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Abstract

Due to the global large-scale development of renewable energy resources and the high un-
certainty and variability of these sources, control optimization (scheduling) of energy supply
systems has become increasingly crucial to employ production facilities efficiently to balance
the instantaneous power demand. This work considers a setting characterized by a coupled
power supply system controlled exclusively by a single provider and comprising a cascade of
hydropower systems (dams), fossil fuel power stations, and a storage capacity modeled by a
single large battery. We first propose a novel mathematical modeling framework for problems
arising from short-term continuous control of large power systems, where the coupled power
system is modeled through continuous (stochastic) differential equations. The proposed model-
ing framework is original because previous studies in this context have formulated the problem
using a large discrete optimization system, which does not take advantage of the system struc-
ture and, thus, must solve NP-hard mixed-integer programming problems. Moreover, cascaded
hydropower generators introduce time-delay effects to the controls, making it impossible to use
classical dynamic programming algorithms. We design a primal-dual strategy by introducing
a Lagrangian relaxation technique over continuous-time constraints to overcome this undesir-
able feature and construct a nearly optimal policy efficiently. This approach yields a convex,
nonsmooth optimization problem to define the optimal dual variables (Lagrangian multipliers),
which is numerically solved using a limited memory bundle method. Given the obtained values
of the Lagrangian multipliers, we solve an associated sequence of parallelizable (independent)
Hamilton–Jacobi–Bellman partial differential equations instead of the more computationally
challenging task of solving a large nonconvex problem. Moreover, we design an adaptive re-
finement strategy for the Lagrangian multipliers to better control the dual optimization error.
Finally, we use a penalization technique for the constructed admissible primal solution to smooth
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the controls while achieving a sufficiently small desired duality gap. The analysis and numer-
ical results based on the Uruguayan power system demonstrate the efficiency of the proposed
mathematical models and numerical approach.

Keywords Renewable energy, power supply systems, short-term continuous control, La-
grangian relaxation, cascade of hydropower generators with time delays, optimal control, dy-
namic programming algorithm, limited memory bundle method, duality gap

1 Introduction

Considering the global large-scale development of renewable energy resources and the high uncer-
tainty and variability of these sources, the control optimization of energy supply systems, par-
ticularly hydropower systems, has become increasingly crucial for the efficient use of production
facilities to balance the instantaneous power demand. In this work, we propose a novel mathemat-
ical modeling and numerical framework for the optimal management of large-scale power systems
in a short-term planning horizon, where the system comprises a cascade of hydropower stations
with time delays, fossil fuel power stations (FFSs), and a storage capacity modeled by a single bat-
tery. To do so, we pose a time-continuous optimal control (OC) problem and design a primal-dual
strategy by introducing a Lagrangian relaxation technique over continuous-time constraints.

We design a primal-dual strategy to formulate and solve the corresponding continuous-time OC
problem, leading to efficient policies minimizing the cost associated with power production subject
to demand constraints and the dynamics and constraints of the hydropower and battery system.
Because of the time delays in the system dynamics, the primal problem cannot be solved directly
by the continuous dynamic programming principle. To overcome this undesirable feature, we pose
the corresponding dual problem by introducing time-continuous Lagrangian relaxation to penalize
the time-delay constraints in the system dynamics. The resulting dual-cost function, together
with the appropriate dynamics and constraints, creates a standard continuous OC problem. Based
on the dual-problem formulation, we iteratively optimize the approximated dual function with
respect to (w.r.t.) the Lagrangian multipliers. Each iteration involves the subproblem of solving
the associated Hamilton–Jacobi–Bellman (HJB) partial differential equation with an upwind finite-
difference scheme [39] adapted to this context. From the subproblem, we obtain the dual objective
function and its subgradient. Because the resulting dual problem is nonsmooth and convex, we
solve it using the limited memory bundle method (LMBM) [16, 18, 23, 1]. Moreover, we design an
adaptive refinement strategy for the Lagrangian multipliers to control the dual optimization error
better. Finally, for the constructed admissible primal solution, we employ a penalization technique
to smooth the controls while achieving a sufficiently small desired duality gap. The numerical
experiments and results based on the Uruguayan power system demonstrate the efficiency of the
proposed mathematical models and numerical approach. Preliminary work was conducted in the
master theses in [10] and [35].

Some previous studies [14, 38, 25, 36, 34, 19, 31] have considered only the hydropower system,
whereas others have studied the coupled hydrothermal [41] or hydro-wind [21] power systems.
These studies applied discrete-time discrete-space models to create hourly scheduling, leading to
nondeterministic polynomial-time hard mixed-integer programming problems, which are usually
challenging to solve. In particular, several studies [14, 38, 21, 19] have investigated a cascade of
run-of-the-river dams to determine an optimal schedule using model predictive control (MPC).
Compared to the present work, they modeled river dynamics instead of dam dynamics, using the
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water level rather than the dam volume as the state-space variable. The resulting OC problems
within the model predictive control framework are solved using discrete optimization methods,
including linear and nonlinear programming methods, depending on the objective function [25, 14,
38, 21, 19], (mixed) integer programming [41, 34, 31], and nonlinear network flow algorithms [41].
Compared to the discrete-time discrete-space formulation presented in the mentioned studies, the
proposed continuous-time modeling offers the advantage of providing a curve of control over time
instead of a discrete set, allowing its application for any time stepping and eliminating the need
for the ad hoc interpolations often needed in a discrete setting.

The authors of [12] presented a continuous-time formulation of the OC of a cascade of hy-
dropower stations without accounting for time delays. Moreover, to solve the corresponding OC
problem, they used a different approach based on a formulation of an infinite-dimensional optimiza-
tion problem with a quadratic functional subject to cone constraints, and they derived sufficient
conditions for local minimizers. This approach is problem-specific and difficult to generalize to a
broader class of (coupled) power systems, particularly those accounting for hydrosystem time de-
lays. One important aspect that we address in this work is the time delay for the water flow in the
dynamics of a cascade of dams. Some research [33, 15, 41, 19] has incorporated delay constraints
but used a different approach than that presented here, based on a discrete-time framework and
mixed-integer programming optimization. These studies decompose the hydrothermal problem into
thermal and hydro-subproblems and further decompose the hydro-subproblem into several subprob-
lems, usually mixing a continuous-variable optimization problem determining the generation levels
of all units in the entire river and pure integer problems determining the hydro commitment states,
one for each unit.

The outline of this paper is as follows. Section 2 introduces the model of the complete linked
system, including a detailed description of the cost, power generation, and state dynamics for each
power source. Next, Section 3 formulates the primal OC problem for the complete linked system
with time delays. Subsequently, we propose a continuous-time Lagrangian relaxation technique to
address the time delays in hydropower dynamics, resulting in a dual problem formulation. Section 3
also covers the process of obtaining nearly optimal admissible controls that are sufficiently smooth.
Then, Section 4 delves into the numerical approach for solving the primal problem, following the
method described in Section 3. We present the algorithm in detail, explaining its components.
In particular, we discuss the numerical solution of the HJB equation, aspects of dual-problem
optimization, the parameter choice for constructing the sufficiently smoothed primal solution from
the dual solution, and various numerical errors arising from the proposed approach. Finally, Section
5 focuses on the Uruguayan power grid as an illustrative example, demonstrating the numerical
results when solving the OC problem for managing the related coupled power system.

2 Power System Model

We consider a setting characterized by a coupled power supply system controlled exclusively by a
single provider (monopoly). The central operator controls both the supply and price of power to
balance the instantaneous power demand. The efficient use of power-generation facilities is crucial
for two reasons: i) generated profit ensures resources for infrastructure improvement, and ii) failure
to meet the power demand introduces a very high cost. We introduce the demand and power
balance equation in Section 2.1.

Both the demand and available outputs of various power sources have some degree of uncertainty,
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even day-to-day, due to uncontrollable factors, such as the weather. This uncertainty can be
included in the modeling by introducing stochastic dynamics. The present work is restricted to
the deterministic case; however, the suggested approach was developed with stochastic dynamics in
mind. Mathematically, the control problem is challenging because the central operator must meet
the demand at each time and for each realization of the stochastic dynamics, making the problem
infinite-dimensional.

We specifically consider a setting where the operator manages a hybrid electricity production
system consisting of various power sources. The system of study comprises only controllable sources,
where the production can be controlled over time, subject to constraints. The power sources include
the following:

• a hydropower network consisting of ND dams, where some dams are serially connected along
the same river so that the downstream dams depend on the outflow of upstream dams,

• NF FFSs, and

• a storage capacity modeled by a single large battery.

Section 2.2 introduces each power source’s cost, power generation, and state dynamics. The power
generated by these sources is meant to satisfy the effective demand after subtracting the power
generated by noncontrollable sources (e.g., wind and solar) from the target demand. In future work,
we aim to add noncontrollable sources to the studied power systems, adding further stochasticity
to the optimal problem and further challenges in modeling and numerics.

2.1 Demand Model

We optimize the dispatch of controllable power sources, explained in Section 2.2, to meet the
effective demand, DE(t), at any time t. The effective demand is obtained by subtracting the power
generated by noncontrollable sources from the total local demand, D(t), and exports, E(t). With a
finite time horizon, T , the power generated by the power system must satisfy the effective demand
given by

DE(t) = D(t) + E(t)− PWS(t), 0 ≤ t ≤ T,(2.1)

where PWS(t) is the generated wind and solar power. We restrict the work to deterministic models
for effective demand. In short-term (one-day) optimizations, reasonably accurate predictions for
the future electricity demand are typically available to the operators.

Given the effective demand and controllable resources, the instantaneous power balance equation
is

DE(t) =

ND∑
i=1

P
(i)
H (t) +

NF∑
i=1

P
(i)
F (t) + PA(t), 0 ≤ t ≤ T,(2.2)

where P
(i)
H (t), P

(i)
F (t), and PA(t) denote the instantaneous power supplied by the dams, FFSs, and

battery, respectively (see Sections 2.2.1, 2.2.3, and 2.2.2).

Remark 2.1 (On the stochastic modeling of the demand and exports). In a more detailed and
complex model, the demand and export predictions are affected by stochastic perturbations, for
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Figure 2.1: Example configuration of dams
with the flow directed downward.
• Each dam in the network is identified by a
unique index, i.
• Any dam i that has another dam down-
stream is associated with a constant, τi, rep-
resenting the time it takes for the water to
reach the downstream neighbor.
• Any dam i is associated with a set, B(i),
containing the indices of its nearest upstream
dams along any fork of the river.
• No dam has more than one downstream
neighbor.

instance, i) weather effects on electricity consumption and the dynamics of wind and solar power
production, and ii) possible bids on the excess of the energy supply allocated to exports. Modeling
the stochastic dynamics of both quantities is left for future work.

2.2 Cost, Power Generation, and State Dynamics

For mathematical convenience and to avoid needlessly poor conditioning due to varying scales of
different quantities in the numerical computations, the following model dynamics are normalized to
take values in the range [0, 1]. Where absolute maxima and minima are available, these are used in
the normalization; otherwise, upper and lower bounds respecting the order of magnitude are used.

