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A B S T R A C T   

Ecosystem services are often analysed individually, but are intertwined with one another and the social- 
ecological systems they occur in. As a response, ecosystem service bundles, i.e. co-occurring sets of ecosystem 
services, can be used to simplify complex relationships between nature and society, and in turn aid under
standing. Typically bundles are studied on the local to regional scale, given the importance of local context to 
bundling, but wider scale analysis may help highlight broader ecosystem service balances for sustainable 
management. However, it remains uncertain if the relationships between ecosystem services are strong enough to 
describe coherent bundles at the global scale, and the extent to which these bundles are robust across different 
social-ecological systems and within different biogeographical realms. 

Here, we examine whether coherent bundles emerge from a set of 25 ecosystem property and service in
dicators across regional mountain, island and delta systems around the world. We analyse differences between 
bundle composition and correlation structure based on system, latitude and biome. We find consistent bundles 
broadly representing ‘food’, ‘productivity’ and biodiversity ‘intactness/soil’ ecosystem properties and services 
emerge across mountains, islands and deltas globally. These bundles show strong positive correlations internally, 
and consistent negative correlations between ‘food’ services and ‘intactness/soil’ ecosystem properties across 
bundles. The bundles weakened at higher latitudes and individual biomes where the division between ecosystem 
properties and services broke down. In sum, while islands, mountains and deltas are distinct social-ecological 
systems, we found ecosystem bundles robustly described synergies and trade-offs between ecosystem services 
across these systems. This suggests that bundling has a role in simplifying wider scale interactions between 
humans and ecosystem services.   

1. Introduction 

One of the key scientific challenges of the Anthropocene is to identify 
pathways to sustainability (Cork et al., 2023; Sachs et al., 2019). Such 
pathways demand sustainable resource management; securing the sup
ply of different ecosystem services (ESs) that contribute to human 
wellbeing (Wu, 2013; Yang et al., 2020). Coherent resource manage
ment in turn requires an understanding of the potential synergies and 
trade-offs between different ESs (Chisholm, 2010; Ellis et al., 2019). 
However, ESs are often analysed individually, limiting the potential 
contribution of such assessments to informed policy making (Chisholm, 
2010; Rau et al., 2020). Identification of ES bundles, groups of ESs co- 

occurring in space and time (Raudsepp-Hearne et al., 2010), provides 
a promising and increasingly used means to address these challenges 
(Saidi & Spray, 2018). Specifically, bundling can implicitly account for 
synergies and trade-offs, highlight the co-benefits of prioritising a 
particular ES, identify hot and cold spots of ES supply, and provide 
guidance where information is missing (Meacham et al., 2022). 
Bundling is usually performed at local and regional scales (Meacham 
et al., 2022; Saidi & Spray, 2018). This makes sense, as smaller scales 
will mean tighter mechanistic relationships between people and nature, 
and ESs and bundles will differ between different social-ecological 
contexts and scales (Grêt-Regamey et al., 2014; Madrigal-Martínez 
and Miralles i García, 2020; Qiu et al., 2018; Raudsepp-Hearne and 
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Peterson, 2016). However, this focus on smaller scales, typically with 
disparate ES indicators, and with substantial geographical gaps (Howe 
et al., 2014), makes comparison between studies difficult, and so limits 
wider inferences which the global decline of ESs and interconnectedness 
of systems may demand (Brauman et al., 2020; Meacham et al., 2022). 
The increasing number of global indicators of ecosystem properties and 
services provide an opportunity to identify whether coherent bundles 
and ES relationships can be formed at wider scales, and further, whether 
they remain consistent across different biogeographical contexts. 

Social-ecological systems represent units of interacting biophysical 
and human systems (Berkes & Folke, 1998) that provide a natural scale 
of observation for ES bundles and relationships, given ESs represent the 
intersection between ecosystem properties and functions and the soci
eties which use them (Potschin & Haines-Young, 2011). Yet, it is still an 
open question as to whether consistent bundles and ES relationships can 
be found across different social-ecological systems. Of the studies that go 
beyond the national scale, our previous work found three bundles of 
services across large river delta systems around the world, which 
broadly represented provisioning ESs, productivity and species richness, 
soil quality and biodiversity intactness (Reader et al., 2022). Meanwhile, 
a study of global urban hinterlands identified seven archetypes of ES 
supply, one combining crops and water ESs, others water and recreation, 
and carbon storage and air quality (Haberman & Bennett, 2019). Wider 
scale relationships between ESs have also been inferred by meta-
analyses. These have consistently found some broad relationships, spe
cifically trade-offs between provisioning and other ESs (Howe et al., 
2014), and synergies between regulating and cultural services (Lee & 
Lautenbach, 2016). Within regions, ES relationships and in some cases 
bundles have been shown to persist at different scales (Hamann et al., 
2015; Qiu et al., 2018; Raudsepp-Hearne & Peterson, 2016). However, it 
remains to be seen whether these relationships will persevere across 
larger, more varied systems. 

