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Abstract1

Statistical learning (SL) allows us to quickly extract regularities from sensory inputs.2

Although many studies have established that SL serves a wide range of cognitive3

functions, it remains unknown whether SL impacts conscious access. We addressed4

this question, seeking converging evidence from multiple paradigms across four5

experiments (total N = 153): Two reaction-time based b-CFS experiments showed6

that objects at probable locations and with probable features are released from7

suppression faster than improbable objects. In a visual masking experiment, we8

observed higher sensitivity to probable (versus improbable) objects, independent of9

conscious access to the stimulus dimension carrying the regularities. Finally, a10

pre-registered accuracy-based b-CFS experiment showed higher localization accuracy11

for interocularly suppressed probable (versus improbable) objects given identical12

presentation durations, thereby excluding processing differences emerging after13

conscious access (e.g., criterion shifts). Together, these findings demonstrate that SL14

prioritizes conscious access of probable over improbable visual input.15

Keywords: statistical learning, consciousness, visual awareness, breaking continuous16

suppression, interocular suppression, pre-registration17
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Statement of Relevance1

Our visual environment provides us with a continuous stream of complex information,2

most of which is highly structured. Cars, for example, have prototypical locations3

(e.g., on the road rather than in the sky), and share prototypical visual characteristics4

(e.g., a horizontally elongated shape). Human beings are extremely proficient at5

extracting such structural regularities to facilitate a wide range of cognitive functions.6

The present study demonstrates for the first time that implicit learning processes like7

statistical learning can influence the selection of sensory input for conscious8

perception, prioritizing probable events over improbable events in conscious access.9

This finding indicates that our conscious perception can be shaped by regularities that10

we are not explicitly aware of. The direct effect of statistical learning on conscious11

access may explain how statistical learning serves a wide range of cognitive functions12

that benefit from or depend on consciousness, such as memory, learning, and decision13

making.14

15

16
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Introduction1

The human brain can quickly and implicitly extract regularities of sensory inputs2

across time and space from the environment through statistical learning (SL). Over3

the past two decades, SL has become a major area in cognitive research, as indicated4

by its pervasive influence on a wide range of basic and higher-level cognitive5

processes (for a review, see Bogaerts et al., 2020; Frost et al., 2019; Sherman et al.,6

2020). To name a few, SL enables language acquisition (e.g., Saffran et al., 1996),7

perception of high-level perceptual units (e.g., scenes and events, Brady & Oliva,8

2008; Turk-Browne, 2012), recognition and association of meaningful chunks for9

learning, memory (e.g., Brady et al., 2009), and social inference (e.g., Dotsch et al.,10

2017). Despite extensive research on the function of SL, no study has investigated11

whether SL can facilitate the entry of sensory inputs into consciousness. This question12

is particularly important, given that consciousness of sensory inputs is considered a13

prerequisite for many cognitive functions (e.g., Baars & Franklin, 2003; Meuwese et14

al., 2013; Rich & Mattingley, 2002; Sabary et al., 2020), including cognitive functions15

that are -themselves- regulated by SL (e.g., memory, language, and inference). To16

understand how SL functions, it is therefore essential to establish whether SL impacts17

conscious access of sensory inputs.18

The hypothesis that SL affects conscious access is supported by the overlap19

between the behavioral correlates of SL and conscious access. Previous studies20

suggested that SL generates memory chunks (Orbán et al., 2008), induces implicit21

anticipations (Turk-Browne et al., 2010), and regulates the allocation of attention22
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(Geng & Behrmann, 2005; Wang & Theeuwes, 2018) and working memory resources1

(Brady et al., 2009; Umemoto et al., 2010). Given that these factors all influence the2

detection of interocularly suppressed stimuli (working memory, Gayet et al., 2013,3

2016; anticipation, Denison et al., 2011, 2016; Pinto et al., 2015; attention, Thibault et4

al., 2016), one might hypothesize that SL directly affects conscious access.5

Alternatively, it is conceivable that SL does not alter conscious access, since similar6

implicit learning processes (e.g., perceptual learning) do not affect detection of stimuli7

under interocular suppression (Heyman & Moors, 2014; Paffen et al., 2018).8

To investigate whether SL affects conscious access, we first used a reaction-time9

based breaking continuous flash suppression paradigm (b-CFS, Gayet et al., 2014;10

Stein et al., 2011) in Experiments 1 and 2 (Fig. 1). Here, the time it takes for11

observers to report some aspect of interocularly suppressed targets is related to the12

competitive strength of stimuli for entering visual awareness (e.g. higher contrast13

targets will break suppression faster than low contrast ones). In our experiments, we14

hypothesized that targets occurring with high probability would break suppression15

faster than low probability ones. To exclude the possibility that differential reaction16

times in b-CFS can reflect differences emerging after conscious access (e.g.,17

decisional and post-perceptual processes, Stein et al., 2019; Stein & Peelen, 2021), we18

conducted two follow-up experiments. In Experiment 3, we used the19

detection-discrimination dissociation paradigm (hereafter “DDD”; Stein & Peelen,20

2021) with which we tested whether localization sensitivity is higher for high versus21

low probability feature stimuli when participants cannot consciously perceive the22
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feature dimension that carries the regularities (in our case the orientation of a triangle).1

This dissociation is similar to blindsight (Weiskrantz et al., 1974) in which patients2

localize stimuli more accurately than chance, even though they do not consciously3

perceive those target stimuli (e.g., chance-level in presence-absence judgements). In4

Experiment 4, we used an accuracy-based b-CFS paradigm (Litwin et al., 2023) in5

which the localization accuracy for interocularly suppressed high and low probability6

feature stimuli were compared. Together, the four experiments provide converging7

evidence that SL prioritizes conscious access of high versus low probable visual8

input.9

10

Methods (Experiment 1)11

In Experiment 1, we examined whether the presence of statistical regularities of target12

locations influences conscious access to targets. Specifically, if SL of spatial locations13

affects conscious access, we would observe faster reaction times (in an orthogonal14

discrimination task) for targets that appear at high- versus low-probability locations.15

Participants. The predetermined sample size for this first experiment was loosely16

based on previous SL studies (Wang & Theeuwes, 2018). Twenty-five healthy17

participants, naive to the purpose of the experiment, participated in Experiment 1 after18

signing an informed consent form. One observer who did not follow instructions (i.e.,19

the participant did not look through the binocular stereoscope) was excluded from all20

data analyses and was replaced. The eventual sample contained twenty-four21

participants (19 women and 5 men, mean age = 24.13, SD = 2.49) for data analysis.22
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All participants had normal or corrected-to-normal vision and had no color blindness.1

They received monetary compensation for their participation.2

Apparatus and stimuli. The experiment was conducted on a 27-inch LCD monitor3

(2,560×1,440 pixels, 60-Hz refresh rate). The experiment took place in a darkened4

laboratory with all light sources turned off, except for the computer screen, which was5

positioned at an effective viewing distance (the distance the light travels from monitor6

to eye) of 57 cm. The presentation area on the screen comprised two parts7

(half-images presented on the left and right half of the monitor) which were viewed8

dichoptically through a stereoscope mounted on a chin rest. The stereoscope made it9

possible to independently stimulate the left and right eyes of participants, thus10

triggering interocular competition. To promote binocular fusion of the two competing11

images, each display (that contains a competing image) had a gray (16.2 cd/m², x =12

0.283, y = 0.298) background (9.5°×7.2°) surrounded by a Brownian noise square13

frame with a thickness of 0.5°. The remaining part of the screen was set as a uniform14

black background luminance of 0.05 cd/m².15

The target stimulus consisted of an upright or inverted triangle (1.4° in height and16

length), which was presented to a single eye. This target was distanced 2.4° from a17

central fixation dot (a 0.3° white dot with a black edge). The other eye was presented18

with high-contrast colored masks that were changed at a rate of 10 Hz. These masks19

were made up of randomly arranged circles (diameter 0.3 to 1.5°) of different colors20

(they differed both in hue and luminance). One hundred and twenty different CFS21

masks were generated before the experiment and appeared in a random order (without22
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replacement) across different trials. The dynamic high-contrast CFS masks were1

presented to one eye to perceptually suppress the static stimulus shown to the other2

eye, thereby rendering the static stimulus initially unconscious (Tsuchiya & Koch,3

2005). The experiment was programmed using Psychtoolbox (Brainard, 1997) in4

MATLAB (R2021a; The Mathworks, Natick, MA).5

Procedure. Each trial started with a fixation dot that appeared at the center of the6

screen for 500 ms. After this, a dynamic CFS mask was presented to one eye of the7

participant. Meanwhile, the target was presented to the other eye of the participant8

with its intensity (i.e., opacity) ramping up from zero to full opacity within 1,000 ms9

