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A B S T R A C T   

Foot and mouth disease (FMD) is an important livestock disease in Thailand, with outbreaks occurring every 
year. However, the effects of FMD control measures in Thailand have received little research attention. Epide-
miological models have been widely used to evaluate FMD outbreak control, but such a model has never been 
developed for Thailand. We constructed a stochastic between-farm transmission model to evaluate FMD control 
measures. The epidemiological unit of the model was the farm, which could be in different states: susceptible, 
latent, undetected infectious, detected infectious and recovered. The between-farm transmission was calculated 
by the sum of distance-dependent transmission and trade network transmission using parameters derived from 
FMD outbreaks in 2016–2017. We used this model to simulate the outbreaks with and without the imple-
mentation of the following control measures: culling all animals on infected farms, ring vaccination, animal 
movement restrictions and isolation of infected farms. The control measures were evaluated by estimating the 
number of secondarily infected farms and the outbreak duration for each scenario. The model was simulated in 
two study areas located in the Lamphaya Klang subdistrict (high farm density) and the Bo Phloi district (low farm 
density). The effects of control measures differed between the two study areas. When farm density was high, rigid 
control measures were required to prevent a major outbreak. Among all options, culling the animals on infected 
farms resulted in the lowest number of infected farms and the shortest outbreak duration. In contrast, for an area 
with a low farm density, less stringent control measures were sufficient to control the usually minor outbreaks. 
The results indicate that different areas require a different approach to control an outbreak of FMD.   

1. Introduction 

Foot and mouth disease (FMD) is the most important livestock dis-
ease in the world in terms of economic impact as outbreaks and control 
and prevention measures cause huge economic losses (James and 
Rushton, 2002). For this reason, many epidemiological models have 
been developed to estimate the outcomes of FMD outbreaks and to 
evaluate different control options. This type of research has been carried 
out extensively in FMD-free countries, for example, the United Kingdom 
(Keeling et al., 2001; Morris et al., 2001), the Netherlands (Backer et al., 
2012a; 2012b), Japan (Hayama et al., 2013), and Peru (Martínez-López 
et al., 2014). However, simulation models developed for FMD-free 
countries are not suitable for application in countries where FMD is 

endemic because the immunity and transmission dynamics are different 
(Knight-Jones et al., 2016). 

Over the past decades, several models have been developed to study 
FMD in endemic areas. For example, Lyons et al. (2021) investigated the 
possibility of establishment of FMD-free zones in Pakistan, Randolph 
et al. (2002) analysed the cost-benefit of FMD eradication in the 
Philippines, and similar studies were conducted on FMD control in 
Cambodia (Young et al., 2016) and in Ethiopia (Jemberu et al., 2016). 
However, most of these studies were based on population-level inci-
dence rather than focusing on the individual level, and the models were 
simplified without including spatial information. One study in Vietnam 
constructed a transmission model at a commune level and incorporated 
spatial distance between communes (Do et al., 2022). Despite this 
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progress, there is still a significant gap in the development of 
individual-based simulation models that consider spatial elements in 
endemic situations, especially in comparison to FMD-free countries 
where such models are commonly used for FMD outbreak control 
(Backer et al., 2012a; 2012b; Hayama et al., 2013; Keeling, 2005). 

FMD is an endemic disease in Thailand with 980 reported outbreaks 
across the country between 2016 and 2021 (WOAH, 2022). The Thai 
government established an FMD outbreak control guideline in Animal 
Epidemics Act B.E. 2558, including multiple measures such as outbreak 
zone announcement, animal movement restrictions, ring vaccination 
and sanitary control (Arjkumpa et al., 2020). These control measures are 
defined as generic regulations for every area. However, we know that 
FMD transmission is affected by multiple factors, such as farm density 
(Boender et al., 2010; Keeling et al., 2001) and animal movement (Dubé 
et al., 2009). Therefore, generic measures may not be equally effective 
across areas. 

The objective of this research was to develop an FMD simulation 
model, based on the input parameters derived from outbreaks in 
2016–2017 in two endemic areas of Thailand with different livestock 
species and farm densities. With this model, we evaluated the effects of 
different control measures under various circumstances. 

2. Materials and methods 

2.1. Data collection 

The two study areas were selected in consultation with the Thai 
Department of Livestock Development. The first study area was located 
in the Lamphaya Klang subdistrict in the Saraburi province in the central 
region of Thailand. The area is densely populated, with a density of 7.6 
farms per km2, and 95% of farms are dairy cattle farms (DLD, 2019). The 
second study area was located in the Bo Phloi district in the 

Kanchanaburi province in the western region of Thailand. The area 
consists of multiple livestock species, i.e. beef cattle, goats and pigs. This 
area is sparsely populated, with a density of 0.5 farms per km2 (DLD, 
2019). In these two areas, FMD outbreaks happened in 2016–2017. 
According to the official records and verification with local authorities, 
there were no official outbreak zones in either area. In other words, no 
specific control measures were implemented during the outbreaks. 

