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Abstract

* Stochastic cellular automata (SCA) are models that describe spatial ecological dynamics using a grid of 

cells that switch between discrete states over time, depending only on current states (Markov chain 

processes). They are widely used to understand how small-scale processes scale up to affect ecological 

dynamics at larger spatial scales, and have been applied to a wide diversity of  theoretical and applied 

problems in all systems, such as arid ecosystems, coral reefs, forests, bacteria, or urban growth.

* Despite their wide applications, SCA implementations found in the literature are often ad-hoc, lacking 

performance and guarantees of correctness. More importantly, de novo implementation of SCA for each 

specific system and application represents a major barrier for many practitioners. To provide a unifying, 

well-tested technical basis to this class of models and facilitate their implementation, we built chouca.  

which is an R package that translates intuitive SCA model declarations and expert-based assumptions 

about the state space system into compiled code and run simulations in a reproducible and efficient way.

* chouca supports a wide set of SCA along with deterministic cellular automata, with performance 

typically two to three orders of magnitude that of ad hoc implementations found in the literature, all 

while maintaining an intuitive interface in the R environment. Exact and mean-field simulations can be 

run, and both numerical and graphical results can be easily exported.

*  Besides providing better reproducibility and accessibility, a fast engine for SCA unlocks novel,  

computationally intensive statistical approaches, such as simulation-based inference of ecological 

interactions from field data, which represents by itself an important avenue for research. By providing 

an easy and efficient entry point to SCAs, chouca lowers the bar to the use of this class of models for 

ecologists, managers and general practitioners, providing a leveled-off reproducible platform while 

opening novel methodological approaches.
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Main text

Introduction

The analysis of spatial patterns has proven essential to understand ecological system dynamics, and 

various modelling approaches help ground empirical patterns into ecological theory. Among such 

approaches, models based on Stochastic Cellular Automata (hereafter SCA), also called Probabilistic or 

Random Cellular Automata, or Locally-interacting Markov Chains, have been a particularly useful, 

heuristic and widely used approach (Louis & Nardi 2018; Wolfram 1984). Cellular automata are based 

on a grid of cells that switch over time between a finite number of states, which capture the entire state 

space of the system (all possible states assumed as relevant). Most often, SCA are considered to be 

distributed on a rectangular grid, though other geometries can exist (van Baalen, M. 2000).  A famous 

deterministic cellular automaton (CA) is Conway’s game of life, which is defined by two discrete states 

(“dead” and ”alive”) and a set of deterministic rules to make cells switch between them. Stochastic 

cellular automata follow the same principles, but state transitions occur with a given probability instead 

of being based on deterministic rules. The probabilities of a cell switching from one state to another 

typically depends on model parameters, the global state of the system (the proportion of cells in each 

state), and the local neighborhood of the focal cell. In all cases, the system future dynamics is 

probabilistically defined by its current state, i.e. dynamics are memoryless. The use of SCA in ecology is 

widespread, as they have been used to describe the dynamics of a large array of ecosystems, including 

mussel beds (Guichard et al. 2003), arid ecosystems (Kéfi et al. 2007), forests (Heinonen & Pukkala 

2007), rocky shores (Wootton 2001), coral reefs (Génin et al. in press; Muthukrishnan et al. 2016) and 

plant communities (Lanzer & Pillar 2002). SCA are often used to understand how local processes can 

scale up to affect landscape-wide properties, such as the persistence or extinction of a given species, the 

type of spatial patterns arising at the scale of a landscape (Pascual et al. 2002), or the spread of fire or 

epidemics. The latter cases is a classical use-case of SCA for applied ecology, where data on local 

processes affecting forest stands can be coupled with GIS data to provide guidance on forest fire 

sensitivity (Yassemi et al. 2008).

