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1 Introduction

The question of whether entanglement entropy can probe different phases of a given system
has a venerable history. Starting in ref. [1], hope there was that the emergence of sharp
phase transitions in some entanglement measures as the entangling region varies could probe
the confining nature of the vacuum of a given theory. Unsettlingly, counterexamples to this
statement can be found: either because the entanglement phase transition is not realized
in some confining background [2, 3] or because a phase transition is found in non-confining
backgrounds [4, 5]. While all these works use holographic entanglement entropy (HEE) for
subsystems in their analysis, other interesting takes exist in the context of (weakly coupled)
algebraic quantum field theory, by means of relative entropy computations for regions with
non-trivial topology [6] and in the context of quantum circuits [7]. Exploration of phase
transitions in entanglement measures is also entrenched in lattice simulations for gauge
theories possessing confining vacua [8–17], an approach which chirps about the link between
the sharp entanglement phase transition and the large-N limit.
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Figure 1. Phase diagram for the entire family of gauge theories (left) and zoomed in version of the
disk around b0 ≈ 0.68 (right) that are under study in this work. The meaning of the axes is explained
in section 2. Here, the black square stands for a critical point analogous to the one expected to be
found in the QCD phase diagram, at the end of a line of first-order phase transitions. The circle, on
the other hand, indicates the position of a triple point, where three phases coexist.

To observe a phase transition in some entanglement measure is a major undertaking, not
least because the entanglement entropy itself is not an observable, but that one is instructed
to vary the subsystem size. It is more natural to fix the sample and vary control parameters,
such as the temperature of the heat bath or the magnitude of the external magnetic field. In
fact, since the entanglement entropy, as defined by the von Neumann entropy of the reduced
density matrix, matches onto the thermal entropy for large systems (see, e.g., [16] and [18] for
HEE in particular) we bank on using entanglement measures to probe phases of matter also for
finite and fixed subsystems accompanied by the standard disclaimers on meeting requirements
of the thermodynamic limit. Indeed, interesting works have investigated phases of strongly
coupled systems using holographic entanglement measures [19–23] and, for example, authors
of [19] found a way to extract the critical exponent α at the critical point from a quantity
inspired by the HEE. A direct computation on the lattice [16] showed that approximating
the entanglement entropy with the second Rényi entropy for 3d SU(2) indeed supplies the
correct value for α. Moreover, there are several works proposing entanglement entropy as a
probe of quantum critical points in the context of applied holography for condensed matter
systems (see for example refs. [24–27]).

Inspired by these partial successes, we would like to explore how far can the holographic
entanglement measures be stretched in the study of thermodynamic phases of strongly coupled
systems. We would like to emphasize that we are not focusing on the (sharp) phase transition
in the transition of the Ryu-Takayanagi (RT) surface of the HEE to another one due to
altering system size but the phase transition present in the ambient field theory whose
imprints we chase in HEE. To this end, we consider a specific family of gravity solutions to
type IIA supergravity, called B8 class, that have duals on the field theory side. Among other
interesting properties that will be reviewed later, the field theories in general possess a mass
gap but are not confining, except at a specific point in the parameter space. Actually, it
is in this setup that some of us showed in ref. [4] that, at vanishing temperature, the HEE
cannot distinguish between confining and non-confining theories.
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Remarkably, in ref. [28] is was shown that when this specific B8 class is heated up, a rich
phase diagram emerges, instituting a wonderful framework for our investigations. As seen in
figure 1, the phase diagram contains three types of phase transitions, whose nature we will
also review. Interestingly, the phase diagram is endowed with a critical point reminiscent
to the one expected to be present in the QCD phase diagram. The goal of this paper is
to extend the previous study [4] to the finite temperature case in order to understand how
much information rooted in the different types of phase transitions can be extracted from
entanglement considerations.

The paper is organized as follows. In section 2 we review the background solutions and
explain their properties; both at zero and finite temperature. In section 3 we define several
quantities, that we will use to probe the phase transitions of the background. In section 4 we
analyze the lessons that we learn when we apply the general formalism to our solutions. We
conclude with a discussion of the results in section 5 and make some general comments on
the applicability of entanglement measures in the description of strongly coupled systems
at large-N . We also comment on possible extensions of our work. Multiple appendices
gather technicalities of our computations.

2 Background solutions

Our starting point are black brane solutions constructed in ref. [28], which we review in this
section. These background solutions lead to a very rich phase structure. This fact constitutes
a unique arena where questions regarding the capability of entanglement entropy to probe
phase transitions can be addressed properly.

2.1 Supersymmetric ground states

Before discussing the finite temperature states of the theories, let us understand the ground
states of the system at vanishing temperature. These are described holographically by the
family of solutions to eleven-dimensional supergravity studied in ref. [29]. They constitute a
one-parameter family of solutions, sourced by a stack of N coincident M2-branes with an
eight-dimensional transverse space from the B8 class, originally found in refs. [30–34]. They
have Spin(7) holonomy and so they preserve N = 1 supersymmetry. There is a four-cycle
whose size remains finite at the origin, while the rest of the compact part of the geometry
collapses smoothly. This mechanism, as in the Klebanov-Strassler background [35] or in the
Witten soliton geometry [36], introduces a finite energy scale in the dual theory.

Interestingly, B8 theories do not confine in general, i.e., the quark-antiquark potential
do not show a linear growth at large separation [29]. From the gauge theory perspective,
this is probably a consequence of the presence of Chern-Simons (CS) interactions in the
theory. Indeed, it is well known that, in three dimensions, gauge bosons acquire a mass in
the presence of CS interactions. For this reason, color charges are screened and flux tubes
between quarks can break. Geometrically this is realized by the collapse of the M-theory
circle in eleven dimensions (see the argument in ref. [29]).

Even though the solutions dual to the supersymmetric ground states are regular only in
eleven dimensions, their properties are better understood in terms of their reduction to type
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Figure 2. Pictorial representation of the energy chart in the field theory space we study. The asymp-
totic UV regime is given by the 3D SYM-CSM theories. The arrows represents the renormalization
group flow from the UV to the different IR regimes. It generically drives the theory to an IR regime
where a certain energy scale emerges. Only for the extreme value b0 = 1 does the theory develop a
confining behavior, as depicted on the bottom-right corner of the plot. For b0 = 0, in contrast, the IR is
governed by an Ooguri-Park conformal fixed point. The hue or the warmth of the curves will be roughly
in one-to-one correspondence with the values of b0 on the horizontal axis. Plot lifted from ref. [4].

IIA supergravity. All the solutions have internal manifold of CP3. The metric ansatz in string
frame is chosen so that, at the UV, the metric for a stack of D2-branes will be recovered,

ds2
st = h− 1

2
(
−bdt2 + dx2

1 + dx2
2

)
+ h1/2

(
dr2

b + e2f dΩ2
4 + e2g

[(
E1
)2

+
(
E2
)2
])

, (2.1)

with dilaton eϕ = h1/4eΛ. In eq. (2.1), E1 and E2 describe a two-sphere S2 fibration over
the four sphere S4, whose volume form is dΩ2

4 (see appendix A for more details). Moreover,
we are interested in homogeneous solutions, which means that the functions b, h, f , g, and
Λ will only depend on the radial coordinate r.1 The supersymmetric ground states require
b = 1, when Lorentz invariance is restored. However, we included the blackening factor
b in our ansatz so that it will also describe plasma states corresponding to black brane
solutions with b ̸= 1, as we shall see later.

