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Abstract: Reducing greenhouse emissions can be done via the electrification of the transport industry.
However, there are challenges related to the electrification such as the lifetime of vehicle batteries
as well as limitations on the charging possibilities. To cope with some of these challenges, a charge
scheduling method for fleets of electric vehicles is presented. Such a method assigns the charging
moments (i.e., schedules) of fleets that have more vehicles than chargers. While doing the assigna-
tion, the method also maximizes the total Remaining Useful Life (RUL) of all the vehicle batteries.
The method consists of two optimization algorithms. The first optimization algorithm determines
charging profiles (i.e., charging current vs time) for individual vehicles. The second algorithm finds
the charging schedule (i.e., the order in which vehicles are connected to a charger) that maximizes
the RUL in the batteries of the entire fleet. To reduce the computational effort of predicting the
battery RUL, the method uses a Machine Learning (ML) model. Such a model predicts the RUL of an
individual battery while taking into account common stress factors and fabrication-related differences
per battery. Simulation results show that charging a single vehicle as late as possible maximizes the
RUL of that single vehicle, due to the lower battery degradation. Simulations also show that the
ML model accurately predicts the RUL, while taking into account fabrication-related variability in
the battery. Additionally, it was shown that this method schedules the charging moments of a fleet,
leading to an increased total RUL of all the batteries in the vehicle fleet.

Keywords: battery electric vehicles; optimized charging scheme; charging order optimization;
charging scheduling; battery remaining useful life; machine learning

1. Introduction

Greenhouse gas emission mitigation is one of the major challenges of the 21st century.
The negative consequences of these emissions are already visible in the environment [1]. One
way of reducing these emissions is by lessening the fossil-fuels usage. Such fuels are used
in multiple sectors of the economy, with the transport sector alone accounting for 25% of its
total usage via Internal Combustion Engines (ICEs) [2]. Reducing the fossil fuel usage in the
transport sector would significantly contribute towards mitigating the emissions problem.

Due to climate change, alternatives are being explored in the transport sector such
as switching from ICEs to Battery Electric Vehicles (BEVs) [3]. During their lifetime, the
BEVs’ emissions are lower than those of ICEs [4]. However, the adoption of BEVs faces
multiple challenges, such as the relatively long charging time and a shorter driving range
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than ICE-based vehicles [5]. This implies that BEVs cannot drive long distances as time-
efficiently as their ICE-based counterparts. Adding to these challenges, the battery of BEVs
continuously degrades over time, resulting in less capacity and further reducing the BEVs
range [6]. Degradation is accelerated when stress factors are present in the battery cycle,
such as overcharging, large depth of discharge or storing while fully charged [7]. Taking
into account these stress factors is therefore crucial for the lifetime of a BEVs.

Another point of consideration is that charging increases the load on the grid. As
more fleet operators are switching from ICEs to BEVs, the pressure on the grid is increasing.
The consequence is that fleet operators cannot freely place charging stations for a BEV
fleet. Therefore not all BEVs in a fleet can be charged simultaneously [8] and need to be
scheduled by fleet operators. Additionally, the charging stations account for a significant
amount of the total cost of ownership of a fleet of BEVs, which is another reason for fleet
operators to limit the amount of charging stations.

A solution to this problem is to impose a charging order (i.e., a schedule) and charging
scheme (i.e., a charging profile) on the fleet. The charging scheme regulates the charging
power of a fleet. The charging order refers to the sequence in which vehicles are connected
to the charging station, assuming there are less charging stations than vehicles.

To optimize the charging scheme and order of an fleet, the impact of the charging
scheme on the RUL of the battery needs to be calculated. The battery RUL is the amount
of operational time a battery has left until it reaches End of Life (EoL). EoL of a battery is
commonly defined as reaching 80% of the original capacity [9,10]. Calculating the RUL is a
way to quantify the effectiveness of a charging scheme and order.

An earlier version of this paper has been published [11], which optimized the charging
scheme of a single vehicle as well as a fleet of vehicles, while focusing on cost effectively
reducing the load on the electricity grid. This paper extends such a version by creating a ML
model that predicts the degradation speed of a battery while taking into account internal
variability of batteries. Such an internal variability refers to the fact that even though two
seemingly identical batteries treated in exactly the same way, they can still differ in terms
of degradation speed [12]. This is due fabrication-related differences. Lastly, based on this
ML model, an algorithm was implemented to generate the charging order (i.e., a charging
schedule) of a BEV fleet, that takes into account constraints such as the amount of charging
points and common timing requirements of fleet operators (e.g., departure and arrival times).

Previous studies have focused on multiple BEVs charging challenges with a variety of
objectives. Objectives such as optimizing the route of the vehicle (e.g., [13]), minimizing the
electricity price (e.g., [14]), or a combination of both (e.g., [15]). However, these studies do
not acknowledge the fact that charging may be limited by the amount of charging points,
as well as the fact that batteries have internal variability that impacts the optimal charging
for each battery.

