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1 Introduction

String theory is a theory of quantum gravity including gauge interactions. Its supersymmetric
version is consistent in ten space-time dimensions and can be connected to four-dimensional
physics through compactification. Well-understood compactification spaces are Calabi-
Yau three-folds whose resulting lower-dimensional theories have a Minkowski vacuum.
Deformations that preserve the Calabi-Yau condition correspond to massless scalar fields
(moduli) in four dimensions, however, it is possible to deform the compact space away from
being Calabi-Yau by turning on fluxes. Such fluxes generate mass terms for the moduli and
typically lead to AdS4 vacua. For gravity theories in AdS spaces one can then apply the
AdS/CFT dictionary to relate, for instance, the masses of scalar fields in AdS4 to conformal
dimensions of corresponding operators in a putative three-dimensional CFT. For a certain
class of type II flux compactifications, more concretely for the construction by DeWolfe,
Giryavets, Kachru, and Taylor (DGKT) in type IIA string theory [1], it was observed
in [2–5] that the conformal dimensions of all scalar fields in the closed-string sector are
integer-valued. In [2, 3] the analysis was done for toroidal compactifications, while in [4, 5]
the authors performed their computation for a general Calabi-Yau three-fold.

Obtaining integer conformal dimensions irrespective of the compactification space is a
rather surprising observation which one would like to understand. In particular, one would
like to know which features of the compactification are relevant for this result. This question
was addressed in [5], where it was found that some non-supersymmetric type IIA vacua
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do not lead to integer-valued conformal dimensions. However, one can argue that such
configurations are unstable [6] and therefore are not suitable for applications to the AdS/CFT
correspondence [5]. In this note we approach the question of integer conformal dimensions
from the type IIB side. We study orientifold compactifications of type IIB string theory
with geometric and non-geometric fluxes that lead to supersymmetric AdS4 vacua. In regard
to the DGKT construction in type IIA string theory [1] we note the following differences:

1. On the type IIA side one typically considers the large-volume limit without corrections.
In type IIB string theory this limit corresponds to the large-complex-structure limit,
for which corrections are well-understood. We can therefore compute conformal
dimensions in a setting that includes corrections to the moduli-space geometry.

2. For DGKT flux compactifications in type IIA string theory the superpotential splits
into the sum of two independent terms [7]. From a type IIB perspective this is a rather
special case that corresponds to turning on only a specific component of geometric and
non-geometric Neveu-Schwarz–Neveu-Schwarz fluxes. For a more general flux-choice
the superpotential will not split in this way.

In this work we investigate these two aspects. First, we consider the mirror-dual of the
DGKT setting — including perturbative corrections to the complex-structure moduli space
— and determine masses and conformal dimensions analytically. Second, we construct a
flux configuration for which the superpotential does not split into two separate terms and
determine the masses and conformal dimensions numerically. More concretely,

• in section 2 we give a general discussion of the mass matrix for F-term vacua of
four-dimensional N = 1 supergravity theories. In section 3 we then specialize to
Calabi-Yau orientifold compactifications of type IIB string theory with O3- and
O7-planes in the presence of geometric Ramond-Ramond (R-R) and geometric and
non-geometric Neveu-Schwarz–Neveu-Schwarz (NS-NS) fluxes.

• In section 4 we determine masses and conformal dimensions for AdS4 flux-vacua. For
the mirror-dual of DGKT we find analytically that perturbative corrections to the
prepotential lead to non-integer conformal dimensions. We also study an example
with a flux choice more general than DGKT for which the superpotential does not
split into two separate terms. Here we find numerically that the conformal dimensions
are not integer.

• Section 5 is independent of our discussion of AdS vacua and conformal dimensions,
but uses many results from sections 2 and 3. Here we study flux compactifications
relevant for the KKLT and large-volume scenarios [8, 9], where only the F-terms of
the complex-structure moduli and the axio-dilaton are considered. We compute the
trace of the canonically-normalized mass matrix and argue that if axio-dilaton and
complex-structure moduli are stabilized in an asymptotic regime of moduli space by
fluxes, then at least one of the corresponding mass eigenvalues diverges.

• In section 6 we summarize our findings and in appendix A we give some technical
details of the computations in the main text.
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2 Mass matrix and conformal dimensions

Let us start with a discussion of masses of chiral multiplets in four-dimensional N = 1
supergravity theories. We consider minima of the scalar potential corresponding to vanishing
F-terms and determine the general form of the mass matrix of the scalar fields. In the case
of AdS4 vacua we furthermore compute the conformal dimension of operators dual to the
scalar fields.