The popularity of SCA is probably related to their relatively light need for formal mathematics 

compared to other approaches modelling spatial processes (e.g. partial derivative equations): only the 

probabilities of transitions between states need to be defined. The drawback of this simplicity is that the 

numerical simulation of SCA is typically compute-intensive. Current approaches to do so efficiently rely 

on approximations, either assuming no spatial structure (mean field approximation) or simplifying the 
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dynamics of the landscape to pairs of neighboring cells (“pair approximation”; (Iwasa 2000; Matsuda et 

al. 1992). However, these approximations are inaccurate when long-range correlations occur within a 

landscape (Iwasa 2000), or when the full simulated landscape is desired as a model output (e.g. to 

compute spatial metrics; Génin et al. 2018). In many cases, the explicit numerical simulation must be 

run, which is often done on small grids to reduce computation time. This is an issue as some theoretical 

results involving spatial structure or system stability have been shown to depend on this grid size (van 

de Koppel et al. 2011; Majumder et al. 2021). On top of performance issues, most ecological modeling 

work based on SCA comes with its own, ad-hoc implementation. This opens the possibility of errors in 

code and often makes it difficult to reproduce model simulations. We aim at alleviating these issues with 

chouca, which provides a unifying and well-tested technical basis to SCA. Our goal is to improve the 

performance and accessibility of this class of models, and ultimately allow ecologists to spend more time 

exploring the behavior of their models, rather than on their implementation.

The R package chouca works with 2-dimensional rectangular grids of cells (a “landscape”). Each cell can 

be in one of a finite set S of n elementary states S 1…Sn. Probabilities of transition are assumed to depend 

only on (i) the proportion of neighbors in each state, captured by the vector q=(q1 , ..., qn ), (ii) the 

proportion of cells in a given state in the whole landscape, p=( p1, ..., pn ), and (iii) a set of constant model 

parameters θ. It is important to note that this excludes cellular automata in which an intermediate 

distance of interaction is considered (e.g. through a dispersion kernel; Muthukrishnan et al. 2016), or 

those in which a preferential direction exists (e.g. modeling water redistribution on a slope; Mayor et al. 

2013). Other types of SCA not fitting these constraints are those in which two cells swap their respective 

state, e.g. when modelling the movements of a predator in a landscape (Pascual et al. 2002). The 

probability of transition from state i to j, P (Si→S j ), can be any function of p, q, and θ – however, it will 

work best and without approximation if it has the following form:

P (S i→S j)=a0+g1(q1)+…+gn(qn)+ζ(q ,q)+ζ(q , p)+ζ( p , p) (equation 1)

where, for any transition Si→S j , a0  is a constant, gs is any univariate function of q s, and ζ(x , y) is the 

sum defined for two vectors x=(x1, ... , xn) and y=( y1, ..., yn ) as

ζ(x , y)=a1 x1
α1 y1

β1+a2 x1
α 2 y2

β2+a3 x2
α 3 y1

β3+…+aK xn
α K yn

βK

in which the (ai)i∈[1: K ] , (αi)i∈[1 : K ]  and (βi)i∈[1: K ]  are constants and K  is the total number of terms. In 

practice, this functional form is flexible enough to approximate the probabilities of transition of many 

ecological models.
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Implementing and working with an SCA in chouca typically consists in four steps, in which  the user 1) 

defines the model states and the transitions between them, (2) creates an initial landscape (grid of cells), 

(3) runs the model, and (4) displays or extracts the results (Figure 1). We detail in this paper this 

workflow (Figure 1) – documentation is available throughout the package, individually for each 

function, or as a whole in an R ‘vignette’, accessible with the command vignette(“chouca-package”).

Figure 1 Main tasks (boxes) of the chouca package, and their associated sets of functions

Using chouca: a simple model

To illustrate how a stochastic cellular automaton can be defined with chouca, we use the model of 

Guichard et al. (2003), which describes the dynamics of mussels colonizing rocks exposed to waves. This 

model has three cell states (i) “disturbed”, (ii) “empty” and (iii) “occupied” by mussels. During a single 

time-step, a disturbed cell becomes an empty cell with probability 1. Such transition can be defined in 

chouca using a call to the R function transition():

transition(from = "disturbed", to = "empty", ~ 1)

This statement declares a transition from a “disturbed” state to an “empty” state, with the last argument 

being a symbolic expression starting with “~” that describes how to compute the probability, here being 

simply equal to the constant “1”.