To address this gap, this paper presents a method for scheduling the charging moments
of a fleet of BEVs and determining the charging profiles. The resulting schedule and profiles
maximizes the total RUL of the batteries in the vehicle fleet, while taking into account that
there are fewer available charging points than vehicles. Further, the method uses a ML
model to predict the fleet RUL, while taking into account the internal variability of the
vehicle batteries. This method is applied to a case study of lightweight electric delivery
vehicles, used for last-mile deliveries.

This paper is divided as follows. Section 2 reviews the literature and highlights the
knowledge gap. Section 3 introduces the used modelling strategy for vehicle batteries and
the ML algorithms. Section 4 summarizes the method presented in this paper. Section 5
formalizes the mathematical aspects of optimizing the charging profile of a BEV. Section 6
explains the data collection and training of the ML model. Section 7 formalizes the opti-
mization problem of scheduling a fleet of vehicles. Section 8 presents the application of the
method to a motivational case study. Section 9 closes the paper with conclusions.
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2. Literature Review

This research focuses on two study areas. One is the scheduling of the charging of
one or more BEVs, the second is the use of an ML algorithm that can predict the RUL
of a vehicle. From the charging scheduling perspective, previous studies have focused
on creating charging schemes while minimizing a certain objective. For example, [16]
developed an optimized decentralized charging strategy, which kept account of electricity
network congestion. The authors of [17] show the impact of uncontrolled charging BEVs
on the electricity grid. They further elaborate on optimal charging strategies to mitigate
such an impact. In [13], an optimization strategy was developed for buses, where the
desired routes and fleet charging was jointly determined. The authors of [14] developed an
optimal charging algorithm taking into account electricity price. A later study [15] focused
on developing an algorithm for the overnight charging of buses with respect to battery
degradation and electricity price. Lastly, [18] focused on optimizing the charging cost of a
fleet while considering a limited number of charging points; however, they did not look
into battery degradation. None of this research considers the constraint of a limited amount
of charging points, while also taking into account the degradation of a battery.

From the ML perspective, studies have focused on predicting the RUL of a battery
using different types of algorithms. For example, [19] showed that there are multiple
ML algorithms available that are able to predict the RUL. They also showed what the
advantages and disadvantages of each algorithm are. They showed that there are multiple
frequently used ML algorithms for predicting the RUL. The first is the Neural Network
(NN) algorithm, which is explored by [20], who showed the that NN can be a good
replacement for the Kalman filter and also showed that a NN is accurate for small datasets
with a large number of predictor variables. The second is the Support Vector Machine
(SVM) algorithm, Ref. [21] combined this method with a particle filter method to predict
the RUL. Another algorithm is the Gaussian Process Regression (GPR) algorithm, which
was explored by [22], who showed that GPR can predict the RUL, but also showed the
uncertainty in this prediction. Another study showed that decision tree algorithms were
also able to predict the RUL based on real life drive cycles [23].

None of this earlier work takes into account the effect that the internal variability of a
battery has on the RUL of that battery with a constrained amount of charging points. This
research fills both the mentioned gaps by creating a method for scheduling the charging
and order of charging of a fleet of electric vehicles. This research uses the ML algorithm to
create a model that is able to predict the RUL while also taking into account the internal
variability of a battery.

3. Theoretical Background

To optimize the charging scheme of a fleet of BEV, multiple models and algorithms
are required. To capture the dynamics of the battery and its degradation, a modelling
section is included. Likewise, different ML algorithms are explained and criteria for
selecting the ML algorithm are explained. The used models in this section correspond to
modelling techniques that can be applied to calculate battery dynamics. However, notice
that other models can be substituted to represent a battery, which would not change the
described method.

3.1. Battery Model

The second order Equivalent Circuit Model (ECM) shown in Figure 1a is used to
model a battery cell [24]. This commonly used model is preferred as it has relatively low
computational complexity and yet it provides relatively high accuracy in predicting the
cell voltage. Using this ECM, the following model is derived:
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Vcell = VOCV + Icell R + V1 + V2

dV1

dt
=

Icell
c1

− V1

R1c1
dV2

dt
=

Icell
c2

− V2

R2c2
,

(1)

where Vcell denotes the terminal cell voltage, VOCV is the open circuit voltage, Icell cell
current, R, R1 and R2 are resistances, V1 and V2 are polarization voltages over the RC tanks
and c1 and c2 are capacitors. All magnitudes in this paper are expressed in SI units unless
noted otherwise. The model parameters c1, c2, R1, R2, R and VOCV are dependent on the
current direction (i.e., charging or discharging), cell temperature and State of Charge (SoC).
An example of the dependency of one of these parameters on SoC and temperature is found
in Figure 1b. All the other parameter dependencies are found in the previous version of
this work [11].
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Figure 1. Overview of the ECM model and the parameter c1. (a) Overview of second-order equivalent-
circuit model. (b) Example of the c1 parameter for the ECM under charging conditions.

The current and voltage at pack level is computed by scaling up the cell current and
voltage, i.e.,

I = Icellnp

V = Vcellns,
(2)

where I is the pack current, np is the number of parallel cells in the pack, V is the pack
voltage and ns is the number of cells in series in the pack. The SoC is calculated with
coulomb counting

Zk+1 = Zk +
Ikdk

3600Corig
, (3)

where Z is the SoC, Corig is the capacity of the battery when it is fully charged in ah. Note the
capacity of a fully charged battery changes due to degradation. The constant 3600 is used to
convert seconds to hours, k is the discrete-time index and dk the length of one time step in hours.

