
Supporting Event Log Extraction Based
on Matching

Vinicius Stein Dani1(B), Henrik Leopold2, Jan Martijn E. M. van der Werf1,
and Hajo A. Reijers1

1 Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
{v.steindani,j.m.e.m.vanderwerf,h.a.reijers}@uu.nl

2 Kühne Logistics University, Großer Grasbrook 17, 20457 Hamburg, Germany
henrik.leopold@the-klu.org

Abstract. Process mining allows organizations to obtain relevant insights into
the execution of their processes. However, the starting point of any process min-
ing analysis is an event log, which is typically not readily available in practice.
The extraction of event logs from the relevant databases is a manual and highly
time-consuming task, and often a hurdle for the application of process min-
ing altogether. Available support for event log extraction comes with different
assumptions and requirements and only provides limited automated support. In
this paper, we therefore take a novel angle at supporting event log extraction. The
core idea of our paper is to use an existing process model as a starting point and
automatically identify to which database tables the activities of the considered
process model relate to. Based on the resulting mapping, an event log can then
be extracted in an automated fashion. We use this paper to define a first approach
that is able to identify such a mapping between a process model and a database.
We evaluate our approach using three real-world databases and five process mod-
els from the purchase-to-pay domain. The results of our evaluation show that our
approach has the potential to successfully support event log extraction based on
matching.

Keywords: Event log extraction · Natural language processing · Automated
matching

1 Introduction

Process mining is used in many different organizations for tasks such as analyzing,
improving, and auditing business processes [5,9,18]. However, the application of pro-
cess mining requires an event log [1], which is often not readily available in practice [4].
One of the main reasons is that the information systems supporting the execution of
many business processes do not produce event logs that can be used for process min-
ing. As a result, event logs need to be extracted manually by exploring the underlying
databases of these information systems. In essence, every activity executed in the con-
text of the business process must be manually related to specific tables in the database.
This mapping is then used to extract the event log. This effort for event log extraction
is very time-consuming and requires considerable manual work [20]. It, thus, creates a
substantial hurdle for the application of process mining in practice [22].
c© Springer Nature Switzerland AG 2023
C. Cabanillas et al. (Eds.): BPM 2022, LNBIP 460, pp. 322–333, 2023.
https://doi.org/10.1007/978-3-031-25383-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25383-6_24&domain=pdf
https://doi.org/10.1007/978-3-031-25383-6_24

Supporting Event Log Extraction Based on Matching 323

Recognizing this, many researchers have developed techniques to support the
extraction of event logs. However, they usually require creating an intermediate data
model [16] or using instance data [13]. Furthermore, they do not automatically identify
the mapping between the tables of a database and the activities of a considered pro-
cess because they do not focus on extracting event logs that relate to an already known
process flow.

In this paper, we propose a novel approach for supporting event log extraction that
takes an existing process model as a starting point. The core idea is to automatically
identify to which database tables the activities of a given process model relate to and,
based on the resulting mapping, provide an effective alternative for event log extrac-
tion. In prior work, the problem of mapping entities from two different representa-
tions has been addressed in various contexts. Among others, researchers have proposed
techniques for finding mappings between database schemas [14,17], between ontolo-
gies [10,11], or between process models [21,23]. Such techniques for automatically
deriving mappings between two different representations are commonly referred to as
matchers [23]. However, to the best of our knowledge, there is no approach available
that focuses on identifying a mapping between a database and a process model [20].
To accomplish this, we build on a two layer matching architecture and different notions
of similarity.

The remainder of the paper is structured as follows. In Sect. 2, we illustrate the
problem of and the challenges related to creating a mapping between database tables
and process model activities. In Sect. 3, we describe our proposed approach to support
event log extraction based on matching. Section 4 evaluates an implemented proof-of-
concept. Finally, in Sect. 5, we discuss related work and in Sect. 6, we conclude this
paper.