Ecosystem services and their bundles are driven and limited by their 
biotic, abiotic and socio-economic context (Bennett et al., 2009; 
Cavender-Bares et al., 2015; Duncan et al., 2015). Therefore, analysing 
ES associations across systems with similar geographical contexts can 
provide a means for establishing the consistency of such bundles and 
relationships. Latitude and biome represent two simple metrics to clas
sify these geographical contexts. Latitude affects biodiversity, primary 
productivity and human occupancy (Gaston, 2000; Kummu & Varis, 
2011), and specific ESs fluctuate across latitudinal gradients (Sato et al., 
2021), which may mean that associations between ESs and the subse
quent bundles will differ with latitude. For example, in less intensively 
used systems at higher latitudes, trade-offs between biodiversity and 
provisioning services may be less pronounced at wider scales (Reader 
et al., 2022). Biomes represent biogeographic units with distinct biotic 
communities and climate. These differences will affect the ecological 
traits and functions, and abiotic processes that act as drivers for ESs and 
their interactions (Mace et al., 2012; Renard et al., 2015) – meaning that 
biomes understandably have been found to represent markedly different 
individual and summed ES supply (de Groot et al., 2012). Latitudes and 
biomes therefore represent a broad range of biogeographical contexts 
over which the consistency of bundles and relationships can be 
established. 

Here, we investigate whether we can find coherent bundles and re
lationships of ESs across global systems, and assess the robustness of 
these findings across different systems, latitudes and biomes. Our first 
research question asks which bundles of ESs form across global systems, 
and what are their synergies and trade-offs. Based on our previous work 
on deltas, we would expect provisioning ESs to bundle together, 
alongside bundles representing soil quality and biodiversity intactness, 
and productivity and species richness (Reader et al., 2022). However, 
given potentially looser links between indicators over larger, less ho
mogenous systems, weaker or incoherent bundles may occur. Our sec
ond research question asks which bundles form in different systems, 
latitudes and biomes, and to what extent these differ from the combined 

system bundles. If synergies and trade-offs are commonly structured 
across systems, latitudes and biomes, which may be the case when 
aggregating regional-scale data, we can expect similar bundles. Alter
natively, the different bioclimatic properties and population densities 
may affect the association between ESs and generate different bundles. 
More specifically, we could expect the clear trade-offs between provi
sioning and other services to break down in less populated systems. 

To answer these questions, we collected 25 spatial ES indicators 
across three systems: mountains, islands and deltas, at the global extent. 
We used five clustering algorithms, selecting our bundles using majority 
vote, and examined the consistency of bundling and the correlations 
within and across these bundles when clustering was performed on the 
level of system, latitude and biome. In doing so, we aim to highlight the 
ES relationships that can be observed on a global scale, and the extent to 
which these relationships and associations can be generalised. 

2. Methods 

2.1. Study systems 

We studied large mountain, island and delta systems distributed 
globally. We chose these systems because they represent relatable, 
delineable social-ecological systems with biophysical boundaries, in 
which we could expect a wide gradient of ecosystem properties and 
services (Balzan et al., 2018; Martín-López et al., 2019; Nicholls et al., 
2018). We used the global datasets of mountain, island and delta 
boundaries gathered for our previous work (Reader et al., 2023). 
Mountain zones (henceforth called mountains) were taken from the 
Global Mountain Biodiversity Assessment dataset (Körner et al., 2017; 
Payne & Snethlage, 2018), which delineates mountains using rugged
ness (> 200 m elevation change within a 2.5′ cell), splitting them into 
thermal life zones. Islands were based on a coastline dataset (www. 
naturalearthdata.com), excluding continental landmasses. Finally, 
deltas were based on a dataset of delta distributary networks we 
manually constructed (Reader et al., 2022). We selected mountains, 
islands and deltas > 10 km2 to ensure representative coverage and 
variability of ES indicators. We examined which ES datasets (see next 
section) were available for as many of these systems as possible, 
selecting indicators and systems until we had a complete set of in
dicators for 1034 mountains (98.7 % of all large mountains), 912 islands 
(26.4 %) and 235 deltas (99.6 %), in combination representing 22 % of 
global land area. Overlapping areas, e.g. mountains on islands, were 
kept in each dataset. There were 73 deltas on islands (average propor
tion per island covered by deltas of 5.9 %), 14 deltas on mountains 
(0.001 %) and 287 mountains on islands (25.4 %). 

2.2. Ecosystem service indicators 

We reviewed publicly available spatial ecosystem property and ser
vice datasets from peer-reviewed papers or recognised agencies, 
selecting the most recent global scale indicators relevant to our study 
systems (Table 1, Supplementary Information Figs. 1–3). Given the 
limited number of global realised ecosystem service indicators, we 
selected indicators from across the ES cascade (as for example Raud
sepp-Hearne et al., 2010). This means we selected indicators for 
ecosystem properties and functions, ecosystem service supply, realised 
ecosystem services, and their benefits to society (Potschin & Haines- 
Young, 2011). An advantage of this wider selection is that it can illus
trate where different parts of this cascade might align or diverge 
(Schirpke et al., 2019). Therefore when we refer to ES bundles, we mean 
bundles of ecosystem properties, services and benefits. Further, while 
cultural and relational services are an important part of nature’s con
tributions to people (Díaz et al., 2018), data availability limits us to 
provisioning/material, regulating, and supporting/nature indicators. 
Although some indicators can be proxies for more specific ESs (SI Table 
1), the relationship between an indicator and an associated service may 
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vary from one area to another. For example, the indicator forest area 
may be strongly correlated with the service timber yield in plantations, 
but not at all in protected old-growth forests. Therefore we refer to the 
indicator only. We selected 24 indicators across the systems (from 
Reader et al., 2023). To these, we added an indicator for livestock 
production (Gilbert et al., 2018), given its global importance for nutri
tion and livelihoods, and trade-offs with other ESs (Herrero et al., 2009). 
All data were of gridded format, or rasterised from vector data. For 
further description of the indicators and their processing, see SI Table 1. 
We calculated the mean of each indicator for each individual system 
using zonal statistics in QGIS 3.14 (QGIS.org, 2021) and the equivalent 
reducer function in Google Earth Engine (Gorelick et al., 2017). We then 
normalised each indicator to maximise comparability between one 
another. 

