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The Sachdev-Ye-Kitaev (SYK) model shows chaotic behavior with a maximal Lyapunov exponent. In
this paper, we investigate the four-point function of a SYK-type model numerically, which gives us access
to its Lyapunov exponent. The model consists of two sets of Majorana fermions, called A and B, and the
interactions are restricted to being exclusively pairwise between the two sets, not within the sets. We find
that the Lyapunov exponent is still maximal at strong coupling. Furthermore, we show that even though the
conformal dimensions of the A and B fermions change with the population ratio, the Lyapunov exponent
remains constant, not just in the conformal limit where it is maximal, but also in the intermediate and weak
coupling regimes.
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I. INTRODUCTION

Over the last decade, the Sachdev-Ye-Kitaev (SYK)
model has been established as a paradigmatic model
accounting for a variety of phenomena ranging from
aspects of the physics of black holes to non-Fermi liquids
[1–5]. There exist two main variants of this model in the
literature: one that is formulated in terms of N “complex”
Dirac fermions and another one written in terms of N “real”
Majorana fermions. In both cases, the fermions interact via
random four-body terms. Irrespective of the formulation,
one of the main features of the model is that it exhibits
emergent conformal symmetry in the infrared in the strong
coupling and large-N limit. The scaling dimension of
the fermion correlation function is given by Δ ¼ 1

4
[6,7],

indicative of strong interactions (for comparison, a free
fermion has scaling dimension 1=2).
There has been a variety of proposals for the creation of

SYK-like models in laboratory setups. They range from
mesoscopic systems hostingMajorana modes [8,9] or Dirac
fermions in graphene flakes [10,11] to ultracold atomic
systems [12,13]. A comprehensive review of such possible
setups can be found in Refs. [1,3] and references therein.
The SYK model involves three important timescales,

as shown in Fig. 1 (henceforth, we measure time t in units
of β and set ℏ ¼ kb ¼ 1). They are called the Planckian
time [14–17] tP, the Ehrenfest time [18–22] tE, and the
Heisenberg time tH. The shortest timescale tP is set by the
condition tP=β ≈ 1. For times shorter than tP, we expect

nonuniversal physics determined by processes at the cutoff
scale. For tP < t < tE, the dynamics is governed by the
conformal mean-field theory. The chaotic behavior asso-
ciated with Lyapunov growth [23,24] in this regime is due
to leading irrelevant operators of order 1=N beyond mean
field. The Ehrenfest time is given as tE=β ≈ lnN, where N
is the number of fermions. The dynamical behavior for
tE < t < tH ceases to be described by mean-field theory
plus corrections and the associated description is in terms
of the Schwarzian theory of black holes. Eventually,
there is the Heisenberg time, tH=β ≈ eN . For times longer
than tH, the dynamics is described by random matrix
theory (RMT).
In this paper we study a related model, introduced in

Refs. [25,26], which emerges as a Majorana variant of the
SYK model. It is called the bipartite SYK (or b-SYK)
model and, as explained in Sec. II, can be seen as a
restricted version of the standard SYK model. Incidentally,
Majorana or complex fermion versions of similar models
also appear as a natural way to incorporate internal
symmetries in SYK models [27–29] or to couple two or

FIG. 1. The SYK model exhibits multiple characteristic time-
scales and with that associated regimes of dynamics. Crucial
quantities in distinguishing the different limits are the number of
fermions N and coupling strength βJ. This paper studies the
region characterized by Lyapunov growth.
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more SYK models [30]. We are interested in times shorter
than the Ehrenfest time tE and mostly focus on the chaotic
behavior. Furthermore, we are interested in studying the
growth of the four-point function not just in the full
conformal limit at strong coupling, but also at interme-
diate and weak couplings, as these might be relevant for
experimentally achievable values of coupling and temper-
ature, as the b-SYK model has been shown to be realizable
in a laboratory by straining a real material in Ref. [26].
We show that the Lyapunov exponent is maximal in

the conformal limit, just as for the SYK model [6,23,24].
The behavior of the chaos exponent for a general number
of Majorana fermions in the A and B subsets of the
b-SYK model at finite coupling is unanswered in the
existing literature and is the subject of the present study.
We use numerical methods to solve the Schwinger-Dyson
and Bethe-Salpeter equations that are needed to extract
Green’s functions and Lyapunov exponents, respectively.
We find that the b-SYK model ratio of A and B Majoranas
does not influence the Lyapunov exponent for all values
of coupling.
The present paper is organized as follows: In Sec. II,

we introduce the b-SYK model and comment on how it
is related to more common variants of SYK models. In
Sec. II B, we discuss the two-point functions in and
away from the conformal limit. In Sec. III, we compute
the four-point function and introduce the equations that
allow us to extract the Lyapunov exponents. In Sec. IV, we
numerically find the Lyapunov exponents and show how
they depend on the population balance between A and B
Majorana fermions.