The outbreak data were collected by research staff from the Faculty 
of Veterinary Science at Chulalongkorn University via questionnaires 
that were administered in October 2017 after the outbreak. The 
boundaries of the study areas were established by starting at the centre 
of each area and gradually increasing the radius until approximately 500 
farms were included. The census survey included all farms within the 
defined radius and involved the collection of information on farm 
location, animal species, farm size, animal trading history, and the 
occurrence of an FMD outbreak on the farms in 2016–2017. 

The study area in the Lamphaya Klang subdistrict was 105 km2 (12.5 
× 8.4 km2) covering 502 dairy farms. On average, the distance between 
two farms was 4 km (min = 0.002 km, max = 12.5 km). The FMD 
outbreak started from 15 September 2016 and lasted until 8 August 
2017, affecting 273 dairy farms. For the Bo Phloi district, the size of the 
study area was 785.4 km2 (30.8 × 25.5 km2) covering 346 beef cattle 
farms, 104 goat farms and 51 pig farms. On average, the distance be-
tween two farms was 9.9 km (min = 0.002 km, max = 30.1 km). The 
FMD outbreak lasted from 13 October 2016–15 December 2016 and 
affected 15 beef farms (Fig. 1). The detailed outbreak data can be found 
in Supplementary S1. 

2.2. Model 

The description of the model follows the Overview, Design concepts 
and Details (ODD) protocol originally used for describing individual and 

Fig. 1. The study areas located in the Lamphaya Klang subdistrict with an area of 105 km2 (12.5 × 8.4 km2) (left) and in the Bo Phloi district with an area of 
785.4 km2 (30.8 × 25.5 km2) (right). It is to be noted that the scales are different between left and right maps. The circles, squares and triangles represent cattle 
farms, pig farms and goat farms. The red, green and black colours symbolise the infected status, non-infected status and index cases during the foot and mouth disease 
outbreaks in 2016–2017, respectively. 
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agent-based models (Grimm et al., 2020), but was adapted here to 
explain a stochastic simulation model. 

2.2.1. Purpose 
The model was developed to simulate FMD outbreaks in two study 

areas in Thailand with different control scenarios. The aim is to assess 
the effects of FMD control measures taking into account different farm 
densities and farm types. 

2.2.2. Entities, state variables, and scales 
The entity in the model is a farm. The farm state variable indicates 

whether the livestock on the farm is susceptible to FMD, latent, unde-
tected infectious, detected infectious or recovered. The model runs at a 
1-day time step. For each day, the model is appraised, and the farm 
states are updated. 

2.2.3. Process overview and scheduling 
The processes of state transition of farms are as follows: 

2.2.3.1. Susceptible to latent. The transition from the susceptible state to 
the latent state is determined by the between-farm transmission rate, 
which is calculated via two mechanisms. The first is the spatial trans-
mission kernel, which is a function describing the transmission rate 
between two farms depending on the distance between the farms 
(Boender et al., 2010) (Eq. 1). 
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is the transmission rate exerted by infectious farm j on 
susceptible farm i, rij is the Euclidean distance between susceptible farm 
i and infectious farm j. Parameters k0, r0, and α determine the height and 
shape of the transmission kernel. The force of infection from the trans-
mission kernel of susceptible farm i on day t (λkernel(t)) is the sum of the 
transmission rate from all infectious farms j to susceptible farm i on day t 
(Eq. 2). 
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The second transmission mechanism is a trader-based transmission. 
When the farms are infectious, they can spread the disease to other 
susceptible farms that share the same trader with a constant rate δ per 
day (Eq. 3). 

λtrade(t) =
∑

jϵinfectious
δij; if farm i sharing the same trader with farm j (3) 

The force of infection from the trader-based transmission of sus-
ceptible farm i on day t (λtrade(t)) is the sum of the trader-based trans-
mission rates from the infectious farms j on day t that share the same 
trader with susceptible farm i (δij). 

The probability of infection of a susceptible farm i on day t (pinf) was 
calculated from the sum of the force of infection from the transmission 
kernel and trader-based transmission as follows: 

pinf = 1 − e− (λkernel(t)+λtrade(t) ) (4) 

On each day, the probability of infection (pinf) of each farm is 
calculated, and it is used to stochastically determine the transition of 
farms from the susceptible state to the latent state. 

2.2.3.2. Latent to undetected infectious. The farm is in the latent state for 
3 days (Mardones et al., 2010) and then transitions to the undetected 
infectious state. 

2.2.3.3. Undetected infectious to detected infectious. The undetected in-
fectious farms become detected infectious farms after a constant 

detection time, which was estimated from a standard SEIR model for 
within-farm spread. We assumed that an outbreak on a farm was 
detected when the number of infected animals on the farm was higher 
than a certain case limit depending on the livestock species (Table 1, 
Supplementary S2 for the detailed estimation of the detection time). The 
case limits were estimated by consulting with local veterinary officers. 
During the undetected and detected infectious state, the farms were able 
to spread the disease to other susceptible farms. 

2.2.3.4. Detected infectious to recovered. After the duration of the 
infection (Table 1), the infected farms changed to the recovered states 
until the end of the simulation. 

