify
the components of the model and the Definition 4.8 of constraint.
We begin with some examples relating hpc to pc.

Example 4.11 (Revisiting Example 3.4). To show that the essence
of pc is retained we can repeat the reasoning of Example 3.4. Con-
sider the factors in Figure 1 to form a hierarchy without any abstract
factors; so 𝑃 = {F1, F2, F4, F6}, Pro = {F2, F4, F6} × {𝜋}, and with
Con = {(F1, 𝜋)}.We consider a case𝐺 satisfying𝐺 ⊨ {F1, F2, F4, 𝜋}.
Now for any fact situation 𝐹 which is not defined on 𝜋 we get:

{𝐺}, 𝐹 ⊨ 𝜋
iff (1) for all 𝑞 ∈ {F2, F4, F6}: if 𝐺 ⊨ 𝑞 then {𝐺}, 𝐹 ⊨ 𝑞, and

(2) for all 𝑞 ∈ {F1}: if {𝐺}, 𝐹 ⊨ 𝑞 then 𝐺 ⊨ 𝑞
iff 𝐹 ⊨ {F2, F4}.

The construction used in Example 3.4 can be generalized to show
that any reasoning performed in pc can be faithfully replicated in
hpc. This is because factor hierarchies without abstract factors aside
from 𝜋 correspond exactly to the knowledge representation used
for pc, and, moreover, Definition 4.8 behaves like Definition 3.2 on
this fragment. More specifically, we have the following proposition.

Proposition 4.12. The theory of hpc with the additional axiom

𝐴 ⊆ {𝜋} is equivalent to the theory of pc.

Carefully proving this proposition involves some tedious verifica-
tions, see Appendix A for a sketch of the proof.

Example 4.13 (Inconsistency). As in Example 3.5, a case base of
hpc can be inconsistent in the sense that there can be some 𝐹 ∈ CB

with 𝐹 ⊨ 𝑝 such that CB, 𝐹 ⊨ ¬𝑝 . Note that this is not immediately as
problematic as it would be in a logic where the principle of explosion
holds, i.e. the situation above does not imply that CB, 𝐹 ⊨ 𝑞 for all
𝑞 ∈ 𝑃 . A theory of precedential constraint prescribes what it means
to make decisions in accordance with a set of previous decisions,
but courts can and do deviate from this prescription in practice.

Proposition 4.12 shows that if there are no abstract factors aside
from 𝜋 then hpc behaves exactly as pc. However, the question
remains whether hpc is well behaved in terms of its forcing relation
on abstract factors, and this is what we examine next.

Example 4.14 (Recursively forcing pro factors). We now consider
the factor hierarchy (𝑃, 𝐻) as specified by Figure 2. Let 𝐹 be a fact
situation such that 𝐹 ⊨ {F114, ?F101, F102}, and 𝐺 a precedent case
with 𝐺 ⊨ {F114, F101, F120,¬F110, 𝜋}. We then get

{𝐺}, 𝐹 ⊨ 𝜋
if (1) for all 𝑞 ∈ {F114, F101, F110}: if 𝐺 ⊨ 𝑞 then {𝐺}, 𝐹 ⊨ 𝑞, and
(2) for all 𝑞 ∈ {F120}: if {𝐺}, 𝐹 ⊨ 𝑞 then 𝐺 ⊨ 𝑞

if {𝐺}, 𝐹 ⊨ {F114, F101}
if {𝐺}, 𝐹 ⊨ F101.