II. MODEL AND METHODS

A. The bipartite SYK model

The b-SYK model consists of two sets of Majorana
fermions, labeled A and B, with random interactions
between pairs of A and pairs of B fermions. Interactions
between only A or only B fermions are absent, and the
fermion parity in both the A and B subsets is conserved.
The Hamiltonian reads

H ¼ 1

4

X
ij;αβ

JijαβγAi γ
A
j γ

B
α γ

B
β : ð1Þ

To distinguish the two sets of fermions we use latin indices
i, j for the A-flavor Majorana fermions (γAi ), and greek
indices α, β for B-flavor Majorana fermions (γBα ).
We allow for NA Majorana fermions of the A type and

NB of the B type. The ratio κ ¼ NA=NB accounts for the
relative size of the two sets. The couplings Jijαβ are random
and only act between sets, not within each set. Concerning
the normalization of the interaction strength, we follow the
convention of Gross and Rosenhaus [31] and choose the
variance of the coupling constant to be [32]

hJijαβJi0j0α0β0 i ¼
J2ðNA þ NBÞ

N2
AN

2
B

δi;i0δj;j0δα;α0δβ;β0 :

In this work, we will define N as the geometric mean
of NA and NB, N ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

NANB
p

. We can then rewrite
NAþNB
N2

AN
2
B
¼ ð ffiffiffi

κ
p þ 1ffiffi

κ
p Þ=N3, which makes the symmetry

between κ and 1=κ apparent. For clarity, this convention
differs from the one used in Refs. [25,26], where
hJijαβJi0j0α0β0 i ¼ J2

2
ffiffiffiffiffiffiffiffiffi
NANB

p
3 δi;i0δi;i0δj;j0δα;α0δβ;β0 .

The model has a well-defined large-N conformal limit
upon taking NA;NB → ∞, keeping the ratio κ ¼ NA

NB
fixed.

Rather than a single scaling dimension as in the standard
SYK model, the two sets of Majorana fermions, A and B,
have distinct scaling dimensions,ΔA andΔB. These depend
on the parameter κ, cf. Ref. [25], as

κ ¼ 2ΔA

1 − 2ΔA

�
1

tan ðπΔAÞ
�

2

: ð2Þ

For κ ¼ 1we findΔA ¼ ΔB ¼ 1=4, just like in the standard
SYK model, although the model is still different since not
all Majorana fermions interact with each other. For other
values of κ, both scaling dimensions interpolate between 0
and 1=2 while always fulfilling ΔA þ ΔB ¼ 1=2. Tunable
scaling dimensions have also been found in other variants
of the SYK model, e.g., Refs. [28,33–35].

B. Schwinger-Dyson equations

For the later numerical analysis to follow, one main input
is required, Green’s functions. Hence we recapitulate
the crucial steps in solving the model in the large-N limit
via the associated Schwinger-Dyson equations. For more
details on the procedure in the present context see, e.g.,
Ref. [25]. In this part of the paper, the focus is more on
finding a reliable numerical implementation of the Green’s
function that allows one to access the conformal limit.
The crucial step is to consider the mean-field or large-N
limit. Compared to the conventional SYK model, we have
to modify the limit slightly. We take NA;NB → ∞ while
keeping κ ¼ Na=NB fixed. As in the conventional case,
there is one orderOð1Þ diagram per species of fermions, the
so-called “melon” diagrams. These are shown in Fig. 2.
The diagrams contain the coupling J2 to all orders and
exhibit an emergent conformal symmetry in the infrared, as
explained below.

1. Imaginary time formalism

The discussion of equilibrium properties of the
Schwinger-Dyson (SD) equations is easiest carried out
in the finite-temperature imaginary time formalism. The
inverse temperature is denoted as β ¼ 1=T (ℏ ¼ kB ¼ 1).
For the two species, the SD equations read
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GA=Bð{ωnÞ ¼
1

−{ωn − ΣA=Bð{ωnÞ
; ð3Þ

where the respective self-energies are given by

ΣAðτÞ ¼
J2

2

�
1þ 1

κ

�
GAðτÞðGBðτÞÞ2; ð4aÞ

ΣBðτÞ ¼
J2

2
ð1þ κÞGBðτÞðGAðτÞÞ2: ð4bÞ

Here ωn ¼ ð2nþ 1ÞπT for integer n are the fermionic
Matsubara frequencies, whereas τ denotes imaginary time.
The Fourier transform between Matsubara frequencies and
imaginary time is defined according to

Gð{ωnÞ ¼
Z

β

0

e{ωnτGðτÞdτ; ð5aÞ

GðτÞ ¼ 1

β

X
ωn

e−{ωnτGð{ωnÞ: ð5bÞ

One can show analytically that the finite-temperature
imaginary time Green’s functions are given by [25]

GAðτÞ ¼ asgnðτÞ
�

π

β sinðπτβ Þ
�

2ΔA

;

GBðτÞ ¼ bsgnðτÞ
�

π

β sinðπτβ Þ
�

2ΔB

; ð6Þ

where for a given κ, the scaling dimensions ΔA and ΔB are
related according to Eq. (2).
As far as the overall constants a and b are concerned, it is

found that only the product ab is uniquely determined and

not the numbers a and b themselves. When we assume that
the self-energy dominates over the free propagator, we can
use the conformal ansatz in Eqs. (4) and (3) for each of the
A and B flavors, respectively. Naively, we would expect
that the two equations are sufficient to constrain the two
unknowns a and b, respectively, but it turns out the two
equations are identical, and only the product is constrained.
The result is