As the depiction figure 2 suggests, all the backgrounds we consider share the same
UV (large r, asymptotic) behavior. This is nothing but the one sourced by N coincident
D2-branes in the decoupling limit,

e2f = 2e2g ∼ r2 , eΦ ∼ h
1
4 , h ∼ Nr−5 . (2.2)

The microscopic regime of the system is governed by a type of super Yang-Mills theory
with (dimensionful) gauge coupling λ = ℓ−1

s gsN , with string length ℓs, and string coupling
1With this choice of coordinates, the boundary is approached as r grows to infinity.
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constant gs. Notice that, asymptotically, the internal manifold is described by the squashed
Fubini-Study metric on CP3, and for this reason e2f /e2g = 2 (nearly Kähler point of CP3).
On top of that, due to the different radial dependence of f and g, this squashing changes
along the flow.

Following ref. [37], the gauge theory dual consists of a two-site Yang-Mills quiver
U(N)×U(N) gauge group and bifundamental matter, very much like the Klebanov-Witten
(KW) quiver in four dimensions [38]. Moreover, the system at hand is endowed with a
non-vanishing two-form

F2 = QkJK , (2.3)

with JK the Kähler form of CP3 and Qk = ℓsgsk/2 a negative2 constant with dimensions
of length. Here k is the Chern-Simons level. Thus, this two-form induces CS interactions
in the gauge theory dual. Additional three- and four-form fluxes manifest the presence
of fractional D2-branes, which are expected to introduce a shift in the rank of one of the
two gauge groups [39].

In conclusion, these gravity solutions are conjectured to describe renormalization group
(RG) flows in a

U(N)k×U(N + M)−k (2.4)

quiver gauge theory with CS interactions at level k while preserving N = 1 supersymmetry.
As mentioned, there is a one-parameter b0 family of supergravity solutions. This parameter

is proportional to the asymptotic value of the Neveu-Schwarz (NS) form, and it is therefore
interpreted as the difference between the microscopic Yang-Mills couplings of each of the
two factors in the gauge groups,

b0 ∼ 1
g2

1
− 1

g2
2

. (2.5)

Following the conventions in ref. [29], this quantity takes values in the interval b0 ∈ [0, 1],
and it allows us to represent the whole family of solutions as in figure 2. For a generic choice
of the parameter b0 ∈ (0, 1), the theory does indeed develop a mass gap as we flow to the
IR.3 The two limiting values are, however, special. When b0 = 0 the gap is lost and the
theory flows in the IR to the Ooguri-Park (OP) CFT [41], which is a deformation of the
ABJM theory [42] preserving N = 1 supersymmetry. In the opposite limit, b0 = 1, not only
does the theory possess a mass gap but it also becomes confining. In fact, in this limit the
CS interactions vanish and confinement is therefore expected. In contrast to the b0 ̸= 1
case, the way this is realized geometrically is that, for this particular case, the M-theory
circle does not collapse at the IR anymore. The particular expressions for the solutions
for every case can be found in ref. [29].

It is useful to define two energy scales in terms of gauge theory parameters as follows

Λ1 = λ

8N

(
|k|5

12π4

) 1
3

, Λ2 = k2λ

6πN
· 1

(M2 + 2|k|N)
1
2

, (2.6)

2Our system admits solutions in which Qk > 0 which we do not discuss.
3For instance, the spectrum of spin-0 and spin-2 fluctuations were computed in ref. [40].
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where M = M − k/2. They control the different scales at which the IR scale and/or the
CS interactions become important. Following ref. [43], one should in principle be able to
relate them to the two different dimensionful gauge couplings g1 and g2 in eq. (2.5), as
we comment on at the end of appendix A. We will use Λ1 and Λ2 to set the units of the
different quantities that we will treat.

Now that we summarized the main features of the zero temperature ground state, let us
consider finite temperature solutions, which will be the main focus of our work.

2.2 Low temperature states: gapped phase

From the zero temperature solutions we have just introduced, it is straightforward to construct
thermal solutions that will be the dominant ones at low temperatures and continuously
connected with the supersymmetric ones discussed above. Indeed, this extension to finite
temperature is obtained by going to Euclidean space and compactifying the time direction
on a circle. As usual, the period β of the Euclidean time is related to the temperature
T in the field theory side as

β = T−1 . (2.7)

These solutions exist at any temperature, since nothing is fixing the period β. The
free-energy is the same as that of the ground state and independent of the temperature due
large-N . Consequently, the entropy density is zero, as it has to be since no horizon is present
in the geometry. These low temperature states will compete with a plasma phase at higher
temperatures dual to black brane solutions, which we discuss next.

2.3 High temperature states: plasma phase

The high temperature phases of the system are described by black brane solutions, constructed
numerically originally in ref. [28]. As discussed there, these solutions are regular and a valid
description in ten dimensions in the appropriate large-N limit, no uplift is required in this
case. For this problem the shooting method turned out to be a good procedure. With this
approach, the unknown functions are solved perturbatively both about the UV region and the
horizon. Next, these expansions serve as the boundary conditions used to solve the equations
of motion numerically. The equations are solved starting at the two end points of the domain
up to an intermediate point. In this way, the value of the parameters can be adjusted so that
the functions are continuous and differentiable at the matching point.

The boundary expansions of the metric and the dilaton take the form

ef = |Qk|
u
√

2

(
1 + . . . + f4u4 + f5u5 + . . .

)
, eg = |Qk|

2u
+ . . . ,

eΛ = 1 + . . . , b = 1 + b5u5 + . . . , h = 4q2
c + 3Qc|Qk|
|Qk|6

16
15(1 − b2

0)u5 + . . .

(2.8)

where we changed to the radial coordinate u = |Qk|/r. Here Qc and qc are dimensionful
quantities related to gauge theory quantities in the way explained in appendix A. For our
purposes it is enough to display only those coefficients in eq. (2.8) that enter in the expressions
for the thermodynamic quantities appearing later (see ref. [28] for further details).
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The existence of a horizon is encoded in a simple zero of the blackening factor b at some
value of the radial coordinate u = uh. The leading terms in the expansion of the metric
and the dilaton about the black brane horizon, which contain the undetermined parameters
entering in the thermodynamic expressions, are

ef = |Qk|fh + . . . , eg = |Qk|gh + . . . , eΛ = λh + . . .

h = 4q2
c + 3Qc|Qk|
|Qk|6

hh + . . . , b = bh(u − uh) + . . . .
(2.9)

The period of the Euclidean time (after imposing regularity) and the area density of the
black brane horizon lead, respectively, to expressions for the temperature T and entropy
density S of the field theory, namely

T = Λ2
4π

· (−bh)u2
h√

hh
, S = Λ3

1
Λ2

· 64πf4
hg2

h

√
hh

λ2
h

. (2.10)

The free energy density is obtained from the on-shell four-dimensional bulk action, given
in terms of UV data as

F = Λ3
1

(
−411

2 − 6f4 − 2f5 + 3
2b5

)
. (2.11)

Note that expressions in eqs. (2.10) only depend on horizon data. In particular, the relation
S = −dF/dT can be used as a crosscheck for the numerics.