2 Problem Illustration and Challenges

In this paper, we approach the problem of event log extraction from a matching per-
spective. More specifically, we aim to develop an approach that automatically identifies
a mapping between the tables of a database and the activities of a given process model.
To illustrate the problem and the associated challenges, consider the example shown
in Fig. 1. It shows a simplified purchase-to-pay process model (extracted from [5]) and
a corresponding exemplary database. The goal of our approach is to identify for each
activity from a given model to which database table it relates (if any). Formally, such
a mapping is a relation over the activities and tables, such that (a, t) maps activity a
to table t. In other words, table t contains data of an event for activity a. A poten-
tial mapping is a candidate mapping that needs to be verified for correctness. Figure 1
depicts several potential mappings. The relations with a checkmark are correct map-
pings, whereas the mappings marked with a cross are incorrect. Automatically identi-
fying the correct mappings comes with four main challenges:

1. Large search space: Given that databases often contain hundreds of tables, the search
space for the mapping is typically very big. To illustrate this, consider the example
from Fig. 1. The combination of 6 activities and 26 tables already results in over 300

324 V. Stein Dani et al.

Fig. 1. A process model, a database, and the mappings between them.

million possible mappings. A useful matching technique, therefore, must be able
to effectively reduce the search space and precisely recognize which activity-table
pairs represent correct mappings.

2. Granularity differences: Processes and databases dramatically differ in their level of
granularity. While a process model typically only has a handful of activities [6], a
database often has hundreds of tables. This causes two related problems. First, this
means that a single activity may have multiple corresponding tables. For example,
in Fig. 1, the activity “Receive payment” produces a payment entry for the database
table “pay group” while also producing an update of an entry in the table “invoice”.
Second, this means that a single table may have multiple corresponding activities.
For example, the table “invoice” stores data about a newly created invoice produced
by the activity “Emit invoice”. The same table also reflects a payment status updated
via the execution of the activity “Receive payment”.

3. Scope differences: The scope of the process model and the database rarely overlap
to a full extent. As a result, the mapping between process model and database is
partial. This means that some activities do not have a correspondence to any table
and, the other way around, many tables do not have a correspondence to any activ-
ity. For example, in Fig. 1, the activity “Archive order” may be related to a manual
status update executed on an external system managed by another department of the
organization and, therefore, does not relate to any of the tables of the considered
database.

4. Ambiguous semantics: Both process models and database tables typically have very
short labels. As a result, it is often hard to identify which words from the considered
labels carry the important semantics. To illustrate this, consider the activity “Ship
product” from Fig. 1. We can see that this activity contains the action “ship” and the
object “product”. In Fig. 1 it is, however, incorrectly mapped to the table “product”
instead of “ship group”. The problem is that it is hard to evaluate which term should
be used in this context to decide about the mapping since both “ship” and “product”
are used in the database tables.

Supporting Event Log Extraction Based on Matching 325

In this work, we make a first attempt to address these challenges. We propose an
approach that identifies a set of potential mappings between process model activities
and database tables. While this does not provide the user with a final set of correct
mappings, the user is provided with a small set of potential mappings. From those,
the user can simply select the correct mappings and, hence, no longer needs to look at
all possible mappings and identify each mapping manually. We realize that this only
represents a first step. We are, nonetheless, convinced that this already dramatically
reduces the burden of the process analyst and saves a considerable amount of manual
work. In the next section, we introduce our approach on a conceptual level.

3 Mapping Database Tables to Process Activities

In this section, we describe our matching approach to automatically map database tables
to process model activities. We first present an overview of the architecture of our
matching approach in Sect. 3.1. Then, in Sect. 3.2 and Sect. 3.3, we discuss the main
components of our matcher in detail.

3.1 Overview

Figure 2 shows the architecture of our proposed approach. The first module is respon-
sible for preprocessing and feeding input data into the matcher. Among others, the
preprocessing component parses the input, removes irrelevant tokens (such as punctu-
ation), and turns all strings into lower case. The input data includes a database and a
process model. At this point, we expect that both have already been transformed into
a textual format and are provided as CSV files. These files contain the table attributes
from the database (e.g., tables names, descriptions, and columns with their names and
descriptions), and the activity labels from the process model.

