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Identification of new drugs to counteract anti-spike IgG-
induced hyperinflammation in severe COVID-19
Chiara E Geyer1,*, Hung-Jen Chen1,* , Alexander P Bye2,3,4, Xue D Manz5, Denise Guerra6 , Tom G Caniels6, Tom PL Bijl6,
Guillermo R Griffith7, Willianne Hoepel1 , Steven W de Taeye6, Jennifer Veth1 , Alexander PJ Vlaar8,
Amsterdam UMC COVID-19 Biobank‡, Gestur Vidarsson9,10, Harm Jan Bogaard5, Jurjan Aman5 , Jonathan M Gibbins2,
Marit J van Gils6 , Menno PJ de Winther7,† , Jeroen den Dunnen1,†

Previously, we and others have shown that SARS-CoV-2 spike-
specific IgG antibodies play a major role in disease severity in
COVID-19 by triggering macrophage hyperactivation, disrupting
endothelial barrier integrity, and inducing thrombus formation. This
hyperinflammation is dependent on high levels of anti-spike IgG
with aberrant Fc tail glycosylation, leading to Fcγ receptor hyper-
activation. For development of immune-regulatory therapeutics,
drug specificity is crucial to counteract excessive inflammation
whereas simultaneously minimizing the inhibition of antiviral im-
munity. We here developed an in vitro activation assay to screen for
small molecule drugs that specifically counteract antibody-induced
pathology. We identified that anti-spike-induced inflammation is
specifically blocked by small molecule inhibitors against SYK and
PI3K. We identified SYK inhibitor entospletinib as the most prom-
ising candidate drug, which also counteracted anti-spike-induced
endothelial dysfunction and thrombus formation. Moreover, entos-
pletinib blocked inflammation by different SARS-CoV-2 variants of
concern. Combined, these data identify entospletinib as a promising
treatment for severe COVID-19.
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Introduction

The ongoing severe acute respiratory syndrome coronavirus (SARS-
CoV-2) pandemic is associated with millions of deaths and immense

pressure on healthcare systems and economies worldwide (1, 2).
In most patients, SARS-CoV-2 infection led to a mild manifestation
of coronavirus disease 2019 (COVID-19) characterized by flu-like
symptoms such as cough, fever, and fatigue. However, some pa-
tients, particularly in the unvaccinated population (3), develop severe
and lethal complications including pneumonia, acute respiratory
distress syndrome, thromboembolism, and sepsis (4). One charac-
teristic of severe COVID-19 cases is the fast deterioration of
the symptoms 1–2 wk after onset, accompanied by prolonged and
elevated systemic pro-inflammatory cytokine levels, particularly in-
terleukin (IL)-6, TNF, and IFNs (2, 5, 6). In addition to the hyper-
inflammatory states, severe COVID-19 patients develop multiorgan
dysfunction that can be explained by derangements in hemostasis,
also known as COVID-19-associated coagulopathy (7, 8, 9). Although
the exact mechanisms of COVID-19–associated coagulopathy re-
main unclear, a complex interplay between coronaviruses, endo-
thelial cells, platelets, elevated immune responses, and dysfunction
of the coagulation system has been postulated (10).

Despite the increasing coverage of safe and effective vaccines
worldwide, SARS-CoV-2 continues to spread rapidly. As the virus
evolves, several variants of concern (VOC) characterized by increased
transmissibility or virulence have been discovered (11, 12, 13, 14).
Recent studies reveal a rapid increase in symptomatic COVID-19
cases in the vaccinated population, indicating reduced vaccine ef-
fectiveness over time and the emergence of new immune-escaping
variants (15, 16, 17). Newly occurring virus variants to which previous
vaccines do not provide sufficient protection are a threat to global
public health (18, 19). Moreover, some people including immune-
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compromised populations or patients receiving immunomodulatory
medications develop poor vaccination responses (20).

Therefore, in addition to disease prevention by vaccination,
efforts have been made to develop treatments to alleviate
symptoms. Several effective anti-viral therapeutics are authorized
for COVID-19 treatment. Molnupiravir, a prodrug of a ribonucleoside
analog introducing replication errors (21), has been shown to
hasten the elimination of infectious viruses (22, 23). Nirmatrelvir, a
SARS-CoV-2main protease inhibitor, together with the HIV-1 protease
inhibitor ritonavir, has been developed as a combined treatment
(Paxlovid), which largely reduces the risk of hospitalization or death
(24, 25). Given that anti-viral treatments do not rectify the underlying
excessive host immune response deteriorating COVID-19, studies
have also focused on attenuating uncontrolled inflammation in
severe cases. Dexamethasone is the first approved immunoregula-
tory therapeutic that significantly reduces the risk of death, partic-
ularly in patients requiring mechanical ventilation or supplemental
oxygen (26, 27). The efficacy of steroids in treating critical COVID-19
cases supports the idea that immune components contribute to
disease severity. However, although steroid therapy is a successful
approach in suppressing excessive inflammation and dampening
COVID-19 complications, concerns remain about secondary infection
and the reactivation of latent infections (28, 29, 30). Furthermore, as a
potent corticosteroid, dexamethasone has a significant impact on
the immune system and could cause a delay in viral shedding and
have consequences in various organs (31, 32). Therefore, there is still
an unmet need for a specific immunomodulatory treatment that
reduces uncontrolled inflammation while keeping the anti-viral
response intact simultaneously.

