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Benemérita Universidad Autónoma de Puebla IC 11 Puebla, Puebla, Mexico

Guadalupe.rodriguezgue@alumno.buap.mx

Abstract. Machine learning models can use information from gene
expressions in patients to efficiently predict the severity of symptoms for
several diseases. Medical experts, however, still need to understand the
reasoning behind the predictions before trusting them. In their day-to-
day practice, physicians prefer using gene expression profiles, consisting
of a discretized subset of all data from gene expressions: in these profiles,
genes are typically reported as either over-expressed or under-expressed,
using discretization thresholds computed on data from a healthy control
group. A discretized profile allows medical experts to quickly categorize
patients at a glance. Building on previous works related to the automatic
discretization of patient profiles, we present a novel approach that frames
the problem as a multi-objective optimization task: on the one hand, after
discretization, the medical expert would prefer to have as few different pro-
files as possible, to be able to classify patients in an intuitive way; on the
other hand, the loss of information has to be minimized. Loss of informa-
tion can be estimated using the performance of a classifier trained on the
discretized gene expression levels. We apply one common state-of-the-art
evolutionary multi-objective algorithm, NSGA-II, to the discretization of
a dataset of COVID-19 patients that developed either mild or severe symp-
toms. The results show not only that the solutions found by the approach
dominate traditional discretization based on statistical analysis and are
more generally valid than those obtained through single-objective opti-
mization, but that the candidate Pareto-optimal solutions preserve the
sense-making that practitioners find necessary to trust the results.
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1 Introduction

The information available up to November 16, 2022 indicates that the SARS-
CoV-2 pandemic continues, with 640 million cases and over 6 million deaths [37].
Due to the magnitude of the viral outbreak, one of the great problems that
humanity faces is the lack of medical equipment to care for infected patients.
Several studies have tried to predict the difference between the severity of the
cases using machine learning to analyze datasets with Chest X-Ray images, but
each dataset needs to be validated by experts, annotated with the corresponding
lesions of lung diseases, and features extracted based on recommendations of
medical personnel [1] resulting in the information taking time to be available
for analysis. One alternative to avoid the problem with Chest X-Ray images is
to use omics data, for example using DNA methylation [24,31], mRNA gene
expression [16,32] and/or microRNA [44] data, to quickly anticipate if a patient
will be in need of intensive care, and efficiently distribute the available medical
resources. Several sources [7,39] consider the correct management of beds and
the resources available in hospitals to be a crucial factor in reducing mortality
rates from COVID-19 in patients with severe infections.

Although there have been varying degrees of success with the use of multi-
omic data for diagnostic and prognostic purposes in general, one of the challenges
lies in translating the results into meaningful diagnostic tests or biomarkers
for clinical practice [11]. Nowadays multiple mRNA gene expression datasets
are available in public repositories: typically gene expression data will include
thousands of genes (features) related to just a few samples, leading to several
challenges for finding meaningful biomarkers. As humans cannot process the
information contained in thousands of genes due to the complexity of the data, it
is necessary to use computational tools such as machine learning (ML) techniques
to obtain reliable predictions [26,27,36].

mRNA gene expression datasets are matrices generated by sequencing data,
where typically each column corresponds to a specific variant of a gene, and
each row to a sample from a tissue (e.g. peripheral blood mononuclear cells,
peripheral blood leukocytes, whole blood, etc.). The values in the matrix are the
expression levels of the given variant of a gene for a patient sample [3].

Nevertheless, to make sense of the data, medical practitioners often resort to
the creation of gene expression profiles, discretizations of gene expressions, where
each continuous value is assigned to a discrete category, for example under- or
over-expressed gene. In this work, patient profile is defined as a set of gene expres-
sion values that uniquely characterize the patient, often discretized to make it
more readable by domain experts. Two patients have the same patient profile if
their discretized values are the same for the expression of each considered gene.
Categories are usually evaluated using thresholds based on the mean values of
gene expressions from healthy controls as a baseline. While this procedure can
help the sensemaking of the experts, such a discretization leads to loss of infor-
mation and could potentially impair classification performance. Furthermore,
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relying on control groups for discretizing gene expressions can lead to the wrong
conclusions, as gene expression variability can be high, and control groups are
usually comparatively small.