We see that𝐺 does not force the decision of 𝐹 for 𝜋 as 𝐹 is undecided
on F101. But now suppose that there is a second precedent case 𝐻

ICAIL 2023, June 19–23, 2023, Braga, Portugal van Woerkom et al.

with 𝐻 ⊨ {F102,¬F104, F105, F101}. Then,
{𝐺,𝐻 }, 𝐹 ⊨ F101
if (1) for all 𝑞 ∈ {F102, F104}: if 𝐻 ⊨ 𝑞 then {𝐺,𝐻 }, 𝐹 ⊨ 𝑞, and
(2) for all 𝑞 ∈ {F105}: if {𝐺,𝐻 }, 𝐹 ⊨ 𝑞 then 𝐻 ⊨ 𝑞

if {𝐺,𝐻 }, 𝐹 ⊨ F102.
Since 𝐹 ⊨ F102 we get {𝐺,𝐻 }, 𝐹 ⊨ F102, so {𝐺,𝐻 }, 𝐹 ⊨ F101 and in
turn {𝐺,𝐻 }, 𝐹 ⊨ 𝜋 . Note also that this example works even if 𝐻 ⊨ 𝛿 :
a precedent can be involved in forcing an outcome that it itself was
not decided for.

So far we considered examples in which the only con factor
involved was satisfied by the precedent case, thus making clause
(2) trivially satisfied. To demonstrate the purpose of the recursion
in this clause we consider a modified version of Example 4.14.

Example 4.15 (Recursively forcing con factors). Suppose that in
the setup of Example 4.14 we swap the truth value of the con-F101
factor F105 in 𝐻 ; i.e. 𝐻 ⊨ ¬F105. Suppose, moreover, that there is a
precedent 𝐼 with 𝐼 ⊨ {F106,¬F108, F105}, and that 𝐹 ⊨ F106. Now 𝐼

forces the decision of 𝐹 for F105, i.e. {𝐺,𝐻, 𝐼 }, 𝐹 ⊨ F105, and since
𝐻 ⊭ F105 the precedent case 𝐻 no longer forces the decision of 𝐹
for F101. Clearly any opponent of a decision of 𝐹 for 𝜋 would cite
𝐼 as forcing 𝐹 for F105, thereby opposing the citation of 𝐻 . This
example demonstrates that Definition 4.8 accounts for this.

We conclude this section with two examples of similarities be-
tween hpc and two of its sources of inspiration: the hypo and cato
programs, and Roth’s model of precedential constraint [15].

Example 4.16 (Downplaying distinctions). In hypo and cato a
precedent case 𝐺 :𝑠 can be cited to argue that a focus fact situation
𝐹 should also be decided for 𝑠 . This citation can be opposed by
noting relevant differences, also known as distinctions, between 𝐺
and 𝐹 : pro-𝑠 factors that apply in 𝐺 but not in 𝐹 , or con-𝑠 factors
that apply in 𝐹 but not in 𝐺 . In other words, relevant differences
are the factors obstructing 𝐺 :𝑠 from forcing the decision of 𝐹 for 𝑠
in terms of Definition 3.2.

In cato such a distinction can be responded to in several ways, on
the basis of its factor hierarchy. One such way is to draw an abstract

parallel; arguing that, in effect, the difference is not relevant because
it is subsumed by a more abstract factor on which the precedent
and the focus fact situation do agree.

We consider a concrete example of a case 𝐺 and fact situation 𝐹 :

𝐺 ⊨ {F102,¬F104, F101, 𝜋}, 𝐹 ⊨ {¬F102, F104, F101, ?𝜋}.
A citation of 𝐺 to argue that 𝐹 should be decided for 𝜋 can be
opposed by noting the distinction F102, which says that the plaintiff
took efforts to maintain secrecy of their information. This factor
supports a decision for 𝜋 and applies to𝐺 , but not to 𝐹 , and so it is
a distinction. However in 𝐹 the factor F104 does apply, which says
that the plaintiff’s information was valuable for their business. For
both 𝐹 and𝐺 it was decided that the factor F101 applies, which says
that plaintiff’s information is a trade secret, due to the applying
factors F104 and F102 respectively. Therefore, the distinction F102
can be downplayed, by noting that it is subsumed by the more
abstract factor F101, so that the difference is not relevant.