Previously, we and others provided evidence that SARS-CoV-2
spike protein-specific immunoglobulin G (IgG) promotes excessive
production of pro-inflammatory mediators by alveolar macro-
phages and monocytes, disrupts endothelial barrier function, and
activates platelets, thereby contributing to the exacerbation of
COVID-19 in severe cases (33, 34, 35). The pathogenic effect medi-
ated by anti-spike IgG is induced via the overactivation of fragment
crystallizable region γ receptors (FcγRs) on innate immune cells (5,
33, 36). Two specific antibody features of severe COVID-19 patients
contribute to the excessive immune response: extremely high anti-
spike IgG titers and aberrant glycosylation of the IgG Fc tail, which
when combined lead to the overactivation of FcγRs. The over-
activated macrophages create a pro-inflammatory environment
that leads to endothelial dysfunction and platelet adhesion. Fur-
thermore, the aberrantly glycosylated IgG together with spike
protein can form immune complexes that directly enhance platelet
thrombus formation (37).

Spleen-associated tyrosine kinase (SYK) is a critical component
in FcγR signal transduction (38) and hence serves as a potential
target. The SYK inhibitor R406 (the active form of FDA- and EMA-
approved drug fostamatinib) has been recently identified as
an effective immunoregulatory drug modulating the activities
of immune cells and platelets in severe COVID-19 (33, 37, 39, 40)
and has been applied in several clinical trials (NCT04581954,
NCT04629703, NCT04924660) (41). Once SYK is activated, it binds to
phosphoinositide 3-kinase (PI3K) and triggers downstream sig-
naling cascades (42, 43). Although the SYK–PI3K axis drives mac-
rophage chemotaxis and phagocytosis (38, 44, 45), ample evidence

shows that SYK–PI3K activation also promotes the expression of
inflammatory mediators (46, 47, 48, 49). Furthermore, the SYK–PI3K
signaling pathway also contributes to platelet activation, adhesion,
and aggregation (50). Therefore, interventions targeting SYK and
PI3K activity might provide potential treatment options for severe
COVID-19.

In this study, we set out to identify inhibitors counteracting
immune complex-induced hyperinflammation. We developed a
macrophage activation assay capable of determining compound
potency and efficacy against anti-spike-specific inflammation. We
applied this screening assay on approved and investigational small
molecule inhibitors. We demonstrate that several SYK and PI3K
inhibitors can counteract the hyperinflammatory state induced by
anti-spike immune complexes. We identify entospletinib, a SYK
inhibitor, as a promising candidate drug to tackle anti-spike IgG-
mediated inflammation, endothelial barrier disruption, platelet
adhesion, and thrombus formation. Moreover, entospletinib
dampens the anti-spike IgG-mediated inflammation induced by
different VOCs.

Results

Anti-spike IgG-induced inflammation can be specifically
counteracted by targeting SYK

To quantify the potency and selectivity against anti-spike-mediated
inflammation, we determined the half-maximal inhibitory concen-
tration (IC50) on macrophage activation. Previously, our transcriptomic
classification showed that M-CSF and IL-10-differentiated macro-
phages most closely resemble human primary alveolar macrophages
(51). We applied these monocyte-derived alveolar macrophage-like
macrophages (MDAMs) in the assay. Briefly, MDAMs were treated
with different compounds at increasing concentrations 30 min
before stimulation by the TLR3 ligand polyinosinic:polycytidylic
acid (poly(I:C)) (a viral stimulus mimic) in the presence or ab-
sence of recombinant anti-spike IgG-formed immune complexes
(Fig 1A). We assessed the pro-inflammatory activity of macro-
phages by measuring IL-6 production. We hypothesized that if
the compound is specific for FcγR signaling, it will dose-dependently
decrease anti-spike-dependent IL-6 production, whereas leaving the
activation by poly(I:C) alone unchanged. We investigated two SYK
inhibitors R406 (the active form of fostamatinib) and entospletinib,
along with the standard-of-care drug dexamethasone. Dose-
dependent inhibitory curves were then plotted and the IC50 values
were calculated for each inhibitor for the two stimulation conditions
(Fig 1B–D).

All compounds suppressed IL-6 production by macrophages
upon co-stimulation by poly(I:C) and anti-spike immune complex
(red curves in Fig 1B–D). Dexamethasone showed the best potency
with the lowest concentration (around 20–100 nM) required to
achieve maximal inhibition, compared with 0.5–1 μM for R406 and
entospletinib. Notably, dexamethasone similarly blocked anti-
spike-induced and virus-induced IL-6 production (average IC50 =
3.6 or 4.4 nM with or without anti-spike IgG, respectively) (Fig 1B).
Compared with dexamethasone, both SYK inhibitors exerted greater
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Figure 1. Immunoregulatory activities of
dexamethasone and SYK inhibitors R406 and
entospletinib on IL-6 production by stimulated
macrophages.
(A) Schematic overview of the experimental
setup. Monocyte-derived alveolar macrophage-
like macrophages were generated by
differentiating peripheral monocytes with M-
CSF and IL-10. The generated Monocyte-derived
alveolar macrophage-like macrophages were then
treated with inhibitors in increasing
concentration or DMSO 30min before stimulation
with viral stimulus poly(I:C) with or without the
presence of immune complexes. Immune
complex is formed by plate-bounded SARS-CoV-2
spike proteins and monoclonal anti-spike IgGs. All
conditions are with SARS-CoV-2 spike proteins.
(B, C, D) IL-6 production was used as the pro-
inflammatory activation readout.
(B, C, D) Representative data of macrophage
activation assay for (B) dexamethasone, (C) R406,
and (D) entospletinib, with the left Y axis and red
curves showing the concentration measured
from poly(I:C) and anti-spike immune complex
conditions and right Y axis and blue curves
activation with poly(I:C) alone. Half-maximal
inhibitory concentrations (IC50) from different
macrophage donors (dexamethasone [n = 6], R406
[n = 5], and entospletinib [n = 14]) per
stimulation condition are plotted as box plots
indicating 10–90 percentile and median.
Significant differences were calculated with a
paired t test. *P < 0.05.
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potency for anti-spike-mediated inflammation. We observed a sig-
nificant difference between IC50 values for the R406 treatment
against anti-viral and anti-IgG-induced IL6 production (mean IC50
value of 191.9 nM for poly(I:C) alone-induced IL-6 and 78.5 nM for anti-
IgG and poly(I:C) co-stimulation) (Fig 1C). Entospletinib was the most
anti-spike-dependent inflammation-specific compound which did
not affect poly(I:C)-only activatedmacrophages, and exhibited higher
potency than R406 (IC50 = 45.6 nM, Fig 1D).

