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• We developed monthly Europe-wide 
LUR models in 20 years for NO2, O3, 
PM10 and PM2.5. 

• Our monthly LUR model estimates are at 
25 m spatial resolution. 

• Monthly variations were observed in 
model structures and estimated 
concentrations. 

• Monthly LUR models improved predic-
tion compared to monthly adjusted 
annual estimates. 

• Our estimates will facilitate studies on 
intermediate-term health effects of air 
pollution.  
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A B S T R A C T   

Detailed spatial models of monthly air pollution levels at a very fine spatial resolution (25 m) can help facilitate 
studies to explore critical time-windows of exposure at intermediate term. Seasonal changes in air pollution may 
affect both levels and spatial patterns of air pollution across Europe. 

We built Europe-wide land-use regression (LUR) models to estimate monthly concentrations of regulated air 
pollutants (NO2, O3, PM10 and PM2.5) between 2000 and 2019. Monthly average concentrations were collected 
from routine monitoring stations. Including both monthly-fixed and -varying spatial variables, we used super-
vised linear regression (SLR) to select predictors and geographically weighted regression (GWR) to estimate 
spatially-varying regression coefficients for each month. 

Model performance was assessed with 5-fold cross-validation (CV). We also compared the performance of the 
monthly LUR models with monthly adjusted concentrations. 
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Results revealed significant monthly variations in both estimates and model structure, particularly for O3, 
PM10, and PM2.5. The 5-fold CV showed generally good performance of the monthly GWR models across months 
and years (5-fold CV R2: 0.31–0.66 for NO2, 0.4–0.79 for O3, 0.4–0.78 for PM10, 0.46–0.87 for PM2.5). Monthly 
GWR models slightly outperformed monthly-adjusted models. Correlations between monthly GWR model were 
generally moderate to high (Pearson correlation >0.6). 

In conclusion, we are the first to develop robust monthly LUR models for air pollution in Europe. These 
monthly LUR models, at a 25 m spatial resolution, enhance epidemiologists to better characterize Europe-wide 
intermediate-term health effects related to air pollution, facilitating investigations into critical exposure time 
windows in birth cohort studies.   

1. Introduction 

Epidemiological studies have increasingly evaluated health effects 
related to long-term exposure to outdoor air pollution in multi-country 
cohort studies across Europe (Bauwelinck et al., 2022; Beelen et al., 
2014; Chen et al., 2021; Rodopoulou et al., 2022; Strak et al., 2021; Wolf 
et al., 2021) or nation-wide studies in large countries like US and Canada 
(Bowe et al., 2018; Cakmak et al., 2018, 2016; Di et al., 2017; Pappin 
et al., 2019; Pinault et al., 2017; Weichenthal et al., 2017). 

In these studies, long-term exposure to key pollutants has been 
characterized as annual average concentrations. Annual average con-
centrations at fine spatial resolution (<1 km) have been sufficient to 
study the relationship between long-term air pollution exposure and 
health outcomes, including but not limited to mortality, cardio- 
metabolic morbidity, and cancer in multi-country cohort studies 
across Europe (Bauwelinck et al., 2022; Chen et al., 2021; Rodopoulou 
et al., 2022; Strak et al., 2021; Wolf et al., 2021). 

However, certain epidemiological studies require a more detailed 
examination of air pollution’s health effects within sensitive time win-
dows, which may require the use of monthly or seasonal average 
exposure estimates (Gondalia et al., 2021; Jiang et al., 2021; Mortimer 
et al., 2008; Sun et al., 2022a). For example, birth cohort studies would 
require air pollution exposure specific to the pregnancy trimester during 
gestation (Inĩguez et al., 2012; Iñiguez et al., 2016; Pedersen et al., 2013, 
2016; Rich et al., 2015). In addition, there are studies that extend their 
investigation beyond long-term exposures, assessing prior monthly ex-
posures to explore physiological outcomes such as obesity and car-
diometabolic health (Fouladi et al., 2020; Kim et al., 2019b; Power et al., 
2015). Thus, epidemiologists often require monthly or seasonal average 
exposure estimates at fine spatial resolution (≤1 km) in order to study 
intermediate-term health effects of air pollution. 

Monthly average air pollution concentrations are currently estimated 
using various methods. Firstly, deterministic air pollution atmospheric 
models provide spatiotemporal variations in air pollution. These varia-
tions are calculated based on input data such as meteorological, terrain 
information, and detailed emission data. In Europe, such input data and 
estimates are available at a 20 km resolution (Brandt et al., 2012), while 
in Scandinavia, they are available at a finer 1 km resolution (Frohn et al., 
2022). However, this finer spatial resolution is unapplicable across 
larger geographical extents. Secondly, in some epidemiological studies, 
monthly average residential exposures are derived by spatially inter-
polating monthly average observations from nearby monitoring stations 
(Fouladi et al., 2020; Kim et al., 2019a; Patterson et al., 2021). In spe-
cific cases, residential exposures are characterized by spatially- 
interpolated regional background concentrations, supplemented with 
near-road concentrations estimated by the dispersion model CALINE-4 
in the Californian study (Kim et al., 2019a). However, this spatial 
interpolation method is constrained by the availability of the nearby 
regional background observations and the implementation of the 
dispersion model. Thirdly, other epidemiological studies use temporal 
adjustment approach to refine estimates from annual land-use regres-
sion (LUR) models, based on daily or monthly observations from a few 
nearby background monitoring stations (Bechle et al., 2015; Iñiguez 
et al., 2016; Pedersen et al., 2013; Slama et al., 2007). This approach 

relies on the annual LUR model estimates to reflect spatial patterns of air 
pollution, with the assumption that the spatial patterns remain stable 
across months through temporal adjustments. The assumption is rooted 
in the high temporal correlation often observed in measurements from 
nearby sites (Ito et al., 2005). However, this approach may overlook 
spatial variations that exhibit month-to-month differences arising from 
specific local sources (Hoek, 2017; Jerrett et al., 2005), highlighting the 
benefit to incorporate interannual (seasonal and monthly) variations in 
exposure assessment (Beckerman et al., 2013; Lu et al., 2020; Yanosky 
et al., 2008). Consequently, the assessment of air pollution exposure can 
be improved by considering the spatio-temporal variations resulting 
from monthly and seasonal dynamics of human activity, meteorological 
conditions, and emission sources (Hannam et al., 2013). 

Due to these dynamics, air pollution concentrations exhibit monthly 
and seasonal variations in the spatial patterns (Almeida et al., 2020; 
Barmpadimos et al., 2011, 2012; Duncan and Bey, 2004; Guevara et al., 
2021; Juda-Rezler et al., 2020; Morawska et al., 2021; Ordónez et al., 
2005; Tan et al., 2023; Ye et al., 2018). For example, both southeastern 
and southwestern Europe experience warmer summers than north-
western Europe, while winter temperatures are lower in the south-
eastern and higher in the southwestern compared to northwestern 
Europe. These changing atmospheric, meteorological, and emission 
patterns can be integrated into monthly-varying LUR models. Such 
models are designed to capture the monthly variations in air pollution 
concentrations, thereby improving the predictions in the concentrations. 