2.2.4. Initialisation 
The model are scheduled to start at day 0 with all farms being sus-

ceptible, except for a set of index cases, which are undetected infectious 
(3 farms in the Lamphaya Klang subdistrict and 4 farms in the Bo Phloi 
district based on interview data, see Fig. 1). The model is run until there 
is no infectious farm in the area. 

2.2.5. Input data 
The input data used in the model include attributes of each farm, 

Table 1 
Summary of foot and mouth disease outbreak model parameters.  

Parameters Value Sources 

Transmission kernel 
parameters 

k0 = 0.0054 day− 1 

r0 = 0.171 km 
α = 1.50 

Estimated from outbreak data 
using method from ( 
Chanchaidechachai et al., 2021) 

Trade transmission 
rate 

δ = 0.0006 day− 1 

Latent period 3 days Mardones et al. (2010) 
Farm Infectious 

period in 
Lamphaya Klang 
subdistrict 

Gamma(shape =3.02, 
rate = 0.137), mean 
= 22 

Estimated from outbreak data 

Farm Infectious 
period in Bo 
PhloiBo Phloi 
district 

Gamma (shape =1.87, 
rate = 0.126), mean 
= 15 

Estimated from outbreak data 

Detection time for 
dairy cattle farm 

5 days SEIR model with the transmission 
rate = 0.67 day− 1 (Bravo de 
Rueda et al., 2015), the rate from 
exposed to infectious 
= 0.33 day− 1 (Mardones et al., 
2010), average dairy cattle farm 
size = 40 and the number of 
detection cases = 2 

Detection time for 
beef cattle farm 

7 days SEIR model with the transmission 
rate = 0.67 day− 1 (Bravo de 
Rueda et al., 2015), the rate from 
exposed to infectious 
= 0.33 day− 1 (Mardones et al., 
2010), the rate from exposed to 
infectious = 0.33 day− 1 ( 
Mardones et al., 2010), average 
beef cattle farm size = 44, and 
the number of detection cases 
= 3 

Detection time for pig 
farm 

8 days SEIR model with the transmission 
rate = 0.59 day− 1 (Eblé et al., 
2006) the rate from exposed to 
infectious = 0.33 day− 1 ( 
Mardones et al., 2010), average 
pig farm size = 1400 and the 
number of detection cases = 3 

Detection time for 
goat farm 

18 days SEIR model with the transmission 
rate = 0.21 day− 1 (Orsel et al., 
2007), the rate from exposed to 
infectious = 0.33 day− 1 ( 
Mardones et al., 2010), average 
goat farm size = 45 and the 
number of detection cases = 3  
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such as location, animal type, and trade network with other farms. These 
data are based on interview data as explained in Section 2.1. The files 
can be downloaded from Supplementary S1. 

2.3. Parameterisation 

The spatial transmission kernel and the trader-based transmission 
parameters were estimated from the combined outbreak data in the two 
study areas using the maximum likelihood method as previously 
described in Chanchaidechachai et al. (2021). The R code for the esti-
mation of parameters can be found in Supplementary S3. Other model 
parameters (Table 1) were obtained from the literature, except for the 
infectious period of farms, which was drawn randomly from a gamma 
distribution fitted on the outbreak duration data collected during the 
interviews. 

2.4. Control measures 

The model was run for 5 scenarios: (1) baseline without control 
measures, (2) culling all animals on infected farms, (3) ring vaccination, 
(4) animal movement restrictions and (5) isolation of infected farms. 
The details of the control measures are explained below. 

2.4.1. Culling all animals on infected farms 
Although animals culling is a common control measure during FMD 

epidemics (European Union, 2016), culling has never been deployed to 
control an FMD outbreak in Thailand. For this reason, we would like to 
explore the potential effect of culling in the endemic FMD situation of 
Thailand. We made three assumptions. First, the livestock on infected 
farms are culled on the first, seventh or 14th day after detection. Second, 
the culling process is finished in 1 day, independent of farm size. Third, 
there is no reintroduction of new animals into the farms during the 
outbreak. Thus, farms where livestock is culled are not able to spread the 
disease to other farms nor be susceptible again until the end of the 
outbreak. 

2.4.2. Ring vaccination 
Ring vaccination is defined as the vaccination of animals on sus-

ceptible farms in delineated areas surrounding the infected farms. We 
assumed that the ring vaccinations are implemented for all animals in 
farms within a 10-km radius of the detected infected farms with a 
maximum vaccination rate of 40 farms per day, starting with the farms 
furthest away from the infected farm. The radius of ring vaccination is 
adjusted twice. The initial implementation is the area 10-km radius 
around the index cases. Later, the vaccination area is expanded to a 
radius of 10 km around newly-detected infected farms 7 days after the 
detection of index cases. The effect of vaccines starts after immunity 
onset. Farms with vaccinated livestock are assumed to have a reduced 
susceptibility, but not complete immunity. Infected farms with vacci-
nated livestock are assumed to have reduced infectivity. The force of 
infection experienced by a farm with vaccinated livestock is decreased 
by the value of relative susceptibility and relative infectivity. To 
consider the parameter uncertainty, we tested the model with various 
combinations of immunity onset (7, 14, 21 or 28 days) and vaccine ef-
ficacy (0 – 100%). Lastly, we assumed that the immunity from the 
vaccine lasts for 6 months. 