2.2.1 Hydropower Network Model

Each dam is represented by the volume of water in its reservoir, v(t). The instantaneous change
in this volume is the difference between the inflow of water from rivers and rain, denoted by I(t),
and the water outflow. We assume two types of controls are related to the water outflow: i) the
control of the flow through the turbines, denoted by ϕTur, to produce energy, and ii) the control
of how much water is spilled, denoted by ϕS . In the dynamics of the connected dams, the inflow
to any downstream dam depends on the controlled outflow of the nearest upstream dams. The
entire outflow of an upstream dam is assumed to reach the following dam with a constant time
delay, τ > 0. The OC must respect this time delay in continuous time. Rivers can merge but
not branch out again; thus, each dam has at most one downstream neighbor but can have several
upstream neighbors. The set of upstream neighbors of a dam is denoted as B (see Figure 2.1). By
practical limitations, the volume of each reservoir is bounded from above and below. We define, for
the ith dam the minimum and maximum values v(i) and v(i), respectively. The normalized volume
v̂(i)(t) = v(i)(t)/

(
v(i) − v(i)

)
takes values in the range [0, 1].
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Dam dynamics For the independent dams, the (dimensionless) dynamics1 of the ith dam are
modeled by

dv̂(i)(t) =
1

v(i) − v(i)
(
I(i)(t)− ϕ(i)Tur(t)− ϕ

(i)
S (t)

)
dt, 0 ≤ t ≤ T,(2.3)

with the initial condition v̂(i)(0) = v̂
(i)
0 ∈ [0, 1]. The requirement that 0 ≤ v̂(i)(t) ≤ 1, for t > 0, is

enforced by imposing the following outflow constraints on the control:{
ϕ
(i)
Tur(t) + ϕ

(i)
S (t) ≥ I(i)(t), if v̂(i)(t) = 1,

ϕ
(i)
Tur(t) + ϕ

(i)
S (t) ≤ I(i)(t), if v̂(i)(t) = 0.

(2.4)

Naturally, the outflow constraints cannot be satisfied for arbitrary inflows, I(i), because the
maximal controlled outflow from a dam is bounded. This study assumes that the inflows are such
that the constraints can be satisfied.

For a downstream dam, the dynamics and constraints are adjusted by the outflow of the neigh-
boring upstream dams. Then, (2.3) is replaced by

dv̂(i)(t) =
1

v(i) − v(i)

I(i)(t) + ∑
j∈B(i)

(
ϕ
(j)
Tur(t− τj) + ϕ

(j)
S (t− τj)

)
− ϕ(i)Tur(t)− ϕ

(i)
S (t)

 dt,(2.5)

for 0 ≤ t ≤ T , and (2.4) is replaced byϕ
(i)
Tur(t) + ϕ

(i)
S (t) ≥ I(i)(t) +

∑
j∈B(i)

(
ϕ
(j)
Tur(t− τj) + ϕ

(j)
S (t− τj)

)
, if v̂(i)(t) = 1,

ϕ
(i)
Tur(t) + ϕ

(i)
S (t) ≤ I(i)(t) +

∑
j∈B(i)

(
ϕ
(j)
Tur(t− τj) + ϕ

(j)
S (t− τj)

)
, if v̂(i)(t) = 0.

(2.6)

The dynamics and constraints in (2.3) and (2.4) are special cases of (2.5) and (2.6). We include
the known upstream turbine flows and spillages at times t < 0 in the given inflow model I(i) and

define the controls to satisfy ϕ
(j)
Tur(t) ≡ ϕ

(j)
S (t) ≡ 0, for t < 0.

The flow through the turbines and water spillage are both bounded, 0 ≤ ϕ(i)Tur ≤ ϕ
(i)
Tur(v̂

(i)) and

0 ≤ ϕ(i)S ≤ ϕ
(i)
S (v̂(i)), where the upper bounds on the flow may depend on the volume (as a function

of the height) of the water in the reservoir. Given these constraints, we introduce the normalized
controls:

ϕ̂
(i)
Tur(t) =

ϕ
(i)
Tur(t)

ϕ
(i)
Tur

(
v̂(i)(t)

) , ϕ̂
(i)
S (t) =

ϕ
(i)
S (t)

ϕ
(i)
S

(
v̂(i)(t)

) , for 1 ≤ i ≤ ND,(2.7)

where ϕ
(i)
Tur(v̂

(i)) and ϕ
(i)
S (v̂(i)) depend on the dam architecture and hydroturbine technology.

In (5.1), we illustrate examples of ϕ
(i)
T (v̂(i)) of the dams considered in these experiments. Moreover,

for ease of presentation, ϕ
(i)
Tur(v̂

(i)) and ϕ
(i)
S (v̂(i)) are denoted as ϕ

(i)
Tur and ϕ

(i)
S , respectively.

1We write the ordinary differential equations in differential form, adhering to the convention for Itô stochastic
differential equations; see Remark 2.2.
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Remark 2.2 (On stochastic dynamics). One method of representing the uncertainty in the natural
input of water and the total volume measurement is to add noise to the dynamics, resulting in Itô
stochastic differential equations. Then, the ordinary differential equation (ODE) (2.3) is replaced
by

dv̂(i)(t) =
1

v(i) − v(i)
((
I(i)(t)− ϕ(i)Tur(t)− ϕ

(i)
S (t)

)
dt+ σ(i)v

(
t, v̂(i)(t)

)
dW

(i)
H

)
, 0 ≤ t ≤ T,

whereW
(i)
H is the ith component of a standard ND-dimensional Brownian motion, and the diffusion

coefficient is σ
(i)
v /

(
v(i) − v(i)

)
. The requirement that 0 ≤ v̂(i)(t) ≤ 1, for t > 0, is enforced,

almost surely, by modeling σ
(i)
v (t, 0) = σ

(i)
v (t, 1) = 0, ∀ t ∈ [0, T ], and maintaining the outflow

constraints (2.4). We emphasize that σ
(i)
v should belong to a parametric family of functions that

can be calibrated against data, such that (s.t.) it vanishes at the boundaries (i.e., σ
(i)
v (t, 0) =

σ
(i)
v (t, 1) = 0, for 0 ≤ t ≤ T ).
Analogously, the diffusion term σ

(i)
v (t, v̂(i)(t))/

(
v(i) − v(i)

)
dW

(i)
H is added to (2.5) to obtain the

stochastic dynamics for the downstream dams. The time delays in the controls lead to a non-
Markovian stochastic OC (SOC) problem. The proposed approach to these problems is analogous
to the one used in this paper to deal with the time delays in the deterministic dam dynamics.
We leave a more detailed description of the stochastic case with corresponding numerical tests for
future work.

The stochastic nature of the dam dynamics does not violate the mass conservation law. The
approach considers the uncertainty related to the natural input of water (inflow) or measurements
[30, 26, 11]. There are alternative ways to represent this uncertainty, for instance, by adding noise
to the inflow I in (2.3) and (2.5), which may result in a more complex structure of the SOC. The

coefficients σ
(i)
v can also be considered artificial diffusion coefficients that may add more regularity

to the viscosity solution of the associated HJB equation.

Hydropower generation The power generated by a dam primarily depends on two quantities:
i) the flow ϕTur through the turbines, and ii) the difference between the upstream water level, H,
and the downstream water level, h0, measured relative to a common reference frame. Increasing
the flow ϕTur + ϕS has the side effect of slightly decreasing the height difference. The strength
of this effect for different flows and water levels depends on the dam geometry. Motivated by the
Uruguayan power system data used in Section 5, we consider this effect by linearly modeling the

generated power for the ith dam, P
(i)
H , in ϕ̂

(i)
Tur as

P
(i)
H (ϕ̂

(i)
Tur(t), v̂

(i)) = S(i)(v̂(i))ϕ̂
(i)
Tur(t),(2.8a)

S(i)(v̂(i)) = η(i)ϕ
(i)
Tur(v̂

(i))
(
H(i)(v̂(i))− h(i)0 − d

(i)ϕ
(i)
Tur

)
,(2.8b)

where h
(i)
0 is considered independent of ϕTur+ϕS , and the dam specific, positive model parameters

η(i) and d(i) are calibrated to the data. The upstream water level, H(i), may have a complicated
dependency on the volume, v̂(i). The water level is typically modeled as a polynomial of v̂(i)

(see [36] and (5.2)). These polynomials should be increasing and satisfy the constraints implied by
the corresponding constraints on the volumes.
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Finally, we model the total cost of generating power by the ith dam in [0, T ] using

C
(i)
H (T ) = K

(i)
H

∫ T

0

(
ϕ
(i)
Tur(t) + ϕ

(i)
S (t)

)
dt,(2.9)

where K
(i)
H > 0 is the given water cost of the ith dam.

Remark 2.3 (On quadratic hydropower generation models). A frequently used alternative to (2.8)
is

(2.10) P
(i)
H

(
ϕ
(i)
Tur, ϕ

(i)
S ; v(i)

)
= η(i) ϕ

(i)
Tur

(
H(i)(v(i))− h(i)0 − d

(i)
(
ϕ
(i)
Tur + ϕ

(i)
S

))
.

This is quadratic in the controls ϕ
(i)
Tur and ϕ

(i)
S ; thus, the power balance constraint changes from

linear to nonlinear, requiring adjustments to the numerical minimization of the Hamiltonian.

Remark 2.4 (The cost of water). The coefficients {K(i)
H }

ND
i=1 in (2.9) reflect the future value of

water, that is, how valuable the hydropower sources (dams) are compared to other sources. These
coefficients represent future profits or losses depending on the ability of the dams to substitute other

costly sources, such as fuel. In practice, {K(i)
H }

ND
i=1 are outputs of mid-term optimization models,

and in this work, we consider them inputs.

Remark 2.5 (Reversible turbines). In modern reversible hydroelectric power stations, the turbine
can be reversed to pump water from a downstream to an upstream reservoir. Water is usually
pumped upstream at times of low electricity demand to build up reserves to produce energy during
peak hours, thus balancing the load and making a profit on the price difference. We leave adding
this feature to the proposed dam modeling and studying its consequences on the SOC problem for
future work.

2.2.2 Storage Capacity Model

In this power network system, we add storage capacity modeled as a single large battery, which is
fully controllable, and its state is its capacity, a(t). We assume that it has no energy loss when
used and that no associated operational costs or aging effects exist.

We let A be the maximum battery capacity and PA(t) be the instantaneous power supplied by
the battery to the system at time t. As the battery can be charged, PA(t) < 0, and discharged,
PA(t) > 0, we define the extremes, PA and PA, s.t. PA(t) ∈ [PA, PA], ∀t ∈ [0, T ]. Generally,
|PA| < PA (i.e., the battery can supply higher power than it can absorb from the grid).

As above, we use the normalized capacity, â(t), and normalized control, ϕ̂A(t), satisfying PA(t) =
PAϕ̂A(t). With this normalization, ϕ̂A(t) ∈ [−Cbat, 1], where the constant Cbat = −PA/PA > 0 is
a characteristic of the battery. The normalized capacity dynamics, â(t), is

dâ(t) = −PA
A
ϕ̂A(t)dt, 0 ≤ t ≤ T,(2.11)

with the initial condition â(0) = â0 ∈ [0, 1]. The requirement that 0 ≤ â(t) ≤ 1, for t > 0, is
enforced through the constraints on charging and discharging at the extremes:{

PA(t) ≥ 0, if â(t) = 1,

PA(t) ≤ 0, if â(t) = 0.
(2.12)
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Remark 2.6 (A more general model for battery dynamics). Battery dynamics can account for a
possible loss of power and the eventual uncertainty in the charge level. In this case, the dynamics
can be modeled as

(2.13) dâ(t) = −PA
A
ϕ̂A(t)

(
1− δA1{ϕ̂A(t)<0}

)
dt+ â(t)σA dWA, 0 ≤ t ≤ T,

where δA > 0 is a power loss factor, σA denotes the diffusion coefficient of the battery (associated
with the capacity uncertainty) s.t. σA(0) = σA(1) = 0, and WA is the corresponding Brownian
motion.

2.2.3 Fossil Fuel Station Model

This work considers FFSs to be without a state but with a control, which is their power. Moreover,

we assume that, for the ith FFS, both the cost associated with the generated power, K
(i)
F > 0, and

the maximum available power, P
(i)
F > 0, can change weekly or daily but are considered constant

during at least one entire day.