F-term minima. Let us consider a four-dimensional N = 1 supergravity theory with n
complex scalar fields φM whereM = 1, . . . , n. The F-term scalar potential can be written as

V = eK
[
FMGMN FN − 3 |W |2

]
, (2.1)

where K denotes the real Kähler potential, W denotes the holomorphic superpotential, and
GMN = ∂M∂NK denotes the Kähler metric. The F-terms are given by FM = ∂MW+KMW

with KM = ∂MK. In this work we are interested in F-term minima of this potential given by

FM = 0 . (2.2)

Mass matrix. The mass matrix for the complex scalar fields of this theory corresponds
to the second derivatives of the potential (2.1). It can be arranged into the form

m2 =

m2
MN

m2
MN

m2
MN

m2
MN

 , (2.3)

where the blocks in the first line are related to the ones appearing in the second line by
complex conjugation. For the former we find the following expressions at the minimum (2.2)

m2
MN

= eK
[
∂MFP G

PQ ∂NFQ − 2GMN |W |
2
]
,

m2
MN = eK

[
−2∂MFNW

]
.

(2.4)

In order to obtain the canonically-normalized mass matrix we note that the Kähler metric
GMN is hermitian and positive definite. We can therefore write G as the square of a
positive-definite matrix Γ and we define a matrix Q as

G = ΓΓ† , Q = Γ−1(∂F )Γ−T . (2.5)

Here and in the following we suppress identity matrices δMN , δMN , and δMN . The cano-
nically-normalized mass matrix is obtained by multiplying (2.3) with appropriate factors of
Γ from the left and the right and we find

m2
can = eK

[
QQ† − 2 |W |2 −QW
−Q†W Q†Q− 2 |W |2

]
. (2.6)
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Mass eigenvalues. In order to determine the eigenvalues of (2.6) we first perform a
singular-value decomposition of Q as

Q = UΣV † , (2.7)

where U and V are unitary matrices and Σ is a diagonal matrix that contains only real
entries. We can then write the canonically-normalized mass matrix (2.6) as

m2
can = eK

[
U 0
0 V

] [
Σ2 − 2 |W |2 −ΣW

−ΣW Σ2 − 2 |W |2

] [
U † 0
0 V †

]
, (2.8)

and the corresponding eigenvalue equation for the mass eigenvalues m2 is given by

0 = det
[
m2

can −m2
]

= det
[
e2K

[
(Σ2 − 2 |W |2 − e−Km2)2 − Σ2 |W |2

]]
.

(2.9)

Denoting the entries of the diagonal matrix Σ2 by σ2
α, we can solve (2.9) as

m2
α± = eK

[
σ2
α ± σα |W | − 2 |W |2

]
. (2.10)

We finally note that QQ† = UΣ2U † and Q†Q = V Σ2V †, and hence σ2
α are the real and

positive eigenvalues of the hermitian matrices Q†Q and QQ†.

AdS vacua and conformal dimensions. If the superpotential W is non-vanishing at
the minimum, the F-term vacua of (2.1) are AdS4 vacua. The corresponding AdS radius is
defined as

R2
AdS = − 3

V |min
= e−K

|W |2
, (2.11)

and the mass eigenvalues (2.10) can be brought into the form

m2
α± = eK

[
σα ± 1

2 |W |
]2 − 9

4
1

R2
AdS

. (2.12)

Hence, as expected, the Breitenlohner-Freedman bound m2
can ≥ −

(d−1)2

4 R−2
AdS [10] is satisfied

for these vacua. Furthermore, the masses of the scalar fields are related to the conformal
dimensions ∆ of operators in a dual CFT as ∆(∆ − d) = m2

canR
2
AdS. For d = 3 we then

obtain
∆ = 1

2

[
3±

√
9 + 4m2

canR
2
AdS

]
, (2.13)

and using (2.10) for the canonically-normalized masses we have ∆ = 1 ± |σα/W | and
∆ = 2∓ |σα/W |. In order to satisfy the unitarity bound for all values of |σα/W | one should
choose the upper sign in the first expression and the lower sign in the second one, however,
in principle the opposite sign choice is allowed as well. Here we make the choice

∆α(1) = 1 +
∣∣∣∣σαW

∣∣∣∣ , ∆α(2) = 2 +
∣∣∣∣σαW

∣∣∣∣ , (2.14)

for which the conformal dimensions of the dual operators come in pairs that differ by one.
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3 Type IIB flux compactifications

In this section we consider four-dimensional N = 1 supergravity theories that originate
from type IIB flux compactifications on Calabi-Yau orientifolds. Our main result in this
section is an expression for the matrix Q appearing in the canonically-normalized mass
matrix (2.6).