Downplaying a distinction means that as a precedent, distinc-
tions at a lower level in the hierarchy do not matter so long as the

π Dismissal-Voided
F1 Employee-Behaved-Well
F2 Serious-Act-Of-Violence
F3 Atmosphere-Unaffected
F4 Criminal-Record
F5 Always-On-Time
F6 Insulted-Superior
F7 Dressed-Properly π

F1 F2 F3 F4

F6F5 F7

?F
G

?F
G

F
G

F
¬G

¬F
G

F
G

¬F
G

F
¬G

Figure 3: A small factor hierarchy for the domain of Dutch
dismissal law, repeated from [16] Section 3.

precedent and the focus case agree on more abstract, subsuming
factors. In some sense this sentiment is inherent in the definition of
forcing for hpc. If we evaluate whether {𝐺}, 𝐹 ⊨ 𝜋 in the previous
scenario, according to Definition 4.8, what matters is that both 𝐺
and 𝐹 satisfy the pro-𝜋 factor F101, and not why it is satisfied (in
this case, for the different reasons F102 and F104).

Example 4.17 (Dialectical arguments). As a final example we
demonstrate that hpc is aligned with the work by Roth and Verheij,
by formalizing an example from [16] Section 3 on the domain of
Dutch dismissal law. In Figure 3 a factor hierarchy for this domain
is depicted. The case outcome corresponds to whether or not the
dismissal can be voided, and relevant factors are considered such
as whether the dismissed person has always behaved like a good
employee. We consider two fact situations 𝐹 and 𝐺 . The factors
that apply to these situations are indicated next to the factors in
Figure 3, so for example 𝐹 ⊨ ?𝜋 , 𝐹 ⊨ F2, and 𝐺 ⊨ ¬F7. The point
of the example is that there is more support in 𝐹 for F1 than in 𝐺 ,
and so since𝐺 was decided for F1 so should 𝐹 . This, in turn, means
there is more support in 𝐹 for 𝜋 than in 𝐺 , so that 𝐹 should be
decided for 𝜋 as well. Applying Definition 4.8 to this scenario we
see that it follows exactly this line of reasoning, albeit in reverse:

{𝐺}, 𝐹 ⊨ 𝜋
if (1) for all 𝑞 ∈ {F1, F3}: if 𝐺 ⊨ 𝑞 then {𝐺}, 𝐹 ⊨ 𝑞, and
(2) for all 𝑞 ∈ {F2, F4}: if {𝐺}, 𝐹 ⊨ 𝑞 then 𝐺 ⊨ 𝑞

if {𝐺}, 𝐹 ⊨ F1
if (1) for all 𝑞 ∈ {F5, F7}: if 𝐺 ⊨ 𝑞 then {𝐺}, 𝐹 ⊨ 𝑞, and
(2) for all 𝑞 ∈ {F6}: if {𝐺}, 𝐹 ⊨ 𝑞 then 𝐺 ⊨ 𝑞

if 𝐹 ⊨ F5, which is true by assumption.

This example also shows that the same precedent case can be in-
volved in forcing multiple outcomes in a focus case.

4.4 Monotonicity
We saw in Proposition 3.7 that pc is nonmonotonic in the fact
situation with respect to the forcing relation, and of course this
same counterexample applies to hpc as well.

However, the two theories do not behave the same with regards
to monotonicity in the case base: unlike in pc, in hpc decisions
made on the basis of precedent can be invalidated by the inclusion
of more precedent cases.

Hierarchical Precedential Constraint ICAIL 2023, June 19–23, 2023, Braga, Portugal

Proposition 4.18. Given case bases 𝐶𝐵 ⊆ CB
′
, a fact situation 𝐹 ,

and a factor 𝑝 ∈ P, the statement CB, 𝐹 ⊨ 𝑝 does not imply CB
′, 𝐹 ⊨ 𝑝 .

Proof. For a counterexample we consider the factor hierarchy
in Figure 2, and fact situations 𝐹,𝐺, 𝐻 satisfying

𝐹 ⊨ {F101, ?F120, F110, F105, ?𝜋},
𝐺 ⊨ {F101,¬F120,¬F110, 𝜋},
𝐻 ⊨ {F105, F120, 𝛿}.

