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Abstract

Aureobasidium is omnipresent and can be isolated from air, water bodies, soil, wood, and other plant materials, as well as
inorganic materials such as rocks and marble. A total of 32 species of this fungal genus have been identified at the level of
DNA, of which Aureobasidium pullulans is best known. Aureobasidium is of interest for a sustainable economy because it
can be used to produce a wide variety of compounds, including enzymes, polysaccharides, and biosurfactants. Moreover, it
can be used to promote plant growth and protect wood and crops. To this end, Aureobasidium cells adhere to wood or plants
by producing extracellular polysaccharides, thereby forming a biofilm. This biofilm provides a sustainable alternative to
petrol-based coatings and toxic chemicals. This and the fact that Aureobasidium biofilms have the potential of self-repair
make them a potential engineered living material avant la lettre.

Key points

eAureobasidium produces products of interest to the industry

eAureobasidium can stimulate plant growth and protect crops

eBiofinish of A. pullulans is a sustainable alternative to petrol-based coatings

e Aureobasidium biofilms have the potential to function as engineered living materials

Keywords Aureobasidium - Fungus - Biofilm - Coating - Wood protection - Engineered living material

Introduction urgency to shift to a sustainable economy to reduce human

impact on the environment.

The growing world population causes environmental prob-
lems such as resource depletion, biodiversity loss, and pol-
lution (Geissdoerfer et al. 2017; Maja and Ayano 2021).
For instance, it drives the expansion of agricultural activity
(Toop et al. 2017) and the building industry. The latter con-
sumes large volumes of natural resources (e.g., sand, gravel,
and oil) and energy and produces high amounts of CO, and
solid waste (Benachio et al. 2020). Therefore, there is a huge
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The building industry relies on coatings to prevent the
breakdown of building materials. These coatings are often
based on non-renewable oil and contain toxic chemicals such
as chromated copper arsenate, creosote, pentachlorophenol,
or heavy metal combinations (Morrell 2017). Similarly, food
products are often treated with chemicals such as copper-
based fungicides to prevent colonization with pathogens or
spoilage organisms (Lamichhane et al. 2018). The fungus
Aureobasidium can contribute to the transition to a sustain-
able economy by providing a sustainable coating for wood
and food products. Also, Aureobasidium can be used as a
cell factory for the production of enzymes and other natural
compounds that can replace non-sustainable chemicals.

This review describes the diversity and ecological niches
of Aureobasidium. Moreover, it describes its life cycle, its
(potential) use to protect products against deterioration, and
as a (potential) source for of biobased molecules such as
enzymes, biosurfactants, melanin, siderophores, gluconic
acid, and the polysaccharides pullulan and p-glucan (Bru-
mano et al. 2017; Canete-Rodriguez et al. 2016; Wang et al.
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2022b). Furthermore, we describe the perspective of exploit-
ing and expanding Aureobasidium as a component of a sus-
tainable engineered living material with its biofilm on wood
as a first example.

The genus Aureobasidium

Aureobasidium belongs to the phylum Ascomycota and the
order Dothideales (Thambugala et al. 2014). Previously,
Aureobasidium belonged to the Dothideaceae family
(Schoch et al. 2006) but was reclassified in 2014 to belong
to the Aureobasidiaceae. The latter family also includes
the genera Kabatiella, Pseudoseptoria, Saccothecium, and
the species Selenophoma mahoniae and Columnosphaeria
fagi (Thambugala et al. 2014). Aureobasidium is described
as mildew or blue or black stain (de Hoog 1993) and is
popularly known as black yeast (Singh et al. 2015). Species
of this genus can be found on all continents (Loque et al.
2010; Merin et al. 2011; Onetto et al. 2020; Peterson
et al. 2013; van Nieuwenhuijzen et al. 2016; Woody
et al. 2003) and have been isolated from air, water, and
diverse (in)organic outdoor and indoor materials such
as soil, phylloplanes, wood, rocks, marble, dishwashers,
washing machines, house dust, and food (Babi¢ et al. 2015;
Humphries et al. 2017; Jiang et al. 2018; Li et al. 2015;
van Nieuwenhuijzen 2014; Wang et al. 2022a; Zupancic
et al. 2016). Currently, 32 DNA-identified Aureobasidium
species are known (Table 1). These species include the best
known Aureobasidium species, Aureobasidium pullulans, as
well as the most recently identified species Aureobasidium
insectorum, Aureobasidium planticola, Aureobasidium
motuoense, and Aureobasidium intercalariosporum (Arnaud
1918; Arzanlou and Khodaei 2012; Ashish and Pratibha
2018; Barr 2001; Bills et al. 2012; Ciferri et al. 1957; Cooke
1962; Crous et al. 2021, 2011; de Hoog and Hermanides-
Nijhof 1977a, 1977b; Gostincar et al. 2014; Inamdar et al.
2019; Jia et al. 2019; Jiang et al. 2021, 2019; Lee et al.
2021; Nasr et al. 2018; Onetto et al. 2020; Peterson et al.
2013; Ramaley 1992; Wang et al. 2022a; Wu et al. 2023).
An additional 15 species have been identified based on
morphology (Table 2) (Cooke 1962; Crisan and Hodisan
1964; Della Torre 1963; de Hoog and Hermanides-Nijhof
1977a; Pande and Ghate 1985; Richardson and Pitkdranta
2011). Various loci (i.e., the internal transcribed spacer
(ITS) rDNA, intergenic spacer 1, translation elongation
factor-1a, p-tubulin, large ribosomal subunit (LSU), and
RNA polymerase II) have been used for the phylogeny of
Aureobasidium (Crous et al. 2011; Gostincar et al. 2014;
Manitchotpisit et al. 2009; Peterson et al. 2013; Wang et al.
2022a; Zalar et al. 2008). Kabatiella and Aureobasidium are
closely related based on morphology and DNA sequences,
which makes them difficult to distinguish (Bills et al. 2012;
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Crous et al. 2011). In fact, Kabatiella lini is now proposed
to be part of the Aureobasidium clade (Thambugala et al.
2014). The same holds for Selenophoma mahoniae and
Columnosphaeria fagi.

