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1 Introduction

String theory is a consistent theory of quantum gravity including gauge interactions. The
theory is defined in ten space-time dimensions — and the connection to physics in four
dimensions is typically made by compactifying on Calabi-Yau three-folds. The resulting
effective theory is determined largely by the geometry of the compact space, in particular,
deformations that preserve the Calabi-Yau condition correspond to massless scalar fields.
However, such fields are in conflict with experimental observations. One way to resolve this
conflict is to include fluxes which can give masses to the moduli. Well-understood settings
for this procedure are orientifold compactifications of type IIB string theory with O3- and
O7-planes, where three-form fluxes generate a potential for the axio-dilaton and complex-
structure moduli [1]. Stabilizing moduli in this way is the first step in the KKLT [2] and
Large Volume Scenarios [3].

One may expect that a generic choice of fluxes will stabilize all axio-dilaton and
complex-structure moduli. This expectation has been challenged recently. Fluxes are
restricted by the geometry and topology of the compact space, more concretely, the flux
number Nflux is bounded through the tadpole-cancellation condition. In [4] it has been
argued that stabilizing moduli near a conifold locus requires large fluxes which are incom-
patible with the tadpole-cancellation condition and in [5–7] it has been discussed that for
control of perturbative corrections in the Large Volume Scenario large flux numbers (likely
exceeding the tadpole bound) are needed. In [8] we showed that the tadpole-cancellation
condition can force moduli to be stabilized in a perturbatively poorly-controlled regime
and in [9] its is argued that stabilizing all moduli in M-theory can be in tension with the
tadpole condition. Taking these arguments one step further, the authors of [10] made the
tadpole conjecture which implies that stabilizing a large number of moduli by fluxes is not
possible.
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The purpose of the present work is to investigate the tadpole conjecture for a concrete
setting. We consider a Calabi-Yau three-fold with 50 complex-structure moduli for which
the tadpole conjecture is applicable. All axio-dilaton and complex-structure moduli are
stabilized by fluxes in the large-complex-structure limit. This is a challenging task — and
we have developed an algorithm that allows us to construct a large number of flux vacua
with a small flux number Nflux. Based on results of [11] we estimate a bound on Nflux from
the tadpole-cancellation condition as Nflux ≤ O(103) and compare with our solutions. We
find that the vacua in our data set satisfy Nflux ≥ O(104) and therefore exceed this bound.
In particular, for the vacua we obtain the tadpole conjecture is satisfied.

This paper is organized as follows: in section 2 we briefly review moduli stabilization
for type IIB orientifolds. In section 3 we discuss the tadpole conjecture in some detail, in
section 4 we introduce a concrete setting for studying moduli stabilization, and in section 5
we present and discuss our results.

2 Moduli stabilization

In this section we introduce the setting for our subsequent discussion. We focus on the
material necessary for moduli stabilization in the large-complex-structure regime and refer
for instance to [12] for a more detailed introduction to this topic.

Moduli. We consider orientifold compactifications of type IIB string theory on Calabi-
Yau three-folds X with O3- and O7-planes. The orientifold projection splits the cohomolo-
gies of X into even and odd eigenspaces Hp,q

± (X ), whose dimensions will be denoted by
hp,q± . The effective four-dimensional theory obtained after compactification contains mass-
less scalar fields, in particular, the axio-dilaton τ , h2,1

− complex-structure moduli zi, h1,1
+

Kähler moduli Ta, and h1,1
− moduli Gâ. We parametrize the first two as

τ = c+ is , zi = ui + ivi , i = 1, . . . , h2,1
− , (2.1)

and the physical region of the dilaton is characterized by s > 0. The Kähler potential for
these fields is given by

K = − log
[
−i(τ − τ̄)

]
− log

[
+i
∫
X

Ω ∧ Ω̄
]
− 2 logV , (2.2)

where Ω denotes the holomorphic three-form of X which depends on the complex-structure
moduli zi and V denotes the volume of X which depends on the Kähler moduli Ta and on
the moduli Gâ.