The model assumes that the establishment of new individuals always occurs next to existing mussels. In 

other words, for a focal cell in the “bare” state, its probability of switching to the “mussel” state is not 

constant, but given by α qmussel, where α  is a productivity rate, and qmussel is the proportion of cell neighbors 

in the mussel state. Such transition is defined by the following function call in R:
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transition(from = "empty", to = "mussel", ~ alpha * q["mussel"])

Here, q["mussel"] is used to refer to the proportion of cell neighbors in the “mussel” state, a continuous 

number between 0 and 1. Similarly, p["mussel"] could have been used to refer to the global proportion 

of cells in the landscape in the "mussel" state.

Mussels can be perturbed by incoming waves, which dislodge them and turn them into "disturbed" cells. 

In this model, the probability of a mussel cell to become disturbed is the sum of a baseline term δ , and an 

additional term d , which is non-zero only if the mussel cell has one or more disturbed neighbors:

transition(from = "mussel", to = "disturbed", ~ delta + d * ( q["disturbed"] > 0 )

The original model considers that cells are neighbors when they share an edge (4-way or von-Neumann 

neighborhood, the other option being a Moore or 8-way neighborhood), and uses a toric space for 

simulations, meaning that the up/leftmost cells of the grid are neighbors of the bottom/rightmost cells. 

Putting everything together, this model can be defined using the following syntax:

musselbed_mod <- camodel(
  transition(from = "disturbed", to = "empty",  ~ 1),
  transition(from = "empty", to = "mussel",     ~ alpha * q["mussel"]),
  transition(from = "mussel", to = "disturbed", ~ delta + d * ( q["disturbed"] > 0 )),
  parms = list(alpha = 1, delta = 0.2, d = 1),
  wrap = TRUE,
  neighbors = 4
)

The call to the camodel() function above estimates the constants in the functional form described in 

equation 1 to fit the parameters of the model. If this process yields large residual error, for example 

because the transition probabilities do not correspond to the functional form in equation 1, a warning is 

produced. The structure of the model can be displayed on the R console using print(), or as a graph 

using the generic function plot() (Figure 2).
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> print(musselbed_mod)
Stochastic Cellular Automaton
States: disturbed empty mussel

Transition: disturbed -> empty
  ~   1
Transition: empty -> mussel
  ~   alpha * q["mussel"]
Transition: mussel -> disturbed
  ~   delta + d * (q["disturbed"] > 0)

Neighborhood: 4x4
Wrap: TRUE
Max error: 0 (OK)
Max rel error: 0 (OK)  

Figure 2 Structure of the mussel bed model displayed as a graph, in which nodes are states, and arrows 

represent the possible transitions with the expression used to compute their probabilities

Once the model is created, an initial landscape can be defined with a given number of rows and columns 

using generate_initmat(), which creates a landscape with randomly-distributed cell states in space, but 

following the specified initial covers:

init_landscape <- generate_initmat(musselbed_mod,
                                   pvec = c(disturbed = 0.1, empty = 0.5, mussel = 0.8),
                                   nr = 64, nc = 64)

The model can then be simulated for a given number of time steps, below from 0 to 50, using 

run_camodel(). Standard methods such as plot() or image() can be used to display the global covers 
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after the model has run, or the resulting landscapes (respectively):

output <- run_camodel(musselbed_mod, init_landscape, times = seq(0, 50))
plot(output)
image(output)

By default, chouca uses a C++ backend, which is reasonably fast. Performance can be increased by 

compiling the model code just before the simulation is run, and using memoization so that transition 

probabilities are computed only once for cells with the same neighborhood configuration. This allows 

reaching typical simulation speeds above 5000 iterations.s-1 on a typical 128 x 128 grid (Figure 3), which 

can be further increased by parallelizing computations over multiple cores, though this is a less efficient 

approach. Enabling these options can be done by passing control arguments as an R list object:

control_args <- list(engine = "compiled", 
                     cores = 4,
                     precompute_probas = TRUE)
output <- run_camodel(musselbed_mod, init_landscape, niter = 256, control = control_args)

This list controls how the simulation is run, which data to save from the simulation, or the textual 

output to print while the simulation is running (a complete list of options is in the help page ?

run_camodel). The user can also supply custom functions that will be run as the simulation is running. 