PI3K inhibitors affect macrophage activation

Next, we investigated the effect of inhibitors targeting PI3K, a
downstream kinase in the FcγR-SYK signaling pathways. We carried
out the same macrophage activation assay used for SYK inhibitors
with compounds inhibiting different PI3K isoforms. In general,
compared with SYK inhibitors, PI3K inhibitors required higher
concentrations (>10 μM) to reach an 80% inhibition of anti-spike-
induced IL-6 (Fig 2A–C). The effect on IL-6 induced by poly(I:C) alone
varied between different compounds. Alpelisib, a PI3K-α inhibitor,
inhibited IL-6 production with higher potency against anti-spike-

dependent inflammation in comparison to other tested PI3K in-
hibitors (Fig 2A). Interestingly, although PI3K-γ/δ inhibitor duvelisib
suppressed macrophage IL-6 production in response to poly(I:C)
and anti-spike immune complex co-stimulation, it amplified IL-6
secretion dose-dependently when only poly(I:C) was applied (Fig
3B). This observation suggests distinct regulatory functions for
different PI3K isoforms in inflammatory processes and/or potential
off-target effects of the drug. Another PI3K-δ inhibitor idelalisib
counteracted anti-spike-dependent IL-6 production while not af-
fecting the anti-viral response (Fig 2C). However, with the highest
two concentrations tested in our assay, we observed reduced vi-
ability (data not shown), and an increase in IL-6 levels in the poly(I:C)-
only condition. These results indicate that the potency of PI3K
inhibitors is inferior to SYK inhibitors.

Entospletinib counteracts serum-induced hyperinflammatory
response by alveolar macrophages

We next assessed the effects of all tested inhibitors with their
maximal inhibition concentrations against anti-spike-induced IL-6.

Figure 2. Immunoregulatory activities of PI3K inhibitors on IL-6 production by stimulated macrophages.
(A, B, C) Representative data of macrophage activation assay for (A) the PI3Kα inhibitor alpelisib, (B) the PI3Kδ and PI3Kγ inhibitor duvelisib, and (C) the PI3Kδ inhibitor
idelalisib.
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In concordance with the dose-dependent assays, all treatments
resulted in a substantial reduction in IL-6 production by macro-
phages upon anti-spike and poly(I:C) co-stimulation (red bars in Fig
3A). Dexamethasone and SYK inhibitors showed better potency with
more profound effects at the selected concentration than PI3K
inhibitors for blocking anti-spike-induced macrophage activation.
More importantly, whereas dexamethasone hampered both anti-spike
and anti-viral responses, SYK andPI3K inhibitors had limited impact on
the IL-6 production in thepoly(I:C)-alone condition (blue bars in Fig 3A).
These results indicate that compounds deactivating SYK and PI3K
serve as more selective treatment options for counterbalancing ex-
cessive inflammation induced by anti-spike immune complexes.

Unlike recombinant monoclonal antibodies, anti-spike IgGs in
the patient serum are a pool of polyclonal antibodies against different
domains of the spike protein with variate affinities and posttransla-
tional modifications. Therefore, the immune complexes formed by
recombinant monoclonal antibodies and serum could exert different
biological activities. To assess whether SYK and PI3K inhibitors can
counteract macrophage hyperactivation by serum-derived immune
complexes, we generated spike–IgG immune complexes by incubating
the spike protein with sera obtained from severely ill COVID-19 pa-
tients hospitalized at Amsterdam UMC from the first wave in early
2020. These patients were infected with the Wuhan strain and
without prior vaccination. The sera were collected at the time of
admission to the ICU. We observed similar inhibition patterns for all
compounds compared with their monoclonal IgG counterparts (Fig
3B). SYK inhibitors R406 and entospletinib completely blocked anti-
spike-induced IL-6 production, which dampened the cytokine levels
to the concentration of the poly(I:C) condition (blue dashed line in
Fig 3B). Interestingly, dexamethasone appeared to be less potent in
blocking IL-6 induced by serum-derived anti-spike immune com-
plexes than the ones formed by monoclonal IgGs (Fig 3A and B).

To ensure that the described decrease in pro-inflammatory
cytokine induction is not influenced by off-target effects on cell
viability, we measured the influence of the selected SYK and PI3K
inhibitors on membrane integrity of alveolar macrophages. For all
tested SYK and PI3K inhibitors, no significant effect on cell viability
was observed in the tested concentration (Fig S1A and B).

Finally, we validated our findings in an ex vivo setting for the two
most promising candidate compounds, by activating human al-
veolar macrophages obtained from bronchoalveolar lavage. Upon
serum-derived immune complex activation, both R406 and entos-
pletinib yielded comparable inhibition in bronchoalveolar lavage
macrophages as the in vitro models (Fig 3C). To conclude, these
data indicate that blocking SYK signaling can serve as a potent
strategy against hyperactivation of alveolar macrophages induced
by serum-derived immune complexes.

Entospletinib dampens anti-spike IgG-associated pulmonary
endothelial barrier disruption and thrombus formation

Pulmonary endothelial damage in COVID-19 is associated with
macrophage activation and accumulation in the lungs (52).