In this paper, we frame the problem of discretizing gene expression profiles
from patients as a multi-objective task: on the one hand, the aim is to deliver a
discretization that can be easily interpreted by a domain expert, ideally minimiz-
ing the different types of patient profiles; on the other hand, the loss of information
resulting from the discretization should be minimal. While counting the number of
different patient profiles resulting from the discretization is trivial, the loss of infor-
mation can be assessed through the performance of a classifier in cross-validation
on the discretized patient profiles. While approaches for the automated discretiza-
tion of patient profiles have already been proposed in literature [30], the problem
was previously conceived as single-objective optimization, with an arbitrary choice
of weights to find compromises between conflicting objectives.

To test the proposed approach, real data from 138 participants, including
information from 60,671 genes, were used and compared with a classical dis-
cretization approach based on mean values of gene expression from the group of
healthy controls, and the single best solution found by a previously presented
single-objective automated approach. Experimental results show that the pro-
posed methodology is effective, identifying 12 genes highly correlated with the
response to treatment and being able to discretize their gene expression levels
into gene expression profiles. This helps to increase the performance of classifiers,
and at the same time provides a human-interpretable explanation of the develop-
ment of mild or dire symptoms from a COVID-19 infection. An expert analysis
performed by domain experts provides a final validation of our approach.

2 Background

This section provides the minimal information needed to introduce the scope of
our work.

2.1 Feature Selection

In machine learning (ML), feature selection (FS) is defined as the process of
choosing the features of a dataset in order to obtain a minimal, informative sub-
set. Features may not be part of this subset for two main reasons: they might
be unrelated to the underlying nature of the problem, just adding noise; or they
might be heavily correlated with other features, adding no relevant informa-
tion for the task. Applications range from face recognition [43] to medicine [49],
and approaches can be divided into two categories [19]: filters that score fea-
tures according to a criterion (often a statistical test); and recursive procedures
(forward or backwards) that attempt to reduce the features to a small set of
non-redundant ones [10,25].

In the scope of this work, we focus on recursive FS algorithms, in particu-
lar Recursive Ensemble Feature Selection (REFS). The method is a variation
of Recursive Feature Elimination (RFE) [20], scoring the features in a 10-fold
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cross-validation scheme, using 8 different classifiers: Gradient Boosting [18], Pas-
sive Aggressive Classifier [13], Logistic Regression [12], Support Vector Machines
Classifier [35], Random Forest [5], Stochastic Gradient Descent on Linear Mod-
els [48], Ridge Classifier [21] and Bagging [4]. The 10-fold cross-validation scheme
was implemented following the nested cross-validation approach described in [42],
which proves to be an effective approach to avoid the overfitting of machine learn-
ing models when working with data sets with a small number of samples [42]. The
lowest-scoring features are removed from the analysis and the process is repeated
until the overall classification accuracy drops below a given threshold. The use of
an ensemble of classifiers reduces the effects of the inherent bias in each ML algo-
rithm, thus delivering a more objective feature ranking. This technique has been
applied successfully for problems involving both mRNA [27] and miRNA [26], fea-
turing number of features ranging from 1,046 to 54,675.

2.2 Gene Expression Profiles

For diagnostic purposes it is not uncommon to generate heatmaps via com-
putational techniques such as clustering or univariate analysis to find genetic
expression profiles [14,28,33], using healthy controls as a baseline to obtain dis-
cretization thresholds. A visual representation of the transformation from a gene
expression dataset to gene expression profiles is shown in Fig. 1.

Fig. 1. Example of discretization of gene expression data to gene expression profiles for
one gene, using a threshold value to distinguish between over-expressed (dark green)
and under-expressed (light green) genes. (Color figure online)

Nevertheless, the generated genetic profiles or found biomarkers are difficult
to translate into clinical practice [11]. One of the reasons is that not every time it
is possible to include healthy controls as a baseline in the studies, and therefore
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reference values from other studies should be used which could be affected by
the batch effect [36]. Furthermore, control groups are usually small in size, while
the variability of gene expression can be considerable. Automated discretization
could be a viable alternative, but approaches in literature [30] only frame the
problem as single-objective, while in reality there are two conflicting objectives:
maximizing classification performance and minimizing the number of different
patient profiles to be analyzed by a human expert.