We model the power generation of the ith station, P
(i)
F (t), as linear w.r.t. the normalized fossil

fuel control, ϕ̂
(i)
F (t), that is,

P
(i)
F

(
ϕ̂
(i)
F (t)

)
= P

(i)
F ϕ̂

(i)
F (t), 0 ≤ t ≤ T.(2.14)

We ignore the finite start-up time and minimum stable capacity of FFSs and model the total cost
of generating power using the ith FFS between time t = 0 and time T , as follows:

C
(i)
F (T ) = K

(i)
F P

(i)
F

T∫
0

ϕ̂
(i)
F (t)dt.(2.15)

Remark 2.7. In the current work, we do not deal with the unit commitment optimization (non-
linear mixed-integer optimization) problem [24, 6, 37], which determines the optimal operation
schedule of the different power units to meet the demand under various constraints (e.g., start-up
and shut-down costs). We leave this consideration in the proposed models for future work.

2.3 Model Summary

The state and control vectors are denoted by X(t) and ϕ̂(t), respectively:

X(t) :=
(
v̂(1)(t), . . . , v̂(ND)(t), â(t)

)
,

ϕ̂(t) :=
(
ϕ̂
(1)
Tur(t), . . . , ϕ̂

(ND)
Tur (t), ϕ̂

(1)
S (t), . . . , ϕ̂

(ND)
S (t), ϕ̂

(1)
F (t), . . . , ϕ̂

(NF )
F (t), ϕ̂A(t)

)
.

For fixed initial conditions and deterministic forecasts of DE and I(i), the control is a measurable2

function ϕ̂ : [0, T ]→ [0, 1]ND+NF × [−Cbat, 1], and the controlled state evolution is X(t) : [0, T ]→
[0, 1]ND+1. Together, these satisfy the following dynamics and constraints.

2We add extra smoothness requirements in Section 3.4
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Dynamics 1 (Resource Dynamics). The components of the state vector X(t) (i.e., the normalized
volumes, v̂(i), for i = 1, . . . , ND, and battery capacity, â) satisfy the controlled dynamics in [0, T ]:

dv̂(i)(t) =
1

v(i) − v(i)

I(i)(t) + ∑
j∈B(i)

(
ϕ
(j)
Tur(t− τj) + ϕ

(j)
S (t− τj)

)
− ϕ(i)Tur(t)− ϕ

(i)
S (t)

 dt,

dâ(t) = −PA
A
ϕ̂A(t)dt,

where ϕ
(j)
Tur/S(t− τj) = ϕ

(j)
Tur/S

(
v̂(j)(t− τj)

)
ϕ̂
(j)
Tur/S(t− τj). All initial conditions, v̂(i)(0) and â(0),

are in [0, 1].

Constraints 1 (Instantaneous Control Constraints). The ranges of the normalized controls are

0 ≤ ϕ̂(i)Tur(t), ϕ̂
(i)
S (t), ϕ̂

(j)
F (t) ≤ 1, i = 1, 2, . . . , ND, j = 1, 2, . . . , NF

−Cbat ≤ ϕ̂A(t) ≤ 1,

with the further state-dependent constraints

ϕ̂A(t) ≥ 0, if â(t) = 1,

ϕ̂A(t) ≤ 0, if â(t) = 0,

and, for any i = 1, 2, . . . , ND s.t. B(i) is empty,

ϕ
(i)
Tur(1)ϕ̂

(i)
Tur(t) + ϕ

(i)
S (1)ϕ̂

(i)
S (t) ≥ I(i)(t), if v̂(i)(t) = 1,

ϕ
(i)
Tur(0)ϕ̂

(i)
Tur(t) + ϕ

(i)
S (0)ϕ̂

(i)
S (t) ≤ I(i)(t), if v̂(i)(t) = 0.

Furthermore, given the deterministic forecast of the effective demand, DE(t), the controls are
constrained to satisfy

DE(t) =

ND∑
i=1

S(i)(v̂(i))ϕ̂
(i)
Tur(t) +

NF∑
i=1

P
(i)
F ϕ̂

(i)
F (t) + PAϕ̂A(t).

Constraints 2 (Time-Delayed Control Constraints). For any i = 1, 2, . . . , ND s.t. B(i) is nonempty,

ϕ
(i)
Tur(1)ϕ̂

(i)
Tur(t) + ϕ

(i)
S (1)ϕ̂

(i)
S (t) ≥ I(i)(t) +

∑
j∈B(i)

(
ϕ
(j)
Tur(t− τj) + ϕ

(j)
S (t− τj)

)
, if v̂(i)(t) = 1,

ϕ
(i)
Tur(0)ϕ̂

(i)
Tur(t) + ϕ

(i)
S (0)ϕ̂

(i)
S (t) ≤ I(i)(t) +

∑
j∈B(i)

(
ϕ
(j)
Tur(t− τj) + ϕ

(j)
S (t− τj)

)
, if v̂(i)(t) = 0.

As a consequence of the dynamics and constraints, X(t) ∈ [0, 1]ND+1, for all times.
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3 Optimal Control Formulation

Section 3.1 formulates the OC problem of the complete linked system with the cost, power gen-
eration, and state dynamics described in Section 2.2, given the demand (2.1). Then, Section 3.2
introduces the continuous-time Lagrangian relaxation, leading to a dual-problem formulation to
address the time delays in the hydropower dynamics. Finally, Sections 3.3 and 3.4 explain how to
obtain nearly optimal admissible controls that are sufficiently smooth.

3.1 Primal Problem

According to the cost models (2.9) and (2.14), the instantaneous and total costs associated with
the control ϕ̂ on [0, T ] are as follows:

CI

(
ϕ̂(t),X(t)

)
=

ND∑
i=1

K
(i)
H

(
ϕ
(i)
Tur

(
v̂(i)(t)

)
ϕ̂
(i)
Tur(t) + ϕ

(i)
S

(
v̂(i)(t)

)
ϕ̂
(i)
S (t)

)
+

NF∑
i=1

K
(i)
F P

(i)
F ϕ̂

(i)
F (t),

(3.1a)

C
(
ϕ̂
)
=

∫ T

0
CI

(
ϕ̂(t),X(t)

)
dt.(3.1b)

The goal is to minimize the total cost C in (3.1b), given the dynamics and constraints in Section 2.3.
Then, the OC problem becomes the following.

Problem 1 (Primal with Time Delays). Given the initial data, X(0) ∈ [0, 1]ND+1, and forecasts,

DE(t) and
{
I(i)(t)

}ND

i=1
, for 0 ≤ t ≤ T , find

ϕ̂
∗
= argmin

ϕ̂

C
(
ϕ̂
)
,

where the minimization is taken over all controls that satisfy Constraints 1 and 2 with Dynamics 1.

The time delays between the dams in Constraints 2 prevent using the classical dynamic pro-
gramming algorithm (see, e.g., [5, 4]), directly on Problem 1. One strategy sometimes used in
this context is to discretize the time interval, numerically approximate the dynamics, and impose
constraints on the control in the discretization points. That strategy leads to a large discrete, con-
strained optimization problem to which numerical optimization algorithms can be applied directly.
With such a strategy, the benefits provided by the structure of an OC problem, in particular the
applicability of dynamic programming, are lost. Other approaches to remove the time delays in-
clude state augmentation techniques enlarging the state space. However, the resulting reformulated
problem may have complicated a state and control, suffering from the curse of dimensionality. This
work proposes using Lagrangian relaxation over continuous-time constraints, which links the states
at different times. Section 3.2 explains this idea and how it is adapted to the considered problem.

3.2 Continuous-Time Lagrangian Relaxation and the Dual Problem

The continuous-time Lagrangian relaxation is based on the classical Lagrangian relaxation tech-
nique applied in constrained optimization problems. This approach allows solving an easier, dual
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problem (Problem 1) by relaxing the constraints using Lagrange multipliers. In this work, we adapt
this idea to the OC problem to address the delayed dynamics in continuous time. The relaxed for-
mulation enables stating an HJB equation [13] and solving the problem using appropriate numerical
techniques.

We let BU := ∪ND
i=1B(i) denote the set of all upstream dams. We introduce one virtual control,

ψ(j)(t), for each j ∈ BU , to match the corresponding time-delayed flow. The normalization constant
is defined as

ψ
(j)

= max
v̂∈[0,1]

(
ϕ
(j)
Tur(v̂) + ϕ

(j)
S (v̂)

)
, for j ∈ BU ,

with the corresponding normalized virtual controls

ψ̂(j)(t) =
ψ(j)(t)

ψ
(j)

, for j ∈ BU ,

The normalized virtual controls are denoted jointly by ψ̂(t) :=
{
ψ̂(j)(t) : j ∈ BU

}
. The following

two constraints express the goal of matching the time-delayed flows and the normalization of the
virtual controls. (The first constraint will be subject to Lagrangian relaxation below.)

Constraints 3 (Virtual Control Target). For any j ∈ BU ,

ψ
(j)
ψ̂(j)(t) = ϕ

(j)
Tur(t− τj) + ϕ

(j)
S (t− τj), for τj < t < T .

Constraints 4 (Virtual Control Range). For any j ∈ BU , 0 ≤ ψ̂(j)(t) ≤ 1, with t ∈ [τj , T ].

After the relaxation of Constraints 3 the range constraints only guarantee consistency with the
maximal possible outflows of the dams, not consistency with the maxima, considering the volume
v̂(j)(t − τj). Replacing the virtual controls satisfying Constraints 3 in Constraints 2 leads to the
following.

Constraints 5 (Relaxed Control Constraints). For any i = 1, 2, . . . , ND s.t. B(i) is nonempty,

ϕ
(i)
Tur(1)ϕ̂

(i)
Tur(t) + ϕ

(i)
S (1)ϕ̂

(i)
S (t) ≥ I(i)(t) +

∑
j∈B(i)

ψ
(j)
ψ̂(j)(t), if v̂(i)(t) = 1,

ϕ
(i)
Tur(0)ϕ̂

(i)
Tur(t) + ϕ

(i)
S (0)ϕ̂

(i)
S (t) ≤ I(i)(t) +

∑
j∈B(i)

ψ
(j)
ψ̂(j)(t), if v̂(i)(t) = 0.

The extended controls are denoted by ϕ̂E , where ϕ̂E(t) = (ϕ̂(t), ψ̂(t)) ∈ AE(t,X(t)). The set
of admissible controls, AE(t,X(t)), is given by Constraints 1, 4, and 5. We also use ϕ̂E ∈ AE as
shorthand for ϕ̂E(t) ∈ AE(t,X(t)), ∀t ∈ [0, T ]. Combining the extended controls with Dynamics 1
leads to a relaxed version of the dynamics and constraints.
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Dynamics 2 (Relaxed Resource Dynamics). The normalized volumes, v̂(i), for i = 1, . . . , ND, and
battery capacity, â, satisfy the controlled dynamics

dv̂(i)(t) =
I(i)(t)− ϕ(i)Tur(v̂(i))ϕ̂

(i)
Tur(t)− ϕ

(i)
S (v̂(i))ϕ̂

(i)
S (t)

v(i) − v(i)︸ ︷︷ ︸
g
(i)
H (t,v̂(i)(t),ϕ̂(t)) :=

+
1

v(i) − v(i)
∑
j∈B(i)

ψ
(j)
ψ̂(j)(t)dt,

dâ(t) = −PA
A
ϕ̂A(t)dt,

in [0, T ], with all initial conditions, v̂(i)(0) and â(0), in [0, 1].

