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Asymmetric rectified electric fields: nonlinearities
and equivalent circuits†

A. Barnaveli * and R. van Roij

Recent experiments [S. H. Hashemi et al., Phys. Rev. Lett., 2018, 121, 185504] have shown that a long-

ranged steady electric field emerges when applying an oscillating voltage over an electrolyte with

unequal mobilities of cations and anions confined between two planar blocking electrodes. To explain

this effect we analyse full numerical calculations based on the Poisson–Nernst–Planck equations by

means of analytically constructed equivalent electric circuits. Surprisingly, the resulting equivalent circuit

has two capacitive elements, rather than one, which introduces a new timescale for electrolyte

dynamics. We find a good qualitative agreement between the numerical results and our simple analytic

model, which shows that the long-range steady electric field emerges from the different charging rates

of cations and anions in the electric double layers.

1 Introduction

Studying the response of an aqueous electrolyte to an externally
applied oscillating electric field is a very active research direction,
as AC voltages can be used to achieve various goals in a wide range
of practical applications in electrolytes. For example, an AC
voltage can be used to drive electrokinetic pumps,1,2 induce fluid
flow within microfluidic systems,3–6 manipulate charged colloids
in aqueous electrolytes,7–9 desalinate and de-ionize the electrolyte
using porous membranes,10–12 study the electrolyte dynamics
with impedance and dielectric spectroscopy,7,13–17 render mem-
ristive properties to aqueous electrolytes in confinement,18–20 and
study bioparticles.21,22 For various applications, one of the key
motivations to use AC electric fields over DC fields is to eliminate
any net current or net charge in the system due to the vanishing
field when averaged over a period. Here we will see, however, that
the period-averaged current and charge do not necessarily vanish.

The simplest geometry allowing to study the basic physical
effects in an electrolyte under the influence of AC fields con-
sists of a globally neutral 1 : 1 electrolyte of point-like ions
confined between two blocking electrodes, to which an AC
voltage is applied. It is well known that in equilibrium or at
low frequencies a so-called Electric Double Layer (EDL) arises at
the interface between a charged solid (electrode, colloid, etc.)
and an electrolyte. The EDL consists of the surface charges of
the solid and an oppositely charged diffuse ionic cloud with an

excess of counter-ions and a depletion of co-ions.23 The EDL
has a characteristic thickness equal to the Debye length lD of
the order of 10 nm when the salt concentration in water is
around 1 mM at room temperature.

The behavior of the EDLs in this seemingly simple system
can be described by Poisson–Nernst–Planck (PNP) equations,
which take the Coulomb interactions into account as well as the
diffusive and conductive properties of ions dissolved in water,
viewed as a dielectric continuum. In this planar geometry the
PNP equations form a system of coupled non-linear partial
differential equations, that has been solved analytically only
perturbatively24,25 or in terms of special functions.26 Due to
this, a large number of studies has concentrated on the quasi-
equilibrium approach and weak driving electric potentials.27–29

In recent years, however, more studies have considered AC
potentials whose amplitude C0 is well in-to the non-linear
screening regime C0 \b�1e E 25 mV, where e is the elemen-
tary charge and b�1 the product of the Boltzmann constant and
room temperature. Thorough reviews of the response of an
electrolytic cell to large applied DC and AC signals have been
presented in ref. 30 and 31. The most notable effect appearing
at these high voltages is the presence of higher-order modes of
the ion movement from the pattern of the driving potential –
e.g. a sinusoidal driving voltage does not translate into (possibly
phase shifted) sinusoidal ionic fluxes in the electrolyte any-
more, because higher-order harmonics appear.

The inspiration to study non-linear effects in systems driven
by an AC electric field has also come from experimental studies
such as those in ref. 7 and 8. The authors considered a vertical
system consisting of an aqueous electrolyte confined between
two horizontal blocking electrodes. The electrolyte contained
charged colloids that tend to sediment in the gravitational
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field. However, it was observed that under the influence of a
sufficiently strong harmonic AC voltage applied between
the electrodes, a fraction of colloidal particles would float in
the gravitational field rather than sediment to the bottom
electrode.32 A similar method to employ an AC voltage to
generate non-zero steady effects has also been used in ref. 33
to reverse the flow of AC electroosmosis. The physical mechan-
isms behind these effects remain somewhat unclear.

Observations such as the floating colloids and flow reversal
mentioned above led to an investigation whether the ionic
response to an AC driving voltage applied to the horizontal
electrode could affect the ability of colloids to counteract the
gravitational force.32 This study used the aforementioned elec-
trolytic cell model with blocking electrodes. It was discovered
that ions with unequal diffusion coefficients in an electrolytic
cell driven by a harmonic external potential can produce non-
zero time-averaged electric fields that extend from the electro-
des well into the bulk of the electrolyte. This phenomenon was
called Asymmetric Rectified Electric Field (AREF).32 Besides
this effect being interesting on its own, it was also suggested
that the electric force exerted by this field could be responsible
for keeping the charged colloids afloat in a gravitational field in
the experiments of ref. 7. Therefore the AREF was investigated in
more detail in follow-up papers concerned with the dependence
on several system parameters34 and with perturbative solutions
of the governing system of non-linear differential equations,24

the latter even replicating the main characteristics of the
AREF structure analytically. Interestingly, however, the physical
mechanism responsible for AREF generation has not been
discussed in any detail, except perhaps for a toy model proposed
in ref. 34 that we will briefly discuss at the very end of this study.
It is also interesting to note that a recent study regarding floating
colloids under AC voltage in an electrolytic cell35 suggested that
besides AREF, dielectrophoresis can also counter the gravita-
tional force depending on the parameters of the system. It is,
however, still not clear to what extent each of these two mechan-
isms is contributing to the floating height of the colloids.35

In this paper we focus on AREF and numerically solve the
PNP equations and also construct an analytical expression
based on an equivalent RC circuit, modified, however, to take
nonlinearities into account. This captures the behavior of the
AREF qualitatively, helping us to identify the core physical
mechanism responsible for the effect by reducing it to simple
charging–discharging processes of capacitors. The structure of
this paper is as follows. In Section 2 we introduce the system of
interest together with the PNP equations that govern the
processes in the electrolytic cell. In Section 3 we describe and
give an explanation of the AREF effect for a particular set of
system parameters, essentially reproducing, confirming, and
reformulating some earlier results. In Section 4 we numerically
study how the AREF depends on the main system parameters.
Then, in Section 5 we solve the PNP equations to identify the
equivalent circuit corresponding to the electrolytic cell and use
it to construct an analytic toy model in Section 6 that compares
quite favourably to the numerical solutions of the PNP equa-
tions. Finally, in Section 7 we conclude and discuss our results.