3 Proposed Approach

In this section, a novel approach for the multi-objective discretization of gene
expression data to obtain gene expression profiles, interpretable by domain
experts is presented. After performing a step of feature selection to identify
the most relevant genes, these identified genes are discretized using thresholds
optimized by a multi-objective evolutionary algorithm (MOEA), The conflicting
objectives to be optimized are the classification performance and the number of
different profiles (rows with different values) in the discretized dataset.

3.1 Feature Selection

For the feature selection step, the REFS algorithm was executed. REFS is an
algorithm that uses the feedback of an ensemble of classifiers to rank each feature
depending on its use capacity for the process of classification. The lowest-scoring
features are removed, and the classification/ranking is repeated, until the average
classification accuracy is below to a threshold defined by the user. The objective
of this process is to select the most meaningful genes to correctly predict and
model COVID-19 patients’ severity (mild/severe).

3.2 Multi-objective Evolutionary Discretization

After running the REFS algorithm, a small set of relevant features is obtained. In
this case, the values associated to the relevant features are complex and difficult
to read for medical decision making. So, instead of showing each feature as a con-
tinuous value, we use a MOEA to categorize the values into underexpression and
overexpression, optimizing the thresholds for each selected feature (gene). Given
the reduced set of features F = {f0, f1, f2, ..., fn}, given by the REFS algorithm,
EAs was used to transform input variables into over and under expressed values,
labeled as 0 and 1, respectively: that is, EA will generate a vector of thresholds
I = {t0, t1, t2, ..., tn} to discretize each variable. Two criteria were used to opti-
mize the discretization: number of different profiles, to be minimized to support
the sensemaking of domain experts; and classification performance (given the
labels of the dataset, corresponding to mild or severe symptoms), to be maxi-
mized, as a proxy of information loss. Consequently, the fitness functions for an
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individual I are given by:

f1(I) =
1.0

1.0 + F1cv(Xi, y)
f2(I) = np

(1)

where Xi is the dataset discretized according to the thresholds of individual I, y
is the vector with the labels (mild/severe symptoms) for each sample, F1cv(X, y)
is the F1 score in a cross-validation, np is the number of different profiles in
the dataset after discretization. Previous works on automated discretization [30]
employed accuracy as part of the evaluation, but F1 (a number between 0 and
1, representing the harmonic mean between precision and recall) is a preferable
metric in case of unbalanced datasets, where samples from one class are more
prevalent, as is often the case for medical data. The fitness function should
be minimized, since the ideal candidate solution presents a high F1 and a low
number of different profiles, to facilitate the understanding of domain experts.

4 Experimental Evaluation

The proposed approach is implemented in Python 3, relying on the inspyred1

package for NSGA-II and the scikit-learn [34] package for classification. All
the code and data needed to reproduce the experiments is freely available in the
GitHub repository: https://github.com/to-be-disclosed/after-review.

4.1 Data

The dataset GSE169687 was selected from the gene expression omnibus (GEO)
repository2. This dataset contains 138 samples of mRNA from peripheral blood
of recovered COVID-19 patients at different time points, and 14 healthy con-
trols. Only the 138 samples from patients with either mild/moderate (n=109) or
severe/critical (n=29) symptoms were considered in the experiments, while the
information from the 14 healthy controls was later used to compute an expert
candidate solution to compare against. There are 60,671 ensemble genes (fea-
tures) for each sample, and the dataset was divided into 2 classes, where label 0
was assigned to patients with mild/moderate symptoms and label 1 to patients
with severe/critical symptoms.

4.2 Feature Selection

REFS algorithm was run 10 times, and a reduction from 60,671 to 12 features
(highlighted as the optimal trade-off in Fig. 2) was ultimately obtained. This
translates to the expression levels shown in Fig. 3.