Scalar fields. Let us consider compactifications of type IIB string theory on Calabi-Yau
three-folds X , subject to an orientifold projection leading to O3- and O7-planes [7, 11].
This projection splits the cohomology of X into even and odd eigenspaces Hp,q

± (X ) whose
dimensions will be denoted by hp,q± . The resulting effective four-dimensional theory contains
two classes of scalar fields: first, there are h1,1 + 1 Kähler-sector moduli written as (we
mostly follow the conventions of [12])

TA = (τ,Gα, Ta) , A = 0, . . . , h1,1 , (3.1)

where τ denotes the axio-dilaton, Gα with α = 1, . . . , h1,1
− are axionic moduli, and Ta

with a = 1, . . . , h1,1
+ are the ordinary Kähler moduli (see for instance [7] for details). Our

conventions are such that ReTA are axionic degrees of freedom. Second, there are h2,1
−

complex-structure moduli zi with i = 1, . . . , h2,1
− . These are contained in the holomorphic

three-form Ω of the Calabi-Yau three-fold. Choosing a symplectic basis {αI , βI} ∈ H3
−(X )

with I = 0, . . . , h2,1
− , the holomorphic three-form can be expanded as

Ω = XIαI −FI βI , zi = Xi

X0 , (3.2)

where the periods FI depend holomorphically on the complex-structure moduli zi. We
finally note that the effective theory also contains h2,1

+ vector fields which may give rise to a
D-term potential, however, here we assume that the D-term potential vanishes.

Kähler potential. The dynamics of the scalar fields is determined by the Kähler potential.
For the above setting it is given by

K = KK +Kcs ,

KK = − log
[
− i(τ − τ)

]
− 2 log

[
V + ξ

2

]
,

Kcs = − log
[
+i
∫
X

Ω ∧ Ω
]
,

(3.3)

where the Einstein-frame volume of the Calabi-Yau three-fold is denoted by V, which
depends implicitly on τ , Gα and Ta, and we included α′-corrections encoded in
ξ = − ζ(3)χ(X ) (τ−τ)3/2

2(2π)3 (2i)3/2 [13]. The Kähler potential for the Kähler-sector moduli — includ-
ing the α′-corrections shown above — has some special properties. With KA = ∂AK,
GAB = ∂A∂BK, and KA = GABKB one finds

KA = −(T− T)A , KAG
ABKB = 4 . (3.4)

Note, however, that the complex-structure sector does not satisfy similar relations in
general. Only in certain limits one may find for instance KiG

ijKj = 3; we come back to
this point below.
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Fluxes. We furthermore consider fluxes along the compact space X . They generate a scalar
potential in the four-dimensional theory which can be described by the superpotential [14–16]

W =
∫
X

Ω ∧
(
F3 − ΞATA

)
. (3.5)

Here F3 is the R-R three-form flux and ΞA are geometric and non-geometric NS-NS three-
form fluxes. In particular, Ξ0 is the ordinary H3-flux, Ξα correspond to geometric F -fluxes,
and Ξa correspond to non-geometric Q-fluxes [17–19] (see [20] for a review). All fluxes are
integer quantized. The Bianchi identities for the NS-NS fluxes read [12, 14, 21]∫

X
ΞA ∧ ΞB = 0 , (3.6)

while the Bianchi identities for the R-R fields contain contributions of localized sources
such as D-branes and orientifold planes. The integrated versions of the Bianchi identities
are known as tadpole-cancellation conditions. The fluxes contribute as [12]

NA =
∫
X
F3 ∧ ΞA , (3.7)

where A = 0 corresponds to the D3-brane tadpole, A = α to the D5-brane tadpole, and
A = a to the D7-brane tadpole.

Towards canonically-normalized-mass eigenvalues. In order to compute the eigen-
values of the canonically-normalized mass matrix shown in (2.10), we need to determine
the eigenvalues σ2

α of the matrices QQ† or Q†Q. To do so, we first define the matrix

Q = G−1∂F , (3.8)

evaluated at the minimum. Since the matrix Γ appearing in (2.5) is invertible, we see that
QQ and QQ† have the same eigenvalues. Let us therefore determine Q for the above setting:
we denote the Kähler-covariant derivative with respect to the complex-structure moduli zi
by Di. Its action on the (3, 0)-form Ω leads to (2, 1)-forms χi = DiΩ ∈ H2,1

− (X ) and its
triple action on Ω leads to the Yukawa couplings κijk [22, 23]. More concretely, we have
(we follow the conventions of [23])

χi = ∂iΩ +KiΩ , κijk = −
∫
X

Ω ∧DiDjDkΩ . (3.9)

We also note that the (1, 2)-components of the real three-forms ΞA are given by

ΞiA = −ieKcsGij
∫
X
χj ∧ ΞA , (3.10)

which are related to the (2, 1)-components Ξi
A
by complex conjugation. Using then the

F-term conditions FA = 0 and Fi = 0 as well as special-geometry relations of the complex-
structure moduli space [22, 23], we can determine the matrix Q shown in (3.8) as follows
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(details of this computation are shown in appendix A.1)

QA
B =

[
−δAB −KAKB

]
W ,

QA
j = −ie−KcsGAB ΞiBGij ,

Qi
B = −ie−Kcs ΞiB ,

Qi
j = Gimκjmn Ξn

B
KB .