Now we have {𝐺}, 𝐹 ⊨ 𝜋 , because the pro-𝜋 factor F101 applies in
both 𝐹 and 𝐺 while the only con-𝜋 factor F120 does not apply in 𝐹

(or more specifically, 𝐹 ⊭ F120). However, {𝐺,𝐻 }, 𝐹 ⊨ F120 because
F120 applies in𝐻 and both 𝐹 and𝐻 satisfy the pro-F120 factor F105.
This means that now {𝐺,𝐻 }, 𝐹 ⊭ 𝜋 , because 𝐺 ⊭ F120. □

Intuitively, the reason why pc is monotonic in the case base and
hpc is not, is that in pc the added precedent case cannot interfere
with the pre-existing forcing inference, whereas in hpc it can. In
pc there is no room in the single-step forcing inference for the
additional precedent, while in hpc the additional precedent can
become part of the pre-existing multi-step forcing inference and
alter its final conclusion in doing so.

Remark 4.19. It should be noted that Lemma 4.9 can also be
regarded as stating a kind of monotonicity property; stating that
a decision made in 𝐹 cannot be invalidated by precedent. In this
sense the decisions that are made in a fact situation take precedence
over subsequent decisions forced by a case base.

5 DISCUSSION
In Section 4 we described in general terms how a set of factors
can be given hierarchical structure in the manner of cato’s factor
hierarchy, and we subsequently defined a notion of precedential
constraint for a set of cases with factors based on such a factor
hierarchy. We now discuss our findings in some more detail, and
touch on gaps and possible expansions which may be filled by
future work.

In the cato factor hierarchy the factors are assumed to favor
exactly one of the two possible outcomes, and the polarity of the
links between them in the hierarchy is fully determined by this
preference: if the two linked factors favor the same outcome then
the link is positive, and it is negative otherwise. In the present
work we do not assume that factors in the hierarchy have this
preference, and thus do not impose any restrictions on the polarity
of the links (given in our framework by the Pro and Con relations
which together make up the hierarchical structure 𝐻). In doing
so, we allow certain structures to exist within a factor hierarchy
that could not occur otherwise, e.g. there may be a chain of factors
𝑝, 𝑞, 𝑟 ∈ 𝑃 such that 𝑝 is pro-𝑞,𝑞 is pro-𝑟 , but 𝑝 is con-𝑟 . Some further
research is necessary to ascertain exactly what kinds of structures
this relaxation of the requirements permits, and whether these are
actually present in any naturally occurring factor hierarchy.

Another point for future work is on the bookkeeping of the
precedent cases involved in Definition 4.8. This makes use of re-
cursion, which enables multiple precedent cases to be involved in
forcing the decision of a factor in some focus case. No bookkeeping
is performed of the identity of these cases; all that matters to Defi-
nition 4.8 is their existence. Of course, for the intended application

of xai this will not suffice, as these cases are intended to form the
starting point of an argumentative dialogue on how the system
might have reached its decision. Thus, a more constructive version
of Definition 4.8 is required. One way of going about this would be
to inductively define a set of precedential arguments, each contain-
ing information about exactly what cases are involved in forcing
what factors in the multi-step process. These precedential argu-
ments should serve as witnesses to the forcing relation: meaning
they should satisfy the property that a case base forces the decision
of a factor if and only if such a precedential argument exist. Code
for computing such arguments could then be implemented, and
applied to representative machine learning data to assess the theory
in practice, as was done in [18] for pc.

A second concern with respect to the goal of xai is that the
factor hierarchy defined in Section 4.1 only contains binary factors,
i.e. propositional letters. In practice relevant legal facts are often
not binary but instead take values in sets like that of the natural
numbers. These types of facts are often called dimensions in the
literature, and in [10] Horty developed an extension of pc which
accomodates precedential reasoning on the basis of dimensions. A
similar extension of hpc is desirable for the purpose of xai because
often the features of machine learning datasets are not binary but
categorical or numerical.