1

a2b2
¼ J2

2

�
1þ 1

κ

�
2π

cotðπΔAÞ
1 − 2ΔA

ð7Þ

¼ J2

2
ð1þ κÞ2π cotðπΔBÞ

1 − 2ΔB
: ð8Þ

However, in the real system, at short times, the conformal
ansatz is no longer valid, and the free propagator wins over,
and GA=BðτÞ should go as 1

2
sgnðτÞ. This is sufficient to

uniquely constrain the short time dynamics of the model.
Numerically, we solve the Schwinger-Dyson equations

in a self-consistent manner by repeated evaluation of
Green’s functions and self-energies paired with an itera-
tion on an imaginary time grid running from 0 to β.
Equations (5a) and (5b), and similar for the self-energies,
here are recast in the form of discrete Fourier transforms,
for which there are efficient numerical algorithms such as
the fast Fourier transform. To achieve convergence, we
use a weighted update of Green’s functions according to
Gnew ¼ x

−{ωn−Σ
þ ð1 − xÞGold with a small mixing param-

eter x; here Σð{ωnÞ denotes the associated self-energy
calculated from Gold of the previous iteration.
In Fig. 3 we show the Majorana Green’s functions

GA=BðτÞ for βJ ¼ 10 and for a variety of values of κ. By
fitting the numerically obtained GA=B to Eq. (6) one can
see that the scaling dimensions indeed match the con-
formal results. Overall, we find excellent agreement in the
region 0 ≪ τ ≪ β.

FIG. 3. Finite-temperature Majorana Green’s functionsGA=BðτÞ
for βJ ¼ 10 and several values of κ. Taking κ → 1=κ exchanges
the A and B species, hence we plot only κ ≥ 1.

FIG. 2. The diagrams that contribute to the self energies of A
(top) and B (bottom) Majoranas in the large-N limit. Wiggly
(solid) lines denote A (B) Majorana propagators, and the dotted
line indicates a quenched disorder average ∼J2.
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C. Real time formalism

The main goal of this paper is to numerically study
the out-of-time-ordered correlator (OTOC) in the b-SYK
model. To compute it, we need the real time retarded
Green’s function as input. We first note the Dyson equation
for the retarded propagator [27,29,36,37]

ðGRðωþ {δÞÞ−1 ¼ ωþ {δ − ΣRðωþ {δÞ: ð9Þ

We drop the A=B labels, unless explicitly required. The
spectral decomposition for Green’s functions reads

GðzÞ ¼
Z

∞

−∞

dΩ
π

ρðΩÞ
z − Ω

; ð10aÞ

ρðωÞ ¼ −ImfGRðωþ {δÞg: ð10bÞ

Since the self energies are well defined in imaginary
time according to Eq. (4), we can use Eqs. (5a), (5b), and
(10) to express Σð{ωnÞ in terms of the spectral function.
The analytical continuation is then done by replacing
{ωn → ωþ {δ, resulting in

ΣR
Bðωþ iδÞ ¼ J2

2
ð1þ κÞ

Z Z Z
dω1

π

dω2

π

dω3

π
ρAðω1ÞρAðω2ÞρBðω3Þ

½nðω1Þnðω2Þnðω3Þ þ nð−ω1Þnð−ω2Þnð−ω3Þ�
ωþ {δ−ω1 −ω2 −ω3

; ð11Þ

where nðωÞ is the Fermi-Dirac distribution function. The expression for ΣA is obtained by changing A ↔ B, and κ ↔ 1=κ.
In principle, the Schwinger-Dyson equations can be solved iteratively forGR

A=BðωÞ and ρA=BðωÞ. However, nested numerical
integration is both highly inefficient in its usage of resources and numerically unstable. Instead, it is beneficial to rewrite
it using the following decomposition which allows an implementation using only the discrete Fourier transform,
cf. Refs. [29,38]. We can express the self-energies as

ΣR
Aðωþ {δÞ ¼ −{

J2

2

�
1þ 1

κ

�Z
∞

0

dt e{ðωþ{δÞt½nþA ðtÞnþB ðtÞnþB ðtÞ þ n−AðtÞn−BðtÞn−BðtÞ�; ð12Þ

ΣR
Bðωþ {δÞ ¼ −{

J2

2
ð1þ κÞ

Z
∞

0

dt e{ðωþ{δÞt½nþB ðtÞnþA ðtÞnþA ðtÞ þ n−BðtÞn−AðtÞn−AðtÞ�; ð13Þ

where the function n�A=BðtÞ is defined through

n�A=BðtÞ ¼
Z

∞

−∞

dω1

π
e−{ω1tρA=Bðω1Þnð�ω1Þ: ð14Þ

The retarded Green’s function and the corresponding
spectral functions obtained from the real time/frequency
iteration of the above SD equations are shown in Fig. 4.