Now that we have the expressions for the thermodynamic quantities, the next step is
to understand, for a each value of b0, which solution is thermodynamically preferred at
any given temperature. Remarkably, a rich phase structure emerges, which allows us to
distinguish three different cases, depending on the choice of b0. The two particular values
for which the qualitative behavior changes are

bcritical
0 ≈ 0.6815 and btriple

0 ≈ 0.6847 . (2.12)

The main features of each case can be contemplated in figure 3 and are pronounced next. We
are specifically interested in the type of phase transition (PT) between the different phases.

■ For small values of b0, in the range 0 < b0 < bcritical
0 , both the free energy and the entropy

densities touch zero for some finite value of the temperature. We show a representative
of this case in figure 3 (top). This is a peculiar kind of phase transition which could
be very well claimed to be a second-order phase transition since these thermodynamic
quantities are continuous but the derivative of the entropy is not.4 Such sort of phase
transition has been found on other systems, see for instance ref. [44]. We will refer to
this kind of phase transition as type 1, characterized by the fact that the entropy raises
smoothly from zero when the critical temperature is reached.

■ For theories in the range bcritical
0 < b0 < btriple

0 something interesting happens: new branches
of black brane solutions appear when the entropy is small enough. The plot of the

4Note, however, that in ref. [28] the fact that the geometry jumps discontinuously at that point made the
authors claim that it is first order, since one would expect that some n-point function will be discontinuous.
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free energy as a function of temperature develops a swallow-tail shape, characteristic
of first-order phase transitions (see figure 3 (middle, left)). Indeed, there are two
locally stable branches of black hole solutions that compete and their crossing signals a
first-order phase transition between two plasma phases. Note the discontinuous jump
in the entropy density at this particular temperature. We will refer to this kind of
phase transition as type 2. Note that, for the particular choice of b0 shown in the
figure 3 (middle), at a lower temperature we still find a type 1 phase transition where
the entropy vanishes at finite temperature.

■ When btriple
0 < b0 < 1, the type 1 phase transition is hidden below a branch of stable

black brane solutions, as seen in figure 3 (bottom). When this happens, the type 2
phase transition is also lost. The situation is reminiscent of the Hawking-Page phase
transition [45]: the free energy of the branch of black brane solutions crosses the
horizontal line at some critical temperature Tc, where a first-order PT to the ground
state occurs. The fact that the entropy density jumps discontinuously at Tc is again a
manifestation of the transition being first order. Note that this is a “degapping” phase
transition rather than a deconfinement phase transition, for the low temperature ground
state is not confining. We refer to this kind of phase transition as type 3.

■ Finally, let us comment on the limiting values of b0. For b0 = 0 no phase transition is
present. The reason is that the theory flows to a CFT at low temperatures, where all
the quantities develop conformal behavior (S ∝ T 2, for example). Put differently, as
b0 → 0 the critical temperature corresponding to type 1 phase transition approaches
zero. For b0 = 1 the ground state corresponds to a truly confining theory, and the
type 2 phase transition becomes a genuine deconfinement phase transition in this case.
Additionally, as b0 → 1, the temperature at which entropy vanishes goes to infinity.
These distinct limiting behaviors are manifest in figure 1.

In conclusion, there are three distinct types of phase transitions that we encounter in these
theories. Let us examine how, and how well, the measures of entanglement entropy probe them.
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Figure 3. Free energy (left) and entropy (right) densities as a function of the temperature for states
in the theories with three different values of b0 as representatives for the three cases discussed in the
main text. Blue solid curves (dashed lines) correspond to plasma (gapped) phases. Second-order PTs
between them at zero entropy but finite temperature (type 1 ) are depicted using black squares. A
first-order PT between plasma phases (type 2 ) is represented by purple dots and a dashed purple line.
Finally, the red diamonds and the dashed red line stand for a first-order PT between black brane
solutions and the ground state, with a jump in the entropy (type 3 ).
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3 Entanglement thermodynamics

In this section, we will define several quantities related to entanglement entropy that will
provide some information about the thermal phase diagram of the system. Then, these
quantities will be applied to our case in the subsequent section 4.

3.1 Entanglement entropy

Following ref. [18], the entanglement entropy of a QFT region A bounded by ∂A is given
holographically by the area of a minimal surface ΣA anchored on ∂A at the boundary of
spacetime. The minimal surface ΣA is also homologous to A. This minimal surface ΣA

has co-dimension two, i.e., it is an eight-dimensional submanifold embedded in the ten-
dimensional background geometry (2.1). This surface wraps completely the compact part
of the geometry and has a particular profile along the radial direction. We will refer to it
as the RT surface associated to A.

Thus, the holographic entanglement entropy in string frame reads5

SA = 1
4G10

∫
ΣA

d8σe−2Φ√det g , (3.1)

where the σ’s are coordinates on ΣA, the ten-dimensional Newton’s constant reads G10 =
(16π)−1(2π)7g2

sℓ8
s, the function Φ is the dilaton, and g is the induced metric on the surface

in string frame,

gαβ = ∂xµ

∂σα

∂xν

∂σβ
gµν , (3.2)

with gµν given by eq. (2.1). The surface ΣA is wrapping the whole compact internal manifold,
so integration over the six corresponding coordinates gives a factor V6 = 32π3/3, which
is nothing but the volume of CP3. The RT surface is prescribed to be static, thus the
embedding is determined by

t = constant , x1 = x1(σ1, σ2) , x2 = x2(σ1, σ2) , r = r(σ1, σ2) . (3.3)

Varying the action in eq. (3.1) with respect to these fields we obtain the Euler-Lagrange
equations

∂L
∂ϕi

− ∂µ

(
∂L

∂(∂µϕi)

)
= 0 , for ϕi ∈ {x1, x2, r} and µ = σ1, σ2 , (3.4)

where L is just the integrand in eq. (3.1). In the general case, eq. (3.4) leads to a system of
three second-order partial differential equations, which are the equations that the embedding
has to fulfill so that it is extremal. In this paper, we will only analyze entanglement entropy of
(infinite) strips. We believe that this analysis will capture the main features when in comes to
understanding how entanglement entropy probes finite temperature states of strongly-coupled
quantum field theories.

5This formula is valid for the type IIA description of the system. The analogous formula in eleven dimensions,
needed to compute entanglement entropies in the gapped phase, reduces to this expression upon reduction
onto the M-theory circle. Bearing this in mind, we use eq. (3.1) in all cases.
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Let us then take the region A to be a strip of width l. In contrast to the zero temperature
case (see figure 3 in ref. [4]), whenever a deconfined phase (dual to a black brane solution) is
considered, the only relevant configurations are the “connected” ones, which we will denote
by ∪. More precisely, in gapped theories at zero temperature there is another extremal
configuration that competes with the “connected” one and eventually becomes the dominant
one. This consists of two pieces extending vertically from the UV down to the IR plus a
piece that lies at the bottom of the geometry. Crucially, the second piece has zero area and
does not contribute to the entanglement entropy. In contrast, in the presence of a horizon, a
surface that lies on the horizon would actually contribute, with the ultimate consequence
that the “disconnected” configuration is never realized.