2.4.3. Animal movement restrictions 
Animal movement restrictions are defined as the prohibition of the 

movement of animals and animal products within or from the outbreak 
zone (The Royal Thai Government Gazette, 2015). We assumed that 
animal movement restrictions are announced 1 day after detection of 
the index cases, and enforced until the last infected farm was recovered. 
We assumed that, after the implementation of animal movement re-
strictions, trade transmission is reduced to zero. To the best of our 
knowledge, no literature has shown the effect of animal movement 

restrictions on the FMD transmission kernel. One study in Belgium 
showed that during the animal transport restrictions, the tail of the 
transmission kernel for a bluetongue outbreak was flattened, which 
implies the reduction of long-distance transmission as part of the 
transmission kernel (de Koeijer et al., 2011). In this model, we assumed 
that other transmission routes besides animal and animal product 
movements, such as the movement of people, vehicles and fomites and 
the over-the-fence transmission between the adjacent farms, are not 
affected by animal movement restrictions. This kind of transmission is 
likely to happen between farms close to each other. Therefore, we 
assumed that the local transmission kernel, below a specific cut-off 
distance from the infectious farm, remains the same. In contrast, the 
long-distance transmission kernel, above the cut-off distance from the 
infectious farm, is assumed to be reduced, resulting from lower animal 
movement activities, like the effect shown in de Koeijer et al. (2011). We 
chose a maximum cut-off distance of 1 km based on the nearest neigh-
bour distance. A cut-off distance of 1 km covered an average of 8 nearest 
neighbours in the Bo Phloi district and 15 nearest neighbours in the 
Lamphaya Klang subdistrict, which we assumed to be more than enough 
to represent possible local transmission. We assumed various combina-
tions of cut-off distances from 0 to 1 km and the percentage decrease of 
long-distance transmission kernel from 0% to 100%. 

2.4.4. Isolation of infected farms 
The costs of animal movement restrictions are enormous (Tildesley 

et al., 2019). In addition, the prolonged restriction can disrupt the 
normal flow of animals between units and lead to animal welfare 
problems (Knight-Jones and Rushton, 2013). Therefore, we proposed 
the isolation of infected farms as an alternative option. The concept is to 
restrict animal and animal product movements from detected infected 
farms exclusively. In this model, we assumed that infected farms were 
isolated one day after detection until they recovered. During the isola-
tion, the trade transmission from isolated farms became zero. However, 
the isolation did not completely stop the spatial transmission kernel 
since people and vehicles still needed to move for farm maintenance. 
Thus, we used the same effect as animal movement restrictions on the 
spatial transmission kernel of the isolated farms. 

The parameters concerning FMD control measures are summarised 
in Table 2. A schematic overview of farm-state transitions and the effect 
of control measures is shown in Fig. 2. 

2.5. Model software and outcomes 

For each scenario, the simulation was run for 500 iterations to ac-
count for stochasticity. The outputs from the model were the number of 
secondary infected farms excluding the index cases and the outbreak 
duration. The model was programmed in R version 4.2.1 (R Core Team, 
2022). The R code can be found in Supplementary S3. 

Table 2 
Summary of parameters concerning foot and mouth disease control measures.  

Control measures Parameters Values Unit 

1. Culling animals 
in infected farms 

Delayed culling 1, 7, 14 Days after disease 
detection on the farms 

2. Ring vaccination Vaccine efficacy 0–100 % Reduction in 
susceptibility and 
infectivity  

Immunity onset 7, 14, 
21, 28 

Days after vaccination 

3. Animal 
movement 
restriction 

Cut-off distance 0–1 Km 
Transmission 
kernel reduction 

0–100 % Kernel reduction 

4. Isolation of 
infected farms 

Cut-off distance 0–1 Km 
Transmission 
kernel reduction 

0–100 % Kernel reduction  
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2.6. Sensitivity analysis 

A global sensitivity analysis was conducted on the model parameters 
to assess parameter sensitivity on the number of infected farms and 
outbreak duration. We sampled 500 parameter sets from the parameter 
distribution (Table 3) using Latin hypercube sampling. For each 
parameter set, the model was run for 100 iterations from which the 
predicted median number of infected farms and outbreak duration were 
saved. The regression-based method was used to analyse the parameters’ 
variance contributions (Burgers et al., 2010). The regression model was 
fitted between the outputs and input parameters. Any type of regression 
model (e.g. linear regression, polynomial regression, spline regression) 
could be applied, but the fitted regression model needed to explain more 
than 90% of the output variance. The sensitivity of parameters was 
presented by the top marginal variance (TMV) and the bottom marginal 
variance (BMV) which were extracted from the regression model. TMV 
was defined as the variance reduction that would occur if the parameter 
became fully known. It was calculated as the variance explained by the 
regression model with only that parameter. BMV was the variance that 
the regression model could not be explained without that parameter 
(Jansen et al., 1994). The sensitivity analysis was performed on 15 input 
parameters (Table 3) using the simulation outbreaks in the Lamphaya 
Klang subdistrict. We selected the parameters which have a TMV of 
more than 25% and made scatter plots to show the effect of selected 
parameters on the predicted median number of infected farms and 
outbreak duration. 