III. THE FOUR-POINT FUNCTION

We now turn our attention to the four-point correlators of
the b-SYK model and in particular to the out-of-time-
ordered correlators. Before we have a look into OTOCs
themselves, we first discuss conventional four-point func-
tions. In imaginary time, a general four-point function of
Majoranas has the form [31]

FIG. 4. Left: retarded Green’s functions GA=B
R ðtÞ for βJ ¼ 10. The characteristic decay timescale is set by the conformal dimension

ΔA;B. Right: the corresponding spectral functions, showing a strong dependence on κ.
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F ðτ1; τ2; τ3; τ4Þ ¼
1

N2

X
ijkl

D
γf1i ðτ1Þγf2j ðτ2Þ; γf3k ðτ3Þγf4l ðτ4Þ

E
:

ð15Þ
The disorder averaging and the large-N limit taken together
restrict the contributions to the four-point functions to stem
from what are known as ladder diagrams. These can be

categorized into four channels, depending on the flavors of
the incoming and outgoing pairs of fermion propagators:
AA-AA, AA-BB, BB-AA, and BB-BB. A diagram with
nþ 1 rungs can be obtained from a diagram with n rungs
by convolution with a kernel [23]. In the vicinity of the
Ehrenfest time tE, this can be cast as a self-consistent
Bethe-Salpeter equation according to

F αβðτ1; τ2; τ3; τ4Þ ¼
Z

dτdτ0Kαγðτ1; τ2; τ; τ0ÞF γβðτ; τ0; τ3; τ4Þ; ð16Þ

where γ is summed over, and the Kernel matrix is given as (in imaginary time and a regularized version in real time,
respectively)

Kαγðτ1 � � � τ4Þ ¼ −J2
� 1

2
ð1þ 1

κÞGAðτ13ÞGAðτ24ÞðGBðτ34ÞÞ2 ð1þ 1
κÞGAðτ13ÞGAðτ24ÞðGAðτ34ÞGBðτ34ÞÞ

ð1þ κÞGBðτ13ÞGBðτ24ÞðGAðτ34ÞGBðτ34ÞÞ 1
2
ð1þ κÞGBðτ13ÞGBðτ24ÞðGAðτ34ÞÞ2

�
; ð17Þ

KR
αγðt1 � � � t4Þ ¼ J2

� 1
2
ð1þ 1

κÞGA
Rðt13ÞGA

Rðt24ÞðGB
Wðt34ÞÞ2 ð1þ 1

κÞGA
Rðt13ÞGA

Rðt24ÞðGA
Wðt34ÞGB

Wðt34ÞÞ
ð1þ κÞGB

Rðt13ÞGB
Rðt24ÞðGA

Wðτ34ÞGB
Wðt34ÞÞ 1

2
ð1þ κÞGB

Rðt13ÞGB
Rðt24ÞðGA

Wðt34ÞÞ2
�
: ð18Þ

The indices α, β, γ refer to the flavors of the Majorana
propagators on the external legs. For example, F00 refers to
the AA-AA scattering and F10 refers to BB-AA scattering.
A diagrammatic representation of the matrix-kernel equa-
tion (16) is shown in Fig. 5.
Quantum chaos is characterized by the Lyapunov expo-

nent. Instead of looking at the real time version of Eq. (15),
we consider a regularized version according to

Fabðt1;t2Þ¼
1

N2

X
a;b

Trf ffiffiffi
ρ

p ½γaðt1Þ;γbð0Þ�
ffiffiffi
ρ

p ½γaðt2Þ;γbð0Þ�g :

ð19Þ

This regularized OTOC has the thermal density matrix ρ
of the thermal average split evenly between pairs of
Majorana operators, and brackets ½·; ·� denote commutators.
In diagrammatic language this means that the four-point
function is evaluated on a double-fold Schwinger-Keldysh
contour with insertions of the Majorana operators as shown
in Fig. 6.

This is a regularization not of the UV, but of the IR. Details
on which of the many possible choices of regularization and
Schwinger-Keldysh contour one might pick can be found in
Ref. [39]. The key point is that, for massless theories, which
the SYK universality class belongs to, all different regula-
rizations give the same exponential growth, even though the
values of the actual OTOCs may differ. For the choice in

FIG. 5. Diagrammatic representation of the matrix-kernel equation (16) at first order. Repeated application of the kernel K generates
all terms in F .

FIG. 6. Schwinger-Keldysh contour with two temporal folds
(excursions to time t) and Majorana operator insertions (red
crosses) that represents the regularized OTOC in Eq. (19).
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Eq. (19), the four-point function in questionwill begenerated
by ladder diagrams with retarded or advanced Green’s
functions on the rails and so-called Wightman functions
GWðtÞ ¼ Gðβ

2
þ itÞ on the rungs. Formally, the latter are

obtained by an analytic continuation of the imaginary time
Green’s function noted in Sec. II B 1. This analytic continu-
ation can be performed with the use of the spectral decom-
position, also known as a Hilbert transform. In total, one
obtains the result

GWðωÞ ¼ ρðωÞ
2 cosh βω

2

: ð20Þ

The late time exponential growth of the OTOC [24] can
then be fit to the Lyapunov ansatz

F αβðt1; t2Þ ¼ eλαβ
ðt1þt2Þ

2 fαβðt12Þ: ð21Þ

As opposed to the standard SYK model, each of the four
different scattering channels might ostensibly have its own
Lyapunov exponent. It turns out that this is not the case. A
detailed technical explanation involving the consistency of
the Lyapunov ansatz with a single exponent λ is presented
in Appendix A.
A simple qualitative argument for a single Lyapunov

exponent is that the scattering channels all feed back into
each other. The AA-AA scattering amplitude also passes
through the AA-BB channel and then back into the BB-AA
channel. This imposes a sense of self-consistency between
the scattering channels, which in turn forces them to have
the same late time Lyapunov growth.