Colonies of Aureobasidium that grow on malt extract
agar (MEA) are initially yellow, creamy, light pink, or light
brown. After a day to a few weeks, colonies become dark
brown/black due to melanin-like pigments (Li et al. 2015;
van Nieuwenhuijzen 2014). The hyphae and chlamydospores
are the main cause of the dark pigmentation (Zalar et al.
2008). ‘Color variants’ of Aureobasidium, which usually
have been isolated from tropical regions, produce red,
yellow, orange, or purple pigments (Leathers 1986;
Wickerham and Kurtzman 1975).

Aureobasidium species can tolerate extreme
environmental conditions (Gostincar et al. 2019) (Table 3).
For instance, A. subglaciale shows superior resistance to UV
light and heavy metals compared to other yeasts and bacteria
(Liu et al. 2017). A. pullulans and Aureobasidium mangrovei
are salt-resistant, the latter being able to resist salt levels up
to 17% (Gunde-Cimerman et al. 2000; Zalar et al. 2008),
while 20% of the cells of A. melanogenum survives 200 mM
H,0, (Jiang et al. 2016).

Aureobasidium comprises dimorphic species that grow
vegetatively by forming yeast cells and hyphae. The mode of
growth depends on the species and environmental conditions
(van Nieuwenhuijzen 2014). Hyphal growth of A. pullulans
is more abundant at low cell density, while yeast cells are
more abundant at high cell density (Finlay 1987; Park 1984).
Hyphae of A. pullulans have an average width of 2—16 um,
are hyaline, smooth- and thin-walled, and become dark-
brown and thick-walled when grown on MEA for a longer
period (de Hoog et al. 2000; Samson et al. 2019). Yeast cells
result from the division of conidia (see below), and therefore
both names are used for these types of cells.

Although Dothideales are known to reproduce sexually,
no sexual reproduction has been reported for A. pullulans
(Humphries et al. 2017) and other Aureobasidium species.
The high abundance of diploid strains in A. melanogenum is
not considered indicative of sexual reproduction in nature.
Rather, diploidy is the result of intraspecific hybridization
events of haploids not being followed by meiosis or hap-
loidization (Gostincar et al. 2022). Aureobasidium does form
asexual spores known as endoconidia, blastoconidia, arthro-
conidia, swollen cells, and chlamydospores (Figs. 1 and 2).
The former four cell types are often collectively described
as conidia. The formation of asexual spores depends on the
species and environmental conditions (van Nieuwenhuijzen
2014). For instance, the formation of chlamydospores in A.
pullulans is observed in a glucose medium (3% (w/v)) with
a limiting nitrogen source at a low pH (Bermejo et al. 1981a;
Liu et al. 2021). pH is, in fact, the key factor regulating
cell morphogenesis of A. pullulans (Bermejo et al. 1981b;
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Table 1 (continued)

Reference

Mycobank, CBS, strain

number

Location

Effective publication (according Source
to the reference or MycoBank

on 1 February 2023)

Synonym

Species name

Year

Name

(de Hoog and

(Narita and Y. Hirats.) 1973 Leaf of Zea mays Kiel-Kitzeberg, MB283372, CBS
Germany

Aureobasidium zeae

Kabatiella zeae

Hermanides-Nijhof

1977b)
Barr (2001)

767.71

Dingley

MB489000, CBS

UK

2001 Leaf of Populus sp.

(H.J. Huds.) M.E. Barr

Columnosphaeria fagi

171.93
MB355521, CBS

Ramaley (1992)