3. Results 

3.1. Baseline model 

For the baseline model without control measures for the Lamphaya 
Klang district, the predicted median number of secondarily infected 
farms, excluding three index cases, was 293 (95% prediction interval of 
(0, 361)), and the predicted median outbreak duration was 312 days 
(95% prediction interval of (24, 469)). The number of infected farms 
from the real outbreak was 273 farms with an outbreak duration of 335 
days. The results from the baseline model were consistent with the real 
outbreak data in this area. For the Bo Phloi district, the predicted median 
number of secondarily infected farms, excluding four index cases, was 3 
(95% prediction interval of (0, 13)), and the predicted median outbreak 

duration was 42 days (95% prediction interval of (16, 116)). In com-
parison, the number of secondarily infected farms from the real outbreak 
was 11, and the outbreak duration was 68 days. 

Fig. 2. Diagram of foot and mouth disease outbreak model showing the farm-state transition (white blocks) and the effect of control measures (yellow blocks) on 
the parameters. 

Table 3 
Predicted median and 95% prediction interval of the number of secondarily 
infected farms (excluding index cases) and the outbreak duration, derived from 
the foot and mouth disease outbreak model, considering baseline and control 
measures with the most effective parameters in the Lamphaya Klang and the Bo 
Phloi districts.  

Scenarios Lamphaya Klang subdistrict Bo Phloi district 

Median 
number of 
secondarily 
infected farms 
(95% 
prediction 
interval) 

Median 
outbreak 
duration 
(days) (95% 
prediction 
interval) 

Median 
number of 
secondarily 
infected farms 
(95% 
prediction 
interval) 

Median 
outbreak 
duration 
(days) (95% 
prediction 
interval) 

Baseline 293 (1, 345) 312 (26, 
506) 

3 (0, 13) 42 (16, 116) 

Culling with a 
delay of 
1 day 

1 (0, 7) 15 (10, 32) 1 (0, 5) 17 (14, 36) 

Ring 
vaccination 
with 7 day 
onset of 
immunity 
and 100% 
vaccine 
efficacy 

4 (0, 11) 54 (27, 85) 2 (0, 7) 39 (17, 73) 

Animal 
movement 
restriction 
with cut-off 
0 km and 
90% kernel 
reduction 

1 (0, 6) 43 (21, 100) 1 (0, 4) 33 (15, 65) 

Isolation of 
infected 
farms with 
cut-off 0 km 
and 90% 
kernel 
reduction 

1 (0, 6) 43 (21, 92) 1 (0,5) 35 (15, 68)  
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3.2. Control measures 

All four control measures could reduce the number of secondarily 
infected farms and outbreak duration from the baseline. In the Bo Phloi 
district, the effect of control measures was limited, and the differences 
between control measures were small due to the small baseline 
outbreak. However, in the Lamphaya Klang subdistrict, all four control 
measures can potentially control the outbreak, but culling was the most 
effective in reducing both the number of infected farms and the duration 
of the outbreak (Table 3). 

The outputs from the simulation with control measures using 
different parameters are displayed in Fig. 3. Due to the small baseline 
outbreak in the Bo Phloi district, we have only presented the outputs for 
the Lamphaya Klang subdistrict. However, the outputs for the Bo Phloi 
district are available in Supplementary S4. 

A longer culling delay resulted in more infected farms and a longer 
outbreak duration. The outcomes of ring vaccination were highly 
affected by the combination of vaccine efficacy and the onset of im-
munity after vaccination. Higher vaccine efficacy and shorter onset of 
immunity resulted in fewer infected farms and shorter outbreak. A 
vaccine efficacy of 60% or more could limit the median number of 
secondarily infected farms to fewer than 21, equivalent to the outcome 

of culling with a delay of 14 days (Fig. 3). Regarding animal movement 
restrictions and isolation, a higher reduction of the transmission kernel 
and a smaller cut-off distance resulted in fewer infected farms and a 
shorter outbreak duration. For a transmission kernel reduction of 60% or 
greater, both animal movement restrictions and isolation could limit the 
median number of secondary infected farms to fewer than 21, compa-
rable to the outcome of culling with a delay of 14 days. If the reduction 
of the transmission kernel was 90% or greater, animal movement re-
strictions could limit the median number of secondarily infected farms 
to fewer than 4, which was comparable to culling with a delay of 7 days. 
The outbreak was smaller with animal movement restrictions rather 
than with isolation of the infected farms given the same parameters. 