Monthly LUR models have been built separately per month, incor-
porating monthly-varying spatial predictors, mainly meteorology, sat-
ellite retrievals, and chemical transport model (CTM) estimates in 
previous studies. Studies conducted outside of Europe have demon-
strated that monthly LUR models can capture monthly variations at 
national and continental scales (Araki et al., 2020; Beckerman et al., 
2013; Knibbs et al., 2014; Lu et al., 2021; Yanosky et al., 2008; Zhang 
et al., 2018). 

A handful of studies have endeavoured to develop monthly LUR 
models over extended time periods, such as those in Bern, Switzerland 
(Proietti et al., 2016) or at a global scale with a coarse spatial resolution 
(equal to or coarser than 1 km) (Sun et al., 2022b; Van Donkelaar et al., 
2021). Alternatively, one could derive monthly estimates by aggregating 
daily LUR model estimates. However, it is essential to acknowledge that 
the development of daily LUR models at a fine spatial resolution (<100 
m) requires a different methodology compared to the one used in this 
study and is currently unfeasible to be achieved due to practical con-
straints in terms of both time and computational resources. Therefore, 
our focus is directed towards the development of individual monthly 
LUR models for each month across Europe. 

Our primary motivation for developing monthly LUR models is the 
benefit for estimating monthly average exposures at a finer spatial res-
olution than currently achievable with deterministic air pollution at-
mospheric models or daily LUR models. However, we posit that in 
scenarios with changing spatial patterns across months, the performance 
of high-resolution annual models could be enhanced by developing 
monthly models and subsequently aggregating the monthly average 
estimates into annual averages. This endeavour builds upon our previ-
ous Europe-wide models of annual average concentrations at a 
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resolution of 25 m (Shen et al., 2022). 
Our main research goal is to evaluate the performance of Europe- 

wide LUR models at a high spatial resolution (25 m) for each month 
from 2000 to 2019, including four key pollutants: nitrogen dioxide 
(NO2), ozone (O3), particulate matter <10 μm (PM10), and particulate 
matter <2.5 μm (PM2.5). Our second goal involves comparison between 
monthly concentrations estimated by our monthly LUR models and 
those derived from monthly-adjusted LUR models. Finally, our third 
goal is to assess the significance of capturing monthly variations in air 
pollution concentrations to enhance the exposure assessment of annual 
average air pollution. 

2. Materials and methods 

We extended our previous Europe-wide annual LUR models at a 
monthly scale (de Hoogh et al., 2018a; Shen et al., 2022). Geographi-
cally weighted regression (GWR) was used to capture the spatial varia-
tions in monthly air pollution concentrations for each month from 2000 
to 2019 for NO2, O3, and PM10 and from 2006 to 2019 for PM2.5. 

Observations of ambient air pollution from routine monitoring sta-
tions were collected for four pollutants and averaged every month. 
Using both monthly-fixed and -varying spatial predictor variables, we 
developed monthly LUR models at a 25 m resolution. To assess the 
model performance, we implemented 5-fold cross-validation (CV). 
Furthermore, we compared estimates from our monthly LUR model with 
estimates adjusted monthly from our annual LUR estimates (denoted as 
YRADJ_LUR). This adjustment was done using inverse distance 
weighting (IDW) interpolation of monthly average observations. 

The local spatial variations, especially contributed by traffic emis-
sion sources, can be large for NO2, O3 and PM2.5. To capture near- 
roadway variations in air pollution concentrations, we develop 
monthly LUR models at a notably high spatial resolution (25 m). 
Moreover, to illustrate the benefit of 25 m spatial resolution, we 
compare predictions at different spatial resolutions (25 m, 100 m, 1 km). 

2.1. Routine-monitoring observations 

We collected routine monitoring observations for NO2, O3, PM10, and 
PM2.5 from the European Environmental Agency (EEA). Our processing 
method aligned with the details in our preceding study (Shen et al., 
2022). In brief, we calculated monthly averages for stations where >75 
% of daily or hourly observations within each month were valid ac-
cording to EEA-defined criteria. For PM10 and PM2.5., we aggregated 
daily observations into monthly. For NO2, we aggregated hourly ob-
servations into monthly. For O3, we calculated the daily maximum 8-h 
mean per day from hourly data and aggregated the values into 
monthly, according to health-related air quality guidelines (WHO, 
2021). The number of valid monthly average observations across Europe 
for each pollutant, month, and year can be found in Tables A1-A4. The 
stations are categorized as background, industrial, or traffic stations by 
the EEA, depending on the presence of dominant nearby emission 
sources (European Environment Agency, 2021). 

2.2. Predictor variables 

We incorporated a range of potential predictors, including those 
related to road traffic, land use, meteorology, satellite retrievals, and 
chemical transport model (CTM) estimates, as detailed in Table A5. The 
predictors used in this study were similar to those in our previous study 
(Shen et al., 2022), with the addition of some monthly-varying variables 
in this study. These variables include meteorological variables and some 
satellite retrievals (such as OMI) and CTM estimates such as MACC 
model (Marécal et al., 2015) for NO2 and PM2.5 in 2010, and the Danish 
Eulerian Hemispheric Model (DEHM) (Brandt et al., 2012) for all pol-
lutants in every year. Other satellite retrievals were annually-varying. 
Spatial land-use variables were either temporally-fixed (i.e., altitude 

and population) or updated every 3 or 6 years (i.e., CORINE land use and 
impervious density). Road-related predictors remained temporally 
constant and were obtained from OpenStreetMap, a crowd-sourced 
database. These road predictor variables were available at 25 m reso-
lution, while land-use data at 100 m resolution, and satellite retrievals 
and CTM estimates were available at a resolution of 1 km × 1 km or 
coarser. 

2.3. Monthly LUR using geographically weighted regression (GWR) 

GWR is a linear regression that uses spatially-varying coefficient 
values (Brunsdon et al., 1996). It uses a kernel function to give weights 
to observation points as a function decaying by distance to regression 
points (i.e., the closer the observation is to a regression point in space, 
the higher weight the observation has for estimating the regression co-
efficients for that regression point). 

As shown in our previous study of annual modelling (Shen et al., 
2022), GWR explained spatial variations in ground-based observations 
better than supervised linear regression (SLR) and random forests (RF), 
and one single model performed similarly or slightly worse than indi-
vidual annual models. In our preliminary test for monthly modelling 
(shown in Supplementary Material’s section 1&2), we found that GWR 
and RF performed similarly better than SLR based on 5-fold cross- 
validation (CV). Moreover, we found that one single monthly model 
performed worse than individual monthly models. Therefore, we 
developed individual monthly GWR models to estimate the ambient 
monthly air pollution concentrations, because GWR offers a more 
interpretable model compared to RF. 

In GWR, we had spatially-varying linear regression coefficient values 
of predictors selected by SLR, following the same procedure used in our 
previous studies (Chen et al., 2021; de Hoogh et al., 2018a; Eeftens et al., 
2012; Shen et al., 2022). 

In SLR, firstly we built a univariate linear regression with one pre-
dictor variable that had the highest adjusted coefficient of determination 
(adjusted R2) in air pollution observations and that had the statistically- 
significant coefficient value (P < 0.1), if the coefficient value matched 
the plausible direction of effect (as defined in Table A5). Then in each 
step we added one of the remaining variables that meet our above-
mentioned criteria. After no additional variable would meet our criteria, 
we excluded variables with variance inflation factor larger than 3 to 
avoid multicollinearity in our final linear regression model. 