USA

1992 Leaf of Mahonia repens

A.W. Ramaley

Selenophoma mahoniae

388.92

N/A, not available

Li et al. 2009). At pH <3 chlamydospores are produced by
swollen cells (Li et al. 2009). On the other hand, blastoco-
nidia transform into swollen cells at pH ~4.5, while they are
stable at pH 6. These spores bud from short lateral branches
of hyphae and conidiophore-like structures (van Nieuwen-
huijzen 2014; Zalar et al. 2008). They are ellipsoidal, spin-
dle-like, cylindrical, or lemon-like in shape with a size of
9-11x%3-6.5 pm (de Hoog and Hermanides-Nijhof 1977a;
Kockova-Kratochvilova et al. 1980). Swollen cells have been
described to develop from blastoconidia by enlarging and by
producing a thick cell wall (Campbell et al. 2004; Li et al.
2009; Pechak and Crang 1977). This cell type is globular
and ellipsoid in shape and can be either septated or not,
with an average size of 15X 11 pm and 12X 9 um, respec-
tively. Swollen cells not only produce blastoconidia, other
(septated) swollen cells, and chlamydospores (Pechak and
Crang 1977), but also germ tubes (Campbell et al. 2004).
The cylindrical-shaped arthroconidia are generally bigger
than blastoconidia with a length and width of 6.5-22 and
4.5-13 pm, respectively. They form through fragmentation
of hyphae (Samson et al. 2019). Endoconidia are less fre-
quently observed. They are about 6-8 X 3 um in size and are
present in intercalary cells (Zalar et al. 2008). Chlamyd-
ospores are formed from swollen cells or by hyphae and
can be found in chains, as free cells, or firmly attached to
hyphae (Brown et al. 1973; Dominguez et al. 1978; Pechak
and Crang 1977). They have thick and melanized cell walls
with single or numerous septa (Kockova-Kratochvilova et al.
1980; van Nieuwenhuijzen 2014) with an average size of
13 %12 pm (Fig. 1). The life cycle of A. pullulans proposed
by Ramos and Garcia Acha (1975) consists of six subcycles,
their occurrence depending on the environmental conditions
(Fig. 2). In these sub-cycles, blastoconidia produce other
blastoconidia or form a pseudomycelium. This pseudomy-
celium is formed because the daughter cells of the blasto-
conidia do not separate from the mother cell and continue
budding, creating an aseptate chain of this type of spores.
Blastoconidia can also differentiate into (non-)septated,
swollen cells. These swollen cells can bud off blastoconidia,
differentiate into chlamydospores, or produce germ tubes,
giving rise to a septate mycelium or endoconidia. The chla-
mydospores can give rise to a mycelium, which in turn can
produce blastoconidia and chlamydospores.

The genomes of A. pullulans, A. melanogenum, A. subgla-
ciale, and A. namibiae contain genes that are implicated in
stress tolerance, including genes encoding aquaporins, aqua-
glyceroporins, and alkali-metal cation transporters, proteins
for the synthesis of compatible solutes and melanin, as well
as bacteriorhodopsin-like proteins (Gostincar et al. 2014).
Moreover, genes encoding stress signaling pathways are
present in Aureobasidium, including the cell wall integrity
(CWI) signaling pathway, the target of rapamycin complex
1 (TORC1) signaling pathway, the high glycerol osmotic
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Fig. 1 Schematic overview of cells in A. pullulans strain CBS 584.75
(A-E) and their dimensions (F). Blastoconidia or yeast cells (white
arrow), non-septated swollen cells (white open arrow), septated swol-
len cells (black open arrow), chlamydospores (black arrow), hyaline
hyphae (black lined, white filled arrow), dark hyphae (white lined,

1 (HOGTI) signaling pathway, and the heat shock factor 1
(HSF1) signaling pathway (Chi et al. 2022). However, little
is known about the stress resistance of most Aureobasidium
cell types. The chlamydospores are considered resistant to
desiccation and ultraviolet irradiation (Pechak and Crang
1977). It is believed that the resistant nature of chlamydo-
spores is due to the melanin in the cell wall as well as other
molecules (known as electron-dense granular material)
that are present in the outermost wall layer and cross walls
(Brown et al. 1973).

Bioproducts from Aureobasidium

Aureobasidium produces many products of interest for the
industry, including pullulan, p-glucan, polymalic and malic
acids, melanin, lipids, biosurfactants, and liamocins. These
molecules are used in agriculture, food, cosmetics, water
treatment, and as pharmaceuticals and biofuels (Kim et al.
2022; Wang et al. 2022b).