3.3. Sensitivity analysis 

Because the outbreak in the Bo Phloi district was small, the sensi-
tivity analysis was only performed on the models for the Lamphaya 
Klanag subdistrict. The sensitivity analysis showed that kernel param-
eters k0 and r0 explained most of the outcome variance in the baseline 
model (Table 4), while transmission via the trade network (δ) barely 
explained outcome variance. For ring vaccination, outcome variance 
was mainly explained by the vaccine efficacy. For animal movement 

Fig. 3. Median number of secondary infected farms (excluding index cases) and outbreak duration from the foot and mouth disease outbreak model. A1, A2, A3 and 
A4 graphs represent culling animals in infected farms, ring vaccination, animal movement restrictions and isolation of infected farms in the Lamphaya Klang 
subdistrict. The dashed red lines represent median predictions from the baseline scenario. 
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restrictions and isolation measures, outcome variance was mostly 
explained by the reduction of the transmission kernel. 

The scatter plots in Fig. 4 show the effect of the parameters on the 
simulated outcomes of FMD outbreaks. The increase of k0 and r0 resulted 
in a higher number of infected farms and longer outbreak duration, but 
at a certain point, the outbreak duration shortened again. This is caused 
by the high transmission rate parameter (k0) that rapidly accelerated the 
transmission, leading to shorter outbreaks due to the depletion of the 
susceptible farms. It should be noted that the outcome variance for 
isolation of infected farms was much larger than that for animal 
movement restrictions given the same parameters (Fig. 4). The scatter 
plot of ring vaccination shows that low vaccine efficacy (≤ 50%) 
increased the duration of the outbreak compared to zero-vaccine effi-
cacy because it did not prevent transmission completely and did not 
fully protect the vaccinated farms. Thus, the virus continued to spread 
but at a lower pace. 

4. Discussion 

In this study, a transmission model was constructed and para-
meterised based on FMD outbreak data for two different areas of 
Thailand. To our knowledge, this is the first FMD simulation model in 
Thailand that incorporates the spatial distance between farms and ani-
mal trade data. The comparison between simulation outcomes and 
outbreak data shows that the baseline results are in accordance with 
what happened in reality. Despite the slightly underestimated outbreak 
in the Bo Phloi district, the real outbreak was in the 95% prediction 
interval. Thus, we argue that the observed outbreak was likely according 
to the model prediction, and the baseline model is valid for this area. The 
model could be used to assess the effect of control measures. 

Based on this study’s findings, culling all animals on infected farms 
without delay is the most effective control measure in terms of short-
ening the outbreak and number of infected farms. However, the decision 

on culling should consider the trade-off between costs and benefits. In 
FMD-free countries that export livestock and animal products, culling 
strategies demonstrate positive returns (Boklund et al., 2013; Tildesley 
et al., 2009). In an endemic country like Thailand with no export benefit 
and a high probability of outbreak recurrence, culling may not offer 
positive economic benefits. Further research is needed to explore this 
issue. It should be noted that this model assumed unlimited culling ca-
pacity and a minimum delay of 1 day. In reality, these assumptions are 
rarely valid, especially during large outbreaks. Therefore, the effects of 
culling might be overestimated in this model. 

Ring vaccination using a standard vaccine with an efficacy of 75% at 
4 weeks after vaccination (WOAH, 2021) could control an FMD 
outbreak. However, multiple extrinsic factors, such as vaccine matching, 
vaccine logistics, vaccination schedule and vaccine coverage, could 
lower the efficacy of vaccination in the field (Ferrari et al., 2016a, 
2016b). In the case of outbreaks in high-risk areas or with unknown FMD 
viral strains, we recommend using high potency FMD vaccine for ring 
vaccination since these can induce protection at 3–5 days 
post-vaccination and provide better protection against heterologous 
strains (Barnett and Carabin, 2002; Cox and Barnett, 2009). It should be 
noted that this model assumed that all animals on the farms are vacci-
nated, resulting in a vaccination coverage of 100% among susceptible 
animals. In reality, there may be ineligible populations, such as animals 
that are too young or those that were not present during vaccination 
(Ferrari et al., 2016a, 2016b). Therefore, vaccine coverage should also 
be taken into consideration. 

Modelling the effect of animal movement restrictions on the spatial 
transmission kernel is a big challenge. Since the spatial transmission 
kernel does not specify the transmission rate by individual transmission 
routes, we could not quantify how much animal movement contributed 
to the transmission rate. In this study, we modelled the effect of animal 
movement restrictions by defining a cut-off distance from infected 
farms, in which the local transmission kernel below the cut-off remained 

Table 4 
Sensitivity analysis of parameters from the foot and mouth disease outbreak model in the Lamphaya Klang subdistrict. Top Marginal Variance (TMV) is the variance 
reduction if the parameter is fully known. Bottom Marginal Variance (BMV) is the variance not explained by the parameter.  