This can be useful, for example, to display landscapes, covers or compute spatial statistics (e.g. 

autocorrelation) on the 2D landscape as the simulation is running, which we illustrate below.
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Figure 3 Simulation speeds for a set of three simple ecological models (2-3 states and 3-4 transitions) 

according the the grid size, for a pure-R implementation (R reference; Schneider et al. 2016), and three 

backends provided by chouca (blue and green lines).

Graphical explorations

Because an SCA describes dynamics over landscapes, they are particularly well-adapted to pattern-

oriented modelling (Grimm et al. 1996), in which a model is defined and revised based on a qualitative 

or quantitative comparison with empirical patterns. Likelihood-based approaches are increasingly 

popular to compare models with data (e.g. Hartig et al. 2011 and section below), but the qualitative 

comparison and visual exploration of model dynamics remains an essential phase for spatial models. To 

make this modeling step more accessible, we made it easy to investigate visually the behavior of models, 

and illustrate here this approach with an epidemiological example.

Keeling (2000) uses an SCA-based approach to investigate the spread of a parasite over space, with an 

application to forests. This model uses three states, “host”, “parasitized”, “empty”, and can be defined as 

follows in chouca:
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mod <- camodel(transition(from = "empty", to = "host",
                          ~ 1 - ( 1 - g )^( 4 * q["host"] ) ),
               transition(from = "host", to = "parasitized",
                          ~ 1 - ( 1 – T )^( 4 * q["parasitized"] )),
               transition(from = "parasitized", to = "empty",
                          ~ 1),
               parms = list(g = 0.05, T = 0.5),
               wrap = TRUE,
               neighbors = 4)

where g is the growth rate of the host, and T  the transmissibility of the parasite (this model assumes that 

infection is always fatal, so the transition from “parasitized” to “empty” is equal to 1).

This model can produce interesting “epidemiological fronts”, which stem from the way the parasite 

spreads to its neighboring hosts, killing them and leaving behind empty, bare patches that are later 

recolonized by the host, albeit at a slower rate. This phenomenon of fronts may be difficult (for 

ecologists) to quantify formally, but can be easily visualized from model outputs. This can be done in 

chouca by setting the run_camodel() function to display the results as the simulation is run. To do so, 

we adjust the control list to include a function that displays the landscapes:

options <- list(custom_output_fun = landscape_plotter(mod),
                custom_output_every = 1)

then run the model on a 256×256 grid seeded with 10% of cells in the “parasitized” state:

initmm <- generate_initmat(mod, c(host = 0.9, parasitized = 0.1, empty = 0),
                           nrow = 256, ncol = 256)
output <- run_camodel(mod, initmm, times = seq(0, 1024), control = options)

The above lines of code will run the model and display the changing landscape, which allows 

investigating the spreading patterns of the parasite. Once this visualization step is done (Figure 4, and 

animated version in SM1), the options set to visualize the landscape can be removed to reduce 

simulation times, for example to investigate model behavior along a range of parameter values.
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Figure 4 Landscape patterns of the host-parasitized-empty model (respectively green, yellow and blue) as 

displayed on screen

Inference of local interactions from landscape-scale patterns

Because SCA are defined on grids, a natural application is to compare their output to empirical raster 

data, such as remote-sensing images, to infer local-scale ecological interactions from landscape-wide 

spatial patterns. Arid systems provide a good illustration of this approach: in those systems, plants often 

facilitate each other, which results in their aggregation into patches, and has important consequences 

for the resilience of those systems to changes in aridity (Kéfi et al. 2007). The sizes and numbers of those 

patches can be readily quantified from remote-sensing images, and such patterns can be used to infer 

whether facilitation occurs between plants (Chen et al. 2022; Xu et al. 2015). This is traditionally done 

by summarizing the spatial structure into spatial statistics, such as spatial autocorrelation (Sankaran et 

al. 2017) or type of patch size distribution (Kéfi et al. 2011; Siteur et al. 2023), and linking the observed 

changes in those metrics to theoretical results (Kéfi et al. 2011; Scanlon et al. 2007). However, such 

qualitative comparison logically results in a qualitative and corroborative result, i.e. is there or is there 

not facilitation between plants, rather than a  more informative quantitative result, i.e. how strong 

facilitation is between plants. A quantitative inference must be based on an approach that links 

quantitatively some aspects of the spatial patterns to the strength of facilitation. This can be done by 

defining a model that links the strength of facilitation with the expected patterns, and finding model 

parameters that maximize agreement between model output and data. This is expensive 

computationally, but this limitation is alleviated by a fast SCA engine such as chouca, as we show 
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below.