1 https://pythonhosted.org/inspyred/.
2 https://www.ncbi.nlm.nih.gov/geo/.

https://github.com/to-be-disclosed/after-review
https://pythonhosted.org/inspyred/
https://www.ncbi.nlm.nih.gov/geo/
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Fig. 2. 10 runs of the REFS algorithm. The solution considered as the best compromise
between accuracy and number of features is marked with a red line (n= 12). (Color
figure online)

Fig. 3. Heatmap of normalized gene expression data, showing the values of each patient
for the 12 most important genes (labeled as ENSG*) selected by the REFS algorithm.



710 D. Rojas-Velazquez et al.

4.3 Profile Generator

The MOEA selected for the profile generator is the NSGA-II [15], considered
among the state of the art for multi-objective optimization with a relatively
low number of objectives. After a few trial runs, the algorithm is set with the
following parameters: μ = 200, λ = 350, pc = 0.8, pm = 0.2, stop condition after
100 generations, and Logistic Regression [12] as the classifier chosen to compute
classification performance F1cv for the fitness function described in Eq. 1. The
choice of Logistic Regression is motivated by its effectiveness and training speed,
making it one of the most suitable algorithms for our scenario. The classifier is
run in a 10-fold cross-validation at each evaluation, in order to obtain a more
reliable estimate of F1. The whole evolutionary optimization process is repeated
30 times, to assess the variance in the final results.

To provide a comparison, profiles based on a classical technique of the domain
were compared, using as a reference the gene expression levels of the healthy
controls to discretize the gene expressions of the patients: in other words, if a
patient has the gene expression for a given gene higher than the mean of the 14
healthy controls in the dataset, that gene expression will be categorized as over-
expressed (label 1); otherwise, it will be categorized as under-expressed (label
0).

The results of the experiments are shown in Fig. 4: it is clear that the point
corresponding to the classical discretization technique (orange triangle) is domi-
nated by the candidate solutions found by the proposed approach. On the other
hand, it is interesting to observe that the point corresponding to the single-
objective automated discretization [30] (red cross) is Pareto-optimal, and covers
a part of the objective space not explored by the MOEA. In order to properly
compare the proposed approach to other methods, two candidate solutions on
the Pareto front are selected: the one with the best value of F1cv (F1cv = 0.9457,
np = 40); and the one with the fewest profiles that still scored above an arbitrary
threshold F1cv ≥ 0.9 (F1cv = 0.9257, np = 15), considered acceptable by an
expert. They will be used in all comparisons in the following.

A possible disadvantage of the automatic methodologies is the generation
of discretization thresholds that fit only to the classifier used for the fitness
function (Logistic Regression) and lose generality. To test the generality of the
method, the data was transformed using all the resulting thresholds from the two
MOEA-selected solutions, the expert solution, and the best solution found by
the single-objective approach. The mean accuracy in a 10-fold cross-validation
was computed using Logistic Regression and seven other state-of-the-art classi-
fiers: Passive Aggressive Classifier [13], Stochastic Gradient Descent on Linear
Models [48], Support Vector Machines [35], Gradient Boosting [18], Random
Forest [5], Ridge Classifier [21] and Bagging [4]. The results presented in Table 1
show that the discretizations found through automated approaches all perform
better than the expert solution. Furthermore, both solutions obtained through
the proposed MOEA approach on average perform better than the one found
through single-objective optimization, hinting that the latter might be overfitted
to the performance of Logistic Regression.
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Fig. 4. Experimental results, with number of profiles on the x-axis, best values towards
the left, and F1 on the y-axis, best values towards the bottom. Points in blue represent
candidate solutions found during the runs. The orange triangle corresponds to the
expert discretization based on gene expressions of healthy controls (F1cv = 0.77, np =
122). The red cross corresponds to the best value found by the single-objective method
presented in [30] (F1cv = 0.98, np = 46). (Color figure online)

Table 1. Discretization strategies compared, using the F1 from different state-of-the-
art classifiers, in a 10-fold cross-validation. MOEA Highest F1 is the candidate
solution with the highest F1 on the Pareto front. MOEA Fewest Profiles is the
Pareto-optimal solution with the fewest profiles. Best single-objective is the perfor-
mance of the best individual produced by the single-objective optimizer in [30]. Expert
solution indicates the discretization performed using healthy controls as reference for
the thresholds in the gene expression levels.