Based on the battery model presented in this subsection, a degradation model and
thermal model for batteries are introduced in the next subsections.

3.2. Degradation of Batteries

Although multiple processes cause degradation in batteries, these can be grouped in
two categories: calendar ageing and cyclic ageing. The first happens over time, whether the
battery is used or not. This type of ageing is mainly caused by irreversible and unintended
side reactions that slowly consume the lithium in the battery [25]. Cyclic ageing happens
only when the battery is used and is mainly caused by forming an unintended layer on the



Batteries 2024, 10, 60 5 of 19

anode, which hinders or prevents the anode from releasing electrons, therefore reducing
the capacity of the battery [26]. To capture these degradation processes, [25] proposed an
empirical model which takes into account SoC, current, voltage, battery temperature and
time to calculate the corresponding degradation of a cell. Such a degradation is expressed in
terms of capacity loss and resistance increase. In this research, only the loss of capacitance
is considered (instead of the resistance increase) as the optimizer is designed to minimize
capacity loss. Including resistance increase remains an interesting research topic. This
model has been validated in [25].

The calendar loss is defined by [25] as

Ccal
a f ter = 1 − (7.543V̄cell − 23.75)× 106exp

{
−6976

T̄cell

}
t0.75, (4)

with V̄cell the average voltage over one cell, T̄cell the average cell temperature in Kelvin
and t the time in days. Ccal

a f ter is the new capacity after t days, only taking into account the
calendar aging effects. The resulting capacity ranges from 0 to 1.

Cycling aging is defined as

Ccyc
a f ter = 1 − (7.348 × 10−3(VRMS − 3.67)2 + 7.6 × 10−4 + 4.08 × 10−3(1 − Z))

√
Q, (5)

where
Q = (1 − Z)Corigqcycles. (6)

Here, VRMS is the Root Mean Square (RMS) of the cell terminal voltage, 1 − Z is the
depth of discharge, Q is the cell charge throughput of one cycle in Ah and qcycles is the
number of cycles, assuming that each cycle has the same charge depth of discharge. Ccyc

a f ter
is the new capacity after qcycles cycles if only the cyclic aging is taken into account. Notice
that the numeric parameters from Equations (4) and (5) have been determined by [25] for
the degradation of a particular cell chemistry. Although these parameters would need to be
updated to be applied to a different type of cell, the method which is the main contribution
of this work remains the same.

The updated capacity is obtained using

Cupdated = Corig(−1 + Ccal
a f ter + Ccyc

a f ter), (7)

where Cupdated is the new capacity after a cycle has been applied.
The updated capacity, computed with Equation (7), is used in the optimization process

to calculate the RUL (see Section 5). Note that this updated capacity requires average cell
temperature as one of its inputs. The computation of this temperature is explained in the
next subsection.

3.3. Thermal Model

A thermal model at cell level is used to compute the cell temperature. The thermal
model considers the addition of four heat flows as described and validated in [27], i.e.,

sheat,cell ∗ mcell
dTcell

dt
= Q̇s + Q̇O − Q̇B + Q̇cool , (8)

where Q̇s is the reversible reaction heat, Q̇O is the overpotential heat, Q̇B is the heat
transferred to the environment and Q̇cool is the heat added by a cooling system. All heat
flows are expressed in watts. sheat,cell is the heat capacity of one cell and mcell is the mass of
one cell. The multiple heat flows are further described as:
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Q̇s = Tcell Icell
∂VOCV
∂Tcell

Q̇O = RI2
cell +

V2
1

R1
+

V2
2

R2

Q̇B = rth(Tcell − Tamb),

(9)

where ∂VOCV/∂Tcell is the partial derivative of the open circuit voltage with respect to the cell
temperature. This parameter is obtained via experiments and dependents on the SoC. rth is
the thermal resistance between the battery surface and the environment. Tamb is the ambient
temperature. Note that Q̇cool depends on the cooling capacity of the thermal system and the
battery geometry, therefore a general definition is not included in Equation (9).

3.4. Machine Learning Strategy Selection

This research uses a ML algorithm to predict the RUL of a battery pack. RUL prediction
corresponds to the estimation of a single value, which narrows the types of ML algorithms
that are suited for this purpose. Ref. [28] showed that there are three main algorithms that
theoretically work best on predicting a single numerical value. These are the following:

• Gaussian Process Regression (GPR): Predicts a numerical value by approximating
the function that creates the value (target function) using a Gaussian distribution
of functions. This algorithm considers all possible functions that pass through the
observed data points and predicts the probability that each function is the correct
function. The function with the highest probability is used for prediction [29].

• Support Vector Machine (SVM): Predicts a numerical value by approximating a function
that stays as close as possible to the observed data. It creates margin lines around this
function, which are defined by the function upper and lower bounds. The algorithm
then fits as many points as possible within the functions margin lines, while keeping
the margin lines as close to the function as possible. This is done by altering the fitting
function. This algorithm is able to automatically exclude outliers in the data set [30].