Prepotential. For the third cohomology of the Calabi-Yau three-fold X we can choose
an integral symplectic basis {αI , βI} ∈ H3

−(X ,Z). The holomorphic three-form is expanded
in this basis in the following way

Ω = XIαI −FIβI , I = 0, . . . , h2,1
− , (2.3)

where the periods FI can be expressed using a prepotential F as FI = ∂IF with ∂I =
∂/∂XI . The complex-structure moduli zi are written in terms of the projective coordinates
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XI as zi = Xi/X0. In this paper we are interested in the large-complex-structure regime,
for which the prepotential splits into a perturbative and a non-perturbative part

F = Fpert + Finst . (2.4)

The perturbative part takes the following form [13] (we follow the discussion and conven-
tions of [14])

Fpert = − 1
3!
κ̃ijkX

iXjXk

X0 + 1
2! aijX

iXj + biX
iX0 + 1

2! c(X0)2 , (2.5)

where κ̃ijk are the triple intersection numbers of the mirror-dual three-fold X̃ and the
constants aij , bi, and c are given by

aij = 1
2

{
κ̃iij i ≥ j ,
κ̃ijj i < j ,

bi = 1
24

∫
X̃
c2(X̃ ) ∧ β̃i , c = ζ(3)χ(X̃ )

(2πi)3 . (2.6)

Here, c2(X̃ ) denotes the second Chern class of X̃ , {β̃i} is a basis of H2(X̃ ,Z) mirror-dual to
the three-forms βi ∈ H3

−(X ,Z), and χ(X̃ ) is the Euler number of X̃ . The non-perturbative
part of the prepotential originates from world-sheet instanton corrections in the mirror-dual
theory. It takes the form

Finst = − 1
(2πi)3 (X0)2∑

~q

N~q Li3
(
e2πiqiX

i/X0)
, (2.7)

where Lis denotes the polylogarithm, the vector ~q represents effective curve classes in
H2(X̃ ,Z), and N~q are the genus-zero Gopakumar-Vafa invariants of X̃ .

Fluxes. In order to stabilize the axio-dilaton and complex-structure moduli we consider
non-vanishing Neveu-Schwarz-Neveu-Schwarz (NS-NS) and Ramond-Ramond (R-R) three-
form fluxes H3 and F3. These fluxes are integer quantized and can be expanded as

H3 = hIαI − hI βI , F3 = f IαI − fI βI , (2.8)

where hI , hI , f I , fI ∈ Z. They generate a scalar potential for the four-dimensional theory
that can be computed from the superpotential

W =
∫
X

Ω ∧G3 , G3 = F3 − τ H3 . (2.9)

Since the Kähler potential (2.2) we are considering is of no-scale type and because the
superpotential (2.9) does not depend on the moduli Ta or Gâ, the standard F-term scalar
potential can be brought into the form

V = eKFαG
αβF β . (2.10)

The Kähler potential K was shown in (2.2), the F-terms are given by the Kähler-covariant
derivative of W as Fα = ∂αW + (∂αK)W with α = (τ, zi), and Gαβ denotes the inverse of
the Kähler metric Gαβ = ∂α∂βK.
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Tadpole-cancellation condition. The fixed loci of the orientifold projection give rise to
orientifold planes. These objects are charged under the R-R gauge potentials and therefore
contribute to the corresponding Bianchi identities as sources. To solve these identities
one typically has to introduce D-branes, which for our setting are D3- and D7-branes.
Integrating the Bianchi identities leads to the tadpole-cancellation conditions, and relevant
for our discussion is the D3-brane tadpole given by (for details on the derivation see for
instance [15])

0 = Nflux + 2ND3 +QD3 , (2.11)

where we defined

Nflux =
∫
X
F3 ∧H3 , (2.12)

QD3 = −NO3
2 −

∑
D7i

[∫
ΓD7i

tr
[
F2

D7i

]
+ND7i

χ(ΓD7i

)
12

]
−
∑
O7j

χ
(
ΓO7j

)
6 . (2.13)

The flux number Nflux is non-negative in our conventions, ND7i denotes the number of
D7-branes in a stack labelled by i wrapping a four-cycle ΓD7i in X , and ND3 is the total
number of D3-branes. Both of these numbers are counted without the orientifold images.
Furthermore, FD7i is the open-string gauge flux for a stack i, NO3 is the total number of
O3-planes and χ(Γ) denotes the Euler number of the cycle Γ.