2 Poisson–Nernst–Planck equations

The system of interest consists of a 3D aqueous electrolyte of
relative dielectric constant e at room temperature confined
between two parallel macroscopic planar electrodes at a distance
L from each other, where we assume translational invariance in
the lateral directions. The electrolyte consists of two types of
monovalent point-like ions: cations (+) and anions (�) charac-
terized by valencies z� = �1 and diffusion coefficients D�. The
total number of cations and anions is equal, hence the total
system is electroneutral. The electrodes are blocking, so that no
ion can leave the electrolyte and we exclude any chemical REDOX
reactions. The system is driven by an AC voltage C(t) = C0eiot

applied to the left electrode placed in the plane z ¼ �L
2
; whereas

the right one, placed at z ¼ �L
2
; is kept grounded. Here o is the

imposed angular frequency and C0 the amplitude. A schematic
representation of the system is shown in Fig. 1.

We use the Poisson–Nernst–Planck (PNP) equations to study
the system. The first is the Poisson equation, which relates the
local electric potential profile C(z,t) to the local charge density
e(c+(z,t) � c�(z,t)), where c�(z,t) denotes the concentration of

cations (+) and anions (�) at position z and time t. For jzjoL

2
the Poisson equation reads

@2Cðz; tÞ
@z2

¼ � e

e0e
cþðz; tÞ � c�ðz; tÞð Þ; (1)

where e0 is the permittivity of vacuum and e = 80 represents water
as a structureless continuum. The ionic fluxes J�(z,t) contain a
diffusive contribution due to the gradients of ion concentrations
and a conductive contribution due to the potential gradient,
jointly described by the Nernst–Planck equation

J�ðz; tÞ ¼ �D�
@c�ðz; tÞ
@z

� bec�ðz; tÞ
@Cðz; tÞ
@z

� �
; (2)

where we consider the diffusion coefficients to be spatially con-
stant and different for cations (D+) and anions (D�). Because we
exclude any chemical reaction in the system, the concentrations

Fig. 1 Schematic representation of the aqueous 1 : 1 electrolyte of interest
containing a continuum solvent and two ionic species confined between
two parallel blocking electrodes separated by a distance L. The electrolyte
is driven by a time-dependent electric potential C(t) applied to the

electrode at z ¼ �L
2
; while the other one at z ¼ L

2
is kept grounded.
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and fluxes are coupled by the continuity equation

@c�ðz; tÞ
@t

þ @J�ðz; tÞ
@z

¼ 0: (3)

The PNP eqn (1)–(3) form a closed set for the concentrations c�,
the fluxes J� and the potential C. Solving PNP equations explicitly
requires boundary and initial conditions, which we write as

C(�L/2,t) = C0eiot, (4)

C(L/2,t) = 0, (5)

J�(�L/2,t) = J�(L/2,t) = 0, (6)

c�(z,t = 0) = cs, (7)

where cs is the fixed initial average salt concentration, that is
equal for both ionic species in our symmetric 1 : 1 electrolyte.
Due to eqn (3) combined with boundary conditions eqn (6) the
number of cations and anions will be conserved such that

1

L

ðL=2
�L=2

c�ðz; tÞdz ¼ cs: (8)

Here we note that for convenience during derivations below we
use a complex representation of physical quantities (like for the
voltage in eqn (4)), however, in numerical calculations we use
sin(ot) to drive the system (ensuring that the system starts from
equilibrium with C(z,0) = 0), therefore the physical quantities
will correspond to the imaginary part of derived complex
expressions. For given C0, D�, o and cs, eqn (1)–(8) complete
the system of non-linear coupled differential equations. We
solve these equations numerically employing COMSOLs as a
finite-element method solver software.

Convenient insight into relevant system parameters can be
obtained as follows. In static equilibrium, so for o = 0, the
applied potential C(�L/2,t) = C0 (a constant), and J�(z,t) = 0,
and in the linear regime with |beC0| t 1, the EDLs get fully
developed at the two electrodes and the NP eqn (2) can be
integrated to obtain the Boltzmann distribution

c�ðzÞ ¼ c0s 1�C0be sinhðkzÞ
2 sinhðkL=2Þ

� �
; (9)

with k�1 the characteristic Debye length of the equilibrium EDL
given by

k�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ee0

2e2bc0s

r
� lD: (10)

The concentration c0s is an integration constant that is very close
to cs in the large L-limit of interest here, so throughout the
paper we set c0s ¼ cs in the definition of lD. In this limit, as we
will derive below, the characteristic timescale of EDL
formation31,36 is written as the RC time

tRC ¼
LlD
2D
¼ L

2kD
: (11)

For future convenience we also define the Debye time

tD ¼
1

k2D
¼ tRC

2

kL
; (12)

during which the ions diffuse over a distance of the order of the
Debye length.31,37 Here the effective diffusion coefficient of the
ions in the electrolyte is given by

D ¼ 2DþD�
Dþ þD�

: (13)

For later reference it proves convenient to keep D fixed and to
characterise the asymmetry of D+ and D� by

d � D�
Dþ

; (14)

such that

D� ¼
D

2
1þ d�1
� �

: (15)

Clearly, for equal diffusivities we have D = D+ = D�, however, for
extremely asymmetric diffusivities the effective diffusion coeffi-
cient is essentially twice the smallest one.

For a few typical 1 : 1 electrolytes the asymmetry parameter d
is given in Table 1. Although close-to-symmetric electrolytes
with dC 1 exist according to the table, others have some degree
of mobility asymmetry up to dC 2 in the present examples. For
simplicity we restrict attention to monovalent ions here, how-
ever we note that the mobility asymmetry of multivalent ions
can be larger, for instance BeCl2 has d = 3.44. Without loss of
generality we choose d4 1 throughout this study, such that the
negative ions will be the faster ones, thus D� 4 D+.