As a consequence, we only consider “connected” configurations, denoted by ∪ and
specified by the choice

t = constant, x1 = σ1 ∈ [−l/2, l/2], x2 = σ2 ∈ R, r = r(σ1) ∈ [r∗,∞) , (3.5)

where r∗(> rH) is the value of the radial coordinate at which the RT surface has a turning
point. This choice reduces the system of eqs. (3.4) to a single second-order ordinary differential
equation. Furthermore, the expression for the entanglement entropy in this case reads

S∪(b0, T, l) = V6Ly

4G10

∫ l
2

− l
2

dσ1 Ξ
1
2

[
1 + h

b ṙ2
] 1

2
, (3.6)

where we have decided to maintain the dependence on the particular theory and the temper-
ature explicit. In eq. (3.6), the dot stands for differentiation with respect to σ1, Ly =

∫
R dσ2

is the full (infinite) integration over σ2 and

Ξ = h2e8f+4g−4Φ (3.7)

is a combination of metric functions and the dilaton that we define for convenience.
Note that the integrand in eq. (3.6) does not depend explicitly on σ1. As a consequence,

there is a conserved quantity that simplifies the resolution of the remaining second-order
differential equation. Moreover, the result from eq. (3.6) is UV divergent and, if we want to
compare this quantity in different thermal states, we need to regularize it not only in a width-
but also temperature-independent way. This is done by introducing appropriate counterterms

Sreg
∪ (b0, T, l) = S∪(b0, T, l) − Sct(b0) . (3.8)

All the details regarding the computation of S∪ and its regularization are discussed in
appendix B. Most of the quantities that we consider are renormalization-scheme independent,
as we will stress in the relevant cases.

The first observation we would like to make is that the behavior of the entanglement
entropy as a function of the width of the strip looks qualitatively the same, quite generally,
whenever there is a horizon present in the geometry. This is a well-known fact: the minimal
surface finds it advantageous to place most of its volume at the IR, lying very near the horizon.
Consequently, for large strip widths, the entanglement entropy ends up growing linearly as

Sreg
∪ ∝ Ξ

1
2∗ Ly · l ∝ S Ly · l , (3.9)
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Figure 4. We depict the holographic entanglement entropy of a single strip as a function of its width
for a theory with b0 = 2/5; (left) in a plasma phase at a temperature T ≃ 22.78Λ2 > Tc and (right) at
in the low temperature gapped phases, for any T < Tc. While at finite temperature the entropy grows
monotonically as a function of the width, at zero temperature a phase transition to a “disconnected”
configuration (dashed line) is found. Here lc stands for the value at which this phase transition occurs
and the widths in both plots are normalized to it.

where S corresponds to the thermal entropy density, given by eq. (2.10) in the present case.
This is the expected volume law for entanglement entropy at finite temperature.6 Indeed,
we see that for wide strips the entanglement entropy eq. (3.9) becomes the area of the strip
times the entropy density of the corresponding black brane solution. Note that the square
root of (3.7) matches onto the thermal entropy of the field theory in the high temperature
phase when evaluated at the tip of the RT surface [4]. This is by construction: the RT surface
sweeps the horizon with only negligible contributions from the straight pieces stretching
between the boundary and the horizon in this limit. This fact is most easily recovered by
the utility of the chain rule which equates dS/dl ∝ Ξ1/2

∗ [46, 47].
On the other hand, the scaling for small widths is dictated by D2-brane asymptotics

Sreg
∪ ∝ −l−

4
3 . (3.10)

These two facts generically lead to a smooth monotonically increasing function,7 as shown
in figure 4 (left).

Finally, note that the monotonous growth contrasts to what is found for entanglement
entropies of strips in the low energy ground state, shown in figure 4 (right). There, the small
width behavior of eq. (3.10) remains the same, as it is governed by the UV of the theory. How-
ever, above some critical width of the strip, the preferred embedding is that of a “disconnected”
configuration, signaling the presence of an emergent IR scale (see ref. [4] for details).

The fact that the behavior of entanglement entropy is always similar to the one found
in figure 4 (left) could lead to the expectation that little information can be extracted from
entanglement, when it comes to pinpointing the thermal phase structure of a theory. This is

6Recall we are in 2 + 1 dimensions.
7We found some richer cases where several embeddings exist for a given strip width, which would lead

to the appearance of a swallow-tale shape in the Sreg
∪ (l) curve and a cusp for the corresponding preferred

configuration. These, however, appear only for some black brane solutions lying on a thermodynamically
unstable branch and for that reason we will not discuss them any longer here.
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precisely the problem we address. To tackle it, we shall examine how entanglement measures
vary for different theories (i.e., different choices of b0) as we vary the temperature T and the
strip width l. We are then facing a three-dimensional parameter space. For clarity, we find
it convenient to first fix the value of b0, and then show how entanglement entropy varies as
a function of the temperature for different choices of the width.

3.2 Mutual information

Note that entanglement entropy is not unambiguously defined. In particular, eq. (3.8) is
scheme-dependent as one can also modify the chosen counterterms by finite quantities. In
particular, it is not an observable.

For this reason, we will in some cases analyze another interesting quantity, called mutual
information. The mutual information between two entangling strips A and B, given by

I(A, B) = SA + SB − SA∪B (3.11)

characterizes the amount of information shared by the two domains [48]. We will study
mutual information between two strips of the same width l that are separated by a distance
s. In this case eq. (3.11) can in our holographic setting be rewritten using eq. (3.8) as

I(b0, T, l, s) = 2Sreg
∪ (b0, T, l) − Sreg

∪ (b0, T, 2l + s) − Sreg
∪ (b0, T, s) . (3.12)

Note that the counterterms drop out from this last expression when homogeneity and isotropy
is assumed, manifesting that mutual information is scheme-independent.

3.3 Entanglement pressure

Now that we know how to compute entanglement entropies of strips, we shall investigate
what properties of the corresponding thermodynamic phase diagram can be unveiled from
entanglement considerations. The experiment we have in mind is that of placing a strip
of a given width l in our system, and measure how entanglement properties vary with the
temperature T . Because we are keeping the theory labeled by b0 fixed, and also the width
of the strip l, it is useful to make this explicit by denoting the entanglement entropy in
this context as Sb0,l(T ) = Sreg

∪ (b0, T, l).
Knowing how the strip entanglement entropy varies as the temperature changes at fixed

width, we can define the corresponding entanglement pressure, inspired by ref. [19], as

Pb0,l(T ) − Pb0,l(T0) =
∫ T

T0
Sb0,l(T ) dT . (3.13)

Again, the subscript denotes that we are performing this integral at fixed values of b0 and
l. With this definition, we have

Sb0,l = dPb0,l

dT
, (3.14)

in analogy to the thermal case. Note that in eq. (3.13) we have freedom to choose the value of
the entanglement pressure at the reference temperature, Pb0,l(T0). This arbitrariness cancels
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out when two pressures are compared, as long as they come from integrating the entropy
along the same branch of solutions.

The definition of entanglement pressure in eq. (3.13) may seem physically unmotivated. In
particular, it is somehow discouraging that it depends on the width of the strip, and actually
this will have consequences when trying to probe some of the phase transitions presented in
the section 2. We proceed by viewing it as a way to implement Maxwell construction in the
current scenario. As unsatisfactory as this may seem, we will still observe that in certain cases
the answer we get (i.e., the value of the critical temperature) coincides with the value obtained
from thermodynamics. We will elaborate on this later when we discuss each case. Let us just
anticipate that with this definition it is possible to locate the critical point present in figure 1.

3.4 Critical exponents

We have just mentioned that the position of the critical point can be pinpointed using the
definitions that we have given. We will be interested in understanding if we can extract
further properties of the critical point.