Minima. We are interested in global minima of the scalar potential (2.10). These are
given by vanishing F-terms Fα = 0 and to implement these conditions we expand the
three-form flux G3 appearing in (2.9) in the integral symplectic basis {αI , βI} as

G3 = mIαI − eIβI . (2.14)

Next, we denote the derivative of the periods by FIJ = ∂IFJ and define the complex matrix

NIJ = FIJ + 2i (ImF)IMXM (ImF)JNXN

XR(ImF)RSXS
, (2.15)

with I, J, . . . = 0, . . . , h2,1
− . The requirement of vanishing F-terms, that is the minimum

conditions, can then be expressed as the following complex-valued matrix equation

eI −N IJm
J = 0 . (2.16)

Stretched Kähler cone. The prepotential (2.4) is valid in the large-complex-structure
regime of the complex-structure moduli space. Away from that limit the instanton sum
appearing in (2.7) may not converge and the large-complex-structure expansion may break
down. The validity of the expansion can be characterized using a stretched Kähler cone [16]
(see also [17]). More concretely,

• the geometry of the complex-structure moduli space of X in the large-complex-
structure regime is mirror-dual to the geometry of the Kähler moduli space of X̃
in the large-volume regime. For the latter one finds a cone structure and hence, by
mirror symmetry, also the complex-structure moduli are restricted to lie in a cone.
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c
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Figure 1. (Stretched) Kähler cones K̃X̃ [0] and K̃X̃ [c] for a two-dimensional setting. The darker
shaded region is the stretched Kähler cone with parameter c.

• For the mirror-dual three-fold one can define a stretched Kähler cone in the following
way [16]

K̃X̃ [c ] =
{
J̃ ∈ H1,1(X̃ ,R) : vol(W ) ≥ c ∀W ∈ W

}
, (2.17)

where J̃ denotes the Kähler form on X̃ , W are all subvarieties (curves, divisors, X̃ )
of the dual three-fold X̃ , and c is a constant in appropriate units (see figure 1 for an
illustration). The ordinary Kähler cone is given by K̃X̃ [0].

• Coming back to the prepotential (2.4), the sum of world-sheet instanton correc-
tions (2.7) converges when the volumes of curves are sufficiently large. Hence, in
order to trust the large-complex-structure expansion, the complex-structure moduli
should be stabilized inside a stretched Kähler cone with parameter c > 0. We come
back to this point below.

3 Tadpole contribution of fluxes

The NS-NS and R-R three-form fluxes H3 and F3 generate a potential in the effective
four-dimensional theory that can stabilize the axio-dilaton and complex-structure moduli.
However, H3 and F3 cannot be chosen arbitrarily but are restricted by the tadpole cancel-
lation condition (2.11). In this section we discuss the interplay between these two questions
and motivate the setting for our subsequent analysis.

The tadpole conjecture. Let us denote the number of axio-dilaton and complex-
structure moduli which are stabilized through the flux superpotential (2.9) by nstab. In [10]
the authors conjectured that for nstab � 1 the flux number Nflux shown in (2.12) grows at
least linearly with nstab. This conjecture has been called the tadpole conjecture and several
versions thereof exist. In this paper we are interested in stabilizing all axio-dilaton and
complex-structure moduli in type IIB orientifold compactifications by fluxes. In this case
the conjecture takes the form

Nflux > 2α(h2,1
− + 1) for h2,1

− � 1 , (3.1)
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and in the refined version the constant α is conjectured to be α = 1/3. We briefly summarize
the current status of this conjecture:

• The tadpole conjecture has been verified for F-theory compactifications on K3×K3
in [10, 18], for type IIB compactifications in the large complex-structure regime in [19],
for F-theory compactifications on Calabi-Yau four-folds with a weak Fano base in [20],
and for F-theory compactifications in asymptotic regimes in [21].

• A counter-example for the tadpole conjecture was proposed in [22], but was opposed
in [23] and [24]. In particular, currently no concretely worked-out model that violates
the tadpole conjecture is known to exist.