3 Asymmetric rectified electric field
(AREF)
3.1 AREF description

According to ref. 32, a mobility mismatch of ions, d a 1, can
introduce a long-range steady electric field upon AC driving.
This also follows from our numerical results. For convenience
we define a standard parameter set including an amplitude
and frequency of the driving potential given by beC0 = 3 and
otRC = 1, respectively. The standard system size is characterized
by kL = 50, and the standard diffusion coefficients are D+ =
D�/d = 1.09 � 10�9 m2 s�1 (resulting in D = 1.456 � 10�9 m2 s�1)
with d = 2 by default. The bulk concentration of ions is cs =
1 mM, resulting in a Debye length lD = 10�8 m. Any deviation
from this set will be explicitly stated. The coordinate z
is measured in terms of Debye length lD = k�1 and ranges
from �L/2 to L/2. Our standard focus is also on the late-
time limit-cycle when all transients have decayed such that all

Table 1 Ionic mobility ratio d = D�/D+ for various common aqueous 1 : 1
electrolytes38

Salt Ions D+ D� d

CsCl Cs+, Cl� 2.06 2.03 0.99 � 10�9 m2 s�1

CsI Cs+, I� 2.06 2.05 1.00 � 10�9 m2 s�1

KCl K+, Cl� 1.96 2.03 1.03 � 10�9 m2 s�1

NaCl Na+, Cl� 1.33 2.03 1.53 � 10�9 m2 s�1

LiI Li+, I� 1.03 2.05 1.99 � 10�9 m2 s�1
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time-dependence has the same period as that of the driving
potential, potentially, however, with higher-order harmonics.

In Fig. 2 we plot for the standard parameter set, with
asymmetries d = 1, 2 and 3.5, the late-time period-averaged
position-dependent profiles of (a) the dimensionless charge
distribution hc+ � c�i (z), (b) the electric field hEi (z), and (c) the
potential hCi (z). Here time-averaging is defined by

hf iðzÞ ¼ 1

T

ðt0þT
t0

f ðz; tÞdt; (16)

where t0 is the (sufficiently late) time at which we start aver-

aging, T ¼ 2p
o

is the period of AC voltage, and f can be any of

the functions that we are considering – either the electric field
E, the electric potential C, or a combination of the ion
concentrations c�.

For o 4 0, so for finite T, Fig. 2 shows for symmetric
electrolytes (d = 1) that hc+�c�i = hCi = hEi = 0, meaning that
charges are distributed evenly across the system, as expected.
However, if the ionic mobilities become mismatched (d = 2 and
d = 3.5), the average charge distribution hc+ � c�i becomes
spatially non-uniform (see Fig. 2(a)), which, in turn, gives rise to
a non-zero time-averaged electric field and a steady non-
uniform electric potential, presented in Fig. 2(b) and (c),
respectively. We note in Fig. 2(c) that the time-averaged elec-
trode potential is zero by construction, as imposed by the
boundary conditions. Nevertheless, the steady electric field
extends several Debye lengths into the electrolyte (in the
current case it is more than 5lD, however this can be even
more, as demonstrated in ref. 34). Fig. 2 gives a first clue of the
underlying physics, as we see that hc+ � c�i is negative in the
vicinity of the surfaces and positive a few Debye lengths away,
showing that the faster anions manage to approach the elec-
trode in larger quantities, on average, than the slower cations.

Fig. 2(b) is an example of the long-range steady electric field
that is referred to as Asymmetric Rectified Electric Field (AREF)
in ref. 32. Parametric studies of AREF performed in ref. 34
concentrate on two characteristics of AREF – the position and
the height of the largest peak of the concentration profile of the
slower ions. Instead, here we use the spatio-temporal average U
of the (dimensionless) electric potential profile to characterize
the magnitude of AREF,

U � be
1

L

ðL
2

�L
2

dzhCiðzÞ; (17)

which is a convenient integrated quantity to study numerically.
Moreover, for large L, the dimensionless quantity U is a
measure for the time-averaged electroosmotic (EO) mobility,39

as it plays the same role as the zeta potential of charged
surfaces; it is proportional to the physically measurable EO
mobility mEO. However, EO is not the focus of the current paper
and can be explored in future studies. Finally, it is also
interesting to note that the period-averaged surface charge
density on the electrodes, hsi p hE|z=�L/2i vanishes by Gauss
law due to the electric neutrality of the system. This is also clear
from Fig. 2b, where the curves of hEi approach zero at z = �L/2.
Thus the layers of fast anions that we see at each of the
electrodes in Fig. 2a essentially play the role of charged
electrodes that are screened by the cloud of slow cations.

3.2 AREF mechanism

Here we discuss the mechanism for AREF generation. It is
perhaps best understood by tracking the number of ions
gathering at one of the electrodes (e.g. the one at z = �L/2)
for the whole period T = 2p/o. In the electrolytic cell that we are
considering with the driving voltage given by eqn (4), in the first
half of the period T/2 the negative (faster) ions will gather at the
chosen electrode because it is positive, whereas in the second

Fig. 2 Dimensionless spatial profiles of the time-averaged (a) ionic charge
density hc+ � c�i/cs, (b) electric field bek�1hEi, and (c) electric potential
behCi for an aqueous 1 : 1 electrolyte with Debye length lD = 10 nm
confined between two planar electrodes at distance L = 50lD. The
electrode at z = L/2 is grounded, the one at z = �L/2 has an AC potential
C0eiot with amplitude C0 = 3/be = 75 mV and frequency o = tRC

�1 with
RC-time tRC given by eqn (11). The different colors represent the three
different mobility ratios d = D�/D+ of the faster anions and the slower
cations.
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half the positive (slower) ones will tend to get closer. If the
frequency of the voltage is such that the EDLs have enough
time to develop (but not fully form) during the T/2 time span,
the faster ions will manage to gather at the electrode in larger
amounts. Therefore, if we average the number of ions at the
electrode over the whole period T, we will get an excess of faster
ions at the electrode. Exactly the same thing occurs at the
opposite electrode, however with a T/2 shift in phase. This is
what we also observe in Fig. 2(a), where the negative (faster)
ions are accumulating at both electrodes on average in time.
Moreover, due to the global electroneutrality of the cell, the
surface charge on both electrodes is zero on average, such that
the excess of the negative ions at both electrodes is screened by
the excess of the oppositely charged ions located several Debye
lengths away from the electrodes for the current parameters, as
seen in Fig. 2(a).

4 Parameter dependence of AREF

In this section we study the dependence of the numerically
obtained AREF magnitude U on the main system parameters.

4.1 Applied voltage amplitude

We start by studying the dependence of the space- and time-
averaged potential U as defined in eqn (17) on the amplitude C0

of the externally applied AC potential. The range that we
consider for the driving voltage amplitude C0 is limited from
above by our point ion approximation, which for cs = 1 mM can
become unrealistic due to strong ion crowding effects at the
electrodes.40–42 This occurs beyond beC0 E 8, which is there-
fore the upper limit that we consider.

