
Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Rojas‑Velazquez et al. BMC Bioinformatics           (2024) 25:26  
https://doi.org/10.1186/s12859-024-05639-3

BMC Bioinformatics

Methodology for biomarker discovery 
with reproducibility in microbiome data using 
machine learning
David Rojas‑Velazquez1,2*, Sarah Kidwai1, Aletta D. Kraneveld1,3, Alberto Tonda4, Daniel Oberski2, 
Johan Garssen1,5 and Alejandro Lopez‑Rincon1,2 

Abstract 

Background:  In recent years, human microbiome studies have received increasing 
attention as this field is considered a potential source for clinical applications. With 
the advancements in omics technologies and AI, research focused on the discovery 
for potential biomarkers in the human microbiome using machine learning tools 
has produced positive outcomes. Despite the promising results, several issues can 
still be found in these studies such as datasets with small number of samples, incon‑
sistent results, lack of uniform processing and methodologies, and other additional 
factors lead to lack of reproducibility in biomedical research. In this work, we propose 
a methodology that combines the DADA2 pipeline for 16s rRNA sequences processing 
and the Recursive Ensemble Feature Selection (REFS) in multiple datasets to increase 
reproducibility and obtain robust and reliable results in biomedical research.

Results:  Three experiments were performed analyzing microbiome data 
from patients/cases in Inflammatory Bowel Disease (IBD), Autism Spectrum Disorder 
(ASD), and Type 2 Diabetes (T2D). In each experiment, we found a biomarker signature 
in one dataset and applied to 2 other as further validation. The effectiveness of the pro‑
posed methodology was compared with other feature selection methods such 
as K-Best with F-score and random selection as a base line. The Area Under the Curve 
(AUC) was employed as a measure of diagnostic accuracy and used as a metric 
for comparing the results of the proposed methodology with other feature selection 
methods. Additionally, we use the Matthews Correlation Coefficient (MCC) as a metric 
to evaluate the performance of the methodology as well as for comparison with other 
feature selection methods.

Conclusions:  We developed a methodology for reproducible biomarker discovery 
for 16s rRNA microbiome sequence analysis, addressing the issues related with data 
dimensionality, inconsistent results and validation across independent datasets. The 
findings from the three experiments, across 9 different datasets, show that the pro‑
posed methodology achieved higher accuracy compared to other feature selection 
methods. This methodology is a first approach to increase reproducibility, to provide 
robust and reliable results.
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Background
In literature, human microbiome studies have received increasing attention. This domain 
is considered a potential source for the diagnosis and development of new medical treat-
ments [1]. Several studies aim to identify variations in the gut microbiome and poten-
tial biomarkers to diagnose diseases and disorders such as inflammatory bowel disease 
(IBD) [2–5], type 2 diabetes (T2D) [6–9], autism spectrum disorder (ASD) [10–13], and 
some types of cancer [14–17], among others. Microbiome studies have also been used to 
develop medical treatments and to analyze the responses from patients [18–21]. Micro-
biome analysis consists in sequencing the gene encoding 16s ribosomal RNA (rRNA) 
and compare it with known bacteria sequence databases to identify bacterial members 
of a microbial population [22]. Several software tools and pipelines are available for this 
process, such as QIIME2 [23], VSEARCH [24], DADA2 [25], Trimmomatic [26], mothur 
[27], and FLASH [28]. These software tools allow performing the quality analysis of 
16s rRNA raw data (filtering, trimming, chimera removal, merge sequences, taxonomy 
assignment) to generate Operational Taxonomy Units (OTUs) or Amplicon Sequence 
Variants (ASVs) and performing statistical analysis on the resulting bacterial taxonomy 
and abundance.

With the advancements in omics technologies and AI, research focused on the search 
for potential biomarkers in the human microbiome using machine learning tools has 
increased, where the use of taxonomy-based feature selection is one of the most com-
mon approach [29]. Nowadays, it is common to find research works that aims to find rel-
evant taxonomy-based features and use them as potential biomarkers to apply them in 
medical conditions such as ASD [30, 31], cardiovascular disease [32], T2D [33, 34], IBD 
[35–38], Parkinson [39], and also to analyze the effect of medical treatments [40, 41]. 
Despite the promising results, several issues can still be found in these studies:

•	 Datasets: high dimensional data with a small number of samples are common, usu-
ally because of the costs (time and money) associated with data collection from 
human participants. This causes machine learning models prone to overfitting and 
biased performance [42].