• The tadpole conjecture applies to smooth compactifications but could be violated
for spaces that contain singularities. This was already noted in [10] and has been
emphasized for instance in [6].

Contribution of orientifold planes and D7-branes. The flux numberNflux is bounded
from below by the requirement to be positive and from above by the charge QD3 in the
tadpole cancellation condition (2.11). The contribution of orientifold planes appearing
in QD3 depends on the chosen orientifold projection and it is difficult to give a precise
estimate on how it varies with h2,1

− . For some classes of models complete classifications
of the possible orientifold projections have been provided — see for instance [25] for a
classification of orientifolds of T6/ZM or T6/ZM × ZN and [26] for a classification for
del-Pezzo surfaces. Furthermore, databases for orientifold compactifications have been
constructed recently: in [27] orientifolds of CICYs have been classified, in [28] the authors
extend their database on triangulations for the Kreuzer-Skarke list [29, 30] to include
orientifold projections, and in [11] the authors systematically analyze the Kreuzer-Skarke
database and classify orientifold projections. These analyses lead to the following bound
on the D3-brane charge (2.13) in type IIB orientifold compactifications (see for instance
equation (3.31) in [11])

QD3 ≥ −
(
2 + h1,1 + h2,1) . (3.2)

Note that this bound is obtained for configurations in which D7-branes are placed on top of
O7-planes and hence charges are cancelled locally. However, when considering D7-branes
away from the orientifold locus (i.e. non-local cancellation of charges) smaller values for
QD3 can be found [31]. From the database of [11] we can infer the following bounds on
QD3 for local and non-local cancellation of D7-brane charges

QD3 ≥
{
−48 local,
−342 non-local, for h1,1 = 5 , h2,1

− = 50 , (3.3)

QD3 ≥
{
−64 local,
−722 non-local, for h1,1 = 5 , 40 ≤ h2,1

− ≤ 60 . (3.4)

Since the dependence of the bounds on QD3 may fluctuate with h2,1
− , in (3.4) we have

broadened the search range to allow for variations in h2,1
− . The values shown in (3.4)

correspond to a model with h2,1 = h2,1
− = 57.
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Contribution of fluxes. We note that a priori the bound shown in (3.2) is compatible
with the tadpole conjecture. However, the flux number Nflux may not saturate (3.1) but
exceed it. In fact, for a toroidal orientifold compactification it was observed in [8] that
the flux number will generically diverge when moduli are stabilized near the boundary of
moduli space while it will take its smallest values in the interior. In [19] this argument has
been made for more general settings.

Motivated by the above works, we are interested in what values the flux number Nflux
typically takes when many moduli are stabilized. To study this question we consider
the large-complex-structure regime for which the prepotential can easily be determined
via mirror symmetry. The validity of the large-complex-structure approximation can be
parametrized by the stretched Kähler-cone parameter c and we expect that for decreasing
c the minimal Nflux will decrease — while at the same time the large-complex-structure
expansion becomes less reliable. Similarly, the weak-string-coupling approximation is con-
trolled by the dilaton (encoded in) s. In view of the tadpole conjecture we are therefore
interested in the question:

for a given bound on the Kähler-cone parameter c and on the dilaton s, what
is the smallest value of Nflux such that all axio-dilaton and complex-structure
moduli are stabilized by fluxes?

4 An example with h2,1
− = 50

In this section we introduce a concrete setting for stabilizing all axio-dilaton and complex-
structure moduli through NS-NS and R-R three-form fluxes. We chose an example with
h2,1
− = 50 for which the tadpole conjecture is applicable.

The compactification space. As discussed in section 2, we employ mirror symmetry
to construct the prepotential for the complex-structure moduli space in the large-complex-
structure regime. We use CYTools [32] to determine the data for the mirror-dual setting
as follows:

• We have randomly chosen a polytope of the Kreuzer-Skarke database [33]. Its normal
form is shown in appendix A. With the help of CYTools we then perform a Delaunay
triangulation using the command triangulate() and corresponding data is displayed
as well in appendix A. The Calabi-Yau three-fold X̃ is then obtained by get_cy().