• Decisions Tree (Tree): This algorithm builds a decision tree that checks multiple
thresholds of each parameter. If the parameter is higher than the threshold, the tree
advances to one path, while when its lower it chooses another path. Both paths lead
to a different new threshold check of certain parameters. Reaching the end of all paths
generates the output [31].

A notable exclusion is the use of a neural network. This was considered for this
research, however this algorithm was shown to be very time consuming to train [32]
without having a higher accuracy to the considered algorithms. This algorithm was also
shown to be suitable for small datasets with a large number of predictors [20], where the
used dataset has a small number of predictors and a large number of data points and [33]
used a similar data set and showed that a neural network was not suitable, therefore it
is not considered. Other versions of NN remain interesting solutions which are beyond
the scope of this paper. The versions of the algorithms as defined by Matlab R 2022A are
used. The advantage and disadvantage of each algorithm is shown in Table 1. The data
that is used to train the ML algorithm in this research has only a five input parameters with
a large number data points, which is explained in Section 6. GPR seems the best option,
because it is efficient with smooth data with a small number of dimensions.

Table 1. Advantages and disadvantages of each ML algorithm [29,34].

SVM Tree GPR

Advantage • Low computational time. • Low computational time. • Suitable for interpolating.
• Low risk of over fitting. • Efficient with smooth and nonlinear models.

Disadvantage • Not suitable for large data sets. • Often inaccurate. • High computational time with high dimensions.
• Prone to noise in data. • Prone to over fitting.
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4. Methodology Overview

This work contains three steps, which are graphically explained in Figure 2. These
steps are based on the battery model explained in Section 3. These steps are briefly
introduced here and are explained in more detail in the next sections:

Start

Vehicle Charging
params: Required

SoC, time avail-
able, battery
params, etc

Optimize: find the
current profile that
minimizes battery

degradation

Compute RUL for
Charging profile

Add to dataset

Dataset
com-

plete?
Update params

Train and validate
ML algorithm
with dataset

Optimize: find
the fleet sched-
ule that max-

imises fleet RUL

Fleet charging
constraints

Fleet charg-
ing schedule

End

Battery model

Params + constraints

ch. profile

RUL + params

No

Yes

Trained ML model

Figure 2. Proposed methodology. From the description of Section 4, the green blocks correspond to
Step 1; the orange blocks to step 2; and the blue blocks to step 3.
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• Step 1: Optimize the charging scheme of a single vehicle based on the models from
Section 3 and calculate the corresponding RUL. This is explained in Section 5

• Step 2: Obtain the RUL from the optimization in step 1 then train a ML model to
predict the RUL based on this charging profile. This is explained in Section 6

• Step 3: Create an optimal charging schedule for charging a fleet of vehicles. This uses
the ML model from the previous step to predict the RUL of a given charging profile.
The optimization problem focuses on finding the optimal time slot (and associated
charging profile) for charging each vehicle. This is explained in Section 7

In comparison with the earlier conference paper on which this publication is based [11],
step 2 and 3 have not been published in that paper. Note that the first step could have
been used directly for the third step (skipping the ML step). However, doing so would be
very computationally expensive. Therefore the second step, namely the ML algorithm, is
introduced, to save computational time.

5. Optimizing the Charging Profile of One Vehicle

This section explains the optimization regarding a single vehicle and the applied
constraints. The charging of a BEV is optimized with respect to the degradation. The
objective is to maximize the RUL (tRUL), which is determined by calculating when the
battery reaches EoL. The EoL of a battery is defined as reaching 80% of the original capacity
and it is assumed that the battery has no second-life value. This is common practice among
researchers [9,10]. RUL is calculated with the following equation,

tRUL = t such that Cupdated(t) = 0.8Cinit. (10)

t is defined in Equations (4) and (6). The assumption for this formula to be valid is that t is
equal to qcycles, which equates to one cycle per day. This implies that the vehicle is used
during the day and charged during the night, which fits the case study as mentioned in
Section 1. Cinit refers to the capacity of the battery when it was new and Cupdated refers to
the capacity after charging and discharging t times.

To calculate the RUL resulting from a charging scheme, the time needed to reach the
EoL is simulated by applying the particular charging scheme for the entire life time of the
vehicle. This implies that the vehicle starts its charging cycle every day with the same
initial battery temperature and SoC. No discharge cycle is actually run in the simulation, as
it cannot be controlled for electric vehicles, and of doing so it would have an uncontrolled
effect on the battery ageing and battery RUL. The degradation of the battery is solely
manipulated and calculated through the charging cycle.

The optimization objective maximizes the RUL of a single vehicle. This is captured by
the following optimization problem:

max
I

tRUL

s.t. Equation (12)

Equation (13),

(11)

where I is the charging current profile of the vehicle, further defined by

I = {Ik | k = 1, . . . , ψcharge},

where ψcharge is the number of steps in which the total charging time is divided. Note that
ψcharge is a design choice: a large number of steps results in a more detailed current profile
at an extra cost of computational effort. Ik is the charging current during time slot k. The
definition of Ik implies that the current is discrete during the duration of each time slot dk.
Also note that the optimizer can freely choose the current neglecting the common constant
current and constant voltage phases of charging.