•	 Inconsistent results: Most of the studies use Operational Taxonomy Units (OTUs) in 
their experiments, and due to the limitations and their inability to be used in inde-
pendent studies [43, 44], may be the reason for obtaining inconsistent results [29, 45, 
46].

•	 Reproducibility: Several factors such as the lack of uniform processing methodolo-
gies, incomplete or erroneous descriptions of the simulations, incomplete or erro-
neous dataset documentation, which software version was used, incomplete docu-
mentation, or not having the code available for use are responsible for a lack of 
reproducibility in microbial research [45, 47].

The main objective in this work, is to address the lack of reproducibility by providing 
a methodology, that considers more than one dataset, that combines a DADA2-based 
pipeline for 16s rRNA sequences processing and the Recursive Ensemble Feature 
Selection (REFS) algorithm, previously used in [48]. This methodology also provides 
an approach to deal with high dimensional data with a small number of samples, 
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inconsistent results, and the lack of uniform processing and analysis methodologies. The 
effectiveness of the proposed methodology was tested by comparing its results with dif-
ferent feature selection methods. Three experiments were performed analyzing micro-
biome data related to: Inflammatory Bowel Disease (IBD), Autism Spectrum Disorder 
(ASD), and Type 2 Diabetes (T2D). The results of these experiments provide valuable 
insights about the performance of the proposed methodology and its potential applica-
tion in microbiome research. Further research is needed to confirm these findings and to 
explore their potential clinical applications.

Results
Autism spectrum disorder (ASD)

Raw data processing

The trimming parameters used for DADA2-based srcipt filtering process and the num-
ber of Amplicon Sequence Variants (ASVs) generated for each dataset were:

•	 David et al – parameter: trimLeft = 10, 2040 ASVs generated.
•	 PRJNA589343 – parameter: truncLen = c(250), 2040 ASVs generated.
•	 PRJNA578223 – parameter: truncLen = c(290,220), 18,758 ASVs generated.

Feature selection phase

We selected David et al [49] for discovery following the eligibility criteria. 26 out of the 
2040 features resulted after applying the Recursive Ensemble Feature Selection (REFS) 
algorithm. This means, REFS achieved its highest accuracy (> 0.8) with 26 features, 
Fig. 1a. The result of the validation module for the selected 26 features was an average 
AUC of 0.816, which is considered “very good” diagnostic accuracy [50]. The Multilayer 
Perceptron (MLP) algorithm had the best performance, Fig. 1b.

In comparison, we applied the same validation module to the complete 2040 features, 
the resulting average AUC was 0.41. For feature selection using K-Best, with k = 26, the 
average AUC was 0.706. The detailed validation results are presented in Table 1. Using 
the Matthews correlation coefficient (MCC) as additional metric to evaluate the perfor-
mance of the methodology, REFS achieved better average MCC (0.649) compared with 
the other feature selection methods, see Table 1.

Testing phase

We searched the 26 features selected by REFS in the testing datasets, the result was 22 
out of 26 for PRJNA589343 and 20 out of 26 for PRJNA578223. We applied the vali-
dation module to the features found in both testing datasets. For PRJNA589343 we 
obtained an average AUC of 0.748 and for PRJNA578223 we obtained an average AUC 
of 0.74. Both average AUCs corresponds to a “good” diagnostic accuracy  [50]. In both 
cases, the classifier with the best performance was Extra Trees, Fig. 1c,d.

For the comparative analysis, we searched for the 26 features selected by K-Best on 
each testing dataset, the result was 20 out of 26 for PRJNA589343 and 17 out of 26 for 
PRJNA578223. We applied the validation module to the features found in both test-
ing datasets. The resulting average AUCs were 0.704 for PRJNA589343 and 0.678 for 
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PRJNA578223. For the 10-time random selection the resulting average AUCs were 
0.6278 for PRJNA589343 and 0.6352 for PRJNA578223. The detailed validation results 
are presented in Table  1. Using the MCC as additional metric for this phase, REFS 
achieved better performance in both testing datasets with average MCC values of 0.4794 
for PRJNA589343 and 0.5071 for PRJNA578223, see Table 1.