Then we used GWR to estimate the spatially-varying regression co-
efficient values of the predictors selected by SLR. The regression co-
efficients were at 200 km × 200 km spatial resolution. We used an 
exponential function as our decay function, and the bandwidth (i.e., 
how fast the kernel function decays to zero) was determined by CV 
within the training data. Details can be found in our previous study 
(Shen et al., 2022). The calculation was done in R using the GWmodel 
package version 2.2–4 (Gollini et al., 2015; Lu et al., 2014; R Core Team, 
2020). We built a monthly LUR model from 2000 to 2019 for every 
calendar month in which the total number of monthly averaged obser-
vations was >200 sites across Europe. This meant that we were only able 
to build monthly PM2.5 models after 2006 and from 2000 to 2019 for the 
other pollutants (Tables A1-A4). 

2.4. Evaluate model performance: 5-fold cross-validation (CV) 

We used 5-fold CV to evaluate the accuracy of our monthly LUR 
model estimates. We created each fold randomly. We ensured the 
observation points had similar proportion of different station charac-
teristic across the whole dataset, training dataset and validation dataset. 
The station characteristic includes climate zones (i.e., Alpine, Atlantic, 
Continental, Northern, Southern, as shown in Fig. A2) and routine 
monitoring station types (i.e., background, industrial, traffic, as pro-
vided by EEA). The hold-out data from all 5 folds were combined to 
obtain one value of each performance metric. 
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In the 5-fold CV analysis, we used three performance metrics: mean- 
square-error-based R2 (MSE-R2), root mean square error (RMSE), and 
relative RMSE (rRMSE) defined as Eqs. 1, 2 & 3. The MSE-R2 reflects the 
systematic bias and random difference between model estimates and 
observations along the 1:1 line. In contrast, the RMSE measures the 
absolute average difference between estimates and observations with 
extra weight added to larger estimate errors, and the rRMSE gives a 
normalized measure of RMSE to mitigate variabilities in air pollution 
levels across months. 

MSE − R2 = 1 −

∑N

i=1
(yi − ŷi)

2

∑N

i=1
(yi − y)2

(1)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑N

i=1
(yi − ŷi)

2

√
√
√
√ (2)  

rRMSE =
RMSE

y
(3)  

where yi is the observed monthly average concentration at station i, ŷi is 
the estimated monthly average concentrations at station i, and y is the 
average observations from all N stations. 

To compare accuracy of our monthly LUR with YRADJ-LUR models, 
we used the monthly background observations from the same training 
set as the monthly LUR models in each fold to obtain IDWi for month i 
(Eqs. 1 & 2). Although the training data of annual LUR model 
(LURyr=2010 in Eqs. 1 & 2) included annual averages of observations 
from the monthly validation set, we assume that LURyr=2010 contains no 
information of monthly air pollution spatial patterns anymore after 
aggregation. 

To compare accuracy of estimated annual averages from our monthly 
LUR models with our previous annual LUR model estimates, we aggre-
gated our hold-out monthly observations into annual average estimates 
with the 75 % validity criterion (i.e., >9 monthly observations available 
at a monitoring site in a year). Then we calculated the model perfor-
mance metrics for the hold-out annual observations at stations where 
both monthly observations and annual observations were available. 

2.5. Monthly-adjusted estimates of annual LUR model (YRADJ-LUR) 

We built and evaluated the monthly performance of annual LUR 
adjusted by monthly averaged monitoring data (Basso et al., 1999). We 
used this approach to evaluate the potential gain in performance ob-
tained by the monthly LUR models for a single year. We implemented 
this approach for only the year 2010, which is the midpoint of our study 
period and the starting point of our previous studies (Chen et al., 2019; 
de Hoogh et al., 2018a). For each month, we adjusted our annual 
average estimates obtained from the geographically and temporally 
weighted regression (GTWR) models built in our previous study (Shen 
et al., 2022). We refer to these monthly adjusted estimates as YRADJ- 
LUR. We compared the YRADJ-LUR estimates with our monthly LUR 
estimates. 

To adjust annual averaged estimates to monthly averaged estimates, 
we first spatially interpolated monthly background observations using 
IDW. Although IDW is a relatively simple approach to aggregate nearby 
monitoring data, it is sufficient and has been applied in previous studies, 
because of the high correlation of the air pollution observations at 
nearby stations over time and space (Ito et al., 2005). We used inverse-
Distance function in Google Earth Engine (GEE) (Gorelick et al., 2017) to 
interpolate the background observations. We set the interpolation range 
as 70 km and the decay factor gamma as 1 (Eckel et al., 2016; Wong 
et al., 2004). When no monthly background observation point was 
within 70 km, we set the interpolated values as the monthly average 

background concentration across Europe (Kim et al., 2019a; Wong et al., 
2004). Background observations were collected at stations where air 
pollution is not dominated by nearby emission sources and where 
pollution concentrations represent average exposure of the population, 
as defined by the EEA. Background stations were in both rural and urban 
areas. 

For year 2010, with the monthly interpolated values (IDWi) for 
month i, we monthly adjusted the annual LUR estimates (LURyr=2010) 
into monthly estimates (YRADJ-LURi) using either the differencing 
method (Eq. 4) or the ratio method (Eq. 5) (Gulliver et al., 2013): 

YRADJ LURi = LURyr=2010 + IDWi −

(∑12
j=1IDWj

)

12
(4)  

YRADJ LURi = LURyr=2010 ×
IDWi(

∑12

j=1
IDWj

)/

12
(5) 

We refer to YRADJ-LUR estimates obtained by Eq. 4 as ‘diff’ and 
estimates obtained by Eq. 5 as ‘ratio’. 

We evaluated the model accuracy of the YRADJ-LUR using 5-fold CV 
with the same setup of training and test folds described in Section 2.4. 
We then compared 5-fold CV of the two approaches (YRADJ-LUR and 
monthly LUR). 

We also calculated the Pearson correlation coefficient of the esti-
mates from the two approaches at around 77 thousand random points in 
populated regions. The points were created at the impervious and 
populated areas, defined as IMD > 0 in the impervious data (Copernicus, 
2021) and pop>0 in the population data from year 2011 (see Table A5). 
The number of the random points is proportional to the population in 
each NUTS1 region (Nomenclature of territorial units for statistics) in 
year 2021 (EUROSTAT, 2021), and at least 300 points were created in 
each NUTS1 region (Fig. A1). The NUTS1, defined by Eurostat, repre-
sents the major socio-economic regions in Europe. These random points 
were used to represent the residential addresses. 

2.6. Comparison of air pollution predictions at different spatial scales (25 
m, 100 m, 1 km) 

Previous monitoring studies have shown large near-roadway gradi-
ents of traffic-related pollutants, including NO2, black carbon (BC), and 
ultrafine particles (UFP) within the first tens of meters from the nearby 
road (HEI, 2022; Niepsch et al., 2022; Zhu et al., 2002). Thus, to illus-
trate the benefit of estimating air pollution at very fine spatial scales, we 
compared air pollution predictions at different spatial scales, namely at 
25 m, 100 m, and 1 km. For the comparison, we extracted predicted 
values at the 77 thousand random points mentioned in Section 2.5 for 
calculating the Pearson’s correlation. Moreover, to examine local near- 
roadway differences, we extracted predicted values along a transect for a 
major city (Paris). 