A. Conformal limit

Taking the ansatz that all four Lyapunov exponents λαβ
are the same, i.e., λαβ ¼ λ allows us to make an ansatz for
the growth equation. First, we will notice that the equations
for f00 and f10 decouple, and we get the same equat-
ions for the other pair f01 and f11. In the conformal limit,
following [6] we can use the conformal mapping to obtain
the retarded and Wightman Green’s functions from Eqs. (6)
to get

GA
RðtÞ ¼ 2a cosðπΔAÞ

�
π

β sinh πt
β

�
2ΔA

; ð22aÞ

GA
WðtÞ ¼ a

�
π

β cosh πt
β

�
2ΔA

; ð22bÞ

and likewise for the B-fermions. The growth ansatz can also
be made in analogy with the regular SYK case,

�
f00ðt12Þ
f10ðt12Þ

�
¼

0
B@aCa

�
π

β cosh ðt12πβÞ
�
2Δaþh

bCb
�

π
β coshðt12πβÞ

�
2Δbþh

1
CAehðt1þt2Þπβ: ð23Þ

It can be noted that Eq. (23) is a way of rewriting
Eq. (21) in a way that is convenient for the conformal
limit calculation. Ca and Cb are hitherto undetermined
constants. The equations one needs to solve are then (the
factors of π

β have been chosen appropriately so that they
scale away)

ehðt1þt2Þf00ðt12Þ ¼
J2

2

�
1þ 1

κ

�Z
dt3dt4½GA

Rðt13ÞGA
Rðt24ÞGB

Wðt34Þ2f00ðt34Þ

þ 2GA
Rðt13ÞGA

Rðt24ÞGB
Wðt34ÞGA

Wðt34Þf10ðt34Þ�ehðt3þt4Þ; ð24aÞ

ehðt1þt2Þf10ðt12Þ ¼
J2

2
ð1þ κÞ

Z
dt3dt4½GB

Rðt13ÞGB
Rðt24ÞGA

Wðt34ÞGB
Wðt34Þf00ðt34Þ

þ 2GB
Rðt13ÞGB

Rðt24ÞGA
Wðt34Þ2f10ðt34Þ�ehðt3þt4Þ: ð24bÞ

The way to solve these equations is to first represent
the t34 part as an inverse Fourier transform, which factor-
izes the integral into a function that depends only on t3
and another function that depends only on t4, which can
be separately integrated. One can express the Fourier
transforms for powers of hyperbolic sines and cosines as
analytic continuations of the Euler β function,

Z
∞

−∞
dt eiωt

1

ðcosh tÞα ¼ 2α−1B

�
α − iω

2
;
αþ iω

2

�
; ð25aÞ

Z
∞

−∞
dt eiωt

θðtÞ
ðsinh tÞα ¼ 2α−1B

�
α − iω

2
; 1 − α

�
: ð25bÞ

The result then is that

Ca ¼ MðCa þ 2CbÞ; ð26aÞ

Cb ¼ M0ð2Ca þ CbÞ; ð26bÞ

where
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M ¼ ð1 − 2ΔAÞ sinð2πΔAÞ
π

ðΓð1 − 2ΔAÞÞ2Γð2ΔA þ hÞ
Γð2 − 2ΔA þ hÞ ;

ð27Þ

M0 ¼ ð1 − 2ΔBÞ sinð2πΔBÞ
π

ðΓð1 − 2ΔBÞÞ2Γð2ΔB þ hÞ
Γð2 − 2ΔB þ hÞ :

ð28Þ
Equations (26) only have a trivial solution CA ¼ CB ¼ 0

if either of the scaling dimensions are 0 or 1
2
, i.e., the

κ ¼ 0 and κ → ∞ models are not chaotic in the strictly
conformal limit.
For any other intermediate κ, even infinitesimally small,

Eqs. (26) permit a solution if

det

�
M − 1 2M

2M0 M0 − 1

�
¼ 0: ð29Þ

We have solved this equation for h and the solution found
is always h ¼ 1 for any value of κ. This means that, for
the b-SYK model, it is always possible to increase the
coupling and lower the temperature sufficiently that the
system always has a maximal Lyapunov exponent λ ¼ 2π

β .
For realistic couplings and not too low temperatures, one

needs to observe the behavior of the Lyapunov exponent
including nonconformal corrections to the Green’s func-
tion by perturbatively including the {ω term in the Dyson
equation. If the correction to the kernel is δKR, and if we
compute all the eigenvalues in the conformal limit and call
them kðhÞ, then we can Taylor expand kðhÞ about h ¼ 1.
The point is now thath ¼ 1 gives eigenvaluekðhÞ ¼ 1, sowe
say that

kð1þ δhÞ ¼ 1þ k0ð1Þδh: ð30Þ

Thus, in order to keep the kernel having eigenvalue 1, the
correction

hδKRi ¼ δhk0ð1Þ

⇒ δh ¼ hδKRi
k0ð1Þ ð31Þ

is the first nonconformal correction to the Lyapunov
exponent.