Inspired by [7], the matcher module consists of two main components: a first- and a
second-line matcher (1LM and 2LM), where the 2LM builds on the output of the 1LM.
The matcher automatically generates a set of potential mappings. To generate these
potential mappings, we leverage natural language processing (NLP) techniques and the
available input information. The main intuition behind relying on NLP techniques is that
tables and activities with similar names are more likely to be conceptually similar and,
therefore, related. In the following sections, we explain the details of the components
from the matcher module.

Fig. 2. Architectural overview of our approach.

326 V. Stein Dani et al.

3.2 First-Line Matcher (1LM)

Our approach starts with analyzing the set of activity labels A of the process model and
tables T of the database using different similarity metrics. For each table, we consider
all database table attributes, denoted by R. Then, for each activity a and database table
attribute tr, several similarity measures are calculated. This results in a set of similarity
matrices Ms, for each similarity measure s.

Table 1 shows a cohort of the similarity matrix Ms(A×R) for the normalized
Levenshtein-based similarity measure on a process model with two activities, “Cre-
ate order” and “Create invoice”, and a database consisting of two tables, “Order”
and “Invoice”. In this example, the table “Order” has two columns: “id”, and “cre-
ation date” and, the table “Invoice” has three columns: ‘id”, “id order”, and “date”.

3.3 Second-Line Matcher (2LM)

The 2LM derives the set of potential mappings between tables and activities by using
as input the similarity matrix Ms generated by the 1LM. Our approach maps exactly
one database table t to one activity label a, and the inner workings of the 2LM adheres
to the following rationale: First, considering all available similarity scores in Ms (cf.,
Table 1), the 2LM determines a similarity score to represent a table with respect to each
activity. This is performed for each tuple (a, t). Second, for each activity, it selects one
table as a potential mapping considering the similarity score assigned to the table. Many
different mechanisms can be implemented to derive the table’s similarity score from its
attributes’ similarity scores.

We developed a baseline 2LM inspired by [21], which selects theHighest raw 1LM-
based Scoring Table as a potential mapping for an activity label. Based on the output of
this 2LM for each 1LM similarity matrix, we performed an inductive content analysis
with open coding [19]. Recurrent observations from the coding served as a basis for the
definition of two new 2LM implementations: one based on Word Frequency (2LM2),
and another based on the Surface Measure of Overall Table Scores (2LM3). Next, we
further explain each implemented 2LM.

Table 1. Similarity matrix generated by the 1LM for the normalized Levenshtein-based similar-
ity algorithm. The closer the similarity score is to 1, the higher the similarity between the two
compared objects.

Database tables attributes tk Process model activities a

Create order fs(a, tk) Create invoice fs(a, tk)

Order 0.590 0.210

id 0.140 0.120

creation date 0.480 0.440

Invoice 0.210 0.670

id 0.140 0.120

id order 0.500 0.180

date 0.380 0.330

Supporting Event Log Extraction Based on Matching 327

Highest Raw 1LM-Based Scoring Table (2LM1). Each row in a similarity matrixMs

produced by the 1LM represents the similarity scores of an activity and all attributes tr
of all tables t ∈ T . 2LM1 selects for each activity and table combination the attribute
with the highest similarity as table score. Then, for each activity, the table with the
highest table score is selected as potential mapping.

Word Frequency (2LM2). This technique multiplies the table attributes similarity
score by the number of activity label word repetition within the table attribute. This is
done before the table score definition and, if there is no word repetition, the similarity
score is kept as is. Hence, this matcher derives each of its potential mappings similarly
to 2LM1.