2.3. Analysis 

To construct ES bundles we firstly identified the suitable number of 
bundles for our datasets, then used an ensemble of clustering algorithms. 
We then examined the internal and external correlation structures of 
these bundles. We repeated this for the combined systems, and then for 
what we refer to as ‘subsets’ of the overall dataset: the individual 
mountains, islands and deltas, and different latitudes and biomes. We 
finally compared the bundles formed in each subset using the proportion 
of similarly clustered ES indicators and Fisher’s exact test, and their 
correlations using a Mantel test. We used the diceR package to perform 
the clustering (version 1.2.2; Chiu & Talhouk, 2018), and R 4.2.2 (R 
Core Team, 2022) to perform the analyses. We further explain each step 
below. 

2.3.1. Number of clusters (k) 
To construct bundles, we firstly needed to assess the number of 

clusters, k, to which our clustering algorithms would resolve. We used 
consensus clustering which performs multiple runs (1000) over subsets 
of 80 % of the data, and then used the ‘elbow’ method to indicate at 
which point diminishing returns in cluster consensus began (Monti et al., 
2003). We repeated this across the three systems using the commonly 
used k-means, partitioning around medoids and hierarchical clustering 
approaches to examine if different algorithms affected the k value 
(ConsensusClusterPlus package version 1.50.0, Wilkerson & Hayes, 
2010). We finally examined bundle composition and consistency as k 
increased to observe the effect of changing this value on our findings. 

2.3.2. Clustering 
Various methods have been used to identify bundles, most typically 

clustering algorithms or principal component analysis (Saidi & Spray, 
2018; Spake et al., 2017). However, different methods can produce 
different outputs, and a harmonised methodology has not been estab
lished, and may be inappropriate, given different methods may capture 
different aspects of the relationships between ESs (Madrigal-Martínez 
and Miralles i García, 2020). Most typically localities (from pixels to 
regions) are clustered together, and these clusters represent locations 
with similar ES values, then subjectively assigned a bundle label 
(following Raudsepp-Hearne et al., 2010). Where sufficient ES in
dicators are available, clustering by ES (as Martín-López et al., 2012; 
Reader et al., 2022) can provide an alternative approach that shows 
which ESs are consistently found with one another, with the benefit of 
being able to assign multiple bundles to an area (Meacham et al., 2022). 

Different clustering algorithms prioritise different mathematical 

Table 1 
Ecosystem property and service indicators. For more details e.g. additional processing and download sources, see Supplementary Information Table 1. Modified 
from Reader et al., 2023.  

Category Indicator Description Unit Year Resolution Citation 

Food Food area Area of food crops ha per cell 2010 5 arc-min IFPRI, 2019  
Food value Value of food crops $ per ha 2010 5 arc-min IFPRI, 2019  
Non-food area Area of non-food crops ha per cell 2010 5 arc-min IFPRI, 2019  
Non-food value Value of non-food crops $ per ha 2010 5 arc-min IFPRI, 2019  
Pasture area Proportion of pasture area Proportion 2000 30 arc-sec Ramankutty et al., 2008; Ramankutty et al., 2010  
Livestock Livestock density kg per km2 2010 km2 Gilbert et al., 2018  

Water Water available Water runoff for potential use cm 1948–2010 Catchment Gassert et al., 2014  
Water withdrawal Consumptive water use cm 2010 Catchment Gassert et al., 2014  
Sediment Riv. sediment flux kg/s 2010 5 arc-min Cohen et al., 2013  

Productivity NPP Net primary prod. gC/m2/yr 2000 5 arc-min Haberl et al., 2007  
Potential NPP Potential net primary prod. gC/m2/yr 2000 5 arc-min Haberl et al., 2007  
Carbon vegetation Vegetation biomass storage 0.01 t/ha 2000 30 arc-sec Gibbs & Ruesch, 2008  
Potential carbon veg. Pot. vegetation biomass storage t/ha < 2010 5 arc-min West et al., 2010  

Biodiversity Amphibian richness Richness of amphibian species No. per cell 2013 30 arc-sec IUCN, 2015a  
Bird richness Richness of bird species No. per cell < 2018 10 km Jenkins et al., 2013; Pimm et al., 2014  
Mammal richness Richness of mammal species No. per cell 2013 30 arc-sec IUCN, 2015b  
Biodiversity intactness 
(abundance) 

Species abundance vs. pristine 
conditions 

Proportion 2005 30 arc-sec Newbold et al., 2019; Sanchez-Ortiz et al., 2019  

Biodiversity intactness 
(richness) 

Species richness vs. pristine 
conditions 

Proportion 2005 30 arc-sec Newbold et al., 2019; Sanchez-Ortiz et al., 2019  

Habitat Forest cover Forest extent Proportion 2000 1 arc-sec Hansen et al., 2013  
Wetlands Wetland extent % 2015 30 arc-sec Lehner & Döll, 2004  