3. Results and discussion 

Fig. A3 and A4 show variabilities in monthly average air pollution 
levels, as observed at ground-based monitoring sites for four pollutants 
during selected years (i.e., year 2000, 2005, 2010, 2015, and 2019). The 
figures reveal findings on seasonal patterns and spatial heterogeneity in 
air pollution levels and distributions. 

Across all selected years, consistent seasonal patterns were observed. 
Higher O3 levels were shown in the summer months. In contrast, lower 
NO2 and PM levels were observed in the summer months. 

Beyond monthly variabilities, distribution patterns also exhibited 
substantial spatial heterogeneity across months. The large-scale monthly 
distribution patterns were reflected by the monthly averages of all ob-
servations per climatic region, per month and per year, as documented 
in Fig. A4. 
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The evident variabilities, particularly for O3 and PM, emphasized the 
need to build individual monthly LUR models per month and per year. 
This approach is essential for capturing the dynamic characteristics of 
the air pollution levels and patterns. 

For NO2, O3, and PM10, the monthly LUR models were built and 
evaluated for every month from 2000 to 2019. For PM2.5, due to the 
availability of ground-based observations, we only built and evaluated 
monthly models for every month from 2006 to 2019. 

In Section 3.1, we present and discuss the predictors selected and 
used in our monthly LUR models. In Section 3.2, we document the model 
performance of our monthly LUR models and compare the monthly LUR 
with the annual LUR and YRADJ-LUR. In Section 3.3, we examine the 
monthly variations in our monthly LUR estimates. In Section 3.4, we 
compare predictions at different spatial resolution (25 m, 100 m, 1 km) 
and discuss the benefit of fine-scale predictions. Finally in Section 3.5, 
we discuss limitations of our study. 

3.1. Monthly LUR model structure 

Fig. 1 and Fig. A5 document the predictor variables selected and used 
in the monthly LUR models per pollutant per season (or per month) 
thorough the study period (2000–2019 for NO2, O3 and PM10; 
2006–2019 for PM2.5). Overall, very few variables were selected in 
almost all months with some variables selected in only specific months. 
The selection of the predictor variables reflects factors to which the 
monthly air pollution levels can be attributed. The degree of the 
contribution from individual variables selected can be represented by 

the regression slope (in μg/m3), as documented in Fig. A6. The contri-
bution of some selected variables exhibited great monthly variabilities, 
indicating the dynamic patterns of air pollution driven by the seasonally 
and monthly variabilities in emission activities and dispersion processes. 
We continue the discussion of the predictors that vary per month for 
each pollutant as follows. 

For NO2, the variables selected most frequently across months and 
years were near-roadway variables (with 50 m–100 m buffer size), wind 
speed, population, CTM predictor (MACC model) (Fig. 1). OMI satellite 
data were selected more frequently in cold seasons than in warm sea-
sons, while temperature showed the opposite trend. MACC model vari-
able contributed the most (with highest slope) to explaining monthly 
variations in air pollution (Fig. A6 1-F), followed by near-roadway 
variables (Fig. A6 1-A & A6 1-C) with stable monthly contribution. 
The same result was also observed in our previous Europe-wide study of 
building annual LUR (de Hoogh et al., 2018a), and we further showed 
that the contribution of MACC was higher in cold seasons than in warm 
seasons. This could be because MACC performed better in winter than in 
summer (Pearson’s cor = 0.31 in winter and 0.15 in summer) at 285 
ground-based rural stations (Giordano et al., 2015). All in all, we found 
the spatial patterns of NO2 monthly concentrations were mainly influ-
enced by not only near-roadway traffic emission sources, but also 
meteorological conditions (wind speed and temperature) and regional 
background concentrations presented by satellite retrievals (OMI) and 
CTM estimates (MACC). 

For O3, altitude and temperature were selected most frequently 
across months and years (Fig. 1). Population and DEHM were selected 

Fig. 1. Variables selected by SLR and the used in GWR for cold seasons (Jan-Mar and Oct-Dec) and warm seasons (Apr-Sept) from 2000 to 2019 for 1) NO2, 2) O3, 3) 
PM10 and from 2006 to 2019 for 4) PM2.5. Fill colour indicates relative frequency of a variable being selected over the 20-year or 14-year period per season. Different 
columns indicate seasons (warm and cold). Different rows indicate variables shown as variable code (defined in Table A5). To reduce complexity of visualization, 
variables with similar buffer sizes in same categories are combined: allRoads and majorRoads with groupings of 50 m–100 m (50to100), 200 m–1000 m (200to1000), 
2000 m–10,000 m (2000to10000); imd, ind, nat, por, res, tbu, and ugr with groupings of 100 m–500 m (100to500), 600 m–1200 m (600to1200), 1500 m–2500 m 
(1500to2500), 3500 m–5000 m (3500to5000), 6000 m–10,000 m (6000to10000). NA: Not applicable (where variables were not potential predictors for a pollutant). 
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more frequently in warm seasons than in cold seasons, whereas NO2 
MACC and OMI data were selected more frequently in cold seasons. 
Similar results were also found in the previous Europe-wide study (de 
Hoogh et al., 2018a) where seasonal O3 LUR models selected either 
MACC or DEHM data. In our monthly O3 LUR models, temperature 
contributed the most, followed by altitude and DEHM data. These 
frequently selected variables contributed differently across months 
(Fig. A6 2-D, A6 2-E & A6 2-F) with higher contribution of population 
and DEHM in warm seasons than in cold seasons. 

The dominant contribution of temperature and altitude represents 
regional variations of O3. The regional variations were also represented 
by population, large-scale urban green (6 km–10 km), MACC (10 km), 
OMI (13 km × 24 km) and DEHM data (~50 km). On the other hand, the 
near-roadway variables (Fig. A6 2-A & A6 2-C) in our LUR represent the 
local near-roadway depletion of O3 due to photochemical reactions that 
consume nitrogen oxide (NO) and O3 to form NO2 in the near-road 
microenvironment. 

For PM10, the geophysical statistical surface concentration estimates 
(gwr_sat) were selected in all months and contributed the most with 
large monthly variations (higher contribution in cold seasons than in 
warm seasons) (Fig. A6 3-F & A6 4-F), whereas the DEHM data was 
selected more frequently in warm seasons than in cold seasons and 
contributed quite consistently across months. These two variables 

represent different aspects of variations in PM10. The gwr_sat estimates 
were based on satellite observed aerosol optical depth (AOD) and GEOS- 
Chem CTM model (Hammer et al., 2020; Van Donkelaar et al., 2019). 
Thus, the monthly-varying contribution of geophysical statistical esti-
mates could result from either the monthly-varying PMcoarse (subtract 
PM2.5 from PM10) or the large monthly or seasonal variability in PM 
emission patterns, representing the local patterns of PM2.5 varying at a 
few kilometres. On the other hand, the DEHM data represent the large- 
scale variations of PM10 at 50 km resolution, and its contribution was 
more seasonally and monthly stable compared to the geophysical sta-
tistical estimates. 

