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1 Introduction

The increasing precision of experimental measurements from the Large Hadron Collider
requires similar improvements in the accuracy of Standard Model theoretical predictions,
especially for perturbative QCD. Progress can be made by including ever higher order
contributions in the strong coupling constant, and by resumming certain kinematically
enhanced contributions to all orders in perturbation theory, e.g. the production of particles
near their kinematic threshold. In such processes, one can define a (partonic) threshold
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variable ξ, such that ξ → 0 when approaching threshold. In this regime partonic cross
sections take the generic form

dσ̂

dξ
= σ0

∞∑
n=0

(
αs

π

)n 2n−1∑
m=0

[
c(−1)

nm

( logm ξ

ξ

)
+
+ c(δ)

n δ(ξ) + c(0)
nm logm ξ +O(ξ)

]
, (1.1)

where σ0 represents the Born-level cross section. The summation of logarithms related to
the first contribution in the square brackets on the r.h.s. of eq. (1.1) has been much studied,
see e.g. refs. [1–14], and also the summation of the second contribution proportional to
δ(ξ) is known for processes with electroweak final states (see, for example, refs. [15, 16]).
These two terms define the leading power (LP) (in ξ) contribution to the partonic cross
section. Next-to-leading power (NLP) contributions are given in the third term, and their
summation has seen much recent study. While they are not as divergent as their LP
counterparts, they are still singular in the limit ξ → 0, and can be numerically sizeable
in this region (see e.g. [17]). Mapping the structure of large NLP logarithms is more
challenging than at LP, where large logarithms can be related to the emission of soft and
collinear gluons [18–20], and the factorisation of the cross section into universal jet and soft
functions, together with a process-dependent hard function. At NLP radiation becomes
sensitive to additional features of the underlying hard scattering process, such as the spin
of the emitting particles, and it starts to resolve the structure of the hard scattering kernel,
as well as the structure of clusters of virtual particles collinear to the directions of the
incoming/outgoing hard particles. These features have been investigated both by means of
direct-QCD (or diagrammatic) [20–40] and effective field theory methods, the latter based
on soft-collinear effective theory (SCET) [41–53].

Currently, resummation of the large threshold logarithms at NLP is achieved at LL
accuracy for scattering processes with a colour-singlet final state. This is done both in
the direct-QCD approach [17, 40, 54–59] and in the SCET approach [60–64]. However,
these discussions are limited to only a few observables, such as an inclusive cross section or
invariant mass distribution. It is also important to consider other observables, in particu-
lar more differential distributions. We note that the Drell-Yan rapidity distribution near
threshold has been recently investigated at NLP from a somewhat different perspective
in [36, 57], based on previous works at LP, see e.g. [65–67].

In this paper we look specifically at rapidity distributions and cross sections that are
double differential in the threshold variable (or invariant mass), and in the rapidity of
(one of) the final state particle(s). It is well known that at leading power the partonic
cross section for rapidity distributions takes on a factorised form [68–72], which enables
the result for the invariant mass distribution to be conveniently extended to cross sections
that are differential in the rapidity of one of the outgoing particles as well. In this paper
we investigate whether, or to what extent, the results obtained in refs. [25, 54], which are
both next-to-leading power results, can be extended to include rapidity distributions for
scattering processes with colour-singlet final states. One of the main results of the latter
references is a certain universality of the NLO partonic cross section up to NLP accuracy
for colour-singlet final states, in that they be written as a universal factor multiplied by
the Born-level partonic cross section with shifted Born kinematics. We investigate here
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Figure 1. Tree-level contribution to the Drell-Yan process.

whether such universality also exists in the case of rapidity distributions, which would
moreover aid the resummation of the leading logarithms at next-to-leading power for ra-
pidity distributions.

The structure of our paper is as follows. In section 2, we investigate the perturbative
structure of the Drell-Yan cross section differential in the invariant mass and the rapidity
of the virtual photon, in particular whether a factorised form occurs. In section 3, we
analyse the QCD-induced production of two photons, where we stay differential in the
rapidity of one of the photons. We compute the NLP corrections at NLO both directly
and by exploiting the method of ref. [25]. In section 4 we perform the resummation of
the leading threshold logarithms at NLP for both diphoton production and the Drell-Yan
process rapidity distributions. Section 5 contains our conclusions, while appendices contain
useful expressions for phase space measures.

2 Rapidity distribution for fixed-order Drell-Yan process

In this section we consider the Drell-Yan process

A(pA) +B(pB) → γ∗(q) +X(pX), (2.1)

where A(pA) and B(pB) represent the incoming hadrons with respectively momenta pA and
pB, with (pA+pB)2 = s, producing an off-shell photon followed by the decay γ∗(q) → l−l+,
and where X(pX) denotes the unobserved QCD final state. We focus on the cross section
differential in the invariant mass and rapidity of the off-shell photon in the collider centre
of mass frame

Q2 ≡ q2, Y ≡ 1
2 log

(
q0 + q3

q0 − q3

)
, (2.2)

which reads
dσ

dQ2 dY
= σ0

∑
ab

∫ 1

τ

dz

z

∫ 1

0
dyLab(z, y)∆ab(z, y), (2.3)

where
σ0 =

4πα2e2
q

3NcQ2s
, (2.4)

and α = e2/4π is the electromagnetic coupling. Following [73, 74], the luminosity function
Lab(z, y) and the partonic cross section ∆ab(z, y) are expressed in terms of the variables

z ≡ Q2

ŝ
= Q2

xaxbs
= τ

xaxb
, y = u− z

(1− z)
(
1 + u

) , (2.5)
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where in turn
u ≡ e−2Ŷ , with Ŷ = Y − 1

2 log
(
xa

xb

)
. (2.6)

Here Ŷ represents the rapidity in the partonic centre of mass frame; similarly, ŝ = (pa+pb)2

in eq. (2.5) represents the partonic centre of mass energy. The variables xa, xb represent
the momentum fractions relating the partonic to the hadronic incoming momenta via pa =
xapA, pb = xbpB. For future reference, we note that the variables above are well-defined in
the range

τ ≤ z ≤ 1, log
√
z ≤ Ŷ ≤ log 1√

z
, z ≤ u ≤ 1

z
, 0 ≤ y ≤ 1 . (2.7)

For Born kinematics one has z = u = 1, y = 1/2. Though eq. (2.3) contains a sum over
the partonic channels a, b, we consider here only the leading quark-antiquark annihilation
channel q(pa) + q̄(pb) → γ∗(q) (plus the symmetric contribution q ↔ q̄), see figure 1, and
therefore drop the indices a, b. Given these definitions, the luminosity function in eq. (2.3)
reads

L(z, y) = fq/A

(
eY

√
τ

z

1− (1− y)(1− z)
1− y(1− z)

)
fq̄/B

(
e−Y

√
τ

z

1− y(1− z)
1− (1− y)(1− z)

)
+ (q ↔ q̄).

(2.8)
In the threshold region, defined by the limit (1− z) → 0, the cross section is conveniently
approximated by a power expansion in (1− z),

∆(z, y) = ∆LP(z, y) + ∆NLP(z, y) +O(1− z), (2.9)

and it develops large logarithms of (1 − z) that need to be resummed. At leading power
in (1 − z), the resummation of large logarithms in (1 − z) for the rapidity distribution is
relatively easy because of the factorisation [68, 69, 75]

∆LP(z, y) =
δ(y) + δ(1− y)

2 ∆LP(z), (2.10)

where ∆LP(z) represents the partonic cross section integrated over the rapidity, i.e. the
partonic invariant mass distribution. Thus, the resummation of large logarithms in (1− z)
trivially follows from the resummation obtained for the invariant mass distribution.

Recently, much effort has been devoted to the development of resummation techniques
for the NLP term of the invariant mass distribution, ∆NLP(z), [54, 61]. It is therefore
interesting to ask to what extent such techniques may be applicable to ∆NLP(z, y) in
eq. (2.9), provided a factorisation such as the one in eq. (2.10) may be established for
∆NLP(z, y). In order to pursue this investigation, we start by analysing the perturbative
structure of ∆NLP(z, y).

In general, the partonic cross section ∆(z, y) in d = 4− 2ϵ spacetime dimensions takes
the form

∆(z, y) = 1
(2π)d

(−gµν)Wµν

1− ϵ
δ(q2 −Q2) δ

[
y − pa · q − z pb · q

(1− z)(pa · q + pb · q)

]
, (2.11)
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where Wµν represents the Drell-Yan hadronic tensor, and the normalisation is fixed such
that the tree-level partonic cross section for the invariant mass reads ∆(0)(z) = δ(1 − z).
Here ∆(z) is given by the identity∫ 1

0
dyL(z, y)∆(z, y) = L

(
τ

z

)
∆(z), (2.12)

where
L(v) =

∫ 1

v

dx

x
fq/A(x) fq̄/B

(
v

x

)
+ (q ↔ q̄), (2.13)

such that
dσ

dQ2 = σ0

∫ 1

τ

dz

z
L
(
τ

z

)
∆(z). (2.14)

The leading order contribution to ∆(z, y) can be easily calculated in terms of the squared
matrix element of the process qq̄ → γ∗:

∆(0)(z, y) = 1
4Nc

1
2π

∫
dΦγ∗

∑
s,c,p

∣∣M(0)
qq̄→γ∗

∣∣2, (2.15)

where ∑
s,c,p

∣∣M(0)
qq̄→γ∗

∣∣2 = 4(1− ϵ)ŝNc, (2.16)

where the sum is over spin, colour and polarisation, and the phase space for the production
of the off-shell photon

∫
dΦγ∗ is defined in appendix A. In eq. (2.16) and in what follows

we set eq = 1, e = 1, given that these factors are already included in σ0, see eqs. (2.3)
and (2.4). Upon integration one easily obtains

∆(0)(z, y) = δ(1− z) δ
(
y − 1

2

)
. (2.17)

It can be shown [71] that the tree result in eq. (2.17) is indeed compatible, up to NLP,
with the structure in eq. (2.10). Inserting eq. (2.17) into eq. (2.3) gives

dσ

dQ2 dY
= σ0

∫ 1

τ

dz

z
L
(
z,

1
2

)
∆(0)(z), (2.18)

while using the factorised form of eq. (2.10) into eq. (2.3) leads to

dσ

dQ2 dY
= σ0

∫ 1

τ

dz

z

L(z, 0) + L(z, 1)
2 ∆(0)(z). (2.19)

As discussed in [71], near threshold the luminosity functions involved in eqs. (2.18) and (2.19)
are equivalent, up to corrections starting at NNLP:

L(z, 0) + L(z, 1)
2 = L

(
z,

1
2

)
+O

[
(1− z)2], (2.20)

so that for our purposes, eqs. (2.18) and (2.19) can be considered to be equivalent. For
future reference, let us define

∆(0)(z, y) = δ(y) + δ(1− y)
2 δ(1− z) ≡ ∆̄(0)(y) δ(1− z). (2.21)

– 5 –



J
H
E
P
1
0
(
2
0
2
3
)
1
2
6

With these results at hand, we have now the tools to investigate the structure of the
perturbative corrections to eq. (2.17). Our goal is to determine the contribution to the
partonic differential distribution up to second order in perturbation theory: indeed, this
is necessary as the structure of the soft expansion within the method of regions [76] is
fully revealed only starting at NNLO. In this regard, let us notice that, to the best of
our knowledge, the analytic results presented for the NNLO contribution in section 2.2
are given here for the first time, and provide a useful database for investigations of the
Drell-Yan rapidity distribution at NLP, at all logarithmic accuracy.

2.1 Next-to-leading order

At NLO one needs to take into account the emission of a virtual gluon or a real soft gluon.
The two contributions take the form

∆(1)(z, y)|virtual =
1

4Nc

1
2π

∫
dΦγ∗

∑
s,c,p

2Re
[
M(0)∗

qq̄→γ∗M(2)
qq̄→γ∗

]
, (2.22)

∆(1)(z, y)|real =
1

4Nc

1
2π

∫
dΦγ∗g

∑
s,c,p

∣∣M(1)
qq̄→γ∗g

∣∣2, (2.23)

where the phase space for the production of the off-shell photon
∫
dΦγ∗ , as well as the phase

space involving an additional soft gluon
∫
dΦγ∗g are defined in appendix A. In eq. (2.22),

M(0)∗
qq̄→γ∗ represents the Drell-Yan Born amplitude, M(2)∗

qq̄→γ∗ the one-loop correction involv-
ing a virtual gluon, and M(1)

qq̄→γ∗g the tree-level amplitude with emission of a real gluon
into the final state. An easy calculation gives

∆(1)(z, y)|virtual = δ(1− z) δ
(
y − 1

2

)
αsCF

4π

(
µ̄2

Q2

)ϵ[
− 4
ϵ2

− 6
ϵ
− 16 + 14ζ2

+ϵ
(
− 32 + 21ζ2 +

28ζ3
3

)
+ . . .

]
(2.24)

for the virtual contribution, where we introduced µ̄2 = 4πe−γEµ2 as the MS renormalisation
scale. Concerning now the real emission, a simple calculation gives∑

s,c,p

∣∣M(1)
qq̄→γ∗g

∣∣2 = αs

4π64π
2NcCF (1− ϵ) ŝ2

k · pak · pb

[
1− 2

ŝ

(
k · pa + k · pb

)
+O[(1− z)2]

]
,

(2.25)
where k is the momentum of the emitted soft gluon. Inserting this into eq. (2.23) and
integrating against the phase space, up to NLP one obtains1

∆(1)(z, y)|LP
real =

αsCF

4π

(
µ̄2

Q2

)ϵ(
1−z

)−1−2ϵ
y−1−ϵ(1−y)−1−ϵ

[
1−ϵ(1−z)

][
4−2ζ2ϵ

2+O(ϵ3)
]
,

(2.26)
and

∆(1)(z, y)|NLP
real = −αsCF

4π

(
µ̄2

Q2

)ϵ(
1− z

)−2ϵ
y−1−ϵ(1− y)−1−ϵ

[
4− 2ζ2ϵ

2 +O(ϵ3)
]
. (2.27)

1Notice that the term defined as ∆(1)(z, y)|LP
real in eq. (2.26) refers to the LP squared matrix element. It

actually contains a NLP correction of kinematic origin, due to the expansion of the phase space.
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The real emission contribution contains poles that arise upon integration over z and y, at
z = 1, y = 0 and y = 1. We can isolate them by means of the standard expansion formula

ξ−1+aϵ = δ(ξ)
aϵ

+ 1
ξ

∣∣∣∣
+
+ aϵ

log ξ
ξ

∣∣∣∣
+
+ (aϵ)2

2!
log2 ξ

ξ

∣∣∣∣
+
+O(ϵ3), (2.28)

with ξ = 1− z, y or 1− y. Setting µ̄2 = Q2 for simplicity, this leads to

∆(1)(z, y)|LP
real =

αsCF

4π

{[ 2
ϵ2

− ζ2

][
δ(y) + δ(1− y)

]
δ(1− z)

+
[
δ(y) + δ(1− y)

](
− 4
ϵ

1
1− z

∣∣∣∣
+
+ 4 + 8log(1− z)

1− z

∣∣∣∣
+

)
+ 4
y(1− y)

∣∣∣∣
+

1
1− z

∣∣∣∣
+
+ . . .

}
, (2.29)

for the LP squared matrix element. Notice that terms multiplied by δ(1− z) must have y
equal to 0 or 1. At NLP we have

∆(1)(z, y)|NLP
real = αsCF

4π

{[
δ(y) + δ(1− y)

](4
ϵ
− 8 log(1− z)

)
− 4
y(1− y)

∣∣∣∣
+
+ . . .

}
, (2.30)

from the NLP contribution to the squared matrix element. The virtual and real corrections
can be combined, exploiting eq. (2.20). After PDF renormalisation, and setting µ̄2 = Q2,
one arrives at the finite result

∆(1)(z, y)|LP
ren = αsCF

4π

{(
6ζ2 − 8

)[
δ(y) + δ(1− y)

]
δ(1− z)

+
[
δ(y) + δ(1− y)

](
8log(1− z)

1− z

∣∣∣∣
+
+ 4

)
+ 4
y(1− y)

∣∣∣∣
+

1
1− z

∣∣∣∣
+

}
, (2.31)

and

∆(1)(z, y)|NLP
ren = αsCF

4π

{[
δ(y) + δ(1− y)

](
− 8 log(1− z)

)
− 4
y(1− y)

∣∣∣∣
+

}
. (2.32)

A few comments are in order. Concerning the LP contribution, we see that it takes the
factorised form of eq. (2.10) except for the last term. However, one still needs to take
into account that the y-dependence of the parton distribution function in the luminosity
defined in eq. (2.8) is indeed subleading in the z → 1 limit [69, 70]:

fq/A

(
eY

√
τ

z

1− (1− y)(1− z)
1− y(1− z)

)∣∣∣∣
z→1

→ fq/A

(
eY √τ

)
+O(1− z). (2.33)

At LP the PDFs can be approximated with the first term on the r.h.s. of eq. (2.33), and
the integration against the last term in eq. (2.31) gives zero. It is thus possible [74] to
rearrange eq. (2.31) such that the LP term always take the factorised form of eq. (2.10).2

2We note that the validity of this argument has been debated, see [77]. In this paper we focus on the
LLs in (1 − z) at NLP, for which the factorisation formula in eq. (2.34) appears to be valid by explicit
computation. We refer to [72] for further discussion.
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Another important aspect is that, because of the consideration above, it is evident that
the NLP contribution in eq. (2.32) in general does not factorise according to eq. (2.10).
However, we see that the leading logarithmic contribution at NLP factorises in rapidity,
just as the LP contribution. This is because the leading logarithms (LLs) are associated to
the maximally soft and collinear momentum configurations, which give rise to the leading
poles in the unrenormalised partonic cross section. As a consequence of eq. (2.28), the LLs
in (1− z) can only arise from the first term in the expansion of the factor y−1−ϵ(1− y)−1−ϵ

in eq. (2.27).
Eqs. (2.26) and (2.27) yield the z- and y-dependence in case of a soft gluon emission.

In general, it can be shown that a similar structure will appear at higher orders, i.e., such
corrections will involve factors of

(
1 − z

)−1−(n1+n2)ϵ and
(
1 − z

)−(n1+n2)ϵ respectively for
the LP and NLP contribution, multiplied by factors of y−1−n1ϵ(1− y)−1−n2ϵ. By the same
reasoning as above, we can expect the LLs in (1− z) at NLP to have the same factorised
form as the LP contribution:

∆(z, y) = δ(y) + δ(1− y)
2

[
∆LP(z) + ∆NLP,LLs(z)

]
+∆NLP,rest(z, y) +O(1− z). (2.34)

In the next section we explicitly check this expectation at the next order in perturbation
theory.

2.2 Next-to-next-to-leading order

At NNLO one needs to consider three contributions, namely the double-virtual, the virtual-
real and the double-real terms. They are given by, respectively,

∆(2)(z, y)|2v = 1
4Nc

1
2π

∫
dΦγ∗

∑
s,c,p

{
2Re

[
M(0)∗

qq̄→γ∗M(4)
qq̄→γ∗

]
+
∣∣∣M(2)

qq̄→γ∗

∣∣∣2}, (2.35)

∆(2)(z, y)|1v1r = 1
4Nc

1
2π

∫
dΦγ∗g

∑
s,c,p

2Re
[
M(1)∗

qq̄→γ∗gM
(3)
qq̄→γ∗g

]
, (2.36)

∆(2)(z, y)|2r = 1
4Nc

1
2π

∫
dΦγ∗(gg+qq̄)

∑
s,c,p

∣∣M(2)
qq̄→γ∗(gg+qq̄)

∣∣2. (2.37)

The phase spaces
∫
dΦγ∗ and

∫
dΦγ∗g have already been mentioned in the previous sec-

tion, while
∫
dΦγ∗(gg+qq̄) represents the phase space for the emission of two gluons (or a

quark-antiquark pair) in the final state, in addition to the off-shell photon. It is given in
appendix A.3. Of the three contributions above, the first involves the two-loop (virtual)
Drell-Yan amplitude M(4)

qq̄→γ∗ , and does not present new conceptual issues compared to the
corresponding term at one loop, namely ∆(1)(z, y)|virtual in eqs. (2.22) and (2.24). Starting
from the two-loop quark form factor available in literature [78, 79] and setting µ̄2 = Q2 for
simplicity, one has

∆(2)(z, y)|2v =
(
αs

4π

)2
δ(1− z) δ

(
y − 1

2

){
C2

F

[ 8
ϵ4

+ 24
ϵ3

+ 82− 56ζ2
ϵ2

+ 1
ϵ

(445
2 − 156ζ2

−184ζ3
3

)
+ 2303

4 − 516ζ2 − 172ζ3 + 274ζ4

]
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+CFCA

[
− 11

3ϵ3 + 1
ϵ2

(
− 166

9 + 2ζ2

)
+ 1
ϵ

(
− 4129

54 + 121ζ2
3 + 26ζ3

)
−89173

324 + 1754ζ2
9 + 934ζ3

9 − 16ζ4

]

+CFnf

[ 2
3ϵ3 + 28

9ϵ2 + 1
ϵ

(353
27 − 22ζ2

3

)
+ 7541

162 − 308ζ2
9 − 52ζ3

9

]}
. (2.38)

The virtual-real and the double-real contribution, respectively in eqs. (2.36) and (2.37),
require more attention. Let us therefore consider them separately in what follows.

Virtual-real contribution. The virtual-real contribution in eq. (2.36) involves the one-
loop amplitude M(3)

qq̄→γ∗g, with the emission of a soft gluon. It is therefore the first instance
where the loop integration involves non-trivial momentum regions. We can cast the squared
matrix element for this case in the form

∑
s,c,p

2Re
[
M(1)∗

qq̄→γ∗gM
(3)
qq̄→γ∗g

]
=
(
αs

4π

)2
256π2Nc (1− ϵ)

×
{
C2

F

[(
ŝ2

tu
fh1(ϵ) +

ŝ(t+ u)
tu

fh2(ϵ)
)(

µ2

−ŝ

)ϵ

+
(
ŝ

t

(
µ2

−t

)ϵ

+ ŝ

u

(
µ2

−u

)ϵ )
fc1(ϵ)

]

+CACF

[(
ŝ2

tu
+ ŝ(t+ u)

tu

)(
− ŝ µ

2

t u

)ϵ

fs(ϵ) +
(
ŝ

t

(
µ2

−t

)ϵ

+ ŝ

u

(
µ2

−u

)ϵ )
fc2(ϵ)

]}
,

(2.39)

where we have introduced the variables t = −2pa · k, u = −2pb · k, with k being the
momentum of the emitted soft gluon, and

fh1(ϵ) = − 2
ϵ2

− 3
ϵ
− 8 + ζ2 + ϵ

(
− 16 + 3ζ2

2 + 14ζ3
3

)
+ ϵ2

(
− 32 + 4ζ2 + 7ζ3 +

47ζ4
8

)
+O(ϵ3),

fh2(ϵ) = sϵfh1(ϵ)
∂

∂s
s1−ϵ = (1− ϵ) fh1(ϵ),

fc1(ϵ) = −2
ϵ
− 5

2 + ϵ
(
− 3 + ζ2

)
+ ϵ2

(
− 4 + 5ζ2

4 + 14ζ3
3

)
+O(ϵ3),

fc2(ϵ) = 5
2 + ϵ+ ϵ2

(
4− 5ζ2

4

)
+O(ϵ3),

fs(ϵ) = − 1
ϵ2

− ζ2
2 + 7ζ3

3 ϵ+ 39ζ4
16 ϵ2 +O(ϵ3). (2.40)

One may readily identify the term proportional to (−ŝ)−ϵ as the hard region contribution,
the terms proportional to (−t)−ϵ and (−u)−ϵ respectively as the collinear and anti-collinear
region contribution, and the term proportional to (−ŝ/tu)ϵ as the soft region contribution.
Let us notice that leading poles are present only for the hard and soft region, at the
level of the squared matrix element. As such, as already discussed for the invariant mass
distribution [54] (see also [27]), we expect that, also for the rapidity distribution, leading
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logarithms will arise only from the hard and soft region. The phase space integration
with measure dΦγ∗g can be performed with the help of the equations in appendix A.2.
Expanding in powers of 1− z, the integration over the LP squared matrix element gives

∆(2)(z, y)|LP
1r1v = ∆(2)(z, y)|LP,h

1r1v +∆(2)(z, y)|LP,s
1r1v , (2.41)

where

∆(2)(z, y)|LP,h
1r1v = C2

F

(
αs

4π

)2( µ̄2

Q2

)2ϵ

y−1−ϵ(1− y)−1−ϵ

×
{(

1− z
)−1−2ϵ

[
− 16
ϵ2

− 24
ϵ

− 64 + 64ζ2 + . . .

]
+
(
1− z

)−2ϵ
[32
ϵ

+ 48 + . . .

]}
,

(2.42)

and

∆(2)(z, y)|LP,s
1r1v = CACF

(
αs

4π

)2( µ̄2

Q2

)2ϵ

y−1−2ϵ(1− y)−1−2ϵ

×
{(

1− z
)−1−4ϵ

[
− 8
ϵ2

+ 24ζ2 + . . .

]
+
(
1− z

)−4ϵ
[16
ϵ

+ . . .

]}
, (2.43)

for the hard and soft region contribution, respectively. We recall that NLP corrections
in eqs. (2.42) and (2.43) originate from the power expansion of the phase space. Next,
integration of the NLP squared matrix element gives

∆(2)(z, y)|NLP
1r1v = ∆(2)(z, y)|NLP,h

1r1v +∆(2)(z, y)|NLP,c+c̄
1r1v +∆(2)(z, y)|NLP,s

1r1v , (2.44)

where

∆(2)(z, y)|NLP,h
1r1v = C2

F

(
αs

4π

)2( µ̄2

Q2

)2ϵ

y−1−ϵ(1− y)−1−ϵ(1− z
)−2ϵ

×
[16
ϵ2

+ 8
ϵ
+ 40− 64ζ2 + . . .

]
, (2.45)

∆(2)(z, y)|NLP,c+c̄
1r1v =

(
αs

4π

)2( µ̄2

Q2

)2ϵ[
y−ϵ(1− y)−1−2ϵ + y−1−2ϵ(1− y)−ϵ

](
1− z

)−3ϵ

×
{
C2

F

[16
ϵ

+ 20 + . . .

]
+ CACF

[
− 20 + . . .

]}
, (2.46)

and

∆(2)(z, y)|NLP,s
1r1v = CACF

(
αs

4π

)2( µ̄2

Q2

)2ϵ

y−1−2ϵ(1− y)−1−2ϵ(1− z
)−4ϵ

[ 8
ϵ2

− 24ζ2 + . . .

]
.

(2.47)
As already discussed for the single real emission at NLO, note that the y-dependence arises
from the typical pattern y−a1−b1ϵ(1 − y)−a2−b2ϵ, while the dependence on the threshold
variable z follows the pattern z−1−(b1+b2)ϵ at LP, and z−(b1+b2)ϵ at NLP. The 1-virtual
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1-real correction considered here is the first instance where contributions from different
momentum regions of the virtual gluon arise. Inspecting eqs. (2.42)–(2.47), we see that the
exponents ai and bi are characteristic of each region: at this order, a1 = a2 = 1, b1 = b2 = 1
for the hard region, a1 = 0, a2 = 1, b1 = 1, b2 = 2 for the collinear region, a1 = 1, a2 = 0,
b1 = 2, b2 = 1 for the anti-collinear region, and a1 = a2 = 1, b1 = b2 = 2 for the soft
region. Note the quite simple correspondence between regions and the power dependence
of the threshold and rapidity variables z and y, in particular involving also the dimensional
regularisation parameter. Expansion in powers of ϵ of these factors can be obtained by
means of eq. (2.28). Setting again µ̄2 = Q2, and introducing the notation

Dn(x) ≡
logn(x)
x

∣∣∣∣
+
, Ln(x) ≡ logn(x), (2.48)

with x = z̄ ≡ (1− z), or x = y, or x = ȳ ≡ (1− y), we obtain

∆(2)(z, y)|LP,h
1r1v = C2

F

(
αs

4π

)2{[
δ(y) + δ(1− y)

][
δ(1− z)

(
− 8
ϵ4

− 12
ϵ3

− 32− 32ζ2
ϵ2

− 1
ϵ

(
64− 48ζ2 −

64ζ3
3

)
− 128 + 128ζ2 + 32ζ3 − 72ζ4

)
+ 16D0(z̄)

ϵ3

+ 24D0(z̄)− 32D1(z̄)− 32
ϵ2

+ 1
ϵ

(
64D0(z̄)(1− ζ2)− 48D1(z̄) + 32D2(z̄)

− 48 + 64L1(z̄)
)
+ 128D0(z̄)

(
1− 3ζ2

4 − ζ3
3

)
− 128D1(z̄)(1− ζ2)

+ 48D2(z̄)−
64
3 D3(z̄) + 96L1(z̄)− 64L2(z̄)− 128(1− ζ2)

]
+D0(y)D0(ȳ)

[
− 16D0(z̄)

ϵ2
+ 32− 24D0(z̄) + 32D1(z̄)

ϵ
+ 48

− 64D0(z̄)(1− ζ2) + 48D1(z̄)− 32D2(z̄)− 64L1(z̄)
]

+
[
D0(y)D1(ȳ) +D1(y)D0(ȳ)

][16D0(z̄)
ϵ

− 32 + 24D0(z̄)− 32D1(z̄)
]

− 16D0(z̄)D1(y)D1(ȳ)− 8D0(z̄)
(
D0(y)D2(ȳ) +D2(y)D0(ȳ)

)}
, (2.49)

and

∆(2)(z,y)|LP,s
1r1v = CACF

(
αs

4π

)2{[
δ(y)+δ(1−y)

][
δ(1−z)

(
− 1
ϵ4

+3ζ2
ϵ2

+8ζ3
3ϵ − 3ζ4

4

)
+ 4D0(z̄)

ϵ3
− 8+16D1(z̄)

ϵ2
− 1
ϵ

(
12D0(z̄)ζ2−32D2(z̄)−32L1(z̄)

)
− 32

3 D0(z̄)ζ3+48D1(z̄)ζ2−
128
3 D3(z̄)+24ζ2−64L2(z̄)

]
+D0(y)D0(ȳ)

[
− 8D0(z̄)

ϵ2
+16+32D1(z̄)

ϵ
+24ζ2D0(z̄)−64D2(z̄)−64L1(z̄)

]
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+
[
D0(y)D1(ȳ)+D0(ȳ)D1(y)

][16D0(z̄)
ϵ

−32−64D1(z̄)
]

−32D0(z̄)D1(y)D1(ȳ)−16D0(z̄)
(
D0(y)D2(ȳ)+D0(ȳ)D2(y)

)}
, (2.50)

for the hard- and soft-region contribution to the LP squared matrix element. Next, the
NLP squared matrix element gives

∆(2)(z,y)|NLP,h
1r1v =C2

F

(
αs

4π

)2{[
δ(y)+δ(1−y)

][
− 16
ϵ3

− 8−32L1(z̄)
ϵ2

− 1
ϵ

(
40−64ζ2

− 16L1(z̄)+32L2(z̄)
)
−64+32ζ2+

128ζ3
3 +L1(z̄)(80−128ζ2)

− 16L2(z̄)+
64
3 L3(z̄)

]
+D0(ȳ)D0(y)

[16
ϵ2

+8−32L1(z̄)
ϵ

+40−64ζ2

− 16L1(z̄)+32L2(z̄)
]
+
[
D0(y)D1(ȳ)+D0(ȳ)D1(y)

][
− 16
ϵ
−8+32L1(z̄)

]
+16D1(ȳ)D1(y)+8

(
D0(y)D2(ȳ)+D0(ȳ)D2(y)

)}
,

(2.51)

∆(2)(z,y)|NLP,c+c̄
1r1v =

(
αs

4π

)2{
C2

F

[(
δ(y)+δ(1−y)

)(
− 8
ϵ2

− 10−24L1(z̄)
ϵ

−12+30L1(z̄)

− 36L2(z̄)+8ζ2

)
+D0(y)

(16
ϵ
+20−16L1(ȳ)−48L1(z̄)

)
+D0(ȳ)

(16
ϵ
+20−16L1(y)−48L1(z̄)

)
−32

(
D1(y)+D1(ȳ)

)]
+CACF

[(
δ(y)+δ(1−y)

)(10
ϵ
+4−30L1(z̄)

)
−20

(
D0(y)+D0(ȳ)

)]}
,

(2.52)

and

∆(2)(z,y)|NLP,s
1r1v = CACF

(
αs

4π

)2{[
δ(y)+δ(1−y)

][
− 4
ϵ3

+16L1(z̄)
ϵ2

− 32L2(z̄)−12ζ2
ϵ

+ 32ζ3
3 −48L1(z̄)ζ2+

128
3 L3(z̄)

]
+D0(ȳ)D0(y)

[ 8
ϵ2

− 32L1(z̄)
ϵ

−24ζ2+64L2(z̄)
]
+
(
D0(y)D1(ȳ)+D0(ȳ)D1(y)

)[
− 16
ϵ
+64L1(z̄)

]
+32D1(ȳ)D1(y)+16

(
D0(y)D2(ȳ)+D0(ȳ)D2(y)

)}
, (2.53)

for the hard, collinear plus anti-collinear and soft region, respectively.
Let us comment on these results. First of all, the LP squared matrix element in

eqs. (2.49) and (2.50) receives contributions from the hard and the soft region, but no
contribution from the collinear region. This is a well-known result for the invariant mass
distribution [19], which clearly remains true in case of more differential distributions, like
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the double-differential distribution in invariant mass and rapidity considered here. This
is because, near threshold, contributions from the collinear and anti-collinear regions at
LP decouple at the level of the matrix element, regardless of the exact form of the phase
space [80–83]. Moreover, we can single out three different types of contributions in the
LP squared matrix element, eqs. (2.49) and (2.50): the first is given by terms proportional
to δ(y)+δ(1−y), which corresponds to the LP factorised terms of eq. (2.34). Then we
have terms which are proportional to y- and ȳ-plus distributions. These do not factorise.
However, as discussed around eq. (2.33), the behaviour of the PDFs near z→ 1 is such
that y- and ȳ-plus distributions in the LP squared matrix element actually contribute at
NLP in 1−z. In this respect, the important thing to notice concerning our assumption in
eq. (2.34) is that such y- and ȳ-plus distributions in eqs. (2.49) and (2.50) do not contain
leading D3(z̄) distributions, nor leading L3(z̄) logarithms. As such, these terms contribute
to the last term ∆NLP,rest(z,y) in eq. (2.34). A third type of contribution in eqs. (2.49)
and (2.50) is given by logarithms Ln(z̄) arising from the expansion of the phase space.
More precisely, the power expansion of the partonic cross section is given by the sum of
three terms:

∆∼
∫
dΦLP |M|2LP+

∫
dΦNLP |M|2LP︸ ︷︷ ︸

∆LP

+
∫
dΦLP |M|2NLP︸ ︷︷ ︸

∆NLP

. (2.54)

In eqs. (2.49) and (2.50) we include, with a slight abuse of language, both the first and
second term of eq. (2.54) into ∆LP. Thus, ∆LP contains logarithms Ln(z̄), originating
from the second term of eq. (2.54). However, only logarithms with n=1,2 appear. Thus,
power corrections from the phase space measure do not give rise to leading logarithms at
NLP. This result has been already exploited to construct the resummation of LLs in the
Drell-Yan invariant mass distribution, see section 3 of [54], and it remains true for the
distribution differential in both invariant mass and rapidity. Lastly, in regard to the NLP
squared matrix element in eqs. (2.51)–(2.53), we see that leading logarithms L3(z̄) arise
only in the hard and soft region, eqs. (2.51) and (2.53), while the collinear and anti-collinear
region contribution in eq. (2.52) contain at most next-to-leading logarithms. Also in this
case the result is quite general, i.e. is independent of the particular differential distribution
considered, because the collinear momenta configurations contain only subleading poles
already at the level of the squared matrix element (cf. eqs. (2.39) and (2.40) with eq. (2.46)),
and thus upon integration no LLs can be generated. We conclude that we are left with the
NLP LLs L3(z̄) from the hard and soft region, eqs. (2.51) and (2.53), which indeed have
the factorised form of eq. (2.34).

Double-real contribution. We are now left with the double-real correction listed in
eq. (2.37):

∆(2)(z,y)|2r = 1
4Nc

1
2π

∫
dΦγ∗(gg+qq̄)

∑
s,c,p

∣∣M(2)
qq̄→γ∗(gg+qq̄)

∣∣2, (2.55)

which is given in terms of the tree-level amplitude M(2)
qq̄→γ∗(gg+qq̄), describing the emission

of two soft gluons (or a quark-antiquark pair) in the final state, and the corresponding
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phase space
∫
dΦγ∗(gg+qq̄). The expression of the squared matrix element

∣∣M(2)
qq̄→γ∗(gg+qq̄)

∣∣2
is rather lengthy, and we do not report it here. Instead, it is interesting to spend some
words on the phase space integration, which is obviously more involved compared to the
case of a single real emission discussed in the previous section. The phase space integral
for double-real emission reads

∫
dΦγ∗(gg+qq̄) =

(
µ2)4−d

∫
ddq

(2π)d−1
ddk1

(2π)d−1
ddk2

(2π)d−1 (2π)
d δ(d)(pa+pb−q−k1−k2)

×δ+(k2
1)δ+(k2

2)δ(q2−Q2)δ
[
y− pa ·q−z pb ·q

(1−z)(pa ·q+pb ·q)

]
. (2.56)

In this case it proves useful to follow the parametrisation used in [23, 84], in which the
three-particle phase space is factorised into two two-body phase spaces, one involving the
off-shell photon and the other the vector sum of the emitted gluon momenta K = k1+k2:

∫
dΦ(pa+pb → q+k1+k2)=

∫ ∞

0

dK2

2π

∫
dΦ(pa+pb → q+K)×

∫
dΦ(K→ k1+k2). (2.57)

Subsequently, the phase space
∫
dΦ(K→ k1+k2) is evaluated in the centre of mass frame

of the two-gluon system, where the momenta are parameterised as follows:

pa = ŝ− t̃
2√s12

(1,0, . . . ,0,1),

pb =
(
t̃+s12−Q2

2√s12
,0, . . . ,0, |q|sinψ, |q|cosψ− ŝ− t̃

2√s12

)
,

q =
(
ŝ−s12−Q2

2√s12
,0, . . . ,0, |q|sinψ, |q|cosψ

)
,

k1 =
√
s12
2 (1,0, . . . ,sinθ2 sinθ1,cosθ2 sinθ1,cosθ1),

k2 =
√
s12
2 (1,0, . . . ,−sinθ2 sinθ1,−cosθ2 sinθ1,−cosθ1), (2.58)

where
t̃=2pa ·q, ũ=2pb ·q, s12 =2k1 ·k2 = ŝ− t̃−ũ+Q2, (2.59)

and

cosψ= (ŝ−Q2)(ũ−Q2)−s12(t̃+Q2)
(ŝ− t̃)

√
Λ(ŝ,Q2,s12)

, |q|=
√
Λ(ŝ,Q2,s12)
2√s12

, (2.60)

where Λ is the standard Källen function Λ(a,b,c)= a2+b2+c2−2ab−2ac−2bc. The Man-
delstam variables t̃ and ũ can in turn be expressed as functions of the photon energy
fraction z and of two further variables 0<v1< 1 and 0<v2< 1, such that

t̃= ŝ

[
z+v2(1−z)−

v2(1−v2)v1(1−z)2

1−v2(1−z)

]
, ũ= ŝ

[
1−v2(1−z)

]
. (2.61)
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With this parametrisation,
∫
dΦγ∗(gg+qq̄) reads∫

dΦγ∗(gg+qq̄) =
1

(4π)d

ŝd−3(µ2)4−d

Γ(d−3) (1−z)2d−5
∫ π

0
dθ1

∫ π

0
dθ2 (sinθ1)d−3(sinθ2)d−4

×
∫ 1

0
dv1

∫ 1

0
dv2 [v1(1−v1)]d/2−2 [v2(1−v2)]d−3 [1−v2(1−z)]1−d/2

× δ

y−
ŝ
(
z+v2(1−z)− v2(1−v2)v1(1−z)2

1−v2(1−z)

)
−zŝ

(
1−v2(1−z)

)
(1−z)

[
ŝ
(
z+v2(1−z)− v2(1−v2)v1(1−z)2

1−v2(1−z)

)
+ŝ
(
1−v2(1−z)

)]
 .
(2.62)

The Dirac delta function in the last line is rather involved, but it greatly simplifies in the
z→ 1 limit. In this case, following [68], we expand

δ

{
y−

ŝ
(
z+v2(1−z)− v2(1−v2)v1(1−z)2

1−v2(1−z)

)
−zŝ

(
1−v2(1−z)

)
(1−z)

[
ŝ
(
z+v2(1−z)− v2(1−v2)v1(1−z)2

1−v2(1−z)

)
+ŝ
(
1−v2(1−z)

)]
}

= δ(y−v2)+
v2(1−v2)v1

2 (1−z)δ′(y−v2)+O
[
(1−z)2]. (2.63)

Inserting this power expansion into the three-body phase space of eq. (2.62), it is possible
to perform the integral of the two-real squared matrix element in eq. (2.55) with the
standard methods discussed in [23, 84]. After some elaboration, we obtain the LP and
NLP contribution before expanding in ϵ and the scale factors. The contribution of the LP
squared matrix element reads

∆(2)(z,y)|LP
2r =

(
αs

4π

)2( µ̄2

Q2

)2ϵ

y−1−2ϵ(1−y)−1−2ϵ

×
{(

1−z
)−1−4ϵ

[
C2

F

(32
ϵ2

−96ζ2+. . .
)
+CACF

( 8
ϵ2

+44
3ϵ+

268
9 −32ζ2+. . .

)
+nfCF

(
− 8
3ϵ−

40
9 +. . .

)]
+
(
1−z

)−4ϵ
[
C2

F

(
− 80
ϵ
+. . .

)
+CACF

(
− 16
ϵ
− 88

3 +. . .
)
+nfCF

(16
3 +. . .

)]}
,

(2.64)

and the NLP contribution reads

∆(2)(z,y)|NLP
2r =

(
αs

4π

)2( µ̄2

Q2

)2ϵ

y−1−2ϵ(1−y)−1−2ϵ (1−z)−4ϵ

×
[
C2

F

(
− 32
ϵ2

−8+96ζ2+. . .
)
+CACF

(
− 8
ϵ2

− 44
3ϵ−

220
9 +32ζ2+. . .

)
+nfCF

( 8
3ϵ+

64
9 +. . .

)]
. (2.65)

We see that the scale factors are consistent with our expectation, discussed below eq. (2.47).
Namely, the y-dependence arises from the typical pattern y−a1−b1ϵ(1−y)−a2−b2ϵ, with a1 =
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a2 =1, b1 = b2 =2, which is characteristic of the soft region: indeed, in this case we are
considering the emission of two soft gluons, and the same pattern arises in case of the
virtual-real contribution, where both the virtual and the real gluon are taken to be soft, cf.
eq. (2.47). This immediately allows us to conclude that, upon expanding in ϵ, the double-
real contribution, too, has the structure of eq. (2.34), as we have already verified in case of
eq. (2.47), compare with eqs. (2.50) and (2.53). In this case, expanding the scale factors in
eqs. (2.64) and (2.65) in ϵ by means of eq. (2.28) and setting µ̄2 =Q2 we explicitly obtain

∆(2)(z,y)|LP
2r =

(
αs

4π

)2{
C2

F

[[
δ(y)+δ(1−y)

][
δ(1−z)

( 4
ϵ4

− 12ζ2
ϵ2

− 56ζ3
3ϵ +15ζ4

)

− 16D0(z̄)
ϵ3

+64D1(z̄)+40
ϵ2

+1
ϵ

(
−128D2(z̄)+48ζ2D0(z̄)−160L1(z̄)

)
+ 512

3 D3(z̄)−192ζ2D1(z̄)+
224
3 ζ3D0(z̄)+120ζ2+320L2(z̄)

]
+D0(y)D0(ȳ)

[32D0(z̄)
ϵ2

− 128D0(z̄)+80
ϵ

+256D2(z̄)−96ζ2D0(z̄)+230L1(z̄)
]

+
[
D0(y)D1(ȳ)+D1(y)D0(ȳ)

][
− 64D0(z̄)

ϵ
+256D1(z̄)+160

]

−128D0(z̄)D1(y)D1(ȳ)+64D0(z̄)
[
D0(y)D2(ȳ)+D2(y)D0(ȳ)

]]

+CACF

[[
δ(y)+δ(1−y)

][
δ(1−z)

( 1
ϵ4

+ 11
6ϵ3 +

1
ϵ2

(67
18−4ζ2

)

+ 1
ϵ

(202
27 − 11ζ2

2 − 29ζ3
3

)
+1214

81 − 67ζ2
6 − 77ζ3

9 − 17ζ4
4

]
− 4D0(z̄)

ϵ3

+ 1
ϵ2

(
16D1(z̄)−

22
3 D0(z̄)+8

)
+1
ϵ

(
−32D2(z̄)+

88
3 D1(z̄)+

(
16ζ2−

134
9

)
D0(z̄)

+ 44
3 −32L1(z̄)

)
+128

3 D3(z̄)−
176
3 D2(z̄)+

(536
9 −64ζ2

)
D1(z̄)

+
(116

3 ζ3+22ζ2−
808
27

)
D0(z̄)+

238
9 −32ζ2+64L2(z̄)−

176
3 L1(z̄)

]
+D0(y)D0(ȳ)

[8D0(z̄)
ϵ2

+1
ϵ

(
−32D1(z̄)+

44
3 D0(z̄)−16

)
+64D2(z̄)

− 176
3 D1(z̄)+

(268
9 −32ζ2

)
D0(z̄)−

88
3 +64L1(z̄)

]
+
[
D0(y)D1(ȳ)+D1(y)D0(ȳ)

][
− 16D0(z̄)

ϵ
+64D1(z̄)−

88
3 D0(z̄)+32

]

+32D0(z̄)D1(y)D1(ȳ)+16D0(z̄)
[
D0(y)D2(ȳ)+D2(y)D0(ȳ)

]]

+nfCF

[[
δ(y)+δ(1−y)

][
δ(1−z)

(
− 1
3ϵ3 −

5
9ϵ2 +

1
ϵ

(
ζ2−

28
27

)
− 164

81 +5ζ2
3
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+ 14ζ3
9

)
+4D0(z̄)

3ϵ2 +1
ϵ

(
− 16

3 D1(z̄)+
20
9 D0(z̄)−

8
3

)
+32

3 D2(z̄)−
80
9 D1(z̄)

+
(112

27 −4ζ2

)
D0(z̄)−

28
9 +32

3 L1(z̄)
]
+D0(y)D0(ȳ)

[
− 8D0(z̄)

3ϵ +32
3 D1(z̄)

−40
9 D0(z̄)+

16
3

]
+16D0(z̄)

3
[
D0(y)D1(ȳ)+D1(y)D0(ȳ)

]]}
, (2.66)

at leading power, and

∆(2)(z,y)|NLP
2r =

(
αs

4π

)2{
C2

F

[[
δ(y)+δ(1−y)

][16
ϵ3

− 64L1(z̄)
ϵ2

+128L2(z̄)+4−48ζ2
ϵ

− 512
3 L3(z̄)+

(
192ζ2−16

)
L1(z̄)+12− 224ζ3

3

]
+D0(y)D0(ȳ)

[
− 32
ϵ2

+128L1(z̄)
ϵ

−8+96ζ2−256L2(z̄)
]
+
[
D0(y)D1(ȳ)+D1(y)D0(ȳ)

][64
ϵ
−256L1(z̄)

]

−128D1(y)D1(ȳ)−64
[
D0(y)D2(ȳ)+D2(y)D0(ȳ)

]]
+CACF

[[
δ(y)+δ(1−y)

][ 4
ϵ3

+ 1
ϵ2

(22
3 −16L1(z̄)

)
+1
ϵ

(
32L2(z̄)−

88
3 L1(z̄)+

110
9 −16ζ2

)
− 128

3 L3(z̄)

+ 176
3 L2(z̄)+

(
64ζ2−

440
9

)
L1(z̄)+

580
27 −22ζ2−

116ζ3
3

]
+D0(y)D0(ȳ)

[
− 8
ϵ2

+ 1
ϵ

(
32L1(z̄)−

44
3

)
−64L2(z̄)+

176
3 L1(z̄)−

220
9 +32ζ2

]
+
[
D0(y)D1(ȳ)

+D1(y)D0(ȳ)
][16

ϵ
−64L1(z̄)+

88
3

]
−32D1(y)D1(ȳ)−16

[
D0(y)D2(ȳ)+D2(y)D0(ȳ)

]]

+nfCF

[[
δ(y)+δ(1−y)

][
− 4
3ϵ2 +

1
ϵ

(16
3 L1(z̄)−

32
9

)
− 32

3 L2(z̄)+
128
9 L1(z̄)

− 244
27 +4ζ2

]
+D0(y)D0(ȳ)

[ 8
3ϵ−

32
3 L1(z̄)+

64
9

]
− 16

3
[
D0(y)D1(ȳ)+D1(y)D0(ȳ)

]]}
,

(2.67)

at NLP.

Sum. The double-real correction completes our calculation of the Drell-Yan rapidity
distribution at NNLO. Summing eqs. (2.38), (2.49), (2.50), (2.51), (2.52), (2.53), (2.66)
and (2.67) we obtain

∆(2)(z,y)|LP =
(
αs

4π

)2{
C2

F

[[
δ(y)+δ(1−y)

][
δ(1−z)

(9−8ζ2
ϵ2

+1
ϵ

(189
4 −30ζ2−28ζ3

)

+ 1279
8 −130ζ2−54ζ3+80ζ4

)
+D0(z̄)

(24
ϵ2

+64−16ζ2
ϵ

+128−96ζ2+32ζ3

)
+D1(z̄)

(32
ϵ2

− 48
ϵ
−128−64ζ2

)
+D2(z̄)

(
48− 96

ϵ

)
+448

3 D3(z̄)+
8
ϵ2

− 48
ϵ
−128+8ζ2
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+L1(z̄)
(
96− 96

ϵ

)
+256L2(z̄)

]
+D0(y)D0(ȳ)

[
D0(z̄)

(16
ϵ2

− 24
ϵ
−64−32ζ2

)
+D1(z̄)

(
48− 96

ϵ

)
+224D2(z̄)−

48
ϵ
+48+256L1(z̄)

]
+
[
D0(y)D1(ȳ)

+D1(y)D0(ȳ)
][
D0(z̄)

(
24− 48

ϵ

)
+224D1(z̄)+128

]
+112D0(z̄)D1(y)D1(ȳ)

+56D0(z̄)
[
D0(y)D2(ȳ)+D2(y)D0(ȳ)

]]
+CACF

[[
δ(y)+δ(1−y)

][
δ(1−z)

(
− 11
2ϵ2

+ 1
ϵ

(
− 123

4 +44ζ2
3 +6ζ3

)
− 981

8 +1553ζ2
18 +130ζ3

3 −13ζ4

)
+D0(z̄)

(
− 22
3ϵ2

+ 1
ϵ

(
− 134

9 +4ζ2

)
− 808

27 +22ζ2+28ζ3

)
+D1(z̄)

(88
3ϵ+

536
9 −16ζ2

)
− 176

3 D2(z̄)

+ 44
3ϵ+

238
9 −8ζ2−

176
3 L1(z̄)

]
+D0(y)D0(ȳ)

[
D0(z̄)

(44
3ϵ+

268
9 −8ζ2

)
− 176

3 D1(z̄)−
88
3

]

− 88
3 D0(z̄)

[
D0(y)D1(ȳ)+D1(y)D0(ȳ)

]]
+nfCF

[[
δ(y)+δ(1−y)

][
δ(1−z)

( 1
ϵ2

+ 1
ϵ

(11
2 − 8ζ2

3

)
+85

4 − 139ζ2
9 − 4ζ3

3

)
+D0(z̄)

( 4
3ϵ2 +

20
9ϵ+

112
27 −4ζ2

)
+D1(z̄)

(
− 16
3ϵ−

80
9

)
+32

3 D2(z̄)−
8
3ϵ−

28
9 +32

3 L1(z̄)
]
+D0(y)D0(ȳ)

[
D0(z̄)

(
− 8
3ϵ

− 40
9

)
+32

3 D1(z̄)+
16
3

]
+16

3 D0(z̄)
[
D0(y)D1(ȳ)+D1(y)D0(ȳ)

]]}
, (2.68)

at leading power, and

∆(2)(z,y)|NLP =
(
αs

4π

)2{
C2

F

[[
δ(y)+δ(1−y)

][
− 32L1(z̄)+16

ϵ2

+ 96L2(z̄)+40L1(z̄)−46+16ζ2
ϵ

− 448
3 L3(z̄)−52L2(z̄)+

(
94+64ζ2

)
L1(z̄)

−64+40ζ2−32ζ3

]
+D0(y)

(16
ϵ
+20−16L1(ȳ)−48L1(z̄)

)
+D0(ȳ)

(16
ϵ
+20

−16L1(y)−48L1(z̄)
)
−32

(
D1(y)+D1(ȳ)

)
+D0(y)D0(ȳ)

[
− 16
ϵ2

+96L1(z̄)+8
ϵ

−224L2(z̄)−16L1(z̄)+32+32ζ2

]
+
[
D0(y)D1(ȳ)+D1(y)D0(ȳ)

][48
ϵ
−224L1(z̄)−8

]

−112D1(y)D1(ȳ)−56
[
D0(y)D2(ȳ)+D2(y)D0(ȳ)

]]
+CACF

[[
δ(y)+δ(1−y)

][ 22
3ϵ2

+ 1
ϵ

(
− 88

3 L1(z̄)+
200
9 −4ζ2

)
+176

3 L2(z̄)+
(
16ζ2−

710
9

)
L1(z̄)+

688
27 −22ζ2−28ζ3

]
−20

(
D0(y)+D0(ȳ)

)
+D0(y)D0(ȳ)

[
− 44
3ϵ+

176
3 L1(z̄)−

220
9 +8ζ2

]
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+ 88
3
[
D0(y)D1(ȳ)+D1(y)D0(ȳ)

]]
+nfCF

[[
δ(y)+δ(1−y)

][
− 4
3ϵ2 +

1
ϵ

(16
3 L1(z̄)

− 32
9

)
− 32

3 L2(z̄)+
128
9 L1(z̄)−

244
27 +4ζ2

]
+D0(y)D0(ȳ)

[ 8
3ϵ−

32
3 L1(z̄)+

64
9

]

− 16
3
[
D0(y)D1(ȳ)+D1(y)D0(ȳ)

]]}
, (2.69)

at NLP. Eqs. (2.68) and (2.69) still contain ϵ poles, which are eventually removed by PDF
renormalisation. However, this result already allows us to conclude that the partonic cross
section ∆(z,y) has the structure of eq. (2.34) also at NNLO, i.e.

∆(2)(z,y)= δ(y)+δ(1−y)
2

[
∆(2)

LP(z)+∆(2)
NLP,LLs(z)

]
+∆(2)

NLP,rest(z,y)+O(1−z). (2.70)

Indeed, y- and (1−y)-plus distributions appearing in the LP term of eq. (2.68) are ef-
fectively contributing at NLP, after the simplification in eq. (2.33) is taken into account.
Furthermore, such terms do not contain leading logarithms or leading plus distributions in
(1−z). These terms can therefore be rearranged to be part of ∆NLP,rest(z,y) in eq. (2.70).
Hence the only term remaining at LP is the term proportional to (δ(y)+δ(1−y))/2 in
eq. (2.68). Concerning now the NLP result in eq. (2.69), we see that leading logarithms
in (1−z) do arise only in the (δ(y)+δ(1−y))/2 term, and do not contribute to the y- and
(1−y)-plus distribution terms. Thus also eq. (2.69) is consistent with eq. (2.70).

2.3 Rapidity distribution and kinematic shifts

The result in eq. (2.70) allows us to conclude that near threshold the y-dependence in
the partonic cross section factorises into a universal factor [δ(y)+δ(1−y)]/2, provided one
restricts to the LP term and the LLs at NLP. Although proven explicitly up to two loops,
the discussion in the previous sections suggests that the result in eq. (2.70) should extend
to all orders, as in the ansatz of eq. (2.34). The z-dependence is entirely contained into the
factors ∆(2)

LP(z) and ∆(2)
NLP,LLs(z), which are thus proportional to the corresponding terms

in the partonic invariant mass distribution. This result suggest that it may be possible to
exploit methods developed in [25], and obtain the NLP NLO partonic cross section not by
direct calculation, but rather by means of kinematic shifts. To be more specific, given a
colourless final state produced by the annihilation of an initial qq̄ pair with momenta pa,
pb, the squared matrix element should be given by∑

s,c,p
|M|2NLO,NLP = g2

s CF
ŝ

(pa ·k)(pb ·k)
∑
s,c,p

∣∣∣M(0)
qq̄→γ∗(pa+δpa,pb+δpb)

∣∣∣2 , (2.71)

where

δpµ
a =−1

2

(
k ·pb

pa ·pb
pµ

a−
k ·pa

pa ·pb
pµ

b +k
µ
)
, δpµ

b =−1
2

(
k ·pa

pa ·pb
pµ

b −
k ·pb

pa ·pb
pµ

a+kµ
)
, (2.72)

which implies ŝ→ zŝ. Given the simple structure of
∣∣M(0)

qq̄→γ∗
∣∣2, see eq. (2.16), which

depends on the single scale ŝ, we immediately have∑
s,c,p

∣∣∣M(0)
qq̄→γ∗(pa+δpa,pb+δpb)

∣∣∣2 =4(1−ϵ)zŝNc. (2.73)
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Inserting this result into eq. (2.71) we get∑
s,c,p

|M|2NLO,NLP = αs

4π64π
2NcCF (1−ϵ)

zŝ2

k ·pa k ·pb

= αs

4π64π
2NcCF (1−ϵ)

ŝ2

k ·pa k ·pb

(
1−(1−z)

)
. (2.74)

This result has to be compared with the exact result in eq. (2.25). We see that
the two forms of the NLO correction are indeed equal up to the factor 1−2/ŝ

(
k ·pa+

k ·pb

)
, appearing in the exact result of eq. (2.25), vs the factor 1−(1−z), obtained in

the shifted result in eq. (2.74). Indeed, the two factors coincide, given that upon phase
space integration one has

(
k ·pa+k ·pb

)
=
(
ŝ−Q2)/2= ŝ(1−z)/2. Furthermore, the rapidity

distribution is symmetric w.r.t. the exchange y↔ (1−y), a feature which is not altered
between LP and NLP. Indeed, near threshold additional gluon radiation is constrained to
be soft, but remains isotropic. Thus phase space integration gives rise to the same factor
y−1−ϵ(1−y)−1−ϵ both at LP and NLP, as can be seen explicitly in eqs. (2.26) and (2.27), and
the shift procedure gives rise to the correct relation between the LP and NLP contribution,
which within the exact result of eqs. (2.26) and (2.27) arises after phase space integration.
To be more specific, integrating eq. (2.25) or eq. (2.74) against the phase space measure
dΦγ∗g as in eq. (2.23) gives rise to the same NLP LL result

∆(1)(z,y)|LP+NLP,LL
real = αsCF

4π

(
µ̄2

Q2

)ϵ

y−1−ϵ(1−y)−1−ϵ(1−z)−1−2ϵ
[
1−(1−z)

][
4+O(ϵ)

]
.

(2.75)
In light of using this result for resummation, let us keep the exact phase space dependence,
and expand the y-dependent part in powers of ϵ. One has

∆(1)(z,y)|LP+NLP,LL
real = αsCF

π

(
µ̄2

Q2

)ϵ eϵγE

Γ(1−ϵ)

[
−δ(y)+δ(1−y)

ϵ
+O(ϵ0)

]
z
(
1−z

)−1−2ϵ

= Γ(−2ϵ)
Γ2(−ϵ)

[
−δ(y)+δ(1−y)

ϵ
+O(ϵ0)

]
KNLP(z,ϵ)

=
[
∆̄(0)(y)+O(ϵ)

]
KNLP(z,ϵ), (2.76)

where the factor ∆̄(0)(y) has been defined in eq. (2.21), and the factor

KNLP(z,ϵ)=
αsCF

π

(
µ̄2

ŝ

)ϵ

z
(
1−z

)−1−2ϵ eϵγEΓ2(−ϵ)
Γ(−2ϵ)Γ(1−ϵ) , (2.77)

has been introduced in eq. (3.62) of [54]. In this respect, the last line of eq. (2.76) constitutes
the generalisation of eq. (3.61) of [54] for the DY rapidity distribution. In section 4.2.2 we
will use this result to sum the large logarithms in 1−z to all order in αs at NLP, at LL
accuracy.

3 Rapidity distribution for fixed order diphoton production

In this section we move away from the discussion of the Drell-Yan process and look instead
at QCD-induced diphoton production. Also for this process we only consider the leading
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Figure 2. Tree-level contributions to diphoton production.

production channel, given by an incoming quark-antiquark pair. Whereas in the previous
section we considered the rapidity of the whole final state, i.e. the virtual photon, here
we select the rapidity of one of the final state particles. The production of two photons
is important in particle physics, since one of the most important decay channels for the
Higgs boson is H→ γγ. The QCD production of two photons forms a large irreducible
background in the H→ γγ analysis [85, 86]. In this section we look at diphoton production
at fixed order, similar to the Drell-Yan process in the previous section. This will also serve
as preparation for the calculation of the corresponding resummed cross section, which we
perform in section 4.

3.1 Leading order

We consider diphoton production by an incoming quark-antiquark pair

q(p1)+q̄(p2)→ γ(p3)+γ(p4) . (3.1)

At LO the process is represented by the two diagrams in figure 2. Taking into account a
symmetry factor of 1

2 since the final-state photons are indistinguishable, the correspond-
ing squared matrix element, respectively averaged and summed over the spin, colour and
polarisation degrees of freedom of the initial and final state, indicated by the bar, is given by

|M|2LO = 2(eeq)4

Nc

[
1+cos2 θ

1−cos2 θ
(1−ϵ)2−ϵ(1−ϵ)

]
, (3.2)

where θ is the angle between the incoming quark and the photon with momentum p3 in the
centre of mass frame of the incoming quarks, and where eq is the quark fractional electric
charge. For simplicity we set eq =1 and e2 =4πα. At lowest order it does not matter which
of the two photons is chosen, but at higher orders we choose the photon with momentum
p3 as the one whose rapidity we record. To calculate the cross section, one must integrate
eq. (3.2) over the phase space of the two outgoing photons, which involves integrating θ

between θ=0 and θ=π. This integrand diverges at both the endpoints. However, since
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detectors have no coverage at these extremes one may restrict the integration to a range
from θ= δ to θ=π−δ, with δ fixed by the experimental set-up. More convenient for this
purpose is the pseudorapidity η

η≡− log
(
tan θ2

)
= 1

2 log
(
p

(0)
3 +p(3)

3

p
(0)
3 −p(3)

3

)
, (3.3)

with p2
3 =0 and p

(3)
3 = p

(0)
3 cosθ. Integrating the pseudorapidity in the range (−∞,∞) still

yields a divergent integral, but the cut-off δ on the angle θ, which we have introduced
above, implies a corresponding cut-off on the pseudorapidity, which then also serves as a
regulator of the integral. The squared amplitude in eq. (3.2) reads then

|M|2LO = 2(4πα)2

Nc

[
cosh(2η)(1−ϵ)2−ϵ(1−ϵ)

]
. (3.4)

The double differential cross section is therefore given by

dσ̂
(0)
qq̄

dzdη
(ŝ, z,η,ϵ, µ̄2)= 1

2ŝ
d

dzdη

∫
dR2 |M|2LO =

dσ̄
(0)
qq̄

dzdη
(ŝ,η, ϵ, µ̄2)δ(1−z) , (3.5)

where the phase space integration
∫
dR2 is given in appendix B.1 and

dσ̄
(0)
qq̄

dzdη
(ŝ,η, ϵ, µ̄2)= πα2

Nc ŝ

eϵγE

Γ(1−ϵ)

(
µ̄2

ŝ

)ϵ

(4cosh2 η)ϵ

×
[
(1+tanh2 η)(1−ϵ)2− ϵ(1−ϵ)

cosh2 η

]
. (3.6)

The partonic centre of mass energy is ŝ=(p1+p2)2, we denote the invariant mass of the
final state by Q2 =(p3+p4)2 and define the corresponding ratio z=Q2/ŝ. The double
differential cross section in d=4 dimensions is therefore given by

dσ̂
(0)
qq̄

dzdη
(ŝ, z,η)= πα2

Nc ŝ
(1+tanh2 η)δ(1−z) . (3.7)

This partonic cross section can be translated to a hadronic one. We define the hadronic
rapidity

Y = η+1
2 log

(
xa

xb

)
. (3.8)

The hadronic cross section then reads

dσ

dQ2dY
= 1
s

∫ 1

τ

dz

z

∫ log(
√

z
τ

eY )
log(

√
τ
z

eY )
dηL(z,η) dσ̂

dzdη
(ŝ, z,η) , (3.9)

where the luminosity function is given by

L(z,η)= fq/A

(
eY e−η

√
τ

z

)
fq̄/B

(
e−Y eη

√
τ

z

)
+(q↔ q̄), (3.10)

in analogy with eq. (2.8). Note that there is a bound on the integration over the rapidity
η for finite Y . The divergence that we observed for the partonic cross section when one
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would integrate over the full range of η is now transformed to a divergence if we would
integrate over the full range of the hadronic rapidity Y . In reality there is a finite rapidity
range for the hadronic rapidity Y . The partonic differential cross section dσ̂/dzdη can be
calculated perturbatively and its LO contribution is given by eq. (3.7).

Comparing eq. (2.17) with eq. (3.7), we see that the main difference between a dis-
tribution differential in the total rapidity of the final state (eq. (2.17)) and a distribution
differential in the rapidity of a given particle in the final state (eq. (3.7)) is that the lat-
ter exhibits a non-trivial dependence on the rapidity considered, given e.g. by the factor
1+tanh2 η in case of diphoton production. Therefore, a priori it is not clear whether for
z→ 1 one may express the NLO NLP correction to eq. (3.7) as obtained in [25], namely,
in terms of the LO partonic distribution with shifted kinematics times a universal factor.
The purpose of this section is indeed to investigate this issue. To this end we will now
proceed in two different ways, both aimed at obtaining the NLP partonic distribution at
NLO. At first we will derive this result from a direct calculation in the soft limit at NLO.
We will then try to obtain the same NLP cross section at NLO by expressing it in terms of
a universal factor times the LO partonic differential distribution with shifted kinematics.
The calculation that we perform serves as an extension of the method developed in [25],
which so far has been developed only for total cross sections, invariant mass distributions
and (in section 2.3 of the present paper) for distributions differential in the total rapidity
of the final state.

3.2 Next-to-leading order

At NLO, the partonic process with one gluon emission is given by

q(p1)+q̄(p2)→ γ(p3)+γ(p4)+g(k) , (3.11)

with k2 =0. We define the following invariant variables

sij =(σipi+σjpj)2 , i, j=1, . . . ,4,
si =(σipi−k)2 , i=1, . . . ,4 , (3.12)

where σi =+1 if the momenta pi are incoming, and σi =−1 otherwise. First we use the
direct calculation method. We calculate the squared matrix element straightforwardly and
perform the power expansion in the soft limit si ≪ sij . Note that there are five independent
variables in the massless 2→ 3 process. Using momentum conservation we can express si4
and s4 as linear combinations of sij (i, j=1,2,3) and si (i=1,2,3). We can expand the
NLO squared matrix element in the limit si ≪ sij . After the expansion, s3 can be further
removed by using the on-shell condition p2

4 =(p1+p2−p3−k)2 =0. As a result, we have
the squared matrix element in the following form

∣∣M∣∣2
real (s12,s13,s23,s1,s2)=

∑
l

cl(ϵ)sαl
12s

βl
13s

γl
23s

κl
1 s

−1−αl−βl−γl−κl
2 . (3.13)
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Note that the total power of sij and si is limited by the mass dimension of the squared
amplitude. In terms of the light-cone coordinates defined in appendix A we have

s13 =−2

√
ŝ

2p
−
3 , s23 =−2

√
ŝ

2p
+
3 ,

s1 =−2

√
ŝ

2k
− , s2 =−2

√
ŝ

2k
+ , (3.14)

where ŝ= s12. To obtain the differential cross section at NLO, we need to calculate the
three-body phase space integral, which is given in appendix B.2. Up to NLP, the contri-
bution from the NLO real emission to the differential cross section is given by

dσ̂
(1)
qq̄ (Q2,z,η,ϵ, µ̄2)

dzdη

∣∣∣∣NLP

real
= αsCF

π

(
µ̄2

Q2

)ϵ 2z1+ϵ(1−z)−1−2ϵeϵγEΓ(−ϵ)
Γ(1−2ϵ)

dσ̄
(0)
qq̄

dzdη
(Q2,η, ϵ, µ̄2)

= αsCF

π

(
µ̄2

Q2

)ϵ [
δ(1−z)

( 1
ϵ2

−π2

4

)
+2
ϵ

(
1− 1

1−z

∣∣∣∣
+

)
(3.15)

+4 log(1−z)1−z

∣∣∣∣
+
−4log(1−z)+2+O(ϵ)

]
dσ̄

(0)
qq̄

dzdη
(Q2,η, ϵ, µ̄2)

where the factor z1+ϵ follows from

dσ̄
(0)
qq̄

dzdη
(ŝ,η, ϵ, µ̄2)→

dσ̄
(0)
qq̄

dzdη
(Q2,η, ϵ, µ̄2) . (3.16)

In the second line of eq. (3.15) we expanded the result to NLP in (1−z) and to finite order
in ϵ. In fact, the NLO differential cross section can be calculated up to arbitrary power
in (1−z) by using eq. (B.9). We will demonstrate this in section 3.2.1. Upon adding the
virtual contribution at one loop, the 1/ϵ2 pole from eq. (3.15) cancels with the virtual
contribution, leaving a 1/ϵ pole that is removed by so-called mass factorisation, i.e. PDF
renormalisation. This subtraction term arises from eq. (3.9) when we replace the hadrons
by the quarks. The left-hand side of that equation becomes the partonic cross section with
1/ϵ poles, and the PDFs become parton-in-parton distributions, which are directly related
to the Altarelli-Parisi splitting kernels. From this one obtains the finite partonic cross
section at O(αs) accuracy

dσ̂
(1)
qq̄ (Q2,z,η,ϵ, µ̄2)

dzdη

∣∣∣∣
ren

=
dσ̂

(1)
qq̄ (Q2,z,η,ϵ, µ̄2)

dzdη

∣∣∣∣
real+virtual

−
∫ 1

0
dξΓ(1)

qq (ξ)
dσ̂

(0)
qq̄ (ξŝ,ξ,z,η,ϵ, µ̄2)

dzdη
, (3.17)

where Γ(1)
qq (ξ) is the well-known splitting function kernel, given by

Γ(1)
qq (ξ)=−αsCF

2π

(
µ̄2

Q2

)ϵ 1
ϵ

[
2 1
1−ξ

∣∣∣∣
+
−2+(1−ξ)+ 3

2δ(1−ξ)
]
. (3.18)
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The LO cross section entering the subtraction term in eq. (3.17) is defined as

dσ̂
(0)
qq̄ (ξŝ,ξ,z,η,ϵ, µ̄2)

dzdη
= 1

8N2
c ξŝ

{∫
dΦ2(ξp1+p2;p3,p4)

∣∣MLO(ξp1+p2;p3,p4)
∣∣2

+
∫
dΦ2(p1+ξp2;p3,p4)

∣∣MLO(p1+ξp2;p3,p4)
∣∣2}δ[η− 1

2 log
(
p+

3
p−3

)]
δ

[
ξ−Q2

ŝ

]
.

(3.19)

The calculation of squared matrix elements and the two-body phase space is straightforward
and is similar to eq. (3.5). Note that only LP contributes to eq. (3.5). The LP result of
eq. (3.19) is proportional to eq. (3.6), while higher power corrections appear due to p1 → ξp1
or p2 → ξp2. When combining the two terms in eq. (3.19) NLP corrections cancel each other,
while even higher power corrections remain. As a result, up to NLP, eq. (3.19) is given by

dσ̂
(0)
qq̄ (ξŝ,ξ,z,η,ϵ, µ̄2)

dzdη

∣∣∣∣NLP
=2

dσ̄
(0)
qq̄

dzdη
(Q2,η, ϵ, µ̄2)δ(ξ−z) . (3.20)

We therefore get the subtraction term in eq. (3.17) by combining eqs. (3.18) and (3.20) to
be of the following form

∫ 1

0
dξΓ(1)

qq (ξ)
dσ̂

(0)
qq̄ (ξŝ,ξ,z,η,ϵ, µ̄2)

dzdη

∣∣∣∣NLP

= αsCF

π

(
µ̄2

Q2

)ϵ 1
ϵ

[
2
(
1− 1

1−z

∣∣∣∣
+

)
− 3
2δ(1−z)

]
dσ̄

(0)
qq̄

dzdη
(Q2,η, ϵ, µ̄2) . (3.21)

Focusing on the real contribution of eq. (3.15), one immediately sees that the part of the
subtraction term in eq. (3.21) not proportional to δ(1−z) does remove the single pole in
eq. (3.15), while the δ(1−z) term removes the single pole in the virtual contribution. The
latter is not discussed explicitly here since we focus on the LL contributions up to NLP at
NLO. In the end, we obtain the finite part of the NLO differential cross section with one
gluon emission up to NLP LL accuracy, and it reads

dσ̂
(1)
qq̄ (Q2,z,η)
dzdη

∣∣∣∣NLP, LL

ren
= αs

4πCF
(4πα)2

πNcQ2

(
1+tanh2 η

){ log(1−z)
1−z

∣∣∣∣
+
−log(1−z)

}
. (3.22)

If we compare eq. (3.22) to eq. (3.7), we note that the dependence on the rapidity η is
the same, i.e. it completely factorises from the NLO contribution from emissions. This is
in complete analogy with Drell-Yan, cf. in particular eq. (2.34). Even though we used a
different definition for the rapidity compared to the one used in section 2, the conclusion
is unchanged: the diphoton cross section again takes the form of eq. (2.34). We will show
in section 3.2.1 that this factorised structure no longer holds beyond NLP LL, as indeed it
did not for Drell-Yan.

We will now attempt to reproduce the result in eq. (3.22) by means of the method
of shifted kinematics. We are interested in a cross section that is differential in both the
invariant mass and the rapidity of one of the final state photons. The NLO real emission
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term up to NLP in the soft limit is expressed in terms of the LO squared matrix element,
with initial state momenta shifted according to3 eq. (2.72), integrated over the full 3-
particle phase space

∫
dR3, as defined in eq. (B.4):

dσ̂
(1)
qq̄ (Q2,z,η,ϵ, µ̄2)

dzdη

∣∣∣∣NLP

real
= 1

2ŝ

∫
dR3 |M|2NLO,NLP , (3.23)

where we keep only terms up to NLP on the right hand side, and where

|M|2NLO,NLP = g2
sCF

2p1 ·p2
(p1 ·k)(p2 ·k)

|M(p1+δp1,p2+δp2)|2LO. (3.24)

The shift of momenta in eq. (3.24) implies the partonic centre of mass energy shifts as
ŝ→ zŝ. It also induces a shift in the rapidity: using momentum conservation within the
Born approximation, the shift gives

η= 1
2 log

(
p+

3
p−3

)
= 1

2 log
(
(p1+p2)+−p+

4
(p1+p2)−−p−4

)

→ 1
2 log

(
(p1+δp1+p2+δp2)+−p+

4
(p1+δp1+p2+δp2)−−p−4

)

= 1
2 log

(
(p1+p2)+−p+

4 −k+

(p1+p2)−−p−4 −k−

)
. (3.25)

On the other hand, the delta function in
∫
dR3 in the phase space eq. (B.4) fixes the rapidity

to η=1/2log
(
p+

3 /p
−
3

)
. However, within

∫
dR3 we need to use momentum conservation for

the 2→ 3 process q(p1)+q̄(p2)→ γ(p3)+γ(p4)+g(k), which implies

η= 1
2 log

(
p+

3
p−3

)
= 1

2 log
(
(p1+p2)+−p+

4 −k+

(p1+p2)−−p−4 −k−

)
. (3.26)

The two expressions do indeed coincide! Furthermore, upon closer inspection, we see that
the rapidity can be expanded for soft k, with the leading power term being equal to its
Born value:

η= 1
2 log

(
(p1+p2−p4)+

(p1+p2−p4)−

)
+1
2

(
k−

p−3
− k+

p+
3

)
+O(k2)

≡ η̄+δη+O
(
(1−z)2

)
, (3.27)

where p1, p2 and p4 are now the Born momenta, and where we defined η̄ to be the rapidity at
lowest order, and δη∼O(1−z) its NLP correction. Both the fact that the shifted rapidity
coincides with its NLO exact value, and that upon expansion in powers of 1−z the first
term of the NLO rapidity is given by its Born value are relevant for our discussion. Indeed,
we can use eq. (3.27) and expand the shifted squared matrix element around η̄:

|M(p1+δp1,p2+δp2, η̄+δη)|2LO = |M(zŝ, η̄)|2LO+ ∂ |M(p1,p2, η̄)|2LO
∂η̄

δη+O(δη2). (3.28)

3Note that pa → p1 and pb → p2, see figures 1 and 2.
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Furthermore, following ref. [68], we can expand the Dirac delta function defining the ra-
pidity in the phase space

∫
dR3 around its Born value, according to eq. (3.27):

δ

(
η− 1

2 log
(
p+

3
p−3

))
= δ(η−η̄)+δη ∂

∂η
δ(η−η̄)+O(δη2). (3.29)

Next, we insert both eqs. (3.28) and (3.29) into eq. (3.23). Focusing on the integration over
η, we integrate by parts the term involving the derivative of the Dirac delta in eq. (3.29),
and arrive at

∫
dη

[
|M(zŝ, η̄)|2LO+ ∂|M(p1,p2, η̄)|2LO

∂η̄
δη+O(δη)2

][
δ(η−η̄)+δη ∂

∂η
δ(η−η̄)+O(δη2)

]

=
∫
dη

[
|M(zŝ, η̄)|2LO+δη

(
∂|M(ŝ,η)|2LO

∂η
− ∂|M(zŝ,η)|2LO

∂η

)
+O(δη2)

]
δ(η−η̄). (3.30)

The difference of the derivatives in the second term of eq. (3.30) is at least O(1−z). Since it
is multiplied by δη, this whole term is beyond NLP accuracy and can therefore be neglected.
We can now proceed with the complete phase space integration from eq. (3.23). Using the
results in eq. (3.30), it reads

dσ̂
(1)
qq̄ (Q2,z,η,ϵ, µ̄2)

dzdη

∣∣∣∣NLP

real
= 1

2ŝ

∫
dQ2 dΦ3(p1+p2;p3,p4,k)δ

(
z−Q2

ŝ

)
×δ
[
Q2−(p3+p4)2

]
δ(η−η̄)g2

sCF
2p1 ·p2

(p1 ·k)(p2 ·k)
|M(zŝ, η̄)|2LO.

(3.31)

The phase space integration involves only the eikonal factor 2p1 ·p2/(p1 ·kp2 ·k), which,
using the result for the phase space integration of eq. (B.9), gives

∫
dR3

ŝ

(p1 ·k)(p2 ·k)
=
∫
dR3

2
k+k−

=
∫
dz dη

1
32π3

(
µ̄2

ŝ

)2ϵ 1
cosh2 η

(4cosh2 η)ϵ

× e2ϵγEΓ(−ϵ)
Γ(1−2ϵ)Γ(1−ϵ)(1−z)

−1−2ϵ(1+ϵ(1−z)+. . .),

(3.32)

such that eq. (3.31) finally gives

dσ̂
(1)
qq̄ (Q2,z,η,ϵ, µ̄2)

dzdη

∣∣∣∣NLP

real
= g2

s CF
α2

2πNc

(
µ̄2

ŝ

)ϵ
e2ϵγEΓ(−ϵ)

Γ(1−2ϵ)Γ(1−ϵ)
1
zŝ

(
µ̄2

zŝ

)ϵ

×
[
(1+tanh2 η)(1−ϵ)2− ϵ(1−ϵ)

cosh2 η

]
(4cosh2 η)ϵz(1−z)−1−2ϵ+. . . .

(3.33)
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The NLO cross section up to NLP LL accuracy is then given by

dσ̂
(1)
qq̄ (Q2,z,η,ϵ, µ̄2)

dzdη

∣∣∣∣NLP

real
= αs

4πCF
4πα2

Nczŝ

(
µ̄2

ŝ

)ϵ(
µ̄2

zŝ

)ϵ 2e2ϵγEΓ(−ϵ)
Γ(1−2ϵ)Γ(1−ϵ)

× (1+tanh2 η)z(1−z)−1−2ϵ

=KNLP(z,ϵ)
dσ̄

(0)
qq̄

dzdη
(zŝ,η), (3.34)

which is the same as eq. (3.15). We introduced here again a K-factor, as in eq. (2.77). We
note that this cross section is precisely as was advocated in ref. [25], even though the cross
section is now double differential, whereas that paper only considered cross sections that
are differential in the threshold variable z. The divergences in the form of poles in ϵ can
now be removed by adding the virtual contribution and by means of mass factorisation.
Starting from eq. (3.17), we perform the same steps to arrive at the desired finite cross
section, namely eq. (3.22).

Summarising, from the first calculation, i.e. eq. (3.22), we have already concluded that
the differential distribution is of the form of eq. (2.34), i.e. that the dependence on the
rapidity variable for the NLP LL contribution is the same as in the LO result. We then
noted that there exists another prescription to obtain the NLP NLO contribution, namely
the shifted kinematics method of [25], which, before phase space integration, is given by
eq. (3.24). This presents a problem however, since the shift in kinematics also affects the
rapidity dependence, while we know that this should stay the same as the LO contribution.
We could show explicitly that the effect of the shift on the rapidity variable is actually of
NNLP accuracy, and therefore does not affect the general NLO-NLP formula eq. (4.17)
of [25]. We can hence safely apply this formula and obtain eq. (3.34), which is now also
differential in the rapidity. The advantage of rephrasing the derivation in terms of this
general NLO-NLP formula is that we can profit from the result of [54] and upgrade the
NLO result to a resummed result quite straightforwardly. This will be discussed in detail
in section 4.

3.2.1 NLO result beyond NLP

Beyond NLP, the contribution is suppressed by factors of (1−z) in the limit z→ 1. A
logarithmic term log(1−z) multiplied by (1−z) appears at N2LP, while the cross section
is free of this logarithm starting from N3LP, which can be seen from the splitting kernel
function in eq. (3.18). While we have investigated the universal structure up to NLP LL
at NLO in section 3.2, it is still of interest to examine contributions beyond NLP at NLO.
Due to the simple structure of the NLO squared amplitude in eq. (3.13) and our gener-
alised phase space integration formula eq. (B.9) in the soft limit, we can straightforwardly
calculate the NLO cross section up to arbitrary powers of (1−z). In this section we present
the full analytic results valid up to N3LP at NLO. Recalling the mass factorisation for-
mula eq. (3.17), the finite NLO differential cross section receives contributions from two
parts: the NLO correction and the subtraction term which is a convolution of the splitting
kernel function and the LO cross section. Up to N3LP, the LO cross section entering the
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subtraction term is

dσ̂
(0)
qq̄ (ξŝ,ξ,z,η,ϵ, µ̄2)

dzdη

∣∣∣∣N
3LP

=2
dσ̄

(0)
qq̄

dzdη
(Q2,η, ϵ, µ̄2)δ(ξ−z)

+ πα2eϵγE

NcQ2Γ(1−ϵ)

(
µ̄2

Q2

)ϵ

(4cosh2 η)ϵ (1−ϵ)2

8cosh4 η
(1−z)2 [1+(1−z)]

×
[
4(2−cosh2η)+8ϵcosh2η+2ϵ2(cosh4η−1)

]
δ(ξ−z) .

(3.35)

We note that the N2LP and N3LP contributions have the same structure. Combining
eq. (3.35) and eq. (3.18), the subtraction term is given by

∫ 1

0
dξΓ(1)

qq (ξ)
dσ̂

(0)
qq̄ (ξŝ,ξ,z,η, µ̄2)

dzdη
=−αsCF

π

(
µ̄2

Q2

)ϵ

× 1
ϵ

[
2 1
1−z

∣∣∣∣
+
−2+(1−z)+ 3

2δ(1−z)
]{

dσ̄
(0)
qq̄

dzdη
(Q2,η, ϵ, µ̄2)

+ πα2

NcQ2Γ(1−ϵ)

(
µ̄2

Q2

)ϵ

(4cosh2 η)ϵ (1−ϵ)2eϵγE

16cosh4 η
(1−z)2 [1+(1−z)]

×
[
4(2−cosh2η)+8ϵcosh2η+2ϵ2(cosh4η−1)

]}
. (3.36)

Note that the contributions of N3LP and beyond in Γ(1)
qq (ξ) are zero. Up to N3LP, the NLO

real correction is given by

dσ̂
(1)
qq̄ (Q2,z,η,ϵ, µ̄2)

dzdη

∣∣∣∣N
3LP

real
= αsCF

π

(
µ̄2

Q2

)ϵ
eϵγE

(
1+z2)zϵ(1−z)−1−2ϵΓ(−ϵ)

Γ(1−2ϵ)

×
{
dσ̄

(0)
qq̄

dzdη
(Q2,η, ϵ, µ̄2)+ πα2eϵγE

NcQ2Γ(1−ϵ)

(
µ̄2

Q2

)ϵ

(4cosh2 η)ϵ(1−z)2 1+(1−z)
16cosh4 η

×
[
4(2−cosh2η)−ϵ(4+11cosh2η+4cosh4η+cosh6η)+O(ϵ2)

]}
, (3.37)

Up to the chosen prefactor, the N2LP and N3LP contributions have the same structure.
The prefactor is chosen to give the same 1/ϵ divergent terms as eq. (3.18), namely

eϵγE
(
1+z2)zϵ(1−z)−1−2ϵΓ(−ϵ)

Γ(1−2ϵ) = 1
ϵ2
δ(1−z)− 1

ϵ

[
2 1
1−z

∣∣∣∣
+
−2+(1−z)

]

+4log(1−z)1−z

∣∣∣∣
+
−4log(1−z)+2−π2

4 δ(1−z)

+(1−z) [2 log(1−z)−1]+ 2
3(1−z)

2+O(ϵ,(1−z)3) , (3.38)

Combining eqs. (3.36) and (3.37), and ignoring for now the Dirac delta function δ(1−z)
terms which will be given together with the NLO virtual corrections in the following, we
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find that the O(1/ϵ) pole has been cancelled. The finite part up to N3LP is then given by

dσ̂
(1)
qq̄ (Q2,z,η)
dzdη

∣∣∣∣N
3LP

ren
= αsCF

π

πα2

NcQ2

{
4
(
1+tanh2 η

) log(1−z)
1−z

∣∣∣∣
+

+2
(
1+tanh2 η

)
[1−2log(1−z)]

+ 1−z
8cosh4 η

[4(5+cosh4η) log(1−z)−14+23cosh2η+2cosh4η+cosh6η]

+ (1−z)2

6cosh4 η
[7−cosh2η+cosh4η]+O

[
(1−z)3

]}
. (3.39)

As mentioned before, there is a logarithmic term log(1−z) at N2LP, while there are no
such logarithms at N3LP and beyond. It is clear that the η-structure of the coefficients
of log(1−z) at N2LP and beyond in this double differential cross section is different from
those at LP and NLP, such that the LL resummation of threshold logarithms is non-
trivial. In order to get the full analytic results valid up to N3LP at NLO, we need to
keep track of the terms proportional to δ(1−z) when combining eqs. (3.36) and (3.37), and
add the contribution from the NLO virtual correction. We combine all these contributions
proportional to δ(1−z) in the form

dσ̂
(1)
qq̄ (Q2,z,η)
dzdη

∣∣∣∣
ren,δ(1−z)

= αsCF

π

πα2

NcQ2 δ(1−z)
[1
6
(
2π2−21

)(
1+tanh2 η

)
+1
4 (1+tanhη)(5+tanhη) log

(1−tanhη
2

)
+1
4 (1−tanhη)(5−tanhη) log

(1+tanhη
2

)
+1
4

(
6−2tanhη− 1

cosh2 η

)
log2

(1−tanhη
2

)
+1
4

(
6+2tanhη− 1

cosh2 η

)
log2

(1+tanhη
2

)]
. (3.40)

The combination of eqs. (3.39) and (3.40) is the analytic expression for diphoton production,
up to N3LP, for the finite NLO cross section that is double differential in the diphoton
invariant mass and single photon rapidity.

4 Threshold resummation for rapidity distributions

In section 2 and 3 we discussed fixed order computations of the Drell-Yan process and QCD-
induced diphoton production. In this section we will resum the leading threshold logarithms
at both leading and next-to-leading power. Our method was previously only used to obtain
resummed cross sections that are differential in the threshold variable z. In this section we
will investigate whether we can also resum cross sections that are additionally differential in
the rapidity. We start by discussing the case of diphoton production, where we consider the
rapidity of one of the photons, using results of section 3. Subsequently we look at the Drell-
Yan process. As a direct application of the diphoton case, we first develop resummation at
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NLP LL accuracy for the distribution differential in the rapidity of one of the final state
leptons. Finally, using results of section 2, we consider the distribution differential in the
total rapidity of the final state (of the off-shell photon), and develop the resummation of
large logarithms of 1−z at NLP LL accuracy for this case, too.

4.1 NLP resummation of diphoton production

Let us recall that in terms of the soft power expansion the partonic cross section can be
written as

σ̂∼ 1
2ŝ

[∫
dΦLP |M|2LP+

∫
dΦLP |M|2NLP+

∫
dΦNLP |M|2LP+O(NNLP)

]
, (4.1)

i.e. NLP large logarithms arise both from the squared matrix element expanded to NLP
and from the expansion of the phase space. The results of section 3 allow us to deal
with the LLs in the second term of eq. (4.1). Therefore, as discussed in [54] for the case
of invariant mass distribution, we need first to assess the influence of the third terms of
eq. (4.1), namely, we need to determine whether LLs can arise from the NLP contribution
of the phase space.

To this end, we need the squared matrix element involving n gluons in the final state
at LP and the corresponding (n+2)-particle phase space measure. For LL accuracy, the
former has the simple eikonal form

|M|2LP,n = f(αs, ϵ, µ̄
2,η)

n∏
i=1

p1 ·p2
p1 ·kip2 ·ki

, (4.2)

where f(αs, ϵ, µ̄
2,η) is a general function that collects all factors not involved in the phase

space integration. The (n+2)-particle phase space measure is given by∫
dΦn+2 =

∫
dQ2

∫
dη

∫
ddp3

(2π)d−1 δ+(p2
3)
∫

ddp4
(2π)d−1 δ+(p2

4)
[

n∏
i=1

∫
ddki

(2π)d−1 δ+(k2
i )
]

× δ(Q2−(p3+p4)2)δ
(
η− 1

2 log
(
p+

3
p−3

))
(2π)dδ(d)

(
p1+p2−p3−p4−

n∑
i=1

ki

)
,

(4.3)

where we put any µ̄-dependence in the general function f . We can integrate out p4 using
the momentum-conserving delta function. We then have

δ(p2
4)=

1
ŝ
δ

(
1− 2p3 ·(p1+p2)

ŝ
− 2

∑
i ki ·(p1+p2)

ŝ
+2p3 ·

∑
i ki

ŝ
+
2
∑

i<j ki ·kj

ŝ

)
,

δ(Q2−(p3+p4)2)= 1
ŝ
δ

(
1−z− 2

∑
i ki ·(p1+p2)

ŝ
+
2
∑

i<j ki ·kj

ŝ

)
. (4.4)

In order to perform all these integrals we use a representation of the delta function as a
Laplace transform, given by

δ(x)=
∫ i∞

−i∞

dT

2πie
T x. (4.5)
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Turning to light-cone coordinates, the integrated squared matrix element reads∫
dΦn+2|M|2LP,n = 2π

ŝ2
Ωn+1

d−2
2n+1

∫
dp+

3 dp
−
3

(2π)d−1 (2p
+
3 p

−
3 )

d−4
2

[
n∏

i=1

∫
dk+

i dk
−
i

(2π)d−1 (2k
+
i k

−
i )

d−4
2

1
k+

i k
−
i

]

×
∫
dQ2dη

dT

2πi
dτ

2πi2p
+
3 δ(p

+
3 −e2ηp−3 )f(αs, ϵ,µ

2,η)eT (1−z)+τ

×
n∏

i=1
e−
√

2
ŝ

(T +τ)(k+
i +k−

i )e−
√

2
ŝ

τ(p+
3 +p−

3 )

×

1+2(T+τ)
ŝ

∑
i<j

ki ·kj+
n∑

i=1

2τ
ŝ
(p+

3 k
−
i +p−3 k

+
i )+. . .

 , (4.6)

where Ω2d =2πd/Γ(d). The last line originates from expanding the exponential in the
Laplace transform of the delta functions in eq. (4.4): this is possible because the terms
proportional to ki ·kj and (p+

3 k
−
i +p−3 k

+
i ) are subleading in the small ki-expansion with

respect to the terms in the third line of eq. (4.6). Terms that involve the perpendicular
components, which would contribute at NLP, are odd and vanish upon integration. Sub-
leading terms represented by the ellipsis in the last line of eq. (4.6) will be beyond NLP,
as they involve higher powers of the soft momentum ki. We can then integrate out p+

3
using the delta function, and integrate over p−3 and all the k±i . In order to do the T - and
τ -integrals, we use that these integrals are of the form of an inverse Laplace transform, viz.∫ i∞

−i∞

dT

2πie
T (1−x)

( 1
T

)α

= (1−x)α−1

Γ(α) . (4.7)

Collecting all the terms, we find that the phase space integral is given by

∫
dΦn+2|M|2LP,n = 2π

ŝ2
Ωn+1

d−2
2n+1

2n( d−4
2 )

(2π)(n+1)(d−1) 2
d−2

2

(
ŝ

2

)1−(n+1)ϵ Γ
(

d−4
2

)2n

Γ(n(d−4))

∫
dQ2

∫
dη

× 1
4cosh2 η

(4cosh2 η)ϵf(αs, ϵ,µ
2,η)(1−z)n(d−4)−1zd−3

×
(
1+ (n−1)(d−4)

4 (1−z)+ d−2
2 (1−z)+O

(
(1−z)2

))
=
∫
dzdη f̃(αs, ϵ,µ

2,η, ŝ,n)
Γ(d−4

2 )2n

Γ(n(d−4))(1−z)
n(d−4)−1

×
(
1−ϵn−3

2 (1−z)+O
(
(1−z)2

))
. (4.8)

We immediately see that the NLP term does not contribute at LL, since it is multiplied
by a factor of ϵ.4 We conclude that there is no NLP effect due to the phase space measure
at leading logarithmic accuracy.

We can now focus on the second term of eq. (4.1). It was already shown in ref. [54]
how to perform threshold resummation at NLP, which essentially relies on generalising the

4We absorbed some irrelevant factors into a new function f̃ .
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K-factor at next-to-leading order to a general leading power soft function. At NLO we
found

dσ̂
(1)
qq̄

dzdη
(Q2,η, ϵ)=KNLP(z,ϵ)

dσ̄
(0)
qq̄

dzdη
(Q2,η, ϵ), (4.9)

up to NLP, where we used the fact that zŝ=Q2. We generalise the K-factor straightfor-
wardly to a leading power soft function, and we find

dσ̂
(1)
qq̄

dzdη
(Q2,η, ϵ)= zSLP(z,ϵ)

dσ̄
(0)
qq̄

dzdη
(Q2,η, ϵ). (4.10)

This can be transformed into Mellin space∫
dz zN−1dσ̂

(1)
qq̄

dzdη
(Q2,η, ϵ)=SLP(N+1)

dσ̄
(0)
qq̄

dzdη
(Q2,η, ϵ). (4.11)

The LP soft function at order O(αs), expanded consistently in N -space up to next-to-
leading power terms in 1/N , is given by [54]

SLP(N)=
(
µ̄2

Q2

)ϵ 2αsCF

π

[1
ϵ

(
logN− 1

2N

)
+log2N− logN

N

]
. (4.12)

The LP soft function is known to exponentiate, which can be proven for instance by the
replica trick [87]. Setting µ̄2 =Q2 we find∫

dz zN−1 dσ̂qq̄

dzdη
(Q2,η, ϵ)= πα2CF

NcQ2 (1+tanh2 η)exp
[2αsCF

π

1
ϵ
logN

]
×exp

[2αsCF

π
log2N

](
1+2αsCF

π

1
ϵ

1
2N +2αsCF

π

logN
N

)
.

(4.13)

The poles in ϵ are now subtracted by the parton distribution functions by defining

qLL,NLP(N,Q2)= q(N,Q2)exp
[
αsCF

π

logN
ϵ

](
1+αsCF

π

1
ϵ

1
2N

)
. (4.14)

and similarly for the antiquark q̄. We then find∫ 1

0
dz zN−1 dσ̂qq̄

dzdη
= πα2

NcQ2 (1+tanh2 η)exp
[2αsCF

π
log2N

](
1+2αsCF

π

logN
N

)
, (4.15)

which is the resummed cross section for the leading logarithms at both LP and NLP.

4.2 NLP resummation of the Drell-Yan process

As a last application we consider again the Drell-Yan process. In section 2 we have discussed
the fixed-order calculation of the distribution differential in the total rapidity of the final
state, i.e., the rapidity of the produced off-shell photon. However, in the previous section
we have derived the resummed distribution for the diphoton cross section, differential in
the rapidity of one of the final state photons. It is then straightforward to apply the same
result to Drell-Yan, and derive the resummed distribution differential in the rapidity of
one of the two leptons. We will then conclude by considering again the Drell-Yan rapidity
distribution differential in the total rapidity of the final state, obtaining the corresponding
resummed result at NLP, with LL accuracy.
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4.2.1 Drell-Yan process for a final state lepton-antilepton pair

Using the definition of the rapidity from eq. (3.3), one readily finds at leading order in d=4
dimensions that the cross section of the Drell-Yan process, producing an lepton-antilepton
pair, is given by

dσ̂
(0)
qq̄

dzdη
(ŝ,η)= σ̂0(ŝ)

2cosh2 η
δ(1−z) , (4.16)

where σ̂0(ŝ) is given by

σ̂0(ŝ)=
4πα2e2

q

3Ncŝ
. (4.17)

The squared matrix element is independent of the rapidity η, such that the shift in kine-
matics only induces a shift in the centre of mass energy ŝ, namely ŝ→ zŝ. Using the method
of shifted kinematics, one finds a NLO cross section up to next to leading power that reads

dσ̂
(1)
qq̄, NLP
dzdη

(z,Q2,η, ϵ)= αs

4πCF
σ̂0(zŝ)
2cosh2 η

[
1
ϵ

(
8−8 1

1−z

∣∣∣∣
+

)

+16 log(1−z)
1−z

∣∣∣∣
+
−16log(1−z)+8

]
. (4.18)

Resummation is obtained as usual now, as discussed in the case of diphoton production.
After removing the collinear divergences through mass factorisation, we immediately obtain∫ 1

0
dz zN−1 dσ̂qq̄

dzdη
(Q2,η)= σ̂0(Q2)

2cosh2 η
exp

[2αsCF

π
log2N

](
1+2αsCF

π

logN
N

)
. (4.19)

We were hence again able to obtain a resummed cross section at leading logarithmic accu-
racy at LP and NLP.

4.2.2 Drell-Yan process for a final state off-shell photon

The derivation of the resummed distribution differential in the total rapidity of the final
state easily follows from the results of section 2. First of all, as shown in appendix C, inte-
gration of the LP squared matrix element against the NLP phase space does not generate
LLs at NLP. Therefore, also in this case we can neglect the third term in eq. (4.1) and
focus on the second term. In section 2.3 we found

dσ̂
(1)
qq̄,NLP
dzdy

(z,y,ϵ, µ̄2)= σ̂0

(
δ(y)+δ(1−y)

2 +O(ϵ)
)
KNLP(z,ϵ), (4.20)

This result is already in the right form. We can proceed as before and generalise the K-
factor to a leading power soft function, and then use the fact that this soft function can be
exponentiated. The resummed result then yields, after removing the collinear divergences
through mass factorisation,∫

dz zN−1 dσ̂qq̄

dzdy
(z,y)= σ̂0

(
δ(y)+δ(1−y)

2

)
exp

[2αsCF

π
log2N

](
1+2αsCF

π

logN
N

)
.

(4.21)
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Note that this resummed cross section has the same structure as for the other processes,
even though we are considering a different rapidity variable in this case. Upon converting
eq. (4.21) back to z-space, and expanding the result in powers of αs, it is possible to check
that the leading logarithmic contribution up to NLP does agree with the LLs appearing in
eqs. (2.68) and (2.69), after PDF renormalisation has been taken into account.

5 Conclusions

In this paper we have extended the treatment of next-to-leading power corrections from
single differential cross sections to double differential cross sections, in particular including
rapidity dependence for a number of observables. We examined the NLP structure for
fixed order results and derived resummed cross sections, to leading logarithmic accuracy
at NLP.

In section 2 we gave explicit NNLO partonic cross section expressions for the Drell-Yan
process, with dependence on both the threshold and rapidity variable up to NLP accuracy.
We showed that at LL accuracy at NLP the rapidity dependence indeed factorises from
the dependence on the threshold variable, as was already known for LP contributions.
Beyond LL accuracy the z- and y-dependence is more entangled. At NLO, we achieved the
same result by using the method of shifted kinematics [25]. We then examined the case of
diphoton production differential in the diphoton invariant mass and single-photon rapidity
in section 3. We constructed the NLO cross section up to NLP terms by generalising a
method involving momentum shifts for single-differential cross sections. We also presented
analytical results of the NLO cross section up to N3LP. Generalising the analysis in ref. [54],
we then derived in section 4 a result for the resummed cross section for diphoton production
for the leading logarithms at NLP, differential in both the threshold variable and the
rapidity. Using the same methods, we also resummed the NLP leading logarithms for the
Drell-Yan process, both for the lepton pair and single lepton inclusive case.

Extension beyond leading logarithms would clearly be interesting, though our results
show that this is very challenging due to the non-factorising structure of rapidity and
threshold logarithms for that case. Extension to different differential observables would
likewise be desirable, as would the inclusion of off-diagonal channels [56, 63]. Our present
results are, we believe, useful to further the insight into and use of next-to-leading power
corrections for phenomenological studies.
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A Phase space integrals for fixed-order Drell-Yan

In this appendix we compute the relevant phase space integrals for doubly differential
distributions in both the invariant mass and the rapidity that we use for the Drell-Yan
process. For the three-body phase space integrals at NNLO, it is hard to obtain complete
results at NLP with this approach. The result in this appendix for the three-body phase
space integral can only be used to calculate the contributions proportional to C2

F up to
LL at NLP. However, this approach can be used in other processes, e.g. pure quantum
electrodynamics corrections. Note that we have used a more powerful method with a
different parametrisation of external momenta to calculate the three-body phase space
integrals in section 2.2.

Before we give the results, let us first introduce a pair of light-like vectors

nµ = 1√
2
(1,0,0,1) , n̄µ = 1√

2
(1,0,0,−1) . (A.1)

For any momenta p and q, we have

p+ = n̄·p= 1√
2
(p0+p3) , p−=n·p= 1√

2
(p0−p3) ,

p·q= p+q−+p−q++p⊥ ·q⊥ .

(A.2)

In the centre of mass frame of initial states, we then have

pµ
a =

√
ŝ

2n
µ , pµ

b =

√
ŝ

2 n̄
µ . (A.3)

In this coordinate system the integration measure reads

ddp= dp+dp−dd−2p⊥. (A.4)

A.1 One-body phase space integral

The one-body phase space integral is trivial, we have∫
dΦγ∗ =

∫
ddq

(2π)d−1 (2π)
dδ(d)(pa+pb−q)δ(q2−Q2)δ

[
y− pa ·q−z pb ·q

(1−z)(pa ·q+pb ·q)

]
= 2π
Q2 δ (1−z)δ

(
y− 1

2

)
. (A.5)

A.2 Two-body phase space integral

We define the two-body phase space integral in both invariant mass and rapidity y as∫
dΦγ∗g =

(
µ̄2eγE

4π

)ϵ ∫ ddq

(2π)d−1
ddk

(2π)d−1 (2π)
d δ(d)(pa+pb−q−k)δ+(k2)δ(q2−Q2)

× δ

[
y− pa ·q−z pb ·q

(1−z)(pa ·q+pb ·q)

]
, (A.6)
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and δ+
(
k2)= δ

(
k2)θ(k(0)

)
. We first use the momentum-conserving delta function to in-

tegrate out q. We obtain

δ(q2−Q2)= 1
ŝ
δ

[
(1−z)− 2

ŝ
(pa+pb)·k

]
, (A.7)

δ

[
y− pa ·q−z pb ·q

(1−z)(pa ·q+pb ·q)

]
=(1−z)δ

[
(1−z)(1−y)− 2

ŝ
pa ·k

]
, (A.8)

where we have used eq. (A.7) to remove pb ·k in eq. (A.8). When we consider NLO real
corrections and NNLO real-virtual corrections up to NLP, the squared amplitudes depends
on k in the following general form

ŝα+β

(2pa ·k)α(2pb ·k)β
=

√ ŝ

2

α+β

1
(k−)α(k+)β

. (A.9)

After inserting eq. (A.7) and eq. (A.8) into eq. (A.6) and combining it with eq. (A.9), we
can perform the integration straightforwardly, such that we have∫

dΦγ∗g
ŝα+β

(2pa ·k)α(2pb ·k)β
= 1

8π

(
µ̄2

ŝ

)ϵ
eϵγE (1−y)−ϵ−αy−ϵ−β

Γ(1−ϵ) (1−z)1−2ϵ−α−β . (A.10)

A.3 Three-body phase space integral

We give an alternative approach to calculate the three-body phase space integral, instead
of the novel method of parametrisation of external momenta used in section 2.2. The
three-body phase space integral for distributions differential in both the invariant mass
and rapidity y is defined as∫

dΦγ∗(gg+qq̄) =
(
µ̄2eγE

4π

)2ϵ ∫ ddq

(2π)d−1
ddk1

(2π)d−1
ddk2

(2π)d−1 (2π)
d δ(d)(pa+pb−q−k1−k2)

× δ+(k2
1)δ+(k2

2)δ(q2−Q2)δ
[
y− pa ·q−z pb ·q

(1−z)(pa ·q+pb ·q)

]
. (A.11)

We integrate out q by using the momentum-conserving delta function, and obtain

δ(q2−Q2)= 1
ŝ
δ

[
(1−z)− 2

ŝ
(pa+pb)·(k1+k2)+

2
ŝ
k1 ·k2

]
, (A.12)

δ

[
y− pa ·q−z pb ·q

(1−z)(pa ·q+pb ·q)

]
=(1−z)

[
(1+z)− 2

ŝ
k1 ·k2

]
×δ
[
(1+z)(1−z)(1−y)− 2

ŝ
(1+z)pa ·(k1+k2)+

2
ŝ
(y+z−yz)k1 ·k2

]
,

(A.13)

where we have used eq. (A.12) to remove pb ·k1 in eq. (A.13). Note that k1 ·k2 is a power
suppressed term in eq. (A.12). We apply eq. (4.5) to eq. (A.12) and expand in powers of
T , which yields

δ(q2−Q2)= 1
ŝ

∫
dT

2πi exp
{
T

[
(1−z)− 2

ŝ
(pa+pb)·(k1+k2)

]}
×
[
1+T 2

ŝ
k1 ·k2+O

(
T 2
)]
. (A.14)
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The term k1 ·k2 is also power suppressed in eq. (A.13). We apply eq. (4.5) to eq. (A.13)
and expand in powers of τ , which yields

δ

[
y− pa ·q−z pb ·q

(1−z)(pa ·q+pb ·q)

]
=(1−z)

[
(1+z)− 2

ŝ
k1 ·k2

]
×
∫

dτ

2πi exp
{
τ

[
(1+z)(1−z)(1−y)− 2

ŝ
(1+z)pa ·(k1+k2)

]}
×
[
1+τ 2

ŝ
(y+z−yz)k1 ·k2+O

(
τ2
)]
, (A.15)

We now substitute eq. (A.14) and eq. (A.15) into eq. (A.11) and find that the phase space
measure depends on k1 ·k2 = k−1 k

+
2 +k+

1 k
−
2 +k1⊥ ·k2⊥ linearly at NLP.

If we only consider the contributions proportional to C2
F up to NLP LL in eq. (2.55),

the squared amplitudes do not involve the term k1 ·k2. As a result, the k1⊥ ·k2⊥ term does
not contribute by symmetry. The remaining integrations over k+

1 ,k
−
1 ,k

+
2 and k−2 , as well

as the inverse Laplace transformations over T and τ , are straightforward. Up to LL, at
LP, we have∫

dΦγ∗(gg+qq̄)
ŝ2

(2pa ·k1)(2pa ·k2)(2pb ·k1)(2pb ·k2)
= 1
32π3ŝ

(
µ̄2

ŝ

)2ϵ
e2ϵγEΓ2(−ϵ)
Γ2(1−2ϵ)

×y−1−2ϵ(1−y)−1−2ϵ(1−z)−1−4ϵ ,

(A.16)

and at NLP we have∫
dΦγ∗(gg+qq̄)

ŝ(2pa ·k1+2pa ·k2+2pb ·k1+2pb ·k2)
(2pa ·k1)(2pa ·k2)(2pb ·k1)(2pb ·k2)

= 1
32π3ŝ

(
µ̄2

ŝ

)2ϵ
e2ϵγEΓ2(−ϵ)
Γ2(1−2ϵ)

×y−1−2ϵ(1−y)−1−2ϵ(1−z)−4ϵ . (A.17)

We have checked that the above results are consistent with the corresponding ones given
by using the method in section 2.2.

B Phase space integral for fixed-order diphoton production

In section 3 we calculate the diphoton rapidity distribution at LO and NLO, for which we
need respectively the two- and three-particle phase space.

B.1 Two-body phase space integral

The two-body phase space is defined as follows:∫
dR2 =

∫
dQ2 dηdΦ2(p1+p2;p3,p4)δ

[
Q2−(p3+p4)2

]
δ

[
η− 1

2 log
(
p+

3
p−3

)]
, (B.1)

where ∫
dΦ2(p1+p2;p3,p4)=

(
µ̄2eγE

4π

)ϵ ∫ ddp3
(2π)d−1

ddp4
(2π)d−1

× δ+
(
p2

3

)
δ+
(
p2

4

)
(2π)dδ(d)(p1+p2−p3−p4) , (B.2)
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and the decomposition into light-cone momentum components pi± follows the definition in
eq. (A.2). The two-body phase space is easy to evaluate, and one gets

∫
dR2 =

eϵγE

4πΓ(1−ϵ)

(
µ̄2

ŝ

)ϵ ∫
dz dη (2coshη)−2+2ϵ δ(1−z). (B.3)

B.2 Three-body phase space integral

The three-body phase space reads

∫
dR3 =

∫
dQ2 dηdΦ3(p1+p2;p3,p4,k)δ

[
Q2−(p3+p4)2

]
δ

[
η− 1

2 log
(
p+

3
p−3

)]
, (B.4)

where∫
dΦ3(p1+p2;p3,p4,k)=

(
µ̄2eγE

4π

)2ϵ ∫ ddp3
(2π)d−1

ddp4
(2π)d−1

ddk

(2π)d−1 δ+(p2
3)δ+(p2

4)δ+(k2)

× (2π)dδ(d)(p1+p2−p3−p4−k) . (B.5)

We start by performing the integration over p4 with the momentum-conserving delta func-
tion, obtaining

∫
dR3 =(2π)

(
µ̄2eγE

4π

)2ϵ ∫
dQ2 dη

dp+
3 dp

−
3 d

d−2p3,⊥
(2π)d−1

dk+dk−dd−2k⊥
(2π)d−1

× δ+
(
2p+

3 p
−
3 −p2

3,⊥

)
δ+
(
2k+k−−k2

⊥

)
δ [ŝ−2p3 ·(p1+p2)−2k ·(p1+p2)+2p3 ·k]

× δ
[
Q2−ŝ+2k ·(p1+p2)

]
δ

[
η− 1

2 log
(
p+

3
p−3

)]

=
(
µ̄2eγE

4π

)2ϵ Ωd−2Ωd−3
2(2π)2d−3ŝ

∫
dzdηdp+

3 dp
−
3 dp

2
3,T dk

+dk−dk2
T dcosαp+

3

(
p2

3,T

) d−4
2
(
k2

T

) d−4
2

×
(
1−cos2α

) d−5
2 δ+

(
2p+

3 p
−
3 −p2

3,T

)
δ+
(
2k+k−−k2

T

)
δ

[
(1−z)−

√
2
ŝ
(k++k−)

]

×δ
(
p+

3 −p−3 e
2η
)
δ

[
z−
√

2
ŝ
(p+

3 +p−3 )+
2
ŝ
(p+

3 k
−+p−3 k+−p3,TkT cosα)

]
, (B.6)

where Ω2d =2πd/Γ(d). Applying eq. (4.5) to the last delta function, we can integrate out
the angle α by using∫ 1

−1
dcosα

(
1−cos2α

)−1−2ϵ
2 exp

(
−2
ŝ
T p3,TkT cosα

)
= 4ϵπΓ(1−2ϵ)

Γ2(1−ϵ) 0F1

(
1−ϵ,

T 2p2
3,Tk

2
T

ŝ2

)

= 4ϵπΓ(1−2ϵ)
Γ(1−ϵ)

∞∑
j=0

1
Γ(1−ϵ+j)

(
T 2p2

3,Tk
2
T

ŝ2

)j 1
j! , (B.7)

– 39 –



J
H
E
P
1
0
(
2
0
2
3
)
1
2
6

where we have used the series representation of the hypergeometric function 0F1 (a,z) in
the last line. Now, we have

∫
dR3 =

µ̄4ϵe2ϵγE

(4π)2πŝΓ(1−ϵ)

∫
dzdη

∞∑
j=0

∫
dT

2πi
T 2j

Γ(1−ϵ+j)ŝ2jj!

∫
dp+

3 dp
−
3 dp

2
3,Tdk

+dk−dk2
T p

+
3

×
(
p2

3,T k
2
T

)j−ϵ
δ+
(
2p+

3 p
−
3 −p2

3,T

)
δ+
(
2k+k−−k2

T

)
δ

[
(1−z)−

√
2
ŝ
(k++k−)

]

×δ
(
p+

3 −p−3 e
2η
)
exp

{
T

[
z−
√

2
ŝ
(p+

3 +p−3 )+
2
ŝ
(p+

3 k
−+p−3 k+)

]}
. (B.8)

Combining the above
∫
dR3 with the squared amplitudes in eq. (3.13), we use the four

delta functions to integrate over p+
3 , p3,T , k

+ and kT . The integration over p−3 and k− and
the inverse Laplace transformation would be straightforward. Finally, we have

∫
dR3(k+)α(k−)β(p+

3 )γ(p−3 )κ = µ̄4ϵ
∫
dzdη

2−6− 1
2 (α+β+γ+κ)z1+γ+κ−2ϵ

π3ŝ−1+2ϵ− 1
2 (α+β+γ+κ)

×
∞∑

j=0

∞∑
n=0

(1−z)1+α+β−2ϵ+2j+n(e2η)1+γ−ϵ+j(e2η−1)n(e2η+z)−2−γ−κ+2ϵ−2j−n

× e2ϵγEΓ(1+α−ϵ+j)Γ(1+β−ϵ+j+n)Γ(2+γ+κ−2ϵ+2j+n)
j!n!Γ(1−ϵ)Γ(2+γ+κ−2ϵ)Γ(1−ϵ+j)Γ(2+α+β−2ϵ+2j+n) . (B.9)

Note that this result is valid up to arbitrary power of 1−z. Only the j=0,n=0 and
j=0,n=1 terms are necessary at NLP because α+β≥−2 in the NLO squared amplitudes
of eq. (3.13).

C NLP phase space contribution for Drell-Yan

In this appendix we discuss the NLP contribution of the phase space for the Drell-Yan
production of a virtual photon, i.e. q(pa)q̄(pb)→ γ∗(q). This result is needed in section 4.2.2.
The (n+1)-particle phase space integral is given by

∫
dΦn+1 =

∫
ddq

(2π)d−1 δ+(q2−Q2)
∫ n∏

i=1

[
ddki

(2π)d−1 δ+(k2
i )
]

×
∫
dη δ

(
η− 1

2 log
(
q+

q−

))
(2π)dδ(d)

(
pa+pb−q−

n∑
i=1

ki

)

= 2π
ŝ

∫ n∏
i=1

[
ddki

(2π)d−1 δ+(k2
i )
]
δ

1−z−√2
ŝ

∑
i

(k+
i +k−i )+ 2

ŝ

∑
i<j

ki ·kj


×
∫
dη δ

(
η− 1

2 log
(√

ŝ/2−
∑

i k
+
i√

ŝ/2−
∑

i k
−
i

))
, (C.1)
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where we used the rapidity variable η for the moment, and that (pa+pb)+ =(pa+pb)−=√
ŝ/2. We can manipulate the delta function of the rapidity η as follows:

δ

(
η− 1

2 log
(√

ŝ/2−
∑

i k
+
i√

ŝ/2−
∑

i k
−
i

))
=2

√ ŝ

2−
∑

i

k+
i


×δ

∑
i

k+
i −

√
ŝ

2−e
2η

∑
i

k−i −

√
ŝ

2

 , (C.2)

likewise as was done in the analogous derivation for diphoton production, where we had p+
3

and p−3 as inputs of the logarithm. As was done in section 4.2.2, we introduce the rapidity
variable y. It is related to η via

y= 1−e2ηz

(e2η+1)(1−z) . (C.3)

Using the expression for the squared matrix element at leading power from eq. (4.2), we
write∫

dΦn+1 |M|2LP,n = 4π
ŝ

Ωn
d−2
2n

∫ [ n∏
i=1

dk+
i dk

−
i

(2π)d−1 (2k
+
i k

−
i )−ϵ 1

k+
i k

−
i

]

×
∫
dy

(
−2(1−z)

1+z

)
dT

2πi
dτ

2πi

√ ŝ

2−
n∑

i=1
k+

i

eT (1−z)eτ
√

ŝ/2(e2η(y)−1)f(αs, ϵ,y, µ̄
2)

×
n∏

i=1
ek+

i (−
√

2/ŝT +τ)ek−
i (−

√
2/ŝT−e2η(y)τ)

1+2T
ŝ

∑
i<j

(k+
i k

−
j +k−i k

+
j )+O(T 2)

 . (C.4)

For the moment, we will compactly write η(y) instead of the expression in eq. (C.3). Using
the expression for the squared matrix element at leading power from eq. (4.2), we write

∫
dΦn+1 |M|2LP,n = 4π

ŝ

Ωn
d−2
2n

∫ [ n∏
i=1

dk+
i dk

−
i

(2π)d−1 (2k
+
i k

−
i )−ϵ 1

k+
i k

−
i

]

×
∫
dy

(
−2(1−z)

1+z

)
dT

2πi
dτ

2πi

√ ŝ

2−
n∑

i=1
k+

i

eT (1−z)eτ
√

ŝ/2(e2η(y)−1)f(αs, ϵ,v,µ
2)

×
n∏

i=1
ek+

i (−
√

2/ŝT +τ)ek−
i (−

√
2/ŝT−e2ητ)

1+2T
ŝ

∑
i<j

(k+
i k

−
j +k−i k

+
j )+O(T 2)

 . (C.5)

The first contribution we will evaluate is given by

I1 ≡
∫ [ n∏

i=1
dk+

i dk
−
i (k+

i k
−
i )

d−6
2

]∫
dy

(
−2(1−z)

1+z

)
dT

2πi
dτ

2πi

√
ŝ

2e
T (1−z)eτ

√
ŝ/2(e2η(y)−1)

×
n∏

i=1
ek+

i (−
√

2/ŝT +τ)ek−
i (−

√
2/ŝT−e2η(y)τ). (C.6)
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We then integrate over all the momenta {ki}n
i=1, which all become Gamma functions, i.e.

I1 =
(
−2(1−z)

1+z

)√
ŝ

2

∫
dy
dT

2πi
dτ

2πi e
T (1−z)eτ

√
ŝ/2(e2η(y)−1)

×

 1√
2
ŝT−τ

n( d−4
2 ) 1√

2
ŝT+e2η(y)τ

n( d−4
2 )

Γ
(
d−4
2

)2n

. (C.7)

Upon subsequent coordinate transformations

T̃ =
√

2
ŝ
T−τ, τ̃ = T̃+τ(1+e2η(y)),

one finds the following expression for I1, namely

I1 =−2−1+nϵŝ−nϵ Γ2n(−ϵ)
Γ2(−nϵ)

∫
dyy−1−nϵ(1−y)−1−nϵ

(
1+y(1−z)+O((1−z)2)

)
, (C.8)

where we now explicitly used eq. (C.3) for the rapidity y. Using similar methods, the
second contribution that we calculate reads

I2 ≡
∫ [ n∏

i=1
dk+

i dk
−
i (k+

i k
−
i )

d−6
2

]∫
dy

(
−2(1−z)

1+z

)
dT

2πi
dτ

2πi

(
−

n∑
i=1

k+
i

)

×eT (1−z)eτ
√

ŝ/2(e2η(y)−1)
n∏

i=1
ek+

i (−
√

2/ŝT +τ)ek−
i (−

√
2/ŝT−e2η(y)τ)

=
(2(1−z)

1+z

)∫
dy
dT

2πi
dτ

2πie
T (1−z)eτ

√
ŝ/2(e2η(y)−1)

×n
[∫

dk+dk−(k+)
d−4

2 (k−)
d−6

2 ek+(−
√

2/ŝT +τ)ek−(−
√

2/ŝT−e2η(y)τ)
]

×
[∫

dk+dk−(k+k−)
d−6

2 ek+(−
√

2/ŝT +τ)ek−(−
√

2/ŝT−e2η(y)τ)
]n−1

=2−1+nϵŝ−nϵ Γ2n (−ϵ)
Γ2 (−nϵ)

∫
dyy−1−nϵ(1−y)−1−nϵ

(
y(1−z)−2nϵ+O((1−z))

)
, (C.9)

where we rewrote the expression in such a way that it has a recognisable common prefactor
with I1. We now turn our attention to the third integral, which reads

I3 ≡
∫ [ n∏

i=1
dk+

i dk
−
i (k+

i k
−
i )

d−6
2

]∫
dy

(
−2(1−z)

1+z

)
dT

2πi
dτ

2πi

√
ŝ

2e
T (1−z)eτ

√
ŝ/2(e2η(y)−1)

×
n∏

i=1
ek+

i (−
√

2/ŝT +τ)ek−
i (−

√
2/ŝT−e2η(y)τ)

2T
ŝ

∑
i<j

(k+
i k

−
j +k−i k

+
j )
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=
(
−2(1−z)

1+z

)√2
ŝ

∫
dy
dT

2πi
dτ

2πie
T (1−z)eτ

√
ŝ/2(e2η(y)−1)T

×n(n−1)
[∫

dk+dk−(k+)
d−4

2 (k−)
d−6

2 ek+(−
√

2/ŝT +τ)ek−(−
√

2/ŝT−e2η(y)τ)
]

×
[∫

dk+dk−(k+)
d−6

2 (k−)
d−4

2 ek+(−
√

2/ŝT +τ)ek−(−
√

2/ŝT−e2η(y)τ)
]

×
[∫

dk+dk−(k+k−)
d−6

2 ek+(−
√

2/ŝT +τ)ek−(−
√

2/ŝT−e2η(y)τ)
]n−2

=2−1+nϵŝ−nϵ Γ2n (−ϵ)
Γ2 (−nϵ)

(n−1)
2 ϵ

∫
dyy−1−nϵ(1−y)−1−nϵ

(
(1−z)−2nϵ+O((1−z))

)
.

(C.10)

We again extracted a common prefactor with I1 and I2 and we observe that the expression
is proportional to ϵ, which means that this expression is subleading in the logarithmic
expansion.

We potentially have a fourth integral that contributes and it is given by

I4 ≡
∫ [ n∏

i=1
dk+

i dk
−
i (k+

i k
−
i )

d−6
2

]∫
dy

(
−2(1−z)

1+z

)
dT

2πi
dτ

2πi

(
−

n∑
i=1

k+
i

)

×eT (1−z)eτ
√

ŝ/2(e2η(y)−1)
n∏

i=1
ek+

i (−
√

2/ŝT +τ)ek−
i (−

√
2/ŝT−e2η(y)τ)

2T
ŝ

∑
i<j

(k+
i k

−
j +k−i k

+
j )

.
(C.11)

Looking at the delta function in eq. (C.1), which reads

δ

1−z−√2
ŝ

∑
i

(k+
i +k−i )+ 2

ŝ

∑
i<j

ki ·kj

 , (C.12)

we argue that both
∑

i k
+
i and

∑
i<j ki ·kj are at least of order O(1−z), which means that

the result from integral I4 is of order O
(
(1−z)2), and hence that it does not contribute at

the required accuracy.5 Adding the three NLP contributions, one obtains

I1+I2+I3 =−2−1+nϵŝ−nϵ Γ2n (−ϵ)
Γ2 (−nϵ)

∫
dyy−1−nϵ(1−y)−1−nϵ(1−z)−1−2nϵ

×
(
1+y(1−z)−y(1−z)−ϵ(n−1)

2 (1−z)+O
(
(1−z)2

))
. (C.13)

We immediately see that the NLP contribution of the phase space integral vanishes for the
leading logarithms, which is the reason that we can resum the cross section in section 4.2.2
using the steps performed there.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

5Upon carrying out the calculation, we indeed found a contribution starting from NNLP.
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