(3.11)

Note that these expressions are valid for any point in complex-structure moduli space. In
principle one can use them to either compute the singular-value decomposition of Q and
determine the singular values σα or to compute the eigenvalues σ2

α of QQ. However, we were
not able to obtain analytic expressions for the eigenvalues for general flux configurations.

Remarks. We close this section with two remarks. First, using (3.4) and the F-term
condition of the Kähler-sector moduli, from KAFA = 0 we determine

W |min = − i2

∫
X

Ω ∧ ΞA (ImTA) . (3.12)

Second, with the help of the F-term conditions we can express the tadpole charges (3.7) at
the minimum as

NA =
[∫
X

ΞA ∧ ?ΞB + 12GAB e
Kcs |W |2

]
(ImTB) . (3.13)

At the minimum the matrix in parenthesis is semi-positive definite, which implies in
particular that NA (ImTA) ≥ 0.

4 Conformal dimensions

Since it is difficult to determine the eigenvalues of the mass matrix for general flux choices
analytically, in this section we consider two specific settings. First, we study the mirror-dual
of the type IIA DGKT construction [1]. Second, we analyze numerically an example with
geometric and non-geometric NS-NS fluxes for h1,1 = h2,1

− = 1.

4.1 The type IIA mirror

We start with a setting that is mirror-dual to the type IIA DGKT construction [1]. This
configuration is special since the superpotential splits into a sum of two terms that only
depend on the complex-structure and only on the Kähler-sector moduli, respectively.

Fluxes. The setting that we consider on the type IIB side is characterized by the following
choice of NS-NS fluxes

ΞA = − (ΞA)0 β
0 , (4.1)

where we expanded ΞA into the symplectic basis {αI , βI} ∈ H3
−(X ). On the type IIA side

(ΞA)0 are the components of the H3-flux, and we remark that the R-R three-form flux F3
is not restricted besides the tadpole-cancellation condition. From the expansion of the
holomorphic three-form shown in (3.2) we see that the superpotential (3.5) indeed splits

– 7 –
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into two terms depending only on the complex-structure and only on the Kähler-sector
moduli

W =
∫
X

Ω ∧ F3 +
[
X0 (ΞA)0 TA

]
. (4.2)

Furthermore, from (3.12) we see that in this caseW/X0 at the minimum is purely imaginary
which matches the discussion in [1]. Using then

∫
X ∂iΩ ∧ ΞA = 0 and the F-term condition

FA = 0, we find for the (1, 2)-components of ΞA

ΞiA = −ieKcsKAK
iW . (4.3)

Large-complex-structure limit. For the type IIA setting one considers the large-
volume limit in which corrections are typically neglected. On the type IIB side this limit
corresponds to the large-complex-structure limit, where subleading corrections are however
well-understood. In particular, the holomorphic three-form is determined by the following
prepotential at the perturbative level

F = − 1
3!
κijkX

iXjXk

X0 + 1
2! aijX

iXj + biX
iX0 + 1

2! c(X0)2 , (4.4)

where aij and bi are real while c is purely imaginary. In this work we ignore instanton
corrections to the prepotential. The periods FI appearing in (3.2) are given by FI = ∂XIF ,
from which one can determine the Kähler potential, the first derivatives Ki, and the Kähler
metric Gij . Let us define

zi = ui + ivi , γ = 3 Imc
κijkvivjvk

� 1 , (4.5)

and note that in the large-complex-structure limit we have γ → 0. We then compute the
following expressions

Ki = −i 2− γ
1 + γ

vi , (4.6a)

KiG
ijKj = 3

1 + γ
, (4.6b)

κijkK
k = i

2
X0

X0 e
−Kcs 2− γ

1 + γ

[
δij +KiKj

]
. (4.6c)

The eigenvalues of QQ†. With the help of (4.3) and (4.6) we determine the matrix Q
and subsequently QQ. Noting that (3.12) together with (4.1) implies that W/X0 is purely
imaginary at the minimum, we obtain the following four sub-blocks

(QQ)AB = |W |2
[
δAB + 5 + 2γ

1 + γ
KAKB

]
,

(QQ)Aj = |W |2KAKj

[
3− 2

(2− γ
1 + γ

)2
]
,

(QQ)iB = |W |2KiKB

[
3− 2

(2− γ
1 + γ

)2
]
,

(QQ)ij = |W |2
[
4
(2− γ

1 + γ

)2
δij +

(
4 + 4

(2− γ
1 + γ

)2 1− 2γ
1 + γ

)
KiKj

]
.