Polysaccharides

The exopolysaccharide (EPS) pullulan is produced
commercially using different species of Aureobasidium,
in particular, A. pullulans (Wang et al. 2022b). Pullulan
consists of maltotriose units that are attached to each other
via a-(1 — 6) glycosidic bonds (Singh et al. 2021). Yields up
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to 125.7 g 17! have been achieved using agro-industrial waste
(e.g., beet molasses, coconut, potato starch, and soybean)
(An et al. 2017; Goksungur et al. 2004; Sheoran et al.
2012; Singh et al. 2019; Thirumavalavan et al. 2009). The
highest pullulan production (162.3 g 17!), however, has been
achieved with glucose as a carbon source (Li et al. 2023).
Pullulan is a white, water-soluble, tasteless, and odorless
biological binder mainly used as a food additive, functioning
as a thickener, stabilizer, filler, gelling agent, and/or adhesive
(Muthusamy et al. 2022; Prajapati et al. 2013). For example,
it is used as a substitute for gelatin, starch, or wheat flour.
Moreover, it is used in food packaging materials to prevent
the oxidation of food. The viscosity of pullulan in water is
not affected over a wide range of pH (2-11) and remains
stable in the presence of most metal ions (Jindal and
Khattar 2018; Tsujisaka and Mitsuhashi 1993). With its
unique structure and being non-toxic and non-irritant to the
human body, it is a potent candidate for pharmaceutical and
cosmeceutical applications (Singh et al. 2023). Pullulan can
be used as a carrier for the controlled release of compounds
into the environment. In particular, pullulan-based
conjugates have been developed for prolonged intravitreal
drug release (Lu et al. 2009; Singh et al. 2023; Zhang et al.
2011). Also, active ingredients used in cosmetics and lotions
can be targeted to site-specific skin layers (Nakashio et al.
1976; Singh et al. 2008). Recently, special focus has been
directed toward pullulan-based biomaterials as wound
dressings and skin tissue engineering scaffolds. Pullulan
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Fig.2 Aureobasidium pullulans life cycle with blastoconidia (1, 3)
and blastoconidia producing other blastoconidia (2) in section A;
pseudomycelium (4, 5) in section B; non-septated swollen cells (6),
non-septated swollen cells giving rise to blastoconidia (7) and hyphae
(8), mycelium (12), endoconidia (13), and septate mycelium produc-
ing other blastoconidia (14) in section C; septated swollen cells (9),
septated swollen cells producing germ-tubes (10) or blastoconidia
(11), mycelium (12), and septate mycelium producing blastoconidia
(14) in section D; chlamydospores (16), chlamydospores producing
germ-tubes (17), or blastoconidia (18) in section E; and chlamydo-
spores growing on dark mycelium (15) in section F. Adapted from
Ramos and Garcia Acha (1975)

composites combined with other biopolymers, such as
chitin, gelatin, collagen, and chitosan, are considered ideal
wound dressing materials (Elangwe et al. 2023).

Along with pullulan, A. pullulans is known to synthesize
aubasidan-like EPS. This glucan contains a core of §-1,3-
linked glucopyranosyl residues, to which side chains
of a-1,4-glucosyl residues are attached through p-1,6-
glucosidic bonds (Singh and Saini 2012; Yurlova and De
Hoog 1997). Aubasidan-like p-glucans are also produced by
two non-pullulan-producing strains of A. pullulans (NRRL
58539 and NRRL 58543) as well as by Aureobasidium
thailandense (Kayanna et al. 2022; Lotrakul et al. 2013). The
latter produces 37.73 g 17! of this polysaccharide. Adding
this polysaccharide to gummy jellies results in increased
color intensity, hardness, gumminess, and chewiness, as
well as a decrease in springiness and cohesiveness. These
properties suggest a great potential for A. thailandense
B-glucan in the food industry (Kayanna et al. 2022). Another
B-glucan formed by A. pullulans consists of a main chain of

(1 — 3)-p-glucan and four B-(1 — 6)-p-glucosyl side chains
linked to the backbone via p-(1 — 6)-glycosidic bonds every
six glucose residues (Kono et al. 2017). Yields of 2.5 g 17!
are obtained with A. pullulans IMS822 KCTC 11179BP
wild type (Kang et al. 2010), while 9.2 g 17! is obtained
with the UV mutant strain A. pullulans M-2 (Moriya et al.
2013). In general, B-glucans exhibit properties such as
anticancer and anti-inflammatory activity, dermal wound
healing, and enhancement of intestinal immune function
in mice (Hu et al. 2023; Kim et al. 2023; No et al. 2021;
Tanioka et al. 2013; Yun et al. 2015). Of interest, Byun et al.
(2008) developed a gamma irradiation-based treatment for
Aureobasidium B-glucan that reduces its high viscosity and
poor water solubility by reducing its molecular weight.

(Poly)organic acids

Polymalic acid (PMA) and malic acid are produced at
an industrial scale by Aureobasidium, in particular by A.
pullulans (Zou et al. 2013). PMA was first isolated from
Physarum polycephalum as a compound that functions in
coordination with DNA replication (Fischer et al. 1989).
The a-, B-, and y-types are distinguished, with the B-type
being primarily found in Aureobasidium (Nagata et al. 1993;
Zou et al. 2019). B-PMA is formed by ester bonds between
L-malic acid (2-hydroxybutanedioic acid) monomers (Qi
et al. 2021). Aureobasidium sp. P6 synthesizes 100.7 g 17!
PMA (Ma et al. 2013), while A. pullulans var. pullulans
MCW produces even 152.5 g 17! of this polymer (Wang
et al. 2015). Obviously, these amounts are higher than
those produced by P. polycephalum (2.7 g 17!) (Lee and
Holler 1999). PMA has broad potential in applications
such as drug delivery, biomaterials, and biodegradable
plastics because of its water solubility, biodegradability,
and biocompatibility (Qi et al. 2021). It can also be used in
materials with controllable shape memory based on cross-
linked PMA with reconfigurable permanent shapes due to
further crosslinking during heat treatment (Qiu et al. 2019).
Malic acid can be produced from polymalic acid by acid
hydrolysis (Zou et al. 2013). It is frequently used in the food
industry as an acidulant and flavor enhancer (Reddy et al.
2016). Additionally, it is applied in metal cleaning, textile
finishing, and pharmaceuticals (Chi et al. 2016).