(Fig. 1A). At the start of the trial, participants were unable to consciously perceive the10

triangle because it was interocularly suppressed by the CFS masks. Over time, the11

visibility of the dynamic CFS mask presented to one eye was gradually reduced with12

its transparency increasing gradually. The increasing intensity of the target and the13

decreasing intensity of the mask jointly caused the target to be eventually released14

from interocular suppression, thus allowing participants to report upon the target. The15

presentation of the CFS masks and the target ended when a participant responded or16

after ten seconds had passed. Participants were required to press one of two buttons to17

indicate the orientation of the triangle as quickly and accurately as possible (‘↑’ for18

upright triangles, ‘↓’ for inverted triangles). We manipulated how often a triangle was19

presented at different locations (left vs. right) but required participants to report20

triangle orientation (upright vs. inverted), see Fig. 1B. As such, the response mapping21
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was orthogonal to the experimental manipulation, minimizing the influence of1

response bias.2

3

4

Fig. 1. (A) Trial overview of the b-CFS paradigm used in Experiments 1-2. (B) Targets could appear on the left or5

right of fixation, and could consist of upright or inverted triangles.6

7

Targets (triangles) appeared on a specific side, either the left or right side, of the8

screen on 75% of all trials (‘the high-probability condition’), and appeared on the9

other side of the screen on the remaining 25% of all trials (‘the low-probability10

condition’). The location (left vs. right sides) being set as the high-probability location11

was counterbalanced between participants. In contrast, the orientation of triangles was12

counterbalanced (with random presentation orders) within participants across different13

trials. The distance from the target to the fixation dot was the same in all trials; that is,14

the target was positioned on the outline of an imaginary circle with a radius of 2.4°.15

To preserve a clear distinction between the left and right of fixation, targets could16

only appear in the left and right quadrants of the imaginary circle, on one of twenty17

equally interspersed locations. The exact position within a quadrant was drawn at18
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random (thus not counterbalanced), so that targets had an equal probability of1

appearing either (slightly) above or below the horizontal midline.2

After the response, participants kept viewing the target display with both eyes for3

1,000 ms. Meanwhile, participants also received sound feedback (500 ms): a4

high-pitch (2,000 Hz), or a low-pitch (1,500 Hz) ‘beep’ sound for correct or incorrect5

responses. This phase was not only a feedback phase but also served as an important6

learning phase: given that it is unclear whether statistical regularities can be extracted7

from interocularly suppressed stimuli, we showed the targets without suppression at8

the end of each trial to ensure that participants could learn the statistical regularities9

from stimuli that were not interocularly suppressed.10

The formal experiment comprised 8 practice trials and 6 blocks of 32 formal trials.11

Here, we manipulated the prevalence of the target locations, so that it was more likely12

to appear to the left of fixation (75% of trials) than to the right of fixation for half of13

the participants, and vice versa for the other half of the participants. We refer to these14

as ‘regularity blocks’. The color of the target was green (7.70 cd/m², x = 0.288, y =15

0.444 at full opacity) in the regularity blocks. To enhance the motivation of16

participants, participants received feedback about their average performance at the17

end of each block, showing their mean reaction times (RTs) and the mean accuracy of18

that block. After checking the performance, participants had the opportunity to take a19

self-initiated rest. We set up a mandatory rest every three blocks for all participants.20

In addition, before the formal experiments, we also asked participants to finish 321

blocks of 32 trials where the statistical regularity was absent (‘non-regularity blocks’).22



STATISTICAL LEARNING FACILITATES CONSCIOUS ACCESS 11

We used a red (6.12 cd/m², x = 0.655, y = 0.332 at full opacity) color for the targets1

in the non-regularity blocks. This salient change of target color between the2

non-regularity blocks (of the pre-experiment) and regularity blocks (of the formal3

experiment) was aimed at minimizing the transfer of (the absence of) regularities from4

the non-regularity blocks to the regularity blocks. These non-regularity blocks were5

aimed at measuring within-participant differences in eye dominance and spatial biases.6

This pre-experiment data is not included in the formal data analysis and can be found7

in Supplementary Materials 2.8

At the end of the formal experiment, we measured participants’ subjective9

awareness of statistical regularities. They were asked to fill out a questionnaire after10

they completed the experiment. In this questionnaire, they were asked to guess the11

percentages of targets appearing on the left or right of fixation (the key manipulation12

dimension), the percentages of targets appearing at the upper or lower side of fixation13

(actual probability: 50% each), and the percentages of targets appearing in an upright14

or inverted orientation (actual probability: 50% each).15

16

Results (Experiment 1)17

The b-CFS task. Incorrect responses were excluded from all data analyses (2.41% of18

all trials). The accuracy of participants ranged from 89.58% to 100%, with an average19

accuracy of 97.59% (SD = 2.54). To test whether SL develops over time, we further20

compared the RTs to targets at high and low probability locations across time. To this21
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aim, we divided the experiment into epochs of 64 trials (the conditions (high versus1

low probability) were fully counterbalanced within each of these individual epochs).2

We conducted a repeated measures ANOVA with the factors Probability (high versus3

low) and Epoch (1 to 3) to investigate how the influence of statistical regularities on4

response times would evolve over time.5

Results show that the main effect of Probability was significant, (F(1, 23) = 5.98,6

p = .023, ηp2 = 0.21). Specifically, RTs for the high-probability locations (3.66 s, SD =7

1.81) were 0.47 seconds shorter than for the low-probability locations (4.13 s, SD =8

1.20), see Fig. 2A. The shorter RTs for targets presented at high-probability locations9

indicates that visual input gains faster access to consciousness when appearing at a10

probable (rather than improbable) location. Besides, the main effect of Epoch was11

also significant (F(2, 23) = 8.97, p = .001, ηp2 = 0.28), reflecting a general decrease in12

response times over the course of the experiment. Importantly, the absence of an13

interaction between Probability and Epoch, (F(2, 23) = 0.40, p = .673, ηp2 = 0.02)14

suggests that the difference in RTs to targets appearing on high compared to low15

probability locations did not change over the course of the experiment. To test16

whether the SL effect has appeared at early stage of the experiment, we further17

conducted t-tests to compare RTs to targets on high and low probability locations in18

the first epoch. Results showed that RTs for the high-probability locations were19

already shorter than for the low-probability locations in Epoch 1 (t(23) = 3.20, p20

= .004, Cohen’s d = 0.27, 95% CI = [0.20, 0.92]). Taken together, these data show21
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that participants rapidly extracted the statistical regularities of the target location and1

that the effect of statistical regularities on conscious access did not change over time.2

3

Fig. 2. The results of Experiments 1-2. (A) and (D) display mean response times (RTs) in the high-probability and4

low-probability conditions, with individual dots representing individual participants; (B) and (E) display RT5

differences between the high- and low-probability conditions, over time (on the x-axis). (C) and (F) show the6

correlation between participants’ RT difference and their subjective awareness of the statistical regularities. Error7

bars represent the 95% confidence interval of the mean. Asterisks indicate significance (*p < .05, ***p < .001).8

9

The subjective awareness ratings. We computed a subjective awareness rating,10

reflecting the extent to which participants were aware of the high versus low11

probability manipulation (see Supplementary Materials 1). A key aspect of this12

awareness metric is that we used individual participants’ guesses to the other,13
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non-manipulated, dimensions to scale the reported imbalance estimates to the1

manipulated dimension, thus accounting for individual differences in tendencies to2

report more (or less) extreme imbalance estimates. Basically, we divided the3

difference of the estimated percentage of the high- versus low-probability conditions4

(i.e., left/right in Experiment 1, up/down in Experiment 2) by the mean of the5

unsigned imbalance reported for the two non-manipulated dimensions. The sign of6

calculated subjective awareness ratings indicates whether the probability estimate is in7

line with the true probability of the stimulus occurrence (positive) or not (negative),8

while larger (absolute) values indicate a larger estimated imbalance in stimulus9

occurrence. Subjective awareness ratings were scaled, so that values above 1.010

indicate that participants provided more extreme probability estimations for the11

manipulated regularity dimension (i.e., left/right in Experiment 1, up/down in12

Experiment 2) compared with the two non-manipulated dimensions (e.g., up/down13

and upright/inverted in Experiment 1). Therefore, numbers equal to/below 1.0 can be14

interpreted as an indication that participants were unaware of the manipulated15

dimension (for details, see Supplementary Materials 1).16

Results showed that although participants performed above chance in reporting17

which was the high-probability location (as indicated by above zero awareness rating,18

t(23) = 3.43, p = .002, Cohen’s d = 0.70, 95% CI = [0.10, 0.41]), the reported19

imbalance between high and low probability conditions was not higher for the20

manipulated stimulus dimension (75%–25%) than for the two non-manipulated21

stimulus dimensions (50%–50%), as indicated by below 1.0 awareness rating (mean:22
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0.26, SD = 0.37; t(23) = 9.85, p < .001, Cohen’s d = 2.01, 95% CI = [0.59, 0.90]).1

That is, although participants tended to estimate the high-probability location as more2

probable (55.83, SD = 10.60) than the low-probability location (44.17, SD = 10.60),3

this bias fell within the range of biases reported in the absence of any probability4

manipulation. This can be interpreted as an indication that participants were unaware5

of the statistical regularities.6

A rank-based Spearman’s correlation test (p < .05 in the Shapiro-Wilk Normality7

Test) showed that there was no significant correlation between the calculated8

subjective awareness score and the difference in RTs between high and low9

probability locations in the b-CFS task, r = 0.19, p = 0.38, Fig. 2C. These results10

indicate that higher levels of awareness about the regularities during the experiment11

were not accompanied by faster responses to high-probability targets (relative to12

low-probability targets) in the b-CFS task.13

Inter-trial priming effects. In this experiment, high-probability (location) trials14

occurred more often than low-probability trials due to the manipulation of regularity.15