Figure 3. Entospletinib counteracts serum-induced hyperinflammatory
response by alveolar macrophages.
(A, B) Representative data from four independent experiments showing IL-6
production by macrophages treated with dexamethasone and different SYK or
PI3K inhibitors upon poly(I:C) stimulation with (red bars) or without (blue bars)
immune complexes derived from amonoclonal antibody (A) or patient serum (B).
Bar charts with one-segment Y axis (insert) or enlarged two-segment Y axis.
(C) IL-6 production in DMSO, R406 or entospletinib-treated ex vivo
bronchoalveolar lavage fluid-derived alveolar macrophages. Statistics were
calculated using a two-way ANOVA and corrected using Tukey’s multiple
comparison test. *P < 0.05; **P < 0.01. n = 3 technical replicates per group, one
representative example of n = 3 bronchoalveolar lavage donors. Data are shown
as mean + SD.
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Overactivated alveolar macrophages create a pro-inflammatory mi-
lieu that subsequently promotes microvascular thrombosis and en-
dothelial barrier disruption (53, 54, 55). We hypothesized that disrupted
pulmonary endothelial function could be rescued by dampening
macrophage hyperinflammatory activities with entospletinib. To in-
vestigate this, we treated humanpulmonarymicrovascular endothelial
cells (HPMVECs) with conditioned media from activated MDAMs. We
monitored the trans-endothelial electrical resistance of the HPMVECs
monolayer over time as a readout of endothelial integrity.

In line with our previous findings in pulmonary artery endo-
thelial cells (33), a prolonged disruption of endothelial barrier
integrity was observed in HPMVECs treated with the conditioned
media from macrophages co-stimulated with immune complexes
generated with serum from severe COVID-19 patients and the viral
stimulus (i.e., poly (I:C)) (the red thin line in Fig 4A). The conditioned
media from poly(I:C)-only activated macrophages exerted a tran-
sient effect on endothelial barrier function (the thin blue line in Fig
4A). Entospletinib was able to block anti-spike-mediated long-term

Figure 4. Entospletinib dampens anti-
spike IgG-associated pulmonary
endothelial dysfunction and thrombus
formation.
(A, B) Representative data of trans-
endothelial electrical resistance of the
HPMVEC monolayer from two donors over
time. HPMVECs were stimulated with
conditioned media from activated
macrophages treated with entospletinib or
DMSO. The conditioned medium from
macrophages without poly(I:C) or serum
activation was used as a negative control.
(C) Stimulated HPMVECs were perfused
with platelets for 5 min, after which the
area covered by platelets was quantified.
n = 3 donors per group. Background
colors in the bar plots indicate the
stimulation the macrophages received.
White or black bars indicate the drug
treatments. Data are shown as mean + SD.
Statistical significance was calculated
using a two-way ANOVA and corrected
using Tukey’s multiple comparison test.
***P < 0.001; ****P < 0.0001.
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endothelial dysfunction and significantly restore endothelial barrier
integrity (thick red line in Fig 4A and B). Notably, entospletinib
treatment did not affect HPMVECs stimulated with a supernatant
of macrophages activated only by viral stimulus (the blue lines,
Fig 4A). This indicates that entospletinib can selectively counteract
the barrier-damaging mediators produced by macrophages upon
stimulation with viral stimulus and serum-derived anti-spike im-
mune complexes.

Next, we accessed the in situ thrombus formation by adding
thrombocytes to macrophage-conditionedmedium-activated HPMVECs
under flow conditions (flow shear rate 2.5 dyn/cm2). During perfusion,
platelets adhered less to theHPMVECs exposed to conditionedmedia of
entospletinib-treated macrophages under poly(I:C) and serum co-
activation (Fig 4C). To sum up, we show that blocking FcγR signaling
with entospletinib reduces pulmonary endothelial dysfunction and
microvascular thrombosis formation.

Entospletinib reduces aberrantly fucosylated ant-spike
IgG-induced platelet activation

Recent evidence shows that anti-spike IgG of severely ill COVID-19
patients do not only indirectly activate blood platelets (via mac-
rophages and endothelial cells), but also directly enhance platelet
activation and thrombus formation (37). This direct activation of
platelets critically depends on the aberrant IgG Fc tail glycosylation
pattern that is observed in severely ill COVID-19 patients (34, 35, 56,
57). Whereas immune complexes with normal glycosylation pat-
terns do not affect platelet adhesion, aberrantly glycosylated
IgG–spike immune complexes enhance platelet activation in the
presence of vonWillibrand factor (vWF). As platelet activation by IgG
is induced via FcγRIIa and the rapid phosphorylation of SYK (58), we
studied the direct effect of entospletinib on platelets. We examined
platelet adhesion under flow on coverslips coated with vWF and
spike–IgG immune complexes formed by recombinant monoclonal
anti-spike IgG COVA1-18 bearing aberrant glycosylation (9.1%
fucosylated and 77.6% galactosylated). Platelets were pre-treated
with entospletinib or DMSO before perfusion. Slides coated with
vWF and spike and wild-type COVA1-18 immune complexes (97.8%
fucosylated, 19.6% galactosylated) were used as a control (37). By
quantifying the volume of thrombi, we show that aberrantly gly-
cosylated immune complexes synergized platelet adhesion to vWF.
Entospletinib counteracted the enhanced thrombus formation and
reduced thrombus volume to the level of wild-type COVA1-18
controls (Fig 5A and B). These data demonstrate that entospleti-
nib can reduce microvascular thrombosis induced by pathogenic
platelet activation mediated by aberrantly glycosylated immune
complexes.