The constraints are the following:
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0.97 ≤ Zψcharge ≤ 0.99 (12)

Ik ≥ 0 for all k ∈ {1, . . . , ψcharge}. (13)

Zψcharge refers to the SoC at the end of the charging period, therefore Equation (12) makes
sure that the battery of each vehicle is charged to at least 97% before the end of the charging
period and not more than 99%. Equation (13) is the lower bound, which prevents the
current from being negative.

6. Dataset Generation and ML Algorithm Training

The ML algorithm is trained using a dataset created from the optimization explained
in Section 5. The dataset is composed of a RUL for each charging profile, which is computed
for several values of the following parameters:

• Initial SoC: The SoC of the battery before it starts charging.
• Initial battery temperature: The temperature of the EV battery before it starts charging.
• Initial State of Health (SoH): The SoH of the battery, before it starts charging, calculated

by SoH =
(Cnew − 0.8Cinit

Cinit − 0.8Cinit

)
. Therefore a SoH of 0 refers to EoL being reached, defined

as reaching 80% of the original capacity.
• Time slot for charging: The start and end time for charging the EV.
• Age of the battery: Age of the battery in days, assuming the same charging scheme

over the battery life time.

With these inputs, a set of optimal charging schemes and corresponding RUL was
calculated. Each parameter is randomized between the maximum and minimum value as
shown in Figure 3a. Note that the constraint that each vehicle is charged to at least a SoC of
97% as shown in Equation (12), is implicit in the RUL prediction of the ML model.

As noted in Section 1, the degradation of a battery is not deterministic. Even when
using the same charging scheme for two batteries, the rate of degradation might differ due
to internal differences in the battery. The ML algorithm needs to be able to account for this
effect. Therefore, these differences were implemented by adding variability in the degrada-
tion model. Each time that the RUL of a single-vehicle model was simulated, a new set of
parameters of the degradation model (i.e., the non-integer numbers in Equations (4) and (5))
was used for each vehicle. Likewise, the initial battery SoC and temperature were kept
constant during the whole lifetime. The RUL was calculated using Equation (10). To
simulate the variability on the RUL, the procedure is repeated with a new set of model
parameters and a new set of initial conditions for SoC and temperature.

In these simulations, all the cells in the pack are considered to have the same non-
integer parameters per RUL calculation. Considering the effects of differences in cell degra-
dation per pack (e.g., a single fast-degrading cell), remains an interesting research question.
Notice that the initial cell capacity is not varied in these equations, as manufacturing-related
variations in capacity are unlikely to affect the useful battery capacity, instead affecting the
total capacity. Likewise, battery resistance is not varied, as these are not part of coefficients
in Equations (4) and (5). Cell resistance remains an interesting parameter to analyse, as it
could help to justify the variations in fabrication-related differences in battery degradation.

Varying these parameters leads the RUL ranging from 80% to 120% of its original
value. This was shown by [35] to be a realistic assumption. An example of this varying
RUL can be found in Figure 3b. What can be seen is that for the for SOH of 0.5 to 1 the RUL
is relatively stable. This is due to the fact that the first few percentages of capacity loss are
often within a relatively low amount of cycles; however, the RUL is still quite large as the
later cycles reduce capacity less than the first cycles [25,36].
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Figure 3. Variation in RUL and input parameters. (a) Minimum and maximum value between which
the data is randomized. (b) RUL variance due to the internal variability. Initial SoC = 0.1, initial
battery temperature = 12, time slot length = 8 h.

Additionally, to improve the accuracy of the predictions, the ML algorithm needs
to have information about how long the battery has been in the degradation process.
Therefore the ML algorithm is also given the actual age of the battery in days, by the time
that the optimal charging scheme is used. This is the battery age at the moment of the RUL
prediction. This additional input gives the ML algorithm enough information to find a
relationship between the current age of the battery and the expected RUL of the battery.

This ML model was trained using Matlab’s regression learner toolbox. The three
algorithms are trained and tested using a division of 20% and 80% between test and train
data, respectively, using the k-fold cross-validation technique. The test and train data stem
are from the same dataset.

7. Optimization of Charging Schedule of an Entire Fleet

The next step is to solve the charging order problem. The optimization objective is to
maximize the total RUL of the fleet (tRUL, f leet) by controlling how long each vehicle (Yn,z) is
connected. This is written as:

max
Y

tRUL, f leet

s.t. Equations (19) to (21),
(14)

with

Y = {Yn,z | n ∈ N, z ∈ Z, Yn,z ∈ {0, 1}}, (15)

tRUL, f leet =

N f leet

∑
n=1

tRUL,n. (16)

where Yn,z corresponds to whether the vehicle n is connected during time slot z. N f leet
corresponds to the total number of vehicles in the fleet. The sets N and Z denote the fleet of
vehicles and the available charging slots, respectively, i.e.,

N = {1, . . . , N f leet, } (17)

Z = {1, . . . , Γend}. (18)

Γend is the number of steps in which the total charging time is divided. Note that Γend
is a design choice. tRUL,n is predicted by the ML model and therefore is dependent on
the characteristics of each vehicle. As can be seen from Equation (15), this is a binary
optimization, where Yn,z is the decision variable and where a 1 corresponds with the
vehicle charging and a 0 with the vehicle not charging.