Soil Soil carbon Soil organic carbon stock Pg 2019 30 arc-min FAO, 2019  
Soil carbon density Soil organic carbon density kg/m3 < 2017 250 m Hengl et al., 2017  
Soil cation-exch. capacity 
(Soil CEC) 

Soil capacity to retain nutrients cmolc/kg < 2017 250 m Hengl et al., 2017  

Soil nitrogen (Soil N) Concentration of soil N g/kg 1950–2015 30 arc-sec Batjes, 2016  
Soil water availability Soil available water capacity cm/m 1950–2015 30 arc-sec Batjes, 2016  
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relationships between the ES indicators to create the clusters, and can 
therefore significantly affect bundle formation (Reader et al., 2022). 
Hence, we adopted an ensemble approach using five clustering algo
rithms, which take distinct approaches to group data: k-means, hierar
chical clustering, affinity propagation, Bayesian Gaussian mixture 
models, and fuzzy c-means (see SI Note 1 for more details). We used 
Euclidean (straight-line) distance as the metric to cluster the observa
tions within the algorithms, given it is very commonly used and per
forms reasonably well across different datasets (Shirkhorshidi et al., 
2015). Clustering within the algorithms can also depend on initial 
conditions; we therefore ran each one 500 times, and selected the most 
frequently occurring clustering. We relabeled the clusters for consis
tency between the algorithms using the diceR ‘relabel_class’ function, 
manually relabeling where it would further improve the average pro
portion of indicators clustering together. 

2.3.3. Establishing combined system bundles and correlations 
To answer our first research question, we formed bundles from the 

combined systems, based on which cluster each indicator was most 
commonly grouped within across the five algorithms. We then calcu
lated the robustness of each bundle, by taking the average robustness of 
the bundle component indicators, i.e. the number of times each algo
rithm agreed with the majority vote (with a maximum of five when all 
algorithms classified the indicator within the same cluster). To assess the 
strength of internal positive and negative correlations within the bundle, 
we calculated the pairwise correlations between the indicators using 
Spearman’s ρ. To show the correlations between bundles we took the 
average correlations between each indicator from one bundle with those 
of another. To reduce any bias introduced when averaging correlations, 
we first transformed the Spearman’s ρ values using a Fisher trans
formation, averaged them per bundle, then back transformed to a 
Spearman’s ρ (Corey et al., 1998). 

2.3.4. Assessing differences between bundles 
To answer our second research question, we repeated the bundling 

process for each system (mountain, island and delta), latitude and biome 
(see SI Fig. 4 for observations per subset and the proportions of biomes 
found per system and latitude). We divided all systems and the indi
vidual systems into latitudinal groups selected to ensure enough ob
servations within each subset – those where the area centre-point lies 
between the Equator and 15◦ north and south (n = 163 mountains, 282 
islands, 65 deltas), from 15◦ to 30◦ (n = 181, 72, 46), 30◦ to 60◦ (n =
639, 380, 56) and 60◦ to 90◦ (n = 51, 178, 68). We then used the 
Terrestrial Ecoregions of the World mapping (Dinerstein et al., 2017) to 
subset the systems into one of 14 biomes. For individual systems the 
ensemble of clustering algorithms worked well, but clustering was less 
consistent in the biomes and latitudes, and ties occurred where two sets 
of two algorithms disagreed (occurring in 100 of 850 indicators, i.e. 25 
indicators across all systems, mountains, islands and deltas; four groups 
of latitudes across each of these, and fourteen biomes; 850 = 25(4 + 16 
+ 14)). As these subsets focused on identifying deviations from the main 
trends, we treated these ties conservatively, and grouped indicators 
according to the main trends where possible. 

To assess differences between the bundles, for each subset we 
calculated the proportion of indicators occurring in the same bundle as 
the bundles formed for each system and for the combined systems. For 
example, a bundle calculated for the Temperate Grassland biome subset 
may contain five out of six of the same indicators as the most similar 
combined system bundle. We also calculated the number of times each 
indicator was selected in each bundle across the subsets. We measured 
the difference between bundles in the subsets versus all systems using a 
Bray-Curtis dissimilarity metric and Fisher’s exact test, which will report 
a p < .05 where counts of indicators in each bundle differ significantly. 
We tested the difference in the correlation structures using a Mantel test 
on the pair-wise indicator correlation matrices. Finally, bundling could 
potentially be affected by sample size – fewer points would be more 

affected by noise, meaning the bundles could be less consistent. We 
therefore repeated the bundling process across the systems using 10 
random samples each of 10 %, 25 % and 50 % of the complete dataset. 