Inflammatory bowel disease (IBD)

Raw data processing

The trimming parameters used for DADA2-based srcipt filtering process and the num-
ber of Amplicon Sequence Variants (ASVs) generated for each dataset were:

•	 PRJEB21504 – parameter: trim = 20 and truncLen = c(160), 1793 ASVs generated.
•	 DRA006094 – parameter: trim = 20 and truncLen = c(200), 375 ASVs generated.
•	 PRJNA684584 – parameter: trim = 20, 1621 ASVs generated.

Feature selection phase

We selected PRJEB21504 for discovery following the eligibility criteria. 53 out of the 
1793 features resulted after applying the Recursive Ensemble Feature Selection (REFS) 
algorithm. This means, REFS achieved its highest accuracy (> 0.95) with 53 features, 

Fig. 1  a The minimum number of features to obtain the higher accuracy, b Plot of the classifier with the 
best performance in the validation process for discovery dataset David et al, c Plot of the classifier with 
the best performance in the validation process for PRJNA589343, and d Plot of the classifier with the best 
performance in the validation process for PRJNA578223
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Fig. 2a. The result of the validation module for the selected 53 features was an average 
AUC of 0.936, considered “excellent” diagnostic accuracy  [50]. The Multilayer Percep-
tron (MLP) algorithm had the best performance, Fig. 2b.

In contrast, we applied the same validation module to the complete 1793 features, the 
resulting average AUC was 0.718. For feature selection using K-Best, with k = 53, the 
average AUC was 0.902. The detailed validation results are presented in Table 2. Con-
sidering the Matthews correlation coefficient (MCC) as additional metric to evaluate the 
performance of the methodology, REFS achieved an average MCC value of 0.8715 which 
is higher than MCC values achieved by the other feature selection methods, see Table 2.

Testing phase

We searched the 53 features selected by REFS in each testing dataset, the result was 
22 out of 53 for DRA006094 and 48 out of 53 for PRJNA684584. After applying the 
validation module, we obtained an average AUC of 0.778 for DRA006094 and for 
PRJNA684584 we obtained an average AUC of 0.71. Both average AUCs correspond to a 

Table 1  Individual and average AUCs and MCCs from the validation phase and the additional 
validation approaches applied to the ASD datasets.  The standard deviation of each result was 
excluded to keep the table simple and avoid complexity

*Discovery dataset

David et al.* 26 features (REFS) 2040 features SelectKbest (k = 26)

 Classifier AUC​ MCC AUC​ MCC AUC​ MCC

AdaBoostClassifier 0.7200 0.4355 0.3900 − 0.1726 0.7500 0.5133

Extra Trees 0.7800 0.5934 0.3400 − 0.3664 0.7400 0.5195

KNeighbors 0.7900 0.6407 0.4200 0.0486 0.6200 0.2468

MLP 0.9000 0.8549 0.4100 − 0.0709 0.7500 0.3934

Lasso CV 0.8900 0.7207 0.5000 − 0.0447 0.6700 0.3177

Average 0.8160 0.6490 0.4100 − 0.1212 0.7060 0.3981

PRJNA589343 22 of 26 features (REFS) SelectKbest (20 of 26 
features)

10-time random 
selection

 Classifier AUC​ MCC AUC​ MCC AUC​ MCC

AdaBoostClassifier 0.7700 0.5968 0.6460 0.5139 0.7700 0.2474

Extra Trees 0.8400 0.7208 0.6510 0.6919 0.8000 0.3205

KNeighbors 0.6800 0.4808 0.6220 0.3967 0.6800 0.2636

MLP 0.7400 0.5119 0.6490 0.4181 0.7300 0.2863

Lasso CV 0.7100 0.0867 0.5710 0.1877 0.5400 0.1320

Average 0.7480 0.4794 0.6278 0.4416 0.7040 0.2500

PRJNA578223 20 of 26 features (REFS) SelectKbest (17 of 26 
features)

10-time random 
selection

 Classifier AUC​ MCC AUC​ MCC AUC​ MCC

AdaBoostClassifier 0.8300 0.7089 0.6530 0.2725 0.6700 0.3359

Extra Trees 0.8400 0.7105 0.6510 0.3877 0.6900 0.3578

KNeighbors 0.7000 0.2570 0.6370 0.2924 0.5900 0.3318

MLP 0.7200 0.4816 0.6120 0.4576 0.7300 0.2398

Lasso CV 0.6100 0.3779 0.6230 0.5025 0.7100 0.2738

Average 0.7400 0.5071 0.6352 0.3825 0.6780 0.3078
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“good” diagnostic accuracy [50]. In this case, the classifier with the best performance was 
KNeighbors for DRA006094 and Extra Trees for PRJNA684584, Fig. 2c,d.