The constraints of the optimization problem are defined as
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N f leet

∑
n=1

Yn,z ≤ Xchargers for all z ∈ Z, (19)

Γend

∑
z=1

Yn,z ≥ Γmin,n for all n ∈ N, (20)

| Ln |= max(Ln)− min(Ln) + 1. (21)

Equation (19) constrains the amount of vehicles that are charged simultaneously to be
equal or less than the number of charging points Xchargers.

Equation (20) makes sure each vehicle is connected at least the minimum amount of
hours needed for the vehicle to be at least 97% full, which also implies that the vehicles SoC
is at least equal to 97% after this charging period. Γmin is the minimum amount of hours
needed for the vehicle n to be full, defined as,

Γmin,n = ((0.97 − Z)n)Cupdated/Imax,n, (22)

where Imax,n is the maximum charge current applicable to vehicle n. Equation (22) assumes
a linear relationship between charging time and current. That is because the commonly
used constant voltage phase of charging, which is used to charge the battery to 100%, is not
included in this work.

Equation (21) reflects the fact that all chosen time slots should be adjacent to each
other, meaning each vehicle can only be connected once during the charging period. Ln
captures the time slots when the vehicle is connected, i.e.,

Ln = {z ∈ Z | Yn,z = 1} with n ∈ N. (23)

In Equation (21), | Ln | refers to the number of elements in Ln. max refers to taking the
highest number of the vector where min refers to taking the lowest number of the vector.

The optimization algorithm finds the optimal charging order (i.e., the schedule) of
the fleet. This optimization is solved using the intlinprog function of Matlab R 2022A.
Refs. [37,38] showed that this algorithm is suitable for solving binary problems while
giving valuable results. This algorithm first relaxes the problem by solving a non-integer
version of it. Then it tightens the found solution using cut generation techniques, as well
as a branch and bound algorithm to find an integer solution. See [39] for information on
these algorithms.

8. Simulation Results and Discussion

To illustrate the applicability of the proposed method, this section shows some sim-
ulation results on a numeric example. To do so, a realistic case study is presented. Then,
the applicability of the single-vehicle optimization algorithm is shown, after which the
applicability of the ML in combination with the charging order optimization algorithm
is presented.

8.1. Case Study

To show the benefits of the optimization algorithm, a case study was created, which
gives insights in how the algorithm works. The case study is based on lightweight electric-
freight trucks used for last-mile deliveries. The BEV weighs a maximum of 3500 kg includ-
ing payload. This weight makes these vehicles an attractive solution for a fleet operator,
because no truck driver license is required.

The BEVs are used for deliveries throughout the day. At the end of the day, all vehicles
are brought back to the same depot and can be charged overnight from 20:00 till 8:00. They
can be charged with different currents, which is decided by a central coordinator, i.e., the
methodology presented in in this paper.
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The batteries are assumed to be Li(NiMnCo)O2 18650 lithium-ion batteries. The
complete set of battery model parameters is shown in the previous work [11]. An overview
of some key model parameters is shown in Table 2. The ageing model proposed by [25] is
used. Notice that the chemistry used to derive the ageing-model parameters in Equations (4)
and (5) corresponds to an older version of Li(NiMnCo)O2, as updated parameters were not
available. This implies that the battery degradation presented on this paper follow the one
of [25], with the method presented on this paper remaining the same.

Table 2. Example of model parameters values.

Parameter Value Unit

Ambient temperature 283 K
Battery capacity EV 142.5 Ah
Specific heat capacity one cell 880 J/(kg·K)
Thermal resistance between cell
and ambient 2.94 W/K
Cells in parallel 50 -
Cells in series 96 -

The ambient temperature is assumed to be constant. The BEVs do not have active
cooling/heating for their batteries (i.e., Q̇cool = 0). However, in case of vehicles with this
system, this heat flow could be added as explained in [40]. The fleet size is 20 where the
inputs explained in Section 7 were randomized for each vehicle. There are two charging
points available.

Using the steps presented in Section 4, the optimization objective and constraints are
formulated. The simulation results are presented in the next subsections.

8.2. Single-Vehicle Result

Two scenarios were considered to show the impact of the algorithm of Section 5. More
scenarios and results can be found in the previous work [11]. This result assumes a single
vehicle connected for 12 h, where for the fleet result the time the vehicles are connected is
changed. The considered scenarios are the following:

• Greedy charging: No optimization is applied. This implies that the vehicles are
charged at the moment they are connected with a charging current high enough to
charge the pack in approximately 3 h.

• Optimized charging: A charging profile is derived solving the optimization objective
presented in Equation (11).