To formulate a dual problem associated with Problem 1, we relax Constraints 3 by introducing
bounded time-continuous deterministic Lagrange multipliers, λ(t) = {λj(t) : j ∈ BU}, where each
λj : [τj , T ] 7→ R is associated with one of the constraints in Constraints 3. For each j ∈ BU , we add
the following integral to the cost functional in (3.1b):∫ T

τj

λj(t)
(
ψ
(j)
ψ̂(j)(t)−

(
ϕ
(j)
Tur(v̂

(j))ϕ̂
(j)
Tur(t− τj) + ϕ

(j)
S (v̂(j))ϕ̂

(j)
S (t− τj)

))
dt

=

∫ T

τj

λj(t)ψ
(j)
ψ̂(j)(t) dt−

∫ T−τj

0
λj(t+ τj)

(
ϕ
(j)
Tur(v̂

(j))ϕ̂
(j)
Tur(t) + ϕ

(j)
S (v̂(j))ϕ̂

(j)
S (t)

)
dt

to obtain the Lagrangian

(3.3) L(ϕ̂E ,λ) = C
(
ϕ̂
)
+
∑
j∈BU

∫ T

τj

λj(t)ψ
(j)
ψ̂(j)(t) dt

−
∑
j∈BU

∫ T−τj

0
λj(t+ τj)

(
ϕ
(j)
Tur(v̂

(j))ϕ̂
(j)
Tur(t) + ϕ

(j)
S (v̂(j))ϕ̂

(j)
S (t)

)
dt.

The set of allowed Lagrange multipliers is denoted as Λ.

Problem 2 (Relaxed OC Problem). Given the initial data, X(0) ∈ [0, 1]ND+1, Lagrange multipli-

ers, λ(t), and forecasts, DE(t) and
{
I(i)(t)

}ND

i=1
, for 0 ≤ t ≤ T , find

ϕ̂
∗
E(λ) = argmin

ϕ̂E∈AE

L
(
ϕ̂E ,λ

)
,

where ϕ̂E ∈ AE indicates that the minimization is taken over all controls that satisfy Constraints 1,
4, and 5 with Dynamics 2.

As a consequence of the Lagrange relaxation, the extended controls are no longer coupled in
time for a fixed multiplier λ. Therefore, the dynamic programming principle applies to Problem 2.
Finally, the dual problem associated with Problem 1 is as follows.

Problem 3 (Dual Problem). Find

λ∗ = argmax
λ∈Λ

θ (λ) ,
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where the dual function, θ (λ), is given by

θ (λ) = L
(
ϕ̂
∗
E(λ),λ

)
,(3.4)

and ϕ̂
∗
E(λ) solves Problem 2, given λ.

The structure of the Lagrange multipliers, λ, or equivalently the set Λ, depends on the consid-
ered power system type. We only introduce Lagrange multipliers in systems with connected dams.
In the special case considered in this paper, of deterministic dynamics for the connected dams λ
are deterministic Lagrange multipliers. In this case, we require only basis functions in time to
approximate λ. We provide more details in Section 4.2. In the more general case of a system of
connected dams and stochastic dynamics (e.g., wind or solar), λ is the stochastic process that may
depend on the whole path of the wind or solar power. For instance, λ can be considered the price
associated with the hydropower source, given the wind/solar state. The water is more valuable
in times of low wind than when the wind is strong. Then, to approximate λ, we require basis
functions in time and w.r.t. realizations (ω). The case of stochastic dynamics is left as the subject
of future work.

The HJB equation related to the relaxed OC problem. An approximation, θ(λ), of the
solution θ(λ) to Problem 2 is obtained by numerically approximating the associated first-order HJB
initial value problem:{

∂u
∂t +HR (t, v̂, â,λ, Du) = 0, t ∈ [0, T ], [v̂, â] ∈ [0, 1]ND+1

u(T, ·, ·;λ) = 0
(3.5)

where the Hamiltonian, HR, is given by

HR (t, v̂, â,λ, Du) = min
ϕ̂E(t)∈AE(t,X(t))

FR

(
ϕ̂E(t); t, v̂, â,λ, Du

)
.(3.6)

In the definition of HR, we abuse the notation by reusing the notation ϕ̂E(t) for a variable with
obvious connections to OCs at time t. We recall that ϕ̂E(t) ∈ AE(t,X(t)) means that it is subject
to Constraints 1, 4, and 5 at time t ∈ [0, T ]. With this notation, the objective function is

(3.7)

FR

(
ϕ̂E(t); t, v̂, â,λ, Du

)
= CI

(
ϕ̂(t),X(t)

)
− PA

A
ϕ̂A(t)

∂u

∂â
(t) +

ND∑
i=1

g
(i)
H

(
t, v̂(i), ϕ̂(t)

) ∂u

∂v̂(i)
(t)

+

ND∑
i=1

 ∑
j∈B(i)

ψ
(j)
ψ̂(j)(t)

v(i) − v(i)

 ∂u

∂v̂(i)
(t) +

∑
j∈BU

λj(t)1[τj ,T ](t)ψ
(j)
ψ̂(j)(t)

−
∑
j∈BU

λj(t+ τj)1[0,T−τj ](t)
(
ϕ
(j)
Tur(v̂

(j))ϕ̂
(j)
Tur(t) + ϕ

(j)
S (v̂(j))ϕ̂

(j)
S (t)

)
.

In this function, 1Y (·) denotes the indicator function with support on Y , and Du denotes the vector
of first-order partial derivatives of u w.r.t. the state-space variables. Boundary conditions do not
need to be imposed due to the characteristics of the deterministic first-order partial differential
equation (PDE) in (3.5). Section 4.1 discusses the numerical treatment of (3.5).
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3.2.1 Finite-Dimensional Approximation of the Dual Problem

The Lagrange multipliers λ(t) = {λj(t), j ∈ BU} in Problem 3 are generally piecewise contin-
uous functions, and Problem 3 is an infinite-dimensional optimization problem aiming to satisfy
Constraints 3 pointwise in time. We approximate the infinite-dimensional problem by satisfying
each finite number of subintervals of [0, T ]. That is, the integral of the pointwise violation of

Constraints 3, ψ
(j)
ψ̂(j)(t) − ϕ

(j)
Tur(t − τj) − ϕ

(j)
S (t − τj), over each such subinterval should equal

zero. This approach corresponds to an approximation of the Lagrange multipliers using piece-

wise constant functions. More precisely, for each j ∈ BU , we define the grid t
(j)
k := τj + k∆tλj ,

k ∈ {0, 1, ...,mj}, corresponding to the uniform time step size ∆tλj = (T−τj)/mj , and approximate

λj(t) ≈ λ̂j(t) :=
mj−1∑
k=0

α̂
(j)
k 1

[t
(j)
k ,t

(j)
k+1)

(t), t ∈ [τj , T ], j ∈ BU ,(3.8)

where each α̂αα(j) = (α̂
(j)
1 , . . . , α̂

(j)
mj ) is a real vector. For a given time discretization, we define

Λ̂ =
{
λ̂ : with λ̂j defined in (3.8) and α̂αα(j) ∈ Rmj , j ∈ BU

}
.(3.9)

In this approximation, small dual gaps can be obtained even when the time discretizations for λ̂
are much coarser than the time discretizations related to the dynamics and controls (see Section 5).

For a simple function λ̂ ∈ Λ̂, the Lagrangian becomes

L(ϕ̂E , λ̂) = C
(
ϕ̂
)
+
∑
j∈BU

mj−1∑
k=0

α̂
(j)
k

(
ξ
λ̂j
θ
)
k
,

with(
ξ
λ̂j
θ
)
k
=

∫ t
(j)
k+1

t
(j)
k

(
ψ
(j)
ψ̂(j)(t)− ϕ(j)Turϕ̂

(j)
Tur(t− τj)− ϕ

(j)
S ϕ̂

(j)
S (t− τj)

)
dt

= ψ
(j)
∫ t

(j)
k+1

t
(j)
k

ψ̂(j)(t)dt−
∫ t

(j)
k+1−τj

t
(j)
k −τj

(
ϕ
(j)
Tur

(
v̂(j)(t)

)
ϕ̂
(j)
Tur(t) + ϕ

(j)
S

(
v̂(j)(t)

)
ϕ̂
(j)
S (t)

)
dt,(3.10)

for j ∈ BU and 0 ≤ k ≤ mj − 1. The subgradient of θ(·), in (3.4), at λ̂ is ξξξ
λ̂λλ
θ := {ξ

λ̂j
θ, j ∈ BU}.

From the optimization viewpoint, choosing Λ = Λ̂, the numerical approximation to Problem 3,
discussed in Section 4 is concave but generally not smooth. Therefore, we use subgradient-based
methods to solve Problem 3.

Remark 3.1 (On inequality constraints). If having more water in a dam is better, then the
equality constraints can be replaced with inequality constraints and signed Lagrange multipliers.
This a priori information can be beneficial for the numerical methods. However, determining this
information is challenging because completely filling a dam may lead to spillage, decreasing the
power of the dam due to the raised downstream water level.
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Remark 3.2 (On the interpretation of optimal Lagrange multipliers). The optimal Lagrange multi-
pliers λ∗ have a meaningful interpretation. Suppose that, for some j ∈ BU , we perturb Constraints 3

at one interval [t
(j)
k , t

(j)
k+1) of the time grid defined in Section 3.2.1 by an amount ϵ on average, so

that ∫ t
(j)
k+1

t
(j)
k

ψ
(j)
ψ̂(j)(t)− (ϕ

(j)
Tur(t− τj) + ϕ

(j)
S (t− τj))dt = ϵ, for t

(j)
k ≤ t < t

(j)
k+1.(3.11)

Through the dependency of the perturbed OC ϕ̂
∗
E(ϵ) on ϵ, the optimal value of the objective

function (3.1b) of the primal problem has a parametric dependence on ϵ. We call the resulting

optimum ζ(ϵ) := C
(
ϕ̂
∗
E(ϵ)

)
. If we differentiate w.r.t. ϵ, at ϵ = 0, we obtain (see Section 5.6.3 in

[7], or Section 6.2 in [2]) the following:

∂ζ

∂ϵ
(0) = −λ̂∗j (t

(j)
k ).(3.12)

That is, the negative optimal Lagrange multiplier is the derivative of the optimal objective function
ζ(ϵ) w.r.t. the perturbation of the constraint on the virtual controls, indicating how much the cost

can be reduced if more water arrives at a downstream dam on the time interval [t
(j)
k , t

(j)
k+1). With

ϵ = 0, the water (ϕ
(j)
Tur(t − τj) + ϕ

(j)
S (t − τj)) sent at time t − τj from an upstream dam must

match the water received ψ
(j)
ψ̂(j)(t) at time t by a downstream dam precisely. In economics,

λ̂∗j (ϵ = 0) is called the shadow price or marginal cost of the resource in question, which is water
in this case. After relaxing the constraint, the following analogy applies. Suppose that instead
of water flowing down the river, the upstream dam sells water at time t − τj to a third party
and that the downstream dam buys water from the same party at time t. The term −λ∗j (t +
τj)1[0,T−τj ](t)

(
ϕ
(j)
Tur(v

(j)(t))ϕ̂
∗(j)
Tur(t) + ϕ

(j)
S (v(j)(t))ϕ̂

∗(j)
S (t)

)
in the objective function (3.7), shifted

by −τj , can be interpreted as the profit gained by selling the water by the upstream dam at time

t− τj for the optimal price λ∗j (t). In addition, the term λ∗j (t)1[τj ,T ](t)ψ
(j)
ψ̂(j)(t) represents the cost

of buying water by the downstream dam at time t (sold by the upstream dam at time t− τj) at the
optimal price λ∗j (t). The optimal price λ∗j (t) ensures that the volume of water sold by the upstream
dam and bought by the downstream dam match. As demonstrated in the next section, this idea is
key for constructing an admissible solution to the primal problem.