For the comparative analysis, we searched for the 53 features selected by K-Best on 
the testing datasets. The result was 21 out of 53 for DRA006094 and 52 out of 53 for 
PRJNA684584. We applied the validation module to the features found in both test-
ing datasets. The resulting average AUCs were 0.732 for DRA006094 and 0.652 for 
PRJNA684584. For the 10-time random selection the resulting average AUCs were 0.528 
for DRA006094 and 0.5582 for PRJNA684584. The detailed validation results are pre-
sented in Table  2. Using the MCC as additional metric for this phase, REFS achieved 
better performance in both testing datasets with average MCC values of 0.4057 for 
DRA006094 and 0.3567 for PRJNA684584, see Table 2.

Type 2 diabetes (T2D)

Raw data processing

The trimming parameters used for DADA2-based srcipt filtering process and the num-
ber of Amplicon Sequence Variants (ASVs) generated for each dataset were:

•	 PRJNA3259311 – parameter: trimLeft = 15, 3316 ASVs generated.
•	 PRJNA5545355 – parameter: truncLen = c(400), 3201 ASVs generated.
•	 PRJEB53017 - no parameter used, 3672 ASVs generated.

Fig. 2  a The minimum number of features to obtain the higher accuracy, b Plot of the classifier with the best 
performance in the validation process for discovery dataset PRJEB2150, c Plot of the classifier with the best 
performance in the validation process for DRA00609, and d Plot of the classifier with the best performance in 
the validation process for PRJNA684584
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Feature selection phase

We selected PRJNA3259311 for discovery according to the eligibility criteria. 9 out 
of the 3316 features resulted by using the Recursive Ensemble Feature Selection 
(REFS) algorithm. Thus, REFS achieved its highest accuracy (> 0.90) with 9 features, 
Fig. 3a. The result of the validation module for the selected 9 features was an average 
AUC of 0.79, which is considered “good” diagnostic accuracy  [50]. In this case, the 
Multilayer Perceptron (MLP) the algorithm had the best performance, Fig. 3b.

In comparison, we applied the same validation module to the total 3316 features, 
the resulting average AUC was 0.494. For feature selection using K-Best, with k = 9, 
the average AUC was 0.75. The detailed validation results are presented in Table 3. 
Using the Matthews correlation coefficient (MCC) as additional metric to evaluate 
the performance of the methodology, REFS achieved better performance, compared 
with the other feature selection methods, with an average MCC of 0.79, see Table 3.

Table 2  Individual and average AUCs and MCCs from the validation phase and the additional 
validation approaches applied to the IBD datasets. The standard deviation of each result was 
excluded to keep the table simple and avoid complexity

*Discovery dataset

PRJEB21504* 53 features (REFS) 1793 features SelectKbest (k = 53)

 Classifier AUC​ MCC AUC​ MCC AUC​ MCC

AdaBoostClassifier 0.9100 0.8623 0.9100 0.8337 0.9100 0.8577

Extra Trees 0.9000 0.8841 0.8600 0.8049 0.9400 0.8577

KNeighbors 0.9300 0.8547 0.5400 0.0845 0.8900 0.8353

MLP 0.9900 0.9900 0.6100 0.2640 0.8900 0.8767

Lasso CV 0.9500 0.7564 0.6700 0.4064 0.8800 0.7165

Average 0.9360 0.8715 0.7180 0.4787 0.9020 0.8287

DRA006094 22 of 53 features (REFS) SelectKbest (21 of 53 
features)

10-time random 
selection

 Classifier AUC​ MCC AUC​ MCC AUC​ MCC

AdaBoostClassifier 0.7100 0.3087 0.5190 0.3288 0.7800 0.0761

Extra Trees 0.7800 0.4585 0.5210 0.3881 0.7200 0.0599

KNeighbors 0.8300 0.4245 0.5260 0.4070 0.6800 0.0093

MLP 0.8300 0.4418 0.5510 0.3881 0.7200 0.0916

Lasso CV 0.7400 0.3952 0.5230 0.4151 0.7600 0.0433

Average 0.7780 0.4057 0.5280 0.3854 0.7320 0.0560

PRJNA684584 48 of 53 features (REFS) SelectKbest (52 of 53 
features)