• The Hodge numbers for the mirror three-fold are determined using the functions h11
and h12 as

h̃1,1 = 50 , h̃2,1 = 5 . (4.1)

The perturbative part of the prepotential is specified by the triple-intersection num-
bers of X̃ and the second Chern class, which are found using intersection_numbers
(in_basis=true) as well as using the command second_chern_class(in_basis=true).
The Euler number of the mirror-dual three-fold is computed from (4.1) as

χ(X̃ ) = 90 . (4.2)

– 7 –
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• The Kähler-cone conditions are encoded in a matrix M, which can be computed
using CYTools through toric_kahler_cone().hyperplanes(). A stretched Kähler
cone with parameter c is specified by the conditions

M~v ≥ ~c , (4.3)

where ~v is a vector with components vi = Imzi and ~c is a vector where each compo-
nent takes the value c.

• Finally, we assume that an orientifold projection can be chosen such that h2,1
− = h2,1,

so that from (4.1) we have

h2,1
− = 50 . (4.4)

The tadpole cancellation condition (2.11) relates the bounds on QD3 shown in (3.3)
and (3.4) for non-local cancellation of D7-branes charges to the following bound on
the flux number

Nflux ≤ O(103) . (4.5)

Estimating the validity of the large-complex-structure approximation. The pre-
potential (2.4) can be separated into a perturbative and a non-perturbative contribution.
The perturbative part (2.5) is specified by the data discussed above, however, for the non-
perturbative part (2.7) the Gopakumar-Vafa invariants N~q are needed. For our setting we
currently do not have access to that data, although this functionality is expected to be
implemented in CYTools in the future. We therefore want to determine a criterion that
characterizes when non-perturbative contributions to the prepotential can be neglected.

Gopakumar-Vafa invariants relevant for one particular point in complex-structure mod-
uli space were kindly provided to us by J. Moritz (see [34]). In the following we will denote
this point by ~z∗ = i~v∗ and the vector ~v∗ is shown in appendix A. This point is located at
the tip of a stretched Kähler cone with parameter c = 1 and there are in total 230 effective
curves with wrapping numbers ~q that satisfy ~q · ~v∗ ≤ 7. Next, when scaling the vector ~v∗
with a parameter α > 0 we obtain a family with

zi(α) = iαzi∗ , c = α . (4.6)

For this family we compute FI = ∂IF for the perturbative and non-perturbative part of
the prepotential and define the ratios

rI(α) = FinstI
FpertI

∣∣∣∣∣
zi(α)

. (4.7)

When rI = 1 for some I the non-perturbative contribution is comparable to the perturba-
tive part and instanton corrections cannot be neglected. We then determine numerically
the largest α for which any ratio rI becomes one. We obtain

max rI(α) = 1 ⇒ α ' 0.04 . (4.8)
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We conclude from this analysis that along the ray ~z(α) = α~z∗ the large-complex-structure
approximation can at most be trusted for α ≥ 0.04 — although it is very likely that
the actual lower bound on α is larger. In the absence of complete information of the
Gopakumar-Vafa invariants for our model, we estimate that the large-complex-structure
approximation requires stretched Käher-cone parameters at least of the form

c ≥ 10−2 . (4.9)

Constructing solutions. In the following we want to solve the minimum conditions (2.16)
computed from the perturbative prepotential Fpert while ignoring the non-perturbative
part. These conditions form a system of 102 real coupled polynomial equations which (in
practice) cannot be solved analytically. Even numerically it is extremely difficult to obtain
solutions because search algorithms typically require a starting point near a minimum.
Finding a suitable starting point by random sampling is highly unlikely, especially for
high-dimensional moduli spaces.

However, as stated at the end of section 3, we are interested in solutions with a small
flux number Nflux for a given bound on the Kähler-cone parameter c such that all axio-
dilaton and complex-structure moduli are stabilized. We developed an algorithm to con-
struct such solutions with minimal Nflux is as follows:

• We first specify a stretched Kähler cone with parameter c. For each iteration of the
algorithm c is chosen from a random uniform distribution in the range c(0) ∈ [0.1, 2].