3.3 Construction of Nearly Optimal Admissible Controls for Problem 1

In order to construct nearly optimal, admissible, controls for Problem 1 based on the solution to its
relaxed, dual, Problem 3, with corresponding control-state paths (ϕ∗

E ,X
∗
E), the idea is to consider

the dual function θ evaluated at the optimal Lagrange multipliers, λ∗(t), and enforce Constraints 3

by substituting the virtual controls ψ(j)(t) with ϕ
(j)
Tur(t− τj) + ϕ

(j)
S (t− τj) for τj < t < T , j ∈ BU .

This substitution is justified by the interpretation of the optimal Lagrange multipliers given earlier.
The optimal price λλλ∗(t) guarantees that the amount of water sold by the upstream dam and bought
by the downstream dam nearly match. At time t, we must only decide how much water to sell for
the upstream dam, and the optimal price λλλ∗(t) ensures that the optimal decision for the downstream
dam is to buy the same amount of water at time t+ τj .
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We compute the admissible control-state paths, (ϕ∗
ad,X

∗
ad), corresponding to λ∗, forward in

time following Dynamics 1. The state vector X∗
ad =

(
v
∗(1), . . . , v

∗(ND), a∗
)
and normalized controls

ϕ∗
ad in the flux are obtained at time t as minimizers of an objective function corresponding to a

modified Hamiltonian using the derivatives of the value function { ∂u
∂v̂(i)
}ND

i=1 and ∂u
∂â obtained when

solving the dual problem. At time t ∈ [0, T ], this objective function is viewed as a function of
the control at time t, depending on data at time t, namely t, X∗

ad(t), Du (t,X
∗
ad(t)), and λ

∗(t).
Furthermore, the data defining the function include the Lagrange multiplier λ∗ at later times

t+ := ∪j∈BU
{t+ τj} ∩ [t, T ]

and ϕ∗
ad and X∗

ad at earlier times

t− := ∪j∈BU
{t− τj} ∩ [0, t].

In the objective function for the control at time t, the ϕ
∗(j)
ad (t − τj) are not controls but inputs

determined at earlier times, defined to take zero values in the corresponding time intervals [0, τj ],
as described after equation (2.6). The objective function is

(3.13) Fad

(
ϕ∗
ad(t) ; t,X

∗
ad(t), Du (t,X

∗
ad(t)) , {λ∗(s)}s∈t∪t+ , {ϕ

∗
ad(s),X

∗
ad(s)}s∈t−

)
= CI (ϕ

∗
ad(t))

− PA

A
ϕ∗
ad,A(t)

∂u

∂â
(t,X∗

ad(t)) +

ND∑
i=1

g
(i)
H

(
t, v∗(i),ϕ∗

ad(t)
) ∂u

∂v̂(i)
(t,X∗

ad(t))

+

ND∑
i=1

 ∑
j∈B(i)

ϕ
(j)
Tur(v

∗(j)(t− τj))ϕ∗(j)
ad,Tur(t− τj) + ϕ

(j)
S (v∗(j)(t− τj))ϕ∗(j)

ad,S(t− τj)
v(i) − v(i)

 ∂u

∂v̂(i)
(t,X∗

ad(t))

+
∑
j∈BU

λ∗j (t)1[τj ,T ](t)
(
ϕ
(j)
Tur(v

∗(j)(t− τj))ϕ∗(j)
ad,Tur(t− τj) + ϕ

(j)
S (v∗(j)(t− τj))ϕ∗(j)

ad,S(t− τj)
)

−
∑
j∈BU

λ∗j (t+ τj)1[0,T−τj ](t)
(
ϕ
(j)
Tur(v

∗(j)(t))ϕ
∗(j)
ad,Tur(t) + ϕ

(j)
S (v∗(j)(t))ϕ

∗(j)
ad,S(t)

)
.

In addition, the modified Hamiltonian is

(3.14) H∗
ad

(
t,X∗

ad(t) ; Du (t,X
∗
ad(t)) , {λ∗(s)}s∈t∪t+ , {ϕ

∗
ad(s),X

∗
ad(s)}s∈t−

)
= min

ϕ∗
ad(t)∈A(t,X∗

ad(t))
Fad

(
ϕ∗
ad(t) ; t,X

∗
ad(t), Du (t,X

∗
ad(t)) , {λ∗(s)}s∈t∪t+ , {ϕ

∗
ad(s),X

∗
ad(s)}s∈t−

)
,

where the space of admissible controls, A(t,X∗
ad(t)), is characterized by Constraints 1 and Con-

straints 2. Using the obtained admissible controls in the primal cost function (3.1b), C (ϕ∗
ad), for

ϕ∗
ad ∈ A, given λ∗, results in a nearly optimal primal solution (i.e., an upper bound for the exact

primal solution).

3.4 Smoothing of Nearly Optimal Controls

The nearly optimal admissible controls for the primal problem constructed in Section 3.3 may have
time variations that are too fast for practical implementation by the operator. To motivate the
approach to smoothing the controls, we consider a penalized objective function

(3.15) C(ϕϕϕ) + βββTVVV (ϕϕϕ;λλλ,βββ),
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where the control ϕϕϕ depends on λλλ and βββ. In addition, β :=
(
{β(i)Tur, β

(i)
S }

ND
i=1, {β

(i)
F }

NF
i=1, βA

)
is the

vector of nonnegative penalizing coefficients and

(3.16) VVV (ϕϕϕ;λλλ,βββ) :=
({∫ T

0
(∂tϕ

(i)
Tur)

2dt,

∫ T

0
(∂tϕ

(i)
S )2dt

}ND

i=1
,
{∫ T

0
(∂tϕ

(i)
F )2dt

}NF

i=1
,

∫ T

0
(∂tϕA)

2dt
)

is the vector whose elements are the squared L2-norms of the time derivatives of the controls.
Because of the derivatives of the controls, we cannot directly associate an HJB equation to the

minimization of (3.15). However, the form of this penalized objective function provides intuition
on how to construct a smoothed admissible path. We compute the control-state paths, (ϕ∗

sm,X
∗
sm),

corresponding to λ∗, forward in time again following Dynamics 1, for X∗
sm =

(
v
∗(1), . . . , v

∗(ND), a∗
)
,

where the normalized controls ϕ∗
sm in the flux are obtained at time t as minimizers of an objective

function corresponding to another modified Hamiltonian. We approximate the derivatives of the

controls in (3.15) using finite differences, (e.g., ∂tϕA ≈ PAϕ̂A(t)−PAϕ̂A(t−δt)
δt ), where δt is related to

the numerical approximation scheme.3 This approach leads to a penalized version of (3.13) in

Fsm

(
ϕ∗
sm(t) ; t,X

∗
sm(t),βββ,Du (t,X

∗
sm(t)) , {λ∗(s)}s∈t∪t+ , {ϕ

∗
sm(s),X

∗
sm(s)}s∈t−∪{t−δt}

)
= Fad

(
ϕ∗
sm(t) ; t,X

∗
sm(t), Du (t,X

∗
sm(t)) , {λ∗(s)}s∈t∪t+ , {ϕ

∗
sm(s),X

∗
sm(s)}s∈t−

)
+

ND∑
i=1

β
(i)
Tur

ϕ(i)Tur(v̂(i)(t))ϕ∗(i)
sm,Tur(t)− ϕ

(i)
Tur(v̂

(i)(t− δt))ϕ∗(i)
sm,Tur(t− δt)

δt

2

+

ND∑
i=1

β
(i)
S

ϕ(i)S (v̂(i)(t))ϕ
∗(i)
sm,S(t)− ϕ

(i)
S (v̂(i)(t− δt))ϕ∗(i)

sm,S(t− δt)
δt

2

+

NF∑
i=1

β
(i)
F

P (i)
ϕ
∗(i)
sm,F (t)− P

(i)
ϕ
∗(i)
sm,F (t− δt)

δt

2

+ βA

(
PAϕ

∗
sm,A(t)− PAϕ∗

sm,A(t− δt)
δt

)2

,

corresponding to the penalized Hamiltonian

H∗
sm

(
t,X∗

sm(t) ; βββ,Du (t,X
∗
sm(t)) , {λ∗(s)}s∈t∪t+ , {ϕ

∗
sm(s),X

∗
sm(s)}s∈t−∪{t−δt}

)
(3.17)

= min
ϕ∗

sm(t)∈A(t,X∗
sm(t))

Fsm

(
ϕ∗
sm(t) ; t,X

∗
sm(t),βββ,Du (t,X

∗
sm(t)) , {λ∗(s)}s∈t∪t+ , {ϕ

∗
sm(s),X

∗
sm(s)}s∈t−∪{t−δt}

)
.

By varying βββ > 0, we determine the control path, which is close to the optimal path but smoother
i.e., a smoothed solution of the original primal problem, Problem 1). All controls do not need to be
penalized–only those that are impractical. Section 4.3 explains the procedure related to the tuning
of the penalizing coefficients β.

Similarly to Section 3.3, using the smoothed admissible controls in the primal cost func-
tion (3.1b) results in a nearly optimal primal solution, that is, an upper bound for the exact
primal solution:

C (ϕ∗
sm;λ

∗,βββ) = C (ϕ∗
sm) , for ϕ∗

sm ∈ A, given λ∗ and βββ.(3.18)
3In practice, if the numerical approximation uses nonuniform time discretizations, several different values of δt

can be used, but we omit this complication here.
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4 Optimal Control and Lagrangian Relaxation: Numerical Ap-
proach and Error Discussion

This section discusses the numerical approach to solving Problem 1, following the method described
in Section 3. We describe the setting where all of the dependent dams are serially connected along
one of the rivers, which is the case for the system modeled in Section 5. Along that river there
are ND

1 dams, numbered so that B(i) = i− 1, for i = 2, . . . , ND
1 , and BU = {1, . . . , ND

1 − 1}. The
remaining dams are numbered ND

1 + 1, . . . , ND, and all satisfy B(i) = {}.
The overall procedure is illustrated in Algorithm 4.1, and each block is explained in detail in

the following sections.

Algorithm 4.1 Steps of the approach

1: Initialize λ̃λλ(0) ← λλλ0, βββ ← βββ0, mj = 1, j ∈ BU , n = 1 (optimization level), and TOL denotes a
prescribed tolerance

2: while Relative duality gap (Error II in (4.6)) > TOL do
3: for k ← 1 to Niter do

4: Approximate θ(λ̃λλ
(k−1)

(n−1)) in (3.4) with θ̃(λ̃λλ
(k−1)

(n−1)) by solving the HJB equation (3.5) as
explained in Section 4.1.

5: Compute subgradients ξ
λ̃λλ
(k−1)

(n−1)

θ

6: λ̃λλ
(k)

(n) ← G(θ̃(λ̃λλ
(k−1)

(n−1)), ξλ̃λλ
(k−1)

(n−1)

θ̃): updating rule of the LMBM (see Section 4.2 and Ap-

pendix A)

7: end
8: Compute C̃(ϕ̃ϕϕ

∗
sm; λ̃λλ

∗
(n),β), an approximation of the admissible smooth cost (3.18) of Prob-

lem 1 as explained in Sections 3.4 and 4.3.

9: Evaluate the relative duality gap as in Error (II) in (4.6) between C̃(ϕ̃ϕϕ
∗
sm; λ̃λλ

∗
(n),β) and

θ(λ̃λλ
∗
(n))

10: n = n+1, mj = 2n−1, j ∈ BU and initialize λ̃λλ
(0)

(n) using λ̃λλ
∗
(n−1) and update β as in Section 4.3

11: end

4.1 Monotone Scheme for Solving the HJB Equation

To solve the HJB equation defined by (3.5)–(3.6) and obtain the numerical approximation θ̃(λ̃λλ
(k)

(n))

of the dual function θ(λ̃λλ
(k)

(n)) for a given λ̃λλ
(k)

(n), we employ the backward-in-time forward Euler upwind
finite-difference scheme [39], which provides a convergent approximation to the solution of the
HJB equation under certain conditions. Below, we explain the details of the scheme adapted to
this context.

