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Abstract

The protection of sensitive data becomes more vital, as data increases in value
and potency. Furthermore, the pressure increases from regulators and society
on model developers to make their Artificial Intelligence (AI) models non-
discriminatory. To boot, there is a need for interpretable, transparent AI models
for high-stakes tasks. In general, measuring the fairness of any AI model requires
the sensitive attributes of the individuals in the dataset, thus raising privacy con-
cerns. In this work, the trade-offs between fairness, privacy and interpretability
are further explored. We specifically examine the Statistical Parity (SP) of Deci-
sion Trees (DTs) with Differential Privacy (DP), that are each popular methods
in their respective subfield. We propose a novel method, dubbed Privacy-Aware
Fairness Estimation of Rules (PAFER), that can estimate SP in a DP-aware man-
ner for DTs. DP, making use of a third-party legal entity that securely holds this
sensitive data, guarantees privacy by adding noise to the sensitive data. We exper-
imentally compare several DP mechanisms. We show that using the Laplacian
mechanism, the method is able to estimate SP with low error while guaranteeing
the privacy of the individuals in the dataset with high certainty. We further show
experimentally and theoretically that the method performs better for DTs that
humans generally find easier to interpret.

Keywords: responsible AI, fairness, interpretability, differential privacy
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1 Introduction

The methods from the scientific field of AI, and in particular Machine Learning (ML),

are increasingly applied to tasks in socially sensitive domains. Due to their predictive

power, ML models are used within banks for credit risk assessment [1], aid deci-

sions within universities for new student admissions [2] and aid bail decision-making

within courts [3]. Algorithmic decisions in these settings can have fargoing impacts,

potentially increasing disparities within society. Numerous notorious examples exist

of algorithms causing harm in this regard. In 2015, Google Photos new image recog-

nition model classified some black individuals as gorillas [4]. This led to the removal

of the category within Google Photos. A report by Amnesty International concluded

that the Dutch Tax & Customs administration used a model for fraud prediction that

discriminated against people with multiple nationalities [5].

The application of ML should clearly be done responsibly, giving rise to a field that

considers the fairness of algorithmic decisions. Fair ML is a field within AI concerned

with assessing and developing fair ML models. Fairness in this sense closely relates

to equality between groups and individuals. The main notion within the field is that

models should not be biased, that is, have tendencies to over/underperform for certain

(groups of) individuals. This notion of bias is different from the canonical definition

of bias in statistics, i.e. the difference between an estimator’s expected value and the

true value. Essentially, similar individuals should be treated similarly, and decisions

should not lead to unjust discrimination. Non-discrimination laws for AI exist within

the EU [6] and more are upcoming [7]. The Dutch government now has a register of

all the algorithms used within it [8].

An additional property that responsible ML models should have, is that they are

interpretable. Models of which the decision can be explained, are preferred as they

aid decision-making processes affecting real people. In a loan application setting, users
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have the right to know how a decision came about [9]. The field of Explainable Artifi-

cial Intelligence (XAI), is concerned with building models that are interpretable and

explainable.

Inherently, ML models use data. Thus, there is also a tension between the use of

these models and privacy, especially for socially sensitive tasks. Individuals have sev-

eral rights when it comes to data storage, such as the right to be removed from a

database [6]. It is also beneficial for entities to guarantee privacy so that more indi-

viduals trust the entity with their data. Some data storage practices are discouraged

such as the collection of several protected attributes [6]. These attributes, and thus the

storage practices thereof, are sensitive. Examples include the religion, marital status,

and gender of individuals. In industrial settings, numerous data leaks have occurred.

Social media platforms are especially notorious for privacy violations, with Facebook

even incurring data breaches on multiple occasions [10, 11]. The report by Amnesty

International also concluded that the Dutch Tax & Customs Administration in the

Dutch childcare benefits scandal failed to safely handle the sensitive private data of

thousands of individuals, while they used a biased model [5]. This work will investi-

gate these three pillars of Responsible AI, investigating a novel method that is at the

intersection of these three themes.

To assess and improve fairness precisely, one needs the sensitive attributes of the

individuals that a ML model was trained on. But these are often absent or have lim-

ited availability, due to privacy considerations. Exactly here lies the focal point of

this work, the assessment of the fairness of ML models, while respecting the privacy

of the individuals in the dataset. These antagonistic goals make for a novel, highly

constrained, and hence difficult problem. A focus is placed on DTs, a class of inter-

pretable models from XAI since these types of models are likely to be used in critical

tasks involving humans due to the GDPR (in particular Art. 22) [6] and its national
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implementations. There are thus four goals we try to optimize in this work: fairness,

privacy, interpretability, and predictive performance.

1.1 Research Questions

The main goal of this work is to develop a method that can estimate the fairness of an

interpretable model with a high accuracy while respecting privacy. A method, named

Privacy-Aware Fairness Estimation of Rules (PAFER), is proposed that can estimate

the fairness of a class of interpretable models, DTs, while respecting privacy. The

method is thus at the intersection of these three responsible AI pillars. The research

questions (RQs), along with their research subquestions, (RSQs) are:

RQ1 What is the optimal privacy mechanism that preserves privacy and minimizes

average Statistical Parity error?

RSQ1.1 Is there a statistically significant mean difference in Absolute Statistical

Parity error between the Laplacian mechanism and the Exponential mechanism?

RQ2 Is there a statistically significant difference between the Statistical Par-

ity errors of PAFER compared to other benchmarks for varying Decision Tree

hyperparameter values?

RSQ2.1 At what fractional minleaf value is PAFER significantly better at

estimating Statistical Parity than a random baseline?

1.2 Outline

The remainder of the paper is organized as follows. The upcoming section 2 will pro-

vide the theoretical background, which is followed by section 3 that covers the related

literature. Section 4 describes the novel method that is proposed in this work. Sub-

sequently, section 5 describes the performed experiments, their results, and thorough

analysis. Finally, section 6 concludes with limitations and future directions.
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2 Preliminaries

This section discusses work related to the research objectives and provides background

to the performed research. Subsection 2.1 describes fairness theory, subsection 2.2

provides background on interpretable models and subsection 2.3 explains notions of

privacy.

2.1 Fairness Definitions

Fairness in an algorithmic setting relates to the way an algorithm handles different

(groups of) individuals. Unjust discrimination1 is often the subject when examin-

ing the behavior of algorithms with respect to groups of individuals. For this work,

only fairness definitions relating to supervised ML were studied, as this is the largest

research area within algorithmic fairness.

In 2016, the number of papers related to fairness surged. Partly, due to the new

regulations such as the European GDPR [6] and partly due to a popular article by

ProPublica which examined racial disparities in recidivism prediction software [13].

Because of the young age of the field and the sudden rise in activity, numerous defini-

tions of fairness have been proposed since. Most of the definitions also simultaneously

hold multiple names; this section aims to include as many of the names for each

definition.

The performance-oriented nature of the ML research field accelerated the develop-

ment of fairness metrics, quantifying the fairness for a particular model. The majority

of the definitions can therefore also be seen, or rewritten, as a measuring stick for the

fairness of a supervised ML model. This measurement may be on a scale, which is the

case for most group fairness definitions, or binary, which is the case for some causal

fairness definitions.