Antibody-induced inflammation is a shared mechanism across
SARS-CoV-2 VOC and can be counteracted by SYK inhibitors

SARS-CoV-2 evolves to evade antibodies with mutations of the
spike proteins (59). First, we investigated whether spike–IgG im-
mune complexes of different SARS-CoV-2 VOCs induce hyper-
inflammation by alveolar macrophages. We generated spike proteins
of α, β, γ, δ VOCs, and the original Wuhan strain (GenBank accession
MN908947.3) (60, 61). These spike proteins were subsequently applied

to form variant-specific immune complexes with COVA1-16, a mono-
clonal antibody that binds a highly conserved epitope on the spike
receptor-binding domain (62). Immune complexes of all tested VOCs in
the combination of poly(I:C) led to increased IL-6 release (Fig 6A) by
macrophages. Next, we examined the effects of SYK inhibitors in
counteracting anti-spike-dependent inflammation. SYK inhibitors
R406 and entospletinib effectively suppressed the IL-6 production
induced by immune complexes by 75–95 percent against all tested
VOCs (Fig 6B). These data indicate that anti-spike-induced hyper-
inflammation is a shared mechanism across different SARS-CoV-2
VOCs, which can all be blocked by SYK inhibition.

Discussion

There is still an unmet need for specific, cost-effective, and orally
bioavailable therapeutics to prevent disease progression to severe
COVID-19. Here, we identify the small-molecular SYK inhibitor
entospletinib as a potential medication with high potency and
efficacy in specifically diminishing uncontrolled macrophage in-
flammation induced by anti-spike IgG immune complexes. Anti-
spike IgG immune complexes can trigger the production of pro-
inflammatory mediators, such as IL-6, TNF, and IFNs by alveolar
macrophages (33). The high level of IL-6 produced by macrophages
is a hallmark of COVID-19 (63). It has been shown that IL-6 induces
oxidative stress, endothelial dysfunction, and coagulation cascade
activation (64, 65). IL-6 receptor blockade treatments have been
recommended by the WHO to tackle systemic inflammation in
severe COVID-19 (66, 67). Given the critical role of SYK in FcγR
signaling, blocking SYK activity could serve as a potential thera-
peutic for severe COVID-19 by ceasing the pathogenic hyper-
activation of immune cells and the ensuing endotheliopathy (68).

The small molecule drug fostamatinib (the prodrug form of R406)
is currently indicated for chronic immune thrombocytopenia be-
cause of its ability to block SYK signaling thus preventing the
phagocytosis-based, antibody-mediated platelet destruction (69).
Whereas mild thrombocytopenia is a common clinical manifesta-
tion in COVID-19 patients (70), immune thrombocytopenia can occur
secondary to COVID-19 in both acute and late stages, particularly in
old and severely ill patients (71). Therefore, fostamatinib might
provide additional benefits apart from its immunosuppressive
effect against anti-spike-specific inflammation. In severe or critical
COVID-19 cases, clinical improvements were observed in the fosta-
matinib treatment group in a phase-II randomized trial (NCT04579393)
(41). Based on this success, fostamatinib is currently tested in several
phase-III clinical trials. However, the adverse effects of fostamatinib
have been reported in cancers and rheumatoid arthritis and are at-
tributed to off-target effects (69, 72, 73). Therefore, a more selective SYK
inhibitor could provide better tolerability.

Entospletinib is a highly selective and orally efficacious
second-generation SYK inhibitor (74). Although both tested SYK
inhibitors can dampen anti-spike-induced inflammation, com-
pared with R406, our data indicate that entospletinib has less
effect on the macrophage anti-viral response, thereby repre-
senting a promising therapeutic approach for COVID-19 treatment.
Notably, the average IC50 value of entospletinib against anti-
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spike-induced IL-6 was 45.6 nM with an efficacy of around 90% in a
concentration of 1 μM. Hence, the steady-state serum concen-
tration of entospletinib (Ctrough 3.02 μM to Cmax 6.54 μM) at a dose
of 600 mg twice daily (75) would provide complete coverage of the
IC50 values throughout the 12-h dosing interval. In addition to the
cytokine production inhibition, entospletinib can rescue the
prolonged loss of HPMVEC barrier function and increased platelet
adhesion mediated by anti-spike-induced macrophage hyper-
activation. Endotheliopathy is associated with critical illness and
death in COVID-19 (76, 77). Our findings are not only valuable for
treatment targeting inflammation, but also have implications for

strategies aimed at preserving endothelial function in COVID-19
and other related diseases. Furthermore, entospletinib coun-
terbalances the hyperinflammation induced by anti-spike im-
mune complexes across different SARS-CoV-2 VOCs. A recent
study also showed that anti-spike IgG of SARS-CoV-1 could cause
the antibody-dependent inflammation by alveolar macrophages,
thereby deteriorating lung injury (78). As the mechanism of action
of SYK inhibitors is through the inhibition of immune hyper-
activation rather than through direct effects on coronaviruses, we
are optimistic that entospletinib can be also applied for treatment
of newly emerging variants and future coronaviruses.

Figure 5. Entospletinib reduces aberrantly fucosylated ant-spike IgG-induced platelet activation.
Thrombi formed under flow on vWF and spike–IgG immune complex-coated slides in perfusion chambers. Immune complexes were formed with normally glycosylated
(WT) or lowly fucosylated and highly galactosylated (low-fuc/high-gal) IgGs. Platelets were pre-treated with either vehicle control (DMSO) or entospletinib (1 μM).
(A) Representative images of thrombi stained with DiOC6 (acquired at ×20 original magnification). (B) Quantification of thrombus volume from eight different platelet
donors. Data are represented as mean + SD. Statistical significance was examined by a one-way ANOVA test with Dennett’s multiple comparison correction. *P < 0.05.