The resulting charging profile per scenario can be seen in Figure 4. Note here that the
assumed initial SoC is 30%, SoH is 1 and the battery of the vehicle is assumed to be the
exact same between scenarios. time = 0 corresponds to the starting time of 20:00, which is
the moment when the BEVs are connected. The time step is taken to be 0.25 h. Such a value
saves computational time, while maintaining the accuracy needed for the optimization.

The greedy charging scenario charges the vehicle as soon as it arrives. The optimized
charging charges as late as possible. This is because charging late reduces the average and
RMS voltage in Equations (4) and (5). Reducing these voltages leads to less degradation.
Likewise, the optimized charging scheme shows higher charging currents than the greedy
scenario, at the last moments of charging, which leads to an overall lower RMS voltage,
leading to lower degradation, even though C-rate is higher. This is a model-dependent
effect, which might be different from other models from the literature. The RUL of the
greedy scenario was 833 days, where the optimized scenario had a RUL of 1419 days,
which is an increase of 71%. Notice that the greedy scenario was only created for reference,
therefore it does not apply the highest possible charging current.
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Figure 4. Current profile comparison.

8.3. ML Selection for Fleet-Ordering Optimization

A dataset was obtained as explained in Section 6. The three ML algorithms explained
in Section 3.4 were trained.

In Figure 5, the predictions of each trained algorithm can be found. As can be seen,
the GPR has the lowest error margin, with predictions closer (and more frequent) to the
actual value.

This trend is also seen when comparing the Root Mean Square Error (RMSE) of each
algorithm. GPR had a RMSE of 48.6 days. Where Tree and SVM had a RMSE of 84.1
and 95.8 days, respectively. The Tree algorithm has more outliers, but is more accurate
at predicting the other points, while for SVM the opposite holds true. From the error
prediction point of view, SVM performs the worst while GPR the best. The fact that GPR is
the best can be explained by the fact that GPR is accurate with data sets with only a few
dimensions, where the underlying relations are smooth. This is case for RUL. This means
that of these three algorithms, GPR can most accurately predict RUL.

The three ML algorithms were also tested by creating new randomized inputs and
comparing the predicted RUL of the ML model with the RUL of the model (expected value).
These results can be found in Figure 6. In Figure 6a, the predicted RUL of each algorithm
and the actual RUL can be seen, these values have been ordered based on the RUL. In
Figure 6b the absolute error in the prediction can be seen. Both figures show that GPR has
on average the lowest error in predicting the RUL. In Figure 6b, the frequency of each error
range can be observed. As can be seen, the Tree algorithm performs poorly, as it has a some
very large outliers in the error of its prediction. SVM predicts more accurately than Tree,
but GPR has the most points in the lowest error range of 0–42 days. Using a GPR model to
predict the RUL is 2000 times faster than the recurrently running the ageing model and the
optimization algorithm created in Section 5.

(a) GPR (b) Tree (c) SVM

Figure 5. Comparison true response and predicted response in RUL prediction of every ML algorithm.
The line in the middle of the graph denotes the ideal response. True response is the actual value of
the data point, predicted response is the value predicted by the ML algorithm.
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Figure 6. Comparison of different ML predictions. (a) Predicted RUL compared to the calculated
RUL from the battery model. Ordered based on their RUL. (b) Occurrences of each error range.

8.4. Optimizing Charging Order

To show the benefits of the optimization algorithm, simulations are performed with
charging scenarios for a fleet of vehicles as the one described in the case study of Section 8.1.
The charging scenarios are:

• Greedy charging order: The vehicles are charged as soon as possible without imple-
menting any optimization. They are connected, based on a first come, first serve basis.
This is considered common practice in the day-to-day operation of fleets.

• Optimized charging schedule: A charging order is derived by solving the optimization
problem described in Section 7.

8.4.1. Fleet Scheduler Example

The optimization algorithm of Section 7 chooses a suitable start and end time of the
vehicles. Time steps of 30 min were used in order to save on computational time. Note that
when considering steps of 5 min, the total RUL increases by 2%. Such an increase is due to
the increased decision space and the higher algorithm precision, which enables finding a
lower minimum. However the computational time is six times longer than when 30 min
time steps are used. After running the algorithm with several time steps, it was noticed that
the computational time increased in a near-linear fashion while reducing the time steps
length. Similarly, the computational time increases nearly linearly while increasing the
fleet size. Time steps of 30 min were chosen, as it provides a balanced trade-off between
accuracy and computational time.