B. Numerical analysis for weak
and intermediate coupling

Rather than take this complicated approach, the weak
and intermediate coupling limits can be analyzed numeri-
cally. We can bring the kernel equation into the concise
form

fαβðωÞ ¼
				Gα

R

�
ωþ {

λ

2

�				2
�
K̃α0 � f0β þ K̃α1 � f1β

�
; ð32Þ

where additionally a Fourier transform was performed. The
ansatz function fαβðω0Þ is analyzed in frequency space, see
below. We also denote the shifted frequency ω̃ ¼ ωþ { λ

2

that enters in the retarded Green’s function. The latter is
obtained from the regular retarded Green’s function
GRðωþ {δÞ that is calculated in Sec. II C by use of the
Fourier shift theorem. The symbol ⋆ in Eq. (32) indicates
a convolution with the ansatz function fγβðωÞ. The part of
the kernel elements K̃αγðωÞ that contains the Wightman
Green’s functions is given by

K̃αβðωÞ ¼ J2
 

1
2
ð1þ 1

κÞF½ðGB
WðtÞÞ2� ð1þ 1

κÞF½ðGB
WðtÞGA

WðtÞÞ�
ð1þ κÞF½ðGB

WðtÞGA
WðtÞÞ� 1

2
ð1þ κÞF½ðGA

WðtÞÞ2�

!
; ð33Þ

where F½·� represents the Fourier transformation.
Finally, note that Eq. (32) can be thought of as an eigenvalue problem for the ansatz fαβðωÞ in frequency space ω with a

block structure α, β due to the different kernel matrix blocks according to

2
6664
f00ðωÞ
f10ðωÞ
f01ðωÞ
f11ðωÞ

3
7775¼

2
6664
jGA

Rðω̃Þj2K̃00ðω−ω0Þ jGA
Rðω̃Þj2K̃01ðω−ω0Þ 0 0

jGB
Rðω̃Þj2K̃10ðω−ω0Þ jGB

Rðω̃Þj2K̃11ðω−ω0Þ 0 0

0 0 jGA
Rðω̃Þj2K̃00ðω−ω0Þ jGA

Rðω̃Þj2K̃01ðω−ω0Þ
0 0 jGB

Rðω̃Þj2K̃10ðω−ω0Þ jGB
Rðω̃Þj2K̃11ðω−ω0Þ

3
7775
2
6664
f00ðω0Þ
f10ðω0Þ
f01ðω0Þ
f11ðω0Þ

3
7775:

ð34Þ

On the finite-frequency grid, the convolution operations naturally translate to matrix multiplications. For a solu-
tion of fαβ to exist, the matrix operator needs to have 1 as its largest eigenvalue [6,18,23]. This is equivalent to
saying that Eq. (21) is the correct form for the late time behavior of the OTOC, and the Lyapunov exponent is thus
fixed uniquely.
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IV. RESULTS

A. Analytics and numerics

We now present and discuss the results of our numerical
calculations and compare to analytically known limits. This
will reveal some limitations of the numerical method rooted
in numerous finite-size effects. From the analysis in the pre-
ceding section, we know that the Lyapunov exponent λ is
maximal in the conformal limit for all values of κ. Further-
more, we confirmed numerically that for κ ¼ 1, then λ, as a
function of J, has identical behavior as in the normal SYK
model. This behavior has previously been studied in Ref. [6].
Numerically, we studied the behavior of λ as a function of

βJ for various values of κ ¼ NA=NB. Figure 7 (left) shows
the Lyapunov exponent λ as a function of the coupling βJ for
a variety of values of κ. The different values of κ are encoded
in the color scale. We do not show values of κ > 1 because
they are equivalent to those for 1=κ by symmetry upon
exchange of the species. The figure suggests that λ for all
curveswith κ ≈ 1 are approximately the same. Smaller values
of κ seem to differ significantly in their value of λ (the gray
shaded region is affected by strong finite-size effects and the
results should not be trusted, see discussion in Appendix C).
We find that the numerics allows one to approach the fully
conformal limit of the model, meaning λ=λmax approaches 1
in the strong coupling limit for values κ ≈ 1, in agreement
with our analytical results.
For intermediate couplings βJ, which is beyond the

reach of any analytical treatment, numerical calculations
are more accurate [6]. Similar to Ref. [6], we find for this
regime of J that the Lyapunov exponent decreases follow-
ing a 1=J behavior. In total, we find that, for values of
0 ≪ κ ≤ 1, the Lyapunov exponent is mostly agnostic to
the population ratio κ.
It is instructive to analyze the κ dependence in more

detail. In Fig. 7 (right) we fix J and vary κ (or ΔA).