Classifier MOEA Highest F1 MOEA Fewest profiles Best single-objective Expert solution

(40 profiles) (15 profiles) (46 profiles) (122 profiles)

BaggingClassifier 0.8990± 0.1344 0.9114± 0.0908 0.8883± 0.1414 0.6633± 0.2406

GradientBoostingClassifier 0.9314± 0.0859 0.9257± 0.0923 0.8362± 0.1543 0.6190± 0.2376

LogisticRegression 0.9457± 0.0842 0.9257± 0.0923 0.9800± 0.0600 0.7667± 0.1633

PassiveAggressiveClassifier 0.8324± 0.1976 0.7267± 0.3072 0.8455± 0.1213 0.6943± 0.2615

RandomForestClassifier 0.9314± 0.0859 0.9457± 0.0842 0.8924± 0.1165 0.6824± 0.2475

RidgeClassifier 0.8467± 0.3027 0.8657± 0.2967 0.9000± 0.1000 0.7667± 0.1633

SVC 0.9514± 0.0756 0.9257± 0.0923 0.9457± 0.0842 0.8029± 0.0977

Mean F1 0.9252 0.9059 0.8892 0.6990
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Fig. 5. Heatmaps produced by applying the set of thresholds identified by the two
selected Pareto-optimal solutions: highest F1 (top) and fewest profiles (bottom).
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Figure 5 shows the heatmaps obtained by discretizing the original dataset
using the two solutions selected on the Pareto front: note how some of the dis-
cretized features are homogeneous, with all or nearly all values assigned to the
same class. Analyzing the values of the thresholds reported in Table 2, it is inter-
esting to notice how the MOEA, in order to reduce the number of profiles, set
some of the thresholds to 1.0, de facto assigning almost all values of that feature
(values between 0.0 and 1.0) to the same class. From a certain point of view,
it’s as if the algorithm were performing a second feature selection. An inspec-
tion of all the Pareto-optimal solutions found during the 30 experiments found
that the most common thresholds set to 1.0 are for ENSG00000198826 (gene
ARHGAP11A), ENSG00000214174 (gene AMZ2P1), and ENSG00000186523
(gene FAM86B1).

Table 2. Generated thresholds for each of the genes.

Ensemble ID Gene ID Thresholds Thresholds Thresholds

(highest F1) (fewest profiles) (single objective)

ENSG00000198826 ARHGAP11A 0.0342 1.0000 0.2869

ENSG00000170298 LGALS9B 0.1654 0.5804 0.2817

ENSG00000214548 MEG3 0.1592 1.0000 0.6731

ENSG00000287576 - 0.5799 0.5858 0.4580

ENSG00000240403 KIR3DL2 0.0846 0.2320 0.1622

ENSG00000214174 AMZ2P1 1.0000 1.0000 0.2013

ENSG00000214460 TPT1P6 0.4441 1.0000 0.1101

ENSG00000263551 - 0.2366 0.1977 0.2379

ENSG00000220785 MTMR9LP 0.6698 0.9265 0.6528

ENSG00000224227 OR2L1P 1.0000 0.0267 0.9902

ENSG00000186523 FAM86B1 1.0000 1.0000 0.9191

ENSG00000155657 TTN 0.6623 0.7013 0.9880

5 Discussion

The results described in Table 1 show that the proposed approach outperforms
the expert-driven discretization methodology from both the classification perfor-
mance, and the number of profiles produced after discretization. Additionally,
the high accuracy results obtained in a 10-fold cross-validation for several clas-
sifier provide evidence that using only Logistic Regression as element of the
fitness function does not produce overfit in the discretization thresholds to a
single classifier, contrary to the single-objective discretization.