1What exactly is unjust discrimination is a social construct and changes over time [12].
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The fairness definitions, namely the mathematical measures of fairness, can be

categorized into group fairness, individual fairness and causal fairness [14]. Considering

the space limitations and the relevance to our work, in this section, we will focus on

group fairness and provide the definitions of the most prominent measures used in the

literature. Group fairness is the most popular type of fairness definition as it relates

most closely to unjust discrimination. Individuals are grouped based on a sensitive, or

protected attribute, A, which partitions the population. This partition is often binary,

for instance when A denotes a privileged and unprivileged group. In this subsection,

we assume a binary partition for ease of notation, but all mentioned definitions can

be applied to K-order partitions. Some attributes are protected by law, for example,

gender, ethnicity and age.

The setting for these definitions is often the binary classification setting where

Y ∈ {0, 1}, with Y as the outcome. This is partly due to ease of notation, but more

importantly, the binary classification setting is common in impactful prediction tasks.

Examples of impactful prediction tasks are granting or not granting a loan [1], accept-

ing or not accepting students to a university [2] and predicting recidivism after a

certain period [3]. In each setting, a clear favorable (1) and unfavorable (0) outcome

can be identified. Thus, we assume the binary classification setting in the following

definitions.

2.1.1 Statistical Parity

Statistical Parity (SP) is a decision-based definition, which compares the different

positive prediction rates for each group [15]. SP, also known as demographic parity,

equal acceptance rate, total variation or the independence criterion, is by far the most

popular fairness definition. The mathematical definition is:

SP = p(Ŷ = 1|A = 1)− p(Ŷ = 1|A = 0), (1)
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where Ŷ is the decision of the classifier. An example of SP would be the comparison

of the acceptance rates of males and females to a university.

Note that Equation 1 is the SP-difference but the SP-ratio also exists. US law

adopts this definition of SP as the 80%-rule [16]. The 80%-rule states that the ratio

of the acceptance rates must not be smaller than 0.8, i.e. 80%. Formally:

80%-rule = 0.8 ≤
p(Ŷ = 1|A = 1)

p(Ŷ = 1|A = 0)
≤ 1.25, (2)

where the fraction is the SP-ratio. SP is easy to compute and merely uses the model’s

predictions. SP therefore does not require labelled data. These advantages make it one

of the most used fairness definitions.

2.1.2 Equalized Odds

Another, also very common, fairness definition is the Equalized Odds (EOdd) met-

ric [17]. It is also known as disparate mistreatment or the separation criterion. EOdd

requires that the probabilities of being correctly positively classified and the prob-

abilities of being incorrectly positively classified are equal across groups. Thus, the

definition is twofold; both false positive classification probability and true positive

classification probability should be equal across groups. Formally:

EOdd = p(Ŷ = 1|Y = y,A = 1)− p(Ŷ = 1|Y = y,A = 0), y ∈ {0, 1}. (3)

An advantage of EOdd is that, unlike SP, when the predictor is perfect, i.e. Y = Ŷ ,

it satisfies EOdd.

2.1.3 Equality of Opportunity

A relaxation of EOdd is the fairness definition Equality of Opportunity (EOpp) [17]. It

just requires the equality of the probabilities of correctly predicting the positive class
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across groups. In other words, where EOdd requires that both true positive and false

positive classification rates are equal across groups, EOpp only requires the former.

Formally:

EOpp = p(Ŷ = 1|Y = 1, A = 1)− p(Ŷ = 1|Y = 1, A = 0). (4)

An advantage of EOpp is that it is not a bi-objective, and thus is more easily optimized

for compared to EOdd.

2.2 Interpretable Models

This subsection outlines a class of models with inherently high interpretability, DTs,

that are central to this work. The interpretability of a model is the degree to which

the classifications and the decision-making mechanism can be interpreted. The field

of XAI is concerned with building systems that can be interpreted and explained.

Complex systems might need an explanation function that generates explanations for

the outputs of the system. Some methods may inherently be highly interpretable,

requiring no explanation method, such as DTs. Interpretability may be desired to

ensure safety, gain insight, enable auditing or manage expectations.

2.2.1 Decision Trees (DTs)

A DT is a type of rule-based system that can be used for classification problems. The

structure of the tree is learned from a labelled dataset. DTs consist of nodes, namely

branching nodes and leaf nodes. The upper branching node is the root node. To clas-

sify an instance, one starts at the root node and follows the rules which apply to the

instance from branching node to branching node until no more rules can be applied.

Then, one reaches a decision node, also called a leaf node. Every node holds the
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instances that could reach that node. Thus, the root node holds every instance. Deci-

sion nodes classify instances based on the class that represents the most individuals

within that node.

There are two effective ways to determine the structure of a DT, given a labelled

dataset. The most common way is to have a function that indicates what should be the

splitting criterion in each branching node. These heuristic functions look at splitting

criteria to partition the data in the node such that each partition is as homogeneous

as possible w.r.t. class. An example of such a heuristic is entropy, intuitively defined as

the degree to which the class distribution is random in a partition. A greedy process

then constructs the tree, picking the best split in each individual node. Optimal DTs

are a newer set of approaches, that utilize methods from dynamic programming and

constrained optimization [18]. Their performance is generally better as they approach

the true DT more closely than greedily constructed DTs. However, their construction

is computationally heavy.

The interpretability of a DT is determined by several factors. The main factor is

its height, the number of times the DT partitions the data. Very shallow Decision

Trees are sometimes called Decision Stumps [19]. The minleaf DT hyperparameter

also influences the interpretability of a DT. The minleaf value constrains how many

instances should minimally hold in a leaf node. The smaller the value, the more splits

are required to reach the set minleaf value. Optimal DTs cannot have a tall height

due to their high computational cost. Greedy DTs can be terminated early in the con-

struction process to maintain interpretability. Closely related to height is the number

of decision nodes in the tree. This also influences the interpretability of DTs, as the

more decision nodes a DT has, the more complex the DT is. Finally, DTs built with

numeric features might become uninterpretable because they use the same numeric

feature over and over, leading to unintuitive decision boundaries.
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In general, DTs are interpretable because they offer visualizations and use rules,

which are both easy to understand for humans [20]. Major disadvantages of DTs

include their incapability of efficiently modeling linear relationships and their sensi-

tivity to changes in the data. Still, their performance, especially ensembles of DTs,

are state-of-the-art for prediction tasks on tabular data [21].

2.3 Privacy Definitions

The final main pillar of responsible AI that this work discusses is privacy. Privacy, in

general, is a term that can be used in multiple contexts. In its literal sense, privacy

relates to one’s ability to make personal and intimate decisions with nothing interfer-

ing. In this work, however, privacy refers to the degree of control one has over others

accessing personal data about themselves. This is also known as informational pri-

vacy. The less personal data others access about an individual, the more privacy the

individual has. This subsection discusses several techniques to increase informational

privacy.