The resulting charging order can be found in Figure 7. The red bar shows which
vehicle is connected and charged at which time slots. As can be seen, the total RUL of the
optimized charging is 2.4 times higher than the greedy charging order and optimizing this
order can therefore significantly increase the lifetime of a fleet of vehicles. Important to
notice is that the charging profile is selected to maximize the RUL of each vehicle given
charge window i.e., a different time window produces a different optimal RUL. However,
the charge windows are chosen to maximize the total fleet RUL and not the individual
vehicle RUL. Therefore, a single vehicle can have a better RUL using the greedy algorithm
than the optimized algorithm, due to the difference in charge window. In Figure 7c, the
charging power of three vehicles is shown. What can be seen is that a longer time period in
general leads to lower C-rates, where charging at the last time step leads to higher C-rates.
However, also note that only vehicles with relatively high initial SoC are charged in one
time slot.
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Car
number

SoC
initial

Temp-
erature SoH

1 0.67 297 0.83
2 0.62 298 0.06
3 0.70 291 0.09
4 0.70 291 0.21
5 0.19 288 0.67
6 0.39 297 0.75
7 0.42 289 0.67
8 0.67 292 0.79
9 0.20 295 0.57
10 0.36 289 0.33
11 0.55 287 0.76
12 0.44 289 0.23
13 0.52 285 0.70
14 0.75 285 0.22
15 0.63 298 0.40
16 0.71 298 0.64
17 0.70 285 0.48
18 0.63 284 0.13
19 0.51 287 0.93
20 0.77 289 0.79

(d) Randomized car data

Figure 7. Charging schedule of a 20-vehicle fleet and 2 chargers. Red squares denote vehicles
connected per time slot.

8.4.2. Charging Order Analysis

In this subsection, the influence on the charging order of varying the initial value
of a single vehicle parameters (i.e., SoC, SoH and temperature) is shown. To do so, the
algorithm is tested on a fleet of 10 vehicles while varying a single parameter. In Figure 8,
the results of the single varied parameter scenario can be seen. Each line represents the
result of varying only that parameter, while the others were kept constant.

The resulting charging order based on the initial SoH shows that the vehicle with
the lowest initial SoH (i.e., an old vehicle) should be charged first and the one with the
highest initial SoH should be connected last. Recall from Figure 4 that charging a vehicle
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soon leads to the highest degradation (see the greedy charging scheme for reference). Also
consider that an old vehicle has already shorter RUL than a newer one, because it is closer
to its end of life. Therefore, there is more to gain from a fleet perspective by charging the
newer vehicles in the optimal scenario (as late as possible) and the older vehicles in the
sub-optimal scenario (as soon as possible).
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Figure 8. Charging order of single varied input scenario for SOH, SOC and temperature.

The resulting charging order based on the initial SoC of vehicles shows the same trend
as the Initial SoH. First the vehicles with a low initial SoC are charged, because vehicles
with a higher initial SoC the needed charge time is lower and therefore more vehicles can be
charged later, which is the optimal charging pattern. Also, the optimizer has little influence
on the RUL of vehicles with high SoC, because little energy needs to be transferred during
the charging session. This is reflected in the alternation in charging order for vehicles with
SoC > 0.5.

For the initial temperature the relationship is linear: first the vehicle with the highest
initial temperature is charged and later the vehicles with a lower initial temperatures. Recall
from Equation (4) that higher temperatures result in higher capacity loss due to calendar
ageing (i.e., a shorter RUL). Likewise, a battery with a higher temperature cools down faster
because the difference with the ambient temperature (which is assumed to be constant at
283 ◦K) is higher. Therefore, from a fleet perspective, it is preferable to charge the warmest
battery first, as it cools down faster (than a colder battery) resulting in the least amount of
total fleet degradation.

9. Conclusions

This paper presented a method for finding the charging moments (i.e., scheduling) of
a fleet of electric vehicles. The method finds a schedule that maximizes the RUL of all the
vehicle batteries in the fleet, while taking into variations in RUL due to fabrication-related
differences in the batteries and considering that more vehicles than chargers are available.

The method is composed of three key elements: an optimization algorithm for creating
a charging profile for a single vehicle; an ML model to predict the battery RUL when the
charging profile is used; an optimization algorithm to schedule the charging moments of
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an entire fleet. The charging profile optimization is based on a modelling strategy that
captures the battery dynamics and battery degradation. Such an optimization maximizes
the RUL of an individual vehicle. Based on the resulting charging profile, an ML model
was created to predict the battery RUL. Such an ML algorithm uses Gaussian Process
Regression and is fed by repeatedly applying the optimal charging profiles of the previous
step, while considering multiple values in the battery ageing parameters to account for
its internal variability. Using the output of such a ML model, the second optimization
calculates the charging order, while maximizing the total RUL of the fleet and taking into
account common timing requirements of the fleet operator.

To show the method’s applicability, a case study is presented, where a 40-vehicle fleet
needs to be charged over a period of 12 h with 5 charging points. A “greedy” charging
strategy (i.e., charging as soon as the vehicle arrives to the depot) is used as a comparison
baseline. Simulation results shows that in a single-vehicle charging scheme, the RUL is
71% higher when the optimal charging is used than with the baseline strategy. This was
achieved by charging the battery as late as possible, as it corresponds in the least amount
of ageing. Likewise, simulation results show that the ML model achieved a Root Mean
Square Error (RMSE) of 48 days, over the entire lifetime of the battery. Lastly, using the
ML model, the optimization algorithm that schedules the charging moments of the fleet
improves the total RUL of all the batteries in the fleet by 250%, when compared to a greedy
charging scenario.

Future works is currently exploring the inclusion of a grid constraint in the algorithm,
where the power that can be drawn from the grid is (dynamically) influenced by the effect
of external power consumers or power generators.
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