10-time random 
selection

 Classifier AUC​ MCC AUC​ MCC AUC​ MCC

AdaBoostClassifier 0.7200 0.4151 0.5410 0.3364 0.6400 0.1112

Extra Trees 0.7500 0.4300 0.5600 0.4026 0.7400 0.1612

KNeighbors 0.7000 0.3111 0.5610 0.1081 0.5900 0.1392

MLP 0.6800 0.3657 0.5700 0.2694 0.6800 0.1393

Lasso CV 0.7000 0.2616 0.5590 0.2908 0.6100 0.1420

Average 0.7100 0.3567 0.5582 0.2814 0.6520 0.1386
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Testing phase

We searched the 9 features selected by REFS in each testing dataset, the result was 5 
out of 9 for both testing datasets. We applied the validation module to the features 
found in both testing datasets. For PRJNA5545355 we obtained an average AUC of 
0.714 and for PRJEB53017 we obtained an average AUC of 0.662. The average AUC 
for PRJNA5545355 corresponds to a “good” diagnostic accuracy and for PRJEB53017 
the average AUC corresponds to a “sufficient” [50]. For both testing datasets, the clas-
sifier with the best performance was Extra Trees, Fig. 3c, d.

For the comparative analysis, we searched for the 9 features selected by K-Best on 
each testing dataset, the result was 4 out of 9 for both testing datasets. We applied the 
validation module to the features found in both testing datasets. The resulting average 
AUCs were 0.668 for PRJNA5545355 and 0.582 for PRJEB53017. For the 10-time ran-
dom selection the resulting average AUCs were 0.5238 for PRJNA5545355 and 0.5154 
for PRJEB53017. The detailed validation results are presented in Table  3. Using the 
MCC as additional metric for this phase, REFS achieved better performance in both 
testing datasets with average MCC values of 0.4210 for PRJNA5545355 and 0.3429 for 
PRJEB53017, see Table 3.

Fig. 3  a The minimum number of features to obtain the higher accuracy, b Plot of the classifier with the 
best performance in the validation process for discovery dataset PRJNA325931, c Plot of the classifier with 
the best performance in the validation process for PRJNA554535, and d Plot of the classifier with the best 
performance in the validation process for PRJEB53017
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Discussion

In traditional analyses, groups of taxa called Operational Taxonomy Units (OTUs) are 
generated with sequences that are similar with a percentage of error, usually 3% [43, 
44]. Considering this error, it is possible to miss variations (possible mutations) mak-
ing a specific taxa that could be important in medical applications unable to be ana-
lyzed. Using Amplicon Sequence Variants (ASVs) this potential loss can be avoided 
due to all their properties such as ASVs inferred independently from different stud-
ies or different samples can be comparable across studies, reduced need for com-
putation power, and are not limited by incomplete reference databases to mention 
some of them  [43, 44]. ASVs allow individual experiment and the results could be 
tested and validated in separate datasets in contrast to merging datasets as in pool-
ing analysis  [29]. Using our methodology, we are able to achieve a signature of taxa 
across different datasets. In contrast with [51], where a signature of taxa between the 
microbiome and the diagnosis of ASD was not found through the analysis of various 
datasets. To the best of our knowledge, these type of experiments are not reported 
in the literature. The complete resulting taxa for each experiment is in Tables 1-3 of 

Table 3  Individual and average AUCs and MCCs from the validation phase and the additional 
validation approaches applied to the T2D datasets. The standard deviation of each result was 
excluded to keep the table simple and avoid complexity

*Discovery dataset

PRJNA325931* 9 features (REFS) 3316 features SelectKbest (k = 9)

 Classifier AUC​ MCC AUC​ MCC AUC​ MCC

AdaBoostClassifier 0.8000 0.6749 0.4500 0.0438 0.7600 0.4530

Extra trees 0.8400 0.7532 0.5000 0.0000 0.7600 0.5512

KNeighbors 0.6500 0.4033 0.5000 − 0.0428 0.6500 0.2319

MLP 0.8800 0.8064 0.5200 − 0.0083 0.8200 0.6792

Lasso CV 0.7800 0.5661 0.5000 0.1828 0.7600 0.5758

Average 0.7900 0.6407 0.4940 0.0351 0.7500 0.4982

PRJNA554535 5 of 9 features (REFS) SelectKbest (4 of 9 
features)