Figure 6. Antibody-induced inflammation by different SARS-CoV-2 variants of concern.
(A) Immune complexes formed by spike proteins from variants of concern (α, β, γ, δ, and Wuhan strain) and amonoclonal antibody targeting a highly conserved epitope
of the spike portion were used to simulate macrophages. IL-6 level was measured as the readout of the macrophage inflammatory response. (B) Inhibition rates of IL-6
production from macrophages treated with SYK inhibitors R406 and entospletinib compared with DMSO control (DMSO concentration 0.005%). Each dot represents
cytokine production or inhibition rate by different macrophage donors (mean + SD).
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Interestingly, in line with our previous findings (33), patient
serum-derived immune complexes lead to substantially stronger
induction of IL-6 compared with recombinant monoclonal IgG. IgG
clonality, avidity, subclasses, and glycosylation patterns at the Fc
domain all contribute to the activity of FcRs (79, 80). Our data in-
dicate that dexamethasone is less potent in suppressing inflam-
mation caused by serum-derived immune complexes, whereas SYK
inhibitor R406 and entospletinib remain highly efficacious. It has
been shown that the high titer and aberrant afucosylation of anti-
spike IgG are two main serological characteristics in severe COVID-
19 cases, which combined lead to hyperactivation of FcγRs (34, 35,
37, 56). Furthermore, under the prothrombotic environment in
severe COVID-19 (76, 81, 82), aberrantly glycosylated anti-spike
immune complexes can trigger platelet activation leading to
thrombus formation. Ample evidence now supports the beneficial
role of anti-platelet medication in COVID-19 treatments (83, 84).
Therefore, as the altered glycosylation pattern of Fc tail on IgGs is
transient in the early phase of seroconversion, the selective effect
of entospletinib in counterbalancing thrombus formation against
aberrantly glycosylated immune complex could be beneficial to
prevent severe COVID-19. Yet, one major challenge with immuno-
regulatory therapeutics against COVID-19 is the tailoring of treat-
ments to the clinical course of the disease stages. SYK inhibition
by fostamatinib has been shown to impair B cell development at
the transitional stage but not mature B cell populations (85, 86).
Because the proposed therapeutic effects of SYK inhibitors are
dependent on spike-specific IgGs, appropriate timing for admin-
istrating these compounds is crucial.

It has been shown that immune complexes can also affect other
cell types during COVID-19 disease progression. In severely ill
patients, SARS-CoV-2 infection triggers soluble multimeric immune
complex formation. These circulating immune complexes can ac-
tivate monocytes via CD16 (FcγRIII) and promote immunopathology
(87). Sera from severely ill COVID-19 patients contain high levels of
immune complexes and activate neutrophil IL-8 production and
CD11b expression via FcγRII (CD32) (88). Immune complexes also
promote the degranulation of CD16+ T cells in severe COVID-19 (89).
The activation of these highly cytotoxic CD16+ T cell population
results in endothelial injury. Moreover, the CD16+ T cell proliferation
and differentiation is driven by the cleaved complement product
C3a (89), which is induced in macrophages upon immune complex
stimulation (90). Evidently, anti-spike IgG with the aberrant gly-
cosylation together with the predisposed pro-inflammatory milieu
in the disease-prone patients could promote this uncontrolled
vicious circle initiated by pulmonary macrophages. In light of these
altered effector functions by immune complexes in various cell
types in COVID-19, we propose that FcR-dependent activation is
associated with disease severity on a systemic level instead of only
in the (peri-)pulmonary region.

Even though IgG is the most prominent subtype present in the
late stage of SARS-CoV-2 infection, other antibody isotypes such as
IgA and IgM also shape the immune response after seroconversion.
Particularly, IgA antibodies can promote the inflammatory response
based on glycosylation pattern changes (91, 92). The detailed
molecular mechanism of how different isotypes influence the
SARS-CoV-2 specific immune response are currently still under
investigation and out of the scope of this study. However, because

most activating FcRs in various immune cell types are dependent
on downstream signaling through SYK, SYK inhibition could provide
additional benefits against antibody-dependent inflammation
beyond the antibody isotypes and cell types tested in this article
(93, 94).

Although our data suggest SYK inhibitors are promising candi-
dates for COVID-19 therapeutics, targeting other kinases in the FcγR
signaling cascade did not yield similar results. PI3K is a group of
signal transducer enzymes downstream of the FcγR-SYK pathway.
Several studies have proposed the therapeutic potential of PI3K
inhibitors in preventing uncontrolled inflammation and coagulation
complications in COVID-19 patients (95, 96). However, our data in-
dicate that PI3K inhibitors are less potent and efficacious than SYK
inhibitors. The concentration required to reach 80% inhibition of
anti-spike-dependent IL-6 bymacrophages is high and can affect cell
viability. Our observations of PI3K-induced effects on cell viability are
in line with the already known problem of not fully studied early and
late onset toxicity mechanisms of this class of drugs. In several
clinical cases, the drug toxicity led to development of fatal adverse
effects during treatment such as skin toxicity, autoimmune dis-
function, hypertension, and hyperglycemia (97, 98).

Furthermore, PI3K-γ/δ inhibitor duvelisib can induce macro-
phage repolarization toward a more pro-inflammatory phenotype
in vivo (99). We also observed this pro-inflammatory activation by
duvelisib in poly(I:C)-only conditions. Interestingly, in the presence
of spike–IgG immune complexes, duvelisib suppresses IL-6 pro-
duction by macrophages. As PI3K-δ-specific inhibitor idelalisib
does not exert this differential regulation between TLR-dependent
and anti-spike-dependent inflammation, the role of PI3K-γ is of
great interest for further investigation.

In addition to the anti-inflammatory effects, blocking FcγR sig-
naling in alveolar macrophages could halt disease progression
through other mechanisms. Recent evidence shows that FcγRs
mediate SARS-CoV-2 uptake by monocytes and tissue macro-
phages, which leads to pyroptosis and inflammasome activation
that aborts virus proliferation, but aggravates systemic inflam-
mation (100, 101, 102). As both SYK inhibitors fostamatinib and
entospletinib are capable of blocking phagocytosis (103, 104),
whether these compounds can curb SARS-CoV-2 uptake and
subsequent pyroptosis in COVID-19 is of interest for further
exploration.