(4.7)
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eigenvalues σ2
α/|W |2 eigenvectors multiplicity

1 (LA, 0)T h1,1(
4−2γ
1+γ

)2
(0, Li)T h2,1

− − 1

16 + 96
13 γ +O(γ2) (KA, η(1)K

i)T 1

81− 5400
13 γ +O(γ2) (KA, η(2)K

i)T 1

Table 1. Eigenvectors and eigenvalues of the matrix QQ shown in (4.7). The vectors LA and Li

satisfyKAL
A = 0 andKiL

i = 0, and the parameters η(1) and η(2) take the form η(1) = 1
3 + 25

39 γ+O(γ2)
and η(2) = −4 + 48

13 γ +O(γ2). The precise expressions for the eigenvalues and eigenvectors in the
last two lines are shown in appendix A.2.

mass m2/R−2
AdS conformal dimension ∆ multiplicity

0 2 h1,1

−2 3 h1,1

18(1−γ)
(1+γ)2

5−γ
1+γ h2,1

− − 1
2(5−γ)(1−2γ)

(1+γ)2
6

1+γ h2,1 − 1

18 + 108
13 γ +O(γ2) 5 + 12

13 γ +O(γ2) 1

10 + 84
13 γ +O(γ2) 6 + 12

13 γ +O(γ2) 1

88− 5700
13 γ +O(γ2) 10− 300

13 γ +O(γ2) 1

70− 5100
13 γ +O(γ2) 11− 300

13 γ +O(γ2) 1

Table 2. Masses and conformal dimensions for the mirror-dual of the type IIA DGKT setting. In
the strict large-complex-structure limit γ = 0 and one obtains integer-valued conformal dimensions.

These expressions are in line with corresponding type IIA formulas found in [4, 24, 25]. In
order to determine the eigenvalues σ2

α of QQ, we first note that KA is a (h1,1 +1)-dimensional
vector and that there are h1,1 vectors LA perpendicular to KA with respect to the Kähler
metric, i.e. they satisfy KAL

A = 0. Similarly, Ki is a h2,1
− -dimensional vector and there are

h2,1
− − 1 vectors Li that satisfy KiL

i = 0. Using then (3.4) and (4.6b), we can compute the
eigenvalues and eigenvectors of the matrix QQ. They are summarized in table 1.

Masses and conformal dimensions. Using the results shown in table 1, we can now
determine the canonically-normalized masses and corresponding conformal dimensions
using (2.10) and (2.14). The resulting expressions are summarized in table 2, where we
assumed thatW 6= 0 at the minimum. Our main observation is that when taking into account
the corrections to the large-complex-structure limit encoded in γ, the conformal dimensions
of the dual operators are not integer-valued. Only in the strict large-complex-structure
limit γ = 0 we reproduce the integer conformal dimensions found in [2–4].
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4.2 General fluxes for h1,1 = h2,1
− = 1

In this section we analyze a compactification with a minimal set of moduli but with a more
general choice of fluxes. We stabilize moduli in an AdS4 vacuum at large complex structure,
large volume, and weak coupling without taking into account perturbative corrections
to the prepotential. We then study the masses and corresponding conformal dimensions
numerically.

Setting. Let us consider a setting with two Kähler-sector moduli and one complex-
structure modulus. This corresponds to a compactification manifold and orientifold projec-
tion with Hodge numbers

h1,1 = h1,1
+ = 1 , h2,1

− = 1 . (4.8)

We furthermore assume that the complex-structure modulus is stabilized at large complex
structure. Ignoring the perturbative corrections and choosing κ111 = 1 for simplicity, the
corresponding prepotential (4.4) simplifies to

F = − 1
3!

(
X1)3
X0 . (4.9)

In the Kähler sector we ignore α′-corrections and we express the Einstein-frame volume of
the Calabi-Yau manifold in terms of the Kähler modulus T1 as

V = 1
6
[
−i(T1 − T 1)

]3/2
. (4.10)

Fluxes. Turning to the fluxes, we expand the R-R and NS-NS three-form fluxes in the
symplectic basis {αI , βI} as F3 = f I αI − fI βI and ΞA = (ΞA)I αI − (ΞA)I βI . Arranging
the components f I , fI and (ΞA)I , (ΞA)I into a vector and matrix, respectively, we make
the following choice

F3 =


60
0
0

−2a2(9 + 2b)

 , ΞA =


0 0
0 10b

−2a2(2 + b) −a2(12 + b)
0 0

 , (4.11)

where a2 ∈ Z and b ∈ Z. The corresponding tadpole charges (3.7) are determined as

NA =
(
120a2(2 + b) , 40a2(18− 3b− b2)

)
. (4.12)

Note that b = 0 corresponds to a setting that is mirror dual to a type IIA DGKT construction.
In the absence of corrections to the prepotential, as we are considering here, for b = 0 we
therefore expect integer conformal dimensions.