Aside from practical concerns related to xai there are also av-
enues for theoretical future research on hpc. For instance, our
representation of cases based on a factor hierarchy abstracts from
the particular reasons the court used to decide a fact situation for
a factor. A more fine-grained representation could include such
information. Another example would be to further investigate the
problems surrounding case base inconsistency. In the present work
we only briefly touched on this matter in Examples 3.5 and 4.13,
but it is of primary concern in e.g. [11, 10, 5].

6 CONCLUSION
In this work we set forth a generalization of the theory of prece-
dential constraint [11] which allows multi-step inferences on the
basis of precedent cases. To do so we first formally specified what
it means for a set of factors to have hierarchical structure in the
style of the factor hierarchy used in the cato program [1]. We then
defined a notion of constraint for a set of cases represented using
such a factor hierarchy by recursion on the hierarchical structure.
The workings of the theory were demonstrated through examples,
and a first step in analysing its theoretical properties was taken by
demonstrating this type of reasoning to be nonmonotonic.

More broadly our goal is developing argumentative xaimethods,
which produce explanations in the form of argumentative dialogues
for (or possibly even against) specific decisions made by ai systems.
An earlier version of such a method, presented in [14], uses the
theory of precedential constraint as its backbone for representing
and reasoning about training examples, which may be viewed con-
stituting past decisions and thus, cases. However, the single-step
nature of Horty’s precedential constraint limits the argumentative
discourse that can be had in this manner. Therefore, by generaliz-
ing it to enable multi-step inferences we hope to enrich such xai
methods. Clear steps to take in this direction for future work are to

ICAIL 2023, June 19–23, 2023, Braga, Portugal van Woerkom et al.

extend the theory to operate on dimensions instead of factors, and
to subsequently demonstrate the theory in practice.

ACKNOWLEDGMENTS
This research was (partially) funded by the Hybrid Intelligence
Center, a 10-year programme funded by the Dutch Ministry of Edu-
cation, Culture and Science through the Netherlands Organisation
for Scientific Research, grant number 024.004.022.

REFERENCES
[1] Vincent Aleven. 1997. Teaching Case-Based Argumentation Through a Model

and Examples. Ph.D. Dissertation. University of Pittsburgh.
[2] Vincent Aleven and Kevin D. Ashley. 1997. Evaluating a learning environment

for case-based argumentation skills. In Proceedings of the 6th International

Conference on Artificial Intelligence and Law, 170–179.
[3] Kevin D. Ashley. 1991. Reasoning with cases and hypotheticals in HYPO.

International Journal of Man-Machine Studies, 34, 6, 753–796.
[4] Gerhard Brewka, Stefan Ellmauthaler, Hannes Strass, Johannes Peter Wallner,

and Stefan Woltran. 2013. Abstract dialectical frameworks revisited. In Proceed-

ings of the Twenty-Third International Joint Conference on Artificial Intelligence,
803–809.

[5] Ilaria Canavotto. 2022. Precedential constraint derived from inconsistent case
bases. In Legal Knowledge and Information Systems. JURIX 2022: The Thirty-fifth

Annual Conference. Enrico Francesconi, Georg Borges, and Christoph Sorge,
(Eds.) IOS Press, 23–32.

[6] Oana Cocarascu, Andria Stylianou, Kristijonas Čyras, and Francesca Toni. 2020.
Data-empowered argumentation for dialectically explainable predictions. In
Proceedings of the 24th European Conference on Artificial Intelligence. Giuseppe
De Giacomo, Alejandro Catala, Bistra Dilkina, Michela Milano, Senén Barro,
Alberto Bugarín, and Jérôme Lang, (Eds.) IOS Press, 2449–2456.

[7] Kristijonas Čyras, David Birch, Yike Guo, Francesca Toni, Rajvinder Dulay, Sally
Turvey, Daniel Greenberg, and Tharindi Hapuarachchi. 2019. Explanations
by arbitrated argumentative dispute. Expert Systems with Applications, 127,
141–156.