In particular, we address the question if the critical exponents can be extracted from
entanglement thermodynamic quantities. For that we rely on the analogous entanglement
specific heat, defined through the logarithmic derivative of entanglement entropy with respect
to temperature in the vicinity of the critical point at fixed strip width l:

Cbcritical
0 ,l(T ) ≡ T

dSbcritical
0 ,l

dT
∼ |T − TCP|−αEE . (3.15)

Considering the theory for which the critical phenomena is realized (i.e., b0 = bcritical
0 ), if

we place ourselves near the critical point and entanglement is indeed sensitive to the critical
phenomena, we expect that Cbcritical

0 ,l(T ) develops a power law behavior. In eq. (3.15), the
parameter αEE is the corresponding critical exponent and TCP is the temperature at the
critical point. Notice that in general there would be a different exponent when approaching
the critical point from either low temperature (αEE) or from high temperature (α′

EE) side.
Here, we are considering field theories which are isotropic and expect to find the same
exponent from both sides (α′

EE ≈ αEE).
In our analysis, after locating the critical point by means of entanglement quantities,

we will come back to the computation of the critical exponent αEE and compare the result
with the critical exponent obtained from thermodynamics.

4 Probing phase transitions through entanglement

Now we have all the ingredients to discuss how the different PTs that we encountered in
section 2.3 are probed by entanglement measures. As stated in the previous section, we will
discuss entanglement entropies for strips, believing that a shape dependence of the entangling
region would not affect our main conclusions.

4.1 Type 1 phase transitions

Let us start by examining the type 1 phase transitions using the prescription just defined. For
that, we wish to choose some particular value for the strip width and see how entanglement
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Figure 5. (Left) Entanglement entropy as a function of the temperature for the theory with b0 = 0.5750
for different fixed values of the strip width; l = 0.01Λ−1

2 (yellow), 0.02Λ−1
2 (green), and 0.2Λ−1

2 (dark
blue). The dashed line stands for the entanglement entropy for the gapped phase at the corresponding
width. Note that it is the same for l > lc ≃ 0.0184Λ−1

2 . (Right) Entanglement pressure for l = 0.2Λ−1
2 .

The fact that the pressures coincide at the critical temperature is a consequence of our prescription.

entropy and entanglement pressure vary as a function of the temperature. Importantly,
from the point of view of the entanglement entropy, the gapped and the plasma phases are
not continuously connected. Across type 1 phase transitions, the geometry changes (see
ref. [28]). This introduces a jump in the entanglement entropy of the strip, as a function of
temperature, as evinced in figure 5 (left). Still, we can attempt to compute entanglement
pressure following eq. (3.13).

For the gapped phase eq. (3.13) simply leads to the integration of a constant over a certain
range of temperatures and thus the pressure becomes a straight line. However, we realize
that the discontinuity in the entanglement entropy leads to some confusion concerning the
way in which the pressure Pb0,l(T ) of the plasma phase should be obtained. A natural choice
is to prescribe that entanglement pressure must be continuous when the phase transition
takes place at Tc. In particular, to compute the entanglement entropy for the plasma phase,
we will first reach Tc from some reference temperature T0 after integrating the constant
curve corresponding to the gapped phase. Then, at Tc, the integration continues along the
curve obtained from the plasma phase.

In this way, the branch coming from the plasma phase starts touching the gapped phase
at Tc, and grows afterwards above the corresponding line for the gapped phase. This is how
the phase transition is revealed in this case.

Note that in our analysis the transition appears to be of first order. Indeed, entanglement
entropy is discontinuous, rendering entanglement pressure continuous but non-differentiable
at Tc. Yet, entanglement entropy is not related to any of the thermodynamic potentials,
so we refrain from determining the order of the phase transition just from entanglement
considerations.

In conclusion, for this type of phase transition entanglement entropy is able to locate the
phase transition. However, from foresight we had already incorporated in our prescription
to connect both branches of solutions (corresponding to the gapped phase and the plasma
phases). The judicious choice led to the correct result.
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Figure 6. (Top) Entanglement entropy as a function of the temperature for the theory with
b0 = 0.6835 for the different fixed values of the strip width is indicated on each panel. (Bottom)
Entanglement pressure as constructed from above case with l = 0.14Λ−1

2 with the same value of
fixed b0. In all the plots, the dashed vertical line stands for the critical temperature, obtained from
thermodynamics. In red lines (dot), the corresponding critical temperature as obtained from the
Maxwell construction (entanglement pressure) is indicated. We see that there is good agreement in all
cases, within our numerical precision.

4.2 Type 2 phase transitions and location of the critical point

Let us now turn to examine the situation in which the phase transition takes place between two
plasma phases, described holographically by two different black brane solutions. This is the
case that has deserved more attention in the literature, mainly in bottom-up models [19, 20].
This case is somehow cleaner than the previous one, for the subtleties of the comparison of
entanglement entropy measures between the gapped and the plasma phases being absent.

Indeed, let us choose any reference temperature T0 in eq. (3.13), for which we set
Pb0,l(T0) = 0. Even though the actual value of Pb0,l(T ) depends on this choice, the difference
between the entanglement pressure of two different states does not. In particular, this
equation can be used to search for phase transitions: the preferred phase will correspond
to the one with the highest pressure.

In figure 6 (top) we show Sb0,l(T ) for the theory with b0 ≃ 0.6835 for different values of
the strip width. Some features of this plot are worth mentioning. We notice that, for each
choice of the strip width, the corresponding curve for the entanglement entropy displays the
“S” shape characteristic of a first-order phase transition. Remarkably, this shape is present
even for small choices of the strip width. This is interesting because, even though one may
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Figure 7. Position of the phase transition as deduced from the entanglement pressure for different
choices of the width, plotted on top of the thermodynamic phase diagram obtained in [29] (see figure 1).
Here, l = 0.06Λ−1

2 (left), 0.04Λ−1
2 (middle), and 0.005Λ−1

2 (right).

have expected that thin strips only probe the UV of the theory, we see that they are still
sensitive to the temperature dependence. Geometrically, this is a consequence of the fact
that different temperatures correspond to different background geometries. At the same
time, we see that the jump in the entanglement entropy approaches zero as the width of
the strip vanishes. This assures that we are using the correct counterterms to regularize
the entanglement entropy (see appendix B) and that the IR (i.e, temperature) dependence
does indeed fade away in the l Λ2 → 0 limit.

The properties of the Sb0,l(T ) imprints a similarly characteristic swallow-tail shape in
the entanglement pressure Pb0,l(T ) as computed from eq. (3.13). This can be observed in
figure 6 (down). From our previous discussion, the arbitrariness in the choice of Pb0,l(T0)
only translates in this plot to the position of the horizontal axes, but it does not alter the
values of the temperature where the curves cross or the cusps appear. Thus, we can declare
an entanglement phase transition8 at the temperature for which the two curves cross. We
already anticipated in section 3.3 that this prescription can be thought of as coming from
the Maxwell construction. Indeed, as it can be seen in the figure, the two ways to determine
the critical temperature agree to good precision.

Interestingly, not only is this temperature-independent of the choice of the width of the
strip, but it also matches, within our numerical precision, the temperature at which the
thermal phase transition takes place. This fact can be clearly seen in figure 7, where the
position of these phase transitions is plotted for different theories, and for different choices of
the strip width; on top of the thermodynamic phase diagram from figure 1. It follows that the
line of type 2 phase transitions is precisely recovered from our entanglement considerations.
Note that below bcritical

0 the curve of Sb0,l ceases to be multivalued and consequently we find
no points when b0 < bcritical

0 . In other words, the transition becomes a crossover.
This contrasts with the results in ref. [19]. There, the temperature for the phase transition

extracted from entanglement considerations was always above the thermal one. We think that
there may be two possible reasons for this disagreement. On the one hand, in ref. [19] the
regularization was performed by introducing a UV cutoff in the holographic radial coordinate
raising concerns regarding the scheme dependence. For example, it is not clear to us if the
cutoff remains temperature-independent. On the other hand, in ref. [19] the authors did not
directly consider the holographic entanglement entropy but a logarithm thereof.