Like the PM10 monthly models, PM2.5 models also selected the 
geophysical statistical estimates (gwr_sat) in all months with large 
monthly-varying contribution. But the PM2.5 models selected near- 
roadway predictors less frequently than the PM10 models. 

3.2. Model performance 

The monthly LUR models performed differently across months, years 
and air pollutants (as shown in Fig. 2, A7-A9). 

For NO2 (MSE-R2 = 0.51–0.72; RMSE = 6.2–12.4 μg/m3, rRMSE =
0.27–0.51), the monthly models’ performance remained relatively sta-
ble with some variations with lowest performance in summer when the 

Fig. 2. Boxplots of (a) MSE-R2, (b) RMSE and (c) relative RMSE values using 5-fold CV per calendar month from 2000 to 2019 for NO2, O3, and PM10 and from 2006 
to 2019 for PM2.5. Equations of MSE-R2, RMSE and relative RMSE are shown in Eqs. 1, 2 & 3. 
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NO2 levels are lower. 
For O3 (MSE-R2 = 0.34–0.82; RMSE = 7–16.9 μg/m3, rRMSE =

0.1–0.24), MSE-R2 was lowest in spring. RMSE was highest in summer 
due to the high O3 levels. In contrast, after normalizing the variabilities 
in the levels, rRMSE was lowest in warm season with constant stability 
across months. The low MSE-R2 in spring could be primarily driven by 
the difficulty of the statistical model to capture the variabilities domi-
nated by intrusion of stratospheric ozone with still relatively low 
photochemical transformation in this season. 

For PM10 (MSE-R2 = 0.2–0.78; RMSE = 3.4–15.4 μg/m3, rRMSE =
0.2–0.46), all performance metrics were lowest in warm seasons. The 
low MSE-R2 observed during summer months, especially in the early 
years (e.g., 2000), can be primarily caused by two factors. Firstly, the 
relatively small number of observations available impacted the models’ 
abilities to capture air pollution variabilities during the early years. 
Moreover, the relatively low spatial distribution patterns observed 
during warm seasons (as depicted in Fig. A4) posed further challenge. 
Despite these variations and challenges, the overall model performance 
remained satisfactory based on low rRMSE. It implies low overall dif-
ference between observations and estimates, suggesting that the models, 
while exhibiting some seasonal fluctuations, maintained its overall ac-
curacy in capturing the air pollution levels. 

For PM2.5 (MSE-R2 = 0.23–0.85; RMSE = 1.95-17 μg/m3, rRMSE =
0.17–0.72), like PM10, all performance metrics were also lowest in warm 
seasons. This observation also aligns with findings from a previous 
global study (Van Donkelaar et al., 2021), which also documented lower 
R2 values during warm seasons compared to cold seasons for year 2018. 

It is noteworthy to acknowledge that our study encountered an 
outlier—a single extreme observation with the PM2.5 level above 150 
μg/m3 in November and December 2007. This outlier attributed to 
elevated RMSE values (11.34 and 17 μg/m3) and rRMSE values (0.62 
and 0.72) shown in Fig. A8 and A9. However, when considering the 
overall model performance across various calendar months, we 

consistently observed moderate to good performance metrics (average 
MSE-R2 = 0.55–0.62, RMSE = 4.3–9.7, rRMSE = 0.15–0.37 for the four 
pollutants). 

For O3, PM10, and PM2.5, although the MSE-R2 and RMSE values 
were fluctuating across months, the stable rRMSE values demonstrate 
that the models performed quite well with low prediction errors. The 
fluctuating MSE-R2 and RMSE values across months were mainly due to 
the variability in air pollution levels and distribution patterns observed 
in Fig. A3 & A4. 

3.2.1. Monthly LUR model estimates vs monthly adjusted annual LUR 
estimates (YRADJ-LUR) 

3.2.1.1. 5-fold CV of monthly LUR and YRADJ-LUR. The 5-fold CV re-
sults show that the monthly LUR estimates gave better accuracy than the 
YRADJ-LUR estimates using differencing and ratio methods in general 
(Table 1 & Tables A6 & A7). 

For NO2, the monthly LUR gave slightly higher accuracy than 
YRADJ-LUR. The differences in accuracy between the methods were 
small, indicating the spatial patterns were stable across months. This is 
consistent with the similar spatial patterns shown in our estimated air 
pollution maps across months in Section 3.3. 

For O3, the monthly LUR had higher accuracy than YRADJ-LUR in all 
months, and the differences in accuracy between the two were higher in 
cold season, when the O3 concentrations were lower, than in warm 
season. 

For PM10 and PM2.5, the monthly LUR had higher accuracy than 
YRADJ-LUR in almost all months. The differences in accuracy were 
higher in warm season, when the PM concentrations were lower, than in 
cold season. In cold season, the difference in accuracy was small. 

Very few studies have compared the model performance between 
monthly LUR and YRADJ-LUR. We found one study in the United States 
that monthly adjusted the spatial annual LUR estimates using three 

Table 1 
5-fold CV MSE-R2 values of monthly average concentrations estimated by monthly LUR using GWR (column 
‘gwr’) and by YRADJ-LUR using differencing method in Eq. 4 (column ‘diff’) and ratio method in Eq. 5 (shown 
in column ‘ratio’) for each month in the year 2010 for 1) NO2, 2) O3, 3) PM10, and 4) PM2.5. The highest MSE- 
R2 value among the three methods for each month is highlighted in red. 
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spatial interpolation methods (nearest neighbourhood, inverse distance 
weighting, kriging) for NO2 over period 2000–2010 (Bechle et al., 
2015). The three methods gave similar model performance with kriging 
explaining 82 %, IDW explaining 79 % and NN explaining 80 % spatial 
variability. Although they found that the monthly LUR models explained 
less spatial variability in monthly average observations than the YRADJ- 
LUR for every month, their monthly LUR models included mostly 
monthly-fixed spatial variables with only satellite-derived variables 
being monthly-varying at coarse spatial resolution of 13 km × 24 km at 
nadir. Since their study, several monthly-varying spatial variables that 
would contribute to air pollution modelling have become available. 
These variables were included in our monthly LUR models, including 
not only satellite-derived variables and chemical transport model esti-
mates at coarse spatial resolutions (13 × 24 km at nadir and 50 km × 50 
km) but also meteorological variables at finer spatial resolution (0.1o ~ 
12 km). Our satellite data, CTM data and meteorological variables were 
selected frequently and contributed strongly in our monthly LUR, 
because these variables helped explaining the spatial variations in the 
monthly average observations, as shown and discussed in Section 3.1. 

Overall, our monthly LUR was better at capturing the spatial varia-
tions in the monthly average observations than the monthly adjusted 
method for NO2, O3, PM10, and PM2.5, especially in less-polluted months 
for pollutants with high monthly variations like O3, PM10 and PM2.5. 

3.2.1.2. Correlations between estimates of monthly LUR and YRADJ-LUR. 
We compared how predictions of the monthly LUR and YRADJ-LUR 
models were correlated with one another at 77 random points as 
shown in Fig. 3. Overall, for NO2, the correlation between monthly LUR 
and YRADJ-LUR was high (cor > 0.88) for all months, whereas for O3 
the correlation was moderate to high (cor = 0.64–0.86). For PM, the 
correlation was high (cor > 0.77) with lower correlation in warm sea-
son. Overall, the moderate to high correlation (cor > 0.64) between 
monthly LUR and YRADJ-LUR estimates suggests that a simple adjust-
ment of annual averages can provide a reasonable approximation of 
monthly spatial variations, albeit developing specific monthly LUR 
models are the preferred method. 