We consider (t,x) ∈ (0, T ) × [0, 1]ND+1, x := (x(1), ..., x(ND+1)), and introduce the following
set of indices in NND+1, i := (i1, . . . , iND+1), i

+
k = (i1, . . . , ik−1, ik + 1, ik+1, . . . , iND+1), and i−k :=

(i1, . . . , ik−1, ik − 1, ik+1, . . . , iND+1). We let {Mk}ND+1
k=1 ∈ NND+1

+ and N ∈ N+ s.t. {∆x(k) =

1/Mk}ND+1
k=1 and ∆t = T/N . We consider a uniform grid, D := D∆t × D∆x(1) × · · · × D∆x(ND+1)

,
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defined by

D∆x(k) := {0 = x
(k)
0 < x

(k)
1 = x

(k)
0 +∆x(k) < · · · < x

(k)
Mk

= 1}, 1 ≤ k ≤ ND + 1,

D∆t := {0 = t0 < t1 = t0 +∆t < · · · < tN = T}.

We represent the drift terms of Dynamics 2 with f = (f1, . . . , fND+1), where, at each (tj ,xi) ∈ D,
we have the following:

fk(tj ,xi, ϕ̂E) =


I(k)(tj)−ϕ

(k)
T (x

(k)
ik

)ϕ̂
(k)
T (tj)−ϕ

(k)
S (x

(k)
ik

)ϕ̂
(k)
S (tj)+

∑
l∈B(k) ψ

(l)
ψ̂(l)(tj)

v(k)−v(k) , k = 1, . . . , ND,

−
P̂A(x

(k)
ik

)

A
ϕ̂A(tj), k = ND + 1.

(4.1)

Moreover, we define f j
+

k,i (ϕ̂E) := max{fk(tj ,xi, ϕ̂E), 0} and f
j−

k,i (ϕ̂E) := min{fk(tj ,xi, ϕ̂E), 0}.
We let U ji denote the numerical approximation of u(t,x;λ) in (3.5) at point (tj ,xi). Then, the

upwind finite-difference scheme is given by


Uj−1
i −Uj

i
∆t =

∑ND+1
k=1

(
f j

+

k,i (ϕ̂
j

E,i)D
+
k,iU

j + f j
−

k,i (ϕ̂
j

E,i)D
−
k,iU

j
)
+ L(tj ,xi, ϕ̂

j

E,i;λ),

ϕ̂
j

E,i := argmin
ϕ̂E∈AE(t,X(t))

[∑ND+1
k=1

(
f j

+

k,i (ϕ̂E)D
+
k,iU

j + f j
−

k,i (ϕ̂E)D
−
k,iU

j
)
+ L(tj ,xi, ϕ̂E ;λ)

]
,

(4.2)

where D+
k,iU

j and D−
k,iU

j are the upwind derivatives given by

D+
k,iU

j =
U j
i+k
− U ji

∆x(k)
, D−

k,iU
j =

U ji − U
j

i−k

∆x(k)
.

Additionally, L(tj ,xi, ϕ̂E ;λ) is the running cost part of (3.7) evaluated at (tj ,xi).
To ensure the stability of the upwind finite-difference scheme (4.2), we impose the Courant–

Friedrichs–Lewy (CFL) condition

(4.3) ∆t

ND+1∑
k=1

||fk||∞
∆x(k)

≤ 1.

Remark 4.1. In general, an upwind finite-difference scheme requires the computational domain
to be hyperpyramidal to preserve the upwind structure of the derivatives at the boundaries of the
domain. However, in this case, all drift terms fk naturally have a sign at the boundaries allowing
the use of the interior point for the derivative approximation.

Upon solving the HJB equation with a given λ̃λλ
(k)

(n), we have U jiii at every point of the grid

(tj ,xxxiii) ∈ D. This approach allows computing the numerical OC-state path (ϕ̃ϕϕ
∗
E , X̃XX

∗
) forward in

time starting from the initial conditions XXX(0) and using Dynamics 2. The controls that appear in

Dynamics 2 are obtained by minimizing (3.7) at a current point of the state path X̃XX
∗
, which may

be a point outside of the grid D. The values of the derivatives of the value function at those points
are interpolated linearly from the derivatives of the value function at the nearest grid points. The

subgradient ξξξ
λ̃λλ
(k)

(n)

θ is computed according to (3.10) over the OC-state path (ϕ̃ϕϕ
∗
E , X̃XX

∗
).

20



4.2 Dual Problem Optimization

This section explains how we solve the nonsmooth concave dual optimization (Problem 3) after
approximating the dual function for a given λλλ, as explained in Section 4.1. The optimization is
conducted in two stages: (i) construction of an approximation, λ̂(t), of λ(t) with basis functions
in time, as in (3.8), and (ii) numerical optimization of the coordinates of the approximated version
λ̂(t) resulting in the final approximation of the Lagrangian multipliers functions, λ̃(t).

4.2.1 Refinement of the Lagrangian Multiplier Functions

We construct the approximation as explained in Section 3.2. Increasing the level of refinements
{mj}j∈BU

improves the accuracy of the approximation of λ(t) by λ̂(t); however, it increases the
dimension of the optimization, which is

∑
j∈BU

mj . In this context, we do not select the number
of level refinements based on controlling the approximation error of the Lagrangian multiplier
functions but rather on achieving the desired duality gap.

4.2.2 Numerical Optimization Procedure

The second stage of the dual problem optimization is solving the corresponding optimization of

θ(λ̂λλ(t)) w.r.t. the parameters (α̂αα(1), . . . , α̂αα(ND
1 −1)) in (3.8). Two main types of methods for nons-

mooth optimization exist [23, 1]: (i) subgradient methods (see [22, 3, 8] and Chapter 3 in [32]),
and (ii) bundle methods [29, 28]. The subgradient methods use one arbitrary subgradient at each
point, whereas the bundle methods approximate the whole subdifferential of the objective function,
making them more powerful in terms of convergence speed for medium- and large-scale problems
[23]. In this work, we use the LMBM [16, 17, 18], which is a hybrid version of the variable metric
bundle methods [27, 40] and the limited memory variable metric methods [9]. This algorithm takes
the value of the function at the current point and its subgradient as input. We present a summary
of the LMBM method formulation and its algorithm in Appendix A.

At each level of refinement {mj}j∈BU
, we run the LMBM for a fixed number of iterations Niter.

In practical experiments, significant improvement in θ̃(λ̃λλ) is achieved after the first few iterations.
However, further progress is limited by the accuracy of the current approximation of λλλ(t) (see, e.g.,
Figure 5.6). Therefore, the value of Niter is fixed in Algorithm 4.1 and verified to be sufficiently
large.

The result of running Niter iterations of LMBM optimization at the current level of refinement

n is an approximated vector λ̃λλ
∗
(n) = (α̃αα∗(1), . . . , α̃αα∗(ND

1 −1)). The optimal value λ̃λλ
∗
(n) is not necessarily

achieved at the last iteration because the objective function to be minimized does not always
decrease at every step in subgradient and bundle type methods. Thus, the best value of the
objective function achieved and its corresponding minimizer are stored as optimal in such methods.

4.3 Admissible Controls Smoothing: Penalization Parameter-Tuning Proce-
dure

Upon solving the HJB equation, we aim to obtain the corresponding controls for the admissible

smoothed path using (3.17) to compute the numerical smoothed primal cost, C̃(ϕ̃ϕϕ
∗
sm; λ̃λλ

∗
(n),β). To

smooth these controls, we must carefully choose the penalization parameters β because large values
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induce a high primal cost and, consequently, a large dual gap. Moreover, small values do not produce
the desired smoothing behavior for the controls.

All penalization coefficients in βββ are tuned separately using the same method. For illustration,
we demonstrate how to choose the coefficient βA to penalize the battery control while maintaining
the remaining coefficients in βββ equal to zero.

The coefficient βA in (3.15) can be viewed as a Tikhonov regularization parameter and can
be chosen using the notion of the L-curve [20]. As βA increases from zero to ∞, the variation of

the control term ṼβA(ϕ̃ϕϕ
∗
sm; λ̃λλ

∗
(n), βA) in the penalized objective function (3.15) decreases, which is

desired. However, the primal cost C̃(ϕ̃ϕϕ
∗
sm; λ̃λλ

∗
(n), βA) increases, which should be avoided. Figure 5.7

illustrates the compromise between these two conflicting objectives. The L-curve divides the space
into two regions: a horizontal region with a small βA where the cost is not increasing too much but
the variation becomes significantly reduced, and a vertical region where the controls are already
effectively flattened and the variation can no longer be reduced. The primal cost is very high because
we deviated too far from the optimal solution. The idea is to choose βA, which lies at the leftmost
part of the horizontal region of the L-curve (or at the corner, if the curve has a sharp L-shape) to
achieve the best effect of smoothing the controls without dramatically increasing the primal cost.
Mathematically, for a small δ value, this can be formulated as follows for some user-specified ϵ > 0:

max
βA∈[0,∞)

βA, s.t.

∣∣∣∣∣ C̃(ϕ̃ϕϕ
∗
sm; λ̃λλ

∗
(n), βA + δ)− C̃(ϕ̃ϕϕ

∗
sm; λ̃λλ

∗
(n), βA)

Ṽ (ϕ̃ϕϕ
∗
sm; λ̃λλ

∗
(n), βA + δ)− Ṽ (ϕ̃ϕϕ

∗
sm; λ̃λλ

∗
(n), βA)

∣∣∣∣∣ < ϵ.(4.4)

4.4 Error Discussion of the Approach

This section explains the different numerical errors involved in the proposed approach. The aim is

to obtain an upper bound for the exact dual gap between the primal, C(ϕ̂ϕϕ
∗
) (3.1b), and the dual,

θ(λλλ∗) (3.4), costs corresponding to using the exact optimal continuous controls of Problem 1, ϕ̂ϕϕ
∗
,

and exact optimal Lagrangian multiplier functions λλλ∗. We let ϕ̃ϕϕ
∗
sm and λ̃λλ be the numerical solutions

of our approach. Then, by the optimality condition, we have

(4.5) Exact Dual Gap(λλλ∗, ϕ̂ϕϕ
∗
) := C(ϕ̂ϕϕ

∗
)− θ(λλλ∗) ≤ C(ϕ̃ϕϕ

∗
sm)− θ(λ̃).

We let C̃(ϕ̃ϕϕ
∗
sm; λ̃,βββ) and θ̃(λ̃) denote the numerical approximations of the primal admissible smooth

and dual cost, respectively, obtained via Algorithm 4.1. Moreover, u(t0,XXX0;λλλ,∆t,∆XXX) denotes the
HJB solution on a given grid with mesh size (∆t,∆XXX). Then, we have the following relative error
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decomposition:∣∣∣C(ϕ̃ϕϕ∗sm)− θ(λ̃)∣∣∣
θ̃(λ̃)

≤

(
|C(ϕ̃ϕϕ

∗
sm)− C̃(ϕ̃ϕϕ

∗
sm; λ̃,βββ)|

θ̃(λ̃)︸ ︷︷ ︸
Error I: Primal error

+
|C̃(ϕ̃ϕϕ

∗
sm; λ̃,βββ)− θ̃(λ̃)|

θ̃(λ̃)︸ ︷︷ ︸
Error II: Numerical Dual gap

+
|θ̃(λ̃)− u(t0,XXX0; λ̃λλ,∆t,∆XXX)|

θ̃(λ̃λλ)︸ ︷︷ ︸
Error III: Dual approximation error

+
|u(t0,XXX0; λ̃,∆t,∆XXX)− θ(λ̃)|

θ̃(λ̃)︸ ︷︷ ︸
Error IV: HJB error

)
(4.6)

The numerical dual gap (Error II) and dual approximation (Error III) errors are quantities that
we can directly measure. The primal (Error I) and HJB (Error IV) errors converge to zero as
∆t,∆XXX → 0. To ensure that we sufficiently control them for the discretization resolution, we
estimate these errors w.r.t. a reference solution computed on a very fine grid. Section 5 reports
the values of the errors in the proposed approach.