This led to a higher incidence of consecutive high-probability trials and consequently16

to a lower incidence of consecutive low-probability trials. Therefore, it is possible that17

the targets of the high probability condition were prioritized because they occurred18

more often in consecutive trials (i.e., the inter-trial priming effect) instead of being a19

probable target. To test this possibility, we divided the trials into ‘repeat trials’ in20

which the target was at the same location as in the previous trial, and ‘change trials’ in21

which the target was at a different location. A two-tailed paired-sample t-test was22
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conducted to examine the effect of Inter-trial Continuity (change vs. repeat) on SL1

effect (i.e., the difference between RTs of high probability and low probability trials).2

Results showed that there was no difference between SL effect of change trials and3

repeat trials, t(23) = 0.15, p = .879, Cohen’s d = 0.03, 95% CI = [–0.39, 0.45]),4

showing that the faster responses to high-probability targets were not caused by an5

inter-trial priming effect. Therefore, the differential RTs between high- and6

low-probability locations is unlikely to have been caused by inter-trial priming.7

8

Methods (Experiment 2)9

Experiment 2 was aimed at extending the findings of Experiment 1, by testing10

whether the presence of statistical regularities of target features (instead of target11

locations) also accelerates conscious access of targets comprising high-probability12

features. If SL affects unconscious processing at the level of features, we should13

observe faster reaction times to targets comprising high-probability (vs.14

low-probability) features.15

The methods were generally identical to those of Experiment 1 except for the16

following changes. First, a new group of twenty-four healthy participants (20 women17

and 4 men, mean age = 25.08, SD = 3.17) were recruited for the experiment. The18

sample size was set to match that of Experiment 1. Second, in the regularity blocks,19

we manipulated the probability of targets being upright or inverted, instead of20

manipulating the probability of target locations. Participants were asked to determine21
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target locations (left or right) as quickly as possible (instead of reporting the target1

orientation, see Fig. 1).2

3

Results (Experiment 2)4

The b-CFS task. Incorrect responses were excluded from all data analyses (1.54% of5

all trials). The accuracy of participants ranged from 94.79% to 100%, with an average6

accuracy of 98.46% (SD = 1.43).7

As in Experiment 1, we also conducted a repeated measures ANOVA with the8

factors Probability (high versus low) and Epoch (1 to 3) in Experiment 2. Results9

show that the main effect of Probability was, again, significant (F(1, 23) = 14.79, p10

< .001, ηp2 = 0.39). Specifically, RTs for the high-probability features (2.30 s, SD =11

1.03) were 0.24 seconds shorter than for the low-probability features (2.54 s, SD =12

1.23), see Fig. 2D. The shorter RTs for targets presented with high-probability13

features indicate that visual input gains faster access to consciousness when appearing14

with a probable (rather than improbable) feature. Apart from this, the main effect of15

Epoch was also significant (F(2, 23) = 9.10, p = .001, ηp2 = 0.45), which reflects a16

general decrease in response times over the course of the experiment.17

The interaction between Probability and Epoch was not significant, F(2, 23) =18

0.40, p = .673, ηp2 = 0.02, suggesting that the difference in RTs to targets comprising19

high compared to low probability features did not change over the course of the20
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experiment. As in Experiment 1, we further conducted t-tests to compare RTs to1

targets on high and low probability features in the first epoch, and showed that RTs2

for the high-probability features were already shorter than for the low-probability3

features in Epoch 1 (t(23) = 3.24, p = .004, Cohen’s d = 0.66, 95% CI = [0.10, 0.43]).4

These data show that the statistical regularities of the target feature were extracted5

rapidly and affected unconscious processing accordingly.6

The subjective awareness ratings. Results showed that participants performed at7

chance in reporting which was the high-probability location, as indicated by the8

insignificant difference between awareness ratings and zero, t(23) = 1.88, p = .072,9

Cohen’s d = 0.39, 95% CI = [–0.02, 0.35]). Moreover, participants’ subjective10

awareness scores (0.16, SD = 0.43) were significantly lower than 1.0 at the group11

level (t(23) = 9.58, p < .001, Cohen’s d = 1.96, 95% CI = [0.66, 1.02]), indicating that12

the tendency to correctly estimate the high-probability feature as more probable13

(56.46, SD = 12.64) than the low-probability feature (43.96, SD = 13.19) fell within14

the range of biases reported in the absence of any probability manipulation. That is,15

most participants were unaware of the statistical regularities. The rank-based16

Spearman’s correlation test (p < .05 in the Shapiro-Wilk Normality Test) showed that17

there was no significant correlation between the calculated values of subjective18

awareness and the differential RTs in the b-CFS task, r = –0.15, p = .48 (Fig. 2F).19

This shows that the effects of SL on b-CFS localization times did not depend on20

participants’ explicit knowledge about these statistical regularities.21



STATISTICAL LEARNING FACILITATES CONSCIOUS ACCESS 19

Inter-trial priming effects. To exclude the possible account of inter-trial priming1

effects, a two-tailed paired-sample t-test was conducted to examine the effect of2

Inter-trial Continuity (change vs. repeat) on SL effect (i.e., the difference between3

RTs of high probability and low probability trials). Results showed that there was no4

difference between SL effect (i.e., the difference between RTs of high probability and5

low probability trials) of change trials and repeat trials, t(23) = 0.66, p = .519,6

Cohen’s d = 0.13, 95% CI = [–0.20, 0.38]), showing that the faster responses to7

high-probability targets were not caused by an inter-trial priming effect. Therefore,8

the differential RTs between high- and low-probability features is unlikely to have9

been caused by inter-trial priming.10

11

Methods (Experiment 3)12

In Experiments 1-2, we found that initially suppressed stimuli were responded to13

faster when they were positioned at a high-probability location or consisted of a14

high-probability feature. Even though this result seems, at first glance, to indicate that15

conscious access is sped up for high-probable stimulus information, we cannot know16

for certain that these effects originate prior to conscious access of the stimulus.17

Specifically, it is possible that the differential RTs that we found in Experiments 118

and 2 were due to conscious perceptual processes (e.g., high-probability stimuli are19

processed more rapidly after they break suppression, thus generating faster responses)20

or decisional factors (i.e., participants might instill a more liberal response tendency21
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for high-probability stimuli, yielding faster responses at the cost of reduced accuracy;1

see Gayet et al., 2014; Stein & Peelen, 2021).2

To test whether statistical regularities can exert an influence on the processing of3

stimuli that are not (yet) consciously perceived, we used a detection-discrimination4

dissociation paradigm (hereafter: DDD; Stein & Peelen, 2021). This recently5

developed paradigm offers the possibility to observe [A] a difference in6

detection/localization sensitivity between two stimulus conditions (e.g., higher7

sensitivity for localizing upright compared to inverted faces), while [B] participants8

are unable to discriminate between these two stimulus conditions (e.g., chance level9

performance in distinguishing between upright and inverted faces). The latter null10

effect [B] demonstrates that participants have no conscious access to the stimulus11

dimension that governs the performance difference [A], and thus that effect [A] could12

not have been caused by conscious processes (see Schmidt & Vorberg, 2006).13

In our implementation of the DDD paradigm, we asked participants to perform a14

non-speeded two-alternative-forced-choice (2-AFC) localization (left vs. right) task as15

well as a non-speeded 2-AFC discrimination (upright vs. inverted) task on every trial.16

We manipulated the statistical regularity of the ‘to-be-discriminated’ dimension17

(upright vs. inverted triangles). The signal detection theory index d’ was used to18

indicate the localization and discrimination sensitivities. We aimed at establishing a19

condition in which participants were unconscious of whether the target was upright or20

inverted (the dimension that carried statistical regularities), and subsequently test the21
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effects of these regularities using a localization task (without regularities). If SL1

indeed affects the localization sensitivity of targets unconsciously, participants would2

have different localization sensitivities for high- vs. low-probability targets (e.g.,3

upright versus inverted triangles), even when being unconscious of the identity of the4

target feature (i.e., when they are at chance at discriminating between upright and5

inverted triangles). Adversely, if SL cannot influence the detectability of objects at an6

unconscious level, we would observe no difference between high- and low-probability7

feature conditions whenever participants are unable to discriminate between upright8

and inverted triangles.9

As stated above, we first needed to establish a condition where participants10

performed at chance level on the orientation discrimination task (d’ = 0: participants11

have no conscious access to the manipulated feature dimension), and above chance12

performance on the localization task across both high and low probability conditions13

(d’ > 0; participants had access to the target location). Having met these requirements,14

we then compared the localization sensitivity between targets with high vs.15

low-probability features.16

Participants. A new group of twenty-four participants (20 women and 4 men, mean17

age = 24.25, SD = 2.25) were recruited for an experiment, based on the sample size of18