2.3.1 Differential Privacy (DP)

Differential Privacy (DP) [22] is a notion that gives mathematical guarantees on the

membership of individuals in a dataset. In principle, it is a promise to any individual

in a dataset, namely: ‘You will not be affected, adversely or otherwise, by allowing

your data to be used in any analysis of the data, no matter what other analyses,

datasets, or information sources are available’ [23]. More specifically, an adversary

cannot infer if an individual is in the dataset. DP can be applied when sharing data,

or an analysis of the data. ML models are ways of analysing data and therefore can

also promise to adhere to DP. Another guarantee that DP makes is that it is immune

to post-processing, i.e. DP cannot be undone [23].
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Definition

The promise of DP can be mathematically guaranteed up to a parameter ε. A higher

ε guarantees more privacy. This parameter ε is the privacy budget. The main means

of guaranteeing the promise of DP is by perturbing the data, i.e. adding noise to the

data. In the context of building ML models, this noise may be added to the parameters

of the ML model or to its training data. At any rate, there is a query, q(·), for data2,

to which DP adds noise. Because DP is based on membership inference, the formal

definition compares two neighboring datasets, D and D′, in which only one instance

differs. For these datasets, (ε, δ)-DP formally is:

p(A(q(D)) ⊆ range(A)) ≤ exp(ε) · p(A(q(D′)) + δ ⊆ range(A)), (5)

where A is a randomized mechanism around a query q(·) and range(A) is the range

of all outcomes the mechanism can have. If δ = 0, ε-DP is satisfied. DP-mechanisms

thus randomize query answers in some way.

Global Sensitivity

How much noise ought to be added, depends on the difference the inclusion of one

worst-case individual in the dataset makes for the query answer. This is known as the

sensitivity, ∆q, how sensitive a query answer is to a change in the data [22]. Formally:

∆q = max
D,D′

||q(D)− q(D′)||1, (6)

which is also know as the ℓ1-sensitivity or the global sensitivity.

2This query may come from a user of a ML model or from a developer that requires training data.
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Laplace Mechanism

Several techniques exist to randomize query answers, of which the most common one

is the Laplacian mechanism [22], for queries requesting real numbers3. The mechanism

involves adding noise to a query answer, sampled from the Laplace distribution, cen-

tered at 0 and with a scale equal to ∆q
ε
. The Laplace mechanism can be formalised

as:

A(D, q(·), ε) = q(D) + Lap(
∆q

ε
), (7)

where Lap(∆q
ε
) is the added Laplacian noise.

Exponential Mechanism

A different noise schema is the Exponential mechanism [24], used for categorical,

utility-related queries4. For these sorts of queries, a small amount of noise may com-

pletely destroy the utility of the query answer. A utility function, uD(r), is defined

over the categories, r ∈ R, for a certain dataset D. The exponential mechanism is sen-

sitive w.r.t. the utility function, ∆u, not with respect to changes in r. The exponential

mechanism can be formally defined as:

p(A(D, u,R, ε) = r) ∝ exp(
εuD(r)

2∆u
). (8)

In other words, the probability of the best category being chosen is proportional to

e
εuD(r)

2∆u .

Gaussian Mechanism

The Gaussian mechanism adds noise based on the Gaussian distribution, with N (0, σ).

The mechanism is similar to the Laplacian mechanism in this sense. DP holds if

σ ≥
√

2 ln(1.25
δ

)∆2

ε
[23]. The term ∆2 is the global ℓ2-sensitivity; instead of using the

3An example of such a query might be: ‘What is the average age of females in the dataset?’.
4An example of such a query might be: ‘What is the optimal attribute to partition the dataset in terms

of class?’ Such a query can be found in the next subsection.
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ℓ1-norm in Equation 6, ∆2 uses the ℓ2-norm. The Gaussian mechanism can be deemed

a more ‘natural’ type of noise, as it adds noise that is often assumed to be present

in measurements. A disadvantage is that both δ and ε must be in (0, 1), so ε-DP can

never be met.

3 Related Work

This section discusses work related to the research objectives. Whereas the previous

section discussed background related to only one pillar of Responsible AI, this section

will highlight methods at the intersection of these fields. It concludes by relating the

proposed method, PAFER, to the current landscape of methods.

3.1 Fair Decision Trees

Some of the earliest work regarding fair DTs was performed by Kamiran & Calders

and is now known as Discrimination Aware Decision Trees (DADT). They proposed

a Heuristic-Based DT that incorporates the homogeneity of the sensitive attribute

into the splitting criterion [25]. DADT also performs some post-processing s.t. certain

decision nodes change their decision. This step is phrased as a KNAPSACK problem

[26], and is also solved greedily.

In terms of optimal DTs, Linden et al. achieve excellent results with a method

named DPFair [27]. Their work significantly improves the speed of the work of Jo et

al., who formulate the optimal DT problem with an additional fairness objective [28].

3.2 Privacy-aware Decision Trees

DTs with privacy guarantees are best represented by the work of Mohammed et al..

The method, named Private Decision tree Algorithm (PDA), uses the Exponential

mechanism and queries the required quantities for greedily building op the DT [29].

For an in-depth overview of DTs with privacy guarantees, the reader is referred to [30].
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3.3 Fair Privacy-aware models

There is an upcoming field within responsible AI that is aimed at improving fair-

ness, without accessing sensitive data. Prominent examples include Adversarially

Reweighted Learning (ARL) and Fair Related Features (FairRF) [31, 32], respectively.

While we highly value this line of work, it does not allow for the evaluation or esti-

mation of fairness, as the field assumes sensitive attributes are entirely unavailable.

Therefore, we consider these methods to be insufficient for our purpose, as we aim to

provide guarantees on the degree of fairness a model exhibits, e.g. adherence to the

80%-rule.

The method most closely related to ours is named AttributeConceal and was intro-

duced by Hamman et al.. They explore the idea of querying the group fairness metrics

[33]. The scenario they assume is that ML developers have some dataset without sen-

sitive attributes for which they build models, and therefore query SP and EOdd from

a data curator. They establish that if the developers have bad intentions, they can

identify a sensitive attribute of an individual using one unrealistic query, or two real-

istic ones. The main idea is that the models, for which they query fairness metrics,

differ only on one individual, giving away their sensitive attribute via the answer. This

result is then extended using any number of individuals. When the sizes of the groups

differ greatly, i.e. |DA=0| ≪ |DA=1|, using compressed sensing [34], the number of

queries is in O(|DA=0| log(
N

|DA=1|
)), with N = |DA=1 + DA=0|, the total number of

instances. The authors propose a mitigation strategy named AttributeConceal, using

smooth sensitivity. This is a sensitivity notion that is based on the worst-case individ-

ual in the dataset. DP is ensured for any number of queries by adding noise to each

query answer. It is experimentally verified that using AttributeConceal, an adversary

can predict sensitive attributes merely as well as a random estimator.
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Table 1 Overview of methods that are similar to PAFER. Fairness-Aware
methods are methods that aim to improve or estimate fairness.

Method Interpretable Privacy-aware Fairness-Aware

DADT [25] X ✗ X

DPFair [27] X ✗ X

PDA [29] X X ✗

ARL [31] ✗ X X

FairRF [32] ✗ X X

AttributeConceal [33] ✗ X X

PAFER X X X

3.4 PAFER & Related Work

Table 1 shows methods from the domain of responsible AI that have similar goals to

PAFER. In general, we see a lack of fair, privacy-preserving methods for rule-based

methods, specifically DTs. Hamman et al. investigate the fairness of models in general

without giving in on privacy [33], but the method lacks validity. The developers, in

their setting, do not gain intuition on what should be changed about their model to

improve fairness. One class of models that lends itself well to this would be DTs, as

these are modular and can be pruned, i.e. rules can be removed. DTs are the state-of-

the-art for tabular data [21] and sensitive tasks are often prediction tasks for tabular

data5. A method that can identify unfairness in a privacy-aware manner for DTs would

be interpretable, fair and differentially private, respecting some of the most important

pillars of responsible AI. PAFER aims to fill this gap, querying the individual rules in

a DT. The next section will introduce the method.