Fig. 3 shows the dependence of U on C0 for various driving
frequencies for our standard parameter set. For the full range of
frequencies otRC A [0.1,10] that we consider here, the slope
of the double-logarithmic curves is essentially identical to 2, i.e.
U B C0

2 for all frequencies considered, which is in line with
the findings of ref. 34. It should be noted, however, as was also

demonstrated in ref. 34, that the AREF scaling deviates some-
what from C0

2 at even higher voltage amplitudes C0 4 10. This
voltage range leads, at least at low frequencies, to high ionic
concentrations outside the regime of applicability of the under-
lying point-ion model. For this reason we leave this high-
voltage regime out of the discussion in the current paper. In
the regime of interest the scaling confirms that AREF is a non-
linear screening effect and motivates the study of its depen-
dence on frequency, mobility asymmetry, and system size in
terms of the scaled form U/(beC0)2 below.

4.2 Frequency

Fig. 3 already showed that U is relatively large at otRC E 1 and
considerably smaller at otRC = 0.1 and 10. Here we study for
several C0 the frequency-dependence of U as obtained from the
numerical solutions of the PNP equations in full detail for our
standard parameter set. Fig. 4(a) shows U/(beC0)2 as a function
of otRC, featuring the expected collapse for all C0, a broad
maximum at otRC B 1, and an algebraic decay Bo2 for small
frequencies o. For frequencies o in the otRC B 1–10 range, the
curve shows an algebraic Bo�2 decay, however, as the fre-
quency o gets increased further, the slope of the curve becomes
steeper (stronger decay) due to an overscreening effect that
starts to appear at the electrodes in this regime.

Qualitatively this frequency dependence can be explained by
the mechanism that we proposed above. In the low-frequency
limit, the system is nearly static and during the time span T/2
both ion species have enough time to essentially fully build up
an EDL at the corresponding electrodes. Thus the number of
ions in this fully developed EDL is the same for both half
periods, the average ionic charge and thus the potential at the
electrodes in the timespan T approaches zero, which agrees
with the low-frequency part of the curve in Fig. 4(a). In the high-
frequency limit, on the other hand, none of the ion species, not
even the faster ones, has enough time to develop the EDLs.
Therefore no net accumulation of charge occurs at the electro-
des, yielding a decaying trend for U as the frequency increases.
The maximum of the effect is reached for intermediate fre-
quencies of the order of the characteristic RC time for EDL
formation otRC B 1. At these frequencies the difference
between the number of fast and slow ions gathering at the
electrodes in the T/2 timespan is largest.

4.3 Ion mobility asymmetry

The asymmetry of ion mobility, d a 1, is the main cause of
AREF and here we study how U depends on d at fixed effective
diffusion coefficient D-such that tRC remains fixed if we vary d
for fixed L and lD. For our standard parameter set Fig. 4(b)
shows the d-dependence of U/(beC0)2 for several driving fre-
quencies otRC. Here we extend the interval for d A [1,100] far
beyond the typical range for small ions to identify that apart
from the common monotonic increase of U with d the curves
are highly non-universal, with a frequency-dependent asympto-
tic saturation of U at high d that is larger for higher frequencies
whereas U is smaller for higher frequencies in the low-d regime,
with a crossover at d C 20–30.

Fig. 3 Double-logarithmic representation of the period- and space-
averaged dimensionless potential U of eqn (17) as a function of the driving
voltage amplitude for varying driving frequencies o at our standard
parameter set (see text). The quadratic scaling U B C0

2 demonstrates
that AREF is a non-linear effect.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
D

ec
em

be
r 

20
23

. D
ow

nl
oa

de
d 

on
 2

/8
/2

02
4 

10
:5

2:
53

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3sm01306e


This journal is © The Royal Society of Chemistry 2024 Soft Matter, 2024, 20, 704–716 |  709

These results can qualitatively be explained within the scope
of our proposed mechanism, where the large-d limit proves
helpful. Let us consider a (late-time) period [t0,t0 + T] and divide
it into two half periods in which the potential of the electrode at
z = �L/2 is positive for t A [t0,t0 + T/2] � t+ and negative for the
complementary interval t A [t0 + T/2,t0 + T] � t�. Introducing
the maximum of the (absolute) areal ionic charge on this
electrode during either of these periods as

G� ¼ max
t2t�

ð0
�L=2

dz jcþðz; tÞ � c�ðz; tÞjð Þ
( )

; (18)

we expect, for d 4 1, that G� 4 G+ since the faster anions can
accumulate faster in z A [�L/2,0] during t� than the slower
cations can during t+ (for simplicity we ignore the fact that the
faster anions also deplete faster than the slower cations, as
depletion has a weaker contribution to the competition of
number of ions present at the electrode compared to the
accumulation).

Now let us assess how d affects the charge accumulation
process. From eqn (15) we see for increasing d at fixed D that
cations will asymptotically settle at a fixed diffusion coefficient
limd!1Dþ ! D=2 while the anions become increasingly
mobile. At finite frequency, their finite mobility sets a limit
for the amount of accumulation or depletion of cations at the
electrode. For anions, despite the fact that their diffusion
coefficient becomes increasingly faster, the equilibrium EDL
configuration still imposes a limit to the anion concentration
close to the electrode. Taking this into account, it becomes
clear that limd!1U / G� � Gþ ! const; which is exactly what
we see in Fig. 4(b).

To explain the different saturation values of U in Fig. 4(b),
we notice that at the low (realistic) values of d the value of U
follows the logic of the U(o) curves – the maximum is achieved
at around otRC B 1. However, as we increase d, the hierarchy of
the curves changes and in the d - N limit U(d) reaches higher
values for higher frequencies o. The number of charges con-
tained in a fully developed EDL only depends on the thermo-
dynamic properties of the electrolytic cell together with the
magnitude of the applied voltage, therefore, in the d-N limit
anions will fully form an EDL irrespective of the (finite) voltage
frequency o. However, the concentration of cations gathered at
the electrode-decreases with the frequency o (as the higher the
frequency o, the less time there is for ions to gather), therefore
the saturation value of U, proportional to the difference in the
number of anions and cations gathered at the electrode, will
increase with frequency, which is again exactly what we observe
in Fig. 4(b).

4.4 System size

In Fig. 4(c) we plot U/(beC0)2 as a function of the system size L
(in units of the Debye length) for our standard parameter set at
a number of dimensionless frequencies otD. Up to this point
we used the dimensionless combination otRC of eqn (12) to
characterize the frequency of the AC voltage, which, however, is
not convenient here since tRC itself depends on the system size,
according to eqn (11). For the system sizes kLA [10,103] that we
consider here, we see that U peaks at larger kL for lower
frequencies otD, which corresponds in fact to a peak in the
regime where otRC B 1, consistent with our earlier findings in
Fig. 4(b). For kL c 102 we observe an algebraic decay U p L�2,
the exponent of which resembles that of the decay U p o�2

that we found in Fig. 4(a). This similar decay is not surprising
since the key dimensionless parameter otRC is linear in both
L and o. However, as we will see in Section 6.2, the reason for
this quadratic algebraic decay U p L�2 is a bit more subtle than
it seems here.