Melanin

Many fungi synthesize melanin. These pigments are
classified as 1,8-dihydroxy naphthalene (DHN) melanin,
eumelanin, pyomelanin, pheomelanin, and 4-glutaminyl
hydroxybenzene (GHB) melanin (Liu et al. 2022). A.
pullulans and A. melanogenum mainly produce DHN
melanin (Jiang et al. 2016). A total of 3.71 g17! (0.19 g 17!
intracellular and 3.52 g 17! extracellular) of this pigment is
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produced by A. pullulans NBRC 100716 (Mujdeci 2021).
It is widely applied in areas such as optical biomimetics,
UV-protective lenses, food colorants, material coatings,
and biomedical applications due to its functional properties
related to photosensitivity, acting as a UV-light barrier,
its free radical scavenging ability, antioxidant activity,
and ability as a reducing and capping agent for metal
nanoparticles (Campana et al. 2022; Roy and Rhim 2022).

Fatty acids and surfactants

Fatty acids are highly produced by A. melanogenum P10
with a yield of 66.3 g of oil per 100 g of cell dry weight.
Their composition consists of 26.7% C16:0, 1.7% C16:1,
6.1% C18:0, 44.5% C18:1, and 21.0% C18:2 (Wang et al.
2014). The transformation of corncob-derived xylose into
intracellular lipid by the engineered P10 strain shows even
better properties than the standard US and EU biodiesels
(ASTM D6751 and EN 14214) caused by the higher cetane
and lower iodine numbers (Song et al. 2022).

Surfactants have large industrial applications for their
ability to lower the surface tension of water. The fact that
they are produced from petroleum has triggered interest
in biosurfactants (Holmberg 2001). A. thailandese LBO1
produces a biosurfactant with a yield of 139 mg 17!. The
biosurfactant, which has a chemical structure similar to
lauric acid ester, reduces the surface tension of water from
67 mN m~! to as low as 31.2 mN m~!. The ability of this
biosurfactant to disperse crude oil highlights its potential
in bioremediation (Meneses et al. 2017). A. pullulans is
even more promising as a cell factory for biosurfactants
by producing pullusurfactans F and G as well as liamocins
(Brumano et al. 2017; Garay et al. 2018; Kim et al.
2022). Liamocins, also described as extracellular heavy
oils, are polyol lipids belonging to the fungal glycolipid
biosurfactants (Garay et al. 2018). Diverse structures of
liamocins can be produced by A. pullulans depending on
the strain and culture conditions (Leathers et al. 2015;
Price et al. 2017). These glycolipids are composed of a
single headgroup (p-mannitol, p- and L-arabitol, p-xylitol,
L-threitol, p-sorbitol, p-galactitol, and glycerol) that is
linked to three, four, or six 3,5-dihydroxy decanoic ester
tail groups (Kang et al. 2022; Leathers et al. 2018). A.
pullulans NRRL 50380 produces up to 4.4 g 17! liamocins
when grown on sugars and polyols (Price et al. 2017).
Notably, a melanin-free derivative of strain NRRL 50384
(B46p14KO1) even gives a yield of 22 g 17! (Leathers
et al. 2018). The saturated aqueous solution of liamocins
from A. pullulans strain CU 43 exhibits a surface tension
of 27 mN m~!, implying these oils may have solubilizing
or emulsifying properties (Manitchotpisit et al. 2011).
Liamocins exhibit anticancer and antibacterial activity
(Kang et al. 2022; Satek et al. 2022) and inhibit the biofilm
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formation of oral streptococcal biofilms by Streptococcus
mutans and Streptococcus sobrinus (Leathers et al. 2019).
After hydrolysis, liamocins release 3,5-dihydroxy decanoic
acids, which can be transformed into massoia lactones (Kang
et al. 2022). Massoia lactones are 10, 12, and 14 carbon
chain compounds (also referred to as C-10, C-12, and C-14
massoia lactones). The a,B-unsaturated 5-lactone moieties
of massoia lactones are substituted at the C6 position by an
alkyl chain with a variable length containing five, seven,
or nine carbons (Kang et al. 2022; Rali et al. 2007). These
compounds show anticancer, anti-viral, anti-inflammatory,
and anti-fungal activities. Therefore, it can be used as a
fungicide or pesticide in agriculture (Kang et al. 2022).
For instance, massoia lactone is active against the wheat
pathogen Fusarium graminearum (Zhang et al. 2021).