3. Results 

3.1. Four bundles were identified across global systems 

We found that across our systems, latitudes and biomes, our 
ecosystem property and service indicators most readily clustered into 
four bundles (SI Note 2). For the combined systems, these bundles 
broadly represent ‘food’ – containing indicators of crops, livestock and 
water withdrawal, ‘intactness/soil’ – measures of biodiversity intactness 
and soil quality; ‘productivity’ – net primary productivity, carbon stor
age, species richness and forest area; and ‘water’ – available water, 
sediment flux and wetland area (Table 2). Moving forward, we highlight 
these bundles using quotation marks. Whereas the ‘food’ indicators 
broadly represent ecosystem services, the other bundles include in
dicators of ecosystem properties or potential services. These bundles 
were consistent and recognisable across different numbers of clusters (SI 
Note 2), and were consistently selected together across the different 
clustering algorithms (Table 2, SI Note 3). ‘Food’ indicators clustered 
together most often, with an average robustness of 0.91, ‘intactness/soil’ 
had an average robustness of 0.86, ‘productivity’ had an average 
robustness of 0.85, while the ‘water’ indicators had a robustness of 0.6, 
just above that occurring when random data was clustered (0.57; Reader 
et al., 2022). 

We can see these bundles reflected by the pairwise correlations of 
their indicators – there are clear positive correlations within the bun
dles, which are stronger than between bundles correlations, with the 
exception of the less robust ‘water’ bundle (Figs. 1 and 2). There are 
broad negative correlations between the ‘intactness/soil’ components 
and the other indicators, most prominently ‘food’ (Figs. 1 and 2). Sur
prisingly, ‘water’ indicators correlated more with ‘productivity’ than 
themselves, but the separation of this weaker bundle increases the 
robustness of the others. 

3.2. Bundles remained consistent across mountains, islands and deltas 

The four combined system bundles remained consistent within 
mountain, island and delta systems (Fig. 3), with 85 % of the ecosystem 
property and service indicators remaining in the same bundle as the 
combined system result. Composition was not significantly different 
from combined system bundling for either mountains (overlap of in
dicators = 76 %, Fisher’s exact test p = .93), islands (overlap = 88 %, p 
= .83), or deltas (overlap = 92 %, p = 1.00). ‘Productivity’ and 
‘intactness/soil’ bundles were most consistent with the combined system 
pattern, with 96 % and 90 % of the same indicators respectively. 
Mountain areas displayed the least similar bundles, with the ‘food’ 
bundle splitting and ‘water’ indicators joining the other three bundles. 
Intactness split from soil indicators in island systems, and pasture split 
from the food bundle in every system. These results again reflect the 
correlation patterns between their ES indicators: correlations within the 
systems were broadly similar in direction (Mantel p < .05, meaning as 
indicators became more correlated across the systems, they also became 
more correlated in the individual systems; SI Table 2). These correla
tions were weaker in mountains, and the individual indicators which 
bundled differently such as pasture area in mountains and forest area in 
deltas displayed correlations opposing the general pattern of the bundle 
(Fig. 1). Across bundle correlations were also similar, with only ‘water’ 
and ‘intactness/soil’ differing in direction, with a positive correlation 
between these in mountains, and a negative one in deltas (Fig. 2). 

3.3. Bundle composition across latitude 

The ‘intactness/soil’ and ‘productivity’ bundles based on ecosystem 
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properties remained relatively consistent across different latitudes in the 
different systems, with 73 % and 69 % overlap with the indicators from 
the combined system bundles respectively (Fig. 4). However, the ‘food’ 
(30 % overlap) and ‘water’ (19 % overlap) bundles were far less 
consistent, tending to split and cluster with the ‘productivity’ bundle. 
Biodiversity intactness and species richness indicators also tended to 

split from the combined system bundle, as did soil indicators at higher 
latitudes. Five indicators, including pasture area, and the ‘water’ in
dicators clustered extremely inconsistently, and clustered with the 
combined bundles below 25 % of the time. Compared with the global 
combined system set, latitudes across all systems were more different 
(average Bray-Curtis dissimilarity = 0.42, Fisher’s exact test p < .05), 

Table 2 
Four bundles were identified across global systems. The number beside each ecosystem property or service indicator shows the robustness of its selection (the 
number of times they were clustered within the same group by the five different algorithms) for the combined systems. The average robustness at the bottom shows the 
mean of this robustness per bundle. The colours around each bundle name are used to highlight these bundles in the other figures.  

Fig. 1. Ecosystem service pairwise-correlations across all systems (top-left) and for individual mountain, island and delta systems. Blue indicates a positive 
correlation, or synergy, red a negative correlation, or trade-off. Correlations calculated using Spearman’s ρ. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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than latitudes across mountains (average Bray-Curtis dissimilarity =
0.32, p > .05), islands (average Bray-Curtis dissimilarity = 0.36, p < .05 
for those over 30◦) or deltas (average Bray-Curtis dissimilarity = 0.26, p 
> .05). 

Average between and within bundle correlations were similar to 
those of the combined system bundles, although at lower latitudes there 
was a weakening of the negative correlation between ‘intactness/soil’ 
and ‘food’, and the positive correlation between ‘productivity’ and 
‘food’ (Fig. 5). At high latitudes (60-90◦) correlations between the in
dicators were broadly similar, excepting the weaker correlations within 
the ‘intactness/soil’ bundle. At low-latitudes (0-15◦), correlations be
tween many ‘productivity’ and ‘food’ indicators reversed, while richness 
and other productivity indicators exhibited negative correlations (SI Fig. 
5). The correlation matrices between the latitudinal and combined 
system bundles remained correlated, although weaker in comparison to 
the whole systems (r 0.36-0.75, p < .001; SI Table 2). 