Fig. 4 Dimensionless and scaled period-averaged potential U/(beC0)2 as
obtained from numerical late-time solutions of the PNP equations for the
standard parameter set (see text), in (a) as a function of the dimensionless
frequency otRC, in (b) as a function of the the mobility asymmetry d = D�/
D+, and in (c) as a function of the dimensionless system size kL, in all three
cases in a double-logarithmic representation. In (a) we see a collapse of
the curves for several voltage amplitudes C0. In (b) and (c) we consider
several dimensionless frequencies otRC and otD, respectively.
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5 Equivalent circuit from linearized
PNP equations

An alternative way of studying the system of interest involves the
construction of an equivalent RC circuit, rather than relying
solely on the numerical calculations.16,43–46 This convenient
strategy of studying electro-chemical systems has been employed
in this field for many years; for a historical overview on this
matter we refer the reader to ref. 47. In the present case we first
construct an equivalent RC circuit corresponding to the electro-
lytic cell in Fig. 1 in the linear regime for which C0 { 1/be – we
will modify this model later to account for the intrinsically
nonlinear character of AREF. In the linear regime, a widely used
scheme is a simple RC circuit with R and C elements connected
in series.30,31,48 However, as we will now show, it is not entirely
accurate at high frequencies where otRC 4 1.

In order to determine an equivalent circuit for our model we
study its frequency response using the electrical impedance
defined as

ZðoÞ ¼ C0 expðiotÞ
IðtÞ ; (19)

where I(t) is the current flowing through the external (electronic)
system due to the applied potential over the electrodes. The
current is the time derivative (indicated by a dot) of the charge
Q(t) = As(t) on the electrode at z =�L/2 and can be calculated from
the time-dependent potential profile C(z,t) using Gauss’ law as

IðtÞ ¼ _QðtÞ ¼ �Ae0e
@ _Cðz; tÞ
@z

����
z¼�L=2

; (20)

with A the surface area of the electrode. Within the linear regime
the PNP equations and boundary conditions of eqn (1)–(8) are well
known to be solvable analytically, resulting in

Cðz; tÞ ¼ C0

2
1�

sinhðkzÞ þ iotD cosh k
L

2

� �
� kz

sinh k
L

2

� �
þ iotD cosh k

L

2

� �
� kL

2

0
BB@

1
CCAeiot;

(21)

where we define the complex wavenumber

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ io

D

r
: (22)

Here D is the effective diffusion coefficient introduced in eqn (13).
Inserting eqn (21) together with eqn (20) into eqn (19) and

also assuming that the system is large, L c k�1, we obtain the
explicit expression

ZðoÞ � R
1þ iotRC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ iotD
p

iotRC 1þ iotDð Þ3=2
; (23)

where

R ¼ L

A
� 1

ee0Dk2
¼ L

A
� 1

2Dbe2cs
(24)

is the resistance of the system and tRC, as defined in (11), the

timescale characterizing the EDL formation process. Note that
Z(o)/R depends only on otRC and tRC/tD = kL/2.

There are several ways to plot the frequency dependence of
the impedance.13 We will use the so-called Argand complex
plane diagrams for the complex impedance Z(o) = Z0(o) +
iZ00(o), as represented by a parametric (o dependent) plot of
(Z0(o), �Z00(o)). The Argand diagram will also be backed up
with a Bode plot, describing how the impedance modulus
|Z(o)| depends on the frequency o. The combination of Argand
diagram together with a Bode plot often allows readily for an
identification of a circuit, not only of the linear elements included
in the circuit but also how they should be connected – either in
series, parallel or combinations thereof. Usually the frequency
response plots mentioned above are unique for relatively simple
electric circuits.13 Nonetheless, in order to ensure the robustness
of the chosen equivalent circuit configuration, it is a commonly
employed strategy to support its selection with physical considera-
tions. This ensures that the circuit mimics the behavior of the
system it represents, as detailed in ref. 14. An electric circuit that
produces similar Argand and Bode curves while also possessing a
configuration consistent with physical principles is denoted as the
equivalent electric circuit associated with the electrolytic cell.

We plot, for kL = 500, the Argand diagram of the dimension-
less combination Z(o)/R given by eqn (23) in Fig. 5(b) and the
corresponding Bode plot in Fig. 5(b), in both cases with dots at
three characteristic frequencies. The Argand diagram features a
vertical line at Z0 = R in the low-frequency limit, characteristic
for a resistor R with a capacitor connected in series, and a semi-
circle with a maximum of �Z00 = R/2 at Z0 = R/2 for higher
frequencies, characteristic for a parallel connection of a resistor
R and a capacitor. The Bode plot gives us similar clues, allowing
us to identify the electric response of the electrolytic cell with
that of an equivalent circuit that consists of a capacitor C2 in
parallel with a resistor R and a capacitor C1 in series, as
illustrated in Fig. 7(a). The impedance Zc(o) corresponding to
this circuit can easily be calculated and reads

ZcðoÞ ¼
ioC1Rþ 1

io C1 þ ioC1Rþ 1ð ÞC2ð Þ: (25)

We note that the functional forms of eqn (23) and (25) are
actually slightly different, however with a remarkable agreement
for our regime of interest where �C1 c C2, which translates into
kL c 1 as we will discuss in more detail below. In order to derive
the expressions for the individual elements C1, C2 and R of the
circuit, we match the impedances of the electrolytic cell and the
circuit from eqn (23) and (25), respectively, by considering the
high- and low-frequency limits otRC - N and otD - 0,
respectively. For R this yields the bulk resistance of the electro-
lyte given by eqn (24) and for the capacitances we find

C1 ¼
Aee0k
2

; (26)

C2 ¼
Aee0
L
: (27)

Physically C1 corresponds to the net capacitance of the two fully

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
D

ec
em

be
r 

20
23

. D
ow

nl
oa

de
d 

on
 2

/8
/2

02
4 

10
:5

2:
53

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3sm01306e


This journal is © The Royal Society of Chemistry 2024 Soft Matter, 2024, 20, 704–716 |  711

developed EDLs in series, i.e. at both planar electrodes, each
with the linear-screening capacitance Aee0k. Likewise, C2 corre-
sponds to the capacitance of a dielectric (water-filled) parallel-
plate capacitor of size L without any ionic charge carriers (and
hence without any EDL).