Surface Measure of Overall Table Scores (2LM3). This technique is inspired by [8],
and leverages all similarity scores of a table to build a radar chart, where each similarity
score is an axis of the chart. The table score S(a, t) is then determined by calculating
its surface area, as shown in Eq. 1, where R denotes the set of table attributes.

S(a, t) = sin
(

π

|R|
) ∑

x∈R

∑
y∈R

(Ms(a, tx) · Ms(a, ty)) (1)

4 Evaluation

In this section, we present a quantitative evaluation of our approach. In Sect. 4.1 and
Sect. 4.2, we describe the data and our setup. In Sect. 4.3, we report on the results and
provide a discussion in Sect. 4.4.

4.1 Data

The evaluation builds on three inputs: 1) a set of databases, 2) a set of process models,
and 3) a gold standard.

Databases. For the evaluation, we used three databases: 1) Odoo (former Open ERP),
2) Magento Commerce, and 3) Oracle ATG Webcommerce. The selected databases
cover two scenarios we want to evaluate: databases with and without textual descrip-
tions of the tables and columns. Oracle is accompanied by a textual description, whereas
Odoo and Magento are not. Additionally, these databases were selected considering two
other factors: 1) they store purchase-to-pay data; and, 2) they are widely used. Table 2
summarizes the overall characteristics of the selected databases.

Process Models. We used five process models of a purchase-to-pay process of dif-
ferent sizes. The set of process models contains one small process model extracted
from [5], and four medium-sized process models extracted from the BPM Academic
Initiative (BPMAI) repository [24]. The BPMAI models were selected based on the fol-
lowing criteria: 1) it is modelled in English, 2) it contains at least 10 activities, and 3) it
relates to a purchase-to-pay process. To make sure the latter is the case, we selected pro-
cess models containing the business objects “order”, “invoice”, and “shipment”. Table 3
summarizes the overall characteristics of the selected process models.

328 V. Stein Dani et al.

Table 2. Characteristics of the databases used in the evaluation of our approach.

Characteristic Odoo Magento Oracle

Database
No of tables 571 358 239
No of columns 6294 3561 1199
No of words 57297 42189 37051

Table
Avg No of words per table name 2.794 3.502 2.838
Avg No of words per table description 2.356 3.815 14.197
Avg No of words per column name 1.978 2.216 1.952
Avg No of words per column description 1.974 2.311 12.009

Table 3. Characteristics of the process models used in the evaluation of our approach.

Characteristic PM1 PM2 PM3 PM4 PM5

Process model
No of activities 6 10 11 12 14
No of words 13 34 33 34 50

Activity label
Min No of words 2 1 2 1 2
Max No of words 3 6 5 5 6
Avg No of words 2.166 3.400 3.000 2.833 3.571

Gold Standard. The gold standard G contains the true mappings between the database
tables t and the process model activities a. It is a set of relations (a, t). To evaluate
the quality of the output of our approach (i.e., the potential mappings), we compare it
to G as we further explain in the next section. We manually compiled G based on prior
experience and insights into which tables hold the information related to the considered
activities. For activities we did not know the corresponding table, we consulted the
documentation of the database. We fine-tuned G based on discussions until consensus.

4.2 Setup

For each combination of database and process model, we generated ten similarity matri-
ces Ms(A×R) via 1LM, one for each similarity algorithm s ∈ S, comprising different
string-similarity scoring techniques, such as: edit-based (via Levenshtein, and a nor-
malized Levenshtein-based algorithm), Jaccard, n-gram, and Cosine similarity. Then,
we implemented the 2LMs as discussed in Sect. 3.3, and to assess the performance of
our approach we use precision, recall, and F1-score. This is in line with evaluations
from other matching papers from the BPM domain (see e.g. [21]). To calculate these
metrics, we compare the output from our approach with the mappings from the gold
standard G.