Moduli stabilization. For the above Kähler potential, superpotential, and choice of
fluxes we can now solve the F-term conditions. These fix the moduli as

z1 = ia , T0 = τ = ia , T1 = T1 = ia , (4.13)
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and the AdS radius takes the value
1

R2
AdS

= 27(2 + b)2

a . (4.14)

Let us discuss two particular choices for the parameter b. As mentioned above, for the mirror-
dual of the DGKT setting we expect integer conformal dimensions. And indeed, for b = 0
the eigenvalues of QQ† are σ2

α/|W |2 = (1, 16, 81) which lead to the canonically-normalized
masses and conformal dimensions

m2

R−2
Ads

∣∣∣∣∣
b=0

=
(

0 , −2 , 18 , 10 , 88 , 70
)
,

∆|b=0 =
(

2 , 3 , 5 , 6 , 10 , 11
)
.

(4.15)

On the other hand, the choice b = 1 corresponds to a more general setting that is different
from the DGKT mirror. Here we obtain σ2

α/|W |2 = (0.91, 13.45, 42.16) which leads to

m2

R−2
Ads

∣∣∣∣∣
b=1

=
(
−0.14 , −2.05 , 15.12 , 7.78 , 46.66 , 33.67

)
,

∆|b=1 =
(

1.91 , 2.91 , 14.45 , 15.45 , 43.16 , 44.16
)
.

(4.16)

In particular, for a choice of fluxes that is slightly more general than the mirror-dual of the
type IIA DGKT setting, the conformal dimensions of the operators dual to the scalar fields
are not integer. A similar observation was made in [3].

5 Asymptotic regions

Our discussion in this section is independent from our analysis of AdS vacua and conformal
dimensions, but it utilizes many results from sections 2 and 3. We study the mass matrix
for type IIB flux compactifications that are relevant for the KKLT and Large-Volume
scenarios [8, 9]. Using the trace of this matrix, we argue that stabilizing the axio-dilaton
and complex-structure moduli in an asymptotic region of moduli space by fluxes implies
that at least one the corresponding mass eigenvalues diverges. This computation was part
of the master thesis [26] and has been verified numerically (in a slightly different setting) in
the master thesis [27].

Scalar potential. We consider type IIB flux compactifications with R-R and NS-NS
three-form fluxes F3 and H3. In this case only the dilaton τ and the complex-structure
moduli zi appear in the superpotential and hence W is independent of the remaining
Kähler-sector moduli. When ignoring the α′-corrections to the Kähler potential KK shown
in (3.3), the Kähler-sector moduli (without the axio-dilaton) satisfy the no-scale condition

KAG
ABKB = 3 for A,B = 1, . . . , h1,1 . (5.1)

In this case the scalar F-term potential can be brought into the form

V = eK FMGMN FN , (5.2)
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where M,N label the axio-dilaton τ and the complex-structure moduli zi but not the
remaining Kähler-sector moduli Gα and Ta. In the following we are interested in F-term
minima given by

FM = 0 , (5.3)

but we ignore the F-terms corresponding to the moduli Gα and Ta. In the KKLT and
large-volume scenarios these are stabilized in a second step using non-perturbative effects.

Mass matrix. Following a discussion similar to the one in section 2, we find that the
canonically-normalized mass matrix can be expressed as

m2
can = eK

[
QQ† + |W |2 2QW

2Q†W Q†Q+ |W |2

]
. (5.4)

Denoting the eigenvalues of QQ† again by σ2
α, we determine the eigenvalues of (5.4) as

m2
α± = eK

(
σα ± |W |

)2
. (5.5)

The matrix QQ. We note that the eigenvalues of QQ† are the same as the eigenvalues
of QQ, where Q was defined in (3.8). From the superpotential

W =
∫
X

Ω ∧ (F3 −H3 τ) , (5.6)

we then compute

Qτ
τ = 0 ,

Qi
τ = −ie−Kcs hi ,

Qτ
j = +i(τ − τ)2e−Kcs gjih

i ,

Qi
j = (τ − τ)κijkhk ,

(5.7)

where hi with i = 1, . . . , h2,1
− are the (1, 2)-components of H3 (cf. equation (3.10)). Denoting

by Rijmn the Riemann tensor of the complex-structure moduli-space metric (we follow the
conventions of [23]) and by Kτ = − log[−i(τ − τ)] the Kähler potential of the axio-dilaton,
we determine

[
QQ

]τ
τ = e−2(Kτ+Kcs)higij h

j ,[
QQ

]τ
j = e−Kτ−Kcs(τ − τ)2κjmnh

mhn ,[
QQ

]i
τ = −e−Kτ−Kcs κimnh

mhn ,[
QQ

]i
j = e−2(Kτ+Kcs)

(
−Rijmnh

mhn + δij h
mgmnh

n + 2hihj
)
.