Experiments 1 and 2. In a subsequent, preregistered replication experiment19

(http://256.so/i1n), another group of twenty-five participants (15 women and 10 men,20

mean age = 25.52, SD = 2.79) were recruited based on the effect size of the21
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exploratory experiment. Because of a complication in the data analysis proposed in1

the preregistration (i.e., the lack of consideration of the possible influence of2

unbalanced trial numbers on the comparison of signal detection parameter d’; for3

details, see Supplementary Materials 3), we combined the data from both groups4

together for an exploratory analysis outlined below.5

Apparatus and stimuli. The experiment was conducted in the same lab environment6

as Experiments 1-2, but on another 27-inch LCD monitor (2,560× 1,440 pixels,7

120-Hz refresh rate), positioned at an effective viewing distance of 57 cm. Here,8

participants directly viewed the monitor without the stereoscope used in the previous9

experiments. All stimuli were presented on a presentation area consisting of a gray10

background (9.5°×7.2°; 16.2 cd/m², x = 0.283, y = 0.298) surrounded by a Brownian11

(1/f2) noise frame with a thickness of 0.5°, and a fixation dot in the center. The12

remaining part of the screen was set as a uniform black background.13

The target stimulus consisted of a green triangle (pointing upwards or downwards;14

1.4°×1.4°) on top of a green circle (diameter of 2.6°), and appeared either to the left15

or right side of fixation at a fixed eccentricity (2.4° from fixation). The exact hue and16

luminance of the triangle (mean across participants: 7.74 cd/m², x = 0.304, y = 0.509)17

and the circle (mean across participants: 12.4 cd/m², x = 0.304, y = 0.521) were18

determined for each participants individually, using an adaptive staircases procedure19

(see below) during a separate experimental session preceding the main experiment20

session. We used the same masks as in Experiments 1 and 2.21
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Procedure. The regularity manipulation was identical to that of Experiment 2 in1

which we also manipulated feature regularity. For any given participant, the triangle2

pointed towards one direction (up or down) in 75% of all trials and pointed towards3

the opposite direction (down or up) in the remaining 25% of all trials. Which one was4

selected as the high-probability feature was counterbalanced across participants.5

Within both the low and high-probability trials, each combination of presentation time6

(8.3, 16.7, and 33.3 + 8.3 ms) and target location (left or right of fixation) occurred7

equally often. The longer presentation times (16.7 and 33.3 + 8.3 ms) were included8

for the purpose of keeping participants motivated; we feared that participants would9

become unmotivated when only engaging in ‘unaware’ trials. We were primarily10

concerned with the effects at the shortest presentation time (8.3 ms) in which11

participants were most likely to be unaware of the target features. These conditions12

were intermixed, and the trial order was randomized for each participant.13

At the beginning of each trial, a black fixation dot appeared at the center of the14

presentation area for 1000 ms (see Fig. 3A). Next, a central white fixation dot (with a15

black edge) appeared for 500 ms to indicate the start of the stimulus presentation. A16

mask appeared for 100 ms before the target presentation, serving as a forward mask.17

Next, the target (a triangle) appeared on the screen for a short duration (8.3ms, 16.7ms,18

or 33.3 ms followed by an 8.3 ms blank). This was followed by three consecutive19

backward masks that were presented for 100 ms each. After the masks, participants20

were asked to perform two tasks. In the 2-AFC localization task, participants pressed21

the left or right arrow to indicate the location of the target. In the 2-AFC22
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discrimination task, participants pressed up or down arrows to indicate the orientation1

of the target (a triangle pointing up or down). Notably, these two tasks were2

non-speeded, and participants were instructed to respond as accurately as possible3

without any time pressure. The order of the two questions was fixed within4

participants but counterbalanced across all participants.5

6

Fig. 3. (A) Trial outline of the detection-discrimination dissociation paradigm used in Experiments 3. (B)7

Schematic representation of the stimulus properties that were varied using an adaptive staircase approach, to obtain8

the desired performances in the localization and discrimination tasks.9

Before the main experiment, we conducted a pre-experiment that was aimed at10

determining RGB values for the circle and triangle constituents of the target stimulus11

(Fig. 3B) leading to desired performance level on the localization and discrimination12

tasks, for each individual participant. To this end, we used Accelerated Stochastic13

Approximation (Kesten, 1958), a non-parametric adaptive procedure that rapidly14

converges to any accuracy level. Participants performed the same tasks (localization15

and discrimination tasks) as in the formal experiment. The localization task threshold16

was titrated by varying the intensity (i.e., opacity) of the circle relative to the17

background, and the discrimination task threshold was titrated by varying the intensity18
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(i.e., opacity) of the triangle relative to the circle. The background color was fixed for1

all participants. Participants first performed in a staircase-procedure adjusting the2

contrast between the circle and background (more specifically, changing the RGB of3

the circle) to obtain above-chance localization performance (aiming to converge at4

75% correct). After this, and in order to find chance-level discrimination performance,5

they performed in another staircase in which we used the RGB of the circle color6

obtained in this first staircase, and adjusted the contrast between the circle and7

triangle (more specifically, changing the RGB of the triangle).8

We aimed to find chance level (50% accuracy) feature discrimination9

performance in the 8.3 ms condition. It is important to consider that such a staircase10

procedure, by definition, cannot converge to a performance level just below the11

threshold of visibility (i.e., a stimulus that is just below the threshold of visibility, and12

a stimulus that is not even presented would both yield a performance level of 50%).13

Therefore, we used a slightly longer presentation time (16.7 ms) with a slightly higher14

desired accuracy (60% correct) in the staircase. Initial piloting suggested that a15

reduction in presentation time of 8.3ms would indeed lead to a decrease in accuracy16

of about 10%.17

The pre-experiment, aimed at determining the RGB values for the circle and the18

triangle of the target stimuli consisted of two steps. In the first step, we aimed to19

adjust the RGB values of the circle (thus changing the contrast with the background)20

to get above-chance sensitivity in the localization task. Specifically, we aimed at 75%21
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accuracy, by staircasing the RGB values of the circle relative to the gray background.1

We simultaneously ran two independent staircases for this first step, with initial2

‘contrast’ values of 0.1 and 0.9, where a value of 0 indicates that the circle had the3

same color as the gray background, and a value of 1 indicates a green circle of4

maximum luminance (RGB balance [1 0 0]). The ASA algorithm converges to a5

desired accuracy level, by (A) adaptively adjusting the stimulus ‘contrast’ depending6

on response accuracy, and (B) by gradually decreasing the size of the contrast change7

(or step size). The initial step size was set to 0.8, and decreased over time, and as a8

function of the number of reversals. In the second step, we aimed to adjust the RGB9

values of the triangle (thus changing the contrast with the circle) to obtain near10

chance-level sensitivity for discriminating between upright and downward pointing11

triangles. The circle color was obtained from the previous step (described above), and12

participants’ discrimination sensitivity was manipulated by adjusting the RGB values13

of the triangle (relative to the circle). We set the desired accuracy level at 60%, and14

the starting values at 0.1 and 0.9. The initial step size was set to 0.8.15

Participants finished the main experiment on another day than the pre-experiment.16

In the pre-experiment, each set of staircases consisted of 128 trials (64 trials for each17

starting value; 0.1 and 0.9). In the main experiment, we set different numbers of trials18

for the two groups of participants that we recruited. For the purpose of exploring the19

stability of the results over time, the first group of participants performed 38420

experimental trials. Then, with the original purpose of replicating the effects of the21

first epoch that we found in the first group of participants (see http://256.so/i1n), the22
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second group of participants only performed 96 experimental trials (i.e., the length of1

one epoch). Except for the actual length of the experiment, the experimental2

procedures were identical for both groups.3

Data Analysis. The (first) 96 trials of the two groups of participants were pooled4

together for exploratory analyses. Because we are only interested in interpreting5

localization performance when orientation discrimination sensitivity d’ is at chance6

level, we only analyzed the data in the shortest presentation time condition, in which7

the unconsciousness of feature discrimination dimension was most likely to be8

established.9

All responses from the localization/discrimination tasks were transformed to the10

signal-detection theory sensitivity index d′. For the discrimination measure, the11

correct responses for high-probability features (e.g., ‘upright’ responses for ‘upright’12

triangles) were coded as hits in the high-probability feature trials, while the same13

responses (e.g., ‘upright’ responses for ‘inverted’ triangles) were coded as false14

alarms in the low-probability trials. In order to test whether participants were15

unconscious of the triangle features (which is the prerequisite for comparing the16

localization performance), we conducted a two-tailed, one-sample t-test to compare17

the discrimination sensitivity d’ with 0 (discrimination sensitivity d’ > 0 indicates18

awareness of the triangle features).19

For the localization task, ‘right’ responses were coded as hits in ‘right’ trials and20

as false alarms in ‘left’ trials. Hit and false alarm rates of 0 or 1 were converted to21
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1/(2N) and 1−1/(2N), respectively; N refers to the number of trials on which the rates1

are based (Macmillan & Creelman, 2004). The hit and false alarm rates were2

eventually transformed to z-scores to calculate the final d’ values. In order to test3

whether high-probability feature leads to higher localization sensitivity d’, we4

compare the localization d’ of the high-probability (feature) trials with that of the5

low-probability (feature) trials. In the originally planned (and preregistered) data6

analysis, we conducted a straightforward, two-tailed paired-sample t-test to compare7

the localization sensitivity d’ of the high-probability (feature) trials and that of the8

low-probability (feature) trials. However, after running simulations, we found that9

when trial numbers are low (as is the case in the low-probability condition), SDT10

sensitivity d’ will tend to go toward zero. Therefore, the lower localization d’ in the11

low compared to the high probability condition could be explained by the lower12

number of trials in the low-probability condition. To exclude this possible account, we13

used a bootstrapping method to equate the trial numbers for the two experimental14

conditions. Specifically, in each iteration of the bootstrapping procedure, we sampled15

the same number of trials from the high-probability trials (8 out of 24) and the16

low-probability trials (all 8 trials, within a given timing condition). This led to a total17

of 245,025 iterations, with 8 high-probability trials and 8 low-probability trials18