• Next, we randomly choose a point {τ(0), z
i
(0)} in axio-dilaton and complex-structure

moduli space. This point is taken from a uniform distribution in the ranges

s(0) ∈ (0, 10] , c(0) ∈ (−0.5,+0.5] , ui(0) ∈ (−0.5,+0.5] . (4.10)

The point vi(0) is obtained by determining the tip of the stretched Kähler cone
K̃X̃ [c(0)]. Note that in order to illustrate the dependence of Nflux on s = Imτ we
sample s(0) also in the strong-coupling regime; we come back to this point below.

• The matrix N appearing in the minimum conditions (2.16) scales approximately
linearly with vi = Imzi. At large complex structure, the fluxes eI therefore have to
scale approximately as vi×mJ . Hence, to minimize the flux number we are interested
in small values for mJ for which we choose randomly as

f I(0), h
I
(0) ∈ {−1, 0,+1} . (4.11)

• Inserting the values {τ(0), z
i
(0)} and the fluxes {f I(0), h

I
(0)} into the minimum condi-

tion (2.16), we can easily solve for the fluxes f(0)I and h(0)I . These are in general not
integer, but we round them to integer values denoted by f(1)I , h(1)I ∈ Z.

• Next, we insert the integer-valued fluxes {f I(0), h
I
(0), f(1)I , h(1)I} into the minimum

condition. We solve (2.16) with Python’s scipy.optimize.root() and specify as
starting point for the search algorithm {τ(0), z

i
(0)}. If for this choice of fluxes a solution

{τ(1), z
i
(1)} is obtained, we determine the Hessian of the scalar potential at this point.

– 9 –
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If the Hessian is of full rank, we add the solution to our data set. Note that these
solutions can have a Kähler-cone parameter c(1) that is smaller than the initialization
bound c(0) ≥ 0.1.

Using this strategy, we have generated 8.3 · 104 solutions in the large-complex-structure
regime that stabilized all axio-dilaton and complex-structure moduli. Let us emphasize
that our flux configurations are, on the one hand, non-generic among all possible flux
configurations but, on the other hand, generic for solutions in the large-complex-structure
regime. In particular, there can be (tuned) flux choices with a hierarchy different than
the one described above which nevertheless stabilize moduli in the large-complex-structure
regime with a small flux number.

Optimizing solutions. After having obtained solutions to the minimum conditions in
the large-complex-structure regime, we use this data as starting points for minimizing the
flux number Nflux. Our approach is as follows:

• We consider a flux configuration {h(1)I , h
I
(1), f(1)I , f

I
(1)} with flux number Nflux(1)

together with the corresponding minimum locus {τ(1), z
i
(1)}.

• Next, we randomly change one of the flux quanta by one unit and denote the modi-
fied fluxes by {h(2)I , h

I
(2), f(2)I , f

I
(2)}. If through that change the corresponding flux

number Nflux(2) is smaller than Nflux(1), we numerically solve the minimum conditions
for the new flux configuration with {τ(1), z

i
(1)} as starting point.

• If a solution {τ(2), z
i
(2)} is found that stabilizes all moduli (i.e. the corresponding

Hessian of the scalar potential is of full rank) we repeat the algorithm with the new
solution as starting point.

Through this mechanism we generated 1.7 · 104 additional solutions that we included in
our data set.

5 Results and discussion

In this section we present the data obtained from the analysis outlined in section 4. This
data, together with a corresponding Mathematica notebook explaining our conventions,
can be found on the arXiv page1 for this paper. In the following we show how the flux
number Nflux depends on the Kähler-cone parameter c and on the string coupling encoded
in s. We furthermore discuss the implications of our findings and give an outlook for
future work.