3.4. Bundle composition across biome 

Across the biomes we found a similar, if weaker broad pattern to the 
different latitudes: the general maintenance of ‘intactness/soil’ (58 % 
clustered similarly to the combined system bundle) and ‘productivity’ 
(67 %), but the division of ‘food’ (43 %) and ‘water’ (17 %) bundles, the 
latter again more frequently clustering with ‘productivity’ (Fig. 6). Most 
similar biomes to the combined system bundles were mangroves (60 %) 
and tropical moist broadleaf forest (64 %). Most dissimilar were 
temperate grassland (44 %, Bray-Curtis = 0.32, Fisher’s exact test p =
.00), tundra (44 %, Bray-Curtis = 0.4, p = .04), Mediterranean (40 %, 
Bray-Curtis = 0.28, p = .19) and desert (40 %, Bray-Curtis = 0.32, p =
.00). Smaller sample sizes in the biome and latitude subsets may 
partially explain these differences: bundles became less consistent over 
smaller random samples of the combined system dataset (SI Note 4). 
However, both biome and latitude appear to have greater effect on the 

Fig. 2. Average within and across bundle correlation across all systems (top-left) and for individual mountain, island and delta systems. Numbers indicate 
correlation between the indicated bundles (Spearman’s ρ). Arrow width is proportional to the strength of correlation, blue indicating a positive correlation and red a 
negative correlation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Bundle consistency over mountains, islands and deltas. Colours 
indicate which cluster ecosystem service indicators were grouped with across 
the systems (see Table 2, where not consistent with these clusters, additional 
colours were used). Fisher p indicates the Fisher’s exact test p-value (two-sided) 
for each system and the combined bundles (All); p < .05 indicating a statisti
cally significant association between system and bundle composition. Bray- 
Curtis indicates the Bray-Curtis dissimilarity metric between bundle composi
tion of each system and the combined bundles, 0 indicating zero dissimilarity, 1 
indicating complete dissimilarity. 
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Fig. 4. Bundle consistency over different latitudes. Colours indicate which cluster ecosystem service indicators were grouped with across the latitudes and 
systems (see Fig. 3). Latitude, indicated by degrees, is both above and below the Equator. 30◦ indicates between 15 and 30◦, 60◦ indicates between 30 and 60◦, and 
90◦ indicates 60-90◦. On the right, Mode shows the most frequently selected bundle for each indicator, and Prop. shows the proportion of times this was selected (of 
16). Fisher p indicates the Fisher’s exact test p-value (two-sided) for each latitude and the combined system bundles (All); p < .05 indicating a statistically significant 
association between bundle composition across systems and for the latitudinal subset. Bray-Curtis indicates the Bray-Curtis dissimilarity metric between bundle 
composition of each latitude and the combined bundles, 0 indicating zero dissimilarity, 1 indicating complete dissimilarity. 

Fig. 5. Average within and across bundle correlation across different latitudes for all systems. Numbers indicate correlation between the indicated bundles 
(Spearman’s ρ). Arrow width is proportional to the strength of correlation, blue indicating a positive correlation and red a negative correlation. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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bundles found – all bundles are less consistent than the random subsets, 
particularly the ‘intactness/soil’ and ‘productivity’ bundles, and 
‘intactness/soil’ indicators are bundled more frequently with ‘food’. 
Typically, correlations are strong within the bundles, even within ‘food’, 
and the trade-off between ‘intactness/soil’ and ‘food’ remains (Fig. 7). 
However, correlations weaken in the tundra, desert, mangrove and 
Mediterranean biomes (Fig. 7, individual indicators shown in SI Figs. 
6–8), although all correlation matrices remained positively correlated 
with the combined system bundles (r 0.14-0.68, p < .02, SI Table 2). 

4. Discussion 

We identified three coherent, strongly correlated, bundles of 
ecosystem property and service indicators across the mountain, island 
and delta systems studied. In sum, we observe the well-established di
vision between provisioning and non-provisioning ESs (Howe et al., 
2014; Lee & Lautenbach, 2016) in the split between provisioning 
ecosystem services and benefits in the ‘food’ bundle and ecosystem 
properties and non-provisioning services in the other bundles. The most 
robust and internally correlated bundle, ‘food’ represented crops, live
stock and water withdrawal, which is consistent with agriculture being 
the largest water user globally (FAO, 2022). A crop, livestock and water 
archetype has previously been established across rural areas surround
ing cities around the world (Haberman & Bennett, 2019), and we find 
this is broadly observable across the three systems. The clear link be
tween agricultural productivity and primary productivity is shown by 
the strong correlation between ‘food’ and ‘productivity’. The ‘produc
tivity’ bundle combined net primary productivity with carbon vegeta
tion stocks, which have an established relationship (Keeling & Phillips, 
2007), alongside forest, which is also logical, given that the predomi
nant broadleaf forest found across our systems tends not to be climate 
limited (Churkina & Running, 1998; SI Fig. 4). Similarly, broad global 
positive correlations have been observed between latitude, productivity 
and biodiversity (Gillman et al., 2015), and our findings show that these 
relationships were strong enough for species richness to bundle together 