(reflecting the total number of possible ways to draw 8 trials from 24, while keeping19

the number of left and right target locations balanced to four on each side). In each20

iteration, a difference between the localization d’ of the 8 sampled high-probability21

trials and the 8 low-probability trials was computed for each individual participant,22
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and averaged across all participants. This resulted in the exhaustive set of 245,0251

group level differences between high and low-probability localization d’, based on2

equal trial numbers in both conditions. To test for significance, we computed the3

fraction of iterations in which high probability trials yielded a larger localization d'4

than low probability trials out of the full set of 245,025 group level difference scores5

(akin to a bootstrap test, but based on the exhaustive set of comparisons rather than on6

random permutations of the data). If a positive value was observed on more than 95%7

of iterations, this was regarded as evidence for higher d’ in high-probability trials,8

given an alpha level of 0.05 (Fig. 4B). Note that this approach entails a directional test,9

which follows from the strong prediction that localization d' is larger for10

high-probability trials compared with low-probability trials.11

12

Results (Experiment 3)13

Before we balanced the numbers of high- and low-probability trials, we first14

conducted the planned paired-samples t-test on the pooled data of Experiment 3 (see15

Supplementary Materials 3 for the original separate analyses of Experiment 3A and16

3B). At the shortest presentation time (8.3 ms), the orientation discrimination d’ (0.18,17

SD = 0.68) was not significantly higher than zero, t(48) = 1.82, p = .075, Cohen’s d =18

0.26, 95% CI = [-0.02, 0.37]. This result provides evidence (albeit weak) that19

participants did not have conscious access to the critical feature dimension at the20

group level in the shortest presentation duration condition. In line with our hypothesis,21
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however, we found significantly higher localization sensitivity d’ for high-probability1

features (1.43, SD = 0.61) than low-probability features (0.95, SD = 86), t(48) = 3.69,2

p < .001, Cohen’s d = 0.53, 95% CI = [0.22, 0.73]). The lower localization d’ in the3

low-probability condition could have been caused by the smaller number of trials in4

the low-probability compared to the high-probability condition. To account for this,5

we next conducted a bootstrap test in which we equated the numbers of trials in the6

high- and low-probability (feature) conditions. As shown in Fig. 4B, results of the7

bootstrap test show that localization sensitivity d’ was higher in the high-probability8

(1.16, SD = 0.42) compared to the low-probability condition (0.95, SD = 0.86), p9

= .027 (245,025 bootstrap samples).10

A rank-based Spearman’s correlation test showed that there was no significant11

correlation between the discrimination d’ and the difference in localization d’ between12

high and low probability features across participants, r = -0.02, p = 0.871 (Fig. 4C).13

These results suggest that the difference in localization performance were not related14

to the discrimination performance. Therefore, the effect of statistical regularities on15

localization performance was independent of conscious access to the feature carrying16

the regularity.17

18
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Fig. 4. The results of Experiments 3 (the shortest presentation time of the first 96 trials). (A) depicts the1

localization sensitivity d’ for high and low-probability features (before bootstrapping) and the difference between2

the two conditions, with individual dots representing individual participants. (B) shows the distribution of all3

group-level differences in localization d’ between equal numbers of high and low-probability trials Positive values4

on the x axis represent a higher localization d’ for high-probability compared to low-probability features. (C)5

shows the correlation between (bootstrapped) discrimination sensitivity d’ and the average localization d’6

difference between high and low-probability trials for each participant. Error bars represent the 95% confidence7

interval of the mean. Asterisks indicate significance (***p < .001).8

Taken together, we did not observe compelling evidence for zero visibility of the9

critical feature at the group level. However, we did observe that higher localization10

sensitivity for high-probability features was not correlated with the level of visibility11

of feature, which indicates that the higher localization sensitivity for high-probability12

feature does not depend on conscious access to the feature dimension that carried the13

regularity. This implies that, the better localization sensitivity for high- compared to14

low-probability features also applied to participants with chance-level feature15

discrimination sensitivity. These results provide evidence that statistical regularities16

can affect the processing of visual input that is not available to consciousness. This17

conclusion, however, is based on a data analysis that was not originally planned, and18

therefore exploratory. To confirm these findings, we conducted Experiment 4.19

20

Methods (Experiment 4)21
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In Experiments 3, we found that participants had a higher localization sensitivity for1

high- compared to low-probability features and that this difference did not depend on2

their awareness of the dimension that carried the regularities (i.e., feature3

discrimination). Although the results were in line with our original hypotheses, the4

evidence was based on exploratory analyses, which we regard as insufficient evidence5

to bolster our claims. Therefore, a pre-registered replication experiment was required6

to confirm the exploratory results of Experiment 3. For this purpose, we turned to a7

simpler paradigm, which is similarly capable of isolating differences in conscious8

access from post-perceptual processes. We decided against conducting another9

detection-discrimination dissociation experiment, in consideration of the following10

factors: First, a substantial number of trials is required for signal detection measures11

(such as d') to be reliable, but we cannot trivially increase the number of12

low-probability trials. This is because the DDD paradigm requires finding a very13

specific stimulus presentation intensity that - on the one hand - yields zero sensitivity14

for discriminating between the two target features, and - on the other hand - does not15

completely abolish stimulus processing. Such a setting is not only difficult to16

approximate empirically, but is nearly impossible to preserve over the course of17

experimental trials due to training effects (i.e., the increase of trials leads to a higher18

discrimination sensitivity). Second, conducting a properly powered replication of19

Experiment 3 would cost an unrealistic amount of financial resources, as it requires20

many participants (110 for 80% power in a one-tailed test).21
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Akin to Experiment 3, the goal of Experiment 4 was to test whether statistical1

learning affects conscious access, or whether it only affects processes arising after2

stimulus detection. To this aim, we used an accuracy-based variant of the b-CFS3

paradigm (Litwin et al., 2023) in which we compared the localization accuracy for4

high-probability versus low-probability features while excluding processing (e.g.,5

criterion) differences emerging after conscious access. The advantage of this method,6

compared with the DDD paradigm used in Experiment 3, is that the interpretability of7

the data does not hinge on establishing chance level performance on a secondary (i.e.,8

discrimination) task. The methods and hypothesis of this experiment were9

preregistered becore data collection (http://256.so/fopr).10

In this paradigm, participants performed a non-speeded two-alternative11

forced-choice (2AFC) localization task during viewing of a (b-)CFS presentation (i.e.,12

CFS masks to one eye and a target to the other eye). The duration of the CFS13

presentation was pre-determined before every trial and kept identical between14

conditions of interest (e.g., high- and low-probability conditions in our case). Because15

responses in this paradigm are non-speeded, participants’ responses on the16

forced-choice task reflect how much information they obtained about a stimulus17

within a given presentation duration. If for a specific presentation duration (e.g.,18

yielding ~80% localization accuracy on average across high and low-probability19

conditions), participants have more information about (e.g., the identity or location of)20

a stimulus in condition A compared to condition B, we can establish that conscious21

access of the stimulus (location/identity) was faster in condition A than in condition B.22
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This precludes any effect of decisional biases and post-detection effects, as it1

exhaustively measures the amount of information available to the participant within a2

specific timeframe (Litwin et al., 2023). As in Experiment 3, we manipulated the3

regularity of target features (i.e., upright vs. inverted triangles) and hypothesized that4

targets with high-probability (vs. low-probability) features break the suppression of5

CFS masks earlier and thus can be localized better in the non-speeded forced-choice6

task.7

Participants. Based on the effect size (Cohen’s d = 0.34) of a previous study that used8

the bias-free b-CFS paradigm to measure conscious access (Litwin et al., 2023), a9

sample of 55 participants was needed for an experimental power of 80% with an alpha10

level of 0.05 for a planned one-tailed paired-samples t-test (power calculation11

performed in G*Power). We opted to preregister a one-tailed test because we have12

clear predictions on the directionality of the effect following Experiments 1-3. In13

order to counterbalance the between-subject condition (i.e., upright or inverted14

triangles are the high or low-probability feature), we recruited one more participant15

than was specified in the pre-registration (i.e., fifty-six participants). A new group of16

sixty-one participants were recruited. For each participant, we simultaneously ran two17

independent staircases (for stimuli appearing left and right of fixation; see Data18

Analysis section below) ; participants were excluded according to their performance19

in either staircase. We excluded five participants whose average accuracy (in both20

staircases) was lower than 65% or higher than 95% from data analysis (see21

preregistered analysis plan at http://256.so/fopr). This resulted in the planned sample22
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size of fifty-six included participants (49 women and 7 men, mean age = 24.57, SD =1

2.82).2

Apparatus and stimuli. The apparatus and stimuli used in Experiment 4 were the3

same as in Experiments 1 and 2.4

Procedure. For any given participant, either the upward pointing triangle or the5

downward pointing triangle was selected as the high-probability feature (e.g., the6

triangle pointed upwards in 75% of all trials), while the other one was the7

low-probability feature (e.g., the triangle pointed downwards in the remaining 25% of8

all trials). Which one was selected as the high-probability feature was9

counterbalanced across participants. Within both the low and high-probability10

conditions, different target location conditions (left or right of fixation) occurred11

equally often.12

13

Fig. 5. (A) Trial outline of the accuracy-based breaking continuous flash suppression (b-CFS) paradigm used in14

Experiments 4. (B) The localization accuracy in the high-probability and low-probability conditions, with15
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individual dots representing individual participants. Error bars represent the 95% confidence interval of the mean.1

Asterisks indicate significance (*p < .05).2

At the beginning of each trial, a central white fixation dot (with black edge)3

appeared at the center of the presentation area for 500 ms. After this, a dynamic CFS4

mask (consisting of a number of so-called Mondrian images, randomly chosen from5

120 generated images, and replaced at 10 Hz without repetition) randomly appeared6

to the dominant eye of participants. Between 300 and 600 ms after the onset of the7

dynamic CFS mask (to the dominant eye), the target (a triangle) was presented to the8

non-dominant eye of the participant (either to the left or right side of fixation, with9

equal probability), and remained on the screen for the duration that was10

pre-determined by the staircase procedure (ranging between 1 and 6 seconds). During11

the presentation of the target, the intensity (i.e., opacity) of the target linearly ramped12

up from zero to the eventual opacity (30%, 50% or 60% of the original stimulus13

opacity of Experiments 1 and 2; depending on the performance in practice session, see14

below) within 2 seconds, regardless of the determined target presentation duration.15

After the presentation of target and mask stimuli, a message ‘presented left or16

right?’ appeared on the screen, requiring participants to press one of two arrow keys17

(‘← ’ for left, ‘→ ’ for right) to indicate on which side of fixation the target was18

presented (i.e., a two-alternative forced-choice localization task). Participants were19

instructed to respond as accurately as possible, without any time pressure. After the20

response, the target stimulus remained present for 500 ms for both eyes, which21
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ensured that participants got the opportunity to learn that one triangle orientation was1

more prevalent than the other. At the same time, they received auditory feedback - a2

high-pitch (2,000 Hz), or a low-pitch (1,500 Hz) ‘beep’ sound, indicating a correct or3

incorrect response respectively. At the end of the trial, the presentation area was filled4

with the same (green) color that was used for the target triangle to minimize5

after-images at the target location before onset of the next trial. After pressing the6

space bar, the next trial began.7

Participants completed 24 trials for determining eye dominance and 32 practice8

trials in the pre-experiment, and then completed 5 blocks of 32 trials in the formal9

experiment. At the end of the experiment, we measured participants’ awareness of10

statistical regularities in a questionnaire as in Experiments 1 and 2.11

To avoid ceiling or floor effects (or have more trials available for data analysis),12

it is necessary to keep the overall localization performance at an consistent level13

across different visual fields and different phases of the experiment. As mentioned14

above, the presentation duration (ranging from 1 to 6 seconds) of the target on a given15

trial was determined by an ongoing adaptive staircase procedure. Specifically, a16

2-down/1-up adaptive staircase procedure decreased target presentation duration after17

two consecutive correct responses and increased target presentation duration after an18

incorrect response. The 2-down/1-up adaptive staircase method allows the algorithm19

to reliably converge on the individual presentation time thresholds that yields a20

localization accuracy of 80.35% (García-Pérez, 2001). Because suppression durations21
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are known to substantially differ between nasal and temporal visual hemifields1

(Sahakian et al., 2022), we ran two interleaved staircases for different presentation2

positions (left vs. right side of the central fixation) respectively. The localization3

performance of the high- and low-probability trials were thus compared within4

staircases first, and averaged afterwards. Presentation times were increased or5

decreased in a stepwise manner, following a logarithmic scale. For practice trials, the6

range of presentation durations one 1-6 seconds was divided into only ten steps, with7

presentation durations in each step being 1.195 times longer or shorter compared to8

the adjacent steps. This allowed the algorithm to quickly (but coarsely) converge to an9

appropriate performance level for each participant. The initial duration of target10

presentation for the practice trials was set at an intermediate level (about 2.914 sec).11

In experimental trials, the starting value of the staircase was the final value obtained12

in the practice trials. Here the range of 1-6 seconds was divided into 3013

logarithmically spaced steps (yielding a factor of 1.061), thus allowing to more14

precisely adjust the presentation duration to keep performance stable throughout the15

experiment.16

To account for extreme individual differences in localization performance, we17

also adjusted the target opacity during the practice session. The default (full) opacity18

of the target stimulus was 50% of the original stimulus opacity (of Experiments 1 and19

2). The stimulus opacity would be increased to 60% (or decreased to 30%) of the20

original opacity if the target presentation duration (i.e., stimulus intensity) of a single21

staircase in practice trials went above 4.161 sec (or went below 1.707 sec). Target22
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opacity was only adjusted during the practice session, and the opacity for formal1

experimental trials depended on the final opacity values obtained in the practice trials.2

Data analysis. According to the preregistered analysis plan (http://256.so/fopr), we3

used a one-tailed paired-samples t-test to compare the localization accuracy of the4

high-probability condition to that of the low-probability condition. To avoid ceiling or5

floor effects, we excluded the data from an entire staircase (i.e., left or right target6

location) if the average accuracy of that staircase exceeded the pre-defined ceiling or7

floor (i.e., accuracy < 65% or > 95%). According to this preregistered data exclusion8

principle, five participants were completely excluded from data analysis, and for9

twenty participants, the data from one staircase was excluded. For each of these10

twenty participants, the exclusion of one staircase may have resulted in decreased11

precision of estimation for the average localization accuracy However, there were still12

considerable number of trials (80 trials) after data exclusion.13

14

Results (Experiment 4)15

The b-CFS task. Results show that localization accuracy was higher for16

high-probability targets (0.77, SD = 0.07) compared to low-probability targets (0.75,17

SD = 0.10), t(55) = 1.88, p = .033, Cohen’s d = 0.25, 95% CI = [0.00, ∞]. The higher18

localization accuracy for high-probability (versus low-probability) features was in line19

with our hypothesis in the preregistration, providing evidence that conscious access is20
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enhanced for targets with high-probability (versus low-probability) features.1

Importantly, since we used an accuracy-based measurement, the differential2

localization performances cannot be accounted for by decisional biases and3

post-detection effects. To further assert robustness of the results, we plotted the effect4

size as a function of included participant for Experiments 1-4 (see Supplementary5

Materials 4), and showed that a wide range of predetermined sample sizes resulted in6

the same conclusions across different paradigms.7

Inter-trial priming effects. As in Experiments 1 and 2, an exploratory two-tailed8

paired-sample t-test was conducted to examine the effect of Inter-trial Continuity9

(change vs. repeat) on SL effect (i.e., the difference between accuracy of high10

probability and low probability trials). Results showed that there was no difference11

between SL effect of change trials and repeat trials, t(55) = 1.47, p = .146, Cohen’s d12

= 0.20, 95% CI = [–0.02, 0.12]), showing that there was no inter-trial priming effect.13

Therefore, the differential RTs between high- and low-probability locations is14

unlikely to have been caused by inter-trial priming.15

16

General Discussion17

The present study examined the effects of statistical learning (SL) on conscious access18

using three different paradigms and provided converging evidence that SL prioritizes19

conscious access for probable items over improbable items. In two b-CFS20

experiments, targets broke through interocular suppression faster when they appeared21
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at probable locations or contained probable features, providing preliminary evidence1

for the influence of SL on conscious access. In the third (DDD) experiment, we2

observed that the perceptual advantage for probable (versus improbable) feature items3

was not correlated to the conscious access of the feature dimension that carried the4

regularity. In the last (accuracy-based b-CFS) experiment, we excluded potential5

contributions of decisional and post-perceptual factors, and again showed higher6

localization performance for probable (versus improbable) features.7

Our study goes beyond existing work in showing that statistical learning, as an8

implicit learning process, alters the priority of visual input for conscious access..9

Consistent with previous studies suggesting that SL operates implicitly and consumes10

few cognitive resources (including conscious resources; Turk-Browne et al., 2005),11

most of our participants had no explicit knowledge of these regularities, while they12

nonetheless differentially prioritized the conscious access. This suggests that the13

selection of information for conscious access (what we become aware of), is itself14

governed by unconscious processes. This makes sense, considering that conscious15

resources are scarce (e.g., Dehaene et al., 2001) and important for human cognition16

(e.g., Baars et al., 2005). In contrast to our findings, previous studies did not find an17

effect of implicit learning on the detection of interocularly suppressed stimuli (e.g.,18

Paffen et al., 2018). This may indicate that only certain types of implicit learning19

processes can influence conscious access.20
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The effect of SL on conscious access provides a new explanation for how SL1

influences a range of cognitive functions (Bogaerts et al., 2020; Frost et al., 2019): SL2

may enhance the perception of probable information by making it more consciously3

accessible. For example, the enhanced allocation of attentional resources (e.g., Geng4

& Behrmann, 2005; Hoffmann & Kunde, 1999; Miller, 1988) for probable (versus5

improbable) stimuli might be partially attributed to their faster entry into conscious6

awareness. Furthermore, the effect of SL on conscious access may be crucial in many7

high-level cognitive functions that depend on conscious resources (e.g., memory,8

language, and inference; Baars & Franklin, 2003; Rich & Mattingley, 2002; Sabary et9

al., 2020). SL might, for example, enhance the encoding of probable stimuli into10

working memory systems (e.g., Umemoto et al., 2010) which operate largely on11

conscious resources (Giattino et al., 2018; Baars & Franklin, 2003).12

We do not claim that SL always causes probable items to enter consciousness13

faster: probable items might be prioritized or de-prioritized, depending on task goals.14

In support of this, Denison et al. (2016) showed that statistically unlikely images can15

be prioritized over statistically likely images when the former are more informative.16

Moreover, Wang and Theeuwes (2018) found that probable singleton distractors17

capture less attention than improbable ones. These effects can come about by18

probable distractors being de-prioritized for conscious access, or, alternatively, by19

prioritizing probable distractors for conscious access, after which they are20

(consciously) disengaged from faster. In sum, it remains open for investigation21

whether or not high-probability items are always prioritized for conscious access.22
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It also remains unknown by what mechanism highly probable events are1

prioritized by the visual system. One possibility is that SL evokes preparatory2

responses in anticipation of upcoming visual events. Anticipation is indeed a typical3

consequence of SL (Turk-Browne et al., 2010), and has been shown to modulate the4

detection of interocularly suppressed stimuli (Denison et al., 2011, 2016; Pinto et al.,5

2015). Predicting the upcoming image from a sequence of images, for instance, can6

facilitate detection of expected images during interocular suppression (Denison et al.,7

2011), and the anticipation of visual stimuli can evoke feature-specific activity8

patterns in early visual cortex, resembling visually evoked responses (Kok et al., 2012,9

2014, 2017; Gayet & Peelen, 2022). Thus, SL may pre-activate stimulus-specific10

representations in primary visual cortex, thereby lowering the effective threshold for11

probable stimuli to breach conscious access. Another possibility is that the influence12

of SL on conscious access is mediated by attention. Since unconscious information13

has been shown to guide the allocation of spatial attention (Jiang et al., 2007; Hsieh et14

al., 2011), probable items might gain faster conscious access because more (spatial or15

feature-based) attention is directed towards them (e.g., Sun et al., 2016). Note16

however, that it also been shown that sustained attention to a target stimulus does not17

always alleviate suppression (e.g., Gayet et al., 2020).18

The SL effects shown here might be reminiscent of the preferential conscious19

access of familiar over unfamiliar stimuli (Gobbini et al., 2013; Jiang et al., 2007;20

Ramon & Gobbini, 2018; Stein et al., 2012). Familiarity and SL are distinct, however,21

as they differ in a number of key aspects. First, SL refers specifically to the ability to22
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(often implicit and rapid, see Turk-Browne et al., 2005) extract visual patterns from1

varying sensory inputs. In contrast, familiarity (of human faces, language et cetera) as2

assessed in previous b-CFS studies (Gobbini et al., 2013; Jiang et al., 2007; Ramon &3

Gobbini, 2018; Stein et al., 2012) was caused by explicit cognitive processes, and was4

likely due to long-lasting learning processes. Notably, short-term extraction of5

statistical regularities (e.g., SL in the current task setting) has been shown to influence6

perception differently from life-long learned familiarity, even within the same7

experimental context (e.g., Dogge et al., 2019; Aldegheri et al., 2023). Furthermore,8

not all learning processes necessarily affect conscious access (e.g., Heyman & Moors,9

2014; Paffen et al., 2018), although learning processes (in theory) could lead to10

increases in familiarity.11

In conclusion, we show that the visual system rapidly and implicitly extracts12

statistical regularities from streams of sensory input to promote the selection of13

information for conscious processing. Given that conscious resources are scarce, and14

that conscious access is a prerequisites for a myriad of cognitive functions, our15

findings provide a mechanism for how statistical learning underlies a broad range of16

cognitive functions.17

18

References19

Aldegheri, G., Gayet, S., & Peelen, M. V. (2023). Scene context automatically drives20

predictions of object transformations. Cognition, 238, 105521.21



STATISTICAL LEARNING FACILITATES CONSCIOUS ACCESS 45

https://doi.org/10.1016/j.cognition.2023.1055211

Baars, B. J. (2005). Global workspace theory of consciousness: toward a cognitive2

neuroscience of human experience. Progress in Brain Research, 150, 45–53.3

https://doi.org/10.1016/S0079-6123(05)50004-94

Baars, B. J., & Franklin, S. (2003). How conscious experience and working memory5

interact. Trends in Cognitive Sciences, 7(4), 166–172.6

https://doi.org/10.1016/S1364-6613(03)00056-17

Bogaerts, L., Frost, R., & Christiansen, M. H. (2020). Integrating statistical learning8

into cognitive science. Journal of Memory and Language, 115, 104167.9

https://doi.org/10.1016/j.jml.2020.10416710

Brady, T. F., & Oliva, A. (2008). Statistical learning using real-world scenes:11

Extracting categorical regularities without conscious intent. Psychological12

Science, 19(7), 678–685. https://doi.org/10.1111/j.1467-9280.2008.02142.x13

Brady, T. F., Konkle, T., & Alvarez, G. A. (2009). Compression in visual working14

memory: Using statistical regularities to form more efficient memory15

representations. Journal of Experimental Psychology: General, 138(4), 487–502.16

https://doi.org/10.1037/a001679717

Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436.18

https://doi.org/10.1163/156856897X0035719

Dehaene, S., Naccache, L., Cohen, L., Bihan, D. L., Mangin, J. F., Poline, J. B., &20

Rivière, D. (2001). Cerebral mechanisms of word masking and unconscious21

repetition priming. Nature Neuroscience, 4(7), 752–758.22



STATISTICAL LEARNING FACILITATES CONSCIOUS ACCESS 46

https://doi.org/10.1038/895511

Denison, R. N., Piazza, E. A., & Silver, M. A. (2011). Predictive context influences2

perceptual selection during binocular rivalry. Frontiers in Human Neuroscience,3

5, 13757. https://doi.org/10.3389/fnhum.2011.001664

Denison, R. N., Sheynin, J., & Silver, M. A. (2016). Perceptual suppression of5

predicted natural images. Journal of Vision, 16(13), 6.6

https://doi.org/10.1167/16.13.67

Dogge, M., Custers, R., Gayet, S., Hoijtink, H., & Aarts, H. (2019). Perception of8

action-outcomes is shaped by life-long and contextual expectations. Scientific9

Reports, 9(1), 5225. https://doi.org/10.1038/s41598-019-41090-810

Dotsch, R., Hassin, R. R., & Todorov, A. (2017). Statistical learning shapes face11

evaluation. Nature Human Behaviour, 1(1), 1–6.12

https://doi.org/10.1038/s41562-016-000113

Frost, R., Armstrong, B. C., & Christiansen, M. H. (2019). Statistical learning14

research: A critical review and possible new directions. Psychological Bulletin,15

145(12), 1128–1153. https://doi.org/10.1037/bul000021016

García-Pérez, M. A. (2001). Yes-no staircases with fixed step sizes: psychometric17

properties and optimal setup. Optometry and Vision Science, 78(1), 56–64.18

https://doi.org/10.1097/00006324-200101010-0001519

Gayet, S., & Peelen, M. V. (2022). Preparatory attention incorporates contextual20

expectations. Current Biology, 32(3), 687–692.21

https://doi.org/10.1016/j.cub.2021.11.06222



STATISTICAL LEARNING FACILITATES CONSCIOUS ACCESS 47

Gayet, S., Douw, I., Van der Burg, V., Van der Stigchel, S., & Paffen, C. L. (2020).1

Hide and seek: Directing top-down attention is not sufficient for accelerating2

conscious access. Cortex, 122, 235–252.3

https://doi.org/10.1016/j.cortex.2018.08.0274

Gayet, S., Paffen, C. L. E., & van der Stigchel, S. (2013). Information matching the5

content of visual working memory is prioritized for conscious access.6

Psychological Science, 24(12), 2472–2480.7

https://doi.org/10.1177/09567976134958828

Gayet, S., van der Stigchel, S., & Paffen, C. L. E. (2014). Breaking continuous flash9

suppression: Competing for consciousness on the pre-semantic battlefield.10

Frontiers in Psychology, 5, 460. https://doi.org/10.3389/fpsyg.2014.0046011

Gayet, S., van Maanen, L., Heilbron, M., Paffen, C. L. E., & Van der Stigchel, S.12

(2016). Visual input that matches the content of visual working memory requires13

less (not faster) evidence sampling to reach conscious access. Journal of Vision,14

16(11), 26. https://doi.org/10.1167/16.11.2615

Geng, J. J., & Behrmann, M. (2005). Spatial probability as an attentional cue in visual16

search. Perception and Psychophysics, 67(7), 1252–1268.17

https://doi.org/10.3758/BF0319355718

Giattino, C. M., Alam, Z. M., & Woldorff, M. G. (2018). Neural processes underlying19

the orienting of attention without awareness. Cortex, 102, 14–25.20

https://doi.org/10.1016/j.cortex.2017.07.01021

Gobbini, M. I., Gors, J. D., Halchenko, Y. O., Rogers, C., Guntupalli, J. S., Hughes,22



STATISTICAL LEARNING FACILITATES CONSCIOUS ACCESS 48

H., & Cipolli, C. (2013). Prioritized detection of personally familiar faces. PloS1

ONE, 8(6), e66620. https://doi.org/10.1080/13506285.2017.14051342

Heyman, T., & Moors, P. (2014). Frequent words do not break continuous flash3

suppression differently from infrequent or nonexistent words: Implications for4

semantic processing of words in the absence of awareness. PLoS ONE, 9(8),5

e104719. https://doi.org/10.1371/journal.pone.01047196

Hoffmann, J., & Kunde, W. (1999). Location-specific target expectancies in visual7

search. Journal of Experimental Psychology: Human Perception and8

Performance, 25(4), 1127–1141. https://doi.org/10.1037/0096-1523.25.4.11279

Hsieh, P. J., Colas, J. T., & Kanwisher, N. (2011). Unconscious pop-out: attentional10

capture by unseen feature singletons only when top-down attention is11

available. Psychological Science, 22(9), 1220–1226.12

https://doi.org/10.1177/09567976114193013

Jiang, Y., Costello, P., & He, S. (2007). Processing of invisible stimuli: Advantage of14

upright faces and recognizable words in overcoming interocular15

suppression. Psychological Science, 18(4), 349–355.16

https://doi.org/10.1111/j.1467-9280.2007.01902.x17

Kesten, H. (1958). Accelerated stochastic approximation. The Annals of Mathematical18

Statistics, 29(1), 41–59. https://doi.org/10.1214/aoms/117770670519

Kok, P., Failing, M. F., & de Lange, F. P. (2014). Prior expectations evoke stimulus20

templates in the primary visual cortex. Journal of Cognitive Neuroscience, 26(7),21

1546–1554. https://doi.org/10.1162/jocn_a_0056222



STATISTICAL LEARNING FACILITATES CONSCIOUS ACCESS 49

Kok, P., Jehee, J. F., & De Lange, F. P. (2012). Less is more: expectation sharpens1

representations in the primary visual cortex. Neuron, 75(2), 265–270.2

https://doi.org/10.1016/j.neuron.2012.04.0343

Kok, P., Mostert, P., & De Lange, F. P. (2017). Prior expectations induce prestimulus4

sensory templates. Proceedings of the National Academy of Sciences, 114(39),5

10473–10478. https://doi.org/10.1073/pnas.17056521146

Litwin, P., Motyka, P., & Gayet, S. (2023). Physiological arousal underlies7

preferential access to visual awareness of fear-conditioned (and possibly8

disgust-conditioned) stimuli. Emotion. Advance online9

publication. https://doi.org/10.1037/emo000129610

Macmillan, N. A., & Creelman, C. D. (2004). Detection theory: A user’s guide: 2nd11

edition. In Psychology Press. https://doi.org/10.4324/978141061114712

Meuwese, J. D., Post, R. A., Scholte, H. S., & Lamme, V. A. (2013). Does perceptual13

learning require consciousness or attention? Journal of Cognitive Neuroscience,14

25(10), 1579–1596. https://doi.org/10.1162/jocn_a_0042415

Miller, J. (1988). Components of the location probability effect in visual search16

tasks. Journal of Experimental Psychology: Human Perception and Performance,17

14(3), 453–471. https://doi.org/10.1037/0096-1523.14.3.45318

Orbán, G., Fiser, J., Aslin, R. N., & Lengyel, M. (2008). Bayesian learning of visual19

chunks by human observers. Proceedings of the National Academy of Sciences of20

the United States of America, 105(7), 2745–2750.21

https://doi.org/10.1073/pnas.070842410522

https://psycnet.apa.org/doi/10.1037/emo0001296


STATISTICAL LEARNING FACILITATES CONSCIOUS ACCESS 50

Paffen, C. L. E., Gayet, S., Heilbron, M., & van der Stigchel, S. (2018).1

Attention-based perceptual learning does not affect access to awareness. Journal2

of Vision, 18(3), 7. https://doi.org/10.1167/18.3.73

Pinto, Y., van Gaal, S., de Lange, F. P., Lamme, V. A. F., & Seth, A. K. (2015).4

Expectations accelerate entry of visual stimuli into awareness. Journal of Vision,5

15(8), 13. https://doi.org/10.1167/15.8.136

Ramon, M., & Gobbini, M. I. (2018). Familiarity matters: A review on prioritized7

processing of personally familiar faces. Visual Cognition, 26(3), 179–195.8

https://doi.org/10.1080/13506285.2017.14051349

Rich, A. N., & Mattingley, J. B. (2002). Anomalous perception in synaesthesia: a10

cognitive neuroscience perspective. Nature Reviews Neuroscience, 3(1), 43–52.11

https://doi.org/10.1038/nrn70212

Sabary, S., Devyatko, D., & Kimchi, R. (2020). The role of visual awareness in13

processing of global structure: Evidence from the perceptual organization of14

hierarchical patterns. Cognition, 205, 104442.15

https://doi.org/10.1016/j.cognition.2020.10444216

Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by17

8-month-old infants. Science, 274(5294), 1926–1928.18

https://doi.org/10.1126/science.274.5294.192619

Sahakian, A., Paffen, C. L. E., Van der Stigchel, S., & Gayet, S. (2022). A nasal20

visual field advantage in interocular competition. Scientific Reports, 12(1), 4616.21

https://doi.org/10.1038/s41598-022-08473-w22



STATISTICAL LEARNING FACILITATES CONSCIOUS ACCESS 51

Schmidt, T., & Vorberg, D. (2006). Criteria for unconscious cognition: Three types of1

dissociation. Perception & Psychophysics, 68(3), 489–504.2

https://doi.org/10.3758/BF031936923

Sherman, B. E., Graves, K. N., & Turk-Browne, N. B. (2020). The prevalence and4

importance of statistical learning in human cognition and behavior. Current5

Opinion in Behavioral Sciences, 32, 15–20.6

https://doi.org/10.1016/j.cobeha.2020.01.0157

Stein, T. (2019). The breaking continuous flash suppression paradigm: Review,8

evaluation, and outlook. Transitions between consciousness and unconsciousness,9

1–38. https://doi.org/10.4324/9780429469688-110

Stein, T., & Peelen, M. v. (2021). Dissociating conscious and unconscious influences11

on visual detection effects. Nature Human Behaviour, 5(5), 612–624.12

https://doi.org/10.1038/s41562-020-01004-513

Stein, T., Hebart, M. N., & Sterzer, P. (2011). Breaking continuous flash suppression:14

A new measure of unconscious processing during interocular suppression?15

Frontiers in Human Neuroscience, 5, 167.16

https://doi.org/10.3389/fnhum.2011.0016717

Stein, T., Sterzer, P., & Peelen, M. V. (2012). Privileged detection of conspecifics:18

Evidence from inversion effects during continuous flash19

suppression. Cognition, 125(1), 64–79.20

https://doi.org/10.1016/j.cognition.2012.06.00521

Sun, S. Z., Cant, J. S., & Ferber, S. (2016). A global attentional scope setting22



STATISTICAL LEARNING FACILITATES CONSCIOUS ACCESS 52

prioritizes faces for conscious detection. Journal of Vision, 16(6), 9.1

https://doi.org/10.1167/16.6.92

Thibault L, van den Berg R, Cavanagh P, Sergent C (2016) Retrospective attention3

gates discrete conscious access to past sensory stimuli. PLoS ONE, 11(2),4

e0148504. https://doi.org/10.1371/journal.pone.01485045

Tsuchiya, N., & Koch, C. (2005). Continuous flash suppression reduces negative6

afterimages. Nature Neuroscience, 8(8), 1096–1101.7

https://doi.org/10.1038/nn15008

Turk-Browne, N. B. (2012). Statistical learning and its consequences. The influence of9

attention, learning, and motivation on visual search, 117–146.10

Turk-Browne, N. B., Jungé, J. A., & Scholl, B. J. (2005). The automaticity of visual11

statistical learning. Journal of Experimental Psychology: General, 134(4),12

552–564. https://doi.org/10.1037/0096-3445.134.4.55213

Turk-Browne, N. B., Scholl, B. J., Johnson, M. K., & Chun, M. M. (2010). Implicit14

perceptual anticipation triggered by statistical learning. Journal of Neuroscience,15

30(33), 11177–11187. https://doi.org/10.1523/JNEUROSCI.0858-10.201016

Umemoto, A., Scolari, M., Vogel, E. K., & Awh, E. (2010). Statistical Learning17

Induces Discrete Shifts in the Allocation of Working Memory Resources.18

Journal of Experimental Psychology: Human Perception and Performance,19

36(6), 1419–1429. https://doi.org/10.1037/a001932420

Wang, B., & Theeuwes, J. (2018). Statistical regularities modulate attentional capture.21

Journal of Experimental Psychology: Human Perception and Performance,22



STATISTICAL LEARNING FACILITATES CONSCIOUS ACCESS 53

44(1), 13–17. https://doi.org/10.1037/xhp00004721

Weiskrantz, L., Warrington, E. K., Sanders, M. D., & Marshall, J. (1974). Visual2

capacity in the hemianopic field following a restricted occipital3

ablation. Brain, 97(1), 709–728. https://doi.org/10.1093/brain/97.1.7094