We remarked already that the functional form of the impe-
dances of the cell and the effective circuit are not identical. Using
the matching parameters for R, C1, and C2 determined above, we
compare in Fig. 6 the Argand plots of the cell (solid lines) and the
electric circuit of Fig. 7(a) (dashed lines), for system sizes kL = 30,
100, and 1000. For all three system sizes the agreement is rather
good for all frequencies, especially for high frequencies otD c 1
where EDLs can hardly develop. For the two smaller systems
sizes deviations between the solid and dashed lines can be
seen by eye at higher frequencies, however their distinction is
beyond the resolution of the plot for kL = 1000. This can be
quantitatively appreciated by the inset of Fig. 6, where the

maximum difference between unity and the ratios Z0=Z
0
c and

Z00=Z
00
c , defined as DReðLÞ ¼ max

o
jZ0ðo;LÞ=Z 0cðo;LÞ � 1j and

DImðLÞ ¼ max
o
jZ00ðo;LÞ=Z00c ðo;LÞ � 1j are plotted as a function

of system size kL. Here we denote the real and imaginary parts of

the circuit impedance from eqn (25) by Z
0
c and Z

00
c , respectively.

The inset of Fig. 6 clearly shows an increasing agreement

between the two frequency responses with increasing system
size with differences decaying proportional to (kL)�1. Hence we
can faithfully use the circuit in Fig. 7(a) to represent the electro-
lytic cell for kL c 1.

Interestingly, the circuit of Fig. 7(b) can be shown to have an
impedance of the exact same functional form as eqn (25), however

with modified elements C
0
1 ¼ C1 þ C2, C

0
2 ¼ C2ðC1 þ C2Þ=C1,

and R0 ¼ RC2
1=ðC1 þ C2Þ2. This implies that the capacitor ratio

of the two circuits is the same, C
0
2=C

0
1 ¼ C2=C1, and also that

1=C
0
1 þ 1=C

0
2 ¼ 1=C2. Since the difference between the circuits

becomes irrelevant in the limit C1 c C2 of our main interest, we
focus on the circuit of Fig. 7(a) in the remainder of this work.

Let us return to the Argand diagram of Fig. 5(a), for which we
already discussed the vertical line at sufficiently low frequen-
cies, which implies that in this regime the equivalent circuit is
the simple serial circuit shown in Fig. 7(c), with R and C1 in
series without the second capacitor C2 in parallel. This

Fig. 5 (a) Argand diagram and (b) Bode plot characterising the frequency-
dependence of the complex impedance of an electrolytic cell given by
eqn (23), with system size kL = 500 for our standard parameter set (see
text). Characteristic frequencies corresponding to the (long) RC-time tRC,
the (short) Debye time tD, and the (intermediate) time ts ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
tRCtD
p

(see
text) are indicated with dots. The Bode plot also features the frequency
dependence of the phase shift, showing a minimum at ots = 1.

Fig. 6 Argand diagrams for the complex impedance of the electrolytic
cell (solid lines) and the equivalent circuit (dashed lines) for system sizes
kL = 30, 100, 1000 and our standard parameter set (see text). The inset
shows the (small) maximum deviation of the ratios Z0ðoÞ=Z 0cðoÞ and

Z00ðoÞ=Z00c ðoÞ from unity as a function of system size kL, indicative of the

increasingly good agreement between PNP calculations of the cell and the
equivalent circuit for larger system sizes.

Fig. 7 (a) Equivalent electric circuit corresponding to the electrolytic cell
in the linear regime for large system sizes L c k�1. (b) Alternative version of
the equivalent circuit with modified elements (see text). (c) Simplified
equivalent electric circuit corresponding to the low-frequency case

otRC 	
ffiffiffiffiffiffiffiffiffiffiffi
kL=2

p
. Here R and C2 correspond to the resistance and capaci-

tance of the cell at infinite frequency, respectively, and C1 is the total
capacitance of two fully developed electric double layers at the electrodes,
as described by eqn (24), (26), and (27).

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
D

ec
em

be
r 

20
23

. D
ow

nl
oa

de
d 

on
 2

/8
/2

02
4 

10
:5

2:
53

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3sm01306e


712 |  Soft Matter, 2024, 20, 704–716 This journal is © The Royal Society of Chemistry 2024

simplified equivalent circuit has been used to model electric
cells in many studies before,30,31,48,49 however the presence of
the semi-circle shows that the simplified circuit breaks down at
high enough driving frequencies. Interestingly, the crossover
between the semi-circle and the vertical line, i.e. the crossover
regime for the (un)importance of C2 in the equivalent circuit,
does neither occur at frequencies as high as o C 1/tD nor at
frequencies as low as o C 1/tRC, but rather at frequencies
o Cts

�1 where we introduce the intermediate characteristic
time scale

ts ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tRCtD
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
Lk�3

r
D

; (28)

where the label s stands for ‘‘series’’. The simplified series
approximation shown in Fig. 7(c) only holds for o t ts

�1.
Physically, ts characterises the timescale at which the imagin-
ary part of the impedance (i.e. the capacitive effects of the
circuit) gets minimized. This is clearly visible in Fig. 5(b), where

the phase angle f ¼ arctan
�Z00ðoÞ
Z0ðoÞ is seen to exhibit a mini-

mum for ots B 1.
We should note here though, that the presence of the

additional ts and tD timescales does not influence the char-
acteristic charging time of the full circuit and it matches that of
an RC in series circuit. The reason for this is that we work with
large systems kL c 1 which translates into C1 c C2, meaning
that the total charging time will be dictated by how fast the C1

capacitor is charged.

6 Toy model
6.1 Modified linear circuit

Even though the mechanism of the AREF allows for a qualita-
tive understanding of the numerical results of Section 4, a more
quantitative explanation remains missing, for instance on the
exponents characterising the algebraic decay of the time- and
space-averaged potential U at high and low frequencies and the
scaling with system size. For this reason we will now construct a
simplified model of the electrolytic cell based on the equivalent
circuit of Fig. 7(a). This model will allow us to analytically
calculate a proxy of U, namely the period-averaged charge
gathered in the EDL. As we will see below, in the majority of
cases this charge has a similar dependence on the system
parameters as U.