Aureobasidium as plant growth promotor
and biocontrol agent

Global warming results in drought and increased salinity of
soils. This results in major agricultural losses (Cominelli
and Tonelli 2010). Although Aureobasidium species are
described as plant or human pathogens (Crous et al. 2011;
Lee et al. 2019; Nasr et al. 2018), they are also known as
plant growth promotors and biocontrol agents in various
crops and fruits such as grapes, berries, apples, pears,
citrus, tomato, peaches, and strawberries (Adikaram et al.
2002; Di Francesco et al. 2017; Ferreira-Pinto et al. 2006;
Galli et al. 2021; Klein and Kupper 2018; Mari et al. 2012a,
2012b; Schena et al. 1999; Zajc et al. 2020). Non-volatile
metabolites produced by A. pullulans inhibit the growth of
the plant pathogen Rhizoctonia solani by 87.9%. Biofilm
formation by A. pullulans strains L1 and L8 at the bean and
soybean plant roots is a key factor in virulence control and
plant growth stimulation (Di Francesco et al. 2021).
Aureobasidium species belong to the third-most common
group of endophytes in desert plants. These endophytes
have the capacity to increase nutrient uptake by the plant
and promote resistance of the plant to pathogens and to
drought, heat, and salt stress (Zhang and White 2021). The
3'-phosphoadenosine-5'-phosphatase (PAP) phosphatase
ApHal2 confers resistance to sodium in A. pullulans
(Gaspari¢ et al. 2013). The 3’-phosphoadenosine-5'-
phosphatase motif sequence META from this protein is
believed to be responsible for the high tolerance to NaCl.
The homolog of this protein in Arabidopsis thaliana, SAL1,
lacks this motif. Therefore, a region of the ApHal2 enzyme,
including the META motif, was inserted into SAL1 of
Arabidopsis thaliana (GaSpari€ et al. 2013). Overexpression
of this modified SALI (mSALI) improves the salt tolerance
of the plant compared to wild-type Arabidopsis and plants
overexpressing native SALI. The msall plants show longer
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roots and larger leaf surfaces at elevated salt concentrations
when compared to the sall and wild-type plants. Also, the
wild-type plants decrease in dry weight when exposed to
moderate drought stress, while the msall and sall plants
even show increased dry weight in comparison with
plants that are watered normally (Gaspari¢ et al. 2013).
However, severe drought results in lower dry weights in all
genotypes. Also, the sall plants show lower revitalization
ability compared with the msall and wild-type plants
(Gagparic et al. 2013). Together, overexpression of native
SALI results in resistance to moderate drought stress but
decreases the revitalization rate after severe drought stress.
By contrast, overexpression of mSALI improves salt and
drought tolerance without affecting revitalization at high
drought stress. These results show that A. pullulans or other
Aureobasidium species can be interesting gene donors to
improve the stress tolerance of plants. It is not known yet
if such genes, in particular in the case of ApHal2, have the
same effect on stress resistance when present in A. pullulans
endophytes.

Siderophores can be used to stimulate plant growth (Di
Francesco et al. 2022). These low-molecular-weight, iron-
chelating compounds are produced by nearly all microbes
to retrieve this metal from the environment (Chi et al. 2009;
Johnson 2008). A. pullulans strain HN6.2 produces 1.1 g 17!
of siderophores (Wang et al. 2009). The siderophores of A.
pullulans strain L1 not only increase the bioavailability of Fe
in the soil but also that of Mn, Cu, and Zn by 50, 31.8, 38.4,
and 27.1%, respectively, after 30 days of incubation with
the fungus (Di Francesco et al. 2022). This is accompanied
by an increased tomato root and stem diameter of 19.1 and
27.3%, respectively.

A. pullulans BSS6 improves heavy metal stress
resistance and remediating mechanisms in cucumber
(Cucumis sativus) (Ali et al. 2019). Cucumber plants
inoculated with A. pullulans BSS6 and exposed to lead
and cadmium show improved plant growth and a higher
content of photosynthetic pigments (chlorophyll a and b and
carotenoids) compared to non-inoculated plants. A. pullulans
BSS6 causes enhanced antioxidant activities (catalase,
peroxidase, and reduced glutathione) and inhibition of
lipid peroxidation during stress conditions in plants. The
inoculation of A. pullulans BSS6 also reduces metal
accumulation and alleviates metal-induced stress in plants.
Finally, when added to soil A. pullulans BSS6 reduces the
availability of lead and cadmium. These findings indicate
that treatment with A. pullulans BSS6 is a promising
phytoremediation agent for crops growing in soils polluted
with these metals (Ali et al. 2019).

Biofilms are differentiated accumulations of
microorganisms that are formed on surfaces surrounded by
an extracellular matrix consisting of EPS (Blankenship and
Mitchell 2006). The application of A. pullulans biofilms on

winter wheat spikes inhibits the growth of pseudomonads,
Azotobacter bacteria, and filamentous fungal pathogens
(Wachowska et al. 2016). Also, biofilm production by
A. pullulans stimulates the biocontrol activity against
Geotrichum citri-aurantii, the causal agent of sour rot in
citrus fruits, as well as other, possibly plant pathogenic,
microorganisms due to niche exclusion. Biofilm production
can be stimulated by the addition of 1% ammonium sulfate,
which increases the antagonistic activity against sour rot
and allows for better survival of A. pullulans in wounded
sites of citrus fruits (Klein and Kupper 2018). Notably,
A. pullulans has been found to be one of the most active
endophytes cultured from fruits. It produces the highest
amount (9109.19 +146.02 pg/g) of indole-3-acetic acid
(IAA), which induces plant growth (Kachalkin et al. 2022)
and, thereby, could be a great characteristic in plant growth-
promoting biofilms.