However, in months where we do not have enough observations to 
train monthly LUR models, we will still need monthly adjusting ap-
proaches to estimate air pollution exposures (before 2006 for PM2.5 and 
before 2000 for the other pollutants). But the monthly adjusting 

approaches could also be limited by the number of observations and how 
the stations are spread in space. In our approach, when no background 
station was available within 70 km, continental (Europe-wide) back-
ground averages were used for the temporal adjustment. However, the 
spatial contrast of the monthly concentrations could be varying across 
Europe, as shown in Fig. A13. The varying spatial contrast in specific 
months could explain the low performance of monthly adjusting ap-
proaches, because the contrast may not be reflected by the annual LUR 
estimates adjusted by the continental background averages for locations 
without background stations available within 70 km. 

Other adjusting approaches such as using chemical transport model 
estimates can overcome this limitation but provide monthly variations 
at coarse spatial resolution (>10 km). Moreover, the limited PM2.5 ob-
servations restrain building monthly models before 2006 for PM2.5, this 
problem could be solved by using geographically and temporally 
weighted regression to estimate monthly air pollution concentrations 
before 2006. 

3.2.2. Monthly LUR model performance vs annual LUR model performance 
Overall, the annual averages from our monthly LUR estimates 

explained slightly more spatial variations in annual average observa-
tions than our previous annual LUR estimates from Shen et al. (2022) as 
shown in Fig. 4. The improvement of annual model performance 
contributed by developing monthly-varying LURs was minimal for 
PM10, NO2 and PM2.5 but greater for O3. On average the increase in MSE- 
R2 is 0.017, 0.062, 0.032, and 0.01 and the reduction in RMSE is 0.35, 
0.6, 0.32, and 0.1 for NO2, O3, PM10, and PM2.5 respectively. 

The improvement of estimating annual air pollution concentrations 
could be explained by the within-year variations in predictors and ob-
servations contributed in the monthly LUR models. The monthly LUR 
captured the within-year variations represented by the observations and 
some predictors (i.e., meteorological, satellite-derived and CTM data) 
before being aggregated into annual averages, whereas the annual LURs 
included only the aggregated information of the within-year variations. 
Another advantage of aggregating the monthly LUR model estimates to 
annual average concentrations was that the monthly LUR models were 
trained by more observations from more stations than the annual LUR 
models due to the 75 % validity criterion of excluding observations from 
stations with availability <9 months when calculating the annual 
average observations for training the annual models. The monthly 

Fig. 3. Correlations between 1) monthly GWR estimates and YRADJ-LUR using differencing method (diff_MAV), 2) YRADJ-LUR using the ratio method and dif-
ferencing method (ratio_diff), 3) monthly GWR estimates and monthly adjusted estimates using ratio method (ratio_MAV). The differencing method and ratio method 
are shown in Eq. 4 and Eq. 5. Values were extracted at 77 thousand random points (Fig. A1) for year 2010. Values in ascending order were highlighted from white 
to red. 
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average observations from >5 % (up to 37 %) of the stations were only 
available for developing the monthly LURs and were unavailable for the 
annual LURs, as shown in Fig. A10. These extra observations could 
capture more spatial variations in the monthly air pollution, and thus 
the aggregated annual estimates from the monthly LUR could give more 
accurate spatial variations in the annual average concentrations than the 
annual LUR model estimates. 

3.3. Monthly variations in LUR predictions 

In general, spatial patterns were different across months for O3, PM10 
and PM2.5 (Figs. 5–7), whereas for NO2, some but less monthly varia-
tions can be found. Both the monthly averages and the contrasts be-
tween locations differed across months. 

At a European scale (shown in Fig. 6), for NO2, populated regions 
(mainly in Western and Central Europe and the Po Valley) had higher 
increases in estimated concentrations in winter and autumn than other 
regions. For O3, Central and Southern Europe had higher estimates in 
summer than Northern Europe, whereas in winter western Europe had 
lower O3 concentrations than other parts of Europe. For PM, the esti-
mated concentrations in summer decreased more in Central, Eastern 
Europe and the Po Valley than in other regions. However, an increase in 
PM10 monthly concentrations was found in summer in Southwestern 
Europe (Spain, Italy, and Southern France). 

Changes in Europe-wide monthly average concentrations are 
obvious during the period 2000–2019. For NO2, the estimated monthly 
concentrations decreased for all months and regions (Fig. A14). For O3, 
the monthly estimates increased especially in western, central and 
southern Europe in warm season (Fig. A16). For PM10, the changes in 

monthly estimates were more dynamic than other pollutants but with an 
overall decreasing trend over years in all months (Fig. A18). The most 
substantial decrease in PM10 monthly concentrations was found in Spain 
and southern UK. For PM2.5, from 2010 to 2019 an obvious decreasing 
trend was found as well (Fig. A20). A previous study in Switzerland also 
documents large seasonal variability in spatial patterns of PM2.5 and 
PM10 concentrations (Eeftens et al., 2015). 

At a city scale in Paris, monthly variations in air pollution patterns 
were also distinguishable (Fig. 7, A15, A17, A19, A21). Our estimated 
NO2 maps showed local patterns from traffic emissions of vehicles, 
whereas O3, PM10 and PM2.5 maps showed more regional patterns. 

3.4. Comparison of predictions at different spatial resolutions (25 m, 100 
m, 1 km) 

We compared our monthly LUR model predictions at three spatial 
resolutions (i.e., 25 m, 100 m, and 1 km) at a random point data set (77 
thousand points across Europe). The overall Pearson’s correlation of the 
predictions at the random points was very high between 25 m and 100 m 
predictions both across Europe (above 0.98 as shown in Fig. 8) and high 
in countries (above 0.876 as shown in Fig. A22) for all pollutants. The 
overall correlation was high between 25 m and 1 km predictions (above 
0.91 as shown in Fig. 8) across Europe. The highest correlations were 
found for PM2.5 and PM10, pollutants with a relatively small local 
gradient. However, for some countries, the correlation values were 
moderate (0.4–0.8) between 25 m and 1 km predictions as shown in 
Fig. A22. 

To visualize the changes in air pollution predictions at different 
scales, we plotted our air pollution prediction maps for a major city 

Fig. 4. (1) MSE-R2 values (Eq. 1), (2) RMSE values (Eq. 2; unit: μg/m3), and (3) relative RMSE values (Eq. 3) of LUR models for each calendar year using 5-fold CV. 
Annual LUR: annual estimates of the annual LUR models built in our previous study using GWR (Shen et al., 2022). Monthly LUR: annual average calculated from the 
monthly estimates of the monthly LUR models using GWR. 
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(Paris) at the different spatial resolutions in Figs. A23-A26. The near- 
roadway air pollution peaks were distinct at 25 m and 100 m. The 25 
m and 100 m prediction maps in general showed similar locally-varying 
patterns. These patterns were reflected mainly by our selected land-use 
variables and road-related variables at a spatial resolution of either 100 
m or 25 m, which represent the local variations in pollution emission 
sources (near-roadway, industrial- and residential emission sources). 
These local variations were not captured at a 1 km spatial resolution. 
The loss of local variation was also shown in Figs. A27-A30 where the air 
pollution predictions were extracted from the maps along a West-East 
transect in Paris. 