with productivity. This bundle perhaps then represents the direct in
fluence of climatic factors. The final consistent bundle, ‘intactness/soil’ 
represented biodiversity intactness alongside soil quality indicators; 
note that intactness, the proportion of original species and abundance 
remaining, often correlates negatively with species richness (Reader 
et al., 2023). These indicators may appear less obviously connected, but 
intactness is sensitive to habitat degradation and land use change 
(Newbold et al., 2019; Rouget et al., 2006), which would also impact soil 
quality (Ludwig et al., 2004). This mirrors the observed negative cor
relation between ‘intactness/soil’, and ‘food’, which highlights the large 
role of agriculture in driving habitat degradation and land use change 
(Dudley & Alexander, 2017; Power, 2010). A fourth bundle, ‘water’, 
containing indicators of water and sediment flow, was logical and 
relatively robust, but had weaker internal correlations. One bundle will 
always be weaker than the others however, and isolating these less 
consistent indicators strengthens the other bundles. The internal co
herency of this bundle can indicate if it warrants further analysis. 
Overall, the bundles found were very similar to those produced from our 
work on deltas (Reader et al., 2022), despite the different methodology, 
number of indicators and the different systems. While the bundles we 
observed do not denote mechanistic linkages between services, our 
bundling approach shows that the associations between ESs are never
theless strong enough to be consistently visible across thousands of 
different social-ecological systems across the globe. 

Within individual systems, while overall composition and correla
tions of the combined system bundles persisted, some differences 
became apparent. In mountains, ‘food value’ separated from the other 
‘food’ indicators, perhaps showing a division between more profitable 
crops in some areas and others with more extensive agriculture. This 
may have further weakened the ‘water’ bundle, the indicators here 
divided among other bundles. Alternatively, this could be explained by 
the high availability of water in mountains (Viviroli et al., 2020), which 
may weaken its interactions with other indicators, or the relatively small 
wetland area, which interestingly clusters with ‘intactness/soil’, perhaps 
due to its sensitivity to modification (Gibbs, 2000). Pasture bundled 

Fig. 6. Bundle consistency over different biomes. Colours indicate which cluster ecosystem service indicators were grouped within across the biomes and systems 
(see Fig. 3). Biomes are combined across the systems. Boreal F. – Boreal Forest, Flood G. – Flooded Grassland, Mangr. – Mangroves, Med. F. – Mediterranean Forest, 
Mont. – Montane Grassland, Temp. B. – Temperate Broadleaf, Temp C. – Temperate Coniferous, Temp. G. – Temperate Grassland, Trop. C. – Tropical Coniferous, 
Trop. D. – Tropical Dry Broadleaf, Trop. G. – Tropical Grassland, Trop. M. – Tropical Moist Broadleaf. On the right, Mode shows the most frequently selected bundle 
for each indicator, and Prop. shows the proportion of times this was selected (of 14). Fisher p indicates the Fisher’s exact test p-value (two-sided) for each biome and 
the combined system bundles (All); p < .05 indicating a statistically significant association between bundle composition across systems and for the biome. Bray-Curtis 
indicates the Bray-Curtis dissimilarity metric between bundle composition of each biome and the across system bundles, 0 indicating zero dissimilarity, 1 indicating 
complete dissimilarity. 
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differently in each system, and indeed tended to have weaker or oppo
sitional correlations compared to other ‘food’ indicators. This could be 
due to it being a land cover-based indicator, which represents a wider 
range of agricultural intensity than the crop area indicators, meaning it 
will have less clear relationships with the other indicators. Likewise, 
wetland area is also land cover-based, and exhibited similarly weak 

correlations, potentially because it covers diverse wetlands from 
intensively-farmed rice paddies to relatively pristine mangroves (Lehner 
& Döll, 2004), while forest area in deltas correlated negatively with its 
‘productivity’ bundle, being more related to ‘intactness/soil’. However, 
the high agreement across and between the systems show that these 
broad associations and bundles still persist at such large extents despite 

Fig. 7. Average within and across bundle correlation across biomes for all systems. Numbers indicate correlation between the indicated bundles (Spearman’s 
ρ). The within bundle correlation for food in Tundra (marked *) was not Fisher transformed which could bias the result negatively, as the very high correlation 
between two of the indicators led to a spuriously high result (0.86). Arrow width is proportional to the strength of correlation, blue indicating a positive correlation 
and red a negative correlation. Biomes displayed have > 100 observations across all systems. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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substantial differences in population, global change drivers and overall 
supply of ESs between the systems (Reader et al., 2023). 

The combined system bundle make-up and correlation structure 
weakens and breaks down when examining different latitudes and bi
omes. The ecosystem property bundles – ‘intactness/soil’ and ‘produc
tivity’ weaken in consistency, but still maintain the majority of the same 
indicators, while the ‘water’ bundle breaks down completely in every 
biome, underlining its position as the ‘other’ bundle. However, the 
ecosystem service ‘food’ bundle, while remaining the most common 
grouping of its indicators, more frequently divides amongst itself and 
joins the other bundles, perhaps illustrating the different relationships 
between agriculture and other ecosystem properties depending on 
biogeographical context. For example, soil loss is driven by cropland in 
the Tropics, but this relationship weakens elsewhere (Borrelli et al., 
2017). At higher latitudes and less habitable biomes such as tundra, 
desert, and boreal forest, ‘food’ and ‘productivity’ related indicators are 
more frequently bundled. This potentially shows how in these envi
ronments the simple relationship between crop production and better 
growing conditions is stronger than the habitat degradation caused by 
intensive agriculture which may contribute to the combined system 
bundles (Reader et al., 2022). The large differences in overall and in
dividual ES supply between biomes (de Groot et al., 2012) perhaps 
explain why bundle composition in individual biomes was on average 
the furthest from the combined system bundles, reflecting that specific 
associations based on biogeographical conditions are often stronger than 
broad global associations between ESs. This was particularly the case in 
less habitable biomes, which may again reflect climate as a limiting 
factor on agricultural production, but surprisingly the temperate biomes 
also differed substantially. It should be remembered that system, biome 
and latitude will also have interacting effects – particular biomes will be 
more typical of particular systems and latitudes – and across systems 
lower latitudes have a higher proportion of broadleaf forest, and higher 
latitudes of tundra (SI Fig. 4). Similarly, while biome and latitude have 
distinct effects on bundles, the smaller sample sizes in these subsets will 
also weaken overall clustering, which may explain some of the more 
unexpected results (SI Note 4). Together, these results suggest that ES 
management needs may differ based on biogeographical factors, rather 
than the type of social-ecological system in particular. 