4 Proposed Method

In this section, we introduce PAFER, a novel method to estimate the fairness of DTs in

privacy constrained manner. The following subsections dissect the proposed method,

starting with subsection 4.1, on the assumptions and specific scenarios for which the

5Examples are university acceptance [2], bail decision making [3] and credit risk assessment [1].
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method is built. Successively, subsection 4.2 provides a detailed description of the

procedure, outlining the pseudocode and some theoretical properties.

4.1 Scenario

PAFER requires a specific, albeit common, scenario for its use. This subsection

describes that scenario and discusses how common the scenario actually is.

4.1.1 Assumptions

PAFER is a method that requires a certain setting, which comes with several assump-

tions. Firstly, PAFER is made for an auditing setting, in the sense that it is a method

that is assumed to be used at the end of a development cycle. PAFER does not mitigate

bias, it merely estimates the fairness of the rules in a DT. Secondly, we assume that

a developer has constructed a DT that makes binary decisions on a critical task (e.g.,

about people). The developer may have had access to a dataset containing individuals

and some task-specific features, but this dataset does not contain a full specification

of sensitive attributes on an instance level. The developer (or the algorithm auditor)

wants to assess the fairness of their model using SP. We lastly assume that a legal,

trusted third party exists that knows these sensitive attributes on an instance or aggre-

gate level,6 and is willing to share them using some safe private protocol. Based on

these assumptions, the fairness of the DT can be assessed, using the third party and

PAFER.

4.1.2 Prevalance of Scenario

The scenario that was described in the previous subsection can occur in the real world

under varying circumstances. This subsection enumerates some assumptions and their

prevalence in the real world. Firstly, it is common to see a rule-based method built

6These sensitive data can be kept at the aggregate level at the legal party to minimize sensitive data
leakage and to conform to privacy laws.
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for a sensitive task [35, 36]. Rules are able to explain the decision process, allow-

ing individuals that are affected by the system to receive explanations about the

decision affecting them. Secondly, binary decision-making is also quite common for

sensitive tasks. Prominent examples include university acceptance decision making [2],

recidivism prediction [13] and loan application evaluations [1]. Moreover, multiclass

decision-making problems can be rewritten as binary decision problems, as shown in

Corollary 1. Thirdly, it is often the case that model developers do not have access

to sensitive attributes. Simply because of regulations [6], or because they were not

deemed necessary when gathering the data. Lastly, it is quite common that a devel-

oper worries about fairness after the construction of their model. This may be due to

newly imposed regulations [7], due to a compliance check by an auditing body or due

to newly created awareness of machine bias [13]. Furthermore, when sensitive data

is absent, the development of a fair rule-based system becomes difficult. There are

currently no fair, interpretable, sensitive attribute agnostic classifiers, as is apparent

from section 3.

What is uncommon, however, is a third party that has the sensitive attribute data

of the individuals in the dataset, albeit at an aggregate level, and is also willing to share

them. As data is the new oil fueling modern machines [37], sharing data becomes more

and more difficult. Since, however, fair and interpretable sensitive attribute agnostic

classifiers are currently lacking, this assumption becomes necessary. This work can

thus be seen as an exploration of this cooperation between the developer and the data

holder, to determine the privacy risks and utility of such an exchange.

4.2 Privacy-Aware Fairness Estimation of Rules: PAFER

We propose Privacy-Aware Fairness Estimation of Rules (PAFER), a method based on

DP [23], that enables the calculation of SP for DTs while guaranteeing privacy. PAFER

sends specifically designed queries to a third party to estimate SP. PAFER sends one
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query for each decision-making rule and one query for the overall composition of the

sensitive attributes. The size of each (un)privileged group, along with the total number

of accepted individuals from each (un)privileged group, allows us to calculate the SP.

Let X be the data used to train a DT, with x
j
i the jth feature of the ith individual. Let

a rule be of the form x1 < 5 ∧ x2 = True. The query then asks for the distribution of

the sensitive attributes for all individuals that have properties x1 < 5 and x2 = True.

In PAFER, each query is a histogram query as a person cannot be both privileged

and unprivileged. The query to determine the general sensitive attribute composition

of all individuals can be seen as a query for an ‘empty’ rule; a rule that applies to

everyone7. It can also be seen as querying the root node of a DT.

4.2.1 PAFER and the privacy budget

A property of DTs is that only one rule applies to a person. Therefore, PAFER queries

each decision-making rule without having to share the privacy budget between these

queries. Although we calculate a global statistic in SP, we query each decision-making

rule. This is possible due to some noise cancelling out on aggregate, and, for DTs,

because we can share the privacy budget over all decision-making rules. This intuition

was also noted in [30].

Because PAFER queries every individual at least once, half of the privacy budget

is spent on the query to determine the general sensitive attribute composition of all

individuals, and the other half is spent on the remaining queries. Still, reducing the

number of queries reduces the total amount of noise. PAFER therefore prunes non-

distinguishing rules. A redundant rule can be formed when the splitting criterion of

the DT improves but the split does not create a node with a different majority class.

7In logic this rule would be a tautology, a statement that is always true, e.g. x1 < 5 ∨ x1 ≥ 5.
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4.2.2 PAFER and Statistical Parity

The definition of SP that PAFER calculates differs slightly from the most common,

original definition [15], to support intersectional fairness analyses and to ensure the

SP value is in [0, 1]. When A is a K-ary sensitive attribute, the metric that PAFER

calculates is:

SP = min

(
p(Ŷ = 1|A = a)

p(Ŷ = 1|A = b)

)
, a, b ∈ {0, 1, 2, . . . , k − 1}, a 6= b. (9)

The SP value is always in [0, 1], as we arrange the fraction such that the smallest

‘acceptance rate’ is in the numerator and the largest is in the denominator.

4.2.3 DP mechanisms for PAFER

Three commonly used DP mechanisms are apt for PAFER, namely the Laplacian

mechanism, the Exponential mechanism and the Gaussian mechanism. The Laplacian

mechanism is used to perform a histogram query and thus has a sensitivity of 1 [23].

The Exponential mechanism uses a utility function such that uD(r) = q(D)−|q(D)−r|

where r ranges from zero to the number of individuals that the rule applies to, and q(D)

is the true query answer. The sensitivity is 1 as it is based on its database argument,

and this count can differ by only 1 [23]. The Gaussian mechanism is also used to

perform a histogram query and has a sensitivity of 2, as it uses the ∆2-sensitivity.

4.2.4 Invalid Answer Policies

The Laplacian mechanism and Gaussian mechanism add noise in such a way that

invalid query answers may occur. A query answer is invalid if it is negative, or if it

exceeds the total number of instances in the dataset8. A policy for handling these

8Note that is common for a histogram query answer to exceed the number of individuals in a decision
node by a certain amount. We, therefore, do not deem it as an invalid query answer.
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invalid query answers must be chosen. In practice, these are mappings from invalid

values to valid values. We provide several options in this subsection.

Table 2 The proposed
policy options for each type
of invalid query answer.