(5.8)
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Trace of the canonically-normalized mass matrix. The trace of the canonically-
normalized mass matrix (5.4) can be computed using (5.8) as

trm2
can = 2

V2

[
e−Kcs−KτhmHmnh

n + e+Kcs+Kτ (h2,1 + 1)|W |2
]
, (5.9)

where all expressions are evaluated at the minimum. The Hodge metric Hij is defined
in terms of the Ricci tensor Rij on the complex-structure moduli space and satisfies (see
e.g. [28])

Hij = Rij + (h2,1
− + 3)gij , Hij ≥ 2gij . (5.10)

We furthermore note that with the help of the F-term conditions the flux number appearing
in the D3-brane tadpole-cancellation condition can be written as

Nflux = e−Kcs−Kτhmgmnh
n + e+Kcs+Kτ |W |2 , (5.11)

and using the second relation in (5.10) we find from (5.9) the bound

trm2
can ≥

2
V2

[
2Nflux + eKcs+Kτ (h2,1 − 1)|W |2

]
. (5.12)

Requiring h2,1
− ≥ 1 the bound above implies

trm2
can ≥

4
V2 Nflux ⇒ m2

max ≥
2
V2

Nflux

h2,1
− + 1

, (5.13)

where m2
max is the largest eigenvalue of the canonically-normalized mass matrix. (For

h2,1
− = 0 we obtain trm2

can = 2Nflux/V2.) For the expression on the right-hand side in (5.13)
we used that trm2

can is the sum of all mass eigenvalues and that trm2
can/2(h2,1

− + 1) is the
average mass eigenvalue. Note that in [29] a similar relation for the average mass eigenvalue
has been estimated, whereas here we give a precise derivation.

Moduli stabilization in asymptotic regions. In the paper [30] we argued that when
stabilizing the axio-dilaton and complex-structure moduli in the weak-string-coupling or
large-complex-structure limit by fluxes, the flux number Nflux is expected to diverge. In [31]
this argument has been extended to arbitrary boundary limits using asymptotic Hodge
theory. If this expectation is true, then (5.13) implies that stabilizing these moduli in
an asymptotic region of moduli space means that at least one of the axio-dilaton and
complex-structure mass-eigenvalues will diverge — provided that the overall volume V
remains the same

Nflux
asymptotic region−−−−−−−−−−−−→∞ ⇒ m2

max
asymptotic region−−−−−−−−−−−−→∞ . (5.14)

In a consistent string-theory compactification the flux number Nflux is bounded by the
tadpole-cancellation condition, however, it has been argued that this bound can be rather
large [32]. Therefore, also m2

max can be large. In order to have a separation of scales
between the moduli masses and the Kaluza-Klein masses m2

max � m2
KK, one has to ensure
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a sufficiently large volume V and sufficiently small string coupling. In particular, we have
to require

m2
max � m2

KK ⇒ Nflux

h2,1
− + 1

� 2π2 Im(τ)V2/3 . (5.15)

For the large-volume scenario this is only a mild restriction, but for KKLT it may become
relevant.

6 Summary and conclusions

In this note we studied the mass spectrum of flux compactifications of type IIB string
theory. Let us summarize and discuss our findings.

AdS vacua of type IIB flux compactifications. In section 2 we considered F-term
vacua of general four-dimensional N = 1 supergravity theories and determined in equa-
tion (2.10) the eigenvalues m2

α± of the canonically-normalized mass matrix for the scalar
fields. In general these vacua are AdS4 vacua, for which we compute the conformal dimen-
sions of dual operators in a putative three-dimensional CFT. They are shown in (2.14). We
find that both quantities are determined in a simple way by the value of the superpotential
at the minimum and by the singular values σα of the matrix

QM
N = GMP∂PFN . (6.1)

In section 3 we specialized our discussion to four-dimensional N = 1 theories coming from
compactifications of type IIB string theory on general Calabi-Yau orientifolds with geometric
and non-geometric fluxes. Our main result in this section is an explicit expression for the
matrix Q mentioned above, however, we were not able to determine analytic expressions for
its singular values for general flux configurations.

(Non-)integer conformal dimensions. In section 4 we therefore consider two particular
cases for which we can determine the singular values σα analytically and numerically,
respectively. Here we are interested in the question of what features of the compactification
lead to the integer-valued conformal dimensions observed in [2–5].

• In section 4.1 we study the mirror-dual of the type IIA DGKT construction [1]. On
the type IIB side we have good control over perturbative corrections in the large-
complex-structure limit and were able to take them into account for the computation
of the masses and conformal dimensions. As summarized in table 2, we find that mass
eigenvalues (in units of the AdS radius) and conformal dimensions are in general not
integer-valued — only in the strict large-complex-structure limit we obtain integer
conformal dimensions.

• In section 4.2 we consider a concrete type IIB example with one complex-structure
modulus, one Kähler modulus, and the axio-dilaton. We ignore corrections to the
large-complex-structure limit and stabilize moduli using geometric and non-geometric
fluxes. For a choice of fluxes mirror-dual to the DGKT setting we find integer
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conformal dimensions — as expected — however, when considering a slightly more
general flux choice the masses (in units of R2

AdS) and conformal dimensions are no
longer integer-valued.