Given a combination of a process model containing the activities A and a database
containing the tables T , we compare the set of mappings between A and T from the

Supporting Event Log Extraction Based on Matching 329

gold standard G with the set of potential mappings P automatically produced by our
approach. Based on this comparison, we can identify: 1) the correct mappings (i.e., the
true positives TP) via G ∩ P , 2) the incorrect mappings (i.e., the false positives FP)
via P \ TP , and, 3) the missing mappings (i.e., the false negatives FN) via G \ TP .
Thus, we can calculate precision via TP

TP+FP and recall via TP
TP+FN . The F1-score is

the harmonic mean between precision and recall.

4.3 Results

Table 4 summarizes the performance results of our approach in terms of precision,
recall, and F1-score. For each database, the fourth column of this table presents the
number of mappings in the gold standard G. This allows us to compare the number
of mappings from G to the amount of correct mappings (TP) generated by each of
the 2LMs.

On average the implemented 2LM3 finds 39% of the correct mappings for the
databases with table and column descriptions. The implementations 2LM2 and 2LM3,
perform similarly for a scenario where the database does not have useful textual descrip-
tions, as shown in Figs. 3d and 3g, for example. The 2LM3 implementation performs
better than 2LM2 for a scenario where the database has textual descriptions, as shown
in Figs. 3f and 3i. In both scenarios, the 2LM3 performs well when the process model
does not have too many similar activity labels, which is the case for the results related
to PM1. All the results presented in this work are based on a 1LM using cosine sim-
ilarity, which is the similarity algorithm that performed best. Figures 3a to 3i depict,

Table 4. Evaluation summary with Precision, Recall, F1-scores, total true positives (TP), and
false positives (FP) for the three different 2LM implementations. The baseline 2LM1 results are
zero for Odoo and Magento because more than one table had the same highest similarity score for
each activity and the baseline selects the first table with the highest similarity score as a potential
mapping.