The main application is in epidemiological studies. In epidemiolog-
ical studies, residential addresses are commonly used to assess air 
pollution exposures, and previous studies have used these addresses to 
assign the exposures from 100 m annual average air pollution surfaces 
(Liu et al., 2021; Rodopoulou et al., 2022) or 1 km resolution (Brauer 
et al., 2022). The very high correlations between 25 m, 100 m, and 1 km 
resolution for PM2.5 and PM10 indicate no clear benefit in using more 
detailed resolutions. For traffic-related pollutant NO2, there is benefit 
using 25 m or 100 m instead of 1 km to represent near-roadway air 
pollution gradients. Based on the high correlation between the 25 m and 
100 m resolution, results of epidemiological studies would likely have 
been similar. While 100 m prediction maps provide similar local pat-
terns at a lower cost of computation resources, the 25 m prediction maps 
are an improvement for capturing locations of near-roadway air 

pollution. In studies of single urban areas, where the exposure contrast is 
more drive by near-roadway pollution, the benefit of 25 m resolution 
may be larger than in nation-wide or continental epidemiological 
studies. 

In tracking studies where people’s time-activity patterns are fol-
lowed over time, a 25 m resolution might modestly improves assessment 
of commuting exposures over the larger resolutions. Monthly air 
pollution models are useful if the interest is in assessing average per-
sonal exposure, incorporating time activity patterns. 

We observed a 10 %–20 % decrease in our NO2 predictions within 40 
m–80 m away from the roads in a specific small area in Paris. Previous 
studies have also shown a decline in air pollution concentrations with 
distance away from the road. Niepsch et al. (2022) shows that measured 
roadside NO2 concentrations peaked within 25 m away from the road 
and then decreased with 10 % and 20 % at distances of respectively 50 
and 100 m. In their study, >30 % decrease in NO2 concentrations was 
observed at 50 m away from nearby busy roads (with >30 thousand 
vehicles per day on average annually). Another study in the USA also 
found a 5 % decline in NO2 concentrations with distance to the nearest 
highway using high spatial resolution of mobile data collected by ve-
hicles on road (Apte et al., 2017). 

It could be challenging to capture the variations at 25 m spatial 
resolution with a handful of observations compared to the total number 
of 25 m grid cells across Europe. However, the monitoring stations were 
a mix of roadside, urban background in larger and smaller cities and 

Fig. 5. Boxplots of monthly average ground-level concentrations (month 01–12) estimated by GWR for NO2, O3, PM10 and PM2.5 in year 2000, 2005, 2010, 2015, 
and 2019 at 77 thousand random points (Fig. A1). 
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regional background sites covering Europe. Moreover, our regression 
models selected the variables related to potential emission sources due 
to the variables’ high contribution on explaining the spatial variations in 
observed air pollution, as shown and discussed in Section 3.1. The 
reliability of the models was further supported by the 5-fold CV using all 
hold-out observations. Evaluating LUR models with hold-out CV has 
been shown to reflect the predictive power even with small training 
datasets in 20 European study areas (Wang et al., 2013), because it can 
represent the locations where no measurements were taken. Thus, based 
on our 5-fold CV result, our regression models are able to capture var-
iations in air pollution in different settings across Europe. 

3.5. Limitation 

Some improvements can be further achieved based on our monthly 
LUR models by including extra predictors and using spatio-temporal 
algorithms. Some satellite-retrieved data was excluded in our monthly 
LUR. The aerosol optical depth (AOD) retrieved by MODIS could help 
explaining more spatial variations in PM. Another satellite product from 
Tropospheric Monitoring Instrument (TROPOMI) has been available 
since 2018 with great improvement in spatial resolution from 13 × 24 
km to 3.5 × 7 km compared to OMI. The atmospheric NO2 column 
density from this TROPOMI could help capturing the variations in NO2 
and O3 concentrations. 

Moreover, in a handful of months, monthly LUR models exhibit more 
uncertainties, as indicated by the lower 5-fold CV R2. Extra attention and 
care would be needed when the monthly exposure estimates are 
assigned in those time periods. For future studies, using spatiotemporal 
algorithms such as GTWR would help reducing the uncertainty in the 
estimates more than developing monthly specific LUR models. The 
GTWR could also solve the problem of limited PM2.5 observations before 
2006. Although our previous study shows that GWR and GTWR per-
formed similarly annual, a previous study showed GTWR performed 
better than GWR at daily scale (He and Huang, 2018). 

One could build daily LUR models to obtain monthly averages. 
However, building daily models with the method proposed in this study 
would entail extra uncertainties in estimates. To reduce the un-
certainties, more temporally-resolved (daily) predictors are required. 
One of the main predictor variables in the daily air pollution models is 
satellite data, specifically Aerosol Optical Depth (AOD) for PM2.5 and 
Ozone Monitoring Instrument (OMI) or Tropospheric Monitoring In-
strument (TROPOMI) data for NO2. The raw satellite data presents a 
substantial challenge due to the presence of significant data gaps 
contributed by factors such as cloud cover. To mitigate these data gaps 
before it can be used in the main modelling process, post-processing is 
required. It is a modelling stage whereby the missing data is filled 
through integrating information from chemical transport models and 
meteorological variables. The multi-stage modelling approach has been 

Fig. 6. Europe-wide monthly average maps of ground-level concentrations in μg/m3 (for January: box ‘1’, April: box ‘4’, July: box ‘7’, October: box ‘10’) estimated 
by monthly GWR LUR and Europe-wide annual average maps (far right boxes bounded in red) estimated by annual GTWR LUR (Shen et al., 2022) for NO2, O3, PM10 
and PM2.5 in year 2010 at 25 m resolution (Base map source: Google Maps). The annual and monthly estimates of O3 represent the annual and monthly average daily 
maximum 8-h mean. For other specific years (2000, 2005, 2015, 2019), readers are referred to Fig. A14, A16, A18, A20. For all years, visualization of monthly 
average estimated maps are available via https://youchenshenuu.users.earthengine.app/view/expanse-monthly-average-air-pollution-maps, and annual average 
estimated maps are available via https://youchenshenuu.users.earthengine.app/view/expanse-air-pollution-20-yr-maps. 
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applied in previous studies in Switzerland and Italy at 100 m spatial 
resolution as well as in North America and China at a 1 km resolution (de 
Hoogh et al., 2018b; De Hoogh et al., 2019; Di et al., 2019; Shao et al., 
2020; Stafoggia et al., 2019; Wei et al., 2021; Wu et al., 2021). 

Directly applying the methodology used in this study would there-
fore be inappropriate for building daily LUR models at a very fine spatial 
resolution. The prospect of building daily LUR models across Europe, 
with a focus on enhancing exposure assessment, is a topic worth 
exploring in future studies. However, it is essential to acknowledge that 
such an undertaking falls beyond the scope of this study. Given the need 

to balance between spatial and temporal resolution, we have chosen the 
approach of building monthly models exhibiting a notably high spatial 
resolution, as opposed to building daily models at a coarser spatial 
resolution. 