Two of the 12 genes selected by the proposed approach are novel tran-
scripts: ENSG00000263551 and ENSG00000287576. These two genes are listed
as lncRNA (long, non-coding RNA) in the gene cards database [38], and there is
no information available related to the subject as well as with ENSG00000214460
(TPT1P6 gene). These findings could be an important lead for new research on
the subject, as they have never been associated with any particular biological
function in literature, to our knowledge.
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AMZ2P1, KIR3DL2and LGALS9B genes are directly related to the sever-
ity of symptoms in COVID. AMZ2P1 was found to be over-expressed in
healthy retesting-positive COVID-19 patients [17]. KIR3DL is a killer cell
immunoglobulin-like receptor gene and it’s over-expression in presence of HLA-B
is associated with moderate COVID-19 [2]. LGALS9 was identified as a COVID-
19 severity protein biomarker, further evaluation of this gene provided evidence
that it is also implicated in the apoptosis-associated cytokine Fas cell surface
death receptor as a causal mediator of severe COVID-19 [22]. Although, not
related to COVID-19 severity, we found two genes that are directly related to
COVID-19 symptoms: TTN and OR2L1P. TTN encodes a large abundant pro-
tein of striated muscle. This gene is related to the molecular mechanisms behind
muscle loss in COVID and this is associated with altered regulation of several
cytokines [6], this could explain the muscle fatigue present in COVID-19 patients.
OR2LP1 encodes an olfactory receptor, which interacts with odorant molecules
in the nose, connected to the inflammatory reaction in the nasal cavity due to
COVID, that leads to a temporary anosmia, where the odors are not able to
reach the olfactory receptor neurons [40]; loss of the sense of smell is a common
COVID-19 symptom [23].

Genes MEG3, FAM86B1, MTMR9LP and ARHGAP11A do not appear as
biomarkers directly related to COVID-19. However, the over-expression of MEG3
may be favorable to virus infection, as evidenced in influenza A, via ADAR over-
expression [8]. Since ADAR has been found as a controlling element in cellular
response to viral infections, its regulation by MEG3 and interactions with lncR-
NAs in SARS-CoV-2 infected cells may influence progression of the disease [41].
MTMR9LP is a lncRNA that is under-expressed in cryptococcal meningitis
patients in comparison of healthy controls, related with cytokine expression and
immune response triggered by cryptococcal infection [47].

ARHGAP11A is a member of the Rho GTPase-activating protein (RhoGAP)
subfamily: this gene is under-expressed in tumors and is usually associated with
malignant progression, this may be due the ability of ARHGAP11 to physically
bind to p53 and promote its function, to induce cell-cycle arrest and apopto-
sis [45]. Interestingly, it has been found that a highly expressed ARHGAP11
is a sign for bad prognosis and poor survival rate in lung adenocarcinoma [9].
Also, this gene is under-expressed in pulmonary arterial hypertension, and this
could be related to its role as a regulator of cell cycle-dependent motility [29].
FAM86B1 is a gene proposed as a “dark gene” directly linked with the sur-
vival of patients in complex diseases, specifically in bladder urothelial carcinoma
(BLCA) [46]. Nevertheless, ARHGAP11A, AMZ2P1 and FAM86B1 probably
provide less information, as inferred from the thresholds set by the MOEA, that
are often set to 1.0 for these genes among the Pareto-optimal solutions.

6 Conclusions and Future Works

In this paper, a novel multi-objective evolutionary approach to the discretization
of gene expression data was presented to obtain interpretable gene expression
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profiles, this approach can also lead to good classification accuracy when used
with ML classifiers. The results on a real-world dataset related to COVID-19
(with patients exhibiting either mild or severe symptoms) seem promising, show-
ing that the proposed technique performs better than a more classical approach
based on a comparison with healthy controls, and produces results with better
generality than a previous single-objective approach. In addition, we generated
a set of rules given 12 specific genes to be used as a guide to decide whether a
patient will present severe symptoms. An expert analysis reveals that the genes
identified by our approach are known in literature, and the experts are satisfied
by the discretization options provided, with a preference for solutions producing
fewer profiles. While the initial results are promising, tests are needed in other
real-world databases related to COVID-19 patients. Additionally, in order to
claim generality, the proposed approach still needs to be evaluated on datasets
related to different diseases.
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