DB PM |A| |G| 2LM1 2LM2 2LM3

P R F1 TP FP P R F1 TP FP P R F1 TP FP

Odoo 1 6 7 0.000 0.000 0.000 0 6 0.000 0.000 0.000 0 6 0.167 0.143 0.154 1 5

2 10 9 0.000 0.000 0.000 0 10 0.100 0.111 0.105 1 9 0.100 0.111 0.105 1 9

3 11 12 0.000 0.000 0.000 0 11 0.091 0.083 0.087 1 10 0.091 0.083 0.087 1 10

4 12 6 0.000 0.000 0.000 0 12 0.000 0.000 0.000 0 12 0.000 0.000 0.000 0 12

5 14 8 0.000 0.000 0.000 0 14 0.000 0.000 0.000 0 14 0.000 0.000 0.000 0 14

Magento 1 6 6 0.000 0.000 0.000 0 6 0.167 0.167 0.167 1 5 0.167 0.167 0.167 1 5

2 10 5 0.000 0.000 0.000 0 10 0.100 0.167 0.125 1 9 0.000 0.000 0.000 0 10

3 11 6 0.000 0.000 0.000 0 11 0.182 0.333 0.235 2 9 0.000 0.000 0.000 0 11

4 12 4 0.000 0.000 0.000 0 12 0.000 0.000 0.000 0 12 0.000 0.000 0.000 0 12

5 14 7 0.000 0.000 0.000 0 14 0.071 0.143 0.095 1 13 0.071 0.143 0.095 1 13

Oracle 1 6 8 0.000 0.000 0.000 0 6 0.167 0.125 0.143 1 5 0.834 0.625 0.714 5 1

2 10 8 0.100 0.125 0.112 1 9 0.100 0.125 0.112 1 9 0.300 0.375 0.334 3 7

3 11 11 0.091 0.091 0.091 1 10 0.273 0.273 0.273 3 8 0.454 0.454 0.454 5 6

4 12 6 0.167 0.334 0.223 2 10 0.167 0.334 0.223 2 10 0.250 0.500 0.334 3 9

5 14 8 0.071 0.125 0.091 1 13 0.143 0.250 0.182 2 12 0.357 0.625 0.454 5 9

330 V. Stein Dani et al.

(a) Odoo 2LM1 (b) Magento 2LM1 (c) Oracle 2LM1

(d) Odoo 2LM2 (e) Magento 2LM2 (f) Oracle 2LM2

(g) Odoo 2LM3 (h) Magento 2LM3 (i) Oracle 2LM3

Fig. 3. Evaluation output for three databases and five process models used in this evaluation. The
first row of figures shows the output for the baseline 2LM1, while the second and the third rows
show the output for the other two implemented 2LMs. Figures 3a, 3d, and 3g refer to Odoo;
Figs. 3b, 3e, and 3h refer to Magento; and, Figs. 3c, 3f, and 3i refer Oracle. On each figure, the
vertical axis represents the value of precision, recall, and F1-score, for each of the five process
models, shown in the horizontal axis.

respectively, the output of our approach for the three different implemented 2LMs pre-
sented in Sect. 4.2. The first column of Fig. 3 presents the output for Odoo, the second
for Magento, and the third for Oracle.

In summary, we can state that all 2LM implementations performed better on the
scenario where textual descriptions were available for the tables and columns. More-
over, the 2LM2 and the 2LM3 improve consistently when compared to the baseline
implementation on the Oracle database, which is the database with textual descriptions
for both tables and columns. For the databases without textual descriptions, the results
deteriorate in general, showing the importance of additional textual information about
the objects being mapped. The reason for this results deterioration is that multiple tables
end up receiving the same similarity score, driven by similarly named columns through-
out different tables.

Supporting Event Log Extraction Based on Matching 331

4.4 Discussion

To generate the 2LM2 and the 2LM3, we derived improvement opportunities based on
recurrent observations acquired via an inductive content analysis with open coding [19]
performed over all outputs from the 2LM1. By doing so, we avoided optimizing a new
2LM to any particular scenario.

The performed content analysis supported the identification of commonalities and
differences among all potential mappings (correctly and incorrectly identified map-
pings) versus the ones that should have been identified, but were not. We made the
following key observations: First, the missing mappings (i.e., FN) often had repetition
of words that were similar to the ones within the activity label, while it was not the case
for the incorrect mappings. Second, the incorrect mappings often had multiple table
elements with mild similarity scores, while the wrongly selected potential mapping had
usually only one slightly higher score, which then misled the baseline mapping deriva-
tion. Therefore, the matcher should consider the table attributes scores altogether.

With the current work, we provide a first step towards supporting event log extrac-
tion based on a given process model. Our approach is able to identify a set of poten-
tial mappings, which then can be processed by a process analyst. While our technique
can be further improved, we also provide some insights into how this can be accom-
plished (cf. 2LM3).

5 Related Work

While this paper is the first work on database to process model matching, there are three
major research areas that are concerned with matching: schema matching, ontology
matching, and process model matching.

Approaches for schema matching aim to identify matches between the elements of
two different database schemata. The purpose of schema matching techniques include
data integration, schema evolution, and maintenance [14,17]. The matching strategies
pursued by these techniques are similar to the ones presented in this paper. For example,
in [14], the authors determine the similarity between two database schema elements
using attributes, such as names and data types, and combine it with structural similarity.
In [17], the authors leverage the results of a variety of basic matchers to determine
whether two schema elements match.

Approaches for ontology matching are concerned with matching the elements of
two ontologies [10,11]. One of the key use cases for ontology matching is ontology
merging, i.e., the combination of two ontologies. The matching strategies are again
similar to one presented here. For example, in [10], the authors leverage lexical and
structural characteristics of the considered ontologies to determine matching elements.

Approaches for process model matching aim to identify correspondences between
the activities of two process models [12,15,23]. The main use case of process model
matching is to detect differences and commonalities between two processes. Avail-
able approaches for process model matching exploit textual, structural, and behavioral
features of the models. Early work mainly built on simple textual similarity features,
such as the Levenshtein distance, and mainly focused on structural features [23]. Later,
also semantic similarity measures and behavior were used to identify corresponding
activities [12].