10-time random 
selection

 Classifier AUC​ MCC AUC​ MCC AUC​ MCC

AdaBoostClassifier 0.8200 0.6090 0.5260 0.5800 0.8000 0.0525

Extra Trees 0.8500 0.6504 0.5310 0.6093 0.8000 0.0684

KNeighbors 0.6700 0.3840 0.5230 0.4984 0.7300 0.0374

MLP 0.7100 0.4765 0.5230 0.3952 0.6000 0.0600

Lasso CV 0.5200 − 0.0146 0.5160 − 0.0158 0.5100 0.0296

Average 0.7140 0.4210 0.5238 0.4134 0.6880 0.0496

PRJEB53017 5 of 9 features (REFS) SelectKbest (4 of 9 
features)

10-time random 
selection

 Classifier AUC​ MCC AUC​ MCC AUC​ MCC

AdaBoostClassifier 0.6700 0.3036 0.5200 0.0425 0.5500 0.0517

Extra Trees 0.6900 0.3659 0.5230 0.2526 0.6000 0.0550

KNeighbors 0.6800 0.4124 0.4970 0.2977 0.6200 −0.0164

MLP 0.6600 0.3823 0.5270 0.0711 0.5400 0.0741

Lasso CV 0.6100 0.2505 0.5100 0.2035 0.6000 0.0189

Average 0.6620 0.3429 0.5154 0.1734 0.5820 0.0366
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Additional file 1. Visualization of difference abundance of the results is in Supplemen-
tary figures 1-12 of Additional file 2. Finally, for individual AUC and MCC obtained in 
the Random Selection is in Additional file 3.

Despite the promising results and findings, more research and experimentation 
should be done with microbiome sequencing because counterexamples can be found 
that make this methodology ineffective. Such is the case with datasets related to asthma: 
PRJEB44044 [52], PRJNA601757 [53], and PRJNA913468 [54], where the feature selec-
tion and testing phase were inefficient. This was due to the lack of datasets with samples 
from the same source, the quality of the sequences, the lack of documentation, varia-
tions in the technical sequencing equipment used, also known as the batch effect  [55, 
56]. Thus, this methodology is dependent of the batch effect. Additionally, the experi-
ments must be extended to study the relationship taxa-disease or taxa-disorder for pos-
sible medical applications.

Furthermore, from all experiments, it is easy to notice that the classification perfor-
mance on the discovery dataset is considerably higher than those on the validation data-
sets. There are two possible explanations for this result. First of all, not all ASV features 
selected by the proposed methodology on the discovery dataset are found in the valida-
tion datasets: thus, the classifiers do not have access to all the information that led to 
the better performance on the discovery data, resulting in an decreased AUC and MCC. 
Secondly, the datasets could present differences due to the batch effect. We intentionally 
did not apply any batch correction methodology in this work, to better isolate and study 
the results of the proposed methodology.

Conclusion
We developed a methodology for reproducible biomarker discovery for 16s rRNA 
microbiome sequence analysis, addressing the issues related with high dimensional data 
with a small number of samples, inconsistent results, the lack of uniform processing and 
analysis methodologies, and to achieve validations in separate databases. The results 
from the three experiments show that the proposed methodology achieved better per-
formance (AUC and MCC) compared to K-Best and 10-time random selection meth-
ods. This methodology is a first approach to increase reproducibility, to provide robust 
and reliable results, and further testing needs to be done, as shown by the experiment 
in Asthma (PRJEB44044, PRJNA601757 and PRJNA913468) described in the discussion 
section. Nevertheless, the approach to the individual study of ASVs makes possible to 
identify small variations that can have a positive impact on medical applications. This 
methodology provides results that hopefully will allow pharmacologists, biologists, and 
health researchers to direct their efforts to the analysis of a list with a smaller number of 
individual taxa, instead of thousands of taxa grouped in clusters.