We observe that the value of λ is independent of κ up to
some characteristic value of κ, after which it begins to
decline (gray area). We argue that the downturn in λ is an
artifact of the numerical method we are using. Essentially
we are seeing a finite-size effect in that the time/frequency
discretization in the numerics is not fine enough. We have
checked for isolated points that the gray area can be pushed
upon increasing the resolution.
An immediate question that follows is why the finite-size

effects appear only for values of κ away from 1. This can be
understood upon considering the scaling dimensions as a
function of κ: decreasing κ increases the spread in scaling
dimensions of the A and BMajorana fermions. This implies
that one has to keep track of two time/and frequency scales
that we need to accurately capture with our numerical
frequency grid where the scaling limit of one of the two is
pushed to larger times. Getting a good resolution of that
requires a finer frequency grid at small frequencies. When κ
deviates too much from 1 this becomes increasingly costly
in terms of time/frequency steps. An extended discussion of
the finite-size effects in the two-fermion Green’s function is
given in Appendix C.

B. Discussion and conclusion

Having established that the Lyapunov exponent is
independent of κ, we can compare our results to a similar
model presented in Ref. [40]. In that case, the authors find a
Lyapunov exponent in the conformal limit which can be
tuned by adjusting the relative populations of the different
species of fermions. In our model, we find a stark contrast to
this behavior. Instead, we find that our model’s Lyapunov
exponent is completely impervious to the relative number of
fermion species. In the conformal limit, aside from showing
this result in an explicit analytical calculation, we can
motivate the result in a physical way, as a sort of “proof

FIG. 7. Left: the Lyapunov exponent as a function of the coupling strength βJ and for various values κ ¼ NA=NB. For κ > 0.7 and
βJ ≳ 300 the b-SYKmodel saturates the quantum chaos bound of λ ¼ 2π=β. The special case κ ¼ 1 has identical λ as in the SYKmodel.
Right: the Lyapunov exponent as a function κ for various values of βJ. We find that when κ ≳ 0.5 then λ is independent of κ. The
apparent downturn of the Lyapunov exponent, as a function of κ, can be attributed to the inability of the numerics when the scaling
dimensions for the two species are drastically different. In both figures, the grayed out region shows where the numerical results should
not be trusted.
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by contradiction.” If, for example, theA-flavorMajorana had
a smaller Lyapunov exponent, the diagrams contributing to
its four-point function proceed by a pathway in which they
scatter into two B-flavor Majoranas, which would then
propagatewith thegreater Lyapunov exponent, before finally
scattering back into twoA-flavorMajoranas. This forces both
flavors to have exactly the same exponent, and a mathemati-
cal version of this argument is presented in Appendix A.
The two-point function of the Majoranas are character-

ized by their scaling dimension, which is quite sensitive to
the relative population ratio κ, so one would expect that the
four-point function as characterized by the Lyapunov
exponent would depend on κ as well, but we have shown
conclusively that this is not the case for cases of strong,
intermediate, and weak coupling, which is quite surprising.
An interesting future direction of study would be to
consider what deformations should be introduced to the
theory in order to have a different Lyapunov exponent for
the two flavors of Majoranas.
The present work on the calculation of the Lyapunov

exponent in the b-SYK model shows that the features of
emergent conformal symmetry and maximal quantum
chaos of the SYK model are quite robust to the couplings
obeying additional internal symmetries. In addition to the
particular model considered here, there are many setups
where parity, charge, spin, or general flavor symmetries of
the underlying fermions carry over to the interaction matrix
elements [1,3,28,29,35]. The methods used here readily
carry over to those models and can be applied to the
calculation of Lyapunov exponents and, in general, to the
analysis of Bethe-Salpeter equations.
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APPENDIX A: MATHEMATICAL CONSISTENCY
OF THE LYAPUNOV ANSATZ

The following short consideration for the diagram piece
F 00 shows why we expect only one “global” Lyapunov
exponent for all scattering channels. The other components
of the four-point function can be treated with exactly the
same argument. The starting point is

F 00ðt1; t2Þ ¼
Z

dt3dt4K00ðt1; t2; t3; t4ÞF 00ðt3; t4Þ

þ K10ðt1; t2; t3; t4ÞF 10ðt3; t4Þ; ðA1Þ

where we use the definition

t1;2 ¼ t� 1

2
t12;

t3;4 ¼ t̃� 1

2
t34: ðA2Þ

The factors of a half were included to keep the area element
invariant under this transformation, dt3dt4 ¼ dt̃dt34. After
some algebra, for the ansatz f00 one finds

f00ðt12Þ ¼ J2
1

2

�
1þ 1

κ

�Z
dt̃dt34GR

Aðt13ÞGR
Aðt24Þ

�
1

κ
ðGW

B ðt34ÞÞ2eλ00 t̃−λ00tf00ðt34Þ þ ðGW
A ðt34ÞGW

B ðt34ÞÞeλ10 t̃−λ00tf10ðt34Þ
�
:

ðA3Þ

Now we Fourier transform according to

GW
A ðt34Þ ¼

Z
dωa

2π
e−{ωat34GW

A ðωaÞ: ðA4Þ

If we calculate a sample term f00 to illustrate the point,

f00ðωÞ ¼ J2
1

2

�
1þ 1

κ

�Z
dt12e{ωt12

Z
dt̃
Z

dt34

Z
dωa

2π
e−{ωaðt−t̃þ1

2
ðt12−t34ÞÞ

Z
dωb

2π
e−{ωbðt−t̃−1

2
ðt12−t34ÞÞ

× GR
AðωaÞGR

AðωbÞ
Z

dωc

2π

Z
dω0

2π
e−{ðωcþω0Þt34 ½K̃00ðωcÞf00ðω0Þeλ00 t̃−λ00t þ K̃10ðωcÞf10ðω0Þeλ10 t̃−λ00t�; ðA5Þ
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we notice that there are three time integrations that result
in δ functions, but four t-like variables. In the case of the
first term in the square brackets, since it only appears in
the combination ðt̃ − tÞ, this eliminates a variable, and
there are sufficient constraints to make it only depend
on ω variables. However, in the new term coming from
flavor mixing of the b-SYK model, this is not true any
more. This is a signal of a breakdown of the ansatz
Eq. (21). We thus see that for consistency we must impose
that λ00 ¼ λ10. By repeating the argument for the other
components of F , it can be shown that all Lyapunov
components should be the same, λij ¼ λ, and that there is
only one Lyapunov exponent governing the behavior of
the model.

APPENDIX B: RECOVERY OF THE MAXIMAL
LYAPUNOV EXPONENT

OF THE REGULAR SYK MODEL

At κ ¼ 1, the numerics reflect that the Lyapunov
exponent of the model is the same as the maximal value
of the regular SYK model. This can be understood by
looking at the kernel (17). At κ ¼ 1, the scaling dimensions
of both the A and B Majoranas become 1

4
, and hence

GAðτÞ ¼ GBðτÞ≡GðτÞ, the two-point function of the
regular SYK model. The kernel then factorizes into the
product of a function of the four imaginary times and a
constant matrix,

Kðτ1 � � � τ4Þ ¼ −J2Gðτ13ÞGðτ24ÞGðτ34Þ2
�
1 2

2 1

�
: ðB1Þ

The constant matrix in question has eigenvalues −1 and
þ3. The latter eigenvalue makes the kernel mathematically
the same as the one for the regular SYK model, and hence
the Lyapunov exponent should be the same. Furthermore, it
is for this reason that the special case of κ ¼ 1 allows the
kernel to be diagonalized in the basis of the conformal
blocks labeled by h. For κ ≠ 1, the four components of the
kernel transform differently under transformations of the
conformal group.

APPENDIX C: FINITE-SIZE DEPENDENCE
OF TWO-POINT FUNCTIONS
AND LYAPUNOV EXPONENTS

In this section, we briefly comment on the sensitivity
of the two-point function to the finite-size cutoffs intro-
duced when numerically solving the Schwinger-Dyson
equations for the b-SYK model. To solve the coupled
b-SYK equations [Eq. (9) and below], we discretize the
semi-infinite positive timeline by introducing a long time
cutoff T and a finite number of time steps N in between.
This introduces a discretized time step Δt ¼ T=N and
frequency step Δω ¼ 2π=T. To avoid the discontinuities

at ω ¼ 0 and t ¼ 0, we choose a time grid that is tn ¼
Δt · ðnþ 1=2Þ and similar for the frequency grid.
We can study the effects of varying T and N on GBðtÞ.
In Fig. 8 we show an example for κ ¼ 0.3, β ¼ 10, and

J ¼ 10. We fix the number of discretization points to
N ¼ 219 and plotGBðtÞ for several values of T. We have cut
off the plot at the first negative value of GB. In the plot, we
observe two qualitative effects of changing T: First, upon
increasing T, we find that the decay time (slope) of the
Green’s function increases (decreases). Thus, increasing T,
we allow GBðtÞ to behave as if the time axis was really
semi-infinite. One can perform a 1=T analysis and find that
the lines have a well-defined slope in the T → ∞ limit.
Second, which is more subtle, we see that making T too

large decreases the quality of the approximation for GBðtÞ,
with the optimal number being around T ¼ 3000. We arrive
at this number by the following argument: In the plot, we
only show GBðtÞ until the first non-negative value (at time
tC). The solid-looking wedge shape that appears just before
the first negative number is the effect of numerical
oscillations that (as G decreases) become relatively more
important. From the height where the “wedges” disappear
(black circles connected with an orange line), we can
approximate the size of this numerical error. By inspection,
we see that the smallest numerical errors (and also the
largest tC) happen for T ¼ 3000. We can understand the
loss by noting that as T grows, then (for fixed N) Δt also
grows. In the inset of the figure, one can see that, at
T ¼ 30000, Δt is so large that it even affects the continuity
of the curve GBðtÞ.
Choosing the appropriate T is thus affected by the

range of the Green’s function decay, which in turn is

FIG. 8. Green’s function GBðtÞ for κ ¼ 0.3, β ¼ 10, J ¼ 10.
The number of discretization points is fixed to N ¼ 219 and the
length of the time grid T is varied. The figure shows that
increasing T gives a better estimate of the decay time for the
Green’s function, but if T is taken to be too high, numerical
accuracy of the Green’s function is lost. The sweet spot is here at
T ¼ 3000. Black circles mark the position of (the point before)
the first negative G and is an estimate of the size of the
numerical noise.
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affected by κ, the ratio between the two species. In the
numerics that we present in the main text, we worked
with a fixed N and T, which are good when κ ≈ 1 but
not when κ is increasingly asymmetric. Errors in the

two-point function will propagate and influence the
calculations of the Lyapunov exponent and explain
why we see the downturn of λ at a characteristic value
of κ.
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