332 V. Stein Dani et al.

This brief review illustrates that existing matching approaches are closely related
to our work. There is, however, a key difference: The works above focus on matching
entities of the same type. While this does not guarantee that the to-be-matched entities
are similar, they are at least comparable. In the setting addressed in this paper, we need
to deal with the fact that the entities are very different in nature. A process model, for
example, does not come with instance data and a database does not have a clear notion
of control-flow or activities. Hence, while we partially build on matching strategies
explored in previous work, the conceptual setting of our work differs considerably.

6 Conclusion

In this paper, we presented a new approach to support event log extraction based on
matching. The main idea of our approach is to automatically identify the mappings
between a database and a process model. Against the background of the challenges
associated with this task, we focused on the automated identification of potential map-
pings in this paper. While this requires process analysts to select the correct mappings, it
still saves them from a considerable amount of manual work. To evaluate our approach,
we tested it using three different databases and five different process models related
to a purchase-to-pay process. We found that textual information is highly important to
improve the performance of our approach. At the same time, we also found that more
sophisticated mechanisms are required to further improve our approach.

As for future work, we see several directions. First, we plan extend the idea from the
syntactic level to a level that incorporates semantic relations as well [2,3] between the
activities and tables by, for example, leveraging bidirectional encoder representations
from transformers. Second, we aim to take order relations between the database instance
data and the process model activities into account. In this way, we can, for instance,
exclude candidate matches if the order relations from the process model contradict the
timestamps from the associated database tables. Third, we intend to incorporate feed-
back from humans. By letting the user select which potential mappings are correct, we
can leverage a feedback loop to further improve the potential mappings generated by
our approach.

Acknowledgements. Part of this research was funded by NWO (Netherlands Organisation for
Scientific Research) project number 16672.

References

1. van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Heidelberg (2016)
2. Calvanese, D., Kalayci, T.E., Montali, M., Santoso, A.: OBDA for log extraction in process

mining. In: Ianni, G., et al. (eds.) Reasoning Web 2017. LNCS, vol. 10370, pp. 292–345.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61033-7 9

3. Calvanese, D., Kalayci, T.E., Montali, M., Tinella, S.: Ontology-based data access for
extracting event logs from legacy data: the onprom tool and methodology. In: Abramow-
icz, W. (ed.) BIS 2017. LNBIP, vol. 288, pp. 220–236. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-59336-4 16

4. Diba, K., Batoulis, K., Weidlich, M., Weske, M.: Extraction, correlation, and abstraction of
event data for process mining. WIREs Data Min. Knowl. Discov. 10(3) (2020)

https://doi.org/10.1007/978-3-319-61033-7_9
https://doi.org/10.1007/978-3-319-59336-4_16
https://doi.org/10.1007/978-3-319-59336-4_16

Supporting Event Log Extraction Based on Matching 333

5. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business Process
Management. Springer, Heidelberg (2018)

6. Figl, K., Mendling, J., Strembeck, M.: The influence of notational deficiencies on process
model comprehension. J. Assoc. Inf. Syst. 14, 312–338 (2013)

7. Gal, A.: Uncertain Schema Matching, vol. 3. Morgan & Claypool (2011)
8. Jagroep, E., Van der Werf, J.M., Broekman, J., Blom, L., van Vliet, R., Brinkkemper, S.:

A resource utilization score for software energy consumption. In: Proceedings of ICT for
Sustainability 2016 (2016)

9. Jans, M., Alles, M., Vasarhelyi, M.: The case for process mining in auditing: sources of value
added and areas of application. Int. J. Account. Inf. Syst. 14, 1–20 (2013)

10. Jean-Mary, Y.R., Shironoshita, E.P., Kabuka, M.R.: Ontology matching with semantic veri-
fication. Web Semant. 7(3), 235–251 (2009)

11. Lambrix, P., Tan, H.: Sambo - a system for aligning and merging biomedical ontologies. J.
Web Semant. 4(3), 196–206 (2006)