5 Numerical Experiments and Results

This section focuses on the example of the Uruguayan power grid and presents the numerical results
using the proposed approach to solve the OC problem for the related coupled power system.

5.1 Description of the Uruguayan Coupled Power System

The considered system is illustrated by Figure 5.1. It consists of (i) four dams: a cascade of three
connected dams located on the same river (Bonete, Baygorria, and Palmar) and an independent
dam (Salto Grande), (ii) four FFSs, and (iii) a single battery. We model the dam dynamics, as
discussed in Section 2.2.1. The time delay between Bonete and Baygorria is τ1 = 6 h, and the
delay between Baygorria and Palmar is τ2 = 10 h. The maximum turbine flow and spillage as
functions of volume were provided for input by the ADME company (https://adme.com.uy) and
are defined as follows (see Figure 5.2 for illustration):

ϕ
(1)

Tur(v̂
(1)) = c

(1)
2 (H(1)(v̂(1))− h01)2 + c

(1)
1 (H(1)(v̂(1))− h01) + c

(1)
0 ,

ϕ
(2)

Tur(v̂
(2)) =

{
c
(2)
1 (H(2)(v̂(2))− h02) + c

(2)
0 , if H(2)(v̂(2))− h02 ≤ 14

g
(2)
1 (H(2)(v̂(2))− h02) + g

(2)
0 , if H(2)(v̂(2))− h02 ≥ 14

ϕ
(3)

Tur(v̂
(3)) =

{
c
(3)
1 (H(3)(v̂(3))− h03) + c

(3)
0 , if H(3)(v̂(3))− h03 ≤ 23

g
(3)
2 (H(3)(v̂(3))− h03)2 + g

(3)
1 (H(3)(v̂(3))− h03) + g

(3)
0 , if H(3)(v̂(3))− h03 ≥ 23

ϕ
(4)

Tur(v̂
(4)) = 4410,

ϕ
(i)

S (v̂(i)) = ϕ
(i)

max − ϕ
(i)

Tur(v̂
(i)), 1 ≤ i ≤ 4,(5.1)

where ϕ
(i)
max is the total maximum flow of the ith dam, which is given.
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Figure 5.1: Network of dams and fossil fuel power stations (FFSs) in the Uruguayan power system.

Motivated by the empirical observations, we approximate H(i)(v̂(i)) in the model (2.8), locally,
using a second-order polynomial,

(5.2) H(i)(v̂(i)) ≈ b(i)2 (v(i))2 + b
(i)
1 v(i) + b

(i)
0 ,

where b
(i)
2 , b

(i)
1 , and b

(i)
0 are determined from the data. Table B.1 lists the constants {{b(i)j , c

(i)
j , g

(i)
j }2j=0, h0i}3i=1.

The additional constants {v(i), v(i)}4i=1 for the minimum and maximum values of the dam volumes,
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Figure 5.2: Maximum turbine flow as a function of volume for the three dams.

{η(i), d(i)}4i=1 applied in the power models (2.8) and the water costs {K(i)
H }4i=1 are also provided in

Table B.1.
The FFS and battery dynamics are modeled as in Sections 2.2.3 and 2.2.2, respectively. More-

over, the parameters {P (i)
F ,K

(i)
F }4i=1 of the four FFSs (Motores Battle, PTA, PTB, and CTR), and

the parameters A,PA of the battery are provided in Tables B.2 and B.3, respectively.
The effective demand curve in (2.1) is obtained using linear interpolation from input data (see

Figure 5.3) containing measurements with a resolution of 10 min. We present the numerical results
for the data corresponding to January 7, 2019. However, we also tested the proposed approach for
various demand data for several different days from all seasons of the year with similar results.
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Figure 5.3: Demand data for different days from all seasons. The results are displayed for January 7,
2019.

5.2 Results of the Optimal Control Problem Related to the Uruguayan Coupled
Power System

This section presents the results of solving the OC problem corresponding to the management of the
Uruguayan coupled power system described in Section 5.1. We display the results for the various
stages of the proposed approach, as described in Sections 3 and 4. Section 5.2.1 explores the
behavior of the value function obtained after solving the HJB equation (3.5) for fixed continuous-
time Lagrangian multipliers. Section 5.2.2 reveals the optimization results of the dual problem
and highlights the effects of the optimal continuous-time Lagrangian multipliers on the system in
terms of dual cost and dual gap, also demonstrating the advantage of level refinement of these
multipliers in reducing the relative dual gap to the desired gap (i.e., below 2%). Section 5.2.3
details the outputs of the penalization procedure performed to smooth the nearly optimal primal
controls of interest. Finally, Section 5.2.4 presents the synthetic results of the dual and primal
problems in terms of the obtained OCs, power-generation profile over the optimal path, and other
related outputs.

5.2.1 Value Function of the Dual Problem

The numerical solution of HJB (3.5), related to the dual function (3.4), is obtained with the scheme
described in Section 4.1. We use the uniform rectangular grid with ∆t = 0.25 h, {∆v̂(i)}4i=1 = ∆â =
0.25 (in normalized scale), leading to a Courant number below 0.8 in the CFL condition (4.3). The
battery has the fastest dynamics; therefore, the largest contribution to the CFL value is made by
the battery. Thus, the choice of ∆t is almost entirely determined by ∆â. Table 5.1 displays CFL
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contributions from all variables. This choice of coarse discretization is sufficient to reach the desired
error bound (4.6) for a relative duality gap below 2%. Table 5.5 summarizes the values of the errors
of the proposed approach.

Bonete, v̂(1) Baygorria, v̂(2) Palmar, v̂(3) Salto Grande, v̂(4) Battery, â

5.6 · 10−4 3.1 · 10−2 5.5 · 10−3 2.1 · 10−2 7.1 · 10−1

Table 5.1: Terms ||fk||∞
∆x(k)

, comprising the Courant–Friedrichs–Lewy (CFL) condition according
to (4.3) for each k = 1, ..., 5 spatial dimension.

Figure 5.4 illustrates five slices of the value function with the optimal Lagrange multipliers, λ̃λλ
∗
(2),

each with four fixed-state variables. The observation that the dependence of the value function on
v̂(4) seems to be more complex than the dependence on the other state variables suggests that we
can reduce the dimension of the state space to just one dimension using an ansatz function for the
dependence of the value function w.r.t other dimensions and learn its parameters with the available
data produced with this coarse discretization grid. This dimension reduction approach is left for
future work.

Figure 5.4: Projections of the value function onto the axes of the time and state variables. For all
projections onto the jth component of X, the rest of the variables are fixed at {Xi}5i=1,i̸=j = 1.

5.2.2 Dual Optimization Results

In this context, the Lagrangian multiplier λ(t), associated with the relaxation of Constraints 3,
has two components: λ1(t) (related to the water coming from Bonete to Baygorria), and λ2(t)
(related to the water coming from Baygorria to Palmar). Both λ1(t) and λ2(t) are approximated
by piecewise constant functions, as defined in (3.8).
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The goal is to determine the solution of the dual problem that ensures a desired relative dual
gap below ≤ 2%. The result was achieved using Algorithm 4.1 with two levels of refinement. The
optimal configuration in each level is given in Table 5.2, and the corresponding values of the dual
and primal costs and the relative dual gap are summarized in Table 5.3.

Parameters Value

Refinement level n = 1

m1, m2 1
Niter 30

λ̃λλ
(0)

(1) (10−4, 10−4)

λ̃λλ
∗
(1) (−1.68× 10−4,−8.92× 10−4)

Refinement level n = 2

m1, m2 2
Niter 30

λ̃λλ
(0)

(2) ((−1.68×10−4,−1.68×10−4), (−8.92×10−4,−8.92×10−4))

λ̃λλ
∗
(2) ((−2.44×10−3,−3.89×10−6), (−2.16×10−3,−2.35×10−3))

Table 5.2: Limited memory bundle method (LMBM) optimization outputs for each refinement
level.

Refinement level Dual cost (in USD) Primal cost (in USD) Relative dual gap

n = 1 5.4559× 105 5.9555× 105 9.16%
n = 2 5.8952× 105 5.9555× 105 1.02%

Table 5.3: Dual gap reduction using dual problem optimization with level refinement.

Figure 5.5 depicts the HJB solution, dual gap, and components of λ̃λλ(1) at each iteration of the
LMBM optimization algorithm. As observed in the plots, not every step is taken in the direction

of maximization. At iteration k = 15, the dual cost θ̃(λ̃λλ
(k)

(1)) jumps away from the optimum. This
behavior illustrates the difficulty of the nonsmooth optimization (Problem 3). The LMBM can
quickly recover from this dip with the accumulated information about the subgradient on previous
iterations.

Figure 5.6 illustrates plots similar to those in Figure 5.5, but for the next refinement level
where θ̃(λ̃λλ(2)) is optimized in four dimensions. We can verify that the optimization becomes more
challenging because taking steps in the wrong direction occurs more frequently than in the previous
case. The LMBM method can still effectively address the jumps and obtain the desired dual gap
reduction due to the accumulated information about the subgradient.

5.2.3 Results of the Penalization Parameters Tuning Procedure

This section presents the results of the penalization parameter tuning described in Section 4.3.
Due to the different nature of the controls (turbine, spillage, and battery), the tuning procedure

is performed separately for the three groups of controls with coefficients β
(i)
Tur = βTur, i = 1, ..., 4

for the turbine controls, β
(i)
S = βS , i = 1, ..., 4 for the spillage controls, and βA for the battery
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Figure 5.5: Dual optimization results revealing the HJB solution/dual cost/primal cost (smooth),

relative dual gap, and components of θ̃(λ̃λλ(1)) w.r.t. iterations for the refinement level at n = 1.

control. As in Algorithm 4.1, this tuning procedure is conducted at each refinement level, and the
corresponding outputs are provided in Table 5.4. The L-curves produced at the refinement level
of n = 2 are depicted in Figure 5.7, suggesting the optimal penalization constants are βTur = 10,
βS = 10, and βA = 104. We observe that βA >> βTur, βS due to the high variability of the battery
control solutions, as displayed in Figure 5.11.

Turbine (in
USD/(m6/s3) )

Spillage (in
USD/(m6/s3) )

Battery (in
USD/(kJ2/s3) )

Initial λ̃λλ0, n = 0 βTur = 10 βS = 10 βA = 102

Refinement level n = 1 βTur = 10 βS = 1 βA = 104

Refinement level n = 2 βTur = 10 βS = 10 βA = 104

Table 5.4: Penalization coefficients βββ := (β
(1)
Tur, . . . , β

(4)
Tur, β

(1)
S , . . . , β

(4)
S , βA) at each refinement level.
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Figure 5.6: Dual optimization results revealing the HJB solution/dual cost/primal cost (smooth),

dual gap, and components of θ̃(λ̃λλ(2)) w.r.t. iterations for the refinement level at n = 2.