Numerical results. In figures 2 and 3 we have shown how, in our data, the minimal
flux number depends on the Kähler cone parameter c and on the string coupling s. We
only included data points with Nflux ≤ 105 in these plots, though we obtained many more
with larger flux numbers. We make the following observations:

• The minimal flux number depends on the Kähler-cone parameter c. For smaller c
we find a smaller Nflux (in agreement with [8, 19]), however, for smaller c the large-
complex-structure approximation becomes less reliable. In figure 2 we have shown

1arXiv:2207.13721.
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Nflux

c

Figure 2. Dependence of Nflux on the Kähler-cone parameter c. Note that Nflux is shown on
a logarithmic scale. The blue data points are solutions with f0 6= 0 or h0 6= 0, the orange data
points are solutions with f0 = h0 = 0, and the red curve is the lower bound on Nflux shown in
equation (5.1).

Nflux(c) for which we determined the bound

Nflux(c) > 2100c + 880 . (5.1)

Note that for data points with f0 6= 0 or h0 6= 0 (shown in blue in figure 2) the bound
on flux number scales as Nflux ∼ c3.

• The minimal flux number also depends on the value of the dilaton s. In figure 3 we
have shown Nflux(s), where we included points in the strong-coupling regime s ' 1.
We furthermore determined the bound

Nflux(s) > 321s+ 282
s
. (5.2)

• In table 1 we summarized the minimal flux number for a given bound on Kähler-cone
parameter c and the dilaton s. For values s . 2 and c . 10−2 we do not believe that
the corresponding vacua can be trusted and that corrections to the weak-coupling
and large-complex-structure regime have to be taken into account. Such corrections
are likely to modify these solutions, but it is beyond the scope of this paper to study
this question here.

• The minimal flux numbers shown in table 1 are of the order Nflux ≥ O(104) and
therefore exceed the tadpole bound shown in (4.5) by about one order of magnitude.
In particular, we did not find any flux choices that satisfy the tadpole cancellation
condition and stabilize all axio-dilaton and complex-structure moduli.

– 11 –



J
H
E
P
0
3
(
2
0
2
3
)
0
4
9

Nflux

s

Figure 3. Dependence of Nflux on the dilaton s. Note that Nflux is shown on a logarithmic scale.
The blue data points are solutions with f0 6= 0 or h0 6= 0, the orange data points are solutions with
f0 = h0 = 0, and the red curve is the lower bound on Nflux shown in equation (5.2).

s ≥ 1 s ≥ 2 s ≥ 5 s ≥ 10
c ≥ 10−3 1400 1991 3023 6157
c ≥ 10−2 1400 1991 3023 6157
c ≥ 10−1 1405 1992 3385 6157
c ≥ 0.5 2993 3885 4886 13218
c ≥ 1 3717 5379 9345 21384

Table 1. Smallest values for Nflux for given bounds on the Kähler-cone parameter c and the
dilaton s.

• In figures 2 and 3 we used two different colors to distinguish between flux configu-
rations with f0 = h0 = 0 and f0 6= 0 or h0 6= 0. We see that for f0 = h0 = 0 the
minimal flux numbers is smaller as compared to flux choices with f0 6= 0 or h0 6= 0,
which is in agreement with the discussion in [22].

Discussion. Let us now summarize our results and discuss them in a broader context:

• Stabilizing the axio-dilaton and complex-structure moduli by numerically minimizing
a scalar potential becomes very difficult for large moduli-space dimensions. The
main problem is to find a suitable starting point for the minimization procedure,
which cannot be achieved by simple random searches. In this paper we presented an
algorithm that allows us to find flux vacua for large h2,1

− that stabilize all moduli. To
our knowledge, h2,1

− = 50 is currently the largest moduli-space dimension for which all

– 12 –
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axio-dilaton and complex-structure moduli are stabilized by fluxes (without imposing
additional symmetries).

• The flux configurations we constructed have a specific structure and are therefore
not generic within the flux space. However, our algorithm allows us to find a large
number of flux vacua in the large-complex-structure limit that do not require a tuning
of fluxes. In this sense these flux choices are generic (in the large-complex-structure
regime).

• The bounds we obtain for the flux number Nflux are based on a data set with 105 flux
vacua. By extending the search time one might be able to find vacua with lower Nflux.

• The lowest flux numbers we obtain in our search (cf. table 1) exceed the tadpole
bound (4.5) by one order of magnitude. Our main conclusion therefore is that con-
structing consistent flux vacua in string theory that stabilize a large number of axio-
dilaton and complex-structure moduli is generically difficult. In particular, we find
that the tadpole conjecture [10] is satisfied for our data set.