A limitation of this study is that the used in vitro assay did not
include IgG-opsonized cells that have been infected with live SARS-
CoV-2. Yet, previous studies have indicated that IgG immune
complexes that are generated with either plate-coated or cell-
expressed spike proteins induce very similar inflammatory re-
sponses by human macrophages (33).

In conclusion, we show that small molecule SYK inhibitors spe-
cifically counteract the anti-spike-associated hyperinflammation
while simultaneously preserving anti-viral immunity. We further
demonstrate that entospletinib, the best candidate drug of this
screening, may rescue anti-spike-induced endothelial barrier dis-
ruption and platelet adhesion. Moreover, we show that SYK inhibitors
dampen inflammation triggered by different VOCs. Hence, entos-
pletinib serves as a potential treatment option for halting COVID-19
progression independent of the virus variants. In conjunction with
additional emerging evidence indicating the beneficial effect of
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another SYK inhibitor fostamatinib, our work provides evidence for
pursuing clinical trials to investigate repurposing entospletinib for
counteracting COVID-19 pathology in severely ill patients.

Materials and Methods

Human subjects

Buffy coats were purchased from Sanquin Blood Supply in
Amsterdam. All healthy donors provided written informed consent
before blood donation. HPMVECs were collected from lung tissue
obtained as waste material from a lobectomy performed at the
Amsterdam UMC (location VU University Medical Center). Primary
alveolar macrophages were obtained from broncho alveolar lavage

fluid as waste material from the ongoing DIVA study (Netherlands
Trial Register: NL6318; AMC Medical Ethical Committee approval
number: 2014_294). All volunteers of the DIVA study provided
written consent form. The severe COVID-19 serum samples were
collected by the Amsterdam UMC COVID19 Biobank according to
approved protocols and in accordance with the Declaration of
Helsinki.

MDAMs

MDAMs were generated as previously described (33). In short, CD14+

monocytes were isolated by Lymphoprep (Stemcell) isolation fol-
lowed by CD14 magnetic beads purification via the MACS cell
separation system (Miltenyi). The resulting monocytes were then
differentiated with 50 ng/ml human M-CSF (Miltenyi) for 6 d in

Key resources table.

Reagent or resource Source Identifier

Antibodies

COVA1-18 WT P.J.M Brouwer et al (105) doi:10.1126/science.abc5902

COVA1-18 low fuc/high gal Hoepel et al (33) doi:10.1126/scitranslmed.abf8654

COVA1-16 P.J.M Brouwer et al (105) doi:10.1126/science.abc5902

Biological samples

Severe COVID-19 patient serum Amsterdam UMC COVID19 Biobank N/A

Primary alveolar macrophages DIVA Study NL6318

Chemicals, peptides, and recombinant proteins

Human M-CSF Miltenyi Biotec Cat#130-096-491

Recombinant human IL-10 protein R&D Systems Cat# 217-IL-025/CF

Recombinant SARS-CoV2-spike Wuhan Hu-1 protein T.Caniels et al (60) GenBank accession MN908947.3; doi:10.1126/sciadv.abj5365

Recombinant SARS-CoV2-spike B.1.1.7 protein T.Caniels et al (60) doi:10.1126/sciadv.abj5365

Recombinant SARS-CoV2-spike B.1.351 protein T.Caniels et al (60) doi:10.1126/sciadv.abj5365

Recombinant SARS-CoV2-spike P.1 protein T.Caniels et al (60) doi:10.1126/sciadv.abj5365

Recombinant SARS-CoV2-spike B.1.617.2 protein M. van Gils et al (61) doi:10.1371/journal.pmed.1003991

Dexamethasone Merck Cat#D1756-25mg

Entospletinib (GS-9973) Selleckchem.com Cat# S7523

R406 Selleckchem.com Cat#S1533

Aleplisib (BYL719) Selleckchem.com Cat#S1815

Idelalisib MedChemExpres Cat#HY-13026

Duvelisib MedChemExpres Cat#HY-17044

polyinosinic:polycytidylic acid (poly(I:C)) Sigma-Aldrich Cat#P1530

Critical commercial assays

CD14 MicroBeads, human Miltenyi Biotec Cat#130-050-201

ELISA MAX Standard Set Human IL-6 BioLegend Cat#430501

Software and algorithms

GraphPad Prism version 9.4.0 GraphPad Software www.graphpad.com

R (v.4.1.3) R Core Team (2022) https://www.R-project.org/

R package drc Ritz et al (106) doi:10.1371/journal.pone.0146021

R package dr4pl An et al (107) doi:10.32614/RJ-2019-003
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Iscove’s Modified Dulbecco’s Medium (Gibco) containing 5 % fetal
calf serum (CAPRICORN) and gentamycin (Gibco). Total culture
medium was refreshed after 3 d of culture. On day 6, M-CSF-
differentiated macrophages were primed with 50 ng/ml IL-10
(R&D Systems) for 24 h. For further stimulation, cells were de-
tached from the culture plates using TrypLE Select (Gibco).

Coating

Stabilized recombinant SARS-CoV-2 spike protein and monoclonal
antibodies (COVA1-16 and COVA1-18) were generated as previously
described (60, 61, 105). To form immune complexes, 2 μg/ml spike
protein diluted in PBS was incubated overnight on 96-well high-
affinity plates (Nunc). To prevent unspecific binding, the plates were
subsequently blocked with 10% FCS in PBS for 1 h at 37°C. After
blocking, plates were incubated for 1 h at 37°C with diluted serum
(2% in PBS) from severe COVID19 patients (Amsterdam UMC COVID19
Biobank) or 2 μg/ml monoclonal antibodies.