8Recall that this is due to changing external parameters not with varying the subsystem size l.
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Figure 8. Mutual information for b0 = 0.6835 with fixed value of s = 0.005Λ−1
2 and three different

fixed values of l. (Left) For l = 0.01Λ−1
2 the mutual information has the familiar shape and can be

probed with Maxwell construction. The resulting TEE matches with Tthermal ≈ 24.54Λ2. (Middle)
For l = 0.013Λ−1

2 the mutual information curve is already collapsing into a shape where Maxwell
construction will not be applicable. (Right) For l = 0.02Λ−1

2 we encounter the extreme shape of
mutual information that is loop-like, and therefore demonstrates how the behavior should not be
trusted with larger values of l. We conclude that the value l = 0.01Λ−1

2 is the largest at which the
results are reliable and the Maxwell construction is applicable; see text for explanation.

Let us finish making one more remark. The quantity that probed the thermodynamic
phase transition in this case has been entanglement entropy, which is not an observable. One
could wonder if there is any other quantity that could probe it. For instance, ref. [20] studied
mutual information and entanglement of purification. Sparked by their works, we comment
on the former. Ideally, one would like to define something analogous to the entanglement
pressure for the mutual information. Unfortunately, we did not find a working solution for
this. Indeed, if we try to implement Maxwell construction with the mutual information, as in
figure 8, we see that the critical temperature that is obtained depends on the strip widths and
their separations. In particular, it does not match the thermal critical temperature in general.

We can illuminate this by focusing on the formula for the mutual information of strips
in eq. (3.12). As prescribed, the mutual information of two strips consists of three different
terms. Depending on the chosen values for the strip widths l and the separation s between
them, some terms in the formula will dominate over the others. Indeed, for narrow nearby
strips the term Sreg

∪ (2l + s) can be neglected and only the terms proportional to Sreg
∪ (l) and

Sreg
∪ (s) will be important. In this case, as seen in figure 8 (left) Maxwell construction would

provide a good approximation of the correct result when trying to locate the phase transition.
However, when l is increased, the contribution of the term Sreg

∪ (2l + s) becomes more and
more important. As a consequence the “S” shape of the mutual information as a function of
the temperature is deformed and eventually disappears, as in figure 8 (middle) and (right).
In particular, Maxwell construction cannot be used to seek the critical temperature anymore.

In conclusion, for this type of phase transition it seems entanglement pressure is actually
providing some insight regarding the thermal phase structure of the system. However, other
observables such as mutual information are not as successful in general, even though they
can be used in some very specific limits.
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Figure 9. (Left) Entanglement entropy for fixed b0 = 0.6835 and three different fixed values of
l = 0.04Λ−1

2 (dark blue), 0.02Λ−1
2 (green) and 0.002Λ−1

2 (yellow). (Right) Entanglement pressure as
defined in (3.13) when l = 0.04Λ−1

2 . The red dot indicates the point where we prescribed that the
plasma phase should coincide with the gapped phase.

4.3 Type 3 phase transitions

Finally, let us discuss how entanglement pressure probes type 3 phase transitions. In this
case, as in section 4.1, we stumble against the arbitrariness in the definition of entanglement
pressure when we want to compare two branches of solutions that are not continuously
connected (i.e., the gapped and the plasma ones). We will take advantage that whenever a
type 3 phase transition occurs in our system, a type 1 is also present,9 even though it will be
hidden as it is the end of the thermodynamically disfavored branch of black hole solutions, see
figure 3 (bottom). As in section 4.1, we demand that entanglement pressure of both phases
has to be the same at the point where the type 1 phase transition takes place. With this
requirement, we can ask how well type 3 phase transition is probed by this quantity.

For concreteness, let us fix l = 0.04Λ−1
2 and b0 = 0.7902, and study how the pressure

changes with temperature. The result is shown in figure 9 (right). By construction, the curves
corresponding to the two phases coincide at the point where the type 1 phase transition is
located. In addition, the two curves cross at a different point, which we take as the probe
for the temperature at which the type 3 phase transition takes place. In this particular case
it is T EE

c (l = 0.04Λ−1
2 ) ≃ 71.38Λ2, which does not coincide with the critical temperature

Tc ≃ 70.94Λ2 Actually, as our notation suggests, T EE
c (l) depends on the width of the strip.

In figure 10 we show how this quantity changes as a function of the strip width. Moreover,
in the limit lΛ2 → ∞ it appears that the thermal value Tc is recovered.

4.4 Critical phenomena

In section 4.2 we saw that entanglement entropy was quite successful in probing type 2 phase
transitions. In particular, we were able to locate the position of the critical point in the phase
diagram. Now, as a last question that we would like to analyze, we ask if it is possible to
measure critical exponents of critical phenomena using entanglement quantities.

9Note, however, that for the limiting b0 → 1 case, the type 1 phase transition is pushed towards TcΛ−1
2 → ∞.
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Figure 10. Critical temperature as extracted from entanglement pressure T EE
c for type 3 phase

transitions as a function of the strip width l. The dashed line corresponds to the temperature obtained
from the thermal phase transitions and appears to be recovered as lΛ2 → ∞.

The critical exponents from the background can be obtained from a formula analogous
to eq. (3.15), but replacing the entanglement entropy by the thermal entropy. When applied
to our case, our result α ≈ 0.667 is compatible with the mean-field value αmean field = 2/3
stemming from the van der Waals criticality of black holes discussed in ref. [49]. This is
not unexpected, because as it happens in field theory [50] the large-N limit suppresses
fluctuations.10

Let us see if we can get a good estimation of α from our entanglement measures. To do
so, we place ourselves near the critical point by choosing a particular value of b0 ≳ bcritical

0
and different strip widths. For this choice, there will still be a first-order phase transition
for some Tc ≈ TCP. Because of its proximity to the critical point, however, we expect to be
able to read off the critical exponents slightly away from Tc.

Indeed, that is the case, as can be seen in figure 11. There, a value of b0 which is very
close to bcritical

0 is chosen, and the analysis is performed for three different choices of the strip
width. As we can see in the figure, the value of the exponent in each case is indeed αEE ≈ 2/3,
which matches the thermal value and agrees with the expected critical exponents.

Let us finish this section with one remark. Recall that the mutual information did not
probe the phase transition correctly in general (see figure 3.11). However, we observed in
section 4.2 that it approximately did so in the limit of narrow strips. A consequence of
this is that critical exponents can also be read off from an equation analogous to eq. (3.15),
with entanglement entropy Sb0,l(T ) substituted by mutual information I(b0, T, l, s) between
narrow strips.11 We have explicitly checked that the holographic mutual information leads
to the same critical exponents.