Negative Too Large

0 uniform
1 total - valid
uniform
total - valid

Table 2 shows the available options for handling invalid query answers. A policy

consists of a mapping chosen from the first column and a mapping chosen from the

second in this table. The first column shows policies for negative query answers and the

second column shows policies for query answers that exceed the number of individuals

in the dataset. The ‘uniform’ policy replaces an invalid answer with the answer if the

rule would apply to the same number of individuals from each un(privileged) group.

The ‘total - valid’ policy requires that all other values in the histogram were correct

and thus together allow for a calculation of the missing value by subtracting it from

the total.

4.2.5 PAFER Pseudocode

Algorithm 1 shows the pseudocode for PAFER.

4.2.6 Theoretical Properties of PAFER

We theoretically determine a lower and upper bound of the number of queries that

PAFER requires for a k-ary DT in Theorem 1. The lower bound is equal to two, and

the upper bound is 2h−1+1, dependent on the height of the DT, h. Note that PAFER

removes redundant rules to reduce the number of rules. The larger the number of

rules, the more noise is added on aggregate.
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Algorithm 1 PAFER

1: procedure PAFER(A, D, ε,DT, π,K)
2: ⊲ A is a DP mechanism that introduces noise
3: ⊲ D is a database with N instances
4: ⊲ ε is the privacy budget
5: ⊲ DT is a binary Decision Tree composed of rules
6: ⊲ π is a policy that transforms invalid query answers to valid query answers
7: ⊲ K is the number of sensitive groups for the sensitive attribute
8: accept rates ← zeros(1,K) ⊲ accept rates is a row vector of dimension K,

initialized at 0
9: total← A(True,D, 1

2ε)
10: for q ∈ DT do
11: if q is favorable then

12: accept rates +=
π(A(q,D, 12 ε))

total

13: end if
14: end for
15: ŜP = min(accept rates)

max(accept rates)

16: return ŜP

17: end procedure

Corollary 1. Any DT that uses non-binary splits and that classifies for a binary

decision problem, can be converted to a DT that solely uses binary splits.

Proof. Assume a DT has nodes with an arbitrary number of splits k, with clauses

A,B,C, . . . ,K. Converting this to a binary decision process can be achieved by chain-

ing each clause, i.e. for each clause a split is created of the form A or ¬A. The latter

of the two branches is then chained to B or ¬B, and so forth. This process is schemat-

ically shown in Figure A1 in Appendix A. Since we have proven this property for an

arbitrary number of splits in a node, the property holds for any k-ary DT.

Theorem 1. The number of queries required by PAFER to estimate SP for a binary

DT is lower bounded by 2 and upper bounded by 2h−1 + 1.

Proof. Assume that we have constructed a DT for a binary classification task. By

Corollary 1, the DT can be converted to a binary tree, since it classifies for a binary

classification problem. Further, let the height that this (converted) binary DT has be

h. To estimate SP, for each sensitive attribute the total size is required, |DA=a|, as well
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as the number of individuals from each (un)privileged group that is classified favorably

by the DT. By definition, the first quantity requires 1 histogram query. The latter

quantity requires a query for each favorable decision rule in the tree. A branching node

that creates one leaf node and one other branching node, adds either an unfavourable or

a favourable classification rule to its DT. The most shallow binary tree is schematically

shown in Figure A2 in Appendix A. Only 1 histogram query is required for this tree,

thus the lower bound for the number of required queries for PAFER is 1 + 1 = 2. A

perfectly balanced binary tree is shown in Figure A3 in Appendix A. In this case, the

number of favourable decision rules in the tree is 1
22

h = 2−12h = 2h−1. As, by the

properties of PAFER, each split that creates two leaf nodes adds both a favourable and

an unfavourable classification rule to the DT. In a perfectly balanced tree (amongst

others), all nodes at h− 1 are such nodes. Half of the nodes at h (i.e., leaf nodes) are

thus favourable and half are unfavourable. This amounts to 2h−1 histogram queries.

The upper bound for the number of required queries for PAFER is thus 2h−1 +1.

5 Evaluation

This section evaluates the proposed method in the previous section, PAFER. Firstly,

subsection 5.1 describes the experimental setup, detailing the used datasets and the

two experiments. Secondly, subsection 5.2 displays and discusses the results of the

experiments.

5.1 Experimental Setup

This section describes the experiments that answer the research questions. The first

subsection describes these datasets and details their properties. The subsections there-

after describe the experiments in order, corresponding to the research question they

aim to answer.
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5.1.1 Datasets

This subsection describes the datasets that are used to answer the research questions.

The datasets form the test bed on which the experiments can be performed. We chose

three datasets, namely Adult [38], COMPAS [13] and German [39]. They are all well

known in the domain of fairness for ML, and can be considered benchmark datasets.

Importantly, they vary in size and all model a binary classification problem, enabling

the calculation of various fairness metrics. The datasets are publicly available and

pseudonymized; every privacy concern is thus merely for the sake of argument. Table 3

shows some other important characteristics of each dataset.

Table 3 Properties of the three chosen publicly available datasets.

Dataset # Rows # Features Sens. attrib. Task

Adult 48842 14
race, sex, age,

country of origin
Income > $50 000

COMPAS 7214 53 race, sex, age Recidivism after 2 years

German 1000 24
race, sex, age,

country of origin
Loan default

Pre-processing

This paragraph describes each pre-processing step for every chosen dataset. Some

pre-processing steps were taken for all datasets. In every dataset, the sensitive

attributes were separated from the training set. Every sensitive attribute except age

was binarized, distinguishing between privileged and unprivileged groups. The privi-

leged individuals were White men who lived in their original country of birth, and the

unprivileged individuals were those who were not male, not White or lived abroad.

We now detail the pre-processing steps that are dataset-specific.

Adult. The Adult dataset comes with a predetermined train and test set. The same

pre-processing steps were performed on each one. Rows that contained missing values

were removed. The “fnlwgt” column, which stands for “final weight” was removed
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as it is a relic from a previously trained model and unrelated features might cause

overfitting. The final number of rows was 30162 for the train set and 15060 for the

test set.

COMPAS. The COMPAS article analyzes two datasets, one for general recidivism

and one for violent recidivism [13]. Only the dataset for general recidivism was used.

This is a dataset with a large number of features (53), but by following the feature

selection steps from the article9, this number reduced to eleven, of which three are

sensitive attributes. The other pre-processing step in the article is to remove cases in

which the arrest date and COMPAS screening date are more than thirty days apart.

The features that contain dates are then converted to just the year, rounded down.

Missing values are imputed with the median value for that feature. Replacing missing

values with the median value ensures that no out-of-the-ordinary values are added to

the dataset. The final number of rows was 4115 for the train set and 2057 for the test

set, totalling 6172 rows.

German. The German dataset is a nearly perfect dataset for our purposes; it

contains no missing values. The gender attribute is encoded in the marital status

attribute, which required separation. The final number of rows is 667 for the train set

and 333 for the test set, totalling 1000 rows.

5.1.2 Experiment 1: Comparison of DP mechanisms for PAFER

Experiment 1 was constructed such that it answered RQ1; what DP mechanism is

optimal for what privacy budget? The best performing shallow DT was constructed for

each dataset, using grid search and cross-validation, optimizing for balanced accuracy.