Control Measures Parameters Distribution Median number of infected farms Median outbreak duration (days) 

Top 
marginal 
variance 
(%) 

Bottom 
marginal 
variance 
(%) 

Top marginal 
variance 
(%) 

Bottom marginal 
variance 
(%) 

Baseline k0 Gamma(shape = 5.25, scale 
=0.001) 

30.7 42.7 10.4 55.6 

r0 Gamma(shape = 5.63, scale 
= 0.03) 

39.8 53.6 23.2 71.8 

α Gamma(shape = 118.97, 
scale =0.012) 

9.6 7.8 3.1 28.6 

δ Gamma(shape =2.18, scale 
= 0.0002) 

1.1 0.1 0.8 0 

Ring vaccination Vaccine efficacy (%) Uniform(min = 0, max =
100) 

86.6 87.2 93.2 90.3 

Vaccination rate (farm per day) Uniform(min = 20, max =
80) 

0 0.2 0 0.3 

onset of immunity 
(day after vaccination) 

Uniform(min = 7, max =
28) 

0 0.1 3.3 0.4 

Immunity protection duration (day) Uniform(min = 90, max =
240) 

2.1 2.1 0.9 0.4 

Animal movement 
restrictions 

Transmission kernel cut-off distance 
(km) 

Uniform(min = 0, max = 1) 0.5 2.9 1.8 4.8 

Percentage decrease of transmission 
kernel (%) 

Uniform(min = 0, max =
100) 

91.9 94.5 81.2 85.9 

Delay animal movement restrictions 
(day after detection) 

Uniform(min = 1, max =
30) 

0.5 0.5 1.9 1.8 

Isolation of infected 
farms 

Transmission kernel cut-off distance 
(km) 

Uniform(min = 0, max = 1) 2.6 4.1 4.1 8.9 

Percentage decrease of transmission 
kernel (%) 

Uniform(min = 0, max =
100) 

70.8 75.2 59.8 65.6 

Delay isolation (day after detection) Uniform(min = 1, max =
14) 

12.6 13.0 14.1 21.5  
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the same, and the transmission kernel above the cut-off decreased. The 
cut-off distance and the kernel reduction are affected by multiple fac-
tors, for example, the farm type and management. Extensive farms are 
expected to have more contact with their neighbouring farms than from 
intensive farms with strict biosecurity. The reduction of the transmission 
kernel depended on the contribution of animal movement to the overall 
transmission. For example, animal movement restrictions in an area 
with high animal movement should decrease the transmission kernel 
considerably and vice versa. The results were presented in various 
combinations of cut-off distance and transmission kernel reduction to let 
local authorities choose the parameters that are most relevant for their 
area and interpret the result to reflect their situation. 

In our simulation model, animal movement restrictions and isolation 
of infected farms both affected the transmission by reducing the spatial 
transmission kernel and stopping the trade transmission. However, an-
imal movement restrictions were assumed to be implemented for all 
infectious farms (detected and undetected) in the whole area. In 
contrast, isolation was only applied to the detected infectious farms. 
Based on the median number of infected farms and the duration of the 
outbreak, isolation of infected farms was found to be slightly inferior to 
implementing animal movement restrictions (Fig. 3), but the variance 
for the former was much larger than for the latter (Fig. 4). This result 
suggests that there was a higher risk of large outbreaks in the scenario of 
infected farm isolation compared to the animal movement restriction 
scenario. It is worth noting that for the sake of simplicity, the cut-off 

distance and kernel reduction were the same on every farm. In reality, 
the effect of animal movement restrictions and isolation might be 
heterogenous depending on multiple underlying factors, such as farm 
types, biosecurity and farm contact. 

Despite our best effort to collect trade network data, this information 
could only be partially obtained. This resulted in a small trade trans-
mission parameter (δ = 0.0006 day− 1). However, the spatial trans-
mission kernel and trade transmission parameters were combined in the 
maximum likelihood estimation. The missing transmission rate from 
trade was captured by the spatial transmission kernel instead. The 
underestimated trade transmission might affect the results from control 
measures associated with trade, such as animal movement restrictions 
and isolation. Even with an incomplete trade network, it was still 
worthwhile to separate the partial trade transmission from the spatial 
transmission kernel because this was more realistic than using the 
spatial transmission kernel alone. 

The findings from a similar FMD simulation model in the 
Netherlands (Backer et al., 2012a; 2012b), were comparable to ours, as 
they also indicated that outbreaks were easier to control in more 
sparsely populated livestock areas. Furthermore, the effect of emergency 
vaccination could be on par with culling, provided that the ring radius 
was sufficiently large. In Thailand, no study using a similar model to 
ours has been conducted. However, one study used a compartment 
model to evaluate FMD control measures in Southern Thailand (Wong-
sathapornchai et al., 2008). The results of that study demonstrated that 

Fig. 4. Scatter plots of the predicted median number of infected farms (left) and predicted median outbreak duration (right) against the parameters from the foot and 
mouth disease outbreak model in the Lamphaya Klang subdistrict. 
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culling infected animals led to a 98% reduction in annual cumulative 
incidence, which aligns with the high effectiveness of culling in this 
study. 

Overall, our results indicate that all simulated measures can control 
the outbreak, but their relative effectivity is different between distinct 
areas. For the area with high farm density, i.e. the Lamphaya Klang 
subdistrict, the control measures needed to be more rigid to effectively 
control the outbreak compared to the area with low farm density like the 
Bo Phloi district. These results suggest that decision-makers should 
tailor control measure to the local context. 