Aureobasidium as protective coatings
in construction

In construction, the discoloration of wood due to mold
growth is usually considered negative (Gobakken et al. 2010;
Lie et al. 2019; Williams and Feist 1999). However, naturally
grown biofilms of A. pullulans formed in combination with
water-repellent linseed oil are, in fact, an attractive living
protective wood layer (Sailer et al. 2010). Compared to tra-
ditional wood coatings, the A. pullulans linseed oil-based
coating (from now on called Biofinish) has clear advantages
in terms of sustainability and potential self-repairing abilities
(Filippovych et al. 2015; 2016; Rensink et al. 2020; Sailer
et al. 2010). In outdoor applications, natural Biofinish can
be formed on vegetable oil-impregnated wood. This natural
Biofinish consists of 26 to 34 fungal genera yet always con-
tains species of Aureobasidium (van Nieuwenhuijzen et al.
2017). In terms of wood protection, liquid water uptake is
prevented by the linseed oil, and together with the fungus,
the wood is protected against wood-degrading microorgan-
isms and UV light (Hernandez and Evans 2015). The latter
can be explained by the high abundance of chlamydospores
on the wood surface (Poohphajai et al. 2021). The indus-
trial finish-coated wood showed superior aesthetic perfor-
mance during a 3-month weathering study when compared
to non-coated wood. Its surface roughness decreased, while
it increased in non-coated wood. This can be explained by the
local regrowth of the fungus to cover damaged spots and by
the migration of the linseed oil to the wood surface, where it
polymerizes (Poohphajai et al. 2021). Linseed oil consists of
unsaturated linolenic (53.21%), oleic (18.51%), and linoleic
(17.25%) acids, while the dominant saturated acids are pal-
mitic (6.58%) and stearic (4.43%) acids (Gruia et al. 2012).
The drying and hardening (i.e., polymerization) of linseed
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oil occur when the oil is exposed to air. It is a consequence
of the high content of glycerol esters in linolenic acid that
undergoes oxidation reactions (Juita et al. 2012). A. melano-
genum can use linseed oil as a single carbon source (Peeters
et al. 2018; van Nieuwenhuijzen et al. 2019), but not when it
is cross-linked (Peeters et al. 2018). Specifically, the degree
of cross-linking of the oil determines the growth of A. mel-
anogenum. Assuming the same applies to A. pullulans, the
growth of the fungus within Biofinish reduces, and eventually
halts, upon cross-linking of the oil.

Adhesion is crucial for the colonization of Aureobasidium
on any surface, including plant surfaces like wood, leaves,
roots, and fruit (Blankenship and Mitchell 2006). EPS not
only fill the space between cells in biofilms (Flemming et al.
2017), but these are also believed to attach cells to surfaces
(Czaczyk and Myszka 2007). Adhesion of A. pullulans is
controlled by the EPS uronic acid-based polymers and pos-
sibly pullulan as well (Bardage and Bjurman 1998; Pouliot
et al. 2005). Cells harvested in the early-exponential growth
phase show a lower density of uronic acid polymers but
a higher adhesion to the AFM tip and a higher retention
to quartz media when compared to late-exponential cells
(Pouliot et al. 2005). Pullulan contributes to the adhesion
of A. pullulans (De Bary) Arnaud blastospores on painted
wood surfaces (Bardage and Bjurman 1998). In this case,
early-exponential growth phase cells adhere better than late-
exponential growth phase cultures of A. pullulans strain
NRRL Y-2331-1, despite the fact that levels of pullulan are
lower in the former cells. Notably, a pullulanase treatment
has a minimal effect on the adhesion force, suggesting that
pullulan is not involved in the adhesion of cells to silicon
nitride and quartz (Pouliot et al. 2005). Unlike A. pullu-
lans, A. thailandense is not producing pullulan. This species
that is isolated from leaves and wooden surfaces (Peterson
et al. 2013) may therefore produce other substances that are
responsible for the adhesion to surfaces. For instance, hydro-
phobins could play such a role. These proteins function in
hyphal attachment to hydrophobic surfaces such as those
of plants. These small, cysteine-rich proteins are secreted
by mycelial fungi and self-assemble at hydrophilic—hydro-
phobic interfaces (Wosten and Wessels 1997). For example,
the hydrophobin SC3 of Schizophyllum commune mediates
fungal attachment to hydrophobic surfaces such as Teflon.
It does so by assembling into a highly surface-active protein
film at the interface between the hydrophilic cell wall and the
hydrophobic surface. A strain in which the sc3 gene is inac-
tivated shows reduced but not abolished hyphal attachment
to Teflon (Wosten et al. 1994). In the absence of SC3, the
hydrophobin-like protein SC15 mediates the attachment of
S. commune to hydrophobic surfaces (Lugones et al. 2004).
The hydrophobin genes Aurl and Aur2 have been identified
in A. pullulans strain MUCL38722, while hfbA and hfbB
have been identified in A. pullulans (De Bary) Arnaud P268.
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The amino acid sequences of aurl and hfbA and aur2 and
hfbB are about 90% identical, and their encoded hydrophob-
ins are predicted to belong to the class II hydrophobins, with
hfbB being closely related to the hydrophobins of Tricho-
derma (Stenbaek 2015). The class II hydrophobins HFBI and
HFBII of Trichoderma reesei have different properties when
compared to the class I hydrophobin SC3 of S. commune
(Askolin et al. 2006). For example, (1) in contrast to SC3,
self-assembly of HFBI and HFBII at the water—air inter-
face is not accompanied by a change in secondary structure
or in ultrastructure; (2) the maximal lowering of the water
surface tension occurs much faster in the case of HFBI and
HFBII (instantly to several minutes) compared to SC3 (sev-
eral hours); and (3) the HFBI coating has lower resistance to
a hot detergent treatment than the SC3 coating. It was also
shown that oil emulsions prepared with HFBI and SC3 are
more stable than those prepared with HFBII and that HFBI
and SC3 interact more strongly with Teflon when compared
to HFBII. Surface adhesion in Aureobasidium may also be
mediated by other proteins. As mentioned above, SC15 can
partially replace SC3 in S. commune (Lugones et al. 2004),
while hydrophobin function has been (partially) replaced
by repellents in Ustilago maydis (Teertstra et al. 2006). A
variety of proteins are surface-active, explaining why non-
related proteins can mediate attachment in fungi.