[8] Kristijonas Čyras, Ken Satoh, and Francesca Toni. 2016. Explanation for case-
based reasoning via abstract argumentation. In Computational Models of Argu-

ment, Proceedings of COMMA 2016. Pietro Baroni, Thomas F. Gordon, Tatjana
Scheffler, and Manfred Stede, (Eds.) IOS Press, 243–254.

[9] Siegfried Gottwald. 2022. Many-Valued Logic. In The Stanford Encyclopedia of

Philosophy. (Summer 2022 ed.). Edward N. Zalta, (Ed.) Metaphysics Research
Lab, Stanford University.

[10] John Horty. 2019. Reasoning with dimensions and magnitudes. Artificial Intel-
ligence and Law, 27, 3, 309–345.

[11] John F. Horty. 2011. Rules and reasons in the theory of precedent. Legal Theory,
17, 1, 1–33.

[12] Xinghan Liu, Emiliano Lorini, Antonino Rotolo, and Giovanni Sartor. 2022.
Modelling and explaining legal case-based reasoners through classifiers. In
Knowledge and Information Systems. JURIX 2022: The Thirty-fifth Annual Con-

ference. Enrico Francesconi, Georg Borges, and Christoph Sorge, (Eds.) IOS
Press, 83–92.

[13] Henry Prakken. 2021. A formal analysis of some factor- and precedent-based
accounts of precedential constraint. Artificial Intelligence and Law, 29, 4, 559–
585.

[14] Henry Prakken and Rosa Ratsma. 2022. A top-level model of case-based ar-
gumentation for explanation: formalisation and experiments. Argument &

Computation, 13, 2, 159–194.
[15] Abraham Cornelis Roth. 2003. Case-based reasoning in the law. A formal theory

of reasoning by case comparison. Dissertation. Universiteit Maastricht.
[16] Bram Roth and Bart Verheij. 2004. Dialectical arguments and case comparison.

In Legal Knowledge and Information Systems. JURIX 2004: The Seventeenth

Annual Conference. T.F. Gordon, (Ed.), 99–108.
[17] Christian Strasser and G. Aldo Antonelli. 2019. Non-monotonic Logic. In The

Stanford Encyclopedia of Philosophy. (Summer 2019 ed.). Edward N. Zalta, (Ed.)
Metaphysics Research Lab, Stanford University.

[18] Wijnand van Woerkom, Davide Grossi, Henry Prakken, and Bart Verheij. 2022.
Landmarks in case-based reasoning: from theory to data. In HHAI2022: Aug-

menting Human Intellect. Stefan Schlobach, María Pérez-Ortiz, and Myrthe
Tielman, (Eds.) IOS Press, 212–224.

[19] Bart Verheij. 2020. Artificial intelligence as law. Artificial Intelligence and Law,
28, 2, 181–206.

[20] Bart Verheij. 2003. Deflog: on the logical interpretation of prima facie justified
assumptions. Journal of Logic and Computation, 13, 3, 319–346.

A PROOF SKETCH OF PROPOSITION 4.12
Definition A.1. A factor hierarchy (𝑃, 𝐻) is called single-layer if

it satisfies 𝐴 ⊆ {𝜋}.

Definition A.2. A disjoint factor union is a finite set 𝑃 of proposi-
tional variables which is equal to a disjoint union 𝑃 = Pro∪Con.

A disjoint factor union is the type of knowledge representation
used for models of pc, as described in Section 3.1. Central to the
proof of Proposition 4.12 is the following Lemma.

Lemma A.3. If (𝑃, 𝐻) is a single-layer factor hierarchy then 𝑃 is

given by 𝑃 = Pro(𝜋) ∪ Con(𝜋) ∪ {𝜋}.