10Note, however, that there are examples where this is not the case as discussed in ref. [51].
11In ref. [20] the critical exponents were computed both from the holographic mutual information of strips

and the holographic entanglement of purification.
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Figure 11. Computation of the critical exponents from entanglement entropy. In these plots, we
extracted the critical exponent αEE when approaching from the low temperature T < Tc (left) and the
critical exponent α′

EE when approaching from the high temperature T > Tc (right), using eq. (3.15).
We choose a particular value of b0 ≳ bcritical

0 = 0.6815 . . ., with three particular choices for the strip
width: l = 0.01Λ−1

2 (blue), 0.03Λ−1
2 (dark green), and 0.05Λ−1

2 (green). The respective exponents
αEE ≈ 0.662 (blue), 0.668 (dark green), and 0.670 (green) are obtained from the asymptotic slope of
the curves, as indicated by the black dashed straight lines. Similarly, we have α′

EE ≈ 0.658 (blue),
0.657 (dark green), and 0.652 (green).

5 Discussion

In this work we demonstrated that the entanglement entropy will provide a complementary
tool to study characteristics of phase transitions in strongly coupled gauge theories. We
focused on a family of theories endowed with interesting IR properties and a rich phase
diagram uncovered in ref. [28]. In particular, at finite temperature, we find three types of
phase transitions of different nature, that meet at a triple point. The phase diagram is also
endowed with a critical point where a second-order phase transition occurs, at the end of
a line of first-order phase transitions.

Considering the entanglement entropy of strips at different temperatures, we defined
entanglement pressure, mimicking the thermal case. The crossing of this pressure with itself
was able to probe phase transition between plasma phases, dual to black brane solutions on
the gravity side. However, it turned out less successful in detecting phase transitions between
plasma and gapped phases. This is one of the main messages of this work: the description
of the transition between deconfined and gapped (or confining) phases using entanglement
measures remains unsatisfactory. We invite experts in addressing this conundrum in any
setup, especially when there is a dual gravity description.

On the contrary, we discovered that entanglement entropy can be successfully used
to locate the critical point. In particular, the corresponding entanglement specific heat
accurately predicts the corresponding critical exponent. We believe that this result is quite
general and should be scrutinized beyond strongly coupled (holographic) gauge field theories.
To this end, recall that the entanglement specific heat involves derivatives, meaning that
it is scheme-independent, and that it is to be analyzed with fixed subsystem sizes, thereby
amenable to real world studies. Support to our claim comes from lattice Yang-Mills theory,
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where the correct value for the critical exponent as extracted from entanglement was indeed
recovered [16]. As demonstrated in this study, the entanglement specific heat in eq. (3.15),
arising from the entanglement pressure, is anticipated to yield a consistent critical exponent
across varying subsystem sizes. Conducting thorough investigations through the lattice
approach is essential to scrutinize the validity of our proposed model in eq. (3.13).

Finally, because of scheme-dependence of the entanglement entropy, we resorted to also
other observables. We attempted to extend the Maxwell construction to mutual information
for non-overlapping strips to analyze the properties of phase transitions. We found that
mutual information fails as a probe of phase transitions in general, except for a narrow
range in the parameter space.

To find an entanglement measure that probes phases of matter faultlessly in general,
i.e., at least for all types of phase transitions unraveled in this work, is a very interesting
open problem.
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A Details of the background solutions

In this appendix we gather the relevant technical details of the system studied in this paper
and the background solutions considered. For a detailed explanation, see refs. [28, 29].

The internal compact space of the solutions consists of a squashed CP3 and the geometry
asymptotes in the UV to that of a stack of N D2-branes. For this reason it is convenient
to consider the Ansatz

ds2
st = h− 1

2
(
−bdt2 + dx2

1 + dx2
2

)
+ h1/2

(
dr2

b + e2f dΩ2
4 + e2g

[(
E1
)2

+
(
E2
)2
])

eΦ = h
1
4 eΛ

(A.1)

for the metric and the dilaton field. The dilaton and all the metric functions f, g, Λ, h

depend only on the radial coordinate r. Moreover, the complex projective plane is considered
to be partioned as the quotient space Sp(2)/U(2), consisting of a two-sphere (described by
the vielbeins E1 and E2) fibered over a four-sphere with metric dΩ2

4. We parametrize CP3

as in refs. [52, 53]. Considering a set of left-invariant one-forms on the three-sphere ω1, ω2,
and ω2, the metric of the four-sphere with unit radius can be written as

dΩ2
4 = 4

(1 + ξ2)2

(
dξ2 + ξ2

4 ωiωi

)
(A.2)
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with ξ ∈ (0,∞) a non-compact coordinate. Now we can introduce two angles θ ∈ (0, π)
and φ ∈ (0, 2π) to parametrize the two-sphere. The non-trivial fibration appears manifest
in the expression of the vielbens

E1 = dθ + ξ2

1 + ξ2 (sin φω1 − cos φω2) (A.3)

E2 = sin θ

(
dφ − ξ2

1 + ξ2 ω3
)

+ ξ2

1 + ξ2 cos θ(cos φω1 + sin φω2) . (A.4)

It is convenient to consider the following rotated version of the vielbeins on the four-sphere

S1 = ξ

1 + ξ2 [sin φω1 − cos φω2] (A.5)

S2 = ξ

1 + ξ2 [sin θω3 − cos θ(cos φω1 + sin φω2)] (A.6)

S3 = ξ

1 + ξ2 [cos θω3 + sin θ(cos φω1 + sin φω2)] (A.7)

S4 = 2
1 + ξ2 dξ . (A.8)

Despite the explicit dependence on the angles θ and φ, it holds that SnSn = dΩ2
4. Now, it

is possible to write down the left-invariant forms on the quotient space in terms of these
vielbeins. These contain the two-forms

X2 = E1 ∧ E2 , J2 = S1 ∧ S2 = S3 ∧ S4 (A.9)

and the three-forms

X3 = E1 ∧
(
S1 ∧ S3 − S2 ∧ S4

)
− E2 ∧

(
S1 ∧ S4 + S2 ∧ S3

)
J3 = −E1 ∧

(
S1 ∧ S4 + S2 ∧ S3

)
− E2 ∧

(
S1 ∧ S3 − S2 ∧ S4

)
; (A.10)

related by exterior differentiation

dX2 = dJ2 = X3 , dJ3 = 2 (X2 ∧ J2 + J2 ∧ J2) . (A.11)

Higher-rank left-invariant forms can be constructed by wedging these. In particular, we
find two four-forms X2 ∧ J2 and J2 ∧ J2 and the volume form of CP3, Ω6 = (E1 ∧ E2) ∧
(S1 ∧ S2 ∧ S3 ∧ S4). There are no adequate one- or five-forms and the complete set closes
under Hodge duality.

Our conventions for type IIA supergravity are such that the Bianchi identities for the
forms read

dH3 = 0 , dF2 = 0 , dF4 = H3 ∧ F2 , (A.12)

while the string-frame equations of motion are

d ∗ F4 + H3 ∧ F4 = 0
d ∗ F2 + H3 ∧ ∗F4 = 0

d
(
e−2Φ ∗ H3

)
− F2 ∧ ∗F4 −

1
2F4 ∧ F4 = 0 .