When interpreting the bundles and relationships we uncovered, 
some caution is necessary. Firstly, our bundles are based on a mix of 
indicators of ecosystem properties, services and values. While this re
flects global data availability, and these groupings and correlations are 
still informative, synergies and trade-offs may differ if purely realised 
ecosystem services were considered (Schirpke et al., 2019). More 
generally, bundle composition will clearly also be affected by the in
dicators selected (Saidi & Spray, 2018). In particular, we lack global 
indicators for cultural and relational ESs (although see Braun et al., 
2018; Paracchini et al., 2014), meaning these important services and 
their influence on the clustering process are missing from our analysis. 
Data quality issues are also apparent. Even with a relatively large 
number of datasets, individual biases in particular indicators may skew 
the clusters emerging, which will be more pronounced in subsets of our 
systems. While often founded on impressive numbers of observations or 
remotely-sensed imagery, global datasets can extrapolate from rela
tively few samples, particularly in less populated areas. Inputs for 
several of these datasets also overlap, which could potentially 
strengthen correlations found; e.g. land cover classifications and human 
population density is used to model crop data and water usage (SI Table 
1). Data restrictions also limited our selection of islands to those which 
were typically more populated or closer to larger landmasses, poten
tially with different ES relationships to more remote islands. Finally, 
there are methodological considerations. Investigation of the sensitivity 
of bundling to the method employed is urgently required (Meacham 
et al., 2022), and ideally the clustering approach should fit the data, 
with a mechanistic basis for the selection of algorithm, distance metric, 
weighting and other coefficients. Given the variable and multi- 

dimensional nature of ES indicator data, however, our ensemble of 
clustering approaches may be useful to highlight where ESs are not so 
easily clustered and minimise the possibility that clusters are emerging 
from the biases of a single algorithm. 

Several avenues for future research are suggested by our analyses. 
Critically, this study explores and describes patterns, and any attribution 
of these patterns requires further analysis of the drivers of bundling, in 
particular human factors such as population density, infrastructure or 
land use (Reader et al., 2023). Finding balances between ES supply, use 
and demand is critical and more indicators are necessary to gain an 
appreciation of these differences at wider scales (Baró et al., 2015; 
Crouzat et al., 2015; Zoderer et al., 2019). Our analysis averages in
teractions across many landscapes; establishing direct mechanisms 
behind the synergies and trade-offs and bundles found will require 
multi-scale work to disentangle (such as Qiu et al., 2018). Longitudinal 
studies, as more time series data becomes available (e.g. Iizumi & Sakai, 
2020), may also help identify drivers, and allow us to further assess the 
consistency of the patterns we find. Temporal differences have been 
found to influence both bundles and associations (Jaligot et al., 2019; 
Renard et al., 2015). By using numerous observations, our approach has 
the advantage of avoiding the pitfall of an individual area representing 
an ungeneralisable ‘snapshot’ of shifting ES relationships (Rau et al., 
2020). 

Our study examined bundle consistency, intra and across bundle 
correlations, and their relationships across global systems, latitudes and 
biomes. We discovered that associations between ecosystem property 
and service indicators were strong enough at global and system-wide 
extents to overcome local contextual differences, leading to three 
consistent and logical bundles which replicate relationships found at 
local and regional scales (Lee & Lautenbach, 2016). These findings 
illustrate the global impact of humans on ecosystems, and represent an 
initial step in informing the large-scale decision-making required to find 
sustainable balances of ESs, potentially reducing information re
quirements and simplifying management. However, at smaller extents, 
at particular latitudes and in particular biomes, specific local relation
ships between the ES indicators meant these larger bundles broke down, 
although the division between ‘productivity’ and ‘intactness/soil’ in
dicators remained. Given the increasingly connected nature of global 
social-ecological systems, and the global decline of ESs (Brauman et al., 
2020), the need for wider scale analysis and management of ESs is clear. 
In turn, while bottom-up approaches and local contexts remain critical 
to sustainable ecosystem service management, appraising and managing 
at wider scales requires knowledge of ES relationships and responses at 
these extents. 
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Díaz, S., Pascual, U., Stenseke, M., Martín-López, B., Watson, R.T., Molnár, Z., Hill, R., 
Chan, K.M.A., Baste, I.A., Brauman, K.A., Polasky, S., Church, A., Lonsdale, M., 
Larigauderie, A., Leadley, P.W., van Oudenhoven, A.P.E., van der Plaat, F., 
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