We define here a model of an arid ecosystem with two states, “bare” and “vegetated”. A bare cell can 

become a vegetated cell with the probability p plant. A vegetated cell can become bare (plants die) with the 

probability d (1−β q plant ), where d is a constant mortality rate, that is reduced by the coefficient β. β 

captures the local effect of plants, either facilitation when they increase the survival of plants near 

existing vegetation (β>0), or competition when survival is decreased (β<0). This model can be 

implemented in chouca using:

facilitation_mod <- camodel(
  transition(from = "bare", to = "plant", ~ p["plant"] ),
  transition(from = "plant", to = "bare", ~ d * ( 1 – beta * q[“plant”]) ),
  parms = list(beta = 0.5, d = 0.85),
  wrap = TRUE,
  neighbors = 4
)

We ran the model till equilibrium on a 256×256 grid, to simulate a landscape that would be obtained 

from empirical data (e.g. a remote sensing image) using (d ,β )=(0.85 ,0.5). From the final landscape, we 

computed the distribution of pairs, which summarizes all the possible pairs of neighboring cells present 

in the landscape nobs=(n p ,0, n p , p , n0 ,0 ). To estimate the likelihood P (nobs|d ,β ), we assume these observed 

number of pairs follow a multinomial distribution of size N p (the sum of all pairs, a fixed number given 

the grid size and neighborhood type), and probabilities μ=(μ p ,0 , μ p , p, μ0 ,0 ). μ defines the relative 

probabilities of observing each type of pair in the grid, which depend on the particular values of d and β, 

and can be estimated by simulating the landscape with these parameter values. This likelihood estimate 

formally quantifies the agreement between model and data, and allows exploring the parameter space in 

terms of d and β to find the best parameter combinations given the observed patterns.

We find that this approach can recover the parameter values used for d and β , with only one global 

maximum in the likelihood function (Figure 5). Applying such an approach to empirical data would 

require further testing of model assumptions, for example, to investigate whether facilitation occurs on 

the recruitment of new plants instead of on the mortality of adult plants – this can be done by simply 

changing the model definition above. Because this approach is likelihood-based, model support can be 

compared using traditional statistics, such as AIC, and a Bayesian approach can be used to estimate 

uncertainty on parameter values, or use informative priors grounded in knowledge about the system 

(Hartig et al. 2011). 
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Using this type of simulation-based inference is very expensive computationally, as this simple exercise 

requires running around 5 000 simulations. This would be unrealistic with usual SCA implementations, 

but takes roughly three minutes with chouca on a 2020 desktop computer (12 cores). This way of 

calibrating models has seldom been used in ecology – a fast SCA implementation is essential to make it 

more accessible.

Figure 5 Likelihood surface as a function of the two model parameters d and β. Blue values indicate 

parameter combinations with high likelihood. The white dot and lines indicate the real parameter values.
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Concluding remarks

chouca is an easy-to-use package to model, simulate, and visualize SCA in a reproducible way, that 

enables an interactive design and revision of models as well as novel methodological approaches. chouca 

does not support all types of cellular automata, and does not replace more generic modelling 

frameworks such as NetLogo (Wilensky 1999) or simecol (Petzoldt & Rinke 2007), but allows efficient 

simulations for the type of SCA it supports. It is important to note that because chouca splits the 

definition of an SCA model from its simulation phase, it may use different backends for simulation. This 

opens the possibility of future improvements to already-implemented models without modification of 

existing code. Because of the relatively low bar of entry of SCA compared to other forms of modelling, 

we hope this work will contribute to make more accessible the testing of hypotheses linking spatial 

processes to patterns in ecology, as well exploring system-level consequences of specific local 

management decisions.

chouca will be available on CRAN, and welcomes comments, feedback and bug reports on its home page 

at https://github.com/alexgenin/chouca.
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