(A.13)
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A convenient Ansatz for the forms is

F4 = f4 ∗ Ω6 + G4 + B2 ∧ F2 , F2 = Qk(X2 − J2) ,

G4 = d(aJJ3) + qc (J2 ∧ J2 − X2 ∧ J2) , B2 = bXX2 + bJJ2 ,
(A.14)

where we have defined the quantity12

f4 = Qkb2
J + 2(qc + 2aJ)bX − 2bJ(qc − 2aJ + QkbX) + Qc . (A.15)

The parameters Qc, qc, and Qk are constants related to gauge theory parameters

Qc = 3π2ℓ5
sgs N , qc = 3πℓ3

sgs

4

(
M − k

2

)
, Qk = ℓsgs

2 k . (A.16)

These parameters were grouped together with the gauge coupling λ = ℓ−1
s gsN to construct

the scales Λ1 and Λ2 in eq. (2.6). One should note that N , M , and k are not completely
independent of the choice of b0, as pointed out in ref. [43]. As a consequence, one expects
that Λ1 and Λ2 will be related to b0, and consequently to the different gauge couplings g1,
g2 in eq. (2.5). This analysis, that requires understanding of how the cascade is realized in
eleven-dimensonal supergravity (see footnote 12), will be worked out somewhere else.

On the other hand, bJ , bX , and aJ depend on the radial coordinate, their dynamics
dictated by the form eqs. (A.13). Together with these, we will also have to solve the equations
of motion for the dilaton

R + 4∇M∇M Φ − 4∇M Φ∇M Φ − 1
12H2 = 0 , (A.17)

and the metric

RMN + 2∇M∇N Φ − 1
4H2

MN = e2Φ
[1

2(F 2
2 )MN + 1

12(F 2
4 )MN − 1

4gMN

(1
2F 2

2 + 1
24F 2

4

)]
.

(A.18)

B Computation of the entanglement entropy of the strip

In this appendix, we go through details on the computation of the entanglement entropy of
the strip and discuss how counterterms are properly taken into consideration. We recover
here the expression for the entanglement entropy in eq. (3.6) for ease of reference

S∪(b0, T, l) = V6Ly

4G10

∫ l
2

− l
2

dσ1 Ξ
1
2

[
1 + h

b ṙ2
] 1

2
. (B.1)

12Note that the constant Qc is related to the number of N branes through the standard quantization condi-
tion [28, 29]. However, this statement needs closer inspection. In ref. [54], it was noted that for the confining
case (b0 = 1) Qc must be taken to be zero, as it accompanies a collapsing circle. Then, one should identify the
number of branes N from the asymptotic growth of the warp factor h instead, see eq. (2.2). Considering solu-
tions with Qc ̸= 0 still makes sense as they are related through a large gauge transformation, which implements
a duality cascade. The corresponding analysis for the non-confining case (Qk ̸= 0, b0 < 1), see ref. [43], needs to
be performed with the eleven-dimensional uplifted solution and has not yet been worked out in our conventions.
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Recall that Ξ(r) = h2e8f+4g−4ϕ. As we mentioned, this integral enjoys a conserved quantity
that permits to find a simple expression for the embedding,

ṙ = ±

√
b
h

√
Ξ
Ξ∗

− 1 , (B.2)

where Ξ = Ξ(r∗) and the dot stands for differentiation with respect to σ1. With this we can
rewrite the entanglement entropy of the strip as a simple integration of metric functions

S∪(b0, T, l) = 2V6Ly

4G10

∫ Λ|Qk|

r∗
dr

Ξ√
Ξ − Ξ∗

√
h

b . (B.3)

However, as we mentioned in section 3, this quantity is UV divergent and needs to be
renormalized. That is why we have explicitly introduced the UV cut-off Λ, which will
eventually be taken to infinity after regularization.

The UV expansions of the metric functions and the dilaton where worked out in ref. [28].
Following them, it will be easy to work out the divergence structure of the entanglement
entropy S∪. Let us first write this quantity in the u coordinate defined below eq. (2.8)

S∪(b0, T, l) = 2|Qk|
V6Ly

4G10

∫ Λ−1

u∗
du

− 1
u2

Ξ√
Ξ − Ξ∗

√
h

b

 ≡
∫ Λ−1

u∗
du L∪ , (B.4)

where u∗ = |Qk|r−1
∗ is the value of the radial variable u at the turning point. The last

equality in eq. (B.4) defines L∪. Replacing the functions in terms of their UV expansion
and performing the indefinite integral we obtain

S∪ = 2 64πLyΛ3
1

Λ2
2

[
1
30
(
1 − b2

0

)
Λ2 − 4

45
(
4b2

0 + 1
)

Λ − 4
63
(
21b2

0 − 1
)

log Λ + S0

+ 64
315

(
21b2

0 − 1
)

Λ−1 + 64
189

(
21b2

0 − 1
)

Λ−2 + O(Λ−3)
]

.

(B.5)

Let us pause and comment a little bit on this result. First, note that the leading order
divergence in eq. (B.5) appears at the same order in the cutoff as in ref. [55]. Secondly, it
is easy to read off the necessary counterterms to render the entanglement entropy finite
from this last expression,

Sct(b0, Λ−1) = 2 64πLyΛ3
1

Λ2
2

[
1
30
(
1 − b2

0

)
Λ2 − 4

45
(
4b2

0 + 1
)

Λ − 4
63
(
21b2

0 − 1
)

log Λ
]
. (B.6)

Interestingly, the expression is proportional to the counterterms used in ref. [4] for the
entanglement entropy of a disk (up to a factor of the radius of the disk). Note that it does not
depend on the temperature T , nor the strip width. Rather, as it should, it only depends on UV
data. Related to this, note that any constant could be added to eq. (B.6) that would combine
with S0 in eq. (B.5). This constant, however, would spoil the comparison between different
states if it were, for example, temperature-dependent. Actually, this dependence could
unintentionally be introduced through a temperature-dependent coordinate ũ, inducing a
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temperature dependence in the corresponding cutoff Λ̃. Using the usual relation U = r/ℓ2
s [56]

to translate the original radial coordinate to a gauge theory energy scale U , we see that Λ is
related to a temperature-independent UV energy scale measured in units of the gauge coupling

Λ = rUV

|Qk|
= 2N UUV

λ|k|
. (B.7)

Thus, eq. (B.6) is temperature-independent.
Considering that the counterterms can be written as

Sct(b0, Λ−1) =
∫ Λ−1

u∗
duLct

∪ + Sct(b0, u∗)

with Lct
∪ ≡ 2 64πLyΛ3

1
Λ2

2

[
b2

0 − 1
15u3 + 4

(
4b2

0 + 1
)

45u2 + 4
(
21b2

0 − 1
)

63u

]
,

(B.8)

the expression for the regularized entanglement entropy of the strip can be rearranged in
a way that facilitates numerical computations, namely

Sreg
∪ = lim

Λ→∞

[
S∪ − Sct(b0, Λ−1)

]
=
∫ 0

u∗
du

(
L∪ − Lct

∪

)
− Sct(b0, u∗) . (B.9)

One last comment is in demand. While here the renormalization has been carried out by
use of counterterms, in ref. [4] it was performed using the subtraction of the entanglement
entropy of the “disconnected” configuration, available in the gapped phase. Ultimately,
the difference between these two schemes is a T -, l-independent but a b0-dependent shift.
Actually, this is why in that reference the entanglement entropy for strips corresponding to
disconnected configurations was zero, while here it is not (see, for instance, figure 4).

To change from one renormalization scheme to the other, one has to amend eq. (3.8) by

∆S(b0) = lim
Λ→∞

[
S⊔ − Sct(b0, Λ−1)

]
, (B.10)

with S⊔ the entanglement entropy of the “disconnected” configuration. In this way,

Sreg
∪,here(b0, T, l) = Sreg

∪,there(b0, T, l) + ∆S(b0) . (B.11)
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