The height of the DT, the number of leaf nodes and the number of selected features

were varied. The parameter space can be described as {2, 3, 4} × {3, 4, 5, 6, 7, 8, 9,

10, 11, 12} × {sqrt, all, log2}, constituting tuples of (height, # leaf nodes, # selected

features). The out-of-sample SP of each DT is also provided in Table 4. The experiment

9https://github.com/propublica/compas-analysis/blob/master/Compas%20Analysis.ipynb
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was repeated fifty times with this same DT, such that the random noise, introduced

by the DP mechanisms, could be averaged. Initially, we considered the Laplacian,

Exponential and Gaussian mechanisms for the comparison. However, after exploratory

testing, we deemed the Gaussian mechanism to perform too poorly to be included.

Table 5 shows some of these preliminary results. The performance of each mechanism

was measured using the Average Absolute Statistical Parity Error (AASPE), defined

as follows:

AASPE =

#runs∑

i

1

# runs
|SPi − ŜPi|, (10)

where # runs is the number of times the experiment was repeated, SPi and ŜPi are

the true and estimated SP of the ith run, respectively. The metric was calculated

out of sample, i.e., on the test set. The differences in performance were compared

using an independent t-test. The privacy budget was varied such that forty equally

spaced values were tested with ε ∈ (0, 12 ]. Initial results showed that privacy budgets

larger than 1
2 offered very marginal improvements. Table 5 shows a summary of the

preliminary results for Experiment 1. Experiment 1 was performed for both ethnic-

ity, sex and the two combined. The former two sensitive features were encoded as a

binary feature, distinguishing between a privileged (white, male) and an unprivileged

(non-white, non-male) group. The latter sensitive feature was encoded as a quater-

nary feature, distinguishing between a privileged (white-male) and an unprivileged

(non-white or non-male) group. Whenever a query answer is invalid, as described

in subsubsection 4.2.4, a policy must be chosen for calculation of the SP metric. In

Experiment 1, the uniform answer approach was chosen, i.e., the size of the group was

made to be proportional to the number of sensitive features and the total size. The

proportion of invalid query answers, i.e., # invalid answers
# total answers , was also tracked during this

experiment. This invalid value ratio provides some indication of how much noise is

added to the query answers.
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5.1.3 Experiment 2: Comparison of different DTs for PAFER

Experiment 2 was constructed in such a way that it answered RQ2; what is the effect

of DT hyperparameters on the performance of PAFER? The minleaf value was varied

such that eighty equally spaced values were tested with minleaf ∈ (0, 1
5 ]. In the initial

results, shown in Table 6, when the minleaf value exceeded 1
5 , the same split was

repeatedly chosen for each dataset. Even though minleaf < 1
2 , a risk still occurs that

one numerical feature is split over and over, which hinders interpretability. Therefore,

each numerical feature is categorized by binning it. The bins were established by

generating five different DTs, that used all the numerical features. An average splitting

value was determined for each height across DTs, that was kept at a maximum of

seven10. Averages were rounded to the nearest natural number. The privacy budget

was defined such that ε ∈ { 1
20 ,

2
20 ,

3
20 ,

4
20 ,

5
20}. The performance was again measured in

10Based on the “Magic Number 7”, as humans can generally hold seven ± two pieces of information in
memory, and thus, also, seven rule clauses in memory [40].

Table 4 The out-of-sample Statistical Parity of each
constructed DT in Experiment 1. Note that the
Sex-Ethnicity attribute is encoded using four
(un)privileged groups, and the others are encoded
using two.

A

Dataset
Adult COMPAS German

Ethnicity 0.65 0.78 0.90
Sex 0.30 0.84 0.90

Sex-Ethnicity 0.23 0.72 0.78

Table 5 Preliminary results for Experiment 1 with larger privacy

budgets. The Gaussian mechanism was tested with δ = 1

1000
. The

performance was measured using the AASPE on the Adult dataset.

ε Laplacian Exponential Gaussian Gauss. Invalid Ratio

0.50 0.02320 0.34350 - -
0.55 0.02065 0.30289 0.32484 0.330
0.60 0.01872 0.25780 0.28916 0.305
0.65 0.01329 0.27566 0.26961 0.230
0.70 0.01026 0.30831 0.27676 0.250
0.75 0.01353 0.32444 0.26572 0.260
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Table 6 Preliminary results for Experiment 2. The performance was
measured using AASPE on the Adult dataset. The results were averaged
over 25 runs.

minleaf

ε 1

20

1

10

3

20

1

5

1

4

1

5
.0828 .0532 .0407 .0323 .0194

1

4
.0711 .0325 .0235 .0187 .0119

3

10
.0486 .0282 .0188 .0149 .0128

AASPE, as shown in Equation 10. The metric was measured out of sample, i.e., on the

test set. The performance for each minleaf value was averaged over fifty potentially

different DTs. The same invalid query answer policy was chosen as in Experiment

1, replacing each invalid query answer with the uniformly distributed answer. The

performance of PAFER was compared with a baseline that uniformly randomly guesses

an SP value in the interval [0, 1). A one-sided t-test determined whether PAFER

significantly outperformed the random baseline.

Experiment 2.1: Interaction between ε and minleaf hyperparameters

The SP metric is also popular due to its legal use in the United States, where it is used

to determine compliance with the 80%-rule [16]. Thus, the UAR (Unweighted Average

Recall) of PAFER was calculated for each minleaf value, to obtain an indication of

whether PAFER was able to effectively measure this compliance. UAR is the average

of class-wise recall scores. This was done by rounding each estimation down to its

decimal value, thus creating ‘classes’ that the UAR could be calculated for. To gain

more intuition about the interaction between ε and minleaf value, the following metric

was calculated for each combination:

UAR−AASPE =
∑

c∈C

1

|C|
×

#true c

#c
−

#runs∑

i

1

# runs
|SPi − ŜPi| (11)

Ideally, AASPE is minimized and UAR is maximized, thus maximizing the metric

shown in Equation 11. Besides the metric, the experimental setup was identical to
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Fig. 1 A comparison of the Laplacian and Exponential DP mechanism for different privacy budgets
ε. When indicated, from the critical ε value to ε = 1

2
, the Laplacian mechanism performs significantly

better (p < .05) than the Exponential mechanism. The uncertainty is pictured in a lighter color
around the average.

Experiment 2. Therefore, the same DTs were used for this experiment, only the metrics

differed.

5.2 Results

This section describes the results of the experiments and also provides an analysis of

the results. Results are ordered to match the order of the experiments.

5.2.1 Results for Experiment 1

Figure 1 answers RQ1; the Laplacian mechanism outperforms the Exponential mech-

anism on seven out of the nine analyses. The Laplacian mechanism is significantly

better even at very low privacy budgets (ε < 0.1). The error of the mechanism gen-

erally decreases steadily, as the privacy budget increases. This is expected behavior.
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As the privacy budget increases, the amount of noise decreases. The Laplacian mech-

anism performs the best on the Adult and COMPAS datasets, because their invalid

value ratio is small, especially for ε > 1
10 .

The Exponential mechanism performs relatively stable across analyses, however, its

performance is generally bad, with errors even reaching the maximum possible error for

the German dataset. This is probably due to the design of the utility function, uD(r),

which does not differentiate enough between good and bad answers. Moreover, the

Exponential mechanism consistently adds even more noise because it guarantees valid

query answers. The Laplacian mechanism does not give these guarantees, and thus

relies less on the chosen policy, as described in subsubsection 4.2.4. The mechanism

performs somewhat decently on the intersectional analysis for the Adult dataset. This

is due to it being an easy prediction task, the Laplacian mechanism starts at a similarly

low error.