12. Leopold, H., Niepert, M., Weidlich, M., Mendling, J., Dijkman, R., Stuckenschmidt, H.:
Probabilistic optimization of semantic process model matching. In: Barros, A., Gal, A.,
Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 319–334. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32885-5 25

13. Li, G., de Murillas, E.G.L., de Carvalho, R.M., van der Aalst, W.M.P.: Extracting object-
centric event logs to support process mining on databases. In: Mendling, J., Mouratidis, H.
(eds.) CAiSE 2018. LNBIP, vol. 317, pp. 182–199. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-92901-9 16

14. Madhavan, J., Bernstein, P., Rahm, E.: Generic schema matching with cupid. In: Proceedings
of the 27th VLDB Conference (2001)

15. Meilicke, C., Leopold, H., Kuss, E., Stuckenschmidt, H., Reijers, H.A.: Overcoming individ-
ual process model matcher weaknesses using ensemble matching. Decis. Support Syst. 100,
15–26 (2017)

16. Murillas, E., Reijers, H., Aalst, W.: Connecting databases with process mining: a meta model
and toolset. Softw. Syst. Model. 231–249 (2016)

17. Nikovski, D., Esenther, A., Ye, X., Shiba, M., Takayama, S.: Matcher composition methods
for automatic schema matching. In: Cordeiro, J., Maciaszek, L.A., Filipe, J. (eds.) ICEIS
2012. LNBIP, vol. 141, pp. 108–123. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40654-6 7

18. Post, R., et al.: Active anomaly detection for key item selection in process auditing. In:
Munoz-Gama, J., Lu, X. (eds.) ICPM 2021. LNBIP, vol. 433, pp. 167–179. Springer, Cham
(2022). https://doi.org/10.1007/978-3-030-98581-3 13

19. Saldaña, J.: The Coding Manual for Qualitative Researchers. Sage (2009)
20. Stein Dani, V., et al.: Towards understanding the role of the human in event log extraction.

In: Marrella, A., Weber, B. (eds.) BPM 2021. LNBIP, vol. 436, pp. 86–98. Springer, Cham
(2022). https://doi.org/10.1007/978-3-030-94343-1 7

21. van der Aa, H., Leopold, H., Reijers, H.A.: Comparing textual descriptions to process models
- the automatic detection of inconsistencies. Inf. Syst. 64, 447–460 (2017)

22. Aalst, W.M.P.: Extracting event data from databases to unleash process mining. In: vom
Brocke, J., Schmiedel, T. (eds.) BPM - Driving Innovation in a Digital World. MP, pp. 105–
128. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14430-6 8

23. Weidlich, M., Dijkman, R., Mendling, J.: The ICoP framework: identification of correspon-
dences between process models. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp.
483–498. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13094-6 37

24. Weske, M., Decker, G., Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Model collec-
tion of the bpm academic initiative (2020)

https://doi.org/10.1007/978-3-642-32885-5_25
https://doi.org/10.1007/978-3-319-92901-9_16
https://doi.org/10.1007/978-3-319-92901-9_16
https://doi.org/10.1007/978-3-642-40654-6_7
https://doi.org/10.1007/978-3-642-40654-6_7
https://doi.org/10.1007/978-3-030-98581-3_13
https://doi.org/10.1007/978-3-030-94343-1_7
https://doi.org/10.1007/978-3-319-14430-6_8
https://doi.org/10.1007/978-3-642-13094-6_37

	Supporting Event Log Extraction Based on Matching
	1 Introduction
	2 Problem Illustration and Challenges
	3 Mapping Database Tables to Process Activities
	3.1 Overview
	3.2 First-Line Matcher (1LM)
	3.3 Second-Line Matcher (2LM)

	4 Evaluation
	4.1 Data
	4.2 Setup
	4.3 Results
	4.4 Discussion

	5 Related Work
	6 Conclusion
	References