Methods
Methodology

The proposed methodology consists of four phases: (1) dataset selection criteria, (2) raw 
data processing, (3) feature selection, and (4) testing. In contrast to other methodolo-
gies, such as pooling analysis [29, 51], we do not combine more than two datasets to pro-
duce a single one to be analyzed. The proposed methodology is oriented to work with 
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Amplicon Sequence Variants (ASVs) because they can be used in independent stud-
ies [43, 44]. Using ASVs provide a possible solution to avoid inconsistent results, at the 
same time, they can help achieve external validation in separate datasets which [29]. For 
external validations, we recommend working with at least three datasets: one for dis-
covery and the rest for testing. We address the issues of overfitting and biased perfor-
mance associated with the datasets implementing a nested cross-validation scheme [42]. 
To provide a reproducible approach in the microbiome research, we document software 
versions, description about each phase and the necessary code/scripts to perform exper-
iments are available on Github (https://​github.​com/​stepp​enwol​f0/​Micro​biome​REFS). 
An overview of the proposed methodology is illustrated in Fig. 4.

The dataset selection criteria phase involves the selection, download, and extraction 
of relevant information from metadata (e.g., samples labels). The datasets must meet the 
following conditions:

•	 The databases should be 16s ribosomal RNA (rRNA) amplicon sequencing and 
belong to the same domain such as disease, disorder, or medication.

•	 There should be a minimum of two groups such as a control group and a case group.
•	 Each group should have a minimum of 10 samples.
•	 The documentation, whether it be metadata or a scientific paper, should clearly spec-

ify which group each sample belongs to.
•	 Datasets should have the same source of samples such as tissue, feces, or mucosa.

The raw data processing phase involves performing amplicon workflow on the raw data 
in the selected datasets and generate ASVs (features). We selected the DADA2 pipe-
line1 [25] due to its clear documentation. The DADA2 open-source R package allows 
to implement the full amplicon workflow on 16s rRNA sequences: filtering, dereplica-
tion, sample inference, chimera identification, and merging of paired-end reads [25]. We 

Fig. 4  Overview of the proposed methodology. The upper shows the workflow for the dataset selection 
criteria, raw data processing and feature selection phases. The lower part shows the testing phase workflow

1  DADA2 pipeline is available in https://​benjj​neb.​github.​io/​dada2/​tutor​ial_1_​8.​html.

https://github.com/steppenwolf0/MicrobiomeREFS
https://benjjneb.github.io/dada2/tutorial_1_8.html
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developed a DADA2-based script in R version 4.1.2, the code editor was RStudio version 
2022.07.2 build 576, the DADA2 library version was 1.22.0, the DECIPHER library ver-
sion was 2.22.0, the BiocManager library version was 1.30.19, and the taxonomy assign-
ment was performed based on the SILVA_SSU_r138_20192 reference database.

The feature selection phase aims to identify features, since we are working with the 
sequence as feature instead of the taxa because sequence is unique on the dataset, the 
feature selected should be contained in testing, so one dataset must be selected for dis-
covery. The eligibility criteria for the discovery dataset is the one that contains the short-
est sequence length after the raw data processing phase. Once the discovery dataset is 
selected, we have to perform two processes: 

1.	 The Recursive Ensemble Feature Selection (REFS),which is an algorithm for identify-
ing biomarkers by determining the features that are most effective in differentiating 
between groups in datasets achieving the highest accuracy with the fewest number of 
features [48, 57–62]. The ensemble is composed by 8 classifiers from the scikit-learn 
toolbox [63]: Stochastic Gradient Descent (SGD) on linear models, Support Vector 
Machine classifier (SVC), Gradient Boosting, Random Forest, Logistic Regression, 
Passive Aggressive classifier, Ridge Classifier and Bagging. To minimize overfitting 
and biased performance, REFS employs a nested approach within a 10-fold cross-
validation scheme, which is a proven solution to yield more accurate and unbiased 
results, even with a small sample size [42]. REFS was built on python version 3.10.8 
using the scikit-learn toolkit version 1.1.3.

2.	 Validation, to minimize bias selection, we developed a validation module with 5 dif-
ferent classifiers from the scikit-learn toolkit  [63]: AdaBoost, Extra Trees, KNeigh-
bors, Multilayer Perceptron (MLP), and LassoCV. This validation module also 
employs a nested approach within a 10-fold cross-validation scheme. This module 
must be executed two times: (1) using samples labels, the selected features, and the 
corresponding abundance, and (2) using samples labels, all features, and the corre-
sponding abundance. The 5 classifiers provides an average value for the area under 
curve (AUC), that evaluates the effectiveness of a discriminant test. Values approach-
ing to 1.0 indicate excellent performance [50].