Clearly, however, due to the linear nature of the equivalent
circuit, some modifications are needed to account for the
intrinsically non-linear nature of AREF. For the clarity of
explanation, we start by exploiting the mirror symmetry of the
geometry to concentrate only on the left half of the system z A
[�L/2,0], as the right half z A [0,L/2] will be in exact anti-phase.
In our toy model we calibrate the time such that the electrode
potential at z = �L/2 is positive during t A [0,T/2] and negative
during t A [T/2,T], with T = 2p/o the period. We assume that the
EDL of the left electrode gets charged only by the fast anions in
the first half of the period, while only the slow cations charge

the same electrode in the second half of the period. This
assumption significantly simplifies the treatment of the sys-
tem, as it clearly separates the timescales of EDL charging/
discharging processes by fast and slow ions, while allowing us
to characterize the inherently non-linear charging process by
combining two separate linear equivalent circuits albeit with
different system parameters during the two half periods.
Throughout we use the equivalent circuit of Fig. 7(a), however
with two different ionic mobilities D�, and hence two different
resistances R� for t A [0,T/2] and R+ for t A [T/2,T], which in
analogy to eqn (24), are given by

R� ¼
L

Aee0D�k2
: (29)

For C(t) = C0eiot, by employing Kirchhoff’s equation and
Laplace transformation, it is straightforward to calculate the
total electric charge Q�(t) on the two capacitors C1 and C2 for
each of the two equivalent circuits, and we find

Q�ðtÞ ¼
C0

1þC1
2R�2o2

� C1þC2þC1
2C2R�

2w2
� �

sinðwtÞ�C1
2R�wcosðwtÞ

� �
;

(30)

where we neglected all the transient terms, as we are interested
in the limit-cycle solutions. Here we note that C1 and C2 are
thermodynamic quantities that do not depend on the ionic
transport properties such as diffusion coefficient; they are given
in eqn (26) and (27) and are the same for both types of ions
during each of the two half periods. For both sets of circuit
parameters we can then calculate the average charge {Q�} on
the capacitors in the interval t A [t0,t0 + T/2], yielding

fQ�g¼
2

T

ðt0þT=2
t0

Q�ðtÞdt: (31)

We now chose t0 such that Q�(t) is positive for t A [t0,t0 + T/2],
which is always possible because Q�(t) of (30) is a harmonic
function with the same frequency as the driving voltage.
Inserting eqn (30) into eqn (31) yields

fQ�g¼QRef

oR�C1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

C1þC2þo2R�
2C1

2C2

� �2
o2R�2C1

4

s

1þo2R�2C1
2ð Þ; (32)

with a convenient reference charge defined by QRef = (2/p)C1C0

that is identical in the circuits and the two half-periods.
Following our convention that D� 4 D+ we can then calculate
the dimensionless period-averaged net charge

Q0 ¼fQ�g�fQþg
QRef

; (33)

which is a measure for the time-averaged excess charge that is
accumulated in a circuit with low resistance (corresponding to
the fast anions charging an EDL at a positive electrode
potential) compared to the circuit with a higher resistance
(corresponding to the slower cations charging the EDL). Below
we will consider Q0 as a proxy for the space- and time-averaged
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potential U of eqn (17). Interestingly, one checks that Q0 only
depends on three dimensionless parameters that can be repre-

sented by C1/C2, R+/R�, and
1

2
o RþþR�ð ÞC1; which are equal to

the system size kL, the mobility asymmetry d, and otRC,
respectively. These three parameters correspond exactly to
three of the four parameters on which U depends, the fourth
one being the amplitude of the driving potential beC0. The
disagreement between the nonlinear dependence U p C0

2 that
we identified earlier and the independence of Q0 on C0 is the
price we pay for analysing the nonlinear AREF phenomenon in
terms of linear-circuit theory. The dependence of Q0 on kL, d,
and otRC will, however, be quite similar to the dependence of U
on these parameters, as we will discuss now.

6.2 Parameter dependence of the proxy Q0

In Section 4 we studied the dependence of U on several system
parameters numerically, using a standard reference set. Here
we study to what extent the analytical expression of eqn (33) for
the proxy Q0 gives similar results, where we use the same
standard parameter set.

First we study the frequency dependence. In Fig. 8(a) we plot
Q0 as a function of otRC, not only for the full RC-circuit of
Fig. 8(b) but for comparison also for the simplified circuit of
Fig. 4(a), for which C2 = 0 as in an infinitely large system with
kL -N. It is apparent that for low to medium frequencies ot
ts
�1, as indicated by the vertical dashed line, both curves are

strikingly similar to each other and to the one for U in Fig. 4(a),
as all three share a broad maximum at otRC B 1 and an
algebraic decay po2 for small frequencies. However, at higher
frequencies otRC c 1 Fig. 8(a) shows a remarkable difference
between the simplified and the full circuit, the former showing
a decay Q0 p o�1 and the latter a decay Q0 p o�2. This can be
attributed to C2 acting increasingly similar to a short circuit or a
wire as we increase the frequency. Hence, the high-frequency
scaling of Q0 of the full circuit is clearly closer to that of U,
although the phenomenon of overscreening (that is obviously
not included in the linear-circuit theory) causes deviations of
the algebraic high-frequency scaling of U that is not included in
Q0. Nevertheless, the overall agreement of the frequency depen-
dence of U and Q0 is comforting and supports our view of the
underlying mechanism. From this point onward we will only
use results based on the full circuit that includes both a finite
C1 and C2.

Next we study the d-dependence of Q0 for exactly the same
parameters as we used for U in Fig. 4(b), i.e. for our standard
parameter set with a fixed tRC. The resulting Q0 is plotted in
Fig. 8(b) for d A [1,100] for various driving frequencies otRC. As
was the case for U, we see that Q0 is monotonically growing with
d until an asymptotic large-d limit that is larger for the higher
frequencies than for the lower frequencies, which is the exact
opposite of the ordering of Q0 in the small-d regime. Hence we
see once again that our modified linear circuits can catch some
of the essential features of AREF.

Finally, we study the system-size dependence of Q0 by
plotting it in Fig. 8(c) as a function of kL for several frequencies

characterised by fixed otD, again for the same parameters as we
used for U in Fig. 4(c). We can see that Q0 peaks at system sizes
that vary from kL C 20 at the highest frequency to kL C 100 at
the lowest frequency, which corresponds, for every frequency
considered, to a peak at that system size where otRC C 1. This
is very similar to our finding for the L-dependence of U in
Fig. 4(c). However, a key difference between Q0 and U involves
their large-L scaling behaviour, which is seen to be given by
Q0 p L�1 in Fig. 8(c) whereas we found U p L�2 in Fig. 4(c). As

Fig. 8 Dependence of the analytically calculated period-averaged charge
difference Q0 given by eqn (33) for our standard parameter set (see text) on
(a) the dimensionless frequency otRC, (b) the asymmetry of ionic mobilities

d ¼ D�
Dþ
¼ Rþ=R�; and (c) system size kL. In (a) Q0 is plotted for the full

equivalent RC circuit of Fig. 7(a) and for the simplified one of Fig. 7(c). In (b)
Q0 is plotted for several driving frequencies o. The effective diffusion
coefficient D, and, consequently, the frequency o, is kept fixed along each
curve. In (c) Q0 is plotted for several driving frequencies o. Both (b) and (c)
are based on the full equivalent circuit.
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we mentioned earlier, changing the system size affects the
electrolytic cell in a similar way as changing the driving
frequency o. However, in contrast to changing o, which leaves
the geometrical characteristics of the electrolytic cell and,
correspondingly, those of the elements of the equivalent circuit
unaffected, they change when kL is increased. At larger system
sizes kL \ 100, the impedance corresponding to C2 grows and
effectively closes the C2 branch of the full circuit for the current,
turning it into a simplified circuit of Fig. 8(c). This in turn
implies that the scaling of Q0 with L should be the same as with
o in the case of a simplified circuit i.e. it should decay as L�1,
which is exactly what we see in Fig. 7(c). The reason why we saw
the decay U p L�2 in the PNP case is that increasing the system
size of the electrolytic cell not only reduces C2 to negligible
magnitude for large kL, but also linearly decreases the applied
electric field at fixed C0, which together result in U p L�2 rather
than U p L�1.

We can conclude that the modified linear-circuit model
captures quite a few of aspects of the numerical PNP results
of the AREF. The toy model essentially suggests that the key
ions are the ones closest to the electrode (anions in one half of
the period and cations in the other half). The time-averaged
result is dominated by the faster anions.

7 Summary and discussion

We studied the static time-averaged electric field that arises in
the AC-driven electrolytic cell shown in Fig. 1 if the cations and
anions have unequal diffusion coefficients D+ o D�. We solved
the governing non-linear coupled Poisson–Nernst–Planck (PNP)
equations numerically to study how the magnitude of this so-
called asymmetric rectified electric field (AREF) depends on the
main system parameters such as the amplitude of the applied
AC voltage C0, the driving frequency o, the ionic mobility
asymmetry d, and the system size L. We also solved the
linearized PNP equations analytically and constructed an
equivalent RC-circuit for the electrolytic cell. Based on this
circuit, which involves a capacitor C2 in parallel with a series of
a restistor R and a capacitor C1, we propose a modification that
serves as our toy model to describe and explain the physical
mechanisms responsible for the nonlinear AREF effect in terms
of linear circuits. The key is to consider two different resis-
tances (R+ and R� associated with the different diffusion
coefficients D+ and D� of the cations and the anions, respec-
tively) during different phases of the driving voltage, with
cations/anions dominating the oscillating dynamics at nega-
tive/positive electrode potentials.

Let us for comparison briefly mention an appealing alter-
native toy model for AREF, proposed in ref. 32, in which the key
idea is to consider two point charges that oscillate in anti-phase
with different amplitudes to mimic the AC driving of a (mono-
valent) cation and anion with different mobilities. Interestingly,
the motion of these two ions is shown to create a non-zero time-
averaged electric field far from the oscillation origin, which is
then considered to be the analogue of AREF. While this picture

is very appealing at first sight and seems to capture the
essential AREF physics, it would actually only apply to a one-
dimensional line of ions that connect the electrodes and that
interact with three-dimensional ‘‘1/r’’ Coulomb potentials. In the
geometry of interest here, however, the analogue would be
oscillating three-dimensional planes of charge, which by Gauss
law interact by one-dimensional Coulomb potentials ‘‘|z � z0|’’
such that both species produce a spatially constant but oppo-
sitely directed electric field that exactly cancels in a globally
neutral system. So despite its attractive appeal its predicted AREF
is strongly affected by the geometry of three-dimensional space.

The modified linear-circuit toy model proposed here, which
is based on the (dis-)charging of 3D capacitive EDLs in planar
geometry, also has some shortcomings. Nevertheless, it describes
the scaling of the AREF magnitude with several important system
parameters quite well and reveals the physical mechanism behind
AREF generation. The asymmetry in the ion mobilities introduces
an asymmetry in the speed of the charging process of the EDLs
during the two half periods of negative and positive electrode
potentials. At driving frequencies o of the order of the character-
istic charging time of EDLs in the system, otRC B 1, the
asymmetry causes a time-averaged ionic charge distribution
where the faster ions are on average closer to the electrode and
play the role of the surface charge in conventional EDLs, while the
slower ones play the role of the screening cloud. This results in a
non-zero time-averaged EDL-like AREF structure. Even though
AREF is essentially a non-linear screening phenomenon, we could
gain some additional insight from a linearized RC-circuit analysis
where we considered the resistance R to take different values R+ p

D+
�1 and R�p D�

�1 during different phases of the AC-potential.
Interestingly, our circuit analysis also yields a new time scale ts ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
tRCtD
p

which implies the peculiar scaling ts p L1/2 for a given
electrolyte. This time scale involves a key role for the dielectric
capacitor C2, even in the large-L regime of interest where the EDL
capacitor C1 = kLC2 c C2. Physically ts corresponds to the
timescale that separates the low-frequency regime from the
high-frequency one. When ots = 1 the phase angle of the current
in the full electric circuit (see Fig. 7(a) has a minimum). While
C2 might be safely set to zero at correspondingly low frequencies
ots t 1, it becomes increasingly important at higher frequencies.
The timescale ts therefore also defines the threshold between the
regimes in which the system can be treated as the simple RC
circuit in series of Fig. 7(a) at low frequencies ots { 1 and the full
circuit of Fig. 7(a) at high frequencies ots c 1.

Finally, by studying the currents in the full electric circuit of
Fig. 7(a) as shown in Fig. 9, we can also give the Debye time tD an
additional physical interpretation. The currents in the C1 and C2

branches of the circuit of Fig. 7(a) become approximately equal
in magnitude when otD = 1 (for kL c 1). This means that tD

corresponds to a timescale, at which the EDLs are built to such
an extent that the combined impedance of the EDL capacitance
and the bulk resistance of the cell becomes equal to that of the
capacitor created by the electrodes of the cell.

Extensions of our work could possibly involve the inclusion
of redox or acid–base reactions, which would give additional
time scales because of the reaction rates. Other directions could
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involve AC-electroosmosis or non-sinusoidal sawtooth-like
potentials that break the symmetry between charging and
discharging, in fact even for electrolytes with equal mobilities
of the cations and anions. We speculate that amplification or
suppression of the AREF effect is possible by tuning the
combination of electrolyte, surface chemistry, and driving
potential.
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