Figure 1 shows that the invalid value ratio consistently decreases with the privacy

budget. This behavior is expected, given that the amount of noise decreases as the

privacy budget increases. The invalid value ratio is the largest in the intersectional

analyses because then the sensitive attributes are quaternary. The difference between

the invalid value ratio progression for the Adult and COMPAS datasets is small,

whereas the difference between COMPAS and German is large. Thus, smaller datasets

only become problematic for PAFER between 6000 and 1000 rows. Experiment 2 sheds

further light on this question.

For the two cases where the Exponential mechanism is competitive with the Lapla-

cian mechanism, the invalid value ratio is also large. When the dataset is small, the

sensitivity is relatively larger, and the chances of invalid query answers are larger. Note

that the error is measured out-of-sample, so, for the German dataset, the histogram

queries are performed on a dataset of size 333. This effect is also visible in the next

experiment.
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Table 7 Results for Experiment 2 on the Adult dataset and the binary ethnicity
sensitive attribute. A * indicates that PAFER performed significantly better than the
random baseline.

minleaf

ε 1

20

1

10

3

20

1

5

1

4

1

1000
p < .001* p < .001* p < .001* p = .001* p = .039*

1

100
p < .001* p < .001* p < .001* p < .001* p < .001*

1

5
p < .001* p < .001* p < .001* p < .001* p < .001*

Table 8 Results for Experiment 2 on the Adult dataset and the binary sex sensitive
attribute. A * indicates that PAFER performed significantly better than the random
baseline. A ♦ indicates that the random baseline performed significantly better than
PAFER.

minleaf

ε 1

20

1

10

3

20

1

5

1

4

1

1000
p = .999♦ p = .87 p = .57 p = .02* p = .02*

1

100
p < .001* p < .001* p < .001* p < .001* p < .001*

1

5
p < .001* p < .001* p = .02* p = .02* p < .001*

Table 9 Results for Experiment 2 on the Adult dataset and the quaternary
sex-ethnicity sensitive attribute. A * indicates that PAFER performed significantly
better than the random baseline.

minleaf

ε 1

20

1

10

3

20

1

5

1

4

1

1000
p < .001* p < .001* p < .001* p < .001* p < .001*

1

100
p < .001* p < .001* p < .001* p < .001* p < .001*

1

5
p < .001* p < .001* p < .001* p < .001* p < .001*

Table 10 Results for Experiment 2 on the COMPAS dataset and the binary ethnicity
sensitive attribute. A * indicates that PAFER performed significantly better than the
random baseline.

minleaf

ε 1

20

1

10

3

20

1

5

1

4

1

1000
p < .001* p < .001* p < .001* p < .001* p < .001*

1

100
p < .001* p < .001* p < .001* p < .001* p < .001*

1

5
p < .001* p < .001* p < .001* p < .001* p < .001*

5.2.2 Results for Experiment 2

Table 7 through Table 12 show the results for Experiment 2. The tables clearly show

that PAFER generally significantly outperforms the random baseline. For small pri-

vacy budgets (ε ≤ 1
10 ) and small minleaf values (minleaf = 1

1000 ), PAFER does not
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Table 11 Results for Experiment 2 on the COMPAS dataset and the binary sex
sensitive attribute. A * indicates that PAFER performed significantly better than the
random baseline.

minleaf

ε 1

20

1

10

3

20

1

5

1

4

1

1000
p = .94 p = .46 p = .27 p = .015* p < .001*

1

100
p < .001* p < .001* p < .001* p < .001* p < .001*

1

5
p < .001* p < .001* p < .001* p < .001* p < .001*

Table 12 Results for Experiment 2 on the COMPAS dataset and the quaternary
sex-ethnicity sensitive attribute. A * indicates that PAFER performed significantly
better than the random baseline. A ♦ indicates that the random baseline performed
significantly better than PAFER.

minleaf

ε 1

20

1

10

3

20

1

5

1

4

1

1000
p = 1♦ p = 1♦ p = 1♦ p = 1♦ p = .98♦

1

100
p = .38 p < .001* p < .001* p < .001* p < .001*

1

5
p = 0.99♦ p < .001* p < .001* p < .001* p < .001*

strictly perform better, for instance in Table 11. PAFER is even significantly outper-

formed by the random baseline in some cases, such as in Table 8 and Table 12, for

similarly small values of ε and minleaf. PAFER thus performs poorly with a small

privacy budget, but also on less interpretable DTs. When the minleaf value of a DT

is small, it generally has more branches and branches are longer, as it takes more splits

to reach the desired minleaf size. Both of these factors worsen the interpretability of

a DT [41].

Other factors negatively impacting the performance of PAFER are a small dataset

size and the number of (un)privileged groups. Therefore, the results for the German

dataset are omitted, as PAFER is entirely outperformed by the random baseline. This

also occurs in Table 12, for all ε and minleaf = 1
1000 . This is due to the smaller

leaf nodes, but also due to the smaller dataset (N = 6000), and the quaternary sex-

ethnicity sensitive attribute. This reduces the queried quantities even further, resulting

in worse performance for PAFER. Then, the (un)privileged group sizes are closer to

zero per rule, which increases the probability of invalid query answers. PAFER’s worse
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performance on smaller datasets, and less interpretable DTs is a clear limitation of

the method.

For the sake of succinctness, the results and respective plots for Experiment 2.1 are

given in Appendix B. This final experiment also replicates some of the results of Exper-

iment 1 and Experiment 2. The middle plot in Figure A4 through Figure A9 shows

that PAFER with the Laplacian mechanism performs better for larger privacy bud-

gets. These plots also show the previously mentioned trade-off between interpretability

and performance of PAFER; the method performs worse for smaller minleaf values.

Lastly, the performance is generally lower for the COMPAS dataset, which holds fewer

instances.

6 Conclusion & Future Work

This section concludes the work with answers to the research questions in subsec-

tion 6.1, summarizes the entire work in subsection 6.2, and provides suggestions for

future work in subsection 6.3.

6.1 Answers to the Research Questions

This section will answer the research questions (RQs) and research subquestions

(RSQs), as posed in subsection 1.1.

RQ1What is the optimal privacy mechanism that preserves privacy and minimizes

average Statistical Parity error?

The optimal DP mechanism in Experiment 1 was the Laplacian mechanism, as shown

in Figure 1. It performed optimally, in the sense that it achieved a low AASPE at

small privacy budgets. This varied from 0.05 error at ε = 0.1, to an error of 0.1 at

ε = 0.25. The preliminary results showed that the Gaussian mechanism was also far

from optimal, even for large privacy budgets (Table 5).
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RSQ1.1 Is there a statistically significant mean difference in Absolute Statistical

Parity error between the Laplacian mechanism and the Exponential mechanism?

Yes, the Laplacian mechanism significantly outperformed the Exponential mechanism

at very low privacy budgets, on seven out of the nine performed analyses (Figure 1).

The Gaussian mechanism proved also to be of no match for the Laplacian mechanism,

even at large privacy budgets (Table 5).

RQ2 Is there a statistically significant difference between the Statistical Parity

errors of PAFER compared to other benchmarks for varying Decision Tree hyperpa-

rameter values?