Our findings therefore suggests that integer conformal dimensions occur a) for a specific
choice of fluxes for which the superpotential splits into two separate terms, i.e. the DGKT
setting, and b) when ignoring perturbative corrections to the large-complex-structure limit.
When deviating from either of those properties the conformal dimensions are in general
no longer integer-valued. However, in our analysis we focussed only on the closed-string
sector. It would be interesting to take into account the open-string sector and repeat the
computation of masses and conformal dimensions.

Moduli stabilization in asymptotic regions. Our discussion in section 5 is indepen-
dent of our analysis of conformal dimensions, but uses many results from sections 2 and 3.
We consider type IIB flux compactifications with only geometric F3- and H3-fluxes in the
large-volume limit. These configurations are relevant for the KKLT and large-volume scenar-
ios. We compute the trace of the canonically-normalized mass matrix of the axio-dilaton and
complex-structure moduli and argue that when stabilizing these moduli in an asymptotic
region of moduli space by fluxes at least one of the corresponding mass eigenvalues will
diverge. This observations highlights that when stabilizing moduli one does not only need to
ensure that the lightest modes are sufficiently heavy — but also that the heaviest modes are
separated from the Kaluza-Klein scale. This point has recently been emphasized also in [33].
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A Computational details

In this appendix we summarize some details relevant for the computation of masses and
conformal dimensions in section 4.1.

A.1 The computation of Q

Let us explain the computation of the matrix Q shown in equation (3.11). We first note
that the F-term conditions Fi = 0 for the superpotential (3.5) take the form

0 =
∫
X
χi ∧

(
F3 − ΞATA

)
. (A.1)

Next, we recall that the Kähler potential KK shown in (3.3) only depends on the imaginary
parts of the moduli TA and therefore

KAB = ∂A∂BK = −∂A∂BK = −GAB . (A.2)
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Using this relation and the fact that the superpotential (3.5) is linear in TA we obtain

QA
j = GAC∂CFB = GAC

[
KCB −KBKC

]
W =

[
−δAB −KAKB

]
W . (A.3)

With the help of the relation (3.10) we also determine

QA
j = GAB∂BFj = GAB

∫
X
χj ∧ (−ΞB) = −ie−KcsGAB ΞiBGij , (A.4)

and along similar lines the expression for Qi
B is found. Finally, with χi the complex

conjugate of χi, we recall from [23] that

Diχj = −ieKcs κij
mχm , (A.5)

where indices are raised by the inverse Kähler metric Gij . (This result was used recently
also in [34] to determine the mass matrix.) We then compute using (3.4) and the complex-
conjugates of (A.1) and (3.10)

Qi
j = Gik∂kFj = Gik

∫
X
Dkχj ∧

(
F3 − ΞATA

)
= −ieKcs κij

m
∫
X
χm ∧

(
F3 − ΞATA

)
= −ieKcs κij

m
∫
X
χm ∧

(
F3 − ΞATA − ΞA

(
TA − TA

))
= −ieKcs κij

m
∫
X
χm ∧ ΞAKA

= κijn Ξn
A
KA .

(A.6)

A.2 Eigenvalues and eigenvectors of QQ

In this appendix we summarize the exact expressions for the eigenvalues and eigenvectors
shown in table 1. In particular, the eigenvalues in the last two lines are given by

σ2
(1)

|W |2 =

−5
√
γ(γ(γ(25γ+28)+258)+100)+169+γ

(
14
√
γ(γ(γ(25γ+28)+258)+100)+169

+γ
(
γ(13γ+28)+

√
γ(γ(γ(25γ+28)+258)+100)+169+222

)
−20

)
+97

2(γ+1)4

= 16+ 96
13 γ+O(γ2) ,

σ2
(2)

|W |2 =

5
√
γ(γ(γ(25γ+28)+258)+100)+169+γ

(
γ
(
γ(13γ+28)−

√
γ(γ(γ(25γ+28)+258)+100)+169+222

)
−2
(

7
√
γ(γ(γ(25γ+28)+258)+100)+169+10

))
+97

2(γ+1)4

= 81− 5400
13 γ+O(γ2) . (A.7)
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The corresponding eigenvectors shown in the last two lines of table 1 are characterized by
two parameters of the form

η(1) = γ(2− 5γ) +
√
γ(γ(γ(25γ + 28) + 258) + 100) + 169− 11

6(γ + 1)

= 1
3 + 25

39 γ +O(γ2) ,

η(2) = γ(2− 5γ)−
√
γ(γ(γ(25γ + 28) + 258) + 100) + 169− 11

6(γ + 1)

= −4 + 48
13 γ +O(γ2) .

(A.8)
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