These processes should be executed at least 10 times concurrently, to compensate for 
the stochasticity of some of the classifiers used in the study (e.g. Random Forest) and the 
internal cross-validation process.

The testing phase involves testing the features selected by using REFS in a minimum 
of two separate datasets. The selected features must be searched on each testing dataset. 
Features can be repeated in the testing datasets, so we must follow the next process: 
if Feature x is present n-times in the testing dataset, the final abundance of Feature x 
will be the sum of the abundance of those n-occurrences. To validate the features found 
in each testing dataset, the validation module must be executed one time on each test-
ing dataset using as input the samples labels, the found features, and the corresponding 
abundance. The AUC is employed as a measure of diagnostic accuracy.

2  Available in: http://​www2.​decip​her.​codes/​Class​ifica​tion/​Train​ingSe​ts/.

http://www2.decipher.codes/Classification/TrainingSets/
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Additionally, we conducted a comparative analysis with two different feature selection 
methods:

•	 K-Best with F-score. This selection method will be applied to the discovery data-
set instead of REFS. We used the SelectKbest algorithm from the scikit-learn tool-
box which selects the K top-scoring features based on a user-defined metric, with 
the F-score  [63]. The value assigned to K is determined by the number of features 
obtained using REFS. For instance, if REFS selected 10 features, the value of K would 
be set to 10.

•	 10-time random selection. This method consists in randomly select a given number 
of features from all features in each testing dataset. This given number is determined 
by the number of features found in each testing dataset. For instance, if 8 out of 10 
features selected by using REFS were identified in the testing dataset, then 8 features 
will be randomly selected each time.

The AUC provided by the validation module is used as a metric for comparing the 
results of the proposed methodology with these two feature selection methods. Addi-
tionally, we use the Matthews Correlation Coefficient (MCC) [64] as a metric to evaluate 
the performance of the methodology as well as for comparison with other feature selec-
tion methods.

Datasets

We used a total of nine datasets, with three datasets for each experiment: Autism Spec-
trum Disorder (ASD), Inflammatory Bowel disease (IBD), and Type 2 Diabetes (T2D), 
see Fig. 5. Each dataset adhered to the data selection criteria phase. We considered only 
two groups within each dataset: control and cases. The control group is made up of 
healthy people or people in remission, the case group is made up of people diagnosed 
with the medical condition.

The datasets related with ASD are: (1) David et al  [49]3 it has 117 samples of which 
57 belong to the control group and 60 to the case group, (2) PRJNA589343 [65] down-
loaded from the NCBI public repository,4 it has 127 samples of which 50 belong to the 
control group and 77 to the case group, and (3) PRJNA578223 [66] downloaded from the 

Fig. 5  Overview of the datasets used for each experiment

3  Dataset available in: http://​files.​cgrb.​orego​nstate.​edu/​David_​Lab/​ASD_​study1/,
4  https://​www.​ncbi.​nlm.​nih.​gov/.

http://files.cgrb.oregonstate.edu/David_Lab/ASD_study1/
https://www.ncbi.nlm.nih.gov/
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NCBI public repository, it has 96 samples of which 48 belong to the control group and 
48 to the case group.

The datasets related with IBD are: (1) PRJEB21504  [67] downloaded from the NCBI 
public repository, it has 95 samples of which 66 belong to the control group and 29 to 
the case group, (2) DRA006094  [68] downloaded from the NCBI public repository, it 
has 70 samples of which 15 belong to the control group and 55 to the case group, and (3) 
PRJNA68458  [69] downloaded from the NCBI public repository, it has 103 samples of 
which 45 belong to the control group and 58 to the case group.

The datasets related with T2D are: (1) PRJNA3259311 [70] downloaded from the NCBI 
public repository, it has 112 samples of which 84 belong to the control group and 28 to 
the case group, (2) PRJNA5545355 [71] downloaded from the NCBI public repository, 
it has 60 samples of which 20 belong to the control group and 40 to the case group, and 
(3) PRJEB53017 [72] downloaded from the NCBI public repository, it has 94 samples of 
which 46 belong to the control group and 48 to the case group.
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