The model could be improved in various ways in further studies. 
Firstly, we assumed a homogenous baseline immunity, where all farms 
started with the same susceptibility level. In an endemic situation, some 
farms possibly have higher immunity levels from earlier vaccination or 
natural immunity from a previous outbreak. This heterogeneous base-
line immunity might increase the spatial transmission kernel parame-
ters, as shown by our previous study (Chanchaidechachai et al., 2021). 
Secondly, the detection time is estimated simplistically using an SEIR 
model based on the average population size and a constant number of 
case detections. Our assumption does not take into account asymp-
tomatic infections, which could result in longer detection times. Thirdly, 
the model only focused on the transmission between the farms in the 
study areas without considering the probability of transmission from a 
farm outside this area and the probability of transmission from a farm 
inside the study areas to those outside. The effect of transmission from 
outside on the transmission kernel was comprehensively discussed in 
our previous study (Chanchaidechachai et al., 2021). This probability 
should be included in further studies. 

5. Conclusion 

We developed a simulation model for FMD transmission in endemic 
areas incorporating spatial features and animal trade data. In a high 
farm density area, stringent control measures were required to prevent a 
major outbreak. In contrast, less stringent control measures might be 
sufficient in areas with low farm density where outbreaks are usually 
small. These results highlight the need for area-specific control 
measures. 
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Ayllón, D., 2020. The ODD protocol for describing agent-based and other simulation 
models: a second update to improve clarity, replication, and structural realism. 
J. Artif. Soc. Soc. Simul. 23. https://doi.org/10.18564/jasss.4259. 

Hayama, Y., Yamamoto, T., Kobayashi, S., Muroga, N., Tsutsui, T., 2013. Mathematical 
model of the 2010 foot-and-mouth disease epidemic in Japan and evaluation of 
control measures. Prev. Vet. Med. 112, 183–193. https://doi.org/10.1016/j. 
prevetmed.2013.08.010. 

James, A.D., Rushton, J., 2002. The economics of foot and mouth disease. OIE Rev. Sci. 
Et. Tech. 21, 637–644. https://doi.org/10.20506/rst.21.3.1356. 

Jansen, M.J.W., Rossing, W.A.H., Daamen, R.A., 1994. Monte Carlo estimation of 
uncertainty contributions from several independent multivariate sources. In: 
Grasman, J., van Straten, G. (Eds.), Predictability and Nonlinear Modelling in 
Natural Sciences and Economics. Springer, Netherlands, Dordrecht, pp. 334–343. 
https://doi.org/10.1007/978-94-011-0962-8_28. 

Jemberu, W.T., Mourits, M., Rushton, J., Hogeveen, H., 2016. Cost-benefit analysis of 
foot and mouth disease control in Ethiopia. Prev. Vet. Med 132, 67–82. https://doi. 
org/10.1016/j.prevetmed.2016.08.008. 

Keeling, M.J., 2005. Models of foot-and-mouth disease. Proc. R. Soc. B: Biol. Sci. 272, 
1195–1202. https://doi.org/10.1098/rspb.2004.3046. 

Keeling, M.J., Woolhouse, M.E.J., Shaw, D.J., Matthews, L., Chase-Topping, M., 
Haydon, D.T., Cornell, S.J., Kappey, J., Wilesmith, J., Grenfell, B.T., 2001. Dynamics 
of the 2001 UK foot and mouth epidemic: stochastic dispersal in a heterogeneous 
landscape. Science (1979) 294, 813–817. https://doi.org/10.1126/science.1065973. 

Knight-Jones, T.J.D., Rushton, J., 2013. The economic impacts of foot and mouth disease 
- what are they, how big are they and where do they occur? Prev. Vet. Med 112, 
161–173. https://doi.org/10.1016/j.prevetmed.2013.07.013. 

Knight-Jones, T.J.D., Robinson, L., Charleston, B., Rodriguez, L.L., Gay, C.G., 
Sumption, K.J., Vosloo, W., 2016. Global foot-and-mouth disease research update 
and gap analysis: 2 - epidemiology, wildlife and economics. Transbound. Emerg. Dis. 
63, 14–29. https://doi.org/10.1111/tbed.12522. 

Lyons, N.A., Afzal, M., Toirov, F., Irshad, A., Bartels, C.J.M., Rushton, J., 2021. Economic 
considerations for advancement through the progressive control pathway: 
cost–benefit analysis of an FMD disease-free zone in Punjab Province, Pakistan. Front 
Vet. Sci. 8. https://doi.org/10.3389/fvets.2021.703473. 

Mardones, F., Perez, A., Sanchez, J., Alkhamis, M., Carpenter, T., 2010. Parameterization 
of the duration of infection stages of serotype O foot-and-mouth disease virus: an 
analytical review and meta-analysis with application to simulation models. Vet. Res. 
41. https://doi.org/10.1051/vetres/2010017. 
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