5.2.4 Optimal Solution

With the optimal Lagrangian multipliers λ̃λλ
∗
(2) reported in Table 5.2, the dual cost is 5.8952 ×

105 USD, whereas the primal cost is 5.9555×105, implying a relative dual gap of 1.02% and a total
error bound (4.6) for the duality gap below 2%, with details of each error in (4.6) in Table 5.5.

The outputs of the optimal solution are illustrated in Figures (5.8) to (5.13), including (i) the
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Figure 5.7: The L-curve plots corresponding to the optimal λ̃λλ
∗
(2). The optimal penalizing constants

are βTur = 10, βS = 10, and βA = 104.

Total relative dual
gap

Relative dual gap
(Error(II))

Error (I) Error (III) Error (IV)

1.6% 1.02% 5× 10−4 % 0.4% 0.18%

Table 5.5: Values of the terms comprising the bound on the dual gap in 4.6.

OCs related to the turbine flow, spillage, FFSs, and battery, besides the virtual controls; (ii) the
volumes of the dams and battery charge; and (iii) the profile of the power production over the
optimal and smoothed path.

From the power profile in Figure 5.8a, we conclude that most of the power is generated by the
largest dam (Salto Grande). The most expensive power generators (FFSs) are unnecessary because
the demand can be satisfied with the dams and battery only. The battery is primarily used in three
intervals: at the beginning, around 10 h, and around 18 h, corresponding to the peaks of electricity
demand.
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Figure 5.8: Demand and power-generation profile over the optimal (a) and smoothed (b) path.

Figures 5.9 and 5.10 display the turbine flow and spillage controls. The highest flow is associated
with the largest dam: Salto Grande. Baygorria is the cheapest dam; however, it is not used much
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in the first 14 h because, at the initial time, the dams are full, creating the need to turbine and spill
water from the dams to prevent them from overflowing. We compared the rates of turbine flow and
spillage with the inflow at each dam: Bonete: 958 m3/s, Baygorria: 43 m3/s, Palmar: 226 m3/s,
Salto Grande: 2675 m3/s. All decisions about turbining and spilling water in this work are driven
by the need to satisfy the corresponding constraint on the volume of the dams rather than the
optimality of the solution. The turbine and spillage flows in Figures 5.9a and 5.10a correspond
to the optimal solution of the dual problem and, therefore, may be outside of the admissible set
due to the relaxation of Constraints 3. Thus, the admissible turbine and spillage flow controls
(see Figures 5.9b and 5.10b) are computed as a (nearly optimal) solution of the primal problem
using the procedure described in Section 3.3. These admissible controls exhibit many jumps and
irregularities; therefore, we smooth these controls as explained in Sections 3.4 and 4.3 to obtain
more convenient solutions in practice, as presented in Figures 5.9c and 5.10c.
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Figure 5.9: Turbine flow solutions: (a) dual optimal, (b) primal admissible, and (c) primal
smoothed.
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Figure 5.10: Spillage solutions: (a) dual optimal, (b) primal admissible, and (c) primal smoothed.

The most significant effect of the smoothing was observed on the battery controls (Figure 5.11).
The dual optimal and admissible controls are highly oscillating, making them impractical because
the operator must switch the battery from discharging to charging mode too frequently. The
smoothed control is a better practical solution without sacrificing too much cost, with a relative
dual gap of only 1.02%.

Figure 5.12 illustrates how the virtual controls work. Consider the connection between Bonete
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Figure 5.11: Battery control solutions: (a) dual optimal, (b) primal admissible, and (c) primal
smoothed.

and Baygorria and the virtual water ψ(1). The Hamiltonian is linear w.r.t. the virtual controls, and
whether we aim to activate the virtual control is determined by the sign of the term (∂v̂(2)u(t) +
λ1(t+ τ1)) in the Hamiltonian (3.5). If this term is negative, (∂v̂(2)u(t) + λ1(t+ τ1)) < 0, the water
from the upstream dam is valuable. It takes 6 h for the water from Bonete to reach Baygorria,
and (∂v̂(2)u(t) + λ1(t + τ1)) < 0, for all t ∈ [6, 24] h; thus, we activate the control in this time
interval. Now consider the link between Baygorria and Palmar and the virtual water ψ(2). The
term (∂v̂(3)u(t) + λ2(t + τ2)) < 0 in the interval of t ∈ [10, 24] h; thus, we activated the virtual
control ψ(2) on this interval. However, the dam is full, and we can only receive more water when
we start turbining more water with Palmar due to the high demand starting at around 16 h. The
difference between the virtual and real water is presented in Figure 5.12b. As we optimize the dual
function θ(λλλ(t)) w.r.t. λλλ, this difference decreases.
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Figure 5.12: (a) Virtual controls. (b) Difference between virtual and real water.

Figure 5.13 presents the optimal trajectory of the state variables. As observed in Figure 5.13a,
the volumes of Bonete v̂(1), Palmar v̂(3), and Salto Grande v̂(4) stay at maximum levels because the
outflow is equal to the inflow. The battery charge plot in Figure 5.13b illustrates how the battery
is used throughout the optimal path and depletes at the end.
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Figure 5.13: State variables over the optimal path: (a) dam volumes and (b) battery charge.

6 Conclusions

This work modeled a large-scale power system, including a cascade of hydropower stations, FSSs,
and a storage unit represented by a single battery. We provided a detailed description of each
power-source cost, power generation, and state dynamics. We formulated the primal OC problem
for the large-scale power system with time delays and proposed a continuous-time Lagrangian
relaxation technique to address the time delays in the hydropower dynamics, resulting in a dual
problem formulation. Further, we proposed a heuristic procedure for obtaining sufficiently smooth,
nearly optimal admissible controls for the primal problem. We presented the algorithm to the given
problem numerically. This algorithm includes the numerical approximation of the HJB equation
using the backward-in-time explicit Euler upwind finite-difference method. For the optimization of
the dual problem, we applied the LMBM. We showed how to use the L-curve approach to fine-tune
the parameters for constructing a sufficiently smoothed primal solution from the dual solution.
Finally, we demonstrated the effectiveness of the proposed method by presenting numerical results
obtained through its application to the management of a partial model of the Uruguayan power
grid. This practical application is an illustrative example of the real-world viability and efficacy of
the proposed approach.
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A Formulation of the Limited Memory Bundle Method Optimiza-
tion

This method is designed to solve the optimization problem

min
x

θ(x)(A.1)

for a nonsmooth and possibly non-convex function θ : Rn → R.
The method is a hybrid of the variable metric bundle methods and limited memory variable

metric methods [16, 18, 23, 1]. Variable metric bundle methods were developed for nonsmooth
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optimization and are based on minimizing the linearization of the function at each point. A rather
expensive quadratic direction-finding problem must be computed at every iteration to minimize
such linearization, which is a time-consuming procedure. Furthermore, large matrices containing
information about the metric at the current point must be stored. Limited memory variable
metric methods avoid these difficulties by computing the search direction using a limited memory
approach, but they were constructed for smooth functions. The limited memory bundle method
(LMBM) takes the modified approach from the limited memory variable metric methods and applies
it to nonsmooth function optimization.

Search direction. The search direction vector in the LMBM method is calculated as follows:

dddk = −Dkξ̃ξξk,(A.2)

where ξ̃ξξk is the aggregate subgradient at xxxk (ξ̃ξξk = ξξξk for a serious step), and Dk is the limited
memory variable metric update, which for a smooth function, corresponds to the approximation of
the inverse of the Hessian matrix. The matrix Dk is not computed explicitly, (for details see [16]).

Step size. First, the special line search procedure [16] generates two points to take a step in
the direction of dddk:

xxxk+1 = xxxk + tkLdddk, and yyyk+1 = xxxk + tkRdddk(A.3)

with yyy1 = xxx1, where t
k
R ∈ (0, tkI ], t

k
L ∈ [0, tkR] are step sizes, and tKI ∈ [tmin, tmax) is the initial step

size. Two types of steps can be taken: the serious and null steps. The step is called serious if we
move to a different point by setting xxxk+1 = yyyk+1 on the next iteration. The step is called null if,
instead, we remain at the same point xxxk+1 = xxxk but incorporate the new information about the
subdifferential into the aggregate subgradient. The serious step is taken if the following conditions
are satisfied

tkL = tkR > 0, and θ(yyyk+1) ≤ θ(xxxk)− ϵkLtkRwk,(A.4)

where ϵkL ∈ (1, 1/2), and wk (A.7) is the desirable amount of descent. Otherwise, the null step is
taken. In addition, tkL and tkR are computed via a modified line search procedure (for details, see
[16]).

Aggregate subgradient. The subgradient aggregation procedure relies on determining the
multipliers λki , which minimize the function:

ϕ(λ1, λ2, λ3) = [λ1ξξξm + λ2ξξξk+1 + λ3ξ̃ξξk]
TDk[λ1ξξξm + λ2ξξξk+1 + λ3ξ̃ξξk] + 2(λ2βk+1 + λ3β̃k),(A.5)

where the subgradient locality measure is βk = max{|θ(xxxk)− θ(yyyk+1) + ξξξ
T
k+1(yyyk+1−xxxk)|, γ||yyyk+1−

xxxk||w}. For convex functions, γ = 0, and w ≥ 1 is the locality measure parameter determined by
the user. The aggregate subgradient ξ̃ξξk+1 is a convex combination of the subgradients computed
up to the current iteration:

ξ̃ξξk+1 = λk1ξξξm + λk2ξξξk+1 + λk3ξ̃ξξk,(A.6)

where ξξξm denotes the current subgradient at xxxk, ξξξk+1, and the auxiliary subgradient at yyyk+1 and
ξ̃ξξk represents the current aggregate subgradient, with ξ̃ξξ1 = ξξξ1.

Stopping criteria. A number of stopping criteria exist for this algorithm. The primary
stopping criterion is the following:

wk = −ξ̃ξξ
T

k dddk + 2β̃k ≤ ϵ,(A.7)

where ϵ is the user-specified tolerance.
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B Parameters of the Numerical Problem

Parameter Bonete, i = 1 Baygorria, i =
2

Palmar, i = 3 Salto Grande, i = 4

b
(i)
2 , b

(i)
1 , b

(i)
0 -3.77, 15.7,

69.6
-1.4, 8.89, 47.5 -7.5, 23.7, 25.8 -21.2, 54.8, 1.92

c
(i)
2 , c

(i)
1 , c

(i)
0 -1.4, 61.1, 35.8 -, 42.9, 300.5 -, 42.0, 707.7 -, -, -

g
(i)
2 , g

(i)
1 , g

(i)
0 -, -, - -, -81.3, 2039.2 2.3, -184.6, 4684.4 -, -, -

h0i, m 53.96 38.57 7.00 5.60

d(i) 6.8 ·10−4 14.0 ·10−4 13.0 ·10−4 14.7 ·10−4

η(i) 8.86 9.35 9.30 10.23

ϕi, m
3/s 1371.74 1799.68 3344.70 8820

v(i), m3 10.7 ·109 0.678 ·109 3.53 ·109 5.18 ·109
v(i), m3 1.85 ·109 0.47 ·109 1.36 ·109 3.65 ·109
Ki, USD/m3 12 ·10−4 3.96 ·10−7 23 ·10−4 16 ·10−4

Table B.1: Parameters and coefficients in modeling the dams.

Parameter Motores
Batlle, i = 1

PTA, i = 2 PTB, i = 3 CTR, i = 4

P
(i)
F , kW 7 · 104 28.8 · 104 36 · 104 20 · 104

K
(i)
F , USD/MWh 131 193.7 189.2 222.7

Table B.2: Parameters and coefficients in modeling the fossil fuel power station (FFS).

Parameter A, kWh PA, kW

Value 1.4 · 105 105

Table B.3: Parameters and coefficients in modeling the battery.
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