Proof. It is easy to see that Pro(𝜋) ∪ Con(𝜋) ∪ {𝜋} ⊆ 𝑃 , so we
only prove the other inclusion 𝑃 ⊆ Pro(𝜋) ∪ Con(𝜋) ∪ {𝜋}. To
this end, consider some 𝑝 ∈ 𝑃 . If 𝑝 = 𝜋 we are done, so assume
that 𝑝 ≠ 𝜋 . As per Definition 4.2 this means 𝑝 is not maximal,
meaning there is 𝑞 ∈ 𝑃 such that 𝐻 (𝑝, 𝑞). In general 𝑃 = 𝐵 ∪𝐴 and
so since 𝐴 ⊆ {𝜋} we have 𝑃 = 𝐵 ∪ {𝜋}. Hence 𝑞 ∈ 𝐵 ∪ {𝜋}, but
𝑞 ∈ 𝐵 contradicts 𝐻 (𝑝, 𝑞) and so 𝑞 = 𝜋 . This means 𝐻 (𝑝, 𝜋) and
𝑝 ∈ Pro(𝜋) ∪ Con(𝜋) as desired. □

Lemma A.4. There is a one-to-one correspondence between single-

layer factor hierarchies and disjoint factor unions.

Proof. Given a single-layer factor hierarchy (𝑃, 𝐻) we define
𝑃 ′ := 𝑃 \ {𝜋}. Furthermore, let Pro′ := Pro(𝜋) and Con′ := Con(𝜋).
Now by Lemma A.3 we have that 𝑃 ′ is a disjoint factor union
𝑃 ′ = Pro′ ∪Con′.

Conversely, given a disjoint factor union 𝑃 = Pro∪Con we
define a single-layer factor hierarchy (𝑃 ′, 𝐻) by 𝑃 ′ := 𝑃 ∪ {𝜋} and

Pro′ := Pro×{𝜋}, Con′ := Con×{𝜋}, 𝐻 := Pro′ ∪Con′ .

It is easy to see that this hierarchy satisfies the requirements of
Definition 4.2 and the additional axiom 𝐴 ⊆ {𝜋}, and moreover,
that the constructions thus described are one another’s inverse. □

Proposition A.5 (4.12). The theory of hpc with the additional

axiom 𝐴 ⊆ {𝜋} is equivalent to the theory of pc.

Proof. The constructions from Lemma A.4 come with transla-
tions for cases from one representation to the other. For instance,
any case 𝐹 :𝑠 based on a disjoint factor union 𝑃 = Pro∪Con can be
translated to a case 𝐹 ′ of its corresponding hpc representation:

𝐹 ′ : 𝑃 ′ → {t, f, u} : 𝑝 ↦→

𝐹 (𝑝) if 𝑝 ∈ 𝑃,

t if 𝑝 = 𝜋 = 𝑠,

f if 𝑝 = 𝜋 ≠ 𝑠 .

Let 𝑓 : 𝐹 :𝑠 ↦→ 𝐹 ′ denote this operation. Similarly, a fact situation
𝐹 : 𝑃 → {t, f} as in Section 3.1 can be extended to operate on
𝑃 ′ = 𝑃∪{𝜋} by 𝐹 (𝜋) := u. Let𝑔 denote the function performing this
translation. Now, writing ⊩ for the forcing relation of Definition 4.8
to avoid confusion with that of Definition 3.2, we have

CB, 𝐹 ⊨ 𝑠 implies 𝑓 [CB], 𝑔(𝐹) ⊩ 𝑠,
where CB is some case base of pc, 𝑓 [CB] = {𝑓 (𝐺 :𝑠) | 𝐺 :𝑠 ∈ CB},
and 𝑠 ∈ S. An analogous result holds for the other direction. □

	Abstract
	1 Introduction
	2 Related work
	3 Precedential Constraint
	3.1 Factors, sides, and cases
	3.2 The notion of constraint
	3.3 Examples
	3.4 Monotonicity

	4 Hierarchical Precedential Constraint
	4.1 Factor hierarchy
	4.2 The notion of constraint
	4.3 Examples
	4.4 Monotonicity

	5 Discussion
	6 Conclusion
	Acknowledgments
	A Proof sketch of Proposition 4.12