Outlook. We close this section with an outlook for future work:
• The results presented in this paper provide a starting point for more extensive numer-

ical searches for flux vacua with small flux number. Such searches can both employ
more computing time as well as extending the ranges from which random starting
points are drawn (cf. equations (4.10) and (4.11)). Our algorithm may also be refined
by taking into account further details of the minimization condition (2.16).

• In the future we hope to include the non-perturbative contribution to the prepoten-
tial (2.7) for the computation of the minimum condition (2.16). To determine the
non-perturbative part of the prepotential the Gopakumar-Vafa invariants are needed
which may be provided by CYTools in the future.

• It is important to determine how representative the vacua we found are with respect
to more general flux configurations that stabilize moduli — not only in the large-
complex-structure regime but also in different regions of moduli space. This would
allow us to revisit arguments on the size of the flux landscape.

• Solving the tadpole cancellation condition with D7-branes away from the orientifold
locus can, on the one hand, lower the charge QD3 and allow for larger flux num-
bers [31]. On the other hand, for such D7-branes the NS-NS three-form flux H3 can
induce a Freed-Witten anomaly [35] (see [36] for a brief review). For such branes
one therefore not only has to take into account the interplay between fluxes and
D3-branes but also between fluxes and D7-branes. We are planning to address this
question in the future.
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A Some details on the model

In this appendix we collect some additional information about the model described in
section 4.

• The polytope in normal form from which we construct the mirror Calabi-Yau three-
fold X̃ is given by the 6× 4 dimensional array

[[ 1 0 0 0]

[ 1 3 0 0]

[ 1 0 3 0]

[-2 -3 -3 0]

[ 1 0 0 3]

[-2 0 0 -3]]

• The triangulation is performed using triangulate() of CYTools. For cross-reference,
we note that the points of this triangulation can be displayed using points() which
gives in the following 55× 4 dimensional array

[[ 0 0 0 0]

[-2 -3 -3 0]

[-2 0 0 -3]

[ 1 0 0 0]

[ 1 0 0 3]

[ 1 0 3 0]

[ 1 3 0 0]

[-2 -2 -2 -1]

[-2 -1 -1 -2]

[-1 -2 -2 0]

[-1 -2 -2 1]

[-1 0 1 -2]

[-1 1 0 -2]

[ 0 -1 -1 0]

[ 0 -1 -1 2]

[ 0 0 2 -1]

[ 0 2 0 -1]

[ 1 0 1 0]

[ 1 0 1 2]

[ 1 0 2 0]

[ 1 0 2 1]

[ 1 1 0 0]

[ 1 1 0 2]

[ 1 2 0 0]

[ 1 2 0 1]

[-1 -2 -1 0]

[-1 -1 -2 0]

[-1 0 0 -2]

[-1 0 0 -1]

[ 0 -1 1 0]

[ 0 0 0 -1]

[ 0 0 0 1]

[ 0 1 -1 0]

[ 1 0 0 1]

[ 1 0 0 2]

[ 1 1 2 0]

[ 1 2 1 0]

[-1 -1 -1 -1]

[-1 -1 -1 0]

[-1 -1 0 -1]

[-1 0 -1 -1]

[ 0 -1 -1 1]

[ 0 -1 0 0]

[ 0 -1 0 1]

[ 0 0 -1 0]

[ 0 0 -1 1]

[ 0 0 1 -1]

[ 0 0 1 0]

[ 0 1 0 -1]

[ 0 1 0 0]

[ 0 1 1 -1]

[ 1 0 1 1]

[ 1 1 0 1]

[ 1 1 1 0]

[ 1 1 1 1]]
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• The vector ~v∗ introduced above equation (4.6) is specified by

[141 -14 13 81 -9 -9 84 31 94 109 -23 -25 49
85 -24 -26 1 45 -7 14 46 -7 16 71 71 -8
2 15 32 15 32 55 -15 -15 38 53 19 19 65

31 48 31 48 -14 -15 -28 21 21 -10 12]

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.
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