Cell stimulation and inhibitor treatment

Selective small molecule inhibitors specifically against the SYK/
PI3K signaling pathway were investigated (108). For repurposing
purpose, only approved or investigational compounds in phase-III
clinical trials were used in the screening assay. All inhibitors
(dexamethasone [D1756; Merck], entospletinib [S7523; Selleckchem],
R406 [S1533; Selleckchem], alpelisib [S2814; Selleckchem], idelalisib
[HY-13026; MedChemExpress], duvelisib [HY-17044; MedChemEx-
press], were purchased in powdered form and dissolved according
to the distributor’s instructions). Macrophages were preincubated
with inhibitors (or DMSO as a control) for 30 min at 37°C. After
preincubation, macrophages were stimulated with 20 μg/ml poly-
inosinic:polycytidylic acid (poly(I:C), Sigma-Aldrich) and seeded in a
density of 50,000 cells/well in pre-coated 96-well plates in 200 μl/well
medium.

Enzyme-linked immunosorbent assay

To measure the IL-6 production, the supernatants of the stimulated
cells were harvested after 24-h incubation. IL-6 concentration was
determined using antibody pairs from U-CyTech Biosciences (Hu-
man IL-6 ELISA, CT744-20) or Biolegend (ELISA MAXTM Standard Set
Human IL-6, 430501).

Endothelial barrier function

Pulmonary microvascular endothelial cells (HPMVECs, passages
4 to 6) were seeded 1:1 in 0.1% gelatin-coated 96-well ibidi culture
slides (96W10idf PET; Applied BioPhysics) for electrical cell-
substrate impedance sensing, as previously described (109). In
short, HPMVECs were maintained in culture in Endothelial Cell
Medium (ScienCell) supplemented with 1% penicillin–streptomycin,
1% ECGS, 5% FCS, and 1% NEAA (Biowest). From seeding onward,
electrical impedance was measured at 4,000 Hz every 5 min.
HPMVECs were grown to confluence. After 72 h, ECM was removed
and replaced by either complete ECM with DMSO or 1 μM entos-
pletinib. After 2.5 h of pretreatment, the medium was removed and

replaced by the macrophage-conditioned media stimulated for 6 h
as described above with poly(I:C) or in combination with patient
serum. Three technical replicatemeasurements were performed for
each condition. For every experiment, HPMVECs and macrophages
obtained from different donors were used.

Platelet adhesion on HPMVEC under flow

HPMVECs (passage 4 to 6) were seeded in 0.1% gelatin-coated six-
channel μ-Slide VI 0.4 ibiTreat flow slides (#80606; ibidi) and cul-
tured for 7 d. HPMVECs were preincubated for 2.5 h with complete
ECM with DMSO or 1 μM entospletinib followed by 24-h treatment
with macrophage-conditioned media as described above. On the
day of perfusion, platelets were isolated from citrated blood from
healthy volunteers, as previously described (110). Platelets were
perfused for 5 min. After then, the phase-contrast and fluorescent
images were taken using a 20× phase-contrast objective with an
Etaluma LS720 microscope. Platelet adhesion was quantified in
ImageJ (v. 1.53) by determining the platelet-covered area per field of
view.

In vitro thrombus formation

Blood samples were obtained from healthy donors that had given
informed consent and using procedures approved by the University
of Reading Research Ethics Committee and collected into vacu-
tainers containing 3.8% (wt/vol) sodium citrate. Thrombus for-
mation experiments were performed using microfluidic flow chips
(Vena8; CellixLtd) coated with 5 μg/ml recombinant SARS-CoV-2
spike protein for 60min at 37°C, washed, and then blocked with 10%
FCS for 1 h at 37°C. The slides were then washed and treated with
10 μg/ml wildtype or lowly fucosylated and highly galactosylated
COVA1-18 antibodies for 1 h at 37°C followed by 20 μg/ml vWF
(Abcam) for 1 h. Thrombus formation was measured by perfusing
citrated whole blood treated with 20 μg/ml vWF and either vehicle
(DMSO) or entospletinib (1 μM) for 1 h through the flow chambers
at 1000s-1 for 6min before fixing with 10% formyl saline, staining with
2 μM DiOC6, and then imaged by acquiring z-stacks using the 20×
objective lens of a confocal Ti2 fluorescence microscope (Nikon).

Calcein AM–propidium idodite (PI) cell membrane integrity assay

MDAMs were cultured in presence of the selected Syk or PI3K in-
hibitors for 24 h. After the inhibitor treatment, the medium was
replaced with serum-free IMDM containing 1 μM Caclein-AM (56496-
20X50UG; Sigma-Aldrich) and 3 μM PI reagent (P4170; Sigma-
Aldrich). After 30 min incubation under culture conditions, mem-
brane integrity and extracellular DNA content were determined by
measuring fluorescence intensities at Ex/Em = 490/520 nm (Calcein
AM) and Ex/Em = 530/620 nm (PI).

Quantification and statistical analysis

Statistical significance of the data was performed in GraphPad
Prism 9.4.0 (GraphPad). For t tests comparing two sets of mea-
surements, data were first examined with D’Agostino–Pearson
normality test with α = 0.05 followed by paired or unpaired t tests
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according to the experiment design. The statistical examinations
applied for each figure are stated in the legends. The half-maximal
inhibitory concentration (IC50) calculation was conducted in R
(v.4.1.3) environment with R packages drc (106) and dr4pl (107).

Data Availability

Further information and requests for data, resources, and reagents
should be directed to and will be fulfilled by the corresponding
author, Jeroen den Dunnen (j.dendunnen@amsterdamumc.nl). All
data and codes reported in this article will be shared upon request.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202302106.
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