Perspective

Aureobasidium produces many products of interest for the
industry, including enzymes, polysaccharides, and biosur-
factants. These molecules have a wide range of applications.
So far, the use of genetic modification has hardly been used
to improve production yields. This is explained by the fact
that, until recently, the efficiency of genetic modification of
Aureobasidium was low. However, Zhang et al. (2019) devel-
oped an efficient CRISPR/Cas9-mediated genomic mutagen-
esis, which will be an important tool to improve the produc-
tion levels of enzymes and other molecules in the future.
Apart from the use of Aureobasidium as a cell factory, it
can also be used in coatings to protect crops or wood. For
instance, A. pullulans is a key ingredient in commercial prod-
ucts. Blossom Protect (Nufarm) is used in the biological con-
trol of fire blight (Zeng et al. 2023), and Biofinish (Xylotrade)
protects wood. These sustainable products replace non-sus-
tainable chemicals and petrol-based coatings, respectively.
Blossom Protect and Biofinish can be considered living
materials. Nature produces a wide variety of “living” mate-
rials such as bone, wood, and tissue, while human society
produces “non-living” materials like chemicals, fuels, and
pharmaceuticals. Yet, researchers now start to produce living
materials as well, often called engineered living materials
(ELMs) (Srubar IIT 2021). ELMs are defined as engineered
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materials composed of living cells that form or assemble the
material itself or modulate the functional performance of
the material (Nguyen et al. 2018). These materials also con-
tain scaffolding polymeric matrices (Rodrigo-Navarro et al.
2021). A key difference between ELMs and other biohybrid
devices is that the living cells in ELMs act as material fac-
tories, whereby the cells use resources from their environ-
ment to create biopolymeric building blocks that direct and/
or maintain the formation of the ELM (Nguyen et al. 2018).
ELMs provide “smart” functionalities that exceed existing
capabilities of conventional materials, including the adapta-
tion to environmental conditions, different material states,
and/or self-healing abilities (Nguyen et al. 2018). ELMs have
been studied in the biomedical field with functions such as
biosensing, wound healing, stem-cell-based tissue engi-
neering, and drug delivery (Rodrigo-Navarro et al. 2021).
Recently, ELMs have also been proposed to be implemented
in the building industry to function as self-healing concrete,
self-growing bricks, actuators, and energy generators, or
as protective coatings and paints (Sandak 2023). As such,
Aureobasidium biofilms can be considered a simple ELM.
Its different cell types may provide different functions. For
example, chlamydospores and dark hyphae produce pro-
tective melanin, while other cells provide adherence or the
self-repair response. Also, certain types of cells may attract
beneficial microbial partners or repel other microbes. Still,
many aspects of A. pullulans biology have to be studied to
develop this fungus as a fully functional ELM.

Concluding remarks

Aureobasidium is found in soil, water, wood, and other plant
materials. Various species of this genus can play a role in
the transition to a sustainable economy. Their enzymes and
other molecules can, for instance, be used in agriculture, con-
struction, food, health, cosmetics, biofuel, and bioremedia-
tion. When growing in biofilms, A. pullulans protects crops
and wood with the potential of self-repair, thereby offering
a sustainable living alternative to petrol-based coatings and
toxic chemicals. It should be noted that some Aureobasidium
species, such as A. melanogenum are opportunistic human
pathogens (Cernosa et al. 2021) and are therefore not suit-
able for applications such as in Biofinish. Previous publi-
cations reported pathogenic A. pullulans strains, but these
strains were likely misclassified strains of A. melanoge-
num (Gostincar et al. 2014). Clearly, only non-pathogenic
Aureobasidium species such as A. pullulans should be used
in applications. To improve the use of Aureobasidium in a
sustainable economy, future research should address which
of its cell types (i.e., hyphae, yeast cells, endoconidia, blas-
toconidia, arthroconidia, swollen cells, and chlamydospores)

and underlying mechanisms contribute to the production of
enzymes or other molecules or to the formation of biofilms
and their performance as a functional coating.
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