4. Conclusion 

Overall, the variations in monthly air pollution concentrations were 
substantial across most regions and months for most pollutants. Thus, 
we built Europe-wide monthly LUR models for each month during 20- 

Fig. 7. Europe-wide monthly average maps of ground-level concentrations in μg/m3 (for January: ‘1’, April: ‘4’, July: ‘7’, October: ‘10’) estimated by monthly GWR 
LUR and annual average (far right boxes bounded in red) estimated by annual GTWR LUR (Shen et al., 2022) for NO2, O3, PM10 and PM2.5 in year 2010 in Paris at 25 
m resolution. The annual and monthly estimates of O3 represent the annual and monthly average daily maximum 8-h mean. For other specific years (2000, 2005, 
2015, 2019), readers are referred to Fig. A15, A17, A19, A21. For all years, visualization of monthly average estimated maps are available via https://youchenshe 
nuu.users.earthengine.app/view/expanse-monthly-average-air-pollution-maps, and annual average estimated maps are available via https://youchenshenuu.users. 
earthengine.app/view/expanse-air-pollution-20-yr-maps 
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year period. This is the first study that built monthly LUR models at fine 
spatial resolution (25 m) across Europe with generally good 5-fold CV 
accuracy. The model structures of the monthly LUR were different be-
tween months for O3, PM10 and PM2.5 with monthly-varying contribu-
tion from the selected variables. The resulting estimates showed large 
monthly-varying spatial patterns as well. In addition, aggregating the 
monthly LUR model estimates to annual averages slightly improved 
annual average estimates compared to the annual LUR model, because 
of the ability to capture within-year variations in the monthly LUR. 

Moreover, the monthly LUR models outperformed the monthly- 
adjusted LUR models, but the correlation between monthly LUR and 
monthly-adjusted LUR were moderate to high. The findings indicate 
monthly LUR is preferable if possible, and monthly-adjusting method is 
acceptable albeit with higher uncertainty. 

Our 25 m air pollution prediction maps show to capture the local 
traffic-related variations more accurately than the 100 m prediction 
maps based on visual inspection, although the overall correlation be-
tween the two was high (above 0.87). 

To conclude, the resulting monthly LUR estimates can be used to 
identify the health effects of air pollution related to biological effects on 
intermediate-term effects and facilitate exploring critical exposure time- 
windows at a fine spatial resolution. 
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de Hoogh, K., Héritier, H., Stafoggia, M., Künzli, N., Kloog, I., 2018b. Modelling daily 
PM2.5 concentrations at high spatio-temporal resolution across Switzerland. 
Environ. Pollut. 233, 1147–1154. https://doi.org/10.1016/j.envpol.2017.10.025. 

De Hoogh, K., Saucy, A., Shtein, A., Schwartz, J., West, E.A., Strassmann, A., Puhan, M., 
Roösli, M., Stafoggia, M., Kloog, I., 2019. Predicting fine-scale daily NO2 for 2005- 
2016 incorporating OMI satellite data across Switzerland. Environ. Sci. Technol. 53, 
10279–10287. https://doi.org/10.1021/acs.est.9b03107. 

Di, Q., Wang, Yan, Zanobetti, A., Wang, Yun, Koutrakis, P., Choirat, C., Dominici, F., 
Schwartz, J.D., 2017. Air pollution and mortality in the Medicare population. 
N. Engl. J. Med. 376, 2513–2522. https://doi.org/10.1056/nejmoa1702747. 

Di, Q., Amini, H., Shi, L., Kloog, I., Silvern, R., Kelly, J., Sabath, M.B., Choirat, C., 
Koutrakis, P., Lyapustin, A., Wang, Y., Mickley, L.J., Schwartz, J., 2019. An 
ensemble-based model of PM2.5 concentration across the contiguous United States 
with high spatiotemporal resolution. Environ. Int. 130, 104909 https://doi.org/ 
10.1016/j.envint.2019.104909. 

Duncan, B.N., Bey, I., 2004. A modeling study of the export pathways of pollution from 
Europe: seasonal and interannual variations (1987–1997). J. Geophys. Res. D Atmos. 
109 https://doi.org/10.1029/2003JD004079. 

Eckel, S.P., Cockburn, M., Shu, Y.H., Deng, H., Lurmann, F.W., Liu, L., Gilliland, F.D., 
2016. Air pollution affects lung cancer survival. Thorax 71, 891–898. https://doi. 
org/10.1136/thoraxjnl-2015-207927. 

Eeftens, M., Beelen, R., De Hoogh, K., Bellander, T., Cesaroni, G., Cirach, M., 
Declercq, C., Dedele, A., Dons, E., De Nazelle, A., Dimakopoulou, K., Eriksen, K., 
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Joly, M., Jaumouillé, E., Josse, B., Kadygrov, N., Kaiser, J.W., Krajsek, K., Kuenen, J., 
Kumar, U., Liora, N., Lopez, E., Malherbe, L., Martinez, I., Melas, D., Meleux, F., 
Menut, L., Moinat, P., Morales, T., Parmentier, J., Piacentini, A., Plu, M., 
Poupkou, A., Queguiner, S., Robertson, L., Rouïl, L., Schaap, M., Segers, A., 
Sofiev, M., Tarasson, L., Thomas, M., Timmermans, R., Valdebenito, Van 
Velthoven, P., Van Versendaal, R., Vira, J., Ung, A., 2015. A regional air quality 
forecasting system over Europe: the MACC-II daily ensemble production. Geosci. 
Model Dev. 8, 2777–2813. https://doi.org/10.5194/gmd-8-2777-2015. 

Morawska, L., Zhu, T., Liu, N., Amouei Torkmahalleh, M., de Fatima Andrade, M., 
Barratt, B., Broomandi, P., Buonanno, G., Ceron, Carlos Belalcazar, Chen, J., 
Cheng, Y., Evans, G., Gavidia, M., Guo, H., Hanigan, I., Hu, M., Jeong, C.H., Kelly, F., 
Gallardo, L., Kumar, P., Lyu, X., Mullins, B.J., Nordstrøm, C., Pereira, G., Querol, X., 
Yezid Rojas Roa, N., Russell, A., Thompson, H., Wang, H., Wang, L., Wang, T., 
Wierzbicka, A., Xue, T., Ye, C., 2021. The state of science on severe air pollution 
episodes: quantitative and qualitative analysis. Environ. Int. 156 https://doi.org/ 
10.1016/j.envint.2021.106732. 

Mortimer, K., Neugebauer, R., Lurmann, F., Alcorn, S., Balmes, J., Tager, I., 2008. Air 
pollution and pulmonary function in asthmatic children effects of prenatal and 
lifetime exposures. Epidemiology 19, 550–557. https://doi.org/10.1097/ 
EDE.0B013E31816A9DCB. 

Niepsch, D., Clarke, L.J., Tzoulas, K., Cavan, G., 2022. Spatiotemporal variability of 
nitrogen dioxide (NO2) pollution in Manchester (UK) city centre (2017–2018) using 
a fine spatial scale single-NOx diffusion tube network. Environ. Geochem. Health 44, 
3907–3927. https://doi.org/10.1007/S10653-021-01149-W/FIGURES/6. 
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