Yes, for nearly all trials in Experiment 2, there was a significant difference in error

between PAFER and the random baseline.

RSQ2.1 At what fractional minleaf value is PAFER significantly better at esti-

mating Statistical Parity than a random baseline?

The answer depends on the sensitive attribute that is analyzed and the dataset. In

Experiment 2, for the Adult dataset, a fractional minleaf value of 1
100 ensured that

PAFER significantly outperformed the random baseline, (Table 9). For the COMPAS

dataset and intersectional analysis, a privacy budget of ε = 1
20 was not enough to

statistically prove that PAFER outperformed the random baseline (Table 12).

6.2 Summary

This work has shed light on the trade-offs between fairness, privacy and interpretabil-

ity, by introducing a novel, privacy-aware fairness estimation method called PAFER.

There is a natural tension between the estimation of fairness and privacy, given that

sensitive attributes are required to calculate fairness. This applies also to interpretable,

rule-based methods. The proposed method, PAFER, alleviates some of this tension.

PAFER should be applied on a DT in a binary classification setting, at the end of a

development cycle. PAFER guarantees privacy using mechanisms from DP, allowing

it to measure SP for DTs.
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We showed that the minimum number of required queries for PAFER is 2. We also

showed that the maximum number of queries depends on the height of the DT via

2h−1 + 1, where h is the height.

In our experimental comparison of several DP mechanisms, PAFER showed to be

capable of accurately estimating SP for low privacy budgets (ε = 1
10 ) when used with

the Laplacian mechanism. This confirms that the calculation of SP for DTs while

respecting privacy is possible using PAFER.

Experiment 2 showed that the smaller the leaf nodes of the DT are, the worse the per-

formance is. PAFER thus performs better for more interpretable DTs; as the smaller

the minleaf value is, the less interpretable a DT is.

Future work can look into other types of DP mechanisms to use with PAFER, and

other types of fairness metrics, e.g. EOdd.

6.3 Limitations & Future Work

This section describes some avenues that could be further explored regarding PAFER,

with an eye on the limitations that became apparent from the experimental results.

We suggest an extension of PAFER that can adopt two other new fairness metrics

in subsubsection 6.3.1 and suggest examining the different parameters of the PAFER

algorithm in subsubsection 6.3.2.

6.3.1 Other fairness metrics

The most obvious research avenue for PAFER is the extension to support other fairness

metrics. SP is a popular, but simple metric that is not correct in every scenario. We

thus propose two other group fairness metrics that are suitable for PAFER. However,

with the abundance of fairness metrics, multiple other suitable metrics are bound to

exist.

The EOdd metric compares the acceptance rates across (un)privileged groups and

dataset labels. In our scenario (subsection 4.1), we assume to know the dataset labels,
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as this is required for the construction of a DT. Therefore, by querying the sensitive

attribute distributions for favorably classifying rules, only for those individuals for

which Y = y, PAFER can calculate EOdd. Since these groups are mutually exclusive,

ε does not have to be shared. Since EOpp is a variant of EOdd, this can naturally

also be measured using this approach. A downside is that the number of queries is

multiplied by a factor of two, which hinders performance. However, this is not much

of an overhead because it is only a constant factor.

6.3.2 Other input parameters

Examining the input parameters of the PAFER estimation algorithm in Algorithm 1,

two clear candidates for further research become visible. These are the DP mechanism,

A and the model that is audited, DT . Paragraph 6.3.2 and paragraph 6.3.2 discuss

these options.

The Differential Privacy mechanism

The performance of other DP mechanisms can be experimentally compared to the

currently examined mechanisms, using the experimental setup of Experiment 1. Exper-

iment 2 shows that there is still room for improvement, as a random guessing baseline

significantly outperforms the Laplacian mechanism on multiple occasions.

The work of Hamman et al. in [33] shows promising results for a simple SP query.

They use a DP mechanism based on smooth sensitivity [42]; a sensitivity that adds

data-specific noise to guarantee DP. If this DP mechanism could be adopted for

histogram queries, PAFER might improve in accuracy. Currently, PAFER improves

poorly on less interpretable DTs. An improvement in accuracy might also enable

PAFER to audit less interpretable DTs.
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The audited model

PAFER, as the name suggests, is currently only suited for rule-based systems, and in

particular DTs. Further research could look into the applicability of PAFER for other

rule-based systems, such as fuzzy-logic rule systems [43], rule lists [44] and association

rule data mining [45]. The main point of attention is the distribution of the privacy

budget. For DTs, only one rule applies to each person, so PAFER can query all rules.

For other rule-based methods, this might not be the case.

Aytekin made the connection between Neural Networks and DTs explicit, showing

that for any activation function, a Neural Network can be written as a DT [46]. Apply-

ing PAFER to extracted DTs from Neural Networks could also be a future research

direction. However, the Neural Network must have a low number of parameters, or

else the associated DT would be very tall. DTs with a tall height work worse with

PAFER, so the applicability is limited.
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Fig. A1 A schematic display of the process by which a binary tree that has non-binary splits can

be converted into a binary tree for a binary decision process. The dotted lines . .
.
, denote that the

pattern of the DT can be repeated an arbitrary number of times.
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Fig. A2 The smallest number of favorable decision rules in a decision tree for a binary classification
problem. The leaf node with an inner circle denotes a leaf node in which the majority of the individuals

are classified favorably in the training set. The dotted line, . .
.
, denotes that the pattern can go on

indefinitely.

Fig. A3 The largest number of favorable decision rules in a decision tree for a binary classification
problem. The leaf nodes with an inner circle denote a leaf node in which the majority of the individuals

are classified favorably in the training set. The dotted lines, . .
.
, denote that the pattern can go on

indefinitely.

Appendix A Figures Illustrating PAFER’s

Theoretical Properties

Appendix B Results for Experiment 2.1

Figure A4 through Figure A9 show the results for Experiment 2.1. Experiment 2.1

shows that PAFER is unreliable in its ability to predict adherence to the 80%-rule.
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For some datasets and sensitive attributes, PAFER performs quite well, e.g. reaching

around 90% UAR, as shown in Figure A8 and Figure A4. For other datasets and

sensitive attributes, PAFER performs rather poorly, reaching no higher than 50%

UAR on the Adult dataset with the binary sex attribute, as shown in Figure A5.

Nonetheless, a pattern emerges from Figure A4 through Figure A9 regarding the

UAR - AASPE. Of course, PAFER performs better for privacy budgets larger than

3
20 . However, PAFER also performs better for certain minleaf values. The ‘hotspot’

differs between the Adult and COMPAS dataset, minleaf = 1
10 and minleaf = 3

20 ,

respectively, but the range seems to be from 7
100 to 1

5 . The ideal scenario for PAFER

thus seems to be when a privacy budget of at least ε = 3
20 is available, and the

examined DT has leaf nodes with a fractional minleaf value of at least 7
100 .
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Fig. A4 The hyperparameter space for the Adult dataset and the binary ethnicity attribute.
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Fig. A5 The hyperparameter space for the Adult dataset and the binary sex attribute.
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Fig. A6 The hyperparameter space for the Adult dataset and the quaternary sex-ethnicity attribute.
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Fig. A7 The hyperparameter space for the COMPAS dataset and the binary ethnicity attribute.
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Fig. A8 The hyperparameter space for the COMPAS dataset and the